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Abstract

During development, intrinsic genetic programs give rise to distinct cellular
lineages through the establishment of cell type specific chromatin states. These distinct
chromatin states instruct gene expression primarily through the genome-wide
demarcation of enhancers. In addition to maintaining cellular identity, the chromatin
state of a cell provides a platform for transcriptional responses to environmental signals.
However, relatively little is known about the influence of extracellular stimuli on
chromatin state at enhancers, and it is not clear which enhancers among the tens of
thousands that have been recently identified function to drive stimulus-responsive

transcription.

In the nervous system, the chromatin state of terminally differentiated neurons
not only maintains neuronal identity but also provides a platform for sensory
experience-dependent gene expression, which plays a critical role in the development

and refinement of neural circuits and in long-lasting changes in neuronal function that
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underlie learning, memory, and behavior. Using chromatin-immunoprecipitation
followed by high through put sequencing (ChIP-Seq), we determined the effects of
neuronal stimuli on the active chromatin landscape of mouse cortical neurons. We
discover that stimulation with neuronal activity and brain derived neurotrophic factor
(BDNF) cause rapid, widespread, and distinct changes in the acetylation of histone H3
lysine 27 (H3K27Ac) at thousands of enhancers throughout the neuronal genome. We
find that functional stimulus-responsive enhancers can be identified by stimulus-
inducible H3K27Ac, and we use this dynamic chromatin signature to discover neuronal
enhancers that respond to neuronal activity, BDNF, or both stimuli. Finally, we
investigate the transcriptional mechanisms underlying the function of stimulus
responsive enhancers. We show that a subset of stimulus-responsive enhancers in the
nervous system require the coordinated action of the stimulus-general transcription

factor activator protein 1 (AP1) with additional stimulus-specific factors.

Our studies reveal the genome-wide basis for transcriptional specificity in
response to distinct neuronal stimuli. Furthermore, the comprehensive identification of
neuronal activity and BDNF-dependent enhancers in cortical neurons provides a critical
resource for elucidating the role of stimulus-responsive transcription in synaptic
plasticity, learning and memory, behavior, and disease. Finally, the epigenetic signature
of stimulus-inducible H3K27Ac may aid in the identification and study of stimulus-

regulated enhancers in other tissues.
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1 GENERAL INTRODUCTION

The nervous system enables higher organisms to not only sense and respond to
the environment, but also to learn from and remember past experiences. Importantly,
these fundamental functions of the nervous system are emergent properties that derive
from the ability of individual neurons to sense, respond, and adapt to sensory stimuli. A
characteristic component of the neuronal response and adaptation to extracellular
stimuli is new gene transcription. This phenomenon, first discovered over 25 years ago,
is now know to play a critical role in the development and function of the nervous
system, and perturbations in this program of gene expression are thought to contribute
to neurological disease. Despite great progress over the past decades in understanding
the mechanisms underlying stimulus-dependent programs of gene expression, major
question remain. How is neuronal chromatin affected by extracellular stimuli? What
are the enhancers in the genome that drive stimulus-dependent transcription? What is
the regulatory logic of these elements? How are specific transcriptional responses
generated for different stimuli? What transcription factors play a role in generating
these responses? How do multiple transcription factors work together to achieve this
purpose?  What are the effector molecules regulated by stimulus-responsive
transcription factors that mediate adaptive cellular responses to neuronal activity?

These are some of the questions that have motivated my thesis work.



1.1 DISCOVERY OF STIMULUS-RESPONSIVE TRANSCRIPTION IN THE

NERVOUS SYSTEM

Stimulus-responsive transcription in the nervous system was discovered nearly
30 years ago with the discovery of neuronal activity-dependent transcription of the c-
Fos gene. Stimulation of neuronal cells with either the cholinergic agonist nicotine or
membrane depolarization with elevated extracellular concentrations of potassium
chloride (KCI) was shown induce transcription of c-Fos (Greenberg et al., 1986). In
addition to discovering this phenomenon, this first study also showed several key
characteristics of neuronal activity-dependent transcription.  Activity-dependent
transcription was shown to be rapid, occurring with 5 minutes of stimulation.
Furthermore, activity-dependent transcription was shown to be transient, lasting
approximately 30 minutes after stimulus onset. Finally, activity-dependent
transcription was shown to be dependent on extracellular calcium, being abolished
when cells were cultured in the presence of the calcium chelator ethylene glycol
tetraacetic acid (EGTA). It is interesting to note that this influential study that set the
ground for many subsequent discoveries in the nervous system was done in neuronally
differentiated PC12 cells. PCi2 cells are a cell line derived from a rat
pheochromocytoma, which is a neuroendocrine tumor of the medulla of the adrenal
gland. Previous work had shown that these cells differentiate into neuronal cells when
exposed to nerve growth factor, establishing PC12 cells as a useful culture system to
study neuronal cells (Greene and Tischler, 1976). While the initial discovery of neuronal
activity-dependent transcription was made in this somewhat artificial cell culture

system, neuronal activity-dependent transcription was subsequently observed in many
2



additional contexts, demonstrating the power of simplified model systems to observe

and study biological phenomena.

Soon after the initial discovery of activity-dependent induction of c-Fos in PC12
cells in vitro, several groups observed c-Fos induction in response to activity in cultured
primary neurons in vitro (Hunt et al., 1987; Szekely et al., 1987) and in response to
diverse stimuli in the nervous system in vivo (Morgan and Curran, 1991). Many of the
stimuli that have been shown to induce c-Fos in the nervous system in-vivo are stimuli
that increase neuronal activity or activate particular neural circuits. Such stimuli
include the convulsant pentylenetetrazol (Morgan et al., 1987; Saffen et al., 1988;
Sonnenberg et al., 1989a; Sonnenberg et al., 1989b; Sonnenberg et al., 1989c), the
stimulant kainic acid (Le Gal La Salle, 1988; Popovici et al., 1990; Sonnenberg et al.,
1989b), electrical stimulation (Daval et al., 1989; Douglas et al., 1988; Dragunow and
Robertson, 1987; Hunt et al., 1987; Sagar et al., 1988; Sharp et al., 1989b; Shin et al.,
1990; Sonnenberg et al., 1989b; White and Gall, 1987; Winston et al., 1990; Wisden et
al., 1990), the glutamate neurotransmitter receptor agonist N-methyl-D-aspartic acid
(NMDA) (Cole et al., 1989; Kaczmarek et al., 1988; Sonnenberg et al., 1989b), the y-
aminobutyric acid receptor (GABAR) antagonist picrotoxin (Sonnenberg et al., 1989b),
Di1-dopamine receptor agonists (Robertson et al., 1989a; Robertson et al., 1989b), p-
adrenergic receptor agonists (Gubits et al., 1989), the opiate analgesic morphine (Chang
et al., 1988), opiate withdrawal (Hayward et al., 1990), nociceptive and peripheral
stimulation (Bullitt, 1989; Draisci and Iadarola, 1989; Menetrey et al., 1989; Presley et
al., 1990; Wisden et al., 1990), and light stimulation (Aronin et al., 1990; Rea, 1989;

Rusak et al., 1990; Sagar et al., 1988). In addition to the above stimuli that increase



neuronal activity and activate neural circuits, additional stimuli not directly related to
neuronal activity have also been shown to induce c-Fos in the nervous system in vivo,
including surgical lesions and nerve transections (Dragunow and Robertson, 1988;
Sharp et al., 1989a; Sharp et al., 1989c), cerebral ischemia (Jorgensen et al., 1989;
Onodera et al., 1989), heat stress (Dragunow et al., 1989), adrenalectomy (Jacobson et
al.,, 1990), intracortical NGF injections (Sharp et al.,, 1989a), and even intracortical
saline injections (Kaczmarek et al., 1988). These data suggest that new gene
transcription is a general hallmark of a stimulated neuron. The nature of the stimulus
does not appear to matter. Whether a neuron is stimulated with a physiological
stimulus, a pathological stimulus, a stimulus related to neuronal activity, or a stimulus

unrelated to neuronal activity, genes such as c-Fos are induced.

It is important to note that c-Fos is not unique in its transcriptional induction by
neuronal activity. Soon after the discovery of the activity-dependent transcription of c-
Fos, other genes were also shown to be induced in response to neuronal activity,
including c-Jun, JunB, and Egri (Saffen et al., 1988; Sukhatme et al., 1988). More
recently, investigators have systematically characterized hundred of genes that are
induced in neurons in response to neuronal activity (Altar et al., 2004; Hong et al.,
2004; Li et al., 2004; Nedivi et al., 1993; Park et al.,, 2006). Genes induced in the
nervous system in response to stimuli can be divided into two waves of induced genes.
The first wave of genes, termed immediate early genes, consists of genes like c-Fos that
are expressed rapidly (within minutes) and transiently in response to stimuli. The
second wave of genes, termed late response genes, consists of genes like brain-derived

neurotrophic factor (BDNF) that are expressed more slowly (over hours) in response to



stimuli. In general, the transcription of immediate early genes does not require new
protein synthesis while the transcription of late response genes does require new protein
synthesis. Many immediate early genes encode transcription factors that have been
proposed to regulate the transcription of late response genes. Late response genes, in
turn, are generally thought to encode molecules that effect longer lasting changes within

the cell (Sheng and Greenberg, 1990).

Importantly, the stimulus-dependent induction of c-Fos and other genes is not
limited to the nervous system. Even before c-Fos was shown to be induced by neuronal
activity in neuronal cells, it was shown to be induced by serum and growth factors in
fibroblasts (Greenberg and Ziff, 1984; Muller et al., 1984). c-Fos has also been shown to
be induced in numerous other diverse circumstances, including cellular differentiation
(Mitchell et al., 1985; Muller et al., 1985), wounding of a fibroblast monolayer (Verrier
et al., 1986), thyroid hormone stimulation of thyroid cells (Colletta et al., 1986), IL-1
stimulation of lymphocytes (Kovacs et al., 1986), IGF-1 stimulation of skeletal muscle
(Ong et al., 1987), growth hormone releasing hormone stimulation of pituitary cells
(Billestrup et al., 1987), heat shock stimulation of HeLa cells (Andrews et al., 1987),
follicle stimulating hormone stimulation of Sertoli cells (Hall et al., 1988), interferon
stimulation of various cells (Wan et al., 1988), and steroid and growth factor stimulation
of breast cancer cells (Wilding et al., 1988). The diverse circumstances in which c-Fos is
induced suggests that C-FOS may play a critical role in the cellular response to many
extracellular signals in many cell types, and that C-FOS may be performing a stimulus-

general function that is required for the cellular response to stimulation.



1.2 FUNCTION OF STIMULUS-RESPONSIVE TRANSCRIPTION IN THE

NERVOUS SYSTEM

As soon as c-Fos and other genes were shown to be induced in response to
neuronal activity, there was great interest in understanding the function of stimulus-
responsive transcription in the nervous system. Neurons were known to exhibit rapid
responses to synaptic stimulation that could be explained by the opening of ligand gated
ion channels or second-messenger mediated intracellular signaling. However, neurons
were also known to exhibit slower, long-term responses to synaptic stimulation that
could not be explained by the same mechanisms. At an organismal level, one of the
most interesting long-term responses of the nervous system is memory. An appealing
hypothesis was that stimulus-responsive genes might underlie memory by facilitating
adaptive changes in nervous system structures such as synapses (Morgan and Curran,
1989, 1991; Sheng and Greenberg, 1990). A large body of work has supported roles for
stimulus-responsive transcription in memory and synapse development and function

(Flavell and Greenberg, 2008; Greer and Greenberg, 2008).

1.2.1 Role in long-term memory

Interestingly, even before the discovery of stimulus-responsive transcription in
the nervous system and the speculation that this program of gene expression might
contribute to memory, experiments suggested that new protein synthesis was critical for

long-term memory. In a classic paper published over twenty years before the discovery
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of activity-dependent transcription of c-Fos in the nervous system, investigators
demonstrated that intracortical injections of the protein synthesis inhibitor puromycin
in mice caused a loss of memory in a behavioral task (Flexner et al., 1963). This
suggested that new protein synthesis was an important component of the mechanisms
giving rise to memory. Subsequently, a large number of studies provided evidence that
extensive inhibition of protein synthesis in the brain through injection of various protein
synthesis causes loss of long-term memory, without causing changes in short-term

memory or gross changes in behavior (Davis and Squire, 1984).

Further evidence for the role of new gene transcription in memory came from
work done in the sea snail Aplysia californica, reviewed in (Kandel, 2001). When the
siphon of the snail is touched, the snail exhibits a protective reflex that leads to
withdrawal of the gills, similar to how someone might withdraw one’s hand after
touching a hot object. The length of time the gills remain retracted serves as an
indication of learning by the snail. Normally, the withdrawal reflex leads to retraction of
the gills for approximately 10 seconds. However, if the tail of the snail is shocked
(indicating to the snail a dangerous environment), the subsequent withdrawal reflex
leads to retraction of the gill and siphon for a longer period of time, in a process called
sensitization. Furthermore, the animal remembers the shock and exhibits sensitization
to subsequent stimuli. One shock will create a short-term memory that will lead to
sensitization for a few minutes. Multiple shocks can create a long-term memory that
can lead to sensitization for several days. The discovery of the neural circuitry
underlying this reflex behavior (Byrne et al., 1978; Hawkins et al., 1981; Kupfermann et

al., 1974) enabled the discovery that short-term and long-term sensitization lead to the



strengthening of synaptic connections between sensory and motor neurons, termed
heterosynaptic facilitation (Abrams et al., 1984; Brunelli et al., 1976; Castellucci et al.,
1970; Frost et al., 1985; Hawkins et al., 1981; Pinsker et al., 1973). These discoveries led
to the hypothesis that heterosynaptic facilitation at the cellular level may underlie
sensitization seen at the behavioral level. By studying the neural circuit underlying the
gill withdrawal reflex, investigators showed that short-term heterosynaptic facilitation
does not require new protein synthesis whereas long-term heterosynaptic facilitation
does require new protein synthesis (Montarolo et al., 1986). These results paralleled the
results seen in mice with intracortical injections of protein synthesis inhibitors and
supported a role for new protein synthesis in a cellular correlate of memory. These
findings suggested that proteins synthesized during and soon after learning were critical
for the establishment of long-term memory. Given that stimulation of neuronal circuits
during memory formation gives rise to activity-dependent gene expression, it was
hypothesized that this program of gene expression played a role in memory. It wasn’t
until later, however, that this hypothesis could be formally tested with studies of the
activity-dependent transcription factor CREB (cyclic AMP response element binding

protein) in this process.

As investigators began to appreciate the role of new protein synthesis in long-
term memory, details began to emerge regarding the underlying molecular mechanisms.
Studies of the neural circuit underlying the gill withdrawal reflex showed that the
neurotransmitter serotonin mediates long-term heterosynaptic facilitation in Aplysia
(Montarolo et al., 1986) and that a second messenger downstream of serotonin, cyclic

AMP, was itself capable of producing long-term heterosynaptic facilitation (Schacher et



al., 1988; Scholz and Byrne, 1988). These data suggested that the gene-products
important for long-term heterosynaptic facilitation might be inducible by cAMP. It
turned out that at this time, separate studies had identified the transcription factor
CREB, or the cyclic AMP response element binding protein, as an important activator
gene transcription in response to cAMP signaling (Montminy et al., 1986). These
discoveries provided investigators with a potential molecular handle to study the role of
stimulus-responsive transcription in memory. The first evidence that CREB plays a role
in learning and memory came from a study in which investigators showed that Aplysia
neurons contained CREB-like proteins and that injection of oligonucleotides of the
cyclic AMP response element to which these proteins bind into the nucleus of Aplysia
sensory neurons blocked long-term heterosynaptic facilitation without affecting short-
term heterosynaptic facilitation (Dash et al., 1990). Separate studies had shown that
CREB was also as an important activator of c-Fos transcription in mammalian cells in
response to extracellular stimuli (Sheng et al., 1988) (see section 1.3.1 Initial insights
from the c-Fos promoter). Hence, the CREB protein appeared to be an important
regulator of long-term adaptations in Aplysia as well activity-dependent transcription in
the mammalian nervous system. Experiments done in genetically modified mice have
supported a role for CREB in mammalian long-term plasticity and memory. Mutation
of Creb in mice resulted in defective long-term memory and long lasting long-term
potentiation (L-LTP), a cellular correlate of long-term memory, with no affect on short-
term memory or short term synaptic plasticity (Bourtchuladze et al., 1994).
Furthermore, transgenic mice overexpressing a constitutively active form of CREB
exhibit L-LTP in response to weak stimuli that would not normally elicit L-LTP (Barco

et al.,, 2002). These data suggest that CREB plays an important role in long-term
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cellular adaptations to stimuli and long-term memory. Since these processes require
new protein synthesis and since CREB is a transcription factor regulated by extracellular
stimuli, these results also implicate stimulus-responsive transcription in long-term

cellular adaptations to stimuli and long-term memory.

1.2.2 Role in dendritic and synaptic development

In addition to playing a role in long-term cellular adaptations to stimuli and long-
term memory, stimulus-responsive transcription also has been shown to play important
roles in development of dendrites and synapses that underlie these long-term
phenomena. The most convincing evidence supporting a role of stimulus-responsive
transcription in dendritic and synaptic development has come from detailed studies of
these processes in the context of genetic alterations to stimulus-responsive genes. For
example the activity-dependent transcription factors CREB, CREST, and NEUROD have
all been shown to play important roles in dendritic development (Aizawa et al., 2004;
Gaudilliere et al., 2004; Redmond et al., 2002; Wayman et al., 2006). Furthermore,
genes whose transcription is regulated by neuronal activity, such as the microRNA
miRNA132 and candidate plasticity gene 15 (Cpg15), have also been shown to regulate
dendritic remodeling (Cantallops et al., 2000; Nedivi et al., 1998; Vo et al., 2005;
Wayman et al.,, 2008). Similarly, neuronal activity-dependent genes have also been
shown to play important roles in synapse development. The neuronal activity-
dependent transcription factor MEF2 has been shown to negatively regulate excitatory

synapse number (Barbosa et al., 2008; Flavell et al., 2006). Furthermore, the protein
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products of the activity-regulated genes Arc, Homeria, Npas4, and Plk2 have all been
shown to regulate various aspects of synapse development (Chowdhury et al., 2006; Lin
et al., 2008; Pak and Sheng, 2003; Rial Verde et al., 2006; Sala et al., 2003). These
studies have demonstrated that neuronal stimulus-responsive transcription plays

critical roles in the development of both dendrites and synapses in the nervous system.
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1.3 REGULATION OF STIMULUS-RESPONSIVE TRANSCRIPTION IN THE

NERVOUS SYSTEM

Because neuronal stimulus-responsive transcription plays important roles in the
development and function of the nervous system, there has been great interest in
understanding the molecular mechanisms underlying this program of gene expression.
Early work focused on studying the promoters of stimulus-responsive genes. This
yielded important insights into the proximal cis-acting elements and proximally bound
trans-acting factors that regulate stimulus-responsive transcription. With the
development of chromatin and transcription factor signatures that identify enhancers,
and sequencing technologies that enable their unbiased genome-wide identification,
recent studies have begun to identify distal enhancer elements that may also regulate
stimulus-responsive transcription. Since enhancers are though to be the main drivers of
specificity in gene expression, their identification and study is an important step in
understanding the regulation of stimulus-responsive transcription in the nervous

system.

1.3.1 Initial insights from the c-Fos promoter

Soon after the discovery of the stimulus-dependent transcription of the c-Fos
gene, investigators sought to understand the mechanisms by which c-Fos was inducibly
transcribed in response to stimuli. Initial studies demonstrated that plasmids

containing several hundred base pairs of sequence upstream of the c-Fos transcriptional
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start site were sufficient to generate stimulus-responsive transcription similar to that
exhibited by c-Fos in vivo (Deschamps et al., 1985; Treisman, 1985). Deletion analysis
of the c-Fos promoter revealed cis-acting regulatory elements that were critical for
stimulus-dependent transcription of c-Fos. Promoter deletion analyses demonstrated
that c-Fos induction from serum stimulation in fibroblasts required an element termed
the serum response element (SRE) (Greenberg et al., 1987; Treisman, 1985).
Subsequent experiments employing DNA affinity chromatography discovered the trans-
acting transcription factor that bound to the SRE, the serum response factor (SRF)
(Treisman, 1987). The SRE was subsequently shown to be required for calcium-
dependent transcription of c-Fos (Misra et al., 1994) and SRF was subsequently shown
to be required for activity-dependent induction of c-Fos in the nervous system
(Ramanan et al., 2005). These experiments provided evidence that SRF plays an
important role in regulating transcriptional responses to neuronal activity by binding to

SRE sites near the promoters of target genes, such as c-Fos.

Separate deletion analyses of the c-Fos promoter revealed an additional cis-
acting element required for calcium-dependent induction of the c-Fos gene. Deletion
experiments demonstrated that c-Fos induction in response to depolarization in PC12
cells required an element termed the calcium response element (CaRE) (Sheng et al.,
1988), which bound to the transcription factor CREB (Sheng et al., 1990). Previous
experiments had established a role for cAMP responsive transcriptional activation by
CREB at the cyclic AMP response element (CRE) (Montminy and Bilezikjian, 1987;
Montminy et al., 1986). Together, these experiments demonstrated a role for CREB in

transcriptional activation in response to elevations in both cAMP and calcium, and

13



provided evidence that CREB plays a role in regulating transcriptional responses to
neuronal activity by binding to CaRE/CRE sites near the promoters of target genes, such

as c-Fos.

Careful analyses of the sequences within the c-Fos promoter provided important
insights into the cis-regulatory elements and trans-acting factors that drive c-Fos
expression in response to extracellular stimuli. Importantly, the discovery of SRF and
CREB proved to not only be important in understanding the stimulus-responsive
transcription of c-Fos, but also of other stimulus-responsive genes. For example, the
SRF knockout animal exhibited no induction of not only c-Fos but also the immediate
early genes FosB, Egri, Egr2, c-Jun, JunB, Arc, ActB, and Actgi in response to
electroconvulsive shock (Ramanan et al., 2005). This suggested that SRF is a broadly
important regulator of activity-dependent transcription in the nervous system.
Genome-wide analysis of CREB target genes has demonstrated hundreds of genes that
require CREB for transcription in response to the cAMP agonist forskolin (Zhang et al.,
2005). While these studies suggest that SRF and CREB are both broadly important in
generating stimulus-responsive transcriptional programs, the genome-wide sets of
transcriptional target genes for these factors in the nervous system have not been

defined.

1.3.2 Discovery of enhancer elements

As initial understanding of the regulation of stimulus-responsive transcription

from the promoter regions of c-fos and other genes was developing, the contribution of

14



enhancers to transcriptional regulation was just beginning to be appreciated.
Enhancers were first discovered through studies of p-globin gene regulation (Banerji et
al., 1981). Investigators studying the expression of the p-globin gene from plasmids
containing a 4.7 kb long segment of chromosomal DNA encompassing the -globin gene
found that expression of B-globin was increased a remarkable 200 fold when the
plasmid also contained a 72 bp sequence of DNA derived from Simian virus 40 (SV40).
Because of its remarkable ability to enhance p-globin gene transcription, this element
was referred to as an enhancer. The investigators also showed that the SV40 enhancer
functioned to increase p-globin gene transcription independent of its distance from the
promoter and in either sequence orientation relative to the promoter (Banerji et al.,

1981). These are now known to be important and defining properties of enhancers.

After the discovery of viral enhancers (Banerji et al., 1981; Moreau et al., 1981),
metazoan enhancers were discovered (Banerji et al., 1983; Gillies et al., 1983) thus
generalizing the relevance of enhancers to transcriptional regulation. Subsequently,
several additional endogenous enhancers have been studied in detail, including the p-
globin locus control region (Bender et al., 2000; Grosveld et al., 1987; Hardison et al.,
1997; Moon and Ley, 1990), a limb bud enhancer for the Sonic hedgehog (Shh) gene
(Lettice et al., 2003; Sagai et al., 2005), the interferon-§ enhancer (Munshi et al., 1999;
Panne, 2008), and the sparkling eye enhancer of the Drosophila dPax2 gene (Evans et
al,, 2012). These studies have established the importance of enhancers to gene
regulation and have begun to elucidate the principles underlying enhancer function.
However, a major hurdle in understanding the function of enhancers and the

contribution of enhancers to specific programs of gene expression, such as neuronal
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stimulus regulated transcription, has been the identification of enhancer elements
within the genome. Enhancers are short DNA sequences, approximately several
hundred base pairs in length, that are embedded within the genome. Because enhancers
lack defining characteristics, they cannot be identified within the genome on the basis of
their sequence alone. Recently, however, great advances have been made in the
identification of enhancers within the genome (Buecker and Wysocka, 2012). These
advances, described in the introduction to the next chapter of my thesis, have facilitated
my work on the identification and characterization of functional stimulus-responsive

enhancers in the nervous system.
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2 GENOME-WIDE IDENTIFICATION OF STIMULUS-RESPONSIVE

ENHANCERS IN THE NERVOUS SYSTEM
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2.1 SUMMARY

Normal brain development and function require stimulus-responsive programs
of gene expression, but the impact of neuronal stimuli on chromatin, and the specific
enhancers that regulate stimulus-responsive programs of gene expression are poorly
understood. Here, we discover that stimulation with neuronal activity and brain derived
neurotrophic factor (BDNF) cause rapid, widespread, and distinct changes in the
acetylation of histone H3 lysine 27 (H3K27Ac) at thousands of promoters and enhancers
throughout the neuronal genome. We find that functional stimulus-responsive
enhancers can be specifically identified by stimulus-inducible H3K27Ac, and we use this
dynamic chromatin signature to discover enhancers that respond to activity, BDNF, or
both. This discovery of these enhancers reveals the genome-wide basis for
transcriptional specificity in response to distinct stimuli. Furthermore, this work
provides a critical resource to begin understanding the cis-regulatory elements that
transform sensory experience into specific transcriptional programs that facilitate long-
lasting changes in neuronal function. Finally, stimulus-inducible H3K27Ac¢ may aid in

the identification and study of stimulus-regulated enhancers in other tissues.
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2.2 INTRODUCTION

During development, transcriptional programs give rise to distinct cellular
lineages through the establishment of cell type specific chromatin states (Davidson,
2010; Ho and Crabtree, 2010; Kouzarides, 2007; Lee and Young, 2013). These distinct
chromatin signatures instruct gene expression primarily through the genome-wide
demarcation of enhancers, cis regulatory-elements that act at a distance to regulate gene
transcription (Buecker and Wysocka, 2012; Bulger and Groudine, 2011; Levine, 2010;
Ong and Corces, 2011; Spitz and Furlong, 2012; Visel et al., 2009b). Recent efforts to
identify enhancers using genome-wide sequencing techniques have led to the discovery
of hundreds of thousands of cis-regulatory elements (Consortium et al.,, 2012;
Heintzman et al., 2007; Shen et al., 2012). Despite this progress, relatively little is
known about the influence of extracellular stimuli on chromatin state at enhancers, and
it is not clear which enhancers among the hundreds of thousands that have been

identified function to promote stimulus-dependent transcription.

In the nervous system, the chromatin state of terminally differentiated neurons
must not only maintain neuronal identity but also allow for sensory-experience-
dependent transcription (Borrelli et al., 2008; Day and Sweatt, 2011; Dulac, 2010; Graff
and Tsai, 2013; Kandel, 2001). In response to sensory experience, strong bursts of
synaptic activity induce a program of gene expression in excitatory neurons that is
required for proper development and refinement of neural circuits and for long-lasting
changes in neuronal function that underlie learning, memory, and behavior (Greer and

Greenberg, 2008; Leslie and Nedivi, 2011). Studies of this neuronal activity-dependent
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gene program have primarily focused on signaling to promoter bound transcription
factors (Alberini, 2009; Lyons and West, 2011). The release of the neurotransmitter
glutamate at synapses leads to membrane depolarization of the post-synaptic neuron,
triggering calcium influx through L-type voltage gated calcium channels. The influx of
calcium then leads to activation of a complex signaling network that induces the post-
translational modification of promoter bound transcription factors that initiate multiple

waves of gene expression

In addition to these critical signaling events at the promoters of activity-regulated
genes, signaling to enhancers contributes to activity-dependent gene expression,
although there has been little progress towards characterizing the function of activity-
regulated enhancers because it has been difficult to identify these elements within the
genome. However, recent genome-wide studies in a variety of cell types have
characterized chromatin and transcription factor signatures that now allow for the
comprehensive identification of enhancers. For example, enhancers have been
identified on the basis of their hypersensitivity to DNAsel digestion, enrichment of
monomethylation of lysine 4 on histone H3 (H3K4Me1), enrichment of acetylation of
lysine 27 on histone H3, and their ability to bind the transcriptional coactivators
CBP/P300 (Consortium et al., 2012; Creyghton et al., 2010; Heintzman et al., 2009;
Rada-Iglesias et al.,, 2011; Visel et al., 2009a). However, all enhancers are not
functionally equivalent. The cellular repertoire of enhancers consists of both enhancers
that are thought to be poised for future activation, and enhancers that are currently
active (Rada-Iglesias et al., 2011). Poised enhancers are typically identified by their

enrichment for H3K4me1, whereas active enhancers exhibit additional features (i.e.
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CBP/P300 binding, eRNA transcription, H3K27Ac). H3K27Ac has been shown to be
present specifically at active enhancers and not poised enhancers, and thus has been
used in several studies of developmentally regulated enhancers to identify active
enhancers genome-wide (Creyghton et al., 2010; Mikkelsen et al., 2010; Rada-Iglesias et

al., 2012; Rada-Iglesias et al., 2011).

Several studies have recently identified enhancers within the nervous system
(Kim et al., 2010; Shen et al., 2012; Visel et al., 2013). While most of these studies have
not attempted to understand the enhancers within the genome that contribute to
stimulus-dependent transcription in the nervous system, one recent study used
H3K4Me1 enrichment and inducible CBP binding to identify nearly 12,000 putative
neuronal activity-dependent enhancers (Kim et al., 2010). However, this number far
exceeds the number of activity-regulated genes in excitatory neurons, suggesting that
many of these enhancers may not directly contribute to activity-dependent transcription.
Thus, it remains unclear whether all or a subset of these enhancers actually function to
drive neuronal activity-dependent gene expression. The activity-regulated regulated
enhancers identified in excitatory neurons thus far appear to be heterogeneous in terms
of the transcription factors they bind and their ability to recruit RNA polymerase and
drive transcription of enhancer associated RNAs (eRNAs). This suggests that these CBP-
bound enhancers may not all function in the same manner. While some of these
enhancers might mediate activity-dependent gene transcription, others could respond to
distinct stimuli such as neurotrophic factors. It is also possible that some of the CBP-
bound enhancers do not directly regulate stimulus-dependent gene transcription and

instead might be constitutively active or inactive under the conditions studied.
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Consistent with these possibilities, studies of developmentally regulated enhancers have
shown that not all CBP/P300 bound enhancers are active (Rada-Iglesias et al., 2011;
Visel et al., 2009a). It is not clear if these observations apply to stimulus-responsive
enhancers in terminally differentiated cell types since to date no chromatin or
transcription factor signatures have been defined that identify which of the tens of
thousands of enhancers within a cell function to drive stimulus-responsive gene

transcription.

In this study we determined the effects of neuronal activity on the active
chromatin landscape of mouse cortical neurons. We find that neuronal activity can
induce rapid changes in H3K27Ac at thousands of neuronal enhancers throughout the
genome. Notably, increases in H3K27Ac occur specifically at enhancers that function to
promote activity-dependent gene transcription. We observed overlapping but distinct
changes in H3K27Ac at enhancers in response to stimulation with brain derived
neurotrophic factor (BDNF), revealing the genome-wide basis for transcriptional
specificity in response to distinct stimuli. Our studies reveal a previously
underappreciated heterogeneity among active enhancers in terms of their
responsiveness to stimuli. Furthermore, the comprehensive identification of neuronal
activity and BDNF-dependent enhancers in cortical neurons provides a critical resource
for elucidating the role of stimulus-responsive transcription in synaptic plasticity,
behavior and disease. Finally, the epigenetic signature of acutely inducible H3K27Ac

may aid in the identification and study of stimulus-regulated enhancers in other tissues.
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2.3 RESULTS

2.3.1 H3K27Ac changes rapidly in response to neuronal activity

Despite progress in identifying enhancers in the nervous system, no study has
systematically determined which of the tens of thousands of enhancers that have been
identified function to drive stimulus-responsive transcription. We hypothesized that
characterizing the active enhancer landscape before and after neuronal activity might
enable us to identify the set of enhancers that respond to activity. To test this
hypothesis, we used ChIP-Seq to measure the genomic distribution of the active
chromatin associated chromatin mark H3K27Ac in mouse cortical neurons before and
after two hours of membrane depolarization with elevated extracellular potassium
chloride (KCl). Exposure of neuronal cultures to KCI is a well-established in vitro
experimental paradigm that mimics neuronal activity in vivo by inducing membrane
depolarization, calcium influx through L-type voltage-sensitive calcium channels, and
calcium-dependent changes in gene transcription. We performed two independent
bioreplicates of ChIP-Seq before and after membrane depolarization with KCl, and
found that the signal for H3K27Ac was highly correlated in separate bioreplicates in
each condition (Figure 2.1, Spearman’s rho p=0.83 between —KCl experiments, p=0.86
between +KCl experiments). This suggested that H3K27Ac signal in our experiments
was replicable across experiments. As a result, we pooled both bioreplicates for

subsequent analyses.
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Figure 2.1: Comparison of H3K27Ac signal in two independent experiments
before and after membrane depolarization with KC1

(a) H3K27Ac ChIP-Seq signal in mouse cortical neurons before membrane
depolarization (-KCl) in two independent experiments (bioreplicate 1, B1; bioreplicate 2,
B2), quantified at all H3K27Ac peaks in the genome. H3K27Ac signal was highly
correlated between experiments, Spearman’s rho p=0.83. (b) H3K27Ac ChIP-Seq signal
in mouse cortical neurons after 2 hours of membrane depolarization (+KCl) in two
independent experiments (bioreplicate 1, B1; bioreplicate 2, B2), quantified at all
H3K27Ac peaks in the genome. H3K27Ac signal was highly correlated between
experiments, Spearman’s rho p=0.86. In both plots, each point represents the H3K27Ac
signal quantified within a 2kb window surrounding an enhancer center.
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After pooling both H3K27Ac bioreplicates (B1 and B2) in each condition (-KCI
and +KCl), we identified regions of significant H3K27Ac enrichment in each condition (-
KCl and +KCl) by calling H3K27Ac peaks using MACS with a significance threshold of
p=1e-5. We then asked how the genomic distribution of H3K27Ac peaks compared
before and after membrane depolarization with KCl. To investigate this, we classified all
H3K27Ac peaks in each condition based on their location relative to genes in the NCBI
Reference Sequence Database (RefSeq). H3K27Ac peaks were classified as being
proximal if they were within 1kb of an annotated transcriptional start site (TSS).
H3K27Ac peaks were classified as being distal if they were greater than 1kb from an
annotated transcriptional start site (TSS). Distal H3K27Ac peaks were further classified
as intragenic if they occurred within a RefSeq gene, or as extragenic if they did not
occurred within a RefSeq gene. We found that both before and after membrane
depolarization, the majority of H3K27Ac peaks occurred distal to RefSeq TSSs (Figure
2.2, 65% distal peaks —KCl, 63% distal peaks +KCl). Furthermore, the genomic
distribution of H3K27Ac peaks was similar before and after depolarization. Before
depolarization (-KCl), 35% of H3K27Ac peaks were proximal, 32% of H3K27Ac peaks
were distal intragenic, and 33% of peaks were distal extragenic. After depolarization
(+KCl), 37% of H3K27Ac peaks were proximal, 33% of H3K27Ac peaks were distal
intragenic, and 30% of peaks were distal extragenic. This suggested that the overall

distribution of H3K27Ac peaks within the genome did not change with neuronal activity.
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Figure 2.2: Genomic distribution of H3K27Ac peaks before and after
membrane depolarization with KCl

(a) Genomic distribution of H3K27Ac peaks before membrane depolarization with KCl
(-KCI). The majority of peaks occur distal to RefSeq TSSs, with 32% of distal peaks
occurring within genes (intragenic) and 33% of distal peaks occurring outside of genes
(extragenic). (b) Genomic distribution of H3K27Ac peaks after membrane
depolarization with KCl (+KCl). The majority of peaks occur distal to RefSeq TSSs, with
33% of distal peaks occurring within genes (intragenic) and 30% of distal peaks
occurring outside of genes (extragenic).
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While the overall genomic distribution of H3K27Ac peaks did not change with
neuronal activity, we asked whether the levels of H3K27Ac changed in response to
neuronal activity at individual enhancer elements. This raises the question of how
individual enhancer elements should be identified. H3K27Ac enrichment distal to
promoter regions has been used to identify enhancers, but H3K27Ac enrichment often
occurs over broad regions of the genome and can encompass multiple regulatory
elements. Furthermore, the accurate localization of individual enhancers within regions
of H3K27Ac enrichment can prove difficult. Distal regions of open chromatin identified
by DNasel hypersensitivity (DHS) have also been used to identify enhancers. Compared
to H3K27Ac, DHS provides the benefit of narrow peaks that allow for accurate
localization of regulatory elements. However, distal DNasel hypersensitivity is not
specific to enhancers and can indicate the presence of various distal cis-regulatory
elements, such as silencers and insulators (Gross and Garrard, 1988). We found that
08.6% of all H3K27Ac peaks within our system overlapped with previously generated
DHS data from brain tissues by the ENCODE consortium (Consortium, 2011), and
reasoned that enhancers within our system could be comprehensively, specifically, and

accurately identified by integrating our H3K27Ac data with this brain DHS data.

To identify individual enhancer elements within our system, we isolated the set of
distal (>1kb from a RefSeq TSS) DHS sites that overlapped with our H3K27Ac peaks. To
determine the effect of neuronal activity on H3K27Ac at individual enhancers, we
quantified the levels of H3K27Ac at individual enhancer elements throughout the
genome. While the enhancer-associated chromatin mark H3K4Me1 was largely similar

at neuronal enhancers before and after neuronal activity (Figure 2.3a, Spearman’s rank
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correlation coefficient p= 0.96, 0.97 in two independent experiments), we found that
H3K27Ac levels at neuronal enhancers exhibited substantially more variability before
and after neuronal activity (Figure 2.3b, p=0.53, 0.58 in two independent experiments).
H3K27Ac levels at neuronal enhancers also exhibited substantial variability before and
after neuronal activity in the merged dataset of both H3K27Ac bioreplicates (Figure 2.3c,
p=0.53). H3K27Ac appeared to increase and decrease at thousands of neuronal
enhancers and activity-dependent increases in H3K27Ac seemed to occur both at active
enhancers that displayed H3K27Ac prior to stimulation and at poised enhancers that
did not display H3K27Ac prior to stimulation (Figure 2.3c). Inspection of individual loci
revealed strikingly different H3K27Ac behaviors at neuronal enhancers that appeared
similar based on other chromatin modifications, transcription factor binding events,
and DNasel hypersensitivity (Figure 2.4). Neuronal enhancers that appeared otherwise
similar exhibited increasing H3K27Ac, high unchanging H3K27Ac, decreasing H3K27Ac,
or no H3K27Ac in response to neuronal activity (Figure 2.4). Hence, H3K27Ac levels
changed rapidly and dramatically at thousands of neuronal enhancers in response to
activity, while H3K4Me1 levels were largely constant. Furthermore, neuronal enhancers
exhibit significant heterogeneity in both the levels of H3K27Ac and also the dynamics of
H3K27Ac in response to neuronal activity. This suggested that neuronal enhancers
might be heterogeneous in their function and in their responsiveness to neuronal

activity.
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Figure 2.3: Chromatin modifications at neuronal enhancers before and
after membrane depolarization

Levels and correlation of histone modifications at neuronal enhancers (defined by
H3K27Ac enrichment and DNasel hypersensitivity) throughout the genome before
membrane depolarization (-KCl) and after membrane depolarization (+KCI) in two
independent experiments (bioreplicate 1, B1; bioreplicate 2, B2). (a) H3K24Me1 levels.
(b) H3K27Ac levels. (c¢) Levels and correlation of H3K27Ac at neuronal enhancers
(defined by H3K27Ac enrichment and DNasel hypersensitivity) throughout the genome
before membrane depolarization (-KCI) and after membrane depolarization (+KCl) in
the pooled datasets (merged B1B2).

29



Increasing H3K27Ac Constant H3K27Ac Decreasing H3K27Ac No H3K27Ac
chr19:38,061,355-38,071,354 chr14:26,041,085-26,051,084 chr5:144,699,200-144,709,199 chr10:96,535,890-96,545,889

KCI
DS — VN e . AN
C
. Y
———— —,——eeem A e e e
H3K4Me1 ;_‘-..‘_hmg—m‘ -—— A tbicdbio o OB Y R i sl — . e i, et
* PR VR il i VIR ST e s Aesede. s s .
:
H3K27Me3 . —-- = = -0 T TITITI T v oLooiuiIIo it
CBP T N v S S
RNAPII -y oo womon T mTIIT IITITS ITT TTTII TTTn
DHS L . A JA SR U N—
F ! ER T T TR R B
Oh E 1ol | . v bl \ \
RNA 1h

Cons. o, mu_.l T B LMJMMJILLIJ LLML“L_JL

Figure 2.4: Individual enhancers exhibit different H3K27Ac behaviors in
response to membrane depolarization

Genome browser views of ChIP-Seq and RNA-Seq tracks at examples of individual
neuronal enhancers exhibiting increasing H3K27Ac, constant high H3K27Ac, decreasing
H3K27Ac, or no H3K27Ac in response to membrane depolarization with KCl. Other
chromatin marks displayed include the enhancer associated H3K4Me1, the promoter
associated H3K4Me3, and the repressive chromatin associated H3K27Mes3.
Transcription factor binding events displayed include the transcriptional coactivator
CREB-binding protein (CBP), and RNA polymerase II (RNAPII). For all chromatin
marks and transcription factors, ChIP-Seq tracks display input-normalized reads from
neurons stimulated with o hours (*-) or two hours (‘+”) of KCl. RNA sequencing tracks
display sequencing reads aligning to forward (F) and reverse strands (R) of the genome
from neurons stimulated with 0, 1, or 6 hours of KCl. Also displayed are DNasel
hypersensitivity signal from adult mouse cerebrum and vertebrate conservation by
PhastCons.
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To gain initial insight into how neuronal activity-dependent changes in H3K27Ac
at enhancers might relate to activity-dependent programs of gene expression, we
inspected the locus of the canonical activity-dependent gene c-Fos. Previous studies in
neurons have observed increases in histone acetylation in response to physiological
stimuli at the promoters of stimulus-responsive genes (Guan et al., 2009; Guan et al.,
2002; Levenson et al., 2004). Consistent with previous studies, we found that levels of
H3K27Ac increased at the c-Fos promoter in response to neuronal activity. We also
found that levels of H3K27Ac increased at four nearby enhancers in response to
neuronal activity (Figure 2.5). This suggested that neuronal activity-dependent gene
expression might correlate with increasing H3K27Ac in response to neuronal activity
and that neuronal enhancers that contribute to activity-dependent gene expression may

exhibit increasing H3K27Ac in response to neuronal activity.
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Figure 2.5: Enhancers near the c-Fos gene exhibit increases in H3K27Ac in
response to membrane depolarization

Genome browser view of ChIP-Seq and RNA-Seq tracks at the c-Fos locus. Neuronal
activity-dependent increases in H3K27Ac levels are seen at the c-Fos transcriptional
start site (TSS) and at four nearby enhancers (e1,2,4,5). For all chromatin marks and
transcription factors, ChIP-Seq tracks display input-normalized reads from neurons
stimulated with o hours (-°) or two hours (‘+’) of KCl. RNA sequencing tracks display
sequencing reads aligning to forward (F) and reverse strands (R) of the genome from
neurons stimulated with o, 1, or 6 hours of KCI.
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2.3.2 Inducible H3K27Ac identifies functional neuronal activity-

responsive enhancers

To determine if increases in H3K27Ac occurred at enhancers associated with
activity-induced genes genome-wide, we first classified enhancers into different groups
based on their differential H3K27Ac responses to neuronal activity. We selected three
subsets of enhancers that exhibited the most distinct H3K27Ac dynamics in response to
neuronal activity: enhancers with increasing H3K27Ac (n=2868), enhancers with
decreasing H3K27Ac (n=3746), and enhancers with high constant levels of H3K27Ac
before and after neuronal activity (n=1395) (Figure 2.6a; see methods). For comparison,
we also included a fourth group of enhancers that had H3K4Me1, exhibited inducible
binding of the transcriptional coactivator CBP in response to neuronal activity, but had
no appreciable H3K27Ac before or after neuronal activity (n=3223) (Figure 2.6a). This
fourth group was included because a previous report classified these elements as
neuronal activity-dependent enhancers (Kim et al., 2010). Average profiles of H3K27Ac
ChIP-Seq signal for each group of neuronal enhancers displayed clearly different
H3K27Ac behaviors in response to neuronal activity (Figure 2.6b). This suggested that
these enhancer groups could be meaningfully used to determine whether neuronal
enhancers with different H3K27Ac behaviors are associated with different

transcriptional functions within the nervous system.
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Figure 2.6: Classification of neuronal enhancers with different H3K27Ac
behaviors

(a) Classification of neuronal enhancers into subgroups with distinct H3K27Ac
behaviors. Enhancers with increasing H3K27Ac, high constant H3K27Ac, decreasing
H3K27Ac, or no H3K27Ac in response to neuronal activity were classified into separate
groups. Each point represents the input normalized H3K27Ac signal quantified within a
2kb window surrounding an enhancer center, with the x-axis value representing the
signal before membrane depolarization (-KCl) and the y-axis value representing the
signal after two hours of membrane depolarization with KCI (+KCl). (b) Average profiles
of H3K27Ac ChIP-Seq signal at each subgroup of enhancers before membrane
depolarization (dashed lines) and after membrane depolarization (solid lines). The y-
axis represents the level of H3K27Ac signal, displayed as the mean number of input-
normalized H3K27Ac ChIP-Seq reads for each subgroup of enhancers. H3K27Ac signal
at enhancers was aligned by the centers DNasel hypersensitive sites.
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We hypothesized that different H3K27Ac behaviors were likely to reflect different
transcriptional functions for these enhancers, and that only neuronal enhancers with
increasing H3K27Ac in response to neuronal activity would promote gene expression in
response to neuronal activity. To determine the contribution of each subset of
enhancers to neuronal gene expression, we performed transcriptome sequencing (RNA-
Seq) in untreated or KCl-depolarized cortical neurons (0, 1, and 6 hours of KCI). Then,
for each subset of enhancers, we assessed the expression of nearby genes and the
expression of enhancer associated RNAs (eRNAs), which are thought to occur at
enhancers actively engaged in transcriptional regulation (Kim et al., 2010; Wang et al.,
2011). Strikingly, we found that both nearest gene expression and eRNA transcription
closely paralleled the H3K27Ac behaviors observed at each subset of enhancers (Figure
2.7a,b). As expected enhancers with high unchanging H3K27Ac were near genes that
exhibited significantly higher levels of expression and had higher levels of eRNA
transcription than enhancers lacking H3K27Ac, consistent with their classification as
active enhancers (Figure 2.7a,b). Notably, only enhancers with increasing H3K27ac in
response to neuronal activity were associated with activity-dependent increases in the
expression of nearby genes and eRNAs (Figure 2.7a,b), suggesting that this subset of
enhancers may function specifically to promote neuronal activity dependent gene
expression. Thus, while a large number of active enhancers can be identified by their
enrichment for H3K27Ac, profiling H3K27Ac in response to neuronal activity revealed
that these enhancers differ considerably from one another not only in their levels of
H3K27Ac but also in the expression of nearby genes and in the transcription of eRNAs.
By measuring H3K27Ac levels before and after a neuronal activity and classifying

enhancers based on their H3K27Ac dynamics, we find that only enhancers with activity-
35



dependent increases in H3K27Ac appear to contribute to neuronal activity-dependent
transcription. Our data further suggests that while inducible CBP binding in response to
neuronal activity has previously been used to identify neuronal activity-dependent
enhancers, this is clearly not a specific marker. While enhancers with inducible
H3K27Ac exhibited greater CBP binding than other acetylated enhancer classes,
enhancers from all four classes exhibited some level of inducible CBP binding (Figure
2.7¢). Furthermore, enhancers that lacked H3K27Ac but exhibited inducible robustly
CBP binding were not associated with genomic correlates of activity-dependent
enhancer function (Figure 2.7¢). This suggested that inducible H3K27Ac is a much
more specific and predictive marker of functional neuronal activity-dependent

enhancers than inducible coactivator binding.
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Figure 2.7: Enhancers with different H3K27Ac behaviors correlate with
different patterns of transcription in the genome

(a) Boxplot of expression of nearest genes for each H3K27Ac enhancer class. mRNA
expression is displayed as reads per kilobase per million mapped reads (RPKM).
Nearest genes with nonzero expression by RNA-SEQ were used for this analysis.
Expression of the set of genes nearest each enhancer class was assessed at 0, 1, and 6
hours after membrane depolarization with KCl. (b) Boxplot of eRNA expression for
each H3K27Ac enhancer class. eRNA expression is displayed as reads per kilobase per
million mapped reads (RPKM). eRNA expression for each enhancer was calculated as
the number of reads within a 4kb window surrounding the enhancer center. For this
analysis, only extragenic enhancers were used. Expression of eRNAs for each enhancer
class was assessed at 0, 1, and 6 hours after membrane depolarization with KCI. (c)
Boxplot of CBP binding for each H3K27Ac enhancer class before membrane
depolarization (ohr KCl) and after membrane depolarization (2hr KCl). CBP binding at
each enhancer was calculated as the number of input normalized ChIP-Seq reads within
an 800bp window surrounding the enhancer center. * indicates p < 2.2x107¢ in paired
Wilcoxon test.
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2.3.3 Functional testing of enhancers in response to neuronal activity

While genomic correlates of enhancer activity suggested that only enhancers with
neuronal activity-dependent increases in H3K27Ac function to promote activity-
dependent transcription, we sought to directly test the ability of each class of enhancers
to drive transcription in an activity-dependent manner. To accurately measure activity-
regulated transcriptional changes, we developed a neuronal activity-regulated luciferase
reporter based on the upstream regulatory region of the neuronal activity-regulated
gene neuronal pentraxin-2 (Nptx2, Figure 2.8a). Npitx2 encodes a secreted synaptic
protein that can bind to and induce clustering of AMPA receptors to regulate
homeostatic scaling of excitatory synapses within the nervous system (Chang et al.,
2010). We discovered a putative enhancer ~3kb upstream of the Nptx2 transcriptional
start site (TSS). The 4.4kb sequence upstream of the Nptx2 TSS was able to drive
activity-dependent expression of a luciferase reporter gene in a manner that depended
critically upon the presence of the upstream enhancer (Figure 2.8b). We used this
reporter to test the ability of enhancers from each of the four H3K27Ac enhancer classes
to promote neuronal activity-regulated transcription by replacing the Nptx2 enhancer
with enhancers from each of the four H3K27Ac enhancer classes and measuring activity-
dependent induction of the reporter. While our genomic analyses suggested that many
enhancers inducibly bound by CBP may not contribute to neuronal activity-dependent
gene expression, we sought to directly test this by selecting enhancers from each
H3K27Ac enhancers class that were inducibly bound by CBP. As a result, we replaced
the Nptx2 enhancer with inducibly CBP-bound enhancers from each H3K27Ac group.

We then transfected the reporter constructs into mouse cortical neuron cultures, and
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then measured reporter activity induced by 6 hours of depolarization with KCI.
Strikingly, all enhancers that exhibited increasing H3K27Ac signal in response to
neuronal activity drove robust activity-dependent transcription of the reporter (14/14;
100% with >2 fold induction with KCl; Figure 2.8b), whereas nearly all other enhancers
failed to do so, despite their recruitment of CBP (1/28; 3.6% with >2 fold induction with

KCI; Figure 2.8b).

39



a -3000 +1

Nptx2 enhancer | ; Luciferase

<+——— 4.4 kb upstream of Nptx2 gene ————>

b
8
4
Hill""l iII-IIIiI"II"I“'

\—N(V)ﬂ'LOCOI\QJOJO\—NMﬂ'LO(OI\OOO‘JO\—NC’) WOMNOWOWODO T~ AN M N ONWONO — AN

()]
HH

Nptx2 Reporter Fold Induction

gg FFFFFFFFFF NNNNNNNO’)O’)O’)C’)(’)(’)(’)(’)MM?#‘#‘
%g\l; No Decreasing Constant Increasing
g H3K27Ac H3K27Ac H3K27Ac H3K27Ac

Figure 2.8: Functional testing of neuronal enhancers with different
H3K27Ac behaviors

(a) Schematic of Nptx2 reporter. The 4.4kb sequence upstream of the mouse Nptx2
gene was cloned into a luciferase reporter construct. Approximately 3kb upstream of
the Nptx2 TSS is an enhancer element, identified by DNasel hypersensitivity, CBP
binding, and H3K27Ac. (b) Luciferase reporter data for the Nptx2 reporter, reported as
the fold induction of reporter activity in mouse cortical neurons after 6 hours of
depolarization with KCI relative to 0 hours. The wild-type Nptx2 reporter is able to
induce activity-dependent reporter expression (Nptx2). However, if the Nptx2 enhancer
is deleted, the reporter no longer induces activity-dependent reporter expression
(Nptx2-enh). Inducibly CBP-bound enhancers from the four H3K27Ac enhancer classes
were cloned into the Nptx2 reporter, replacing the Nptx2 enhancer, and tested for their
ability to induce activity-dependent reporter expression. Only enhancers exhibiting
increasing H3K27Ac with neuronal activity consistently drove reporter expression in
response to neuronal activity. n > 3 for all enhancers tested.
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Across all enhancers tested, neuronal activity-dependent changes in H3K27Ac
correlated much more strongly with reporter activity (Spearman’s rank correlation
coefficient p=0.88; Figure 2.9a), than did changes in CBP (p=0.65; Figure 2.9b), or
changes in RNAPII (p=0.34; Figure 2.9c), which has been previously shown to inducibly
bind to enhancers (Kim et al., 2010). This suggested that only enhancers that exhibit
activity-dependent increases in H3K27ac function to drive activity-regulated gene
transcription and further supported inducible H3K27Ac as a much more specific and
predictive marker of functional neuronal activity-dependent enhancers than inducible
coactivator binding or RNAPII binding. Thus, we concluded that the dynamic
chromatin signature of increasing H3K27Ac is a specific and predictive marker of

functional neuronal activity-dependent enhancers.
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Figure 2.9: Correlation between reporter induction and genomic variables
by ChIP-Seq

The Nptx2 reporter fold induction of each enhancer displayed in Figure 2.8b was plotted
against the change in H3K27Ac (a), change in CBP (b), or change in RNAPII (c) seen at
that enhancer. Green, blue, magenta, and black points represent enhancers with
increasing, constant, decreasing, or no H3K27Ac ChIP-Seq signal in response to
neuronal activity. p indicates Spearman’s rank correlation coefficient for the two
variables plotted in each panel.
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During development, enhancer elements are thought to be the principal
determinants of cell-type specific gene expression. However, numerous studies of
neuronal activity-regulated transcription have demonstrated that the promoters of
activity-regulated genes are sufficient to drive activity-dependent expression under
some conditions (Alberini, 2009; Robertson et al., 1995). This brings into question
whether activity-dependent enhancers serve as determinants of stimulus-
responsiveness or if they simply amplify transcription from activity-regulated promoters.
To gain some insight into this question, we asked whether the ability of activity-
responsive enhancers to promote neuronal activity-regulated transcription depended
upon their pairing with the activity-regulated Nptx2 promoter. We cloned four
enhancers from each H3K27Ac class into two additional luciferase reporter vectors
containing heterologous promoters not known to drive neuronal activity-dependent
transcription: an SV40 promoter and a minimal TATA box containing promoter. We
hypothesized that if activity-dependent enhancers instructed the transcriptional
response to neuronal activity, they would be able to drive activity-dependent
transcription from heterologous promoters. However, if activity-dependent enhancers
simply amplified promoter driven transcriptional responses to neuronal activity, we
hypothesized that they would not be able to drive activity-dependent transcription from
heterologous promoters. We found that enhancers with increasing H3K27Ac in
response to neuronal activity were able to drive robust activity-dependent reporter
expression when paired with either the SV40 promoter (Figure 2.10c¢,d) or the minimal
TATA box promoter (Figure 2.10e,f). While the minimal TATA box containing promoter
was weaker than the other promoters (Figure 2.10e,f), enhancer-driven reporter

expression for the Nptx2 reporter and the SV40 were strongly correlated with one
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another (p=0.95; Figure 2.11), suggesting that the ability to activate transcription in
response to neuronal activity was intrinsic to the enhancer element itself, with minimal
contribution from the promoter. These results suggest that neuronal activity-dependent
enhancers play a significant role in instructing activity-dependent gene expression,
rather than functioning to merely amplify transcription from activity-regulated
promoters. Furthermore, since enhancers not exhibiting increasing H3K27Ac levels in
response to neuronal activity did not drive activity-dependent expression of the other
reporter constructs tested (Figure 2.10c-f), these results provide additional evidence
from independent reporter contexts that only enhancers with increasing H3K27Ac in

response to neuronal activity are able to drive activity-dependent transcription.
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Figure 2.10: Functional testing of neuronal enhancers in different reporter
constructs

Luciferase data from neuronal enhancers from each of the four H3K27Ac enhancer
classes cloned into either the Nptx2 reporter containing the Nptx2 enhancer (a, b), an
SV40 promoter reporter (c, d), or a minimal TATA box containing promoter reporter (e,
f). Reporter activity is reported as the fold induction of reporter activity in mouse
cortical neurons after 6 hours of depolarization with KCl relative to o hours of
depolarization with KCl. Panels a, ¢, and e show data for individual enhancers. Panels b,
d, and f represent average reporter induction for all enhancers in each enhancer class. n
> 3 for all enhancers tested.
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Figure 2.11: Enhancers drive very similar levels of activity-dependent
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