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Abstract 

Reductionist biology has yielded tremendous insight into the basis of biochemistry and 

genetic disease.  However, the remarkable failure of reductionist biology to explain complex 

problems, especially cancer, has led to the development of systems biology.  The vast complexity 

of biological systems remains the most difficult problem in biology today.  In order to understand 

this complexity, we need tools to massively multiplex measurements of a signaling network.  

Therefore, we developed lysate microarray technology to fill this need.  In this work, we discuss 

three ways in which lysate microarrays were applied to human disease. 

In the first work, we discuss a key stage in malaria development.  The liver-stage malaria 

parasite represents a promising target for intervention, and we present the first use of lysate 

microarray technology as a screening tool for host-parasite interactions in an infectious disease.  

We identified three cancer-related pathways that are modified in malaria infection, and studied the 

p53 pathway in depth.  Our finding that the parasite downregulates p53 and that treatment with 

Nutlin-3 strongly decreases parasite load may lead to the development of a prophylactic malaria 

vaccine. 

In the second work, we began by screening drug combinations and varying dosing schedule 

in triple-negative breast cancers (TNBCs).  We systematically explored stimulation space and 
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collected a large lysate microarray dataset, which was used for statistical analysis.  We identified 

a sensitization effect when a growth factor signaling inhibitor was presented before a genotoxic 

agent.  This sensitization was generalizable among a subset of TNBCs and may generally be 

important for cancers driven by growth factor signaling, as we found the effect extends to non-

TNBC cancers.  We hope this data will be useful in guiding cancer treatment strategies in patients. 

In the third work, we study the changing role of the DNA Damage Response (DDR) as a 

cell line evolves towards cancer.  We used the MCF10A progression series and studied how these 

cell lines respond to genotoxic agents.  We identified differences in cell fates after treatment, and 

collected a large lysate microarray dataset for statistical analysis.  Early analysis of the data 

indicates gross rewiring within the DDR between the MCF10A cell lines.   
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Introduction: Motivations for 
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1.1. Motivations For Deep Network Analysis 

Biological research has historically proceeded in a strongly linear fashion, with research 

frequently limited in scope to a single gene, protein, or signaling event.  Signaling networks were 

painstakingly built, with phosphorylation events and genetic targets carefully identified.  This 

wealth of knowledge has yielded many insights into the inner workings of both normal and 

abnormal biology.   

The modern rational drug design approach in the fields of infectious disease and cancer have 

met with mixed results.  We see problems with both, and present alternative strategies to avoiding 

the major difficulties in these approaches to human health and drug development.   

 

1.1.1. Infectious Disease 

There is little doubt that antimicrobials have greatly improved human health, but it is also 

evident that our strategies are far from optimal.  Infectious disease researchers have traditionally 

worked in 3 major arenas: identification of the infectious agent, elucidation of key events in its 

natural history, and screening of natural products or synthetic compounds which inhibit its growth, 

infectivity, or virulence while minimally affecting the host.  It is this last arena of research that has 

produced the vast pharmacopeia of antimicrobial agents and has largely eliminated many ancient 

diseases from daily life, at least in the regions of the world where the medicines are readily 

available.   

Unfortunately, despite their remarkable successes, these approaches also pave the way to their 

own demise.  The drugs commonly attack critical metabolic or signaling pathways in the pathogen 

itself, so mutation within the target protein, often a single amino acid in the drug binding site, can 

confer complete resistance (Wilcox et al., 2001).  Overuse and incomplete killing efficiently select 
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for resistance, greatly accelerating the propagation of multiply-resistant strains.  These effects have 

combined to render nearly obsolete such once-potent antimicrobials as tetracycline and ampicillin. 

Historically, the pharmaceutical response to the evolution of resistance is to treat the symptom 

rather than the fundamental problem.  Much effort has been spent into expanding the pharmacopeia 

by finding new antimicrobials and derivatizing existing drugs, in a never-ending and costly arms 

race that inevitably promotes the evolution of totally-resistant pathogens (Babu and Laxminarayan, 

2012).  The list of candidate molecules is finite, and the rate of new drugs coming on the market 

has stagnated while the need for new antimicrobials continues to increase (Coates and Halls, 2012; 

Pieren and Tigges, 2012).  Indeed, in 2011 the World Health Organization declared antimicrobial 

resistance to be a primary threat to public health worldwide, and has published a book highlighting 

in part the importance of innovation in drug development (WHO, 2013).   

We propose a new plan of attack focusing not on intra-pathogen signaling and biochemistry, 

but rather on pathogen-host interactions.  An intervention that targets a host signaling pathway 

required for the parasite life cycle will be far more recalcitrant to evolution of resistance.  We 

therefore chose malaria, a disease that the WHO identifies as critically in danger of reverting to a 

pre-antimicrobial era, and specifically focused on the liver-stage, when the parasite requires a host 

cell for metabolism.  We developed a novel assay to measure host signaling in response to malarial 

infection and identify a prominent host target that the parasite manipulates in order to evade 

apoptosis.  We also demonstrate that this manipulation is required for malarial progression, and 

present evidence that a drug originally developed for cancer treatment has potential as a malaria 

vaccine. 

 

1.1.2. Oncology 
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The history of the vast field of cancer research has been very fruitful in theory and biological 

insight, but relatively lackluster in actionable treatments.  As evidence for the multiple-hit 

hypothesis accumulated, cancer researchers increasingly focused their efforts on the particular 

mutations that could be shown to be correlated with cancer.  Naturally, work focused heavily on 

frequently observed events such as aberrant kinase signaling and upregulated transcription factors.  

The frequency with which common lesions were observed also led to optimism that specific 

inhibitors against these targets would be magic bullets: if a cancer is driven by aberrant signaling 

through a particular protein, a drug inhibiting that protein would surely be an effective treatment.  

It is a sobering thought that most of these initially exciting treatments are less effective than 

expected. 

If we have learned anything about cancer in the last 50 years, it is that cancer is a more 

complicated problem than anyone initially imagined.  Genetic and epigenetic profiling has 

repeatedly shown that a single cancer carries hundreds, if not thousands, of abnormalities (Dawson 

and Kouzarides, 2012; Stratton et al., 2009).  Even those drugs that do specifically and efficiently 

inhibit cancer signaling frequently do not succeed as monotherapies and must be used in 

combination therapies to achieve clinical efficacy (Awada et al., 2012; Saxena and Dwivedi, 2012).  

As the pharmacopeia of inhibitors grows, it becomes increasingly impractical to test all 

combinations for efficacy.  The skyrocketing costs of these myriad clinical failures and the ongoing 

morbidity from cancer, combined with the ability to produce data from high-throughput 

multiplexed experiments, has left biologists looking for more nuanced approaches.   

One of the great recent innovations in oncology is the application of network analysis to 

biological systems.  It was recognized as early as 1957 that the well-understood and relatively 

simple 2-gene lac operon system was capable of non-linear behavior (Novick and Weiner, 1957), 
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so analyzing a single gene independently is insufficient to capture the full complexities and 

emergent properties of biological systems.  Furthermore, it is increasingly clear that signaling in 

the cell does not usually proceed linearly, rather, cell decisions are more often made as a 

combination of multiple, competing, and highly dynamic molecular events.  It is also clear that 

due to the many possible ways in which cancer can evolve, each tumor is unique.  In an attempt to 

understand this complexity, beginning in the 1990s, biologists began to use mathematical network 

analysis and graph theory to model key molecular species and events in order to predict outcomes 

(Forrest and Curran, 1992).  So far, this field is still young, but its applications are beginning to 

bear fruit. 

The standard of cancer care at this time is paradoxically both high tech and coarse.  For 

example, although we can identify that a particular patient’s cancer carries a specific growth-

promoting mutation, an otherwise good drug against that target may nonetheless have modest to 

no effect on tumor size (Burstein et al., 2008).  When initial therapy fails or a tumor recurs, the 

standard of clinical care is an expensive and time-consuming trial-and-error where standard 

treatment regimens are tried until an efficacious one is found.  While this process is underway, 

there is significant patient morbidity, astronomical cost, and degradation of quality of life with no 

guarantee of improvement or cure.   

We believe that network analysis, when applied to cancer, can uniquely help this situation by 

identifying subtle non-intuitive approaches.  We envision the ability to quickly measure the 

internal signaling network of cancer cells in a patient biopsy.  We believe that analysis of such 

patient cancer networks can yield insights into the biological mechanisms unique to each tumor, 

as well as suggest potential routes of treatment.  We also believe that by systematically stimulating 
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cells grown in culture and measuring the resulting network perturbations, we gain biological 

insight applicable to patients.   

We therefore promote an approach that deeply studies the signaling state within the cell in 

order to identify those combinations of signaling events that represent growth and death.  In 

Chapter 3, we use this strategy to identify a combination of drugs that efficiently primes cells to 

die, but only when given in a specific order and timing, and deeply probe the signaling events 

surrounding this decision.  In Chapter 4, we extend this approach to understand, in the context of 

a tumor progression model, the specific signaling events that result from exposure to the poorly 

understood cancer drug doxorubicin.   
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1.2. Lysate Microarray Technology 

1.2.1. Motivation for and Invention of Microarraying Technology 

Microarray technology refers to a technique to deposit a large number of samples in a 

miniaturized format onto a small solid support.  The idea grew naturally out of Southern blotting, 

with the first reported use of the approach dating back to 1982 when 378 samples were assayed at 

once for expression of genes in normal and tumor tissue (Augenlicht and Kobrin, 1982).  The 

concept was adapted to produce DNA microarray technology, a powerful technique that can 

quantify mRNA transcript levels across the entire genome.   

As sequencing efforts such as the Human Genome Project began to pay off, anticipation for 

DNA microarray technology grew.   The ability of DNA microarrays to measure, in a single 

experiment, expression levels over the entire genome, was too powerful to ignore.  Whole genome 

DNA microarrays became available for the yeast Sacchromyces cerevisae in 1997 (Lashkari et al., 

1997) with the human version following in 2001, hot on the heels of the publication of the human 

genome (Shoemaker et al., 2001).  The ensuing explosion of large dataset production can be 

described as the advent of –omics level biology, with widespread optimism that functional 

genomics would enlighten many obscure features of biology.   

However, DNA microarrays have a major caveat: they only reliably measure mRNA levels, 

which are assumed to be a proxy for protein level and function.  Unfortunately, this has proven 

over and over to be a false assumption, as protein levels frequently do not correlate with mRNA 

levels (Gygi et al., 1999; Kopf and Zharhary, 2007; Zhu and Snyder, 2001), and it is the translated 

protein that fundamentally carries out gene function.  Additionally, signaling events such as 

phosphorylation or protein cleavage can have profound effects on protein function and cannot be 
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accounted for in DNA microarrays.  These problems can render DNA microarray datasets difficult 

to interpret, and underline the need for multiplexed assays for protein function.   

 

1.2.2. Development of Lysate Microarray Technology 

Lysate microarrays, sometimes also known as reverse phase protein arrays (RPPA), were 

specifically designed to analyze many samples for more proximal markers of protein function.  

Cellular lysates are adsorbed onto a solid support, usually made of PVDF or nitrocellulose, which 

is attached to a glass slide.  These slides are then probed with unique antibodies against targets of 

interest, visualized, quantified, and normalized.   

Lysate microarrays were initially used to profile signaling within primary tumor samples, 

though it was soon also harnessed to study cells in culture.  Three early reports from the Liotta lab 

(Grubb et al., 2003; Paweletz et al., 2001; Wulfkuhle et al., 2003) surveyed the native signaling in 

prostate and ovarian cancers and showed that data acquired by microarray recapitulates data from 

other sources, including immunoblotting.  These pioneering experiments notably used laser 

capture microdissection to subdivide a sample into cellular subclasses by histology and spotted 

them separately, an idea we echo in our malaria experiments in Chapter 2, though we utilized 

fluorescence activated cell sorting (FACS).  The first application of lysate microarrays to cell lines 

was also published in 2003 (Nishizuka et al., 2003), with perturbation studies of drug treatment 

immediately following (Belluco et al., 2005).   

Further innovations came from improvements in spotting technology, quantification, and 

arsenal of antibody probes against signaling proteins.  The first experiments printed less than 1000 

spots on a standard 25 × 75mm slide, while modern contact arrayers such as the 2470 Aushon 

microarray can easily fit 6000 samples in quadruplicate on the same slide.  This increase in density 
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has greatly improved the throughput of the technique.  In addition, initial experiments were 

performed with enzymatic readouts, which have been replaced by fluorescently conjugated 

antibodies.  Fluorescence results in a larger dynamic range in which signal remains relatively linear, 

and is also easily quantified by fluorescence imagers.  Surprisingly, the original papers report near 

linearity of enzymatic signal with concentration of sample in all cases, while we now know that 

signals resulting from an adsorption source should follow a sigmoidal curve (Zhang et al., 2009).  

Finally and perhaps most importantly, while the original papers each used 6 antibodies against 

known cancer signaling targets, we have today expanded the repertoire of antibodies that can be 

used in microarrays to over 300.   

Today, lysate microarrays are a popular and inexpensive technique to measure target proteins 

in medium throughput in against biological samples in high throughput.  They have been explored 

for diagnostic use (Theranostics Health Inc), biomarker discovery (Gonzalez-Angulo et al., 2011), 

and basic science applications such as perturbation analysis (Gujral et al., 2012).  In this work we 

discuss three distinct uses of the technology, each of which contributes to human health in a 

different way.  

 

1.2.3. Strengths and Weaknesses of Lysate Microarray Technology as Compared to Other 

Massively Multiplexed Techniques 

The strengths of lysate microarrays are several: cheap cost, ease of use, small amount of 

biological material consumed, ability to discriminate post-translational modifications, and 

agnosticism toward type of biological sample.  As compared to other comparable techniques such 

as Luminex™ (Luminex Corp (Austin, TX)) or immunoblotting, lysate microarray technology has 

some major selling points.   
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The only specialized hardware needed for the entire process is the arrayer, an investment that 

quickly pays for itself.  Once the upfront cost of acquiring an arrayer has been paid, the incremental 

cost of printing more arrays is only the cost of the glass slide, on the order of $30/antibody probed, 

as compared to thousands of dollars for other techniques.  Given that the consumables for a 

moderately sized Luminex or immunoblotting experiment may quickly run into the tens of 

thousands, the cost of the arrayer is quickly recouped.   

Lysate microarrays, once printed, are easy to store, handle, probe, and quantify.  Indeed, once 

the samples have been collected in denaturing buffer, they can be stored indefinitely at -80°C and 

can even be thawed to print more arrays or analysis by other techniques.  Furthermore, the printing 

process is relatively quick: 10,000 samples can be comfortably printed onto 30 slides in a week 

with minimal human intervention on the arrayer.  Once printed, the slides are inert and may be 

stored dry, at room temperature, indefinitely.  Probing the arrays involves no harsh, specialized, 

expensive, or dangerous chemicals, and the protocol is not labor intensive.  Finally, the 

quantification of microarrays is largely automated through the use of software specifically 

designed for image recognition of grids of spots.  For the purposes of our work, we made extensive 

use of ArrayPro Analyzer by MediaCybernetics Inc (Rockville, MD), as well as MicroVigene by 

VigeneTech (Carlisle, MA).   

Another advantage of lysate microarrays is the very small amount of sample consumed per 

experiment.  The amount of lysate consumed per spot is only on the order of nanoliters.  This 

means that a very small amount of sample can be used to print a large number of identical arrays, 

each of which can be probed uniquely with a primary antibody directed against a protein of interest 

to quantify each lysate for that protein.  This also means that if there are many samples to be probed 

in parallel, only a small amount of sample need be created, cutting down on the cost to create those 
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samples.  We exploit this feature in the experiments presented in Chapter 2 studying malaria, where 

it is vastly impractical to make enough volume of lysate in high enough concentration to perform 

more common techniques such as immunoblotting.  We are not aware of any alternative technique 

that we could have used to discover the biological insights we gained through our experiment.   

Perhaps most importantly for our work, lysate microarray technology can discern post-

translational modifications that can mean the difference between inactive and active protein.  

Kinases frequently sit atop vast networks of signaling that can determine the behavior of entire 

organisms, and yet the immediate consequences of their activity are only on the level of 

phosphorylation.  Luckily, many antibodies are commercially available that can discriminate 

between phosphorylated and non-phosphorylated versions of their target proteins.  Experiments 

using antibodies that are specific for phosphorylation are often more likely to yield useful 

mechanistic information than measurements of bulk protein level.   

A final feature of lysate microarrays is that it can be applied many kinds of lysate collection 

techniques, fractionation, buffer compositions, cellular or tissue sources, and stimulations.  In our 

work we apply the technique to whole cell lysates of several different cell lines, including cells 

that have been infected with live malaria parasite.  Because the denaturing 2% SDS lysis buffer 

totally inactivates all cellular components including lipids, nuclei acids, and proteins, the lysate is 

not hazardous and is safe to handle without quarantine procedures.   

However, lysate arrays do have one major drawback.  Recognition of target protein is carried 

out with primary antibodies, as is secondary detection of the primary antibody.  Antibodies are 

simultaneously ideal reagents and frustrating to work with, because while their unique ability to 

recognize just about any epitope lends great modularity and specificity, antibodies can also bind 

non-specifically to the surface or bind off-targets.  In addition, antibodies can have avidity effects 
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on a surface and some do not bind their target at all.  These effects all result in a non-linearity of 

signal, where a doubling of the target protein within a sample usually results in less than a doubling 

in output signal.  In extreme cases where the amount of bound antibody is totally driven by off-

targets or surface effects, or the target protein is not recognized, there may even be no change at 

all in output signal.  These effects are cell-line specific and it is impossible to tell which antibodies 

will work in which cell lines without empirical testing (Sevecka et al., 2011).  Therefore, it is 

crucial that careful preliminary work be done to extensively test antibodies against control lysates 

in both microarray and a gold standard, usually immunoblotting, to ensure quality of data.  Key 

metrics must all be met for an antibody to be selected for use in microarrays: presence of only 1 

target band of the correct size in immunoblots, high signal to background ratio on microarrays, 

high dynamic range, and linearity.  With this in mind, we carefully validated all antibodies 

whenever practical; it was not practical in the malaria experiments due to constraints on ability to 

produce enough sample.  In this case, we treated the experiment as a primary screen and carefully 

validated the results in several ways to confirm the hit.   

This strict requirement of suitable antibodies is a fundamental drawback that severely limits 

the field of protein microarraying as a whole, and does not appear to be easily surmountable.  We 

remain hopeful that as the availability of high quality antibodies increases and the cost of 

producing and acquiring new antibodies decreases, protein microarraying will continue to increase 

in utility.  It is also worth noting that competitor techniques such as Luminex and immunoblotting 

also have this basic dependence on antibodies, though they are somewhat aggravated in lysate 

microarrays due to the lack of size separation.  However, despite this major drawback, we find that 

lysate microarrays are a mature technology that can and should be used to discover basic biology, 

gain deep insights into network behavior, and suggest routes to improve human health.  
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1.3. The Mammalian DNA Damage Response at a Glance 

The DNA Damage Response (DDR) is an evolutionarily conserved feature among all 

kingdoms of life, and is directly responsible for preserving the integrity of the most important 

molecule in that cell: its DNA genetic code.  DNA damage occurs constantly in cells due to 

replication errors and normal metabolism (Lindahl and Barnes, 2000), are sometimes the result of 

specific cellular processes such as meiosis or VDJ recombination, and can also result from 

environmental exposure to radiation or mutagens (Upton, 2010; Valko et al., 2006), making the 

DDR one of the most critical pathways in the cell.  If a replication error or damaged strand of DNA 

is allowed to persist into daughter cells, mutations may occur.  Conversely, an overactive repair 

pathway may also introduce heritable mutations, so strict control must be maintained to prevent 

inappropriate repair or recombination events.  While in single-celled organisms a certain level of 

mutation might be tolerable or even desirable, the DNA damage response in multicellular 

organisms has an additional role over its unicellular counterpart: it also serves as a primary 

safeguard against cancers which can result from such mutation events.   

The DNA Damage Response encompasses at least seven major distinct repair pathways and 

responses, each targeted against a different kind of lesion.  These include Nucleotide Excision 

Repair (NER), Base Excision Repair (BER), MisMatch Repair (MMR), TransLesion Synthesis 

(TLS), and Double Strand Break Repair (DSBR), which is further broken down into Non-

Homologous End Joining (NHEJ), Homologous Recombination (HR), and the less well-

understood Microhomology-Mediated End Joining (MMEJ).   

For the purposes of our work, we focus foremost on DSBR, which targets the most dangerous 

type of DNA lesion: Double Strand Breaks (DSB).  While DSBs repaired by HR typically do not 

cause mutation, the process requires a crossover event with the sister chromatid and can only be 
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performed in S/G2 phase.  By contrast, NHEJ is the dominant pathway by which mammalian cells 

perform DSBR, and while NHEJ can rejoin any two ends at any time, the ends are usually first 

partially digested by DNAses, resulting in deletion of genetic material (Hefferin and Tomkinson, 

2005).  Furthermore, when more than 2 ends exist, NHEJ can join ends at random, resulting in 

aberrations such as deletions, inversions, and gross chromosomal rearrangements. 

DSBs can form as a result of natural metabolism or environmental exposure, and are the most 

genotoxic as well as mutagenic type of DNA lesion.  A DSB forms when both strands of a DNA 

duplex are broken and can lead to genomic rearrangements such as duplication or loss of genomic 

segments.  DSBs form at sites of replication, especially upon replication fork collapse (Lehmann 

and Fuchs, 2006), or as a result of exposure to radiation (Shah et al., 2012).  Finally, as cancers 

frequently feature mutations in their DDR pathways and are thus particularly unable to tolerate 

DNA damage, many of our best antineoplastic drugs directly cause DNA damage as their 

mechanism of action.  We investigate a specific class of clinically important Topoisomerase 

inhibitors in Chapters 3 and 4, in order to understand their effects in both pre-cancer and cancer 

cells. 

The DSBR can be broadly broken down into 3 stages: (1) the site of physical damage is sensed 

and protected, and a focus is formed, (2) the signal at the break is amplified and signaling 

information is integrated into central decision making proteins, which make the critical decision 

between possible outcomes, including (3) recruitment of repair enzymes and engaging cell cycle 

checkpoints to prevent propagation of aberrant genomic material, commitment to cellular suicide 

through apoptosis, or other exotic and controversial cellular phenotypes such as necroptosis, 

senescence, or autophagy.   
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In the next several sections, we will briefly discuss some of the key events in the control of 

the DSBR, with special focus on the signaling that is mediated by the interplay of kinases and p53.  

Many of the specific repair mechanisms have been omitted for simplicity, though coordination of 

their precise enzymatic activities no less important than the cell cycle checkpoints.   

 

 

Figure 1.1.  A schematic of the DNA damage response depicting the early 

sensory stage, signal transduction stage, and cellular response stage.  

Reproduced with permission from (Jackson and Bartek, 2009). 
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1.4. The Early DNA Damage Response: Sensing, Protecting, and Marking the Point of 

Physical Damage 

Initial sensing in the DSBR has 3 main goals: (1) to quickly find the damage and protect the 

DNA, (2) to recruit downstream events, and (3) to ensure a robust response that is not 

spontaneously lost.  Many molecules have been implicated in the early stage, but here we will 

discuss the key events that occur in the early DSBR.  The early events in the DNA damage response 

revolve around the creation and maintenance of a highly stable protein complex known as the 

ionizing-radiation induced focus (IRIF), whose protein composition is quite dynamic, dependent 

on cellular context, and will vary greatly throughout the repair process. 

Naked double-stranded DNA is rapidly degraded within a cell, so speed is paramount in the 

initial task of finding and protecting the damaged DNA end.  Indeed, the presence of double-

stranded DNA exonucleases within cells is an evolutionarily ancient mechanism of viral defense 

(Zhang et al., 2011).  Therefore, once a break occurs, there is a literal race for the DDR to respond 

and protect the DNA fragment before it is irrecoverably destroyed.   

Two distinct protein complexes are known to arrive within seconds of a break occurring.  

These complexes are known as MRN (Mre11-Rad50-Nbs1) and Ku (Ku70-Ku80) (de Jager et al., 

2001; de Jager et al., 2002; Kim et al., 2005).  Mre11 and Rad50 were originally discovered in 

genetic screens in S. cerevisiae, mutants in these genes being deficient in meiotic recombination 

(Ajimura et al., 1993) and sensitivity to radiation (Parry et al., 1976), respectively.  Nbs1 was 

discovered through its interactions with the human Mre11 and Rad 50 proteins, and because 

mutations in Nbs1 causes Nijmegen Breakage Syndrome, a disease causing high cancer incidence 

and radiosensitivity (Carney et al., 1998).  The Ku proteins were discovered when patients 

suffering from systemic lupus erythematosus were found to have autoantibodies that had a 
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speckled nuclear localization.  In laser-stripe fluorescence experiments, both MRN and Ku70/80 

complexes have been seen to be present at damage sites within seconds.  As downstream events 

are strictly dependent on the presence of MRN or Ku at the break, and given that deletions of all 

of these genes have severe phenotypes including embryonic lethality, it is believed that recruitment 

of these complexes represents the first, most critical, signaling step in the DSBR.   

The MRN and Ku complexes, once bound to DNA, rapidly recruit signaling kinases that 

amplify the original signal as well as recruit further factors.  The three major kinases recruited at 

this stage (ATM, ATR, and DNA-PKcs) are all very large (>300 kDa), and belong to the family of 

protein serine/threonine kinases known as the phosphoinositide 3-kinase related kinases (PIKKs).  

ATM and ATR with its obligatory interaction partner ATRIP (Cortez et al., 2001) generally 

promote HR (Thompson, 2012), while DNA-PKcs combines with the Ku complex to form the 

DNA-PK holoenzyme which helps to position the ends and recruit additional NHEJ factors 

(DeFazio et al., 2002; Mimori and Hardin, 1986; Spagnolo et al., 2006).  Active ATM monomers 

are primarily recruited by interactions through MRN (Lee and Paull, 2005; Suzuki et al., 1999), 

while ATR-ATRIP is primarily recruited through interactions with Replication Protein A (RPA) 

that rapidly coats single-stranded DNA (ssDNA), commonly present at sites of DSBs associated 

with distressed or normal replication (Dart et al., 2004; Lupardus et al., 2002; Zou and Elledge, 

2003).   

Despite sharing clear evolutionary relationship to PI3K, the PIKK family exclusively 

phosphorylate proteins rather than lipids.  The PIKK family came to prominence in a flurry of 

reports in the mid-1990s following the discovery of mTOR (Brown et al., 1994).  Using homology 

in the kinase domain, ATM was soon discovered as the causative mutation in the disease Ataxia 
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Telangiectasia (Savitsky et al., 1995), with the discoveries of ATR (Cimprich et al., 1996), and 

DNA-PKcs (Hartley et al., 1995) immediately following.   

Biochemical analysis of the DDR PIKKs suggests that they may be at least partially redundant.  

The consensus sequence for all PIKKs is an invariant requirement of an S/T-Q motif (Kim et al., 

1999), with the notable exception of mTOR.  The mechanisms by which these kinases are activated 

remain controversial, for ATM seems to involve but not require phosphorylation of serine 1981, 

causing dimer dissociation into active monomers (Bakkenist and Kastan, 2003; Pellegrini et al., 

2006).  Both ATR and ATRIP are known to be phosphorylated (Cortez et al., 2001; Liu et al., 

2011), though significantly less is known about the specific mechanism of activation.  The 

mediator protein TopBP1 is recruited to ssDNA-RPA by the PCNA-like Rad9-Rad1-Hus1 

checkpoint clamp and activates ATR activity, but exactly how this occurs is controversial 

(Delacroix et al., 2007).  A study to exhaustively identify direct ATM/ATR substrates in vivo found 

over 900 phosphorylation sites on over 700 proteins (Matsuoka et al., 2007), supporting the idea 

that PIKKs act much as coordinators of the early DDR.   

Once activated and present at the IRIF, ATM, ATR, and DNA-PKcs have all been shown to 

phosphorylate the histone variant H2AX on serine 139, which when phosphorylated is known as 

γ-H2AX (Celeste et al., 2003; Matsuoka et al., 2007; Paull et al., 2000; Rogakou et al., 1998; Stiff 

et al., 2004).  Histone 2A has several variants, but the evolutionarily conserved H2AX has a special 

role in the DDR.  H2AX constitutes between 4-25% of total H2A protein, depending on species 

and tissue type (Rogakou et al., 1998), but always contains the invariant SQ motif followed by 2 

residues on the exposed C-terminal tail.  This phosphorylation site on γ-H2AX is a binding site for 

the BRCT domains of MDC1 (Lou et al., 2006; Stucki et al., 2005).  Binding of MDC1 to the IRIF 

completes a positive feedback loop ensuring robust signaling at the break, because MDC1 acts as 
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an adapter by recruiting further MRN and ATM complexes (Chapman and Jackson, 2008; 

Melander et al., 2008).  Indeed, this positive feedback can result in massive γ-H2AX structures 

propagating to over a megabase away from the actual site of damage (Rogakou et al., 1999).  Why 

these structures are so massive is controversial, though it may be to ensure robust constant signal 

as long as a break persists. 

Another important function of PIKKs is to activate downstream kinases.  Activated ATM 

phosphorylates Chk2 on threonine 68 (Ahn et al., 2000), which resides in an N-terminal region 

rich in SQ/TQ motifs.  Upon T68 phosphorylation, Chk2 transiently homodimerizes through 

interactions in trans requiring the forkhead-associated (FHA) domain, causing intermolecular loop 

phosphorylation, and full kinase activation (Ahn et al., 2002; Cai et al., 2009; Oliver et al., 2006).  

By contrast, activated ATR phosphorylates Claspin, normally present at replication forks (Lee et 

al., 2003), in a short repeated motif, that once phosphorylated, binds Chk1 and allows ATR to 

activate Chk1 (Guo, 2000; Jeong et al., 2003).  Some of these mechanistic events are not well 

characterized, though it is clear that the end result is phosphorylation of Chk1 within its C-terminal 

domain, most notably on serines 317 and 345, widely regarded as markers for Chk1 activation 

(Niida et al., 2007; Walker et al., 2009).  Once activated, both Chk1 and Chk2 are thought to 

dissociate from their respective complexes, and each has many targets that will be discussed in 

detail in the next section.   

All events so far discussed happen within 1-2 minutes of the damage event (Bakkenist and 

Kastan, 2003; Pellegrini et al., 2006).  The next wave of protein recruitment occurs through the 

recruitment of ubiquitin ligase RNF8 by MDC1 (Pellegrini et al., 2006), resulting in a cascade of 

ubiquitinylation on histones H2A and H2AX (Huen et al., 2007; Wang and Elledge, 2007) and 

chromatin rearrangement (Price and D'Andrea, 2013).  Immediately following these changes to 
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chromatin structure, further factors such as 53BP1 and BRCA1 can be then be detected at the IRIF, 

arriving after a short but significant 1-2 minute lag after MDC1 (Pellegrini et al., 2006).  These 

factors are thought to have important roles in maintenance of the IRIF as well as recruitment of 

enzymes that perform the enzymatic repair of damage.  However, we were most interested in 

control of the cell cycle and the decision between apoptosis and survival, so we will shift our focus 

to the events downstream of activated ATM/ATR/Chk1/Chk2. 
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1.5. The DNA Damage Response: Integrating Information and the Crucial Roles of p53 in 

the Context of DNA Damage 

1.5.1. Discovery and Controversy: Is p53 an Oncogene or a Tumor Suppressor? 

In the previous section, the early, chromatin-associated events following DNA damage were 

discussed in great detail.  The activation of the kinases ATM, ATR, Chk1, and Chk2 marks the 

next stage of signaling events that converge on the tumor suppressor transcription factor Tp53.   

p53 was first discovered in 1979 by 2 separate approaches.  Virologists studying SV40-

transformed cells found a 55 kDa protein that coprecipitated with the large-T antigen (Chang et 

al., 1979), which was not coded in the virus because it was also present in uninfected cells (Linzer 

and Levine, 1979).  At the same time, oncologists studying carcinogen-induced tumor cell lines 

found a 54 kDa protein universally expressed in many transformed cell lines (DeLeo et al., 1979).  

In 1982 antibodies against p53 were reported in the blood sera of cancer patients (Crawford et al., 

1982), further confusing the discussion of the biological function of the protein.   

Initial work was highly contentious: first p53 was thought to be an oncogene, before its true 

role as a tumor suppressor was elucidated.  The discoveries surrounding src and ras as drivers of 

proliferation and cancer in the early 1980s brought attention to genes that, when disregulated, 

could promote cancer (Ellis et al., 1982; Shih and Weinberg, 1982).  Thus, when it was reported 

that proliferation was highly correlated with having a high intracellular p53 level (Reich and 

Levine, 1984), and that it could cooperate with ras to transform cells (Eliyahu et al., 1984), it was 

naturally classified as a dominant oncogene.  However, by the late 1980s, it was known that p53 

was frequently mutated (Mowat et al., 1985), and that it was overexpression of mutant p53 that 

promote proliferation and cancer (Finlay et al., 1988), while wild-type p53 actually suppressed 

transformation (Eliyahu et al., 1989).  By the 1990s, it had been definitively demonstrated that   
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Figure 1.2.  Schematic of the mechanisms of p53 activation in the context 

of DNA Damage.  Adapted and reproduced from (Sengupta and Harris, 

2005) with permission.   

 

wild-type p53 is a tumor suppressor, while mutations in or deletions of p53 can act as a dominant 

oncogene. 

 

1.5.2. The Role of p53 in DSBR 

p53 is a critical decision point at the convergence of several signaling pathways essential for 

both cellular growth and apoptosis induced by many disparate genotoxic and non-genotoxic 

stresses (Vogelstein et al., 2000).  In normal unstressed cells, p53 is constantly expressed but levels 

are held low by rapid degradation, most importantly by its E3 ubiquitin ligase Mdm2 (Momand et 
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al., 2000; Shieh et al., 1997).  In the context of genotoxic stress, p53 is involved in all the major 

DDR pathways (reviewed in Sengupta and Harris (2005)).   

The role of p53 in NHEJ is not straightforward.  Activated DNA-PK phosphorylates p53 

(Wang et al., 2000), but phosphorylation does not appear to be required (Jhappan et al., 2000; 

Jimenez et al., 1999).  A direct role for p53 protein in precise end joining was demonstrated both 

in vivo and in vitro (Tang et al., 1999; Yang et al., 1997), indicating that its transcriptional activity 

was not required for NHEJ.  However, careful analysis of end-joining assays and integration 

demonstrated that wild-type p53 inhibits NHEJ (Bill et al., 1997; Lee et al., 1999).  Conversely, 

deletions of NHEJ factors such as Ku80 or Xrcc4 in mice cause a number of embryonic lethalities 

that can be rescued by p53 deletion, suggesting that p53 is critical for NHEJ (Frank et al., 2000; 

Gao et al., 2000).  These data also emphasize the importance of NHEJ in normal mammalian 

development.  It is also interesting to note that NHEJ-mutant mice are not usually cancer prone, 

and that it has been hypothesized that p53’s role in NHEJ is more anti-aging than anti-cancer 

(reviewed in Hasty (2008)).  Indeed, p53’s role in cellular aging and senescence is only recently 

coming under study.   

p53 is a key control point in HR, and its inactivation leads to increases in both spontaneous 

and stress-induced HR.  Cancer-derived hotspot mutations at 281, 273, 248, 175, and 143 all 

increased recombination rates (Akyuz et al., 2002).  HR involves the creation of a DNA 

heteroduplex structure known as a Holliday junction, and p53 tetramers bind and stabilize the 

strand-transfer intermediate (Janz et al., 2002).  Importantly, p53 also directly interacts with 

Rad51, directly inhibiting its ability to polymerize (Buchhop et al., 1997; Linke et al., 2003).  It is 

further hypothesized that wild-type p53 primarily protects cells by preventing recombinogenic 

lesions from forming in the first place (Kumari et al., 2004).   
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1.5.3. Phosphorylation of p53 

In the last 20 years, p53 has been one of the most extensively studied proteins in the genome, 

and dozens of post-translational modifications have been identified.  Importantly, though in vitro 

results are typically universally reproducible, in vivo results tend to be context specific, specifically 

with respect to cell type, tissue, genotype, and stimuli.  Indeed, p53 is known to be phosphorylated, 

acetylated, methylated, mono- and poly- ubiquitinylated, SUMOylated, O-GlyNAcylated, 

Neddylated, demethylated, and ADP-ribosylated (reviewed in Gu and Zhu (2012).  

Phosphorylation occurs almost exclusively in the N-terminal transactivation domain (TAD), of 

which there are two, residues 1-40, and 41-61, or in the C-terminal, disordered regulatory domain 

(REG), residues 363-393.  The TAD is not known to be modified in any way other than 

phosphorylation.  The key phosphorylation events in the TAD occur rapidly in response to stress, 

and in a specific order: S15 phosphorylation usually precedes T18 phosphorylation and is required 

for S20 phosphorylation (Saito et al., 2003; Sakaguchi et al., 2000).   

The effects of specific phosphorylation events were studied by knock-in mice models with 

mutations introduced at the mutation sites.  Mutation of serine to alanine prevents phosphorylation, 

while mutation to aspartic acid mimics constitutive phosphorylation.  p53S18A, p53S23A, and 

p53S18A,S23A mutant mice (S15 and S20 in human) all show reduced life span, though stabilization 

of p53 after stress is not significantly altered.  However, all 3 mutant mice and derived cells did 

show defects in p53-dependent stress responses (Armata et al., 2007; Chao et al., 2006).  In 

particular, p53S18A/S23A homozygous mutant mice were profoundly unable to activate p53-

dependent apoptosis.  Therefore, it seems that levels of p53 protein and its downstream activity by 

phosphorylated may not be directly correlated.  In fact, careful analysis of p53S18A,S23A/ S18A,S23A 
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cells showed no difference from a p53-/- mouse in p53-dependent stress responses, though protein 

levels did not significantly differ from cells expressing wild-type protein (Chao et al., 2006).  In 

contrast to these non-phosphorylatable mutants, a p53T21D,S23D mutant mimics constitutive 

phosphorylation.  A p53T21D,S23D/- mouse exhibits strongly accelerated aging, while a homozygous 

mutation is embryonic lethal.  p53T21D,S23D/- cells showed significant p53-dependent transcription 

and apoptosis in the absence of stress as compared to p53+/- cells, but did not further induce these 

responses in the presence of DNA damage, and was lower than the response in p53+/- after damage.  

All in all, these knock-in experiments show the critical importance of the S18 and S23 (human 

S15 and S20) sites in activation of p53 somewhat independently of protein levels.   

p53 phosphorylation affects its interactions with its negative regulator Mdm2 while also 

activating its downstream transcriptional activity.  A published crystal structure of Mdm2 in 

complex with the TAD domain shows that the minimal binding region is a helix formed by residues 

19-26 within the TAD (Kussie et al., 1996).  Strikingly, this interaction is largely formed by highly 

conserved hydrophobic residues (F19, W23, L26) inserting into a deep hydrophobic cleft in 

Mdm2.  Phosphorylation on p53 at S18 and S23, along with concurrent phosphorylation by ATM 

at S395 in Mdm2 (Maya et al., 2001), introduce bulky, negatively charged structures that inhibit 

the interaction, relieving the negative regulation while at the same time revealing a binding surface 

for p62 and CBP/p300 (Blau et al., 1996; Feng et al., 2009).  p62 is a subunit of the transcription 

factor TFIIH and activates p53-dependent transcription (Blau et al., 1996), and CBP/p300 are a 

pair of homologous histone acetylases responsible for chromatin modification at sites of p53- 

dependent transcription and are required for p53-dependent apoptosis (Avantaggiati et al., 1997; 

Hsu et al., 2004).   
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1.5.4. Phosphorylation of p53 by ATM/Chk2 and ATR/Chk1 

Given the importance of the phosphorylation events at serine 15 and 20, it is important to 

understand how they become phosphorylated and by which kinases.  Perhaps unsurprisingly, the 

answer is not simple, and also has a significant timing component; different kinases appear to be 

required for different kinetic regimes of p53 phosphorylation. 

It is well established that serine 15 phosphorylation is a benchmark for ATM activity, but this 

is perhaps an erroneous assumption.  Indeed, A-T cells deficient for ATM activity do not 

phosphorylate p53 S15 at the initial phase of the DDR, but phosphorylation is nonetheless evident 

at later time points (Siliciano et al., 1997).  This observation indicates other kinases, possibly ATR, 

also act upon p53 S15 at later time points.  Other phosphorylation events in p53 such as serines 9, 

20, and 46 are even more dependent on ATM than serine 15 (Saito et al., 2002), though ATM has 

weak affinity for those sites.   

A parsimonious explanation for this apparent paradox would be an ATM-dependent kinase, 

namely Chk2, phosphorylates serines 9, 20, and 46, though this hypothesis also has problems.  

Chk2 has indeed been shown to phosphorylate S20 in vitro (Chehab et al., 2000; Shieh et al., 

2000), but S20 is not a Chk2 consensus phosphorylation site and is in fact a poor Chk2 substrate 

(Ahn et al., 2003; Craig et al., 2003).  Then again, Chk2-/- mice appeared to be normal in both p53 

stabilization and S23 phosphorylation, though downstream p53 transcriptional activity was 

defective (Takai et al., 2002).  Further adding to the complexity of the problem, Chk1 has also 

been reported to have phosphorylation activity for S20 in vitro (Shieh et al., 2000).  These 

complexities in mind, it is safe to conclude that phosphorylation of the N-terminus of p53 is not 

straightforward, and may well be context specific as well as combinatorial.    
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1.6. The DNA Damage Response: Checkpoints, Apoptosis, and Other Phenotypes 

After DNA damage, cells can respond in several ways.  Cells will choose between several 

possible fates, either to survive or die.  The survival phenotype manifests as a pause in cell cycle 

progression at any of several checkpoints, designed to prevent replication of damaged DNA and 

propagation of mutations to daughter cells.  By contrast, cells choosing cellular death will commit 

apoptosis if the damage is too extensive in an effort to prevent potential oncogenesis.  Other, more 

exotic, and less-well understood phenotypes have also been described recently, including necrosis, 

senescence, necroptosis, and autophagy.  There are 3 major checkpoints in mammalian cells: the 

G1-S, the intra-S, and the G2-M checkpoint.  Here we discuss these checkpoints and apoptosis in 

detail, and briefly summarize the current thinking on the other less well understood cell fates. 

 

1.6.1. The G1-S checkpoint 

The G1-S transition marks a decision point where a cell begins to replicate its DNA, and is 

initiated by expression and buildup of CyclinD beginning immediately after mitosis.  CyclinD 

forms a complex with either Cdk4 or Cdk6, depending on cellular context, which in its active state 

phosphorylates many targets, including pRB (reviewed in Coqueret (2002)).  In the absence of 

phosphorylation, pRB binds and inhibits E2F transcription factor family members that are required 

for cell cycle progress.  Upon poly-phosphorylation by activated CyclinD-Cdk4/6, pRB dissociates 

from E2F, allowing transcription of CyclinE.  CyclinE-Cdk2 complexes further phosphorylate and 

activate pRB, completing a positive feedback loop to ensure a robust initiation to S-phase.   

In the presence of DNA damage, cells can break this feedback loop in order to prevent G1-S 

progression.  There are 2 known mechanisms by which this occurs, both requiring upstream 

activation of ATM.  A fast acting pathway involves activated Chk2, which directly phosphorylates  
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Figure 1.3.  Schematic of the G1-S transition, including the key 

events that result in G1-S checkpoint induction.  Reproduced from 

Deckbar et al. (2011) through open access permissions. 
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Cdc25A on S123, ultimately resulting in degradation of Cdc25A (Bartek and Lukas, 2007; Falck 

et al., 2001).  Cdc25A is a critical phosphatase required to dephosphorylate and activate the kinase 

domains of Cdk2/4/6.  Thus, in a transcription-independent manner, activated ATM can quickly 

inhibit the cell cycle progression feedback loop and slow down S-phase entry.  A separate, 

transcription-dependent pathway depends on activation of ATM/Chk2 and stabilization of p53.  

p53 then transcriptionally activates many genes, including the potent Cdk inhibitor p21CIP/Waf1.  

p21CIP/Waf1 belongs to the CIP/KIP family of Cdk inhibitors, and has specificity for both CyclinD-

Cdk4/6 and CyclinE-Cdk2 (reviewed in Sherr (1999)).  In addition, p21CIP/Waf1 has also been shown 

to cause degradation of pRb independent of Cdk inhibition (Broude et al., 2007).  As this pathway 

of cell cycle inhibition requires transcription, it is necessarily slower, though it can be seen to be 

active within 2-3 hours post IR (Gadbois and Lehnert, 1997).   

The G1-S checkpoint also features a point of no return, termed the restriction point, after which 

the checkpoint cannot be engaged.  Up to 4-6 hours before S-phase, even very high levels of 

damage will only slow S-phase entry but not prevent it; cells beyond this point are committed to 

progress to S-phase (Deckbar et al., 2010).  Because this timing appears to be after the time when 

p21 can be transcribed, it is hypothesized that these cells may have accumulated sufficient 

phosphorylated pRb such that inhibiting Cdk cannot inhibit cell cycle progression.  However, 

given that p21 can modulate pRb, one might expect the point of no return to be closer in timing to 

the ability to 2-3 hours, not 4-6.  The reason for this apparent discrepancy between timings is 

unclear and needs to be investigated.   

The p53-dependent G1-S checkpoint is highly sensitive.  It requires that the IRIF be 

maintained for the ~6 hours it takes to engage the checkpoint, but may be activated by only a single 

DSB (Di Leonardo et al., 1994; Yamauchi et al., 2008).  Furthermore, checkpoint release is dose-
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dependent, but counting γ-H2AX foci indicates that although cells have resolved most of the IRIF 

when they progress into S-phase, they can harbor a small number of breaks.  When high doses are 

used, a small number of cells can escape arrest with high levels of damage, indicating that there 

may be an upper limit to how much damage the checkpoint can tolerate (Deckbar et al., 2010). 

 

1.6.2. The Intra-S checkpoint 

The S-phase checkpoint is intimately tied to the main cellular function during S-phase: 

replication of the genome.  During this key process, the DNA duplex is denatured, and if a single-

stranded break is present, a DSB can be formed when a replication fork reaches the break.  In 

addition, replication is discontinuous on both the leading and lagging strands, and replication forks 

frequently stall or collapse even in unstressed cells.  The kinase ATR, which is normally present 

at replication forks, has an integral role to begin replication each at each origin of replication 

exactly once, and to initiate repair mechanisms when a replication fork is distressed.   

The existence of a checkpoint in S-phase has been known since at least the 1970s, though the 

specific mechanisms are only recently becoming clearer.  Early work found that radiation and 

genotoxic drugs blocked incorporation of new DNA, and that caffeine greatly increased sensitivity 

to these treatments (Walters et al., 1974).  Later work showed that this decrease in DNA 

incorporation was due to a block in new replication initiation sites (Larner et al., 1994; Painter, 

1980).  Because damaged or stalled replication forks are a potential source of chromosome 

instability, silencing the creation of new replication sites allows the damaged sites to be repaired 

rather than making even more damaged sites.  Once the damaged sites have been resolved, it is 

safe to initiate new replication sites.  Normal initiation of a replication origin requires  
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Figure 1.4.  Schematic of Intra-S phase checkpoint.  Though much 

is unknown about the precise intra-S mechanisms, it is clear that 

ATR/ATRIP and ATM, as well as Chk1 are able to cause the 

downstream effects that prevents replication origins from firing.  
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CyclinE/Cdk2, which in turn requires Cdc25A for dephosphorylation and activation of its Cdk 

activity. 

The signaling events that initiate the intra-S checkpoint signal stem from ATM/ATR through 

two separate pathways to silence replication fork initiation.  Activated Chk1 and Chk2 

phosphorylate Cdc25A, causing its nuclear export and degradation (Falck et al., 2001).  

Furthermore, Chk1 has many other targets, and may be indirectly involved in preventing the 

loading of the MCM helicase to chromatin via preventing Cdc45 binding (Liu et al., 2006; Moyer 

et al., 2006).  Alternatively, ATM directly phosphorylates the cohesin subunits Smc1 and Smc3 

(Luo et al., 2008; Yazdi et al., 2002).  Cohesin enhances recombinatorial DSB repair (Strom et al., 

2007), possibly due to the cohesin correctly orienting the spatial proximity of the daughter strands.  

And though exactly how cohesin contributes to the intra-S checkpoint is unclear, cells deficient 

for Smc1-or Smc3 are have defects in the intra-S checkpoint, further emphasizing the importance 

of cohesin (Kim et al., 2002).   

 

1.6.3. The G2-M checkpoint 

The G2-M transition is driven in large part by the nuclear CyclinB1/CDK1 complex.  

Transcription of CyclinB1 is occurs only in the presence of CyclinA/CDK2, ensuring that 

CyclinB1 begins to be expressed in S phase and peaks in late G2 (reviewed in Fung and Poon 

(2005).  During G2, the CyclinB1-CDK1 complex is held inactive by phosphorylation on T14 and 

Y15 on CDK1 in the kinase active site, maintained by Wee1 and Myt1 kinases (reviewed in Nigg 

(2001)).  Under unstressed conditions, entry into M phase is thus induced by the Cdc25 

phosphatases, which dephosphorylate the kinase active site and convert the inactive CyclinB1-

CDK1 complex to an active state.  Once active, CyclinB1-CDK1 complex phosphorylates Wee1  
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Figure 1.5.  Schematic of the key signaling events surrounding the 

G2-M transition, including checkpoint activation via ATM/ATR 

through Chk1/Chk2.  Reproduced from Deckbar et al. (2011) 

through open access permissions. 
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and Cdc25C on numerous sites, thereby closing a robust positive feedback loop whereby it 

simultaneously deactivates its inhibitor and activates its activator (reviewed in Lindqvist et al. 

(2009)).  The eventual buildup of active CyclinB1-CDK1 complex causes wide-ranging effects 

that in a switch-like manner initiates early M phase.   

Cells can respond to DNA damage and delay M phase initiation by breaking the feedback 

loops that ensure switch-like behavior.  Activated Chk1 and Chk2 have both been reported to 

phosphorylate Cdc25C, most notably at S216, creating binding sites for 14-3-3 protein and 

resulting in nuclear export into the cytoplasm, physically preventing its ability to dephosphorylate 

nuclear Cdk1 (Chan et al., 2011).  Additional p53-dependent pathways may also exist, though 

these remain relatively obscure (Bruno et al., 2006; Chan et al., 2000).  In summary, activation of 

the upstream kinases ATM/ATR transmits a signal downstream through the intermediary kinases 

Chk1/Chk2 and p53 to halt the cell cycle and prevent the propagation of aberrant nuclear material. 

Interestingly, while the G2-M checkpoint can be initiated by only a single DSB, maintenance 

of the G2-M checkpoint does not appear to be robust, in that it can be terminated before the 

completion of DSBR.  G2-M checkpoint proficient tumor cells, as well as non-transformed cells, 

are able to enter mitosis despite the presence of 10 or more DSBs (Deckbar et al., 2007; Syljuasen 

et al., 2006).  Careful analysis reveals that the threshold for checkpoint escape is not related to the 

initial number of breaks, but rather intrinsic to the cellular context (Lobrich and Jeggo, 2005).  This 

process, known as checkpoint adaptation, is the subject of great interest and appears to involve 

Polo-like kinase (Plk1) and the inactivation of the Chk2 and Rad53 kinases (Leroy et al., 2003).  

Regardless of the exact mechanism, the G2-M checkpoint is best regarded as transient and 

insensitive, and can allow mitotic entry despite the presence of unrepaired breaks.   
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It is also important to note that once a cell has entered mitosis, the DNA damage response is 

largely silenced.  While early events such as γ-H2AX foci formation and ATM phosphorylation 

on S1981 do occur, key molecules such as 53BP1 are excluded from chromatin (van Vugt et al., 

2010).  This process of mitotic inactivation seems to ensure that mitosis proceeds forward and 

prevents the creation of a tetraploid cell by aborting mitosis.   

 

1.6.4. Apoptosis 

The cell cycle checkpoints discussed above each has the net effect of slowing the cell cycle 

and allowing a stressed cell time to repair the genetic insult.  This response is generally pro-

survival and appropriate for spontaneous genomic damage and most environmental stresses, but 

sometimes it may not be sufficient.  In the cases where the damage is too extensive, or persists and 

cannot be repaired, a normal cell will typically enter a sustained growth arrest (discussed below), 

while cancer cells will more often commit apoptosis (Barley et al., 1998).   

Apoptosis is a conserved pathway that can be activated by a wide array of external and internal 

signals.  As such, there are many paths to activation, but upstream signaling converges on two key 

somewhat redundant pathways: the extrinsic and the intrinsic.  Both pathways can be activated by 

many different sensors, but regardless of the original apoptotic stimulus, the final result is always 

the same: a characteristic blebbing of the membrane, nuclear envelope condensation, nuclear 

fragmentation, and eventual lysis.  The mitochondria of the cell are often but not always involved 

in releasing cytochrome c into the cytoplasm, where it binds Apoptotic protease activating factor 

1 (Apaf-1), which cleaves procaspase-9, which in turn cleaves procaspase-3, amplifying the signal 

at each step and committing the cell to apoptosis (Li et al., 1997).  The specific components of the 

apoptosis machinery that need to be activated are somewhat interchangeable depending on the 



48 

 

initiating stress and cellular context, as caspases are classified as either an initiator (caspases 8, 9, 

10, and 2), or an effector (3, 6, 7).  Regardless of how the caspase cleavage cascade is initiated, 

once begun, the cell is typically committed to complete apoptosis.  Caspase-independent apoptosis 

has also been reported via an intracellular increase in calcium activating the protease calpain 

(Squìer et al., 1994).   

The extrinsic pathway is activated by external cues, prototypically involving ligand-receptor 

interactions such as tumor necrosis factor (TNF) binding its receptor (TNFR).  TNF binding TNFR 

in its extracellular domain sets off a chain reaction of intracellular protein interactions, cleavage 

events, and complex formation inside the cell, culminating in the activation of initiator caspase 8 

and effector caspase 3 and 6 (reviewed in Chu (2013)).   

The intrinsic pathway is activated by internal cues, including oxidative damage and persistent 

or overwhelming DNA damage.  Intrinsic apoptosis can involve caspase-independent effectors 

such as apoptosis-inducing factor (AIF) and endonuclease G, and usually activates multiple 

caspases including 3, 6, 8, and 9.  Intrinsic stress signaling converges on p53 as a critical decision 

point and results in p53 phosphorylation and stabilization.  Activation of p53 results in a p21-

dependent transcriptional repression of pro-survival genes such as BCL-2 (Akhtar et al., 2006), 

MCL-1 (Pietrzak and Puzianowska-Kuznicka, 2008), and survivin (Hoffman et al., 2002).  On the 

other hand, p53’s transcriptional target p21 opposes this by promoting survival.  p21 has been 

demonstrated to inhibit apoptosis by forming complexes with procaspase-3 and preventing 

cleavage by caspase-9 (Sohn et al., 2006; Suzuki et al., 1999).  However, a 15kD cleavage product 

of p21 does seem to be required for caspase-3 mediated apoptosis.  Because p21 is required for 

p53-mediated repression of the aforementioned pro-survival genes, it is possible that the 15kD p21 

cleavage product is required for this repression.   
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p53 is frequently mutated in cancer, and many of these mutations can affect p53’s role in 

apoptosis/survival signaling.  The majority of mutations in cancer result in gain-of-function 

properties, nuclear accumulation, longer half-life, and the ability to transcriptionally activate pro-

survival genes not normally targeted by wild-type p53 (Deb et al., 1994; Frazier et al., 1998).  

Typically, cancers featuring gain-of-function mutated p53 expressed at high levels are highly 

resistant to apoptosis, and can be transiently reprogrammed by silencing p53 expression.  An 

uncommon class of p53 misregulation results in nuclear exclusion and a novel inhibitory 

interaction with procaspase-3 (Frank et al., 2011).  Finally, a minority of cancers have very low or 

no expression of p53, and are typically defective for cell cycle checkpoints and sensitive to 

apoptosis.   

In summary, while p53 transcriptionally represses pro-survival genes, its downstream 

transcription target p21 is anti-apoptotic, though a cleavage product of p21 is pro-apoptotic.  These 

conflicting signals are eventually integrated with others, possibly in a timing and cellular context 

dependent manner, that results in a decision of the cell eventually to either enter apoptosis or not.  

The relative expression levels of these and other molecules within the cell presumably explains 

why different cell lines have different sensitivities to genomic stress.   

 

1.6.5. Senescence, growth arrest, and other phenotypes 

While checkpoint activation and apoptosis have garnered most of the research interest for 

many years, we are now beginning to appreciate the complexities of other possible responses to 

genotoxic stress.  These responses include permanent growth arrest and senescence, mitotic 

catastrophe, autophagy, and necrosis/necroptosis.  Much less is known about these cellular states 
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than checkpoint activation and apoptosis, but in the interest of completion we will discuss them 

briefly here. 

Most normal cells, when experiencing moderate DNA damage, do not commit apoptosis.  

Rather, if transient expression of p21 associated with checkpoint activation persists for a long 

enough time, cells can enter a permanent growth arrest known as stress-induced persistent 

senescence (SIPS).  In SIPS, p21 gains an additional role of gene regulation, whereby it activates 

gene expression associated with cellular senescence, aging, and growth arrest (Barley et al., 1998; 

Chang et al., 2000; Devgan et al., 2005; Kitaura et al., 2000).   

The role of p21 in cellular senescence has been elucidated in recent years.  Cellular senescence 

is a distinct state of persistent growth arrest, marked by high expression of β-galactosidase, an 

enlarged and flattened “fried egg” morphology, and absolute lack of proliferation despite 

metabolic activity.  SIPS should not be confused with senescence resulting from aging telomeres, 

termed replicative senescence.  Cells undergoing SIPS can be kept alive in culture for months 

without proliferation, and display a remarkable resistance to apoptosis.   

Because of the critical role of p53 and p21 in maintaining SIPS, it is observed mainly in cells 

containing wild-type p53.  Most cancer lines carrying mutations in p53 are deficient in cell cycle 

checkpoints, as well as unable to efficiently activate SIPS.  As a result, these cells either commit 

apoptosis, or ignore the DNA damage completely and attempt mitosis regardless of chromosomal 

damage.  This latter class of cells often experience distressed mitotic events, termed mitotic 

catastrophe.   

Mitotic catastrophe as a phenomenon is poorly defined, but the most common definition is the 

presence of multiple nuclei or aberrant nuclear structures termed micronuclei.  Micronuclei result 

from aberrant chromosomal separation or chromosomal fragments that are not evenly distributed 
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upon cytokinesis, whereas multiple nuclei form upon a failed karyokinesis (Vakifahmetoglu et al., 

2008).  The signaling events that follow such abnormal structures remain unclear, but the possible 

cellular outcomes appear to include prolonged growth arrest and senescence as well as catastrophic 

mechanical failure of the cell membrane during future mitosis.  Mitotic catastrophe has gained 

prominence recently because it has been shown that to result from treatment with 

chemotherapeutic drugs (Eom et al., 2005).  While the doses used in this study were low, they may 

well represent a physiological local concentration of drug within a tumor.  However, the specific 

downstream events involved in mitotic catastrophe remain obscure and the extent to which it 

causes cell death or senescence is unknown.   

Autophagy is a confusingly paradoxical cellular phenotype that has been most extensively 

studied in response to DNA damage.  Macroautophagy (simply known as autophagy) is a major 

pathway by which cells cannibalize intracellular components by fusing lysosomes with organelles 

to form a double-membrane autophagosome.  Eventually, autophagosomes release fatty acids and 

amino acids for use elsewhere in the cell (Baehrecke, 2005; Klionsky, 2000).  Autophagy is a 

normal function of unstressed cells, but can be massively upregulated in response to withdrawal 

of growth signals, oxidative stress, or DNA damage.  It is easy to understand why scavenging fatty 

acids and amino acids in starvation conditions would be pro-survival, but it is harder to see why a 

cell undergoing DNA damage might need extra fatty acids or amino acids.  Nonetheless, autophagy 

delays apoptotic death in response to DNA-damaging agent camptothecin (Abedin et al., 2007).  

Activated ATM is known to activate AMPK, which in turn inhibits mTOR, which inhibits 

autophagy in response to DNA damage (Alexander et al., 2010).  However, p53-mediated 

autophagy accelerates apoptotic cell death, indicating that autophagy is not always pro-survival 

(Crighton et al., 2006).  It has also been speculated that many of the stimuli used in the lab to create 
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DNA damage also inflict oxidative damage to lipids and protein, and that reactive oxygen species 

are generated at damaged DNA as a signaling molecule, explaining the need for spare amino acids 

and lipids.  If this is the case, autophagy may well be a critical repair mechanism in the DDR.  

Indeed, the role of autophagy in determining cell fate is unclear and whether it is a net promoter 

of survival or death is unknown.   

Necrosis is a chronically disregarded cellular response that has only recently begun to be 

appreciated in the context of DNA damage.  Originally, necrosis was defined negatively as a 

“garbage pail” category: cells that could not be classified as undergoing apoptosis nor autophagic 

vacuolization were labeled necrotic and considered generally uninteresting.  Necrosis is typically 

observed in response to hypoxia or mechanical damage, and in contrast to apoptosis does not 

feature an immunogenic display to stimulate cleanup of cellular debris.  As such, necrosis as a 

whole was considered to be an uncoordinated, transcription-independent death mechanism.  

Recent evidence has shown that this simplistic view is incomplete, and that a subset of necrotic 

death can in fact be highly coordinated, involving production of reactive oxygen species (Goossens 

et al., 1996) and activation of receptor-interacting kinases 1 and 3 (RIP1/RIP3) (Cho et al., 2009) 

and tumor necrosis factor receptor 1 (TNFR) (Hitomi et al., 2008).  The discovery that necrosis 

downstream of chemotherapeutic insult is coordinated has led to a renaming of the phenomenon 

as necroptosis to contrast with ischemic necrosis, and much work is in progress to elucidate the 

specific mechanisms involved.   
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Part 2 

Application of Lysate Microarray Technology 

For High-Throughput Profiling and Drug Target Identification 

In Liver-Stage Malaria Infection  



59 

 

2.1. Introduction 

Parasites of the genus Plasmodium cause malaria, an ancient scourge that has shaped human 

genetics and history.  Malaria continues to be a major cause of morbidity worldwide, affecting 

150-300 million people annually, with 660,000 deaths (WHO, 2013).  Efforts to produce a 

vaccine have been largely stymied, with the only Phase 3 trial to date recently reporting only a 

16.8% efficacy over 4 years, declining with both time and increasing malaria exposure (Olotu et 

al., 2013).  Furthermore, although increasing availability of treatment has decreased morbidity, 

evolution of resistance remains a recurring problem: chloroquinine was introduced in 1947 and 

resistance was documented as early as 1950, with widespread resistance obsoleting the drug by 

the 1980s.  Artemisinin-resistant strains have been recently discovered (Kyaw et al., 2013), 

which if allowed to spread worldwide, will have devastating consequences as no other approved 

and effective treatments will be available for at least 3 years.  The very credible threat of totally-

resistant malaria, coupled with the general failure of vaccine efforts, has driven the need for new 

approaches toward a working prophylactic vaccine or treatment to crisis-level importance. 

The liver stage of the infection presents an enticing target for prophylactic or palliative 

intervention.  Immediately after transmission by the bite of an Anopheles mosquito, the parasite 

sporozoite travels through the bloodstream to the liver, where it infects hepatocytes and 

manipulates the host.  The parasite then grows and replicates within the hepatocyte, evading host 

detection for a time, and eventually reenters the bloodstream as thousands of daughter 

merozoites that infect red blood cells and cause symptomatic malaria (Vaughan et al., 2008).  P. 

berghei, which infects rodents, has been shown to actively inhibit apoptosis in the host 

hepatocyte both early (van de Sand et al., 2005) and late (Leirião et al., 2005).  Although 

immunity does not typically result from Plasmodium infection (Tran et al., 2013), genetically 
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attenuated parasites that do not proceed past liver-stage have been shown to provoke long-term 

immunity (Doolan and Hoffman, 2000; Krzych et al., 2012).  Indeed, preparations of both early- 

(Annoura et al., 2012) and late- (Butler et al., 2011) stage hepatocyte infection have been tried in 

rodent vaccine trials with varying success.  Taken together, these insights suggest that 

Plasmodium blocks host apoptosis, and that restoring or promoting apoptosis in infected 

hepatocytes may be a fruitful approach for prophylactic vaccination.   

Liver-stage malaria has historically been technically challenging, but reverse phase lysate 

microarray technology is perfectly positioned to interrogate the signaling events in infected cells.  

Isolating live parasite requires painstaking dissection of mosquito salivary glands by hand, which 

must then be used immediately, and while hepatocyte infection is an obligatory step in the 

Plasmodium lifecycle, very few hepatocytes are actually infected; as few as 0.1% both in vivo 

and in vitro.  Producing sufficient cellular lysate for classical techniques such as immunoblotting 

is therefore impractical.  Correspondingly, very little is known about the transcriptional, 

translational, and phosphorylation states of infected hepatocytes.  Whereas lysate microarrays 

require extremely small amounts of lysate, we took advantage of the technique to interrogate the 

signaling changes that take place in the host cell upon infection and identified a key mechanism 

by which Plasmodium parasites modulate host apoptosis signaling.   

This work was reproduced with modifications and additions from Kaushansky et al. (2013).   
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2.2. Results and Discussion 

2.2.1. Development of a Lysate Microarray-based Platform for Profiling Infected 

Hepatocytes 

The major technical challenge to studying liver-stage infection is the low infection rate and 

the technical difficulties in creating large amounts of parasite.  In order to circumvent the 

problem, we chose a model system we had previous experience with.  HepG2/CD81 hepatoma 

cells were ideal because are readily infected by Plasmodium and we have previously validated 

antibodies for use in that cell line (Luckert et al., 2012).  We therefore assembled a list of 

antibodies, all of which have been demonstrated to pass stringent criteria for data quality.  

Specifically, we required that all antibodies used be highly specific for the listed antigen, 

producing only a single dominant band of the right size in immunoblotting, and that the changes 

in signal measured by microarray matched those observed in immunoblots.  The antibodies we 

selected recognize proteins involved in diverse pathways including survival, apoptosis, 

proliferation, cell-cycle control, and autophagy.   

It is important to note that while all the chosen antibodies have previously been validated for 

use in HepG2 cells, there may still be reasons why they might produce misleading data.  We 

have previously shown in the lab that an antibody that produces a measurable, positive signal on 

lysate microarrays may actually not be measuring its target at all, but rather an off-target cross-

reactive species, resulting in misleading data (Sevecka et al., 2011).  Further compounding the 

off-target problem is the fact that the cross-reactive target is usually unknown, and that each 

antibody may have cross-reactivities that vary unpredictably according to cell line, treatment, 

and time point.  Thus, we carefully constructed a list of candidate antibodies (Table 2.2), all 

previously validated for use in HepG2 cells after stimulation with growth factors such as HGF or 
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Wnt.  The only way to fully validate the antibodies for use in malaria would have required 

prohibitive amounts of infected cells.  As the lysate microarray technique is significantly more 

straightforward to use in medium throughput and consumes minimal sample, we decided to use a 

reverse screen approach and use all the pre-selected antibodies that we believed might work, 

keeping in mind the caveats and making sure to validate the ensuing results with multiple other 

techniques.   

Given the potential technical problems mentioned above, we initially set out to test the 

experimental protocol to see if we could recapitulate known phenomenon.  We were motivated 

by a report that HGF signaling was important for malaria infection (Carrolo et al., 2003), 

reasoning that HGF is a key growth factor in hepatocytes and that autocrine signaling might 

partially be responsible for the apoptosis defect.  This is particularly intriguing considering that 

Plasmodium parasites are known to tunnel through, without apparently harming, hundreds of 

hepatocytes before finally selecting one to mature in.  We hypothesized that Met signaling might 

prevent apoptosis in those cells that had been burrowed through, and acquired both Met- 

hepatocytes and Spect2- parasites deficient for this tunneling behavior (Ishino et al., 2005).  We 

also hoped that we might be able to see the parasite-specific signaling above the background of 

uninfected cells, so we tested both unseparated samples and FACS sorted samples.   

The total list of lysates collected for this proof-of-principle experiment is listed in Table 2.1.  

As the infection rate of P. yoelli is on the order of 0.1-0.3%, we considered that it may be 

necessary to separate out infected cells from uninfected cells.  To do so, we selected a GFP-

expressing P. yoelli strain (Tarun et al., 2006), which allowed us to use Fluorescence Activated 

Cell Sorting (FACS) to pull out the small number of infected cells.  For the purposes of the 

sorted samples, we acquired 5000 cells for both negative and positive GFP staining, and lysed  
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Table 2.1 -- List of lysates used in pilot study to establish feasibility of 

lysate array analysis of Plasmodium infected HepG2 cells. 

Sample Host Description time point 

1 Wt HepG2 Mock treated Control 1  hour 

2 wt HepG2 wt P. falciperum 1 hour 

3 Met- HepG2 spect2- P. yoelii 1 hour 

4 Met+ HepG2 spect2- P. berghei 1 hour 

5 wt HepG2 wt P. falciparum 24 hour 

6 Met- HepG2 wt P. yoelii 24 hour 

7 Met+ HepG2 wt P. berghei 24 hour 

8 wt HepG2 GFP P. yoelii, FACS sorted - 24 hour 

9 wt HepG2 GFP P. yoelii, FACS sorted + 24 hour 

 

Table 2.1.  List of lysates used in pilot study to establish feasibility 

of lysate array analysis of Plasmodium infected HepG2 cells.  

Lysates were designed to test multiple hypotheses in one 

experiment: whether GFP sorting was necessary to measure host or 

parasite signaling, if non-traversing mutants could be used rather 

than GFP sorting, whether host Met signaling was affected by 

Plasmodium infection, and how necessary FACS sorting was for 

maximum contrast between infected and non-infected signaling. 

 

them in 10 μL lysis buffer without filtering.  All other lysates were collected from a single 10cm 

plate in 0.5 mL lysis buffer, and filtered according to established protocol.  All lysates were then 

printed using an Aushon 2470 arrayer using 110 μm diameter pins at 350 μm spacing in 

duplicate.  Arrays were then probed and quantified according to established protocol (Sevecka et 

al., 2011).   

The data collected from this pilot experiment was very informative.  Technical variation 

within replicate spots was very small: the average intra-sample coefficient of variation (c.v.) was 

2.4%.  These internal controls all gave us confidence that the malaria-infected experimental 

lysates were valid and interpretable.  In some cases, we were also able to measure parasite 

protein without sorting, for example U154 in P. berghei (Figure 2.1, left).  Most importantly, we 

were able to detect signal that varied significantly according to stimulus, indicating that at least   
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Figure 2.1.  Representative example of lysate microarray data 

detecting changes in protein expression after Plasmodium infection.  

A representative example of lysate array raw images show a strong 

signal for U154 in P. berghei infected cells, as well as confirming 

no significant upregulation in phosphorylation on Met Y1349 in 

response to bulk infection with Plasmodium.  At this scanning 

laser intensity, the sorted lysates (8-9) are not visible. 

 

in some cases, our technique was working to detect changes in cellular signaling.  We were able 

to confirm that in bulk measurements, Met was not significantly higher in samples that had been 

exposed to Plasmodium, regardless of Spect2 deletion and ability to tunnel (Figure 2.1, right).  

We also noted that the signal for the GFP sorted sample was very low and could only be 

observed when scanning laser intensity was increased to high power which increases background 

fluorescence.  This was due to the sample being too dilute.  As a result, we concluded that 5,000 

cells in 10 μL was too dilute, and estimated that 10,000 cells lysed in 3 μL would provide 

sufficient protein concentration for detection.  Despite the need for high laser power to analyze 

the sorted samples, we found that Met was not significantly phosphorylated or upregulated in 

response to Plasmodium tunneling or infection.  Finally, we concluded that unsorted bulk 
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samples were insufficient to measure signaling in the minority of infected cells above the 

background of uninfected cells.   

Armed with these data, we now proceeded to a more ambitious experiment to screen a panel 

of known cancer-associated signaling events surrounding apoptosis and survival in the context of 

Plasmodium infection.   

 

2.2.2. Lysate Microarray-based Profiling of Host Signaling during Plasmodium infection 

 

We grew HepG2 cells in 10-cm plates to about 50% confluence (5 × 106 cells), at which 

point 2 × 106 freshly isolated GFP-tagged P. yoelli were added to the culture.  Infection was then 

allowed to proceed for 8 or 24 hours, at which point the cells were recovered and prepared for 

FACS.  Typically, about 10,000 GFP-positive HepG2 cells could be collected from each plate; 

these were lysed in 3 μL of SDS lysis buffer.  A corresponding number of GFP-negative HepG2 

cells were analogously collected and lysed as a matched uninfected control.  In addition, the 

following control lysates were also produced: unstimulated HepG2 cells, HepG2 cells stimulated 

with 25 ng/mL HGF for 10 minutes, and HepG2 cells stimulated 10 μM doxorubicin for 24 

hours.  The experiment was performed in triplicate to gain statistical significance and address 

reproducibility. 

These lysates were then filtered and arrayed in quadruplicate on 60 separate nitrocellulose pads, 

followed by probing according to established protocol (Sevecka et al., 2011).  The antibody list 

used was the same as that listed in Table 2.2.  Included in each probing was also a primary 

antibody directed against β-actin to be used as an internal control against variation in total   
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Figure 2.2 (Next Page).  Use of Lysate Microarrays to study Host 

Signaling in Liver-Stage Malaria Infection.  (A) Schematic 

representing steps required to obtain microarray data from a 

HepG2 sample infected with P. yoelii-GFP liver stages.  (B) 

Representative array images from 3 antibodies.  (C) Graph 

representing overexpression ratio in host cells for 46 separate 

antibodies, plotted against the log p-value obtained.  Each point 

represents a single antibody.  Significant results that pass multiple 

hypothesis testing are shown in blue, nonsignficant results shown 

in red.  Reproduced from Kaushansky et al. (2013) with permission.  
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Figure 2.2 (Continued). 

  



68 

 

protein content.  Commercially available secondary antibodies conjugated to near-IR 

fluorophores were used, after which the slides were washed, dried, and scanned.  The slides were 

then scanned and quantified using MicroVigene by VigeneTech.  A schematic of this 

experimental process is shown in Figure 2.2A.  For each antibody, a ratio of upregulation post 

infection was calculated, as well as a p-value using Student’s T-test followed by a Holm-

Bonferroni multiple hypothesis test.   

Visual inspection of the data indicated that many signaling pathways are perturbed in 

parasite-infected cells (Figure 2.2B-C, Table 2.3).  While the absolute magnitudes for ratio of 

upregulation are often modest, they can nonetheless be significant as we have previously 

demonstrated (Sevecka et al., 2011).  We were surprised by how many signals displayed a 

significant deviation from background after infection.  Of the 46 antibodies used, we observed a 

significant upregulation in 22, significant downregulation in 5, and no significant change in 19.  

Full results are given in Table 2.3.  The most striking results included increases in anti-apoptotic 

phosphorylation signaling in p-Bcl-2 (p=0.001) and p-Akt (p=0.0008 and p=0.000003 for 2 

separate antibodies) and pro-survival phosphorylation signaling in mammalian target of 

rapamycin (mTor) (p=0.000008) and Retinoblastoma (Rb) (p=0.003).  Further, we observed 

decreased phosphorylation in p53 at S15 (p=0.0004) and pro-apoptotic Bad (p=0.001and 0.0002 

for 2 separate antibodies at S112 and S136, respectively).   

These results, when taken as a group, seem to suggest a generally pro-survival network of 

signaling events that prevent the host from activating apoptosis in response to infection.  In 

particular, malarial infection of hepatocytes causes cells to increase by 1000-fold in volume, 

which we would expect to greatly upregulate stress signaling through p53 phosphorylation on 

S15 (Astle et al., 2012).  The observation that p53 S15 phosphorylation is actually lower than 
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baseline during infection strongly suggests active intervention by the parasite.  The increases in 

activation in Akt and Bcl-2 coupled with the decrease in active Bad indicate a multifaceted, 

coordinated survival response.  The increase in mTor signaling suggests protection against 

autophagy, which has been reported as a host mechanism to break down parasites in at least one 

other context (Luckhart et al., 2013).  Activation of Rb suggests proliferative signaling which 

may stimulate synthesis of nucleotides and raw materials needed for parasite proliferation.   

Given the results of our preliminary screen, we then sought to confirm the hits with 

secondary validation using immunoblotting.  We first examined the Akt results, noting that both 

antibodies had been among the most robust in HepG2 and other cell lines (Luckert et al., 2012).  

Encouragingly, all Akt/mTor pathway antibodies showed significantly positive results (Figure 

2.3C).  We created sufficient lysate to perform immunoblotting and test these and other 

statistically significant hits.  First, we addressed biological reproducibility and scalability of 

small magntiudes of upregulation (Figure 2.3A-B).  We found that of the antibodies that detect 

total p53 used on lysate microarray, one (CST 9282) was reproducibly downregulated on 

immunoblots, therefore we conclude that p53 total protein is downregulated in response to 

infection.  We also found that both Bad pS112 antibodies used in the screen produced 

reproducible signal on immunoblots, and that Bad phosphorylation was downregulated in 

response to infection.   

We were particularly interested in the downregulation of p53, so we investigated it in more 

detail.  We wanted to estimate the level to which p53 levels were lower after infection, but 

because the p53 levels in uninfected cells were close to the minimum detection limit in 

immunoblots, we were unable to directly interpolate with a dilution curve.  Instead, we generated   
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Figure 2.3 (Next Page).  Biological Reproducibility of Lysate 

Microarray Data, and Selected Subsets Broken Down by Signaling 

Pathway.  (A and B) Data obtained from 2 biological replicates of 

infected and uninfected cells on protein lysate microarrays.  Signal 

from antibodies that recognize total p53 (A) or Bad pS112 (B) are 

shown.  (C) Graph representing the ratio of infected (GFP-positive) 

cells to uninfected (GFP-negative) cells for signals obtained, 

plotted against the log of the p-value obtained. Each point 

represents a single antibody of the Akt/mTor pathway.  Only 

antibodies which demonstrate significant differences in signal 

between infected and uninfected cells are represented.  (D) Graph 

representing the ratio of infected (GFP-positive) cells to uninfected 

(GFP-negative) cells for signals obtained, plotted against the log of 

the p-value obtained.  Each point represents a single antibody 

against total or phosphorylated p53.  Only antibodies which 

demonstrate significant differences in signal between infected and 

uninfected cells are represented.  (E) Graph representing the ratio 

of infected (GFP-positive) cells to uninfected (GFP-negative) cells 

for signals obtained, plotted against the log of the p-value obtained.  

Each point represents a single antibody of the Bcl-2 family.  Only 

antibodies which demonstrate significant differences in signal 

between infected and uninfected cells are represented.  Reproduced 

from Kaushansky et al. (2013) with permission. 
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Figure 2.3 (Continued). 

  



72 

 

cellular lysates with varying p53 levels using multiple doses of Mdm2 inhibitor nutlin-3.  We 

found that the signals obtained by lysate microarray and immunoblots were tightly linearly 

correlated, and using this relationship we estimate that a lysate overexpression ratio of 0.82 

corresponds to a 68% decrease in p53 protein level (Figure 2.4B).  It is also noteworthy that total 

levels of Mdm2, p53’s cognate ubiquitin ligase, was observed to be significantly upregulated 

(p=0.005) in response to infection, suggesting a mechanism by which Plasmodium might 

regulate p53 levels.   

We also investigated the apoptotic pathway because 2 of the 5 significantly downregulated 

signals were pro-apoptotic phosphorylated Bad, while the second highest significantly 

upregulated signal was its antagonist Bcl-2.  Visual inspection of the Bcl-2 family subset of 

lysate microarray data indicated a strongly antiapoptotic signature (Figure 2.3E).  Two of the 

three antibodies monitoring Bad phosphorylation (on S112 and S136 respectively) showed 

statistically significant differences after infection after Holm-Benferroni multiple hypothesis 

testing, while the other showed an increase in p-Bad (S112).  To disentangle this discrepancy, 

and because p53 has been shown to regulate transcription of both Bcl-2 and Bad, we measured 

Bad and Bcl-2 transcript levels.  Quantitative PCR revealed that Bad transcript levels were 

strongly downregulated after infection (p=0.0011) (Figure 2.4C), while Bcl-2 levels were 

strongly upregulated (p=0.05) (Figure 2.5D).  We conclude from these data that Plasmodium 

infection causes downregulation of apoptosis in the host both by regulating transcription and 

post-translational modification.   
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Figure 2.4.  Key Host Signaling Pathways in Plasmodium Infected 

Hepatocytes and Linearity of Lysate Microarray Data.  (A) 

Schematic showing the connectivity between host proteins 

significantly perturbed in liver-stage infected cells.  Proteins for 

which total level or posttranslational modifications are increased in 

infected cells are shown in green, decreased levels in red.  Select 

antibodies tested demonstrating a linear relationship between 

immunoblotting (western blotting [WB]) and lysate array (LA) are 

colored orange. Proteins for which transcripts where tested and 

changed are colored yellow.  (B) Demonstration that total p53 

antibody (#9282) produces a linear relationship for data obtained 

using western blotting and lysate array.  Data were fit using a 

linear regression.  (C) Quantitative PCR showing that transcript 

levels of Bad are decreased in infected hepatocytes.  (D) Transcript 

levels of Bcl-2 are elevated in infected hepatocytes. Error bars 

represent SD of 3 biological replicates.  Reproduced from 

Kaushansky et al. (2013) with permission.  
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Figure 2.5 (Next Page).  Transgenic Mice and Pharmacological 

Perturbation Confirm a Critical Role for Host p53 in Liver-Stage 

Infection.  (A) Mice with an additional copy of p53 (super-p53 

mice) (n = 13), without p53 (p53 KO mice) (n = 7), or wild-type 

C57BL/6 mice (n = 20) were infected with 100,000 P. yoelii 

sporozoites.  Liver-stage burden was monitored 42–44 hr after 

infection using quantitative reverse-transcription PCR.  Parasite 

burden was significantly reduced in super-p53 mice (p = 0.004) 

and significantly elevated in p53 KO mice (p = 0.04).  (B–D) p53 

levels increase in response to 48 hr Nutlin-3 treatment, as 

demonstrated by western blot using an anti-p53 antibody (B).  

Nutlin-3 treatment (20 μM) 24 hr before and during infection (pre 

and post) dramatically reduces liver-stage burden of P. yoelii (C, 

middle) and P. berghei (D, middle).  When treatment is applied 

beginning at time of infection and continuing until 24 hr after 

infection (post), liver-stage burden is also reduced, albeit less 

substantially for both P. yoelii (C, right) and P. berghei parasites 

(D, right).  All liver stages were quantified 24 hr post infection in 

HepG2 cells. Error bars represent SD between 3 biological 

replicates.  (E) To monitor the effects of Nutlin-3 on P. yoelii (Py) 

sporozoite infection of HepG2 cells, cells were trypsinized 90 min 

post infection, fixed, stained with an antibody to CSP, and 

subjected to flow cytometric analysis.  Wells that were not infected 

with sporozoites were used as a control.  Error bars represent SD 

of 3 biological replicates.  (F and G) Nutlin-3 treatment 

dramatically reduces liver-stage burden in mice. A total of 50 

mg/kg Nutlin-3 was administered once daily for 2 days to 

BALB/cJ mice.  At the time of the last administration of Nutlin-3, 

mice were infected with 50,000 P. yoelii sporozoites. Livers were 

removed at 24 hr (F) or 44 hr (G) post infection, and parasite 18S 

ribosomal RNA was assessed by quantitative real-time PCR. 

Signal was normalized to mouse GAPDH. For in vivo 

experiments, the mean is represented by a horizontal line, and the 

level of Py18S/GAPDH is shown for each individual mouse. 

Reproduced from Kaushansky et al. (2013) with permission. 
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Figure 2.5 (Continued). 
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2.2.3. Investigation of Plasmodium modulation of p53 in mouse liver 

Having established that Plasmodium infection in cell culture affects p53 and apoptotic 

signaling, we then investigated their effects in a host liver.  To do this, we used two strains of 

transgenic mice: a “super-p53 mice” that carries an additional genomic copy of p53 under its 

endogenous promoter (García-Cao et al., 2002), and mice that lack p53 entirely (“p53 KO mice”) 

(Jacks et al., 1994).  Super-53 mice overexpress p53 at approximately 2-fold above C57BL/6 

controls.  We injected mice from all three strains and compared their susceptibilities to liver-

stage infection (Figure 2.5A).  We found that p53 status was a strong determinant of liver-stage 

burden: the KO mice carried a significantly higher parasite burden than wt mice, which in turn 

carried a significantly higher parasite burden than super-p53 mice.  This is consistent with our 

lysate microarray findings that liver-stage modulation of p53 may be required for the parasite life 

cycle.   

Having established that a transgenic increase in background p53 expression is correlated 

with decreased susceptibility to malaria parasite, we next asked if pharmacological intervention 

could increase host defenses by increasing p53 levels.  Nutlin-3 is a drug under clinical 

development for multiple cancer indications that increases intracellular p53 levels by inhibiting 

the p53-Mdm2 interaction (Brown et al., 2009; Wang et al., 2011).  Inhibition of the p53-Mdm2 

interaction prevents p53 ubiquitinylation and degradation, increasing its intracellular levels.  

Nutlin-3 thus acts on cancer cells by increasing p53 levels and causing growth arrest and 

apoptosis, and is highly selective for tumor cells in vivo (Vassilev et al., 2004).  Treating HepG2 

cells with 20 μM Nutlin-3 for 24 hours efficiently increased background levels of p53 (Figure 

2.5B).  Compared with untreated controls, HepG2 cells that were concomitantly treated with 20 

μM Nutlin-3 for 24 hours at time of infection had greatly reduced parasite burden at 24 hours 
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post infection.  This resistance was further enhanced if the cells were pre-treated with 20 μM 

Nutlin-3 for 24 hours in addition to cotreatment during the infection.  This resistance phenotype 

was observed after infection with both P. yoelli and P. berghei (Figure 2.5C-D).  We also 

wondered if increased intracellular levels of p53 increased resistance to infection, or if those 

cells that were infected were able to commit apoptosis.  By observing Nutlin-3 pretreated cells at 

an early time point after infection (90 min), we found that significantly fewer host cells were 

infected (p=0.03) (Figure 2.5E).  In order to extend our findings in cell cultures to whole 

organisms, we pretreated BALB/cJ mice once daily for 2 days with 50mg/kg Nutlin-3, then 

infected each mouse with 5 × 104 P. yoelli.  The mice were sacrificed at 24 or 44 hours, and at 

both time points the liver-stage burden was significantly lower in the Nutlin-3 treated group.   

The data presented in this section, taken together, show that increased intracellular p53 

levels render host cells more resistant to Plasmodium infection, and that treatment of both cells 

and mice with Nutlin-3 can greatly reduce parasite burden post-infection.    
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2.3.Conclusions 

In the Western world, infectious diseases of poor sanitation or of the tropics are sometimes 

ignored because they are not endemic in wealthy countries.  Malaria is one such disease that 

currently critically endangers millions in tropical regions, but if global climate change continues 

at present rates, may eventually become endemic in the United States (Rogers and Randolph, 

2000).  Given the current threat of malarial drug resistance forcing a return to a pre-antimicrobial 

era, we must redouble our efforts to find novel treatments for malaria.   

We performed a reverse screen for host proteins that were altered in liver-stage malarial 

infection.  Our screen focused on known apoptotic and related cancer pathways, and we were 

able to identify several pathways that appeared to be significantly modulated by Plasmodium 

infection.  Notably, Bcl-2/Bad signaling was modified in such a way as to inhibit apoptosis, 

Akt/mTor were activated to increase survival signaling and prevent autophagy, and p53 levels 

were decreased to prevent apoptotic and stress signaling.  We selected the p53 pathway for 

deeper inspection, but we suspect potentially fruitful avenues of attack exist in the apoptosis and 

Akt pathways, as both have previously been implicated in liver-stage infection (Leirião et al., 

2005; van de Sand et al., 2005).  This outside confirmation of our findings gives us confidence in 

our results and also suggests that our approach could be broadened to other pathways in a more 

global search for other changes that the parasite makes in host signaling.   

The p53 pathway has been extensively studied in the context of cancer signaling, but very 

little is known about its role in malarial infection.  We demonstrate that p53 is specifically 

targeted by the parasite for downregulation, and that this repression is critical for optimal 

parasite proliferation.  By using a transgenic mouse overexpressing p53 or pharmacologically 

stimulating p53 buildup using Nutlin-3, we were able to show that counteracting this repression 
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significantly and dramatically increases the host’s defenses against infection and parasite 

proliferation.  It is unknown at this time if there is any connection to p53’s role in the cell cycle 

or if this is strictly due to p53’s roles in stress response and apoptosis.  We did not address which 

functions of p53 are required for malarial repression, for example, if transcriptional activity is 

required.  However, because infection and parasite proliferation are temporally separate steps in 

the parasite liver stage, we speculate that p53 likely interferes with the parasite life cycle at 

multiple stages.   

Our work is unique because it identifies a host signaling molecule that, in cell culture and in 

mice, can be drugged to great effect in reducing liver-stage parasite burden.  Not only do we 

expect this treatment to have a palliative effect on the patient’s health, this approach has great 

potential as a prophylactic treatment, an especially exciting prospect considering the recent 

disappointing results in vaccine trials (Olotu et al., 2013).  Given that genetically attenuated 

parasites that do not proceed past liver-stage have been shown to provoke long-term immunity 

(Doolan and Hoffman, 2000; Krzych et al., 2012), we feel if Nutlin-3 may represent a bona fide 

vaccine in regions of the world where malaria is endemic.  That possibility alone should be 

reason for excitement in the search for host-targeted malaria drugs.   

Finally, to our knowledge, this work represents the first published application of lysate 

microarray technology to infectious disease.  Liver-stage malaria is a particularly difficult 

problem because of its low infectivity rate coupled with the need to freshly prepare parasite from 

mosquito salivary glands.  By exploiting a FACS-based technique combined with a GFP-tagged 

parasite, we were able to separate the infected population from the much more numerous 

uninfected background, and were thus able to obtain enough biological sample to perform lysate 
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microarrays.  We hope that our example will inspire future use of the technology to explore other 

infectious diseases that are also critically in need of host-targeted antibiotic discovery.    
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2.4. Tables 

Table 2.2 – Full list of antibodies used in preliminary screen  

for use in Plasmodium lysates 
Protein of Interest Product # Species Company 

HSP70 sc-4872 M Santa Cruz 

U154 

 

R Custom 

CSP Py 

 

M Custom 

MET sc-10 R Santa Cruz 

p-MET (Y1349) 3133 R Cell Signaling 

p-Akt1/2/3 (S473) 9271 R Cell Signaling 

p-Akt1/2/3 (S473) 4058P R Cell Signaling 

p-mTOR (S2448) 2971 R Cell Signaling 

p-mTOR (S2481) 2974 R Cell Signaling 

p-p90RSK (S380) 9341S R Cell Signaling 

p-NF-κB p65 (S536) 3033 R Cell Signaling 

p-NF-κB p105 (S933) 4806 R Cell Signaling 

p53 2524 M Cell Signaling 

p53 2527 R Cell Signaling 

p53 9282 R Cell Signaling 

p-p53 (pS6) 9285 R Cell Signaling 

p-p53 (pS9) 9288 R Cell Signaling 

p-p53 (S15) 9284 R Cell Signaling 

p-p53 (S15) 9286 M Cell Signaling 

p-p53 (pS20) 9287 R Cell Signaling 

p-p53 (pS37) 9289 R Cell Signaling 

p-p53 (S46) 2521 R Cell Signaling 

p-p53 (T81) 2676 R Cell Signaling 

p-p53 (S392) 9281 R Cell Signaling 

p-MDM2 (S166) 3521 R Cell Signaling 

p-cdc2 (Y15) 9111 R Cell Signaling 

 

Table 2.2. List of antibodies used in pilot experiment to test 

validity of lysate microarray approach to measure signaling 

differences that result from Plasmodium infection.  All antibodies 

except for those in red were previously validated for use in HepG2 

cells.  Antibodies in red were not previously validated antibodies 

targeted against parasite proteins, generously provided by the 

Kappe lab.  (Continued on next page.)  
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Table 2.2 – Full list of antibodies used in preliminary screen  

for use in Plasmodium lysates (Continued) 

Protein of Interest Product # Species Company 

p-cdc2 (Y15) 4539 R Cell Signaling 

p-Rb (S795) 9301 R Cell Signaling 

p-Rb (S807/S811) 9308 R Cell Signaling 

Cleaved Caspase 3 (D175) 9661 R Cell Signaling 

Cleaved Caspase 3 (D175) 9664 R Cell Signaling 

Cleaved PARP (Asp214) 9541 R Cell Signaling 

p-BCL-2 (T56) 2875 R Cell Signaling 

p-BCL-2 (S70) 2827 R Cell Signaling 

p-BAD (S112) 5284 R Cell Signaling 

CSP pb 
 

M Custom 

p-BAD (S112) 06-853 R Upstate 

p-BAD (S136) 5286 R Cell Signaling 

p-c-Cbl (Y774) 3555 R Cell Signaling 

p-BAD (S136) 06-846 R Upstate 

FLIP 3210 R Cell Signaling 

Fas 4233 R Cell Signaling 

FADD 2782 R Cell Signaling 

p-glycogen synthase (S641) 3891 R Cell Signaling 

p-c-Cbl (Y731) 3554 R Cell Signaling 

Beclin-1 3495 R Cell Signaling 

LC3A 4599 R Cell Signaling 

LC3B 3868 R Cell Signaling 

Atg5 8540 R Cell Signaling 

Atg12 4180 R Cell Signaling 

Atg7 2631 R Cell Signaling 

Atg3 3415 R Cell Signaling 

 

Table 2.2. (Continued) List of antibodies used in pilot experiment 

to test validity of lysate microarray approach to measure signaling 

differences that result from Plasmodium infection.  All antibodies 

except for those in red were previously validated for use in HepG2 

cells.  Antibodies in red were not previously validated antibodies 

targeted against parasite proteins, generously provided by the 

Kappe lab.  
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Table 2.3 – Full list of results from Lysate microarray Profiling of  

Host Signaling during Plasmodium infection 

Protein of Interest product # Upregulation Std T-Test H-B value H-B pass? 

Significantly Upregulated, passes Holm Benferroni 

p-Rb (S807/S811) 9308 1.39 0.15 2.21E-03 2.38E-03 yes 

p-BCL-2 (S70) 2827 1.26 0.05 1.01E-03 1.79E-03 yes 

p-Akt1/2/3 (S473) 9271 1.24 0.06 8.85E-04 1.72E-03 yes 

p-mTOR (S2448) 2971 1.21 0.03 7.45E-06 1.14E-03 yes 

p-Akt1/2/3 (S473) 4058P 1.20 0.03 3.43E-06 1.11E-03 yes 

p-p53 (pS37) 9289 1.19 0.04 8.01E-05 1.28E-03 yes 

p-BCL-2 (T56) 2875 1.19 0.03 3.55E-04 1.47E-03 yes 

Atg7 2631 1.17 0.02 2.13E-05 1.16E-03 yes 

p-p53 (pS9) 9288 1.16 0.05 1.27E-03 2.00E-03 yes 

p-mTOR (S2481) 2974 1.16 0.06 1.75E-03 2.27E-03 yes 

p-cdc2 (Y15) 9111 1.16 0.03 3.36E-05 1.22E-03 yes 

p-p53 (S392) 9281 1.15 0.03 6.42E-04 1.67E-03 yes 

Atg3 3415 1.15 0.03 2.91E-04 1.39E-03 yes 

p-c-Cbl (Y774) 3555 1.15 0.03 4.12E-04 1.52E-03 yes 

Cleaved Caspase 3 (D175) 9661 1.14 0.03 2.60E-05 1.19E-03 yes 

p-BAD (S112) 5284 1.14 0.03 7.64E-05 1.25E-03 yes 

p-cdc2 (Y15) 4539 1.13 0.04 5.36E-04 1.61E-03 yes 

p53 2527 1.11 0.01 6.32E-07 1.09E-03 yes 

FADD 2782 1.09 0.02 1.53E-03 2.17E-03 yes 

p-NF-κB p65 (S536) 3033P 1.08 0.02 5.14E-04 1.56E-03 yes 

p-GYS2 (S641) 3891 1.07 0.02 1.49E-03 2.08E-03 yes 

 

Table 2.3. Protein microarrays were printed using whole cell 

extracts from FACS sorted infected and uninfected HepG2 cells, 

and probed using antibodies targeted to signaling molecules in the 

host cell.  Quantified fluorescent signal was calculated as a ratio of 

the signals from infected to uninfected cells, normalized for actin 

for spotting variation.  Significance was calculated by t-test and the 

Holm-Benferroni method for multiple hypothesis testing using the 

overexpression ratio and propagated error.  Data shown is 

representative of three independent experiments.    
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Table 2.3 – Full list of results from Lysate microarray Profiling of  

Host Signaling during Plasmodium infection (Continued) 
Protein of Interest product # Upregulation Std T-Test H-B value H-B pass? 

Significantly Downregulated, passes Holm Benferroni 

p-BAD (S112) 06-853 0.91 0.03 1.25E-03 1.92E-03 yes 

p53 9282 0.82 0.04 1.04E-03 1.85E-03 yes 

p53 2524 0.74 0.05 2.72E-04 1.35E-03 yes 

p-p53 (S15) 9286 0.73 0.09 3.51E-04 1.43E-03 yes 

p-BAD (S136) 06-846 0.73 0.04 2.28E-04 1.32E-03 yes 

Non-statistically significant data and/or data does not pass Holm Benferroni 

p-p53 (S15) 9284 1.33 0.40 1.06E-01 5.00E-03 no 

Atg12 4180 1.15 0.04 4.33E-03 2.94E-03 no 

p-p90RSK (S380) 9341S 1.14 0.07 1.45E-02 3.85E-03 no 

Fas 4233 1.12 0.06 6.27E-03 3.33E-03 no 

Cleaved Caspase 3 (D175) 9664 1.11 0.03 4.20E-03 2.78E-03 no 

p-p53 (T81) 2676 1.10 0.03 2.90E-03 2.50E-03 no 

p-p53 (S46) 2521 1.08 0.03 4.03E-03 2.63E-03 no 

Beclin-1 3495 1.08 0.05 3.28E-02 4.17E-03 no 

p-c-Cbl (Y731) 3554 1.07 0.05 5.66E-02 4.55E-03 no 

Atg5 8540 1.07 0.08 1.70E-01 7.14E-03 no 

p-NF-κB p105 (S933) 4806P 1.06 0.06 1.50E-01 6.25E-03 no 

Cleaved PARP (Asp214) 9541 1.06 0.02 9.39E-03 3.57E-03 no 

p-MDM2 (S166) 3521 1.05 0.02 5.00E-03 3.13E-03 no 

p-p53 (pS6) 9285 1.05 0.05 1.22E-01 5.56E-03 no 

FLIP 3210 1.05 0.06 2.03E-01 8.33E-03 no 

p-Rb (S795) 9301 1.04 0.17 6.60E-01 1.67E-02 no 

p-p53 (pS20) 9287 1.03 0.23 7.90E-01 2.50E-02 no 

LC3B 3868 1.02 0.08 6.59E-01 1.25E-02 no 

LC3A 4599 1.01 0.03 2.89E-01 1.00E-02 no 

p-BAD (S136) 5286 1.00 0.03 8.87E-01 5.00E-02 no 

 

Table 2.3. (Continued) Protein microarrays were printed using 

whole cell extracts from FACS sorted infected and uninfected 

HepG2 cells, and probed using antibodies targeted to signaling 

molecules in the host cell.  Quantified fluorescent signal was 

calculated as a ratio of the signals from infected to uninfected cells, 

normalized for actin for spotting variation.  Significance was 

calculated by t-test and the Holm-Benferroni method for multiple 

hypothesis testing using the overexpression ratio and propagated 

error.  Data shown is representative of three independent 

experiments.    
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2.5. Experimental Methods 

Antibody Reagents 

Pan and phospho-specific antibodies for signaling proteins were purchased from Abcam 

(Cambridge, MA), BD Biosciences (San Jose, CA), Cell Signaling Technology (Beverly, MA), 

Santa Cruz Biotechnology (Santa Cruz, CA), and Upstate (Charlotteville, VA).  Mouse 

monoclonal anti-β-actin antibody (clone AC-15) was purchased from Sigma-Aldrich (Saint 

Louis, MO), rabbit monoclonal anti-β-actin antibody was catalog # 4970 (Cell Signaling 

Technology (Beverly, MA)).  Secondary detection antibodies were purchased from Li-Cor 

Biosciences (Lincoln, NE).   

 

Cell Culture 

HepG2 cells used in this study were a generous gift from INSERM-TRANSFERT and 

maintained in DMEM media (See Appendix A) and split 1-2 times weekly.  Where indicated, 

Nutlin-3 was used at 20 μM in DMSO. 

 

Mosquito Rearing and Sporozoite Production 

For P. berghei and P. yoelli sporozoite production, female Swiss- Swiss Webster (SW) mice 

(Harlan (Indianapolis, IN)) were injected with blood stage P. yoelii (17XNL) or P. berghei 

(ANKA) parasites to begin the growth cycle.  Animal handling was conducted according to 

Institutional Animal Care and Use Committee-approved protocols.  We used infected mice to 

feed female A. stephensi mosquitoes after gametocyte exflagellation was observed.  For all P. 

yoelii experiments we isolated salivary gland sporozoites according to standard procedures at 

days 14 or 15 post blood meal.  We isolated P. berghei sporozoites 20 days post-infection.  For 
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each experiment, salivary glands were isolated in parallel in order to ensure sporozoites were 

extracted from salivary glands under the same conditions. 

 

Isolation of PyGFP-Infected HepG2 Cells 

Cells were grown as described above.  5 × 106 cells were infected with 2 × 106 P. yoelli 

transgenic GFP-expressing parasites (Tarun et al., 2006).  Cells were detached with 0.25% 

Trypsin-EDTA and resuspended in DMEM complete media with 5 mM EDTA.  Cells were 

passed through a cell strainer to prepare for FACS.  Flow cytometric analysis and cell sorting of 

PyGFP-infected hepatocytes were carried out using a Cytopeia Influx Cell Sorter using the 

Spigot Operating Software Version 5.0.3.1 (Cytopeia).   

 

Microarray Fabrication 

Cells were lysed in 2% SDS lysis buffer (see Appendix A) and stored at -80°C and were not 

filtered, unlike previous experiments.  Custom arrays were printed in-house using an Aushon 

2470 arrayer (Aushon Biosystems (Billerica, MA)) on 16-pad nitrocellulose-coated glass slides 

(Grace Biolabs (Bend, OR)).  Lysates were printed at 333 μm spacing using steel solid 110 μm 

pins, with an average feature diameter of 170 μm.   

For the initial screen, lysates were printed in technical duplicates, and for the later 

experiment, lysates were printed in quadruplicate technical replicates.  Slides were stored in a 

dry, dark, room temperature environment until probing.  Probing was according to previous 

protocol (Sevecka et al., 2011). 

 

Analysis of Microarray Data 
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Signal intensities from target proteins were normalized using the β-actin signal intensities 

from the same spot to normalize for spotting variation.  Data from quadruplicate spots were 

averaged, and the ratio of signal from GFP-positive samples to GFP-negative samples computed 

for each target protein.  For each antibody specific to a hepatocyte protein measured, we 

calculated a value according to Equation 2.1. 

 

Equation 2.1.  Calculation for upregulation of signaling after 

malaria infection.  “Signal” refers to fluorescence measured from 

experimental antibody, “β-actin” refers to fluorescence measured 

from β-actin antibody, “i” refers to infected samples, “u” refers to 

uninfected samples.  Statistical significance was calculated using a 

2-tailed t-test with the standard error against a ratio of 1 

(unchanged after infection).   

 

Quantification of Liver Stages by FACS 

Cells were cultured as described above. A total of 2 × 105 HepG2 cells were plated in each 

well of a 24-well plate and infected with 5 × 104 P. yoelii sporozoites.  Cells were treated with or 

without Nutlin-3 as described above.  At the desired time point, cells were harvested and stained 

as described previously by (Luckert et al., 2012).  All experimental conditions were tested in 

biological triplicate.  All data are representative of three independent experiments.   

 

In Vivo Nutlin-3 Experiments 

A total of 26 BALB/cJ mice (Jackson Lab (Bar Harbor, ME)) were treated with either 

vehicle control or 50 mg/kg of Nutlin-3 once daily for 2 days. On the second day of treatment, 

mice were injected with 5 × 104 P. yoelii sporozoites. Livers were excised from mice at either 24 
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or 44 hr after infection. Animal handling was conducted according to Institutional Animal Care 

and Use Committee-approved protocols.   

 

Super p53 and p53 KO Experiments 

A total of 20 male C57BL/6 (Jackson), 13 C57BL/6-super-p53, and 7 C57BL/6-p53-KO 

(Jackson Lab (Bar Harbor, ME)) mice were injected with 105 P. yoelii-GFP-luciferase 

sporozoites. At 42–44 hr post-infection, livers were excised from mice and lysed with TRIzol 

reagent (Invitrogen (Carlsbad, CA)). Animal handling was conducted according to Institutional 

Animal Care and Use Committee-approved protocols. 

 

Quantification of Liver Burden by Real-Time qRT-PCR 

Total RNA was extracted using TRIzol reagent (Invitrogen (Carlsbad, CA)). cDNA 

synthesis and qRT-PCR was performed using the Super Script III Platinum two-step qRT-PCR 

kit according to the manufacturer’s instructions.  All PCR amplification cycles were performed 

at 95°C for 30 s for DNA denaturation, and 60°C for 4 min for primer annealing and DNA 

strands extension.  Parasite ribosomal 18S RNA was amplified using primers with sequences: 

5’GGGGATTGGTTTTGACGTTTTTGCG3’ and 

5’AAGCATTAAATAAAGCGAATACATCCTTAT3’.  Mouse GAPDH was amplified using 

sequences 5’CCTCAACTACATGGTTTACAT3’ and 5’GCTCCTGGAAGATGGTGATG3’. 
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Part 3 

Application of Lysate Microarray Technology 

For High-Throughput Profiling Of Apoptotic Signaling Networks 
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3.1. Introduction 

Cancer has probably been the most highly studied biological phenomenon in the last 30 years.  

Much has been learned from studying the myriad biological pathways that promote tumor growth, 

lending insight into normal as well as diseased metabolism, signaling, and genetics.  However, 

despite the hundreds of billions of dollars and millions of hours spent on research, there are 

relatively few truly successful treatment options.  Our ever-desperate search for the cure for cancer 

has not been without bright spots, however: we do have a regimen of standard treatments for cancer 

that includes a large number of chemotherapeutic drugs. 

Chemotherapy drugs come in many types, but one of the major classes of chemotherapeutic 

drugs, like radiation treatment, functions by causing DNA damage indiscriminately in both cancer 

and normal cells (Lichter and Lawrence, 1995).  Much of the machinery involved in the DNA 

Damage Response (DDR) pathway has become more clearly defined in the last 20 years, and we 

now know it is intimately tied to cell cycle, damage repair, and cell death (Harper and Elledge, 

2007).  Indeed, the DDR represents a primary nexus of pro-survival and pro-death signaling that 

controls cellular fate in large part.  Complicating matters, however, are cross-talk interactions with 

other signaling networks, especially aberrant pro-survival and anti-death signaling in cancer cells.   

Even simple networks can lead to highly nonlinear and complex behavior, and our ability to 

predict network behavior vastly decreases with increasing network complexity.  In the case of the 

DDR, the complexity of the known network is already well beyond our ability to reliably predict 

cell fate behavior.  Our efforts here attempt to understand how in part how multiple input signals 

are interpreted by the cell, and especially to understand how networks can be “rewired” after drug 

inhibition (Sachs et al., 2005).  We also seek to understand the interplay between growth factor 

signaling and genotoxic chemotherapy. 
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Breast cancer is the most common cancer worldwide, accounting for 22.9% (excluding non-

melanoma skin cancers) of cancers in women in 2008 (IARC, 2008).  Many breast cancers have 

aberrant hormonal and/or growth factor signaling as key drivers of tumor growth, and these 

pathways often present resistance to treatment (Hanahan and Weinberg, 2000, 2011).  Sub-

classification of breast cancers by their specific molecular drivers has allowed stratification of 

targeted therapy and improved patient outcomes dramatically (Schechter et al., 1984; Slamon et 

al., 1987).  Despite these advances, there remains a “garbage pail” classification of so-called triple-

negative breast cancers (TNBC), which are those breast cancers that do not express estrogen 

receptor (ER) or progesterone receptor (PR), nor have an amplification in Her2 oncogene (Perou 

et al., 2000).  Patients with TNBCs tend to respond initially to genotoxic chemotherapy, but also 

have a worse prognosis and shorter relapse-free survival than patients with other types of breast 

cancer (Dent et al., 2007).  TNBC patients do tend to do well if chemotherapy is successful, but 

when complete pathologic response is not achieved, prognosis tends to be poor (Abeloff et al., 

2008).  Hence, there is little room for error in TNBC, and strategies should be developed to enhance 

the likelihood of success of the initial round of genotoxic chemotherapy. 

We were therefore motivated to explore possible drug combinations that might sensitize 

otherwise recalcitrant TNBC cells to respond more strongly to a dose of chemotherapy.  We utilize 

a systems biology approach of deep pathway analysis utilizing lysate microarrays among other 

techniques to observe signaling events downstream of drug treatment.  Furthermore, we report a 

critical timing where Epidermal Growth Factor Receptor (EGFR) inhibitors can act as a sensitizer 

for apoptosis when given in advance of traditional DNA damaging chemotherapy in a subclass of 

TNBC.  We investigate the intracellular signaling that results from inhibition and find that during 

pretreatment, TNBC cells actively rewire intracellular networks, relieving inhibition on normally 
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suppressed apoptotic pathways.  We believe this discovery has clinical implications and hint at 

generalizable principles of network behavior. 

This work was reproduced with modifications and additions from Lee et al. (2012).   
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3.2. Results and Discussion 

3.2.1. Preliminary Screen for Evidence of Drug Synergy 

Signaling pathways are dynamic and can be functionally rewired by exposure to drugs and 

ligands (Janes et al., 2005; Janes et al., 2008).  Furthermore, rewiring is a time-dependent process 

and cells may take some time to transition between stable states.  Therefore, if a TNBC cell is 

initially recalcitrant to chemotherapy in the absence of treatment, we reasoned that by altering 

basal signaling by applying an inhibitor, it may be possible to find either a steady state or transition 

state where the TNBC becomes sensitized to chemotherapy.  To this end, we assembled a panel of 

clinically important genotoxic chemotherapy agents and inhibitors against important oncogenic 

signaling pathways, and three representative TNBC cell lines, then systematically explored timing 

combinations to assess for synergy.  The drugs selected are clinically useful in other cancers, but 

have been tried unsuccessfully in TNBC, individually or in combination therapy (Bosch et al., 

2010; Winer and Mayer, 2007).  For example, EGFR inhibitors in combination with cisplatin had 

nearly no effect in cell culture (Corkery et al., 2009), while cetuximab addition to patients 

undergoing carboplatin did not improve outcome (Carey et al., 2012).  Despite these failures in 

and out of the clinic, combinations of drug, dose, and especially timing have not been exhaustively 

tried.  Given the recent advances in understanding network rewiring, we expect that a search for 

combination therapies should exhaustively explore the possible combinations of all variables for 

synergies.  In this spirit, we performed the systematic screen of stimulus combinations shown in 

Figure 3.1A.   

We selected three cell lines initially as representative of the main classes of breast cancer: 

hormone sensitive (MCF7), Her2 overexpressing (MDA-MB-453), and triple-negative (BT-20) 

(Neve et al., 2006).  Measuring apoptosis as a readout, we identified a previously unknown  
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Figure 3.1.  A Screen for Novel Combination Treatment Reveals 

Dosing Schedule-Dependent Efficacy for Killing TNBC Cells.  (A) 

Schematic of combinations tested.  Seven genotoxic drugs and eight 

targeted signaling inhibitors were tested in pair-wise combinations, 

varying dose, order of presentation, dose duration, and dosing 

schedule.  (B) Apoptosis in BT-20 cells. Cleaved-caspase 3/cleaved-

PARP double-positive cells were quantified using flow cytometry 

(bottom).  In cells treated with DMSO, erlotinib (ERL), or 

doxorubicin (DOX), apoptosis measurements were performed 8 hr 

after drug exposure or at the indicated times.  D/E, ERL→DOX, and 
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(Figure 3.1 Continued.) DOX→ERL refer to DOX and ERL added 

at the same time, ERL given at the indicated times before DOX, and 

DOX given at the indicated times before ERL, respectively.  For 

each, apoptotic measurements were made 8 hr after the addition of 

DOX.  Erlotinib and doxorubicin were used at 10 μM. Mean values 

±SD of three independent experiments, each performed in duplicate, 

are shown (top).  (C–F) Apoptosis in different subtypes of breast 

cancer.  Apoptosis was measured as in (B). (D and E) D/E, E→D, 

and D→E refer to DOX and ERL added at the same time, ERL given 

24 hr before DOX, and DOX given 4 hr before ERL, respectively.  

Data are mean values ±SD of three independent experiments.  (G) 

Dose-response profiles of erlotinib/doxorubicin drug combinations.  

Apoptosis was measured as in (B).  Drugs were added at a 1:1 ratio, 

and combination index (CI) was calculated according to the Chou-

Talalay method.  (H) Knockdown of EGFR in BT-20 cells measured 

48 hr after addition of the indicated siRNA by immunoblotting 

(left). EGFR expression relative to ‘‘no RNA’’ control is quantified 

on right.  (I) Apoptosis in BT-20 cells ± EGFR knockdown 

measured as in (B).  Scrambled RNAi shown as control.  Data shown 

are the mean ±SD of both siRNAs, each performed in biological 

duplicate.  Reproduced with permission from Lee et al. (2012).   

 

combination of erlotinib and doxorubicin that is highly efficacious and specific for killing BT-20 

TNBC cells (Figure 3.1B-E).  Erlotinib alone, doxorubicin alone, nor erlotinib/doxorubicin 

cotreatment could initiate apoptosis in TNBC cells, in agreement with the published literature.  

However, closer inspection revealed that when erlotinib was given at least 4 hours before 

doxorubicin, apoptosis was greatly enhanced, with a peak at up to 500% when given 24 hours 

before (Figure 3B).  The order was critical; when the order was reversed, with doxorubicin given 

before erlotinib, apoptosis levels were comparable to either drug given alone or cotreatment.  In 

order to quantify the level of synergy of the time staggered erlotinib-doxorubicin treatment versus 

cotreatment, we used the Chou-Talalay method to calculate a combination index across all cell 

types (Figure 3.1G) (Chou and Talalay, 1984).  Emphasizing the need for proper matching of 

cancer type and treatment regimen, we found that the erlotinib-doxorubicin timing was highly 

synergistic for killing BT-20 TNBC cells, highly antagonistic in Her2 overexpressing MB-453 
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cells, and additive in hormone-sensitive MCF7 cells.  All drug combinations tested had little effect 

on the control line Hs578Bst derived from peripheral breast tissue (Figure 3.1F).   

Kinase inhibitors tend to begin their effects within minutes, and erlotinib is no exception.  

Because the sensitization effect of the E-D timing effect manifests on the time scale of 4 hours, we 

were wary that it may be due to an off-target or nonspecific effect of erlotinib.  To test that the 

sensitization phenotype is indeed specific to EGFR, we used two small interfering RNAs (siRNAs) 

directed against EGFR to knock down EGFR (Figure 3.1H).  Not only did this treatment increase 

apoptosis following knockdown in the doxorubicin only treatment to similar levels to the time-

staggered treatment without knockdown, there was no further increase when erlotinib was also 

applied (Figure 3.1I).  This result, combined with the fact that other EGFR inhibitors (gefitinib, 

lapatinib) also display similar timing-sensitization effects with doxorubicin and camptothecin, 

gives us confidence that 1) the sensitization effect is a specific result of EGFR inhibition, not an-

off target effect of erlotinib, 2) the genotoxic effect being amplified is not specific to doxorubicin 

but may be generalizable, and 3) the sensitization effect is not due to transient acute EGFR 

inhibition, but rather is due to longer-term effects of chronic inhibition.   

 

3.2.2. Lysate Microarray Antibody Validation Screen for Breast Cancer Panel 

We wanted to understand the molecular events that stem from, and effect the differential 

survival/death phenotype we had observed.  Because we wanted to collect signaling information 

from as many nodes in as many signaling networks as possible, we performed a reverse screen of 

antibodies tested against lysates from all three cell lines.  We designed a set of control conditions, 

selected such that every node monitored by an antibody is activated in at least one condition.  In 

total, this was a list of 30 control lysates for each cell line.  Also included were serial 2-fold 

dilutions for 5 of these lysates for BT-20 only, for a total of 128 total samples, including all 
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controls.  A full list of these lysates is included in Table 3.1.  All samples were collected according 

to established protocol (Sevecka et al., 2011) with modifications to collect apoptotic cells (See 

Methods Section).  These samples were then printed in duplicate onto nitrocellulose-coated glass 

slides using an Aushon 2470 arrayer and probed with the collection of all available antibodies in 

the MacBeath and Yaffe labs.  In total, this collection numbered 483 antibodies, for a total of 

123,648 measurements.  Probing was carried out as previously described, with each array being 

exposed to a unique primary antibody and a standardization antibody (Sevecka et al., 2011).  Image 

quantification was performed using Array-Pro by MediaCybernetics and data analysis was 

performed in Matlab.   

Our selection criteria for passing the screen were stringent: significant signal (p<0.05) over 

background of at least 2-fold or 1/2-fold in at least 1 control lysate.  We considered each cell line 

uniquely, and a particular antibody could be counted as a hit for any or all of the cell lines.  Of the 

483 antibodies tested, 49 were found to have positive signal in at least one cell line.  These were 

then subjected to further standardization by immunoblotting.  Of the 49, 24 were verified by 

immunoblotting to produce a single band of the expected size in all three cell lines, with high 

linearity with the screening result (Table 3.2).  These antibodies were considered validated for use 

in lysate microarrays for the purposes of our next experiment. 

 

3.2.3. Gathering a Dataset for Network Analysis of Erlotinib-Doxorubicin Drug 

Interaction 

In order to understand the effects on signaling downstream of treatment with chronic erlotinib 

treatment, we created a collection of lysates spanning a long time course beginning at time of 

erlotinib treatment.  Because differences in signaling most likely explain the differences in cell   
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Figure 3.2.  Lysate microarrays were used to monitor intracellular 

signaling after erlotinib-doxorubicin treatment.  (A) Each 

microarray of 2348 spots was simultaneously probed with a single 

primary antibody and a normalization antibody against β-actin.  The 

microarray shown here was probed with an antibody against p-S6 

(S240/244).  Significant variation was observed in p-S6 upon 

erlotinib/doxorubicin treatment.  (B) Lysates were printed as 17 
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(Figure 3.2 Continued.) subarrays, each containing 12 unique 

combinations of cell line, drug treatment, and time point, with 

biological replicates on the X-axis and technical replicates on the Y-

axis.  Technical variation was extremely small (c.v. = 2.1%), while 

biological variation was larger (c.v. = 12%).   

 

fate observed between the cell lines, it was critical we included all three cell lines in our analysis.  

For each cell line, we created 6 lysates at each time point: erlotinib alone, doxorubicin alone, 

erlotinib/doxorubicin combination treatment, erlotinib 24 hour time-staggered before doxorubicin, 

doxorubicin 24 hour time-staggered before erlotinib, and a mock treated control.  We grew each 

cell line in 10 cm plates to 60% confluence, at which point treatment was administered.  In cases 

of time-staggered treatment, the time course began when the second drug was administered 24 

hours later.  Lysates were collected in biological triplicate at 12 time points ranging from 5 minutes 

to 24 hours post treatment, a total of 612 lysates.  All lysates were created and processed according 

to established protocol (Sevecka et al., 2011), with modification to collect apoptotic cells (see 

Methods Section).   

These lysates were printed in technical triplicate on nitrocellulose-coated slides along with 

dilution curves, control lysates, and control spots, totaling 2376 spots per microarray.  The slides 

were probed with the set of 24 pre-validated antibodies for a total of 57,024 unique measurements, 

and quantified using ArrayPro by MediaCybernetics.  Analysis was performed in Matlab.  A 

representative scan of an array is shown in Figure 3.2A, along with an explanation of the subarray 

printing strategy in Figure 3.2B.   

Visual inspection showed that every node measured by lysate microarray gave significant 

variation in at least some experimental conditions.  Spotting was consistent and technical variation 

was low: the average c.v. for between technical spots was 2.1%. Biological variation was by 

comparison much higher at 12%, though this is in line with our previous experience with biological 



102 

 

replicates.  All data were normalized as previously described using dilution curves as standards fit 

to sigmoidal curves (See Methods Section).   

Because our set of pre-validated antibodies was heavily biased towards measuring growth 

factor and stress signaling and relatively light on DNA damage and apoptotic pathways, we 

supplemented the lysate microarray signaling dataset with immunoblotting at key nodes such as 

p53.  We were motivated by gene expression microarrays to monitor additional genes (Bcl2-

interacting mediator of cell death (BIM), BH-3 interacting domain (BID), caspase-8, 4E-BP1, 

S6K, Stat3, DUSP6, and inhibitor of kappa B (IΚB).  This process was far more expensive, labor 

intensive, and time consuming, but did have the advantages of being relatively reliable and less 

stringent on antibody specificity.  In all, 35 signaling nodes were monitored by lysate microarray 

or immunoblotting.  A schematic of important signaling nodes in growth factor signaling, DNA 

damage signaling, and death signaling is presented in Figure 3.3, with those monitored by lysate 

microarray or immunoblotting highlighted in white.  In total, this dataset comprised over 45,000 

individual measurements.   

Concomitant with the collection of this signaling dataset, we also wanted to know what cell 

fate cells resulted from each condition.  To this end, we collected phenotypic data by several 

methods: luminescent proliferation assays, flow cytometry, and automated microscopy.  

Phenotypes monitored included cell-cycle arrest/proliferation, apoptotic and non-apoptotic cell 

death, and autophagy, measured in biological triplicate at 6 time points.  In total, over 2,000 

phenotypic data points were collected.  A summary of the data is presented in Figure 3.4.   
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Figure 3.3.  Detailed pathway diagram of the EGFR pathway, DNA 

Damage pathway, and associated stress signaling pathways.  

Proteins marked in white whose activity or total levels were 

monitored by either immunoblotting or lysate microarray.  

Reproduced with permission from Lee et al. (2012). 
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Figure 3.4. A Systems-Level Signal-Response Data Set Collected 

Using a Variety of High-Throughput Techniques (A–D)  (A) The 

complete signaling data set for three different breast cancer subtypes 

following combined EGFR inhibition and genotoxic chemotherapy 

treatments.  Each box represents an 8 or 12 point time course of 

biological triplicate experiments.  Time course plots are colored by 

response profile, with early sustained increases in signal colored 

green, late sustained increases colored red, and transient increases 

colored yellow.  Decreases in signal are colored blue.  Signals that 

are not significantly changed by treatment are shaded gray to black 

with darkness reflecting signal strength.  Numbers to the right of 

each plot report fold change across all conditions and/or cells.  (B) 

Sample detailed signaling time course from (A), highlighted by 

dashed box and asterisk, showing p-ERK activation in BT-20 cells.  

Mean values ±SD of three experiments are shown.  (C) Forty-eight-

sample western blots analyzed using two-color infrared detection. 

Each gel contained an antibody-specific positive control (P) for blot-

to-blot normalization. The example shown is one of three gels for 
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(Figure 3.4 Continued.) total p53 in MCF7 cells (p53 in green; β-

actin in red).  (D) Reverse-phase protein lysate microarrays were 

used to analyze targets of interest when array-compatible antibodies 

were available.  The slide shown contains ∼2,500 lysate spots 

(experimental and technical triplicates of all of our experimental 

samples, and control samples used for antibody calibration), probed 

for phospho-S6.  (E) The complete cellular response data set, 

colored as in (A).  Reproduced with permission from Lee et al. 

(2012). 

 

3.2.4. Statistical Analysis of Signaling and Phenotype Dataset 

We wanted to build a model to relate signaling data to phenotypes to identify signaling events 

that correlate with the observed phenotypes.  We started with principal component analysis (PCA) 

and partial least-squares regression (PLSR) models, in order to identify covariance between signals 

and to identify covariance between signals and cellular phenotype, respectively (Janes and Yaffe, 

2006).  Both techniques produce vectors of weights corresponding to the levels of specific 

signaling proteins.  Reducing these vectors to principal components allows iterative creation of 

multiple PCA or PLS dimensions, each capturing the maximum covariation not already captured 

by a previous vector.  This iterative process is repeated until the data captured in an additional 

dimension is comparable to the remaining experimental noise.   

After PCA, we projected the loadings of each signaling measurement along the first 2 principal 

components (Figure 3.5A).  We found that measurements made in MB-453 cells projected 

negatively in Principal Component 1 (PC1), while measurements from BT-20 cells projected 

positively in PC1 and MCF7 were mostly close to 0 in PC1.  PC1 thus separated largely based on 

cell type.  On the other hand, PC2 separated by treatment type, with control and erlotinib-only 

treated cells projected negatively, doxorubicin-only and doxorubicin-erlotinib staggered close to 

0, and cotreatment and erlotinib-doxorubicin staggered projected positively.  These results suggest 

that while signaling is significantly different between the cell lines (PC1), all cell lines tested   
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Figure 3.5.  A PLS Model Accurately Predicts Phenotypic 

Responses from Time-Resolved Molecular Signals.  (A) Principal 

components analysis of covariation between signals.  Scores plot 

represents an aggregate measure of the signaling response for each 

cell type under each treatment condition at a specified time, as 

indicated by the colors and symbols in the legend.  (B and C) Scores 

and loadings for a PLS model.  (B) Scores calculated and plotted as 

in (A), except the principal components now reflect covariation 

between signals and responses.  (C) PLS loadings plotted for 

specific signals and responses projected into principal component 

space.  (D–I) BT-20 cell line-specific model calibration.  (D) R2, Q2, 

and RMSE for BT-20 models built with increasing numbers of 

principal components.  (E and F) Scores and loadings plots, 

respectively, for a two-component model of BT-20 cells.  (G–I) 

Apoptosis as measured by flow cytometry or as predicted by our 

model using jack-knife cross-validation. R2 reports model fit, and 

Q2 reports model prediction accuracy.  (G) Final refined model of 
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(Figure 3.5 Continued.) apoptosis in BT-20.  (H) BT-20 model 

minus targets identified as DEGs in microarray analysis.  (I) Model 

using only the top four signals: c-caspase-8, c-caspase-6, p-DAPK1, 

and pH2AX.  Reproduced with permission from Lee et al. (2012). 

 

respond generally with similar mechanisms when challenged with erlotinib and doxorubicin (PC2).  

PLSR analysis signaling to downstream phenotypes was similar, though cell-type differences were 

now explained between PC1 and PC2, and stimulus-dependent differences captured in PC3, 

though PC3 did not capture statistically significant variation (Figure 3.5B).  Because our statistical 

analysis was able to separate by both cell line and stimulus, we were confident that the dataset also 

included information that could explain the differences between cell lines and stimulus conditions.   

To this end, and with focused interest in the differences between the cell lines, we built models 

for each cell line in isolation.  We paid particular attention to the PLS model for the TNBC line 

BT-20, and we found that 97% of the variance linking signals to responses could be explained by 

two principal components, with additional components actually decreasing model fitness (Figure 

3.5D).  As a result, we focused on PC1 and PC2 and explored the individual projections of 

signaling measurements and phenotypic outcomes.  Plotting the loading vectors (signals and 

phenotypic outcomes) by their weightings in PC1 and PC2 revealed a clear cluster of signals highly 

correlated with apoptosis projected positively in PC2, while proliferation was projected negatively 

in PC2 (Figure 3.5C).  Notably, the model was particularly robust in predicting apoptosis (Figure 

3.5G), though less so in predicting cell cycle effects, proliferation, and autophagy.  Because this 

highly correlated group of four apoptotic signals (cleaved caspase-8, cleaved caspase-6, phospho-

DAPK1, and phospho-H2AX) clustered closely with the phenotypic measurement for apoptosis, 

and because just the subset of four signals was nearly as accurate as the entire dataset at predicting 

apoptosis (Figure 3.5G,I), we focused on these nodes as critical for the apoptotic response. 
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Caspase-8 is an initiator caspase, but not usually involved in intrinsic death pathways.  It is 

usually reported as downstream of death receptor activation, but has been reported in apoptosis 

resulting from EGFR inhibition (Kang et al., 2010; Morgillo et al., 2011), however, erlotinib alone 

had no apoptotic effect in BT-20 cells.  Rather, it was doxorubicin treatment that activated caspase-

8, even though doxorubicin usually activates DNA damage-dependent intrinsic pathways typically 

initiated by caspase-9 (Kim, 2005).  Thus, while we were not surprised to find cleaved caspase-9 

to be correlated with apoptosis, we were surprised to find cleaved caspase-8 to also be correlated 

with apoptosis (Figure 3.5C).   

 

3.2.5. Extension of Time-Staggered Treatment to Other Contexts 

The BT-20 erlotinib-doxorubicin time-staggered enhanced killing phenotype is promising for 

TNBC killing, and we wanted to test multiple TNBC lines to see if it is generalizable.  To do so, 

we created a set of ten representative TNBC lines (Neve et al., 2006).  The collected cell lines had 

wildly varying EGFR expression, p53 status, and doubling times, but nine of ten showed an 

enhanced killing doxorubicin after chronic erlotinib treatment.  Of these, only four (including BT-

20) showed positive synergy rather than simple additive coopertivity.  This synergistic effect was 

uncorrelated to EGFR expression levels, but was highly correlated to basal level of EGFR 

phosphorylation on Y1173, a measurement of EGFR activity (Figure 3.6A-B).  When we measured 

caspase-8 activation, we found that the cell lines displaying erlotinib-doxorubicin time staggered 

synergy were also the only cell lines that cleaved caspase-8.  We conclude that the erlotinib-

doxorubicin synergy observed in BT-20 may be generalizable to TNBC cell lines with high basal 

activation of EGFR (not necessarily correlated with high expression or amplification of EGFR), 

through similar mechanisms involving caspase-8 activation.    
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Figure 3.6 (Next Page).  Time-Staggered Inhibition of EGFR 

Signaling Enhances Apoptotic Response in a Subset of TNBC Cells 

and Other EGFR-Driven Cells.  (A) Panel of TNBC cell lines with 

a wide range of EGFR expression levels.  Heatmap for total EGFR 

expression, p-EGFR (Y1173), percent apoptosis, apoptosis relative 

to DOX alone, and casp-8 cleavage.  Apoptosis measured as in 

Figure 3.1.  EGFR and p-EGFR expression are measured by western 

blotting of untreated cells.  Cleaved casp-8 measured by western 

blot 8 hr after exposure to DOX.  (B) EGFR activity, but not total 

EGFR expression, is correlated with sensitivity to time-staggered 

ERL→DOX combination.  Fold enrichment of cell death observed 

in E→D relative to DOX alone regressed against total EGFR or p-

EGFR (pY1173) as measured in untreated cells for the ten TNBC 

cell lines shown in (A).  R2 reports the linear fit for each trend line.  

(C) BT-20 cells grown as xenograft tumors in nude mice.  Arrow 

indicates intraperitoneal administration of indicated drugs.  Mean 

tumor volume ±SEM shown from four animals for each treatment 

condition.(D–F)  Time-staggered inhibition of HER2 in HER2-

driven breast cancer cells (D) or EGFR in lung cancer cells (E and 

F) causes casp-8 activation and sensitization to DOX.  Apoptosis 

measured as in Figure 3.1 for cells exposed to a control RNA (left 

in each panel) or siRNA targeting casp-8 (right in each panel).  

Caspase-8 activation was monitored 8 hr after doxorubicin treatment 

(c-casp8, shown beneath the control RNA plots).  Validation of 

caspase-8 knockdown is shown below the CASP8 siRNA plots.  

Mean values ±SD of three experiments are shown.  (D) HER2-

overexpressing MDA-MB-453 cells treated with lapatinib.  (E and 

F) Lung cancer cells treated with erlotinib.  (E) NCI-H1650.  (F) A-

549.  (G) A model for enhanced cell death after DNA damage by 

chronic EGFR inhibition in triple-negative breast cancer cells. 
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Figure 3.6 (Continued).  
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We were curious to see if the erlotinib-doxorubicin synergy was also efficacious in tumors in 

vivo.  To this end, BT-20 cells were injected into flanks of nude mice, and tumors were allowed to 

form for 7 days before treatment with doxorubicin or erlotinib-doxorubicin combinations (Figure 

3.6C).  Treatment with doxorubicin alone caused tumor size to shrink for 3 days, after which the 

tumor began to regrow, reaching pre-treatment volume after 14 days.  Erlotinib and doxorubicin 

cotreatment had a stronger tumor regression effect, and though the regrowth phase was slower and 

delayed, it nearly also reached pre-treatment volume after 14 days.  By contrast, erlotinib given 8 

hours before doxorubicin caused a similar rate of initial tumor shrinkage but sustained for longer, 

and critically, no measured tumor regrowth phase up to 14 days  Thus the pretreatment 

sensitization effect observed in culture was also present in vivo.   

Because we had shown pretreatment sensitization with an EGFR inhibitor is potentially 

generalizable to a subset of TNBC cells and tumors with high basal levels of EGFR signaling, we 

wondered if analogous concepts could be applied to other types of breast cancers with high levels 

of growth factor signaling through a different receptor.  For example, we had previously shown 

that erlotinib-doxorubicin timing was anti-synergistic in MDA-MB-453 cells (Figure 3.1G), but 

MDA-MB-453 is does not have high levels of EGFR signaling.  However, MDA-MB-453 does 

overexpress Her2, and when we treated MB-453 cells with the EGFR/Her2 inhibitor lapatanib, we 

found a staggered-timing synergy (Figure 3.6D).  This synergy was also caspase-8 dependent, 

indicating that despite the use of a different inhibitor for a different growth factor receptor, MB-

453 cells after lapatinib may be rewiring signaling networks analogously to BT-20 after erlotinib.   

Lung cancers are also frequently found to have high levels of EGFR signaling, and we 

wondered if these cancers could also be rewired with erlotinib-doxorubicin staggered timing 

treatment.  We tested NCI-H1650 cells and A549, two commonly used lung cancer cell lines that 
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have highly active basal EGFR (Diaz et al., 2010; Sordella et al., 2004).  These cell lines were 

resistant to doxorubicin alone, but strongly sensitized to doxorubicin by erlotinib pretreatment in 

a caspase-8 dependent manner (Figure 3.6E-F).  Thus, we conclude that erlotinib pretreatment may 

be a generalizable mechanism for sensitization to doxorubicin in tumors with high basal EGFR 

signaling in multiple cancer types.  
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3.3.Conclusions 

The standard of care in oncology at this time remains trial-and-error more often than not.  

Patients are bounced around from one drug regimen to another until the tumor responds.  In the 

meanwhile, the patient suffers from astronomical medical bills, vicious side effects, and low 

quality of life.  Despite the pharmacopeia of hundreds of cancer drugs, relatively few drugs and 

combinations can be counted on for a knockout blow.  What we learn about one kind of cancer is 

often not applicable in other cancers, and the lack of uniting principles holds back understanding 

and treatment of cancer.   

We envision several necessary advances to solve these problems.  First, “garbage pail” cancer 

diagnoses must be clarified; triple-negative breast cancers is undoubtedly a heterogeneous cluster 

of diseases that should be further broken down, so that doctors can more quickly find appropriate 

treatment regimens for the specific tumor.  Secondly, though massive screens for drug 

combinations have turned up relatively few efficacious cocktails, we find that the additional 

dimension of time staggering may reveal many more successful combinations.  Lastly, we believe 

that approaches that deeply analyze cellular signaling such as those used in this work can reveal 

unexpected, exploitable weaknesses that can be generalizable to many types of cancer.   

We began by screening drug combinations for efficacy against different types of breast cancer 

and made the novel discovery that timing is important in combination chemotherapy.  TNBCs are 

poorly defined as a group, tend to be resistant to treatment and carry worse prognoses than other 

breast cancers.  As a result, any way to stratify a standard of care TNBCs based on biomarkers is 

welcome, as well as efficacious ways to treat TNBCs.  We corroborated existing evidence that 

erlotinib-doxorubicin combination treatment does not significantly kill BT-20 cells, but found that 

simply applying erlotinib before doxorubicin was efficient to promote apoptosis.  Because this 
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approach appears to be only efficacious in TNBCs that have high EGFR activation, we propose 

that this subclass of TNBCs may be separate from other TNBCs, and propose clinical testing for 

the time-staggered approach in human patients.   

We also found that this time-staggered phenomenon is not unique to erlotinib and is 

generalizable to all EGFR inhibitors that we tested.  These data seem to suggest that time 

staggering a growth factor signaling inhibitor with a genotoxic agent is a successful strategy.  As 

we have dozens of both types of drugs, and to our knowledge very little work has been done 

studying time staggered treatment regimens, we recommend immediate study to see if such 

combinations are efficacious in humans and if useful combinations have missed in previous 

screens.  Indeed, the evidence that the EGFR inhibitor – genotoxic inhibitor combination is 

successful in EGFR activated lung cancer gives support to the idea that we may be better served 

classifying tumors by their internal signaling rather than their parent tissue type.   

Finally, over the course of our systematic study of 35 signaling nodes within BT-20 cells, we 

observed numerous rewiring effects after erlotinib treatment.  We also performed gene expression 

studies that demonstrate massive gene expression changes after erlotinib treatment in BT-20 cells 

but not MB-453 or MCF7 cells, indicating that our study is probably only scratching the surface 

of a substantial rewiring phenomenon (Lee et al., 2012).  We hypothesize that further experiments 

along this vein may be rich in insights that are both generalizable and clinically relevant.  For 

example, we identified a possible new role for caspase-8 after DNA damage, which may have been 

missed without unbiased, multiplexed signaling measurements.  Massively parallel experiments 

are best suited for this type of data collection, for which we believe lysate microarrays are an 

excellent tool for the future.  
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3.4. Tables 

Table 3.1 – Full list of screening lysates used to antibody validation 

        

Condition BT-20 MDA453 MCF7     

DMSO 1 31 61     

NCS 2 32 62     

Starved 3 33 63  Dilution Series BT-20 only Parent Sample # 

EBSS 4 34 64  Serum Shock 91-98 5 

Serum Shocked 5 35 65  NCS 99-106 2 

TNF 6 36 66  Confluent (G1) 107-113 22 

DOX 7 37 67  SDS spot 114 --- 

IR 8 38 68  Aphidicolin (S) 115-121 23 

UV 9 39 69  Nocodozole (M) 122-128 25 

Wortmanin 10 40 70     

Tarceva 11 41 71     

Sorbitol 12 42 72     

D/T8 13 43 73     

T--D8 14 44 74     

Taxol 15 45 75     

Etoposide 16 46 76     

Temezolomide 17 47 77     

Camptothecin 18 48 78     

Cisplatin 19 49 79     

Lapatinib 20 50 80     

M121 21 51 81     

Conflu. (G1) 22 52 82     

Aphidicolin (S) 23 53 83     

IR 36 hr (G2) 24 54 84     

Noco (M) 25 55 85     

DTB 0 (eS) 26 56 86     

DTB+4 (S) 27 57 87     

DTB+8 (G2) 28 58 88     

DTB+12 (M) 29 59 89     

DTB+16 (G1) 30 60 90     

 

Table 3.1. Full list of control lysates selected for antibody validation 

in MCF7, MB-453, and BT-20 cells.  Lysate conditions were 

selected to activate every node for which we had an antibody, in at 

least one condition.  Left: number represents the order in which 

lysate was printed on arrays.  Right: Control lysates and dilution 

series, using only BT20 sample as parent.  DTB = Double 

Thymidine Block (synchronized in early S phase) 
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Table 3.2 – Full list of Antibodies Validated for Use in 

MCF7, MB-453, and BT20 cells 
Antibody Target Product # Species Company 

p-S6 (S240/244) 4838 Rabbit Cell Signaling 

p-S6 (S235/236) AF3918 Rabbit R&D 

pS6K (T421/S424) 9204 Rabbit Cell Signaling 

p-mTOR (S2448) 2971 Rabbit Cell Signaling 

p-4E-BP1 (S65) 9456 Rabbit Cell Signaling 

p-ERK1/2 (T202/Y204) 4376 Rabbit Cell Signaling 

p-p38 (T180/Y182) 9215 Rabbit Cell Signaling 

p-p90RSK (S380) 9341 Rabbit Cell Signaling 

p-MK2 (T334) 3041 Rabbit Cell Signaling 

p-HSP27 (S82) 2401 Rabbit Cell Signaling 

p-SAPK/JNK (T183/Y185) 9251 Rabbit Cell Signaling 

A-Raf 4432 Rabbit Cell Signaling 

p-Akt1/2/3 (S473) 05-736 Rabbit Millipore 

p-MEK1/2 (S217/S221) 9154 Rabbit Cell Signaling 

p-SEK1 (S257/T261) 9156 Rabbit Cell Signaling 

p53 (Total) 9282 Rabbit Cell Signaling 

p-H2A.X (S139) 9718 Rabbit Cell Signaling 

p-DNA PKcs (S2056) ab18192 Rabbit Abcam 

p-cdc25C (S216) 9528 Rabbit Cell Signaling 

p-53BP1 (S25/29) 2674 Rabbit Cell Signaling 

p-Histone H3 (S10) 06-570 Rabbit Millipore 

p-Wee1 (S642) 4910 Rabbit Cell Signaling 

p-Cycline E (T62) 4136 Rabbit Cell Signaling 

p-BRCA1 (S1524) 9009 Rabbit Cell Signaling 

 

Table 3.2. Full list of Antibodies Validated for use in MCF7, MB-

453, and BT-20 cells.  All antibodies were selected from primary 

screening using control lysates, then individually validated for 

positive, linear, specific signal in immunoblots.   
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3.5. Experimental Methods 

Antibody Reagents 

Pan and phospho-specific antibodies for signaling proteins were purchased from Abcam 

(Cambridge, MA), BD Biosciences (San Jose, CA), Cell Signaling Technology (Beverly, MA), 

Santa Cruz Biotechnology (Santa Cruz, CA), and Upstate (Charlotteville, VA).  Mouse 

monoclonal anti-β-actin antibody (clone AC-15) was purchased from Sigma-Aldrich (Saint Louis, 

MO), rabbit monoclonal anti-β-actin antibody was catalog # 4970 (Cell Signaling Technology 

(Beverly, MA)).  Secondary detection antibodies were purchased from Li-Cor Biosciences 

(Lincoln, NE).   

 

Cell Culture 

All cell lines were obtained from American Type Culture Collection (ATCC) and maintained 

at low passages (<20) in various medias (See Appendix A).   

 

Cell Response Assays: Apoptosis 

Following treatment, cells were washed and trypsinized, saving all floater cells.  Fixation 

using 4% paraformaldehyde at room temperature for 15 minutes was followed by resuspension in 

ice-cold methanol and overnight incubation at -20°C.  Cells were washed in PBST, blocked for 1 

hour in BSA/PBST, and stained with antibodies against cleaved-caspase-3 and cleaved-poly(ADP-

ribose) polymerase (PARP) (BD PharMinogen).  Secondary Alexa-conjugated detection 

antibodies were used for visualization in a BD FacsCalibur flow cytometer (Molecular Probes).  

Analysis was done using FloJo, and double-positive cells were counted as apoptotic.   
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Cell Response Assays: Cell Cycle 

Following treatment, cells were fixed in 70% ethanol overnight at -20°C, permeabilized with 

PBS-Triton for 20 min at 4°C, blocked with 1% BSA, and incubated with antibodies against 

phospho-Histone H3 (Millipore).  After washing, cells were incubated with Alexa-488 conjugated 

secondary antibody on ice, washed, and stained with 50 μg/mL propidium iodide (PI) prior to 

analysis.  A BD FacsCalibur flow cytometer was used, and analysis was done using FloJo utilizing 

the Dean-Jett-Fox algorithm. 

 

Cell Response Assays: Viable Cell Count 

Cells were plated at 10,000 cells/well in 96-well optical glass bottom white walled plates, then 

stimulated.  Metabolic viability was measured using Cell Titer Glo (Promega) according to 

manufacturer protocol.  Normalization was always to untreated sample. 

 

Cell Response Assays: Autophagy 

Cells were stably transfected with pBABE-mCherry-EGFP-LC3B (Addgene Plasmid 22418), 

which reports activation of autophagy and maturation of autophagic particles to autolysosomes.  

Expression of this plasmid was determined to have no effect on cell growth rate, apoptosis, or 

chemosensitivity (data not shown).  Cells were seeded onto 18 mm2 coverslips and treated with 

erlotinib or doxorubicin or both for the indicated times.  Cells were then fixed in 3% PFA and 2% 

sucrose for 15 min at RT, and stained for 10 min with whole cell blue stain according to 

manufacturer’s protocol (Thermo Scientific).  Images were collected on an Applied Precision 

DeltaVision Spectris automated microscope and deconvolved using Applied Precision SoftWoRx 

software.  Deconvolved image projections were analyzed using CellProfiler to identify total cells 
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as well as autophagic cells.  A modified ‘‘speckle counter’’ pipeline was used as described 

previously (Carpenter et al., 2006).  Briefly, whole cell blue signal was used to segment each image 

into individual cells.  Number of GFP or mCherry LC3 puncta were counted per cell, and cells 

were counted as ‘‘autophagic’’ if the number of GFP and mCHERRY puncta significantly 

increased relative to untreated cells (Mizushima et al., 2010).  Approximately 100 cells were 

counted in a double blind fashion per condition, and percent autophagic cells reported from 3 

independent experiments. 

 

Western Blotting 

Cell lysates were prepared as described previously (Sevecka et al., 2011).  Crude lysates were 

filtered in AcroPrep 96 well 3.0 μm glass fiber/0.2 μm BioInert filter plate (Pall), then normalized 

for total protein content using the BCA assay (Pierce).  Blots were run using 48-well precast gels 

and transferred using semi-dry fast transfer apparatus onto nitrocellulose membranes (e-PAGE, i-

Blot, Invitrogen).  Blots were blocked in Odyssey blocking buffer (Li-Cor), incubated overnight 

with primary antibody, stained with secondary antibodies conjugated to an infrared die, then 

visualized using an Odyssey flat bed scanner (Li-Cor).  Data were calculated as the background 

subtracted intensity divided by the β-actin signal to correct for loading differences, then 

normalized to a reference sample contained on every gel, for gel-to-gel normalization.  Signal 

averages were calculated from triplicate experiments.  Antibodies that did not report significant 

variation across treatments were omitted.  

 

Lysate Microarray Fabrication 
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Lysate microarrays were printed on a fee-for-service basis by Aushon Biosystems.  Lysates 

were printed on 2-pad nitrocellulose slides in technical triplicate and biological duplicate using 

333 μm spacing with steel solid 110 μm pins.  This resulted in an average feature size of 170 μm.  

Slides were probed and analyzed as previously (Sevecka et al., 2011). 

 

siRNA knockdown 

Silencer Select Validated siRNAs were purchased through Invitrogen. For EGFR, si oligos 

used were: GAUCUUUCCUUCUUAAAGAtt (sense) and UCUUUAAGAAGGAAAGAUCat 

(antisense); and CCAUAAAUGCUACGAAUAUtt (sense) and AUAUUCGUAGCA 

UUUAUGGag (antisense).  Oligos for caspase-8 were: GAUACUGUCUGAUCAUCAAtt (sense) 

and UUGAUGAUCAGACAGUAUCcc (antisense); and GAUCAGAAUUGAGGUCUUUtt 

(sense) and AAAGACCUCAAUUCUGAUCtg (antisense).  For transfection in human cell lines, 

Lipofectamine RNAiMAX was used according to manufacturer’s instructions.  Dose titration and 

time course experiments were performed to determine that optimal knockdown efficiency, which 

in all experiments was 5nM siRNA for 48 hr. 

 

Computational Modeling and Statistics 

Data-driven modeling and the application of partial least-squares to biological data have been 

described in detail previously (Janes and Yaffe, 2006).  PLS modeling was done using iterative 

algorithms in SIMCA-P (Umetrics).  All data were variance scaled to nondimensionalize the 

different measurements.  Model predictions were made via cross-validation.  Model fitness was 

calculated using R2, Q2, and RMSE, as described previously by (Gaudet et al., 2005).  VIP was 

calculated following (Janes et al., 2008).    
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Part 4 

Application of Lysate Microarray Technology 

For Understanding the DNA Damage Response 

In the Context of Tumor Progression 
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4.1. Introduction 

One of the most problematic features of cancer is that each tumor is unique.  Tumor are 

heterogeneous mosaics, comprising dozens of clones carrying hundreds or thousands of mutations 

(Samuel and Hudson, 2013).  We believe this heterogeneity within and between tumors contributes 

in large part to the lack of generalized cancer magic bullets.  If just a subset of clones within a 

tumor survive chemotherapeutic treatment, they may regrow and cause a tumor to recur, 

commonly with heightened resistance to further treatment.  Furthermore, as an untreated tumor 

progresses it is also subject to heritable genetic drift and quickly evolves away from wild-type 

signaling.  For these reasons, it is important to understand in great detail how chemotherapeutics 

affect cancer cells along the path to tumorgenicity, in order to maximally kill the entire tumor all 

at once, while minimizing toxicity to surrounding cells.   

The MCF10 cell line series represents a tumor progression model spanning the evolution from 

parental normal tissue to end-stage metastatic tumor.  The series of four cell lines were 

successively derived from a common source, preserving a unique level of genetic relatedness while 

also simulating the changes through the course of tumor progression.  The well-known parental 

MCF10A cell line was isolated from a patient with proliferative breast disease and spontaneously 

became immortalized (Soule et al., 1990).  This cell line has been extensively used as a “normal 

control” cell line for comparison with more aggressive lines and does not form xenografts in nude 

mice.  Transfection with T24 H-ras created the MCF10AT cell line, characterized by loss of 

requirement for EGF, increased invasiveness, and ability to form xenografts in nude mice, mostly 

consisting of simple ducts and rarely higher grade carcinomas (Dawson et al., 1996).  One of these 

carcinomas was dissociated, isolated, cloned, and cultured to create a cell line known as 

MCF10AT1K.c12 (Santner et al., 2001).  These cells were once again used to create a second 
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generation xenograft.  After two additional passes, the final fourth generation tumor was once 

again dissociated and cultured, and the resulting cell lines designated MCF10CA1 (Santner et al., 

2001).  MCF10CA cell lines are very aggressive, efficiently forming metastatic adenocarcinomas 

and killing the host within weeks.  For brevity we will refer to these cell lines as A, AT, c12, and 

CA1 for the remainder of this work.   

While the MCF10A series derives from a common source, they are phenotypically quite 

distinct.  Genomic, proteomic, and phosphoproteomic studies have been conducted to identify the 

molecular basis for these differences.  A SNP array analysis of the cell lines found a deletion in 

CDKN2A in all four cell lines, as well as an amplification of MYC, which may well be the initial 

immortalizing events (Kadota et al., 2010).  A gene expression study showed low expression of 

estrogen receptor, progesterone receptor, and Her2, indicating the entire series may also be best 

considered a triple-negative cancer line (Rhee et al., 2008).  A phosphoproteomic study found 

massive reprogramming specifically in metabolism (the “Warburg effect”) and cytoskeletal 

regulation indicative of a possible epithelial-mesenchymal transition (EMT) in the CA1 line 

(Choong et al., 2010).  None of these studies, however, found mutations or major differences in 

expression between cell lines in DNA Damage pathways, indicating it was ideal to study genotoxic 

chemotherapy in the context of progression of other cancer-related signatures.  We therefore set 

out to study the differences in intracellular signaling and cellular fates that result from genotoxic 

treatment of the MCF10A progression line. 

We selected four clinically important topoisomerase inhibitors for study.  Irinotecan and 

camptothecin are related molecules that selectively and reversibly inhibit Topoisomerase I, 

causing single-stranded breaks by intercalating into DNA (Tomicic and Kaina, 2013).  Both have 

been approved for first-line therapy, but also carry significant dose-limiting side effects.  Etoposide 
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and doxorubicin on the other hand are unrelated molecules that poison Topoisomerase II, also 

resulting in a single-stranded breaks (Pommier et al., 2010).  Etoposide covalently modifies TopoII, 

preventing religation, and has relatively few other effects in cells.  On the other hand, doxorubicin 

at low concentrations (<1 μM) also prevents religation, but at higher concentrations (>10 μM) also 

intercalates into DNA and interferes with Topo II binding DNA (Pommier et al., 2010).  Both are 

also used in first-line treatment, with significant side effects (cardiotoxicity for doxorubicin, 

treatment-related acute myelocytic leukemia for etoposide).  All such single-stranded breaks 

induced by topoisomerase inhibition have the potential to progress to double-stranded breaks 

during S phase as a replication fork passes through.   

  



128 

 

4.2. Results and Discussion 

4.2.1. Multi-parameter Characterization of Cell Fates Downstream of Chemotherapy 

We began by asking if the MCF10A progression cell lines show differential sensitivities to 

Topo inhibitors.  We expected that the more aggressive lines would display increased sensitivity.  

We considered that the major possible outcomes to genotoxic stress include proliferation/survival, 

apoptosis, and cell cycle arrest.  To this end, we challenged all four cell lines with the 

topoisomerase inhibitor panel and measured markers of cell count, apoptotic cell death, and cell 

cycle status.   

We measured cell number and survival/proliferation using a commercially available luminescent 

plate-based assay.  All four cell lines were grown in 96-well plates to 60% confluence and 

subjected to a dilution series of each drug for 24 or 48 hours, at which point the plates were 

harvested for Cell Titer Glo assays (Figure 4.1).  Cell Titer Glo assays measure total ATP content 

within a sample, which we assume to be directly correlated with the number of viable cells.  Thus, 

these data represent some combination of proliferation and survival over the time course of the 

experiment.  Surprisingly, c12 cells were as resistant, if not more resistant, to treatment as the 

parental A line in nearly all cases.  Equally surprising was the fact that AT cells were the most 

sensitive in all cases except for high doses of etoposide at 48 hours.  We conclude from these data 

that drug sensitivities in the MCF10 progression series is not trivially related to aggressiveness, 

and considered that the effect may be due to cell cycle checkpoint related arrest.   

To measure the effects that topoisomerase inhibitors have on the cell cycle in MCF10 cell 

lines, we used a FACS technique coupled with a statistical model.  Cells grown in 6-well plates, 

stimulated with 2 doses of each drug and harvested at 24 or 48 hours and fixed.  Labeling with 

propidium iodide for DNA content to distinguish between G1, S, and G2/M, fit using the Dean-  
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Figure 4.1.  The MCF10 progression lines show unexpected trends 

in proliferation/survival when challenged with topoisomerase 

inhibitors.  Cells were grown in 96-well plates and challenged with 

serial dilutions of four drugs.  After (A) 24 and (B) 48 hours, Cell 

Titer Glo assays were performed to assess viable cell count.  Error 

bars indicate the standard error of 3 experiments, each of which 

included 3 biological replicates per condition.  All samples were 

normalized to a matched vehicle control. 

 

Jett-Fox model to fit these populations (Fox, 1980).  We also used an antibody against phospho-

H3 (S10) to distinguish between G2 and M (Figure 4.2A).  Visual inspection of the data revealed 

that cell lines A and c12 were generally resistant to changes in cell cycle, while cell line CA1 

strongly arrested in G2 in response to high doses of drug (Figure 4.2B).  In particular, we were 

struck the similarity of the cell cycle profiles between 24 and 48 hours, indicating that in most 

cases, cells did not appear to continually accumulate at specific stages of the cell cycle between 

the time points measured, though notable exceptions did exist (c12, etoposide high dose).  These 

data also did not appear to be correlated or anticorrelated with the cell survival/proliferation data   
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Figure 4.2 (Next Page).  Topoisomerase inhibitors have significant 

effects on cell cycle in MCF10 progression lines, including 

checkpoint activation.  Cells were grown in 6-well plates and 

stimulated with 2 doses of each drug for 24 or 48 hours.  (A) 

Samples were analyzed by FACS using p-Histone H3 (S10) as a 

mitosis marker and DNA content to separate G1, S, and G2/M.  A 

hand-curated Dean-Jett-Fox algorithm was used to approximate 

number of cells in each population.  (B) Cells collected after 

treatment broken down into phase of cell cycle at time of fixation.  

Substantial enrichment of G2 phase in AT and CA1 may indicate a 

less active G1 checkpoint and a compensatory G2 checkpoint.  

Interestingly, the profiles obtained at 24 and 48 hours are 

remarkably similar.  Data represents mean of 2 experiments. 
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obtained from Cell Titer Glo, indicating that survival and cell cycle are capturing different aspects 

of cell fate.   

The final major possible outcome we considered for cells undergoing genotoxic stress is 

apoptosis.  To quantify apoptotic cell death, we again used a FACS-based assay.  Cells were grown 

in 6-well plates and stimulated using the same 2 doses of drug used in the cell cycle assay, and 

harvested for fixation at 24 or 48 hours.  Cells were labeled for cleaved caspase-3 and cleaved- 

PARP, markers of early intrinsic and late apoptosis, respectively (Figure 4.3A).  Visual inspection 

of this data showed the surprising result that while all cell lines regularly cleaved caspase-3 in 

response to drug treatment, only AT cells were observed to cleave PARP, and only in select 

treatments (high dose camptothecin).  As a result, as opposed to previous studies, we defined 

apoptotic cells as those that had cleaved caspase-3 without requirement for cleaved-PARP (Figure 

4.3B).  Furthermore, the centroid of the presumed non-apoptotic population (low staining for 

cleaved caspase-3) shifted right with increasing drug concentration, which indicates that cells can 

cleave caspase-3 to a limited extent, which contradicts the traditional “all-or-nothing” view of 

apoptosis.  c12 cells notably did not cleave caspase-3 in any condition at 24 hours, though 

significant apoptotic signaling could be observed at 48 hours.  AT and CA1 cells showed strong 

apoptotic response to high doses of both camptothecin and doxorubicin.  We did not test for 

activation of RIP, and it is possible that a subset of this population is fated for death through non-

apoptotic means such as necroptosis. 

We also attempted to study gross morphology changes as senescence and autophagy can be 

estimated by their respective characteristic visible changes.  Senescence is characterized by a large 

and flattened cytoplasm and a condensed nucleus, resembling a fried egg.  By contrast, autophagy 

is characterized by a buildup of large numbers or very large vacuoles.  We utilized live-cell   
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Figure 4.3 (Next Page).  Topoisomerase inhibitors induce 

significant apoptotic response in all cell lines, dependent on cellular 

context and drug dose.  Cells were grown in 6-well plates and 

stimulated with 2 doses of each drug for 24 or 48 hours.  (A) After 

fixation, samples were fixed and stained for cleaved caspase-3 and 

cleaved PARP.  Because cleaved-PARP was only observed in AT 

cells, we classified cells with cleaved caspase-3 as apoptotic.  (B) 

Full dataset collected at 24 and 48 hours.  Cell lines AT and CA1 

overwhelmingly committed apoptosis at high doses of camptothecin 

and doxorubicin, while c12 is totally resistant at 24 hours but not at 

48 hours.   
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automated microscopy to produce time-lapsed image stacks, producing over 10,000 videos in total.   

In the end, however, we were unable to analyze this data in an unbiased and automated manner, as 

all software packages we tried failed to identify and track single cells consistently.  Even so, we 

found that c12 cells in particular showed a senescent-like morphology at in response to high dose 

etoposide at long time points (96 hours or longer).  However, attempts to formally assay 

senescence through β-galactosidase assays were too noisy to interpret.  We also observed that AT 

and CA1 cells seemed to preferentially adopt autophagy-like morphologies with large vacuoles in 

response to doxorubicin.  However, the best formal assay for autophagy is observation of the 

double membrane structure by electron microscopy.  We did observe some such autophagic 

structures, but electron microscopy is unfeasible for quantification or high throughput methods.  

FACS screening was not practical as the principal biomarker for autophagy LC3 was not detectible 

in AT and CA1 cells.  Therefore, we were unfortunately unable to extract meaningful information 

from these live-cell microscopy methods, though we remain hopeful that advances in computer 

vision algorithms may improve our ability to use these kinds of data in the future. 

Having assembled this panel of cellular phenotypes, we next set out to measure internal 

signaling within the cells that determines cell fate, and find the correlations that explain cellular 

behavior. 

 

4.2.2. Lysate Microarray Antibody Validation Screen for MCF10A Progression Series 

We wanted to understand the molecular events that stem from, and effect the differential 

survival/death phenotype we had observed.  Because we wanted to collect signaling information 

from as many nodes in as many signaling networks as possible, we performed a reverse screen of 
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antibodies tested against lysates from all three cell lines.  This screen was performed 

simultaneously and analogously to the screen discussed in Section 3.2.2 of this work. 

We designed a set of control conditions, selected such that every node monitored by an 

antibody is activated in at least one condition.  We did not use the same set of 30 used in Section 

3.2.2, rather we used a subset of 18 control lysates, produced in each cell line.  As several lysates 

used in the previous work did not give any unique information not replicated in other lysates, we 

selected the set in Table 4.1.   

Also included were serial 2-fold dilutions for 6 of these lysates for cell line A only, for a total 

of 108 total samples, including all controls.  A full list of these lysates is included in Table 4.1.  

All samples were collected according to established protocol (Sevecka et al., 2011) with 

modifications to collect apoptotic cells (See Methods Section).  These samples were then printed 

in duplicate onto nitrocellulose-coated glass slides using an Aushon 2470 arrayer and probed with 

the collection of all available antibodies in the MacBeath and Yaffe labs.  In total, this collection 

numbered 483 antibodies, for a total of 104,328 measurements.  Probing was carried out as 

previously described, with each array being exposed to a unique primary antibody and a 

standardization antibody (Sevecka et al., 2011).  Image quantification was performed using Array-

Pro by MediaCybernetics and data analysis was performed in Matlab.   

Our selection criteria for passing the screen were stringent: significant signal (p<0.05) over 

background of at least 2-fold or 1/2-fold in at least 1 control lysate.  We considered each cell line 

uniquely, and a particular antibody could be counted as a hit for any or all of the cell lines.  Of the 

483 antibodies tested, 58 were found to have positive signal in at least one cell line.  These were 

then subjected to further standardization by immunoblotting.  Of the 58, 39 were verified by 

immunoblotting to produce a single band of the expected size in all cell lines, with high linearity 
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with the screening result (Table 4.2).  These antibodies were considered validated for use in lysate 

microarrays for the purposes of our next experiment. 

 

4.2.3. Gathering a Dataset for Network Analysis of Cellular Signaling Downstream of 

Chemotherapy 

We wanted to understand the signaling events downstream of treatment with chemotherapy 

drugs.  Because we were limited by number of lysates we could print and produce, we selected 

doxorubicin and etoposide for further study.  We selected the Topoisomerase II inhibitors for 

further study because the cell lines display a range of EC50s for doxorubicin (1 μM-10 μM), and 

etoposide potently causes cell cycle arrests in all four cell lines.   

To find the differences in signaling that explain these differences in cell fates, we collected 

lysates spanning a long time course after drug treatment.  We grew all four cell lines in 10 cm 

plates to 60% confluence, at which point treatment was administered.  Lysates were collected in 

biological duplicate from treatment with 2 doses of each drug, at 6 time points (1, 4, 8, 12, 24, and 

36 hours), along with mock treated controls, for a total of 288 unique lysates.  All lysates were 

created and processed according to established protocol (Sevecka et al., 2011), with modification 

to collect apoptotic cells (see Methods Section).   

These lysates were printed in technical duplicate on nitrocellulose-coated slides along with 

dilution curves, control lysates, and control spots, totaling 648 spots per microarray.  The slides 

were probed with the set of 38 pre-validated antibodies for a total of 24,624 unique 

measurements, and quantified using MicroVigene by VigeneTech.  Analysis was performed in 

Matlab.  A representative scan of an array is shown in Figure 4.4.   
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Visual inspection of the lysate microarrays showed data quality was good.  Spotting was 

consistent and technical variation was low: the average range between duplicate spots was 2.7% 

of the mean.  Biological variation was higher than technical variation at 12.8%.  Visual 

inspection also revealed that not every node measured had significant data; as several antibodies 

measured no change in signal across all treatment conditions.  Because we observed this by 

visual inspection, we later checked for statistical significance in each signal and eliminate those 

without significant variation.   

 

4.2.4. Statistical Analysis of Signaling and Phenotype Dataset 

We wanted to build a model to correlate signaling events with cellular fates.  In particular, we 

focused on applying principal components analysis (PCA) and partial least-squares regression 

(PLSR) to identify covariance between signals and covariance of signals to cell fates, respectively.  

As modeling efforts are hampered when data reflects noise rather than biological information, we 

began by deeply inspecting the data before normalization.   

To test for antibodies that reflect biological information, we used statistical techniques to 

compare control lysates to treated lysates.  If an antibody was truly detecting biological change, 

we expect a comparison of treated samples to mock treated controls to be statistically significantly 

different.  Therefore, multivariate ANOVA was used with a relatively weak cutoff (p < 0.1) in 

order not remove potentially informative data.  Non-significant data could indicate either no 

biological variation in that node in the data collected, or non-specific signal.  Continuing to use 

this data would be misleading at best and confounding at worst after normalization, therefore we 

excluded these data before normalization.  Of the 39 antibodies used, significant variation was   
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Figure 4.4.  Lysate microarrays were used to monitor intracellular 

signaling after Topoisomerase II inhibitor treatment.  Each 

microarray of 648 spots was simultaneously probed with a single 

primary antibody and a normalization antibody against β-actin.  The 

microarray shown here was probed with an antibody against p21.  

Significant variation was observed in p21 upon genotoxic treatment.  

Lysates were printed as 2 subarrays, each containing 144 unique 

combinations of cell line, drug treatment, and time point.  Biological 

replicates are found in the same position between subarrays.  

Technical variation was extremely small (c.v. = 2.7%), while 

biological variation was larger (c.v. = 12.8%).   

 

found in 22, while no significant signal was observed in 17.  All cell fate phenotypes were 

significant and were also kept.  After removal of non-significant data, we then mean-centered 

range-normalized the data.   

In order to highlight the variance in data rather than the absolute value of the signal, we 

performed several normalization steps for the data from each antibody.  First, the mean was 

calculated for each signal or fate and was subtracted from every measurement.  Then, each entry 

was divided by the absolute value of the highest or lowest value, resulting in a list with mean = 0 
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with all values between -1 and 1.  These values were then put into MIDAS format and DataRail 

was used to do statistical analysis (Saez-Rodriguez et al., 2008).   

Simultaneous visualization of the entire dataset is quite informative (Figure 4.5).  We observe 

that bulk changes in signaling are correlated with progression, that is, cell line A had small changes 

in signaling in a few signaling nodes, while cell line CA1 had wild changes in many nodes.  The 

amplitude of signaling changes correlated with phenotype severity, perhaps due to a bias in signals 

measured in the apoptotic pathway.   

Our first approach to understand signaling correlations in the dataset was to use PCA.  We began 

with a 2-component model to analyze covariance.  Following PCA, we found that cell lines A and 

AT were projected in opposite directions in both PC1 and PC2, while AT and c12 were about 

equidistant from both.  However, cell lines A and c12 were less positively projected in PC1, while 

cell lines AT and CA1 were more positively projected in PC2 (Figure 4.6A).  This may indicate 

that PC2 is correlated with apoptotic behavior, as cell lines A and c12 largely resisted apoptosis.  

When we plotted by stimulus, we found that mock treated controls projected negatively in both 

PC1 and PC2, while high dose dox projected positively in PC2 (Figure 4.6B).  Interestingly, low 

dose dox projected between low and high dose etoposide.  These also formed a positive trend in 

PC1, indicating PC1 may be a measure of cell cycle dependent effects, as etoposide tended to 

induce cell cycle arrest.   

Finally, analyzing the raw loadings of signals and fates was quite informative (Figure 4.6C).  

We noticed a cluster in positive PC2 (Figure 4.6C, red) that consists of phospho-ATM, total and 

phospho-p53, Apoptosis, and G2.  We take this cluster to be a measure of DNA Damage signaling, 

which appeared to correlate strongly with both G2 checkpoint and apoptotic behavior.  

Interestingly, this cluster did not project closely to the p53 transcription target p21 (Figure 4.6C,   
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Figure 4.5.  Visual inspection of the dataset shows clear differences 

between cell lines in response to Topoisomerase inhibitors.  Time 

courses obtained from each sample are plotted for all signals and 

cell fates.  Each signaling plot represents the mean of 2 biological 

replicates over 6 time points.  Apoptosis and Cell Titer Glo plots 

represents the mean of 2 biological replicates over 2 time points, 

while cell cycle plots represent the mean of 2 biological replicates 

over 4 time points.  Color coding indicates the timing of signaling 

events: early, transient or late, decreasing, or sustained. 
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Figure 4.6 (Next Page). PCA analysis of the dataset reveals some 

surprising insights into the nature of cellular signaling downstream 

of Topoisomerase inhibitors.  The entire dataset including signals 

and cell fates was reduced to 2 principal components.  Scores plots 

indicate an aggregate measure of all data collected of each type 

compared to the rest of the dataset.  (A) Scores plot separated by cell 

line indicates that cell line A and CA1 were maximally 

differentiated, with AT and c12 approximately equidistant between 

A and CA1.  (B) Scores plot broken down by cell line indicate that 

signaling and cell fates downstream of low dose dox are more 

similar to both low and high dose etoposide than high dose dox.  (C) 

Loadings for specific measurements are projected into component 

space.  A cluster of DNA damage-related signaling is indicated in 

red, and is correlated with apoptosis.  While this cluster includes 

total p53 and p-p53, the transcription target p21 (yellow) is not 

strongly correlated with the DNA damage cluster.  p-Akt and p-Rb 

are closely correlated (green), and together may be informative of 

cell cycle progression.  Notably, however, they are not closely 

correlated to any of the measures of cell cycle, which are indicated 

in blue and are themselves not closely correlated with each other.   
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Figure 4.6 (Continued). 
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yellow), which projected negatively in PC1.  By contrast, the proliferative markers phospho-Akt 

and phospho-pRb were found to project positively in PC1, in agreement with Figure 4.6B.  

Interestingly, however, neither p21 nor p-Akt/p-Rb was closely correlated to any of the direct 

measurements of cell cycle status (Figure 4.6C, blue).  G1 in particular was projected negatively 

in both PC1 and PC2, correlating strongly with cell line A, which lends support to the idea that the 

G1-S checkpoint is quickly lost in tumor progression.  Indeed, loss of G1-S checkpoint has been 

considered as mandatory for cancer development (Foijer and te Riele, 2006).   
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4.3.Future work 

The PCA analysis we have done so far implies that apoptosis and cell cycle effects are not 

opposites on one axis, but rather orthogonal.  This implies that the traditional understanding of cell 

cycle checkpoints and progression as “survival” and apoptosis as “death” may be incomplete, and 

that the true opposite of apoptosis may be an alternative cell fate such as autophagy.  We would 

like to test this hypothesis by taking further cell fate measurements in autophagy and RIP kinase 

as a measure of necroptosis.  Furthermore, it is interesting that the G1 checkpoint is active in cell 

lines A and c12 but lost in cell lines AT and CA1, especially considering that p16 is deleted in all 

four cell lines (Kadota et al., 2010).  Understanding how this G1 checkpoint was lost in AT cells 

but then regained after xenograft passage through a mouse in c12 cells, then lost again in CA1 

cells warrants further study.   

At the time of this writing, we have not yet finished analyzing PLSR models of the dataset.  

We hope to complete this analysis and use it to generate hypotheses based on signals that correlate 

strongly with apoptosis or checkpoint activation.  Because p-Erk was included in the cluster of 

pro-apoptotic signaling in PCA, we suspect inhibition of Erk may well dampen apoptotic response 

in.  If this is the case, it is possible that giving a patient a cocktail of genotoxic drugs in combination 

with Erk inhibitors may well be counterproductive.  We intend to test this prediction in the future, 

and hope this dataset may provide insight into the combinations of molecular changes in the DNA 

Damage Response that corresponds to tumor progression.    
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4.4.Conclusions 

One of the greatest mysteries in cancer is the order in which specific molecular events that 

cause normal cells to become tumorigenic.  In particular, while we know that cancer cells become 

sensitized to genotoxic chemotherapy over the course of transformation, the mechanism and the 

timing for sensitization remains largely unclear.  Moreover, genotoxic chemotherapies can have 

severe, even intolerable side effects, and to understand these side effects we should study their 

effects in normal cells.  We believe that in order to answer these questions, the MCF10 progression 

series of isogenic cancer cell lines is ideal. 

We began by screening a panel of clinically used topoisomerase inhibitors against the MCF10 

progression lines for efficacy in lowering viable cell count over 2 days, and found that the four 

cell lines have differential sensitivities.  Surprisingly, progression did not directly correlate with 

susceptibility to chemotherapy, indicating that sensitization to chemotherapy can be a 

discontinuous process over the course of tumor progression.  We therefore believe biomarkers 

should be measured within a tumor before initiating treatment, as targeted therapy supported by a 

priori information on internal signaling within the tumor is likely to improve efficacy.   

We also used FACS assays to measure checkpoint activation and apoptotic signature.  Cell 

cycle analysis indicated very high G2 checkpoint activation in both AT and CA1 cells, indicating 

a possible loss of G1 checkpoint and reliance on G2 checkpoint, a hallmark of cancer progression.  

Curiously, the G1 checkpoint seemed to be very much intact in c12 cells, suggesting a reversion 

that may be a result of selection pressure from xenograft passage through a mouse.  The cell cycle 

profile at 24 and 48 hours after treatment was mostly unchanged, indicating that cells are probably 

not suspended in checkpoint indefinitely and can escape after some time.  Apoptotic assays 

demonstrated that the MCF10A cell lines did not stain for cleaved PARP in all but a few 
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stimulations.  However, caspase-3 could be observed in response to topoisomerase inhibition 

across all cellular backgrounds and was therefore used to separate apoptotic cells from non-

apoptotic cells.  Apoptotic response in A and c12 cells were was limited in all cases except high 

dose dox, while AT and c12 cells were much more prone to apoptosis.  This data supports the idea 

that the G1 checkpoint is a protective feature of normal cells and loss of G1 checkpoint is 

correlated with both tumor aggressiveness and apoptotic potential.  In cell cycle and apoptosis 

assays, we observed that doxorubicin was a far more potent drug for apoptosis while etoposide 

potently activated checkpoints.  Perhaps this information as well should guide how these drugs are 

used in the clinic in the context of MCF10CA1-like, triple negative breast tumors. 

Having established that the Topo II inhibitors produce varied signaling responses in the 

MCF10 lines, we next conducted a multiplexed stimulation with 2 doses of each drug.  We 

validated a set of 39 antibodies against various DNA damage response and apoptosis targets for 

use in all 4 cell lines.  We then collected a set of 144 conditions and measured multiplexed cellular 

signaling response over a long time course.  Finally, statistical analysis has shown some intriguing 

correlations worth further exploration.  PCA analysis indicates that a cluster of ATM/p53/ERK 

signaling correlate with apoptosis and G2.  However, on an orthogonal dimension, p-Akt/p-pRb 

and p21 are anticorrelated, indicating intracellular cell cycle signaling is statistically 

distinguishable from apoptotic signaling, and that survival and apoptosis may not be opposites, but 

rather orthogonal.  Inclusion of alternative cell fates such as necroptosis and autophagy may reveal 

the true complexity of cell fates downstream of chemotherapy. 

Over the course of this experiment, we found that lysate microarray technology was useful for 

gathering datasets for statistical analysis of signaling data.  Coupling this technique with others 

such as FACS and luminescence-based assays is a successful strategy to build rich, informative 
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datasets that give unique insight into biological systems.  We believe that to fully appreciate the 

complexity of biological systems cooperating to make decisions that guide cell fate, we must have 

techniques that are capable of massively parallel simultaneous measurements.  We expect lysate 

microarrays to continue to be a fruitful tool of the future in such multiplexed research.    
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4.5. Tables 

Table 4.1 – Full list of screening lysates used to antibody validation 

         

Condition A AT c12 CA1     

DMSO 1 2 3 4     

NCS 5 6 7 8     

Starved 9 10 11 12  Dilution Series A only Parent Sample # 

EBSS 13 14 15 16  Serum Shock 73-78 17 

Ser Shocked 17 18 19 20  NCS 79-84 5 

TNF 21 22 23 24  Confluent (G1) 85-90 37 

UV (1 hr) 25 26 27 28  Dox 91-96 33 

IR 29 30 31 32  Aphidicolin (S) 97-102 41 

Dox 33 34 35 36  Nocodozole (M) 103-108 49 

Conflu. (G1) 37 38 39 40     

Aphidicolin (S) 41 42 43 44     

IR 36 hr (G2) 45 46 47 48     

Noco (M) 49 50 51 52     

DTB 0 (eS) 53 54 55 56     

DTB+4 (S) 57 58 59 60     

DTB+8 (G2) 61 62 63 64     

DTB+12 (M) 65 66 67 68     

DTB+16 (G1) 69 70 71 72     

 

Table 4.1. Full list of control lysates selected for antibody validation 

in MCF10 series.  Lysate conditions were selected to activate every 

node for which we had an antibody, in at least one condition.  Left: 

number represents the order in which lysate was printed on arrays.  

Right: Control lysates and dilution series, using only MCF10A 

sample as parent.  DTB = Double Thymidine Block (synchronized 

in early S phase) 
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Table 4.2 – Full list of Antibodies Validated for Use in 

MCF7, MB-453, and BT20 cells 

    

Antibody Comp Cat# Species 

p53 CST 2524 Mouse 

p-BCL-2 (S70) CST 2827 Rabbit 

p21 Waf1/Cip CST 2947 Rabbit 

p-mTOR (S2448) CST 2971 Rabbit 

p-NF-KB p65 (S536) CST 3033 Rabbit 

p-MDM2 (S166) CST 3521 Rabbit 

p-GYS2 (S641) CST 3891 Rabbit 

p-Akt1/2/3 (S473) CST 4060 Rabbit 

p-ERK1/2 (T202/Y204) CST 4376 Rabbit 

p-Wee1 (S642) CST 4910 Rabbit 

p-ATM (S1981) Epitomics  Rabbit 

p-BAD (S112) CST 5284 Rabbit 

p-cdc2 (Y15) CST 9111 Rabbit 

p-SAPK/JNK (T183/Y185) CST 9251 Rabbit 

p-Akt1/2/3 (S473) CST 9271 Rabbit 

p-p53 (S15) CST 9284 Rabbit 

p-p53 (S20) CST 9287 Rabbit 

p-Rb (S807/S811) CST 9308 Rabbit 

p-GSK-3a/3b (pS21/pS9) CST 9331 Rabbit 

c-PARP (Asp 214) CST 9541 Rabbit 

c-Caspase 3 (D175) CST 9661 Rabbit 

p-H2AX (S139) CST 9718 Rabbit 

p-ATM (S1981) Upstate 05-740 Mouse 

p53 CST 2527 Rabbit 

BID CST 2002 Rabbit 

p-Chk1 (S345) CST 2348 Rabbit 

p-Hsp27 (S82) CST 2401 Rabbit 

p27 CST 2552 Rabbit 

Cyclin D1 CST 2922 Rabbit 

Bim CST 2933 Rabbit 

SMAC CST 2954 Mouse 

RIP CST 3493 Rabbit 

p-JNK (T183/Y185) CST 4671 Rabbit 

 p-p38 (T180/Y182) CST 9215 Rabbit 

p53 CST 9282 Rabbit 

cleaved casp-8 CST 9496 Rabbit 

cleaved casp-9 CST 9501 Rabbit 

p-cdc25C (S216) CST 9528 Rabbit 

cleaved casp-6 CST 9761 Rabbit 

 

Table 4.2. Full list of Antibodies Validated for use in all cell lines 

in the MCF10 progression series.  All antibodies were selected from 

primary screening using control lysates, then individually validated 

for positive, linear, specific signal in immunoblots.    
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4.6. Experimental Methods 

Antibody Reagents 

Pan and phospho-specific antibodies for signaling proteins were purchased from Abcam 

(Cambridge, MA), BD Biosciences (San Jose, CA), Cell Signaling Technology (Beverly, MA), 

Santa Cruz Biotechnology (Santa Cruz, CA), and Upstate (Charlotteville, VA).  Mouse 

monoclonal anti-β-actin antibody (clone AC-15) was purchased from Sigma-Aldrich (Saint Louis, 

MO), rabbit monoclonal anti-β-actin antibody was catalog # 4970 (Cell Signaling Technology 

(Beverly, MA)).  Secondary detection antibodies were purchased from Li-Cor Biosciences 

(Lincoln, NE).   

 

Cell Culture 

All cell lines were obtained from the Karmanos Institute (Detroit, MI) and maintained at low 

passages (<20) in various medias (See Appendix A).   

 

Cell Response Assays: Apoptosis 

Following treatment, cells were washed and trypsinized, saving all floater cells.  Fixation 

using 4% paraformaldehyde at room temperature for 15 minutes was followed by resuspension in 

ice-cold methanol and overnight incubation at -20°C.  Cells were washed in PBST, blocked for 1 

hour in BSA/PBST, and stained with antibodies against cleaved-caspase-3 and cleaved-poly(ADP-

ribose) polymerase (PARP) (BD PharMinogen).  Secondary Alexa-conjugated detection 

antibodies were used for visualization in a BD FacsCalibur flow cytometer (Molecular Probes).  

Analysis was done using FloJo, and because cleaved-PARP was not always observed, cells 

positive for cleaved-caspase-3 were scored as apoptotic. 
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Cell Response Assays: Cell Cycle 

Following treatment, cells were fixed in 70% ethanol overnight at -20°C, permeabilized with 

PBS-Triton for 20 min at 4°C, blocked with 1% BSA, and incubated with antibodies against 

phospho-Histone H3 (Millipore).  After washing, cells were incubated with Alexa-488 conjugated 

secondary antibody on ice, washed, and stained with 50 μg/mL propidium iodide (PI) prior to 

analysis.  A BD FacsCalibur flow cytometer was used, and analysis was done using FloJo utilizing 

the Dean-Jett-Fox algorithm. 

 

Cell Response Assays: Viable Cell Count 

Cells were plated at 10,000 cells/well in 96-well optical glass bottom white walled plates, then 

stimulated.  Metabolic viability was measured using Cell Titer Glo (Promega) according to 

manufacturer protocol.  Normalization was always to untreated sample. 

 

Western Blotting 

Cell lysates were prepared as described previously (Sevecka et al., 2011).  Crude lysates were 

filtered in AcroPrep 96 well 3.0 μm glass fiber/0.2 μm BioInert filter plate (Pall), then normalized 

for total protein content using the BCA assay (Pierce).  Blots were run using 48-well precast gels 

and transferred using semi-dry fast transfer apparatus onto nitrocellulose membranes (e-PAGE, i-

Blot, Invitrogen).  Blots were blocked in Odyssey blocking buffer (Li-Cor), incubated overnight 

with primary antibody, stained with secondary antibodies conjugated to an infrared die, then 

visualized using an Odyssey flat bed scanner (Li-Cor).   
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Microarray Fabrication and Probing 

Custom lysate microarrays were printed in-house using an Aushon 2470 arrayer (Aushon 

Biosytems, (Billerica, MA)) on 16-pad nitrocellulose-coated glass slides (Grace Biolabs (Bend, 

OR)).  Lysates were printed at 333 μm spacing using steel solid 110 μm pins, which resulted in an 

average feature diameter of 170 μm.  Lysates were printed in technical duplicates.  Slides were 

stored in a dry, dark, room temperature environment until probing.  Probing was done according 

to previous protocol (Sevecka et al., 2011). 

 

Analysis of Microarray Data 

Signal intensities from target proteins were normalized using the β-actin signal intensities 

from the same spot to normalize for spotting variation.  Data from duplicate spots were averaged, 

and the ratio of signal from treated samples to reference control sample computed for each target 

protein.  For each antibody specific to a protein measured, we calculated a value according to 

Equation 4.1. 

 

 

Equation 4.1.  Calculation for upregulation of signal post treatment.  

“Signal” refers to the fluorescence measured from the variable 

antibody, “β-actin” refers to the fluorescence measured from the β-

actin antibody, “t” refers to the treatment condition being considered, 

and “ref” refers to a reference condition, a mock treated sample at 

t=1.   

 

Computational Modeling and Statistics 

The dataset was processed extensively before PCA analysis.  ANOVA analysis was performed 

by splitting the dataset into mock treated versus treated samples, then comparison for statistical 
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significance for variation.  Those antibodies without statistically significant variation (p>.10) were 

omitted.  After ANOVA testing, each signal was normalized by the following equation: 

 

 

Equation 4.2.  Normalization of antibody data to 

nondimensionalize the different measurements.  y is the normalized 

value, x is the prenormalized value, xmax is the measurement most 

distant from the mean, positive or negative.  Applying this equation 

to an antibody results in a dataset with mean = 0 and all values 

varying between -1 and 1.   

 

PCA analysis was performed using DataRail using the PCA/PLSR function (Saez-Rodriguez 

et al., 2008).   
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Appendix A: Composition of Solutions 

1X Phosphate-Buffered Saline (PBS) 

0.8% sodium chloride (NaCl) 

0.02% potassium chloride (KCl) 

0.144% disodium hydrophosphate (Na2HPO4) 

0.024% potassium dihydrophosphate (KH2PO4) 

pH to 7.4 

 

2% SDS Lysis Buffer 

50 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) 

2% sodium dodecyl sulfate (SDS) 

5% (w/v) glycerol 

5 mM ethylenediaminetetraacetic acid, sodium salt (Na2EDTA) 

1 mM sodium fluoride (NaF) 

1 per 50 mL protease inhibitor tablets 

1% (v/v) phosphatase inhibitor cocktail 

10 mM β-glycerophosphate 

1 mM phenylmethylsulphonylfluoride (PMSF) 

1 mM sodium orthovanadate (Na3VO4), depolymerized 

1 mM dithiothreitol (DTT, Cleland’s reagent) 

pH to 6.8 

 

PBS/Tween (PBST) 

1X PBS 

0.1% (v/v) Tween-20 

 

PBS/Triton (PBS-Triton) 

1X PBS 

0.25% (v/v) Triton X-100 

 

Microarray Pre-Wash Buffer 

100 mM Tris-HCl, pH 9 

 

Culture Medium for HepG2 cells 

90% Dulbecco’s modified Eagle’s medium (DMEM) 

10% fetal bovine serum (FBS) 

2.5 μg/mL fungizone 

5 μg/mL gentamycin 
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100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for MCF10A, MCF10AT cells 

1X HuMEC basal serum free medium 

1X HuMEC supplement kit 

100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for MCF10AT1.c12, MCF10CA1.H cells 

95% Dulbecco’s modified Eagle’s medium (DMEM) 

5% fetal bovine serum (FBS) 

2 mM L-glutamine 

100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for BT 20 cells 

90% Minimum Essential Medium (MEM) + Earle’s Salts 

10% fetal bovine serum (FBS) 

2 mM L-glutamine 

100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for A549, MDA-MB453, MCF7, MDA-MB231, MDA-MB468, MDA-

MB436, MDA-MB157 cells 

90% Dulbecco’s modified Eagle’s medium (DMEM) 

10% fetal bovine serum (FBS) 

2 mM L-glutamine 

100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for Hs578T cells 

90% Dulbecco’s modified Eagle’s medium (DMEM) 

10% fetal bovine serum (FBS) 

2 mM L-glutamine 

10 μg/mL insulin 

100 I.U./mL penicillin 

100 μg/mL streptomycin 
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Culture Medium for Hs578BST cells 

90% Dulbecco’s modified Eagle’s medium (DMEM) 

10% fetal bovine serum (FBS) 

2 mM L-glutamine 

30 ng/mL EGF 

100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for HCC-1143, HCC-1500, NCI-1650, NCI-358, BT-474 cells 

RPMI 1640 media 

10% fetal bovine serum (FBS) 

2 mM L-glutamine 

100 I.U./mL penicillin 

100 μg/mL streptomycin 

 

Culture Medium for cells 

RPMI 1640 media 

10% fetal bovine serum (FBS) 

2 mM L-glutamine 

1 μg/mL insulin 

100 I.U./mL penicillin 

100 μg/mL streptomycin 
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