

Privacy and the Complexity of Simple Queries

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation No citation.

Accessed February 19, 2015 12:28:23 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11041647

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28943931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11041647&title=Privacy+and+the+Complexity+of+Simple+Queries
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11041647
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Privacy and the Complexity of Simple Queries

A dissertation presented

by

Jonathan Robert Ullman

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

May 2013

c©2013 - Jonathan Robert Ullman

All rights reserved.

Dissertation Advisor: Salil P. Vadhan Jonathan Robert Ullman

Privacy and the Complexity of Simple Queries

Abstract

As both the scope and scale of data collection increases, an increasingly large amount of sen-

sitive personal information is being analyzed. In this thesis, we study the feasibility of effectively

carrying out such analyses while respecting the privacy concerns of all parties involved. In partic-

ular, we consider algorithms that satisfy differential privacy [30], a stringent notion of privacy that

guarantees no individual’s data has a significant influence on the information released about the

database. Over the past decade, there has been tremendous progress in understanding when accu-

rate data analysis is compatible with differential privacy, with both elegant algorithms and striking

impossibility results. However, if we ask further when accurate and computationally efficient data

analysis is compatible with differential privacy then our understanding lags far behind. In this the-

sis, we make several contributions to understanding the complexity of differentially private data

analysis:

• We show a sharp upper bound on the number of linear queries that can be accurately an-

swered while satisfying differential privacy by an efficient algorithm, assuming the existence

of cryptographic traitor-tracing schemes.

• We show even stronger computational barriers for algorithms that generate private synthetic

data—a new database that consists of “fake” records but preserves certain statistical prop-

erties of the original database. Under cryptographic assumptions, any efficient differentially

private algorithm that generates synthetic data cannot preserve even extremely simple prop-

erties of the database, even the pairwise correlations between the attributes.

• On the positive side, we design new algorithms for the widely-used class of marginal queries

that are faster and require less data.

Computational inefficiency is not the only barrier to effective privacy-preserving data analysis.

Another potential obstacle is that many of the existing differentially private algorithms do not

iii

guarantee privacy for the data analyst, which would lead researchers with sensitive or proprietary

queries to seek other means of access to the database. We also contribute to our understanding of

privacy for the analyst:

• We design new algorithms for answering large sets of queries that guarantee differential

privacy for the database and ensure differential privacy for the analysts, even if all other

analysts collude.

iv

Contents

Abstract . iii
Table of Contents . v
Acknowledgments . vii

1 Introduction 1
1.1 Contributions of this Thesis . 4

2 Background 8
2.1 Databases . 8
2.2 Differential Privacy . 8
2.3 Sanitizers and Counting Queries . 11
2.4 Some Differentially Private Algorithms . 14

3 Answering n2+o(1) Arbitrary Counting Queries is Hard 24
3.1 Results and Techniques . 24
3.2 Traitor-Tracing Schemes . 29
3.3 Attacking Efficient Sanitizers . 32
3.4 Constructions of Traitor-Tracing Schemes . 35

4 The Hardness of Generating Private Synthetic Data 50
4.1 Our Results and Techniques . 52
4.2 Relationship with Hardness of Approximation . 55
4.3 Hard-to-Sanitize Distributions from Hard CSPs 62
4.4 Relaxed Synthetic Data . 72

5 Faster Algorithms for Privately Releasing Marginal Queries 87
5.1 Our Results and Techniques . 88
5.2 Preliminaries . 92
5.3 From Low-Dimensional Approximations to One-Shot Sanitizers 94
5.4 Low-Dimensional Approximations . 97

6 Faster Algorithms for Marginal Queries on Small Databases 103
6.1 Introduction . 103

v

6.2 Preliminaries . 108
6.3 From Low-Weight Approximations to Sanitizers 109
6.4 Low-Weight Approximations . 113
6.5 Limitations of Low-Weight Approximations . 120

7 New Analyst-Private Algorithms 129
7.1 Introduction . 129
7.2 Preliminaries . 134
7.3 Solving Two-Player Zero-Sum Games . 136
7.4 A One-Query-to-Many-Analyst Private Sanitizer 140
7.5 A One-Analyst-to-Many-Analyst Private Sanitizer 149
7.6 Another One-Query-to-Many-Analyst Private Sanitizer 154
7.7 A Secrecy-of-the-Sample Lemma . 164

8 Conclusion 167

Bibliography 170

vi

Acknowledgments

I am extremely fortunate to have had Salil as my advisor. Salil is an amazing teacher, a brilliant

researcher, and an excellent mentor. But I’ll always be most amazed by how he sees things so

clearly that the right answer always seems obvious. Salil likes to joke that I never work with

him anymore, and prefer to work by myself or with other collaborators. The reality is quite the

opposite—I still can’t imagine venturing into the world of research without his guidance. When in

doubt, I will always ask myself what Salil would do.

In addition to Salil, my time at Harvard has been shaped by many fantastic people. I’ve had the

good fortune to call Maxwell-Dworkin 138 my office, and share it with a fun cast of characters:

Kai-Min, Zhenming, Anna, Colin, Justin, Varun, Thomas, Scott, Jiayiang, Jiapeng, Mark, Tom. I

thank them, and all the honorary MD138’ers for making sure I remembered to have fun. I would

like to thank each of my thesis committee members, Kobbi Nissim, Michael Mitzenmacher, and

David Parkes. And I also would like to thank Les Valiant and Radhika Nagpal, who served on my

qualifying committee. Carol Harlow has been instrumental in maintaining my sanity by covering

for my inability to do paperwork, and I sincerely thank her for that.

Although he has refused to accept the distinction, Boaz Barak is the reason I went to graduate

school. He “agreed” to advise my undergraduate senior thesis, introduced me to differential pri-

vacy, and treated me like I belonged in research well before I deserved it. Boaz also introduced

me to Adam Smith, who hosted me for an eye-opening trip to Penn State during my senior thesis,

which I am greatly thankful for. I also want to thank Cynthia Dwork who hosted me for a fan-

tastic internship at Microsoft Research. Cynthia’s talent and enthusiasm for research is a constant

inspiration. I have been fortunate to work with many great researchers, and I thank them all for

the great experiences. I would especially like to thank Moritz Hardt and Aaron Roth. Moritz and

Aaron have always given me great inspiration, great advice, and been great friends.

Harvard would have been a dreary experience without my girlfriend Hilary. Her support keeps

me going, her talents inspire me, and her velociraptor sounds both terrify and entertain me.

Anything I could say about my family in this space would be underwhelming. So I will simply

say thank you for always letting me figure it out on my own.

vii

Chapter 1

Introduction

Wider collection of data is predicted to have a transformative effect in areas as diverse as health-

care, education, government, and online commerce (see [48, 63, 56] for a few examples of such

claims), and research in statistics, machine learning, and the social sciences is rapidly generating

more powerful data analysis techniques to harness the commercial and social value of this data.

However, many of the richest and most important data sets are comprised of sensitive, private in-

formation. The result is a dilemma: allowing unrestricted access to and sharing of this data might

be unethical, illegal, or reputationally damaging for the data collectors, holders, and analysts, and

this harm cuts against the social benefit of analyzing the data. On the other hand, access to the

data can be partially or completely restricted, which gives up on some or all of the opportunities

for social benefits altogether. The field of privacy-preserving data analysis seeks to create a third

option by designing methods for analyzing sensitive data that enable researchers to realize the so-

cial benefits of the data without compromising individual privacy. However, combining these two

goals is a delicate task. Indeed, there have been several high profile “re-identifications” of suppos-

edly anonymous data sets that have lead to tighter control of sensitive data—the re-identification

of former Governor of Massachusetts William Weld’s medical records [85], re-identification of

certain users’ movie rental history in the Netflix dataset [69], and the re-identification of users

from AOL search records [11] being just a few examples. There are also academic papers suggest-

ing that many more datasets may be re-identifiable, such as databases of genetic information for

genome-wide association studies [49], anonymized social network graphs [68], and databases of

anonymized writing samples [67].

1

In this thesis we study privacy-preserving data analysis under differential privacy. Differen-

tial privacy, introduced by Dwork, McSherry, Nissim, and Smith [30] (building on [26, 34, 15])

is a stringent notion of privacy that guarantees no individual’s data has a significant influence on

the information released about the database. More precisely, a differentially private algorithm is

randomized, and comes with the guarantee that the distribution of the algorithm’s outputs remains

nearly unchanged, in a precise technical sense, if a single individual’s record in the database is

added or removed from the dataset. Intuitively, since no individual’s data has a significant influ-

ence on the output of the algorithm, then it is impossible for the algorithm to reveal a significant

amount of information specific to any one individual.1 We encourage the reader to look at the

excellent surveys by Cynthia Dwork [28, 29] for more interpretation of and the motivation behind

the definition of differential privacy.

For its strong guarantees, differential privacy comes at a price. Indeed, there has been a great

deal of attention on understanding to what extent differential privacy is compatible with useful data

analysis. In this thesis we will focus on a particular data analysis task—answering counting queries

on a sensitive database. Counting queries are of the form “What fraction of individual records in

the database D satisfy some property q?” In addition to being a natural framework for studying

the feasibility of differentially private data analysis, counting queries are a very general primitive

that enable a wide variety of computational tasks in statistics, machine learning, and computational

learning theory. The line of work on answering counting queries under the constraints of differen-

tial privacy has produced some beautiful and striking results, suggesting that a great deal of useful

data analysis is possible. These results roughly fall into three categories:

1) Some of the earliest results in differential privacy [26, 15, 30] gave a simple, efficient algo-

rithm capable of privately accurately answering nearly n2 counting queries, by perturbing

the answers to the queries independently with random noise. Here and in the sequel n = |D|
denotes the number of individual records in the database.

2) A beautiful and surprising result of Blum, Ligett, and Roth [16] showed how to approxi-

mately answer exponentially many counting queries on a sensitive database. There have been

several exciting developments [32, 46, 78, 35, 44, 42, 43, 50, 70] showing how to achieve

1This statement was only intended to provide intuition for why the guarantee of differential privacy has an intuitive
relationship to individual privacy. We caution the reader against taking it literally, as it requires care to correctly
interpret the guarantees made by differential privacy.

2

even stronger utility guarantees. All of these algorithms work by perturbing the answers to

the queries with carefully correlated noise, and as a result are computationally inefficient.

3) A parallel line of work, beginning with the seminal results of Dinur and Nissim [26] shows

that these algorithms achieve nearly optimal utility among all differentially private algo-

rithms in terms of the number of counting queries answered and the desired level of accu-

racy.

Together, these results give a clear and nearly-complete picture of when accurate data analysis

is consistent with differential privacy, at least when we consider counting queries. However, as

we’ve alluded to, some of the most powerful algorithms for differentially private data analysis

(those in item 2 above) are not computationally efficient. In many settings, the time to privately

answer the queries is exponential in the time to answer the queries without a guarantee of privacy.

As a result, the feasibility of differentially private data analysis is far less clear if we simultaneously

require differential privacy, accuracy for counting queries, and computational efficiency. The issue

of computational efficiency is not purely theoretical, as running time considerations have been an

important part of several of the empirical papers on answering counting queries under differential

privacy [60, 61, 43]. If we cannot achieve all three of these goals simultaneously, at least in

practice, then differential privacy cannot resolve the dilemma of analyzing sensitive data.

In addition to computational inefficiency, there are several other issues that threaten to prevent

the adoption of differentially private data analysis. One such issue is privacy for the data analysts,

which is ignored in the above discussion where we had assumed that the database itself is the only

sensitive information we wish to protect. However, the increased value of data also increases the

value of proprietary methods for analyzing that data. Unfortunately, due to the need to correlate the

answers to different queries in complex ways, answers to queries asked by one analyst of a data set

may leak information about the queries asked by another analyst. For example, suppose we have a

database consisting of sensitive information about the online activities and purchasing behavior of

different consumers. An online retailer may want to query this database in order to train a classifier

that will identify products new customers are likely to buy, and in particular this retailer’s com-

petitive advantage may be in knowing the best attributes to focus on when training the classifier.

If their competitor can also query the database, and the algorithm does not satisfy analyst privacy,

then the competing retailer may be able to learn which attributes have been considered by queries

most frequently, and thus steal the trade secrets of the first retailer. Revealing this information may

3

be quite costly for the data analysts. Even if we are not concerned about the economic costs to the

online retailer, there is a risk that if we cannot prevent their queries from being leaked, then they

may seek other ways to access the data that are less safe for the individuals in the database. In

addition to possible economic harms to the analysts, such as in the preceding example, the queries

asked to the database may be embarrassing or stigmatizing, for instance if an analyst is trying to

determine how many participants in the database would support a political position that is believed

to be significantly out of the mainstream. Designing ways to access the database that satisfy dif-

ferential privacy not only for the data subjects, but also for the data analysts is a potential way to

address all of these concerns and ease the path to adoption for privacy-preserving data analysis.

1.1 Contributions of this Thesis

In this thesis we present several new results on the complexity of differentially private data

release, and on the possibility of satisfying differential privacy for the analyst. We now give a

high-level summary of these results.

1.1.1 The Complexity of Natural Private Data Analysis Tasks

In Chapters 3 and 4 we show that computational complexity is a barrier for effective differen-

tially private data analysis, even for natural data analysis tasks.

Our first contribution to this area is to demonstrate that, under standard cryptographic assump-

tions (namely, the existence of one-way functions), there is no efficient differentially private algo-

rithm capable of accurately answering even n2+o(1) arbitrary counting queries. Here an efficient

algorithm would be one whose running time is polynomial in the size of the database and the time

required to evaluate the queries without a guarantee of privacy. This result is essentially optimal

with respect to the number of queries, as the simplest differentially private algorithm—the Laplace

mechanism—accurately answers Ω̃(n2) counting queries. One way to summarize this result is that

if unless we restrict the types of queries we want to answer, or allow exponential running time,

then the Laplace mechanism is essentially the best possible differentially private algorithm. We

prove this result by refining and extending the connection between differential privacy and crypto-

graphic traitor-tracing schemes discovered by Dwork et al. [32]. This work is forthcoming in the

Symposium on Theory of Computation (STOC 2013) [88].

4

Although the previous result is essentially tight with respect to the number of queries, it is

not tight with respect to the type of queries. Indeed, the “hard queries” for the previous result

will be rather complex, and unlikely to reflect the type of queries a real data analyst would ask

about the database. Thus, a logical question to ask is whether or not it is possible to answer many

more than n2 “simple” queries. Our second contribution is to show even stronger computational

barriers that apply even to very simple queries and rule out a particular type of differentially private

algorithm. In particular, we show strong hardness results for algorithms that generate synthetic

databases—roughly, a new database with “fake” records that preserves certain properties of the

original database. We show that, assuming the existence of one-way functions, there is no efficient

algorithm that generates a private synthetic database even if we only want to preserve the answers

to 2-way marginal queries (roughly the means of and pairwise correlations between attributes).

Our proof builds on the technique of Dwork et al. [32], who showed a similar result but for a small

but seemingly unrealistic family of queries. This work is joint with Salil Vadhan, and appeared in

the Theory of Cryptography Conference (TCC 2011) [89].

1.1.2 Faster Algorithms for Privately Answering Marginal Queries

A natural approach to circumventing the computational hardness results of Chapters 3 and 4 is

to find algorithms capable of answering large numbers of simple, natural counting queries, without

generating synthetic data. Arguably the simplest, natural family of queries are k-way marginal

queries. A k-way marginal query is asked on a database D whose records are strings of d bits,

specifying each individual’s value for d binary attributes. The query is specified by a set S ⊆ [d],

|S| ≤ k, and a pattern t ∈ {0, 1}|S|. The query asks, “What fraction of the individual records in

D has each of the attributes j ∈ S set to tj?” The set of k-way marginal queries, also known as

the “k-way contingency table” of the database, is a workhorse for statistical data analysis at orga-

nizations such as the US Census Bureau, and are a natural test-case for the power and feasibility

of differentially private data analysis. The number of k-way marginal queries is roughly dΘ(k),

thus we could answer all such queries in time dΘ(k) on a database of size dΘ(k) using the Laplace

mechanism.

A previous series of results [41, 22, 45, 38] have used techniques from computational learning

theory to circumvent the computational barriers and give more efficient algorithms for privately

releasing marginal queries. However, these results leave several open questions that we partially

5

address. One weakness of these algorithms is that they do not yield accurate answers to every

marginal query, but rather give answers that have small average error over various distributions on

marginal queries. In Chapter 5, we give a differentially private algorithm that releases a summary

of the database from which an analyst can compute an accurate answer to every k-way marginal

query. The running time of the algorithm and the summary is dO(
√
k) and the answers will be

accurate as long as n ≥ dO(
√
k). This work is joint with Justin Thaler and Salil Vadhan, and

appeared in the International Colloquium on Automata, Languages, and Programming (ICALP

2012) [87].

In order to give accurate answers, the algorithm in Chapter 5 and all prior algorithms for this

problem require a database that is much larger than what would be needed for an exponential time

algorithm. Recent experimental results by Hardt et al. [43] suggest that an exponential-time algo-

rithm based on the private multiplicative weights mechanism [44] is not far from being practical

and provides much better accuracy than other techniques when the database is relatively small.

Motivated by their experiments, we consider the possibility of designing algorithms for answering

k-way marginal queries on “small” databases with subexponential running time. In Chapter 6,

we give a differentially private algorithms that approximately answers all k-way marginal queries

on a database of size Θ(kd.51) in time exp(d1−Ω(1/
√
k)). The minimum database size required by

our algorithm nearly matches the best-known information theoretic upper bound of Õ(k
√
d) [44]

and matches the best-known information theoretic lower bound of Ω̃(max{k,
√
d}) when k is

small [76, 90].

The algorithms of Chapter 5 and 6 are all based on the idea of encoding the answers to the

k-way marginal queries in a function (depending on the sensitive database) and privately learning

that function, which was introduced by Gupta et al. [41].2 Our private learning algorithms are

based on approximations to that function by low-degree polynomials, and in Chapter 6, we prove

various new upper and lower bounds on the degree of such approximating polynomials that may

have applications outside of differential privacy. The results of Chapter 6 are joint with Karthik

Chandrasekaran, Justin Thaler, and Andrew Wan [21].

2Here, the notion of private learning is defined with respect to the database defining the function being learned,
in contrast to previous works on “private learning” (e.g. [51]) where privacy is defined with respect to the examples
given to the learning algorithm.

6

1.1.3 Differential Privacy for the Analyst

Computational complexity is not the only barrier to effective differentially private data anal-

ysis. Another barrier is that differentially private algorithms may not be entirely “safe” for an

analyst to use, as essentially any algorithm capable of answering large number of queries must

correlate its answers to the queries, and thus leak information about the sequence of queries that

were asked [33]. While this leakage seems harmless if we assume the queries are issued by a single

data analyst, in practice there will be multiple parties interested in analyzing sensitive data sets,

and the queries they ask may themselves be sensitive or proprietary. Motivated by these concerns,

Dwork, Naor, and Vadhan [33] introduced the notion of analyst differential privacy, and showed

the existence of an algorithm that answers exponentially many queries on a sensitive database and

ensures differential privacy not only for the database but for the queries made on the database.

The algorithm of Dwork et al. [33] suffers a few shortcomings: Their algorithm does not

achieve an optimal rate of error compared with algorithms that do not guarantee analyst privacy.

Also, their algorithm does not ensure differential privacy for the analyst if the other analysts col-

lude or make queries under multiple identities. Finally, their algorithm is only capable of answering

counting queries, and not arbitrary low-sensitivity queries.

In Chapter 7 we present a suite of new analyst-private algorithms. Some of our algorithms

answer linear queries with error poly(d, |Q|)/
√
n, and thus has the optimal dependence on n, even

among algorithms that do not guarantee analyst privacy [26]. Another algorithm is capable of an-

swering exponentially many counting queries while guaranteeing differential privacy for the entire

set of queries asked by a single analyst, even if all other analysts collude. Yet another algorithm

is capable of answering arbitrary low-sensitivity queries. All of our algorithms are inspired by

a novel view of the private counting query release problem as privately computing equilibrium

strategies for a two-player zero-sum game. This viewpoint unifies and generalizes several previous

approaches, in addition to enabling new results on analyst privacy.

7

Chapter 2

Background

In this chapter we will introduce the notation and standard results about differential privacy

that we rely on throughout this thesis.

2.1 Databases

We define a database D ∈ ({0, 1}d)n to be a collection of n rows (x(1), . . . , x(n)) ∈ {0, 1}d.
We will always assume that n is public information (and thus not subject to privacy considerations)

and that the order of rows in D is irrelevant. We sometimes refer to {0, 1}d as the data universe.

Two databases D,D′ ∈ ({0, 1}d)n are adjacent if they differ only on a single row, and we denote

this relationship by D ∼ D′. An alternative way to represent the database is not as a collection of

rows from {0, 1}d, but rather as a probability distribution over {0, 1}d. In this representation, we

view the database as a probability mass function D : {0, 1}d → [0, 1] where D(x) is the fraction of

rows in D equal to the universe element x. For any two adjacent databases D ∼ D′, the resulting

probability distributions will satisfy

1

2

∑
x∈{0,1}d

|D(x)−D(x′)| = 1

n
.

2.2 Differential Privacy

The notion of differential privacy was formalized in the work of Dwork, McSherry, Nissim,

and Smith [30].

8

Definition 2.1 (Differential Privacy). Let M : ({0, 1}d)n → R be a randomized algorithm that

takes a database as input (where n and d are varying parameters).M is (ε, δ)-differentially private

if for every two adjacent databases D ∼ D′ and every S ⊆ R,

Pr [M(D) ∈ S] ≤ eεPr [M(D′) ∈ S] + δ.

IfM is (ε, δ)-differentially private for some functions ε = ε(n) = O(1), δ = δ(n) = negl(n), we

will drop the parameters ε and δ and say thatM is differentially private.

Informally, differential privacy ensures that the contents of a single row of the database do not

significantly influence the output distribution of the algorithm. As a consequence, an adversary

who knows all the rows of the database but one, “cannot learn much” from seeing the output of a

differentially private algorithm applied to that database.

Differential privacy is easy to achieve on its own; simply ignore the database and output ⊥.

Thus, the goal is to find useful algorithms that satisfy this definition. For example, it is possible to

approximately compute the value of a function on the database while satisfying differential privacy

by evaluating that function, and then adding noise whose standard deviation is somewhat larger

than the maximum influence a single row of the database can have on the output of the function.

By doing so, the contents of that row do not significantly influence the output. This approach is

typically known as the Laplace mechanism, and is discussed in more detail in Section 2.4.1.

In this thesis, we will assume that the range R is discrete. Doing so has a number of ad-

vantages: it avoids subtleties in the definition of differential privacy that arise when the range is

continuous and it also avoids certain security vulnerabilities that arise in the implementation of

real-valued differentially private algorithms using floating-point arithmetic, discovered in a clever

attack by Mironov [65]. Nonetheless, many differentially private algorithms, such as the Laplace

mechanism, are mathematically cleaner to define and analyze using a continuous range of outputs.

In Section 2.4.1 we discuss how to implement the continuous Laplace mechanism using a discrete

range without significantly degrading its guarantees. For the other algorithms we discuss, we will

suppress this issue and use a continuous range when appropriate, with the understanding that these

algorithms can be modified to have a discrete range without affecting the results substantively.

We conclude this section with a useful lemma that gives a sufficient condition for an algorithm

to be differentially private. In some cases it is easier to establish this condition than it is to establish

differential privacy directly.

9

Lemma 2.2 ([35]). LetM : ({0, 1}d)n → R be an algorithm. For any ε, δ > 0, if it holds that for

every pair of adjacent databases D ∼ D′,

Pr
r←RM(D)

[∣∣∣∣ln(Pr [M(D) = r]

Pr [M(D′) = r]

)∣∣∣∣ ≤ ε

]
≥ 1− δ,

thenM satisfies (ε, δ)-differential privacy.

Note that, since we have assumedR is discrete, we are justified in writing Pr [M(D) = r].

2.2.1 Composition of Differentially Private Algorithms

An important property of differential privacy is that it is well-behaved under composition.

The simplest composition theorem for differential private states that if M1 and M2 are (ε, δ)-

differentially private algorithms then the algorithm M(D) = (M1(D),M2(D)) is a (2ε, 2δ)-

differentially private algorithm. By induction, this property implies that if we apply T (ε, δ)-

differentially private algorithms to D, then the result is (Tε, Tδ)-differentially private. For our

results, we will use an even stronger composition property, due to Dwork, Roth, and Vadhan [35].

First, they showed that the rate at which differential privacy decays under T -fold composition can

actually be shown to be approximately
√
T , rather than linear in T . They also showed that these

bounds on the deterioration of privacy under composition hold even if the sequence of algorithms

M1, . . . ,MT is chosen adaptively. We model adaptive composition via a game with a (computa-

tionally unbounded) privacy adversary A, described in Figure 1.

Let D ∈ ({0, 1}d)n be a database, A be an adversary, and T ∈ N be a parameter.

For t = 1, . . . , T :

A(y1, . . . , yt−1) chooses an (ε0, δ0)-differentially private algorithmMt : ({0, 1}d)n → R.

yt ←R Mt(D).

End For

Output: y1, . . . , yT

Figure 1: A framework for adaptive composition.

We can now formally state the composition properties of differential privacy as follows:

10

Theorem 2.3 (Composition of Differential Privacy [30, 35]). Fix any 1/2 ≥ ε0, δ0 > 0. For

every adversary A, database D ∈ ({0, 1}d)n, and y1, . . . , yT ∈ R, letMA(D) be the algorithm

obtained by performing the experiment of Figure 1 and outputting y1, . . . , yT . Then we have

1) MA is (Tε0, T δ0)-differentially private, and

2) for any δ > 0,MA is (ε, T δ0 + δ)-differentially private for

ε =
√

2T log(1/δ)ε0 + 2Tε2
0.

In particular, if an algorithmM can be expressed as the T -fold adaptive composition of (ε0, 0)-

differentially private algorithms for ε0 ≤ ε/T , thenM is (ε, 0)-differentially private. Further, if

M can be expressed as the T -fold adaptive composition of (ε0, 0)-differentially private algorithms

for ε0 ≤ ε/
√

8T log(1/δ), thenM is (ε, δ)-differentially private.

2.3 Sanitizers and Counting Queries

For our study, we must define a data analysis task that we would like to accomplish while sat-

isfying differential privacy. In this work we focus on differentially private algorithms that answer

counting queries on the sensitive database. A counting query on {0, 1}d is defined by a function

q : {0, 1}d → [0, 1]. Counting queries are also referred to as linear queries.3 Abusing notation, we

define the evaluation of a query q on a database D = (x(1), . . . , x(n)) ∈ ({0, 1}d)n to be

q(D) =
1

n

n∑
i=1

q(x(i))

When d is a varying parameter, we use Q(d) to denote a set of counting queries on {0, 1}d and

Q =
⋃
d∈NQ(d). Typically we simply write Q when d is clear from context.

We call algorithms that answer counting queries sanitizers. A sanitizer takes a database and

a sequence of counting queries from some family Q as input and returns a sequence of answers

to those queries. Formally a sanitizer is a functionM : ({0, 1}d)n × (Q(d))k → Rk (where n, d,

and k are varying parameters). Here we assume thatM simply returns a list of k real-valued an-

swers, with the understanding that the j-th component of the output is an answer to the j-th query.

3Typically a counting query is define by a predicate q : {0, 1}d → {0, 1} whereas linear query is defined by a
real-valued function q : {0, 1}d → [0, 1]. However, we use counting query for the more general definition.

11

This assumption will turn out to be without loss of generality, even if we consider computational

efficiency. Any algorithm that encodes the answers to each of the queries in some arbitrary effi-

cient data structure can be converted to one that encodes its answers as a list of real numbers by

querying the data structure k times. Since the length of M’s input is at least k, this additional

computation time is acceptable. Definition 2.1 extends naturally to sanitizers by requiring that for

every Q = (q1, . . . , qk) ⊆ Q, the sanitizerMQ(·) = M(·, Q) is (ε, δ)-differentially private as a

function of the input database.

Now we formally define what it means for a sanitizer to accurately answer counting queries

Definition 2.4 (Accuracy of Sanitizers). Let D be a database and Q = (q1, . . . , qk) be a set of

counting queries and α > 0 be a parameter. A sequence of answers a1, . . . , ak is α-accurate for

q1, . . . , qk on D if

∀j ∈ [k], |qj(D)− aj| ≤ α.

Let Q be a set of counting queries, k ∈ N and α, β > 0 be parameters. A sanitizerM is (α, β)-

accurate for k queries from Q if for every database D ∈ ({0, 1}d)n and every sequence of queries

Q = (q1, . . . , qk) ⊆ Q

Pr
M’s coins

[M(D,Q) is α-accurate for Q on D] ≥ 1− β.

In some cases we will suppress certain parameters from the definition of accuracy. In particular, if

M is (α, β)-accurate for k queries fromQ, for every k ∈ N and some α, β (possibly depending on

the other parameters), we will say thatM is (α, β)-accurate for Q. When Q is clear from context

we will suppress it, and if β is omitted it should be assumed to be some function β = β(n) =

negl(n). IfM is α-accurate for k queries from Q, for α = 1/3, we will drop α and β and say that

M is accurate for k queries from Q.

The above definition of a sanitizer captures the setting where the queries are specified by the

analyst. Many applications of differential privacy necessitate a one-shot data release, where the

data owner computes and publishes a single differentially private summary of the database that

enables analysts to compute an answer to any query in Q. In this setting, we typically think of the

class of queries as fixed, rather than being input to the sanitizer. We call such a sanitizer a one-shot

sanitizer. Conceptually, the difference between the two models is that a sanitizer is answering a

set Q of queries explicitly requested by the data analyst, and thus it is both natural and necessary

12

to run in time poly(|Q|). However, in the one-shot model, we typically imagine that the family

Q of queries contains all the queries the analyst may ask, which is a much larger set that those

the analyst will actually compute. Thus in the one-shot model the natural running time for the

algorithm may even be sublinear in |Q| (e.g. whenQ contains all marginal queries, and |Q| = 2d).

We will consider the one-shot model in Chapters 4-6 when we study the family of marginal queries.

When concerned about computational complexity, it is not without loss of generality to assume

that a one-shot sanitizer outputs a list of |Q| real-valued answers, since |Q| may be exponentially

large in the length of the sanitizer’s input. Thus, we allowM to output an arbitrary data structure

S from a range S, and that there be an evaluator function E : S × Q → R that estimates q(D)

from the output of M(D) and the description of q. For example, M may output a vector S =

(q(D) + Zq)q∈Q where Zq is a random variable for each q ∈ Q, and E(S, q) is the q-th component

of S ∈ R = R|Q|. Abusing notation, we will write q(S) and q(M(D)) as shorthand for E(S, q)

and E(M(D), q), respectively.

We will say that a one-shot sanitizer M is accurate for the concept class Q if the answers

q(M(D)) are close to the fractional counts q(D). Formally

Definition 2.5 (Accuracy for One-Shot Sanitizers). An output S of a one-shot sanitizerM(D) is

α-accurate for a family of counting queries Q on D if

∀q ∈ Q, |q(S)− q(D)| ≤ α.

A one-shot sanitizerM is (α, β)-accurate for Q if for every database D,

Pr
M’s coins

[M(D) is α-accurate for Q on D] ≥ 1− β.

When Q is clear from context, we simply write thatM is an (α, β)-accurate one-shot sanitizer.

Synthetic Data. It is especially desirable to design one-shot sanitizers that generate synthetic

data. A one-shot sanitizer generates synthetic data if its output is a summary D̂ ∈ ({0, 1}d)n̂, for a

suitable choice of n̂, and its evaluator is E(D̂, q) = q(D̂). That is, the output is a new database with

the same number of columns (though possibly a different number of rows), and the evaluation of

a query is performed simply by evaluating the query on this new database as if it were the original

database. In Chapter 4 we show strong computational hardness results for one-shot sanitizers that

generate private synthetic data.

13

2.3.1 Efficiency of Sanitizers

Simply stated, we view a sanitizer as efficient if it runs in time polynomial in the length of

its input. For a one-shot sanitizer, the only input is the database D ∈ ({0, 1}d)n, thus an efficient

one-shot sanitizer runs in time poly(d, n). In Chapters 4-6 we will take a more refined view and

show specific upper and lower bounds on the time complexity of certain one-shot sanitizers, but it

is useful to keep in mind that poly(d, n) is the natural notion of efficiency for a one-shot sanitizer.

For sanitizers that are not one-shot, the natural notion of efficiency will depend on how the

queries are given to the sanitizer as input. Notice that to specify an arbitrary counting query

q : {0, 1}d → {0, 1} requires 2d bits. In this case, a sanitizer whose running time is polynomial

in the time required to specify the query is not especially efficient. Thus, we restrict attention to

queries that are efficiently computable, so are not the bottleneck in computation. For our results, we

will fix the representation to be Boolean circuits over the basis {∧,∨,¬} with possibly unbounded

fan-in. In this representation, any query can be evaluated in time |q|, where | · | denotes the size

of the circuit computing q. We also want to consider the case where the queries are computable

by circuits of low depth. For a constant h ∈ N, we use Q(d)
depth−h to denote the set of all counting

queries on {0, 1}d specified by circuits of depth h. Finally, we use Q(d)
all to denote the set of all

counting queries on {0, 1}d.

Definition 2.6 (Efficiency of Sanitizers). A sanitizer M is efficient if, on input a database

D ∈ ({0, 1}d)n and k queries q1, . . . , qk ∈ Q(d)
all ,M runs in time poly(d, n, |q1| + · · · + |qk|). For

every h ∈ N, a sanitizerM is efficient for depth-h queries if, on input a database D ∈ ({0, 1}d)n

and k queries q1, . . . , qk ∈ Q(d)
depth−h,M runs in time poly(d, n, |q1|+ · · ·+ |qk|).

2.4 Some Differentially Private Algorithms

We now introduce two interesting differentially private algorithms. In this chapter we focus on

the algorithms necessary to provide context for our new results. In later chapters we will introduce

additional algorithmic techniques as they are needed.

14

2.4.1 The Laplace Mechanism

The most basic differentially private algorithm is the so-called Laplace mechanism, introduced

by Dwork, McSherry, Nissim, and Smith [30]. Essentially, the Laplace mechanism computes

the correct answers to the queries and perturbs them independently with noise from a Laplace

distribution. We can apply the Laplace mechanism to more than just counting queries; it can be

applied more generally to low-sensitivity queries. Let q : ({0, 1}d)n → R be a real-valued function.

We define the (global) sensitivity of q as

∆q = max
D∼D′

|q(D)− q(D′)| .

If q has sensitivity ∆, then we say q is ∆-sensitive. For a parameter σ > 0, we define the Laplace

distribution, Lap(σ) over R to be have the probability density function Lap(σ)[z] ∝ exp(−|z|/σ).

Definition 2.7 (Laplace mechanism [30]). Let MLap(σ)(D, q) = q(D) + Z where Z is chosen

according to Lap(σ).

The definition of accuracy (Definitions 2.4 and 2.5) extends naturally to answering real-valued

queries other than counting queries.

For an appropriate choice of σ, the Laplace mechanism guarantees differential privacy.

Theorem 2.8 ([30]). Let q be a query with global sensitivity ∆q. For σ = ∆q/ε, the Laplace

mechanismMLap(σ)(D, q) is (ε, δ)-differentially private.

An elementary fact about the Laplace distribution is that for any σ, t > 0,

Pr
Z←RLap(σ)

[|Z| > tσ] ≤ e−t.

This fact will be useful for bounding the error introduced by the Laplace mechanism in order to

obtain privacy.

When answering a small number of queries with low-sensitivity, the Laplace mechanism pro-

vides good accuracy. In particular, we can obtain the following lemma, which follows by combin-

ing Theorem 2.8, composition theorems for differential privacy (Theorem 2.3) and the above fact

about the tails of the Laplace distribution.

Lemma 2.9. Let Q = {q1, . . . , qk} be a set of ∆-sensitive queries qj : ({0, 1}d)n → R, and let

D ∈ ({0, 1}d)n be a database. For any σ > 0, let MLap(σ)(D,Q) be the sanitizer that outputs

15

MLap(σ)(D, qj) for each qj ∈ Q (using independent randomness for each query). Then the follow-

ing both hold:

1) For every ε, β > 0, if σ = ∆k/ε, then MLap(σ) is (ε, 0)-differentially private and (α, β)-

accurate for

α =
∆k log(k/β)

ε
.

2) For every ε, δ, β > 0 if σ = ∆
√

8k log(1/δ)/ε, thenMLap(σ) is (ε, δ)-differentially private

and (α, β)-accurate for

α =
∆
√

8k log(1/δ) log(k/β)

ε
.

The Discrete Laplace Mechanism

As we discussed, we will actually assume that algorithms have discrete outputs. In addition to

simplifying the definition of privacy, assuming a discrete range will also make it easier to make a

precise statement about the complexity of the Laplace mechanism. Although we will continue view

the output of the Laplace mechanism as a real number, since this leads to cleaner mathematical

statements, for purposes of computational complexity we will assume that the output of the Laplace

mechanism is rounded to a discrete range. That is, to compute the answer, we will round the true

answer q(D) down to an integer multiple of τ , for a suitable choice of τ > 0, and then add

a noise term Z ∈ τZ from a discretized version of the Laplace mechanism Lapτ (σ), in which

PrZ←RLapτ (σ) [Z = z] ∝ exp(−z/σ) for every z ∈ τZ.

First, we observe that rounding can only increase the sensitivity of a query by τ . We will choose

τ small enough that ∆+τ ≤ 2∆, and the discretized Laplace mechanism remains 2ε-differentially

private. In most cases (e.g. counting queries) we could even eliminate this constant-factor blowup.

Since all of the results of this paper are asymptotic, we will ignore this constant-factor increase.

Similarly, privacy is not affected when we apply the Laplace mechanism to multiple queries and

apply the composition theorem.

Second, we note that Lapτ (σ) can be sampled in expected time ≈ e−τ/σ using the following

procedure: generate a random sign b ∈ {0, 1}. Then, generate a non-negative integer z by ini-

tializing z to 0 and then repeatedly incrementing z by 1, deciding to stop after each increment

independently with probability 1 − e−τ/σ. Finally, output Z = b · z. If we want a worst-case

bound on running time we can stop the incrementing of z at a suitable value and this will come at

16

the expense of achieving only (ε, δ)-differential privacy for δ > 0. Since the appropriate value at

which to stop will depend on δ, and in turn on the application, we will omit the details here.

Finally, we need to consider how τ should be set. In all of our applications, it will be sufficient

to take τ = poly(σ) (note that in most applications, e.g. counting queries, σ < 1). Since dis-

cretizing to multiples of τ can only introduce additional error τ , and we are already accounting for

error at least σ � τ , discretizing will only introduce additional error that is smaller than a constant

factor. Again, since all of our accuracy bounds are asymptotic, we will simply ignore this constant

factor when proving accuracy, and ignore the small additional error incurred by discretization.

Summary of the Laplace Mechanism

The only additional work done by the Laplace mechanism beyond what would be required to

answer the queries non-privately is to add independent noise to each query. As we discussed, for

a discrete version of the Laplace mechanism this noise can be added in time poly(σ) per query.

Thus the mechanism is clearly efficient in the sense of Definition 2.6. Also note that for a counting

query, q(D) = 1
n

∑n
i=1 q(x

(i)), the sensitivity is ∆ = 1/n. So we can summarize the properties of

the Laplace mechanism for answering counting queries with the following corollary:

Corollary 2.10. For an appropriate choice of σ, the Laplace mechanismMLap is 1) differentially

private, 2) efficient, and 3) accurate for Ω̃(n2) queries from Qall.

We remark that this statement is essentially tight, because there exists a k = Õ(n2) such that

for any choice of σ > 0, the Laplace mechanism does not satisfy both differential privacy and

non-trivial accuracy for k counting queries.

2.4.2 The Private Sparse Vector Technique

An extremely useful building block for differentially private sanitizers is the private sparse

vector algorithm. This technique was first introduced in the work of Dwork et al. [31] and has

subsequently been abstracted and generalized (cf. [77]). Intuitively the sparse vector algorithm

takes as input a database and a set of low-sensitivity queries, with the promise that only a small

number of the queries have large answers on the input database. Its output is a set of queries with

large answers on the input database. For this work, we will need a slight modification of the private

sparse vector algorithm that ensures (ε, 0)-one-query-to-many-analyst differential privacy (here we

17

assume each query has been issued by a separate analyst). We achieve this additional property by

randomizing the parameter ̂̀, specifying the number of queries with large answer that are allowed

before the sparse vector algorithm terminates. This modification is the only place in which our

presentation of the algorithm differs from the standard presentation (e.g. [77]).

MSV(D,Q = {q1, . . . , qk} , α, β, `):

Let ε0 = ε/
√

8` log(1/δ), σ = 2∆/ε0, c = 0.

Let ̂̀= 2`+ z where z ←R Lap(1/ε)

For: j = 1, . . . , k

Let α̂j = α + 2σ log(4k/β) + vj where vj ←R Lap(σ).

Let zj ←R Lap(σ).

If: qj(D) + zj ≥ α̂j Then:

Output: qj(D) + zj

Let c = c+ 1.

Else:

Output: ⊥
End If.

If: c ≥ ̂̀Then: Halt.

End For.

Figure 2: The private sparse vector algorithm.

We can summarize the properties of the private sparse vector algorithm (Figure 2) in the fol-

lowing lemma.

Lemma 2.11 (Modification of [77]). Fix ε, δ > 0 in the private sparse vector algorithm. Let

Q = {q1, . . . , qk} be a set of ∆-sensitive queries, qj : ({0, 1}d)n → R. Let D ∈ ({0, 1}d)n be a

database. Let α, β ∈ R and ` ∈ {1, . . . , k} be such that ` ≥ log(4/β)/ε and

| {j | qj(D) > α} | ≤ `.

Then the following all hold:

1) MSV is (ε, δ)-differentially private.

18

2) MSV(D,Q, α, β, `) returns a set I ⊆ {1, . . . , k} such that with probability at least 1− β, I

is of size at most 3` and contains the index of every query with answer significantly larger

than α. Specifically, with probability at least 1− β,{
j | qj(D) ≥ α +

24∆
√
` log(1/δ) log(4k/β)

ε

}
⊆ I

3) Finally, for every j ∈ {1, . . . , k}, the j-th output does not depend significantly on any other

query. Specifically if Q′ =
{
q1, . . . , qj−1, q

′
j′ , qj+1, . . . , qk

}
, then for every D, every j 6= j′,

and every I ⊆ {1, . . . , k} \ {j′}

Pr [MSV(D,Q) = I] ≤ eεPr [MSV(D,Q′) = I] .

The first two properties articulated in Lemma 2.11 are reasonably intuitive and describe the

privacy and utility properties of the private sparse vector algorithm. Property 3 is somewhat non-

standard, and states that the j-th output of the sparse vector algorithm is not significantly influenced

by the j′-th query for j′ 6= j. In other words, the sparse vector algorithm satisfies differential

privacy for a single input query. The intuition for why Property 3 holds is that all of the outputs

other than the j′-th output can be simulated using only the queries Q \ {qj′} and the current value

of ̂̀−c, and only the latter quantity contains any information about qj′—specifically, which branch

of the if-statement qj′ fell into can affect this quantity by at most 1. However, since noise chosen

from Lap(1/ε) was added to ̂̀, the differential privacy of the Laplace mechanism ensures that this

change of at most 1 is largely hidden. Finally, we remark that the queries used in the sparse vector

algorithm need not be specified ahead of time, as each query is processed individually.

We will rely on the sparse vector technique itself in Chapter 7 as a tool for constructing sani-

tizers that satisfy analyst differential privacy.

2.4.3 The IDC Framework

One of the many powerful applications of the sparse vector technique is to convert a certain

kind of “online learning algorithm” called an iterative database construction (IDC) into a differ-

entially private sanitizer. This framework for designing differentially private sanitizers—the “IDC

framework”—was introduced by the author in joint work with Gupta and Roth [42], although we

19

have chosen not to emphasize the results in this thesis. In this section we will introduce the defini-

tion of an IDC and discuss how it can be used to construct sanitizers.

Roughly, an IDC works by maintaining a sequence of data structures S(1), S(2), · · · ∈ S that

give increasingly good approximations to some database D with respect to answering queries

from a family Q. Moreover, the mechanism produces the next approximation in the sequence by

considering only one query y(t) that “distinguishes” the real database in the sense that

|q(t)(S(t))− q(t)(D)|

is large.4

Syntactically, an IDC is an object of the following type. There is an update function U :

S × Q × R → S. The inputs to U are a database summary S ∈ S, which represents the current

approximation; a query q ∈ Q, which distinguishes the approximation S from the true database

D; and also a real number that estimates q(D). Formally, we define a database update sequence

to capture the sequence of inputs to U used to generate the sequence S(1), S(2),

Definition 2.12 (Database Update Sequence). Let D ∈ ({0, 1}d)n be any database and let{
(S(t), q(t), â(t))

}
t=1,...,C

∈ (S ×Q×R)C be a sequence of tuples. We say the sequence of updates

is an (U, D,Q, α, C)-database update sequence if the following properties are all satisfied:

1) S(1) = U(∅, ·, ·).

2) For every t = 1, 2, . . . , C,
∣∣q(t)(D)− q(t)(S(t))

∣∣ ≥ α.

3) For every t = 1, 2, . . . , C,
∣∣q(t)(D)− â(t)

∣∣ ≤ α/2.

4) For every t = 1, 2, . . . , C − 1, S(t+1) = U(S(t), q(t), â(t)).

We note that for all of the iterative database constructions we consider, the approximate answer

â(t) is used only to determine the sign of q(t)(D)− q(t)(S(t)), which is the motivation for requiring

that â(t) have error smaller than α. The main measures of efficiency we’re interested in from an

iterative database construction are the maximum number of updates we need to perform before

the database S(t) approximates D well with respect to the queries in Q and the time required to

compute U. To this end we define an iterative database construction as follows:

4As was the case with one-shot sanitizers, since S is an arbitrary data structure, we must specify a way to compute
the answer to a query q ∈ Q from the approximation S. In all our applications, this procedure will be clear from
context and we will abuse notation by writing q(S) to indicate that this procedure should be applied to S.

20

Definition 2.13 (Iterative Database Construction). Let U : S × Q × R → S be an update

function. We say U is an iterative database construction with mistake bound B for query familyQ
(where B may depend on the parameters of the IDC) if for every database D ∈ ({0, 1}d)n, every

(U, D,Q, α, C)-database update sequence satisfies C ≤ B.

Note that the definition of U is such that if U is an iterative database construction with mistake

bound B, then given any maximal (U, D,Q, α, C)-database update sequence, the final approxi-

mation S(C) must satisfy

∀q ∈ Q,
∣∣q(D)− q(S(C))

∣∣ ≤ α.

Otherwise, there would exist another query satisfying property 2 of Definition 2.12, contradicting

maximality.

We can obtain the following theorem by combining any IDC with the sparse vector technique.

For a set of queriesQ from a family of queriesQ, and letMIDC(D,Q) be the following: processes

queries q ∈ Q in an arbitrary order, for each query qj define a function fj(D) = |qj(D)−qj(S(t))|,
where S(t) will be the current approximation used by the IDC when the j-th query is considered.

Run the sparse vector algorithm on D and the set of queries F = {fj}, with accuracy parameters

2α and β, and ` = B. After each round in which fj(D) has a large answer, use qj as the distin-

guishing query for U to obtain a new approximation S(t+1). Since the IDC is publicly known, the

values S(t) can be computed by the analyst and thus the value |qj(D)−qj(S(t))|+zj is sufficient for

the analyst to recover an accurate answer to qj(D). We remark that typically the step of deriving

an approximation to qj(D) would be incorporated into the specification of the algorithm.

We can summarize the privacy and accuracy of this approach with the following theorems:

Theorem 2.14. The algorithmMIDC(D,Q) defined above is (ε, δ)-differentially private.

Theorem 2.15. Let α > 0 be a parameter and Q be a family of counting queries. If there is an

iterative database construction, U, with mistake bound B for Q thenMIDC(D,Q) defined above

is an (ε, δ)-differentially private sanitizer that is (4α, β)-accurate for any set of queries Q from Q
and runs in time poly(TU, d, n, |q1|+ · · ·+ |qk|) so long as

n ≥ 16
√
B log(|Q|/β) log(4/δ)

αε
.

Here TU is the running time of U.

21

The privacy of the IDC construction follows from privacy of the sparse vector technique

(Lemma 2.11). Accuracy will follow from the mistake bound of the IDC, which will ensure that

the number of functions fj such that fj(D) is large will be at most B. The requirement that n be

sufficiently large ensures that the noise added by the sparse vector algorithm is sufficiently small.

Specifically, if the noise is sufficiently small, then the set of queries qj such that fj(D) is large will

constitute a database update sequence and the mistake bound of the IDC will apply.

In Chapter 6 we will construct a new IDC for the family of k-way marginal queries, and thus

obtain a new sanitizer for k-way marginal queries via Theorem 2.15. In Chapter 7 we will design

a new sanitizer achieving analyst differential privacy and we will use the fact that it can be cast in

the IDC framework to argue that it satisfies differential privacy for the data subjects.

2.4.4 The Private Multiplicative Weights Algorithm

The Laplace mechanism is quite powerful, and is tough to match for simplicity and efficiency.

However, it is quite limited in that it can answer at most quadratically many counting queries

while maintaining privacy and non-trivial accuracy. One of the major achievements of differential

privacy has been the discovery of (inefficient) sanitizers that accurately answer exponentially many

counting queries. The first such algorithm was due to Blum, Ligett, and Roth [16]. The strongest

quantitative guarantees in terms of running time and accuracy are given by variants of the private

multiplicative weights algorithm of Hardt and Rothblum [44], and so we will use this algorithm as

a reference point. The private multiplicative weights algorithm will be used as a tool for obtaining

algorithms satisfying analyst differential privacy in Chatper 7, and a variant of the algorithm will

be used in Chapter 6 to give faster sanitizers for answering marginal queries. Private multiplicative

weights also serves as a foil for the hardness results of Chatpers 3 and 4.

The following lemma summarizes the properties of the private multiplicative weights algo-

rithm, using the improved analysis from Gupta et al. [42].

Lemma 2.16. Let D ∈ ({0, 1}d)n be a database and Q = {q1, . . . , qk} be a set of (1/n)-sensitive

counting queries, qj : ({0, 1}d)n → [0, 1]. LetMMW(D,Q) be the private multiplicative weights

algorithm. Then the following all hold:

1) MMW is (ε, δ)-differentially private.

22

2) For any β > 0,MMW is (α, β)-accurate for

α = O

(
d1/4

√
log(k/β) log(1/δ)√

εn

)
,

and

3) MMW runs in time poly(2d, n, k, |q1|+ · · ·+ |qk|).

In our terminology, we can summarize the properties of the private multiplicative weights al-

gorithm with the following corollary:

Corollary 2.17. The private multiplicative weights mechanismMMW is 1) differentially private,

2) is accurate for 2Ω̃(n)/
√
d queries from Q(d)

all , and, 3) on input a set of queries q1, . . . , qk ∈ Q(d)
all ,

runs in time poly(2d, n, |q1|+ · · ·+ |qk|).

23

Chapter 3

Answering n2+o(1) Arbitrary Counting

Queries is Hard

In this chapter we give new hardness results for differentially private sanitizers that answer

a large number of queries. Recall from Chapter 2 that the best efficient sanitizer, the Laplace

mechanism, is capable of answering nearly n2 arbitrary counting queries with non-trivial accuracy.

On the other hand, inefficient algorithms such as private multiplicative weights [44] can accurately

answer nearly 2n queries, and it is information-theoretically impossible to answer more than 2n

queries [26]. Thus, for efficient sanitizers there is a huge gap in our knowledge between n2 and 2n

queries, and (under cryptographic assumptions) this gap is almost completely closed by the results

of this chapter.

3.1 Results and Techniques

We prove the following new hardness results for answering counting queries while satisfying

differential privacy.

Theorem 3.1. Assuming the existence of one-way functions, there is no efficient, differentially

private sanitizer that is accurate for n2+o(1) queries from Qall.

That is, there is no algorithm that, on input a database D ∈ ({0, 1}d)n and n2+o(1) efficiently

(poly(d, n)-time) computable counting queries, runs in time poly(d, n) and returns an approximate

answer to each query to within ±1/3, while satisfying differential privacy.

24

Recall that we use Qall to denote the set of all counting queries. The choice of 1/3 in the

conclusion is arbitrary, and can be replaced with any constant less than 1/2.

In particular, Theorem 3.1 applies to online sanitizers, which are sanitizers that receive (pos-

sibly adaptively chosen) queries one at a time. Many positive results achieve this stronger notion

of sanitization. Although we have not presented it as such, the Laplace mechanism is an efficient

online sanitizer that answers Ω̃(n2) queries and the private multiplicative weights algorithm is an

online sanitizer that can answer nearly 2n queries in time poly(2d, n) per query [78, 44, 42].

We also show that the same theorem holds even for queries that are computable by unbounded-

fan-in circuits of depth 6 over the basis {∧,∨,¬} (a subset of the well-studied class AC0), albeit

under a strong (but plausible) cryptographic assumption.

Theorem 3.2. Under the assumptions described in Section 3.4.6, there is no efficient, differentially

private sanitizer that is accurate for n2+o(1) queries from Qdepth−6.

That is, there is no algorithm that, on input a database D ∈ ({0, 1}d)n and n2+o(1) efficiently

(poly(d, n)-time) computable depth-6 queries (circuits), runs in time poly(d, n) and returns an

approximate answer to each query to within ±1/3, while satisfying differential privacy.

Recall that, for a constant h ∈ N, Qdepth−h to denotes the set of all counting queries specified

by circuits of depth h.

In Chapters 5 and 6, we will see that these hardness results can be circumvented by only

requiring the sanitizer to answer marginal queries. In Chapter 5 we present an efficient (one-

shot) sanitizer that answers nΩ(
√
k) � n2 many k-way marginal queries. And in Chapter 6 give

a sanitizer that answers up to an exponential number (2Ω̃(n)/d.51) of arbitrary marginal queries

accurately with running time poly(2o(d), n, k).

We now describe our techniques.

3.1.1 The Connection with Traitor-Tracing

We prove our results by building on the connection between differentially private sanitizers

for counting queries and traitor-tracing schemes discovered by Dwork et al. [32]. Traitor-tracing

schemes were introduced by Chor, Fiat, and Naor [23] for the purpose of identifying pirates who

violate copyright restrictions. Roughly speaking, a (fully collusion-resilient) traitor-tracing scheme

allows a sender to generate keys for n users so that 1) the sender can broadcast encrypted messages

25

that can be decrypted by any user, and 2) any efficient pirate decoder capable of decrypting mes-

sages can be traced to at least one of the users who contributed a key to it, even if an arbitrary

coalition of the users combined their keys in an arbitrary efficient manner to construct the decoder.

Dwork et al. show that the existence of traitor-tracing schemes implies hardness results for

one-shot sanitizers. Very informally, they argue as follows: Suppose a coalition of users takes their

keys and builds a database D ∈ ({0, 1}d)n where each record contains one of their user keys. The

family Q will contain a query qc for each possible ciphertext c. The query qc asks “What fraction

of the records (user keys) in D would decrypt the ciphertext c to the message 1?” Every user can

decrypt, so if the sender encrypts a message m ∈ {0, 1} as a ciphertext c, then every user will

decrypt c to m. Thus the answer to the counting query, qc, will be m.

Suppose there were an efficient one-shot sanitizer for Q. Then the coalition could use it to ef-

ficiently produce a summary of the database D that enables one to efficiently compute an approx-

imate answer to every query qc, which would also allow one to efficiently decrypt the ciphertext.

Such a summary can be viewed as an efficient pirate decoder, and thus the tracing algorithm can

use the summary to trace one of the users in the coalition. However, if there is a way to identify

one of the users in the database from the summary, then the summary is not differentially private.

In order to instantiate their result, they need a traitor-tracing scheme. SinceQ contains a query

for every ciphertext, the parameter to optimize is the length of the ciphertexts. Using the fully

collusion-resilient traitor-tracing scheme of Boneh, Sahai, and Waters [17], which has ciphertexts

of length Õ(
√
n), they obtain a family of queries of size 2Õ(

√
n) for which there is no efficient

one-shot sanitizer. Dwork et al. also discovered a partial converse—proving hardness of one-

shot sanitization for a smaller family of queries requires constructing traitor-tracing schemes with

shorter ciphertexts, which is a seemingly difficult open problem.

3.1.2 Our Approach

In our setting of sanitization (rather than one-shot sanitization, as studied by Dwork et al. [32]),

we don’t expect to answer every query in Q, only a much smaller set of queries requested by the

analyst. At first glance, this should make answering the queries much easier, and thus make it

more difficult to demonstrate hardness. However, the attacker does have the power to choose the

queries that he wants answered, and can choose queries that are most difficult to sanitize. Our

first observation is that in the traitor-tracing scenario, the tracing algorithms only query the pirate

26

decoder on a polynomial number of ciphertexts, which are randomly chosen and depend on the

particular keys that were instantiated for the scheme. For many schemes, even Õ(n2) queries is

sufficient. Thus it would seem that the tracing algorithm could simply decide which queries it will

make, give those queries as input to the sanitizer, and then use the answers to those queries to

identify a user and violate differential privacy.

However, this intuition ignores an important issue. Many traitor-tracing schemes (includ-

ing [17]) can only trace stateless pirate decoders, which essentially commit to a response to each

possible query (or a distribution over responses) once and for all. For one-shot sanitizers, the pri-

vate summary is necessarily stateless, and thus the result of Dwork et al. can be instantiated with

any scheme that allows tracing of stateless pirate decoders. However, an arbitrary sanitizer might

give answers that depend on the sequence of queries. Thus, in order to prove our results, we will

need a traitor-tracing scheme that can trace stateful pirate decoders.

The problem of tracing stateful pirates is quite natural even without the implications for private

data analysis. Indeed, this problem has been studied in the literature, originally by Kiayias and

Yung [54]. They considered pirates that can abort and record history. However, their solution, and

all others known, does not apply to our specific setting due to a certain “watermarking assump-

tion” that doesn’t apply when proving hardness-of-sanitization (see discussion below). To address

this problem, we also refine the basic connection between traitor-tracing schemes and differential

privacy by showing that, in many respects, fairly weak traitor-tracing schemes suffice to establish

the hardness of preserving privacy. In particular, although the pirate decoder obtained from a san-

itizer may be stateful and record history, the accuracy requirement of the sanitizer means that the

corresponding pirate decoder cannot abort, which will make it easier to construct a traitor-tracing

scheme for these kinds of pirates. Indeed, we construct such a scheme to establish Theorem 6.1.

The scheme also has weakened requirements in other respects, having nothing to do with the

statefulness of the pirate or the tracing algorithm. These weakened requirements allow us to reduce

the complexity of the decryption, which means that the queries used by the attacker do not need to

be arbitrary polynomial-size circuits, but instead can be circuits of constant depth, which allows us

to establish Theorem 6.3. Another technical issue arises in that all k queries must be given to the

sanitizer at once, whereas tracing algorithms typically are allowed to query the pirate interactively.

However, we are able to show that the scheme we construct can be traced using one round of

queries. See Sections 3.2.1 and 3.3 for a precise statement of the kind of traitor-tracing scheme

27

that suffices and Section 3.4 for our construction.

Our construction is based on a well-known fully collusion resilient traitor-tracing scheme [23],

but with a modified tracing algorithm. The tracing algorithm uses fingerprinting codes [18, 86],

which have been employed before in the context of traitor-tracing and content distribution, but

our tracing algorithm is different from all those we are aware of. The resulting scheme allows for

tracing with a minimal number of non-adaptively chosen queries, achieves tracing without context-

specific watermarking assumptions, simplifies the decryption circuit (at the expense of weakening

the security parameters and functionality). The restriction to non-aborting pirates may not be so

natural in the setting of content distribution, which may explain why the scheme was not previously

known.

3.1.3 Related Work

In addition to the hardness results for one-shot sanitizations [32], which apply to arbitrary one-

shot sanitizers, there are several hardness-of-sanitization results for restricted classes of sanitizers.

As we will show in Chapter 4 (building on earlier work of Dwork et al. [32], it is hard (assuming

the existence of one-way functions) to generate a private synthetic database that is accurate for

essentially any non-trivial family of queries, even 2-literal conjunctions. Recall from Chapter 2

that a synthetic database is, roughly, a new database (of the same dimensions) that approximately

preserves the answer to some set of queries.

Gupta et al. [41] considered algorithms that can only access the database by making a poly-

nomial number of “statistical queries” (essentially counting queries). They showed that such al-

gorithms cannot be a one-shot sanitizer (even ignoring privacy constraints) that approximately

answers certain simple families of counting queries with high accuracy.

Finally, Dwork, Naor, and Vadhan [33] gave information-theoretic lower bounds for stateless

sanitizers, which take k queries as input, but whose answers to each query do not depend on the

other k− 1 input queries. They showed that (even computationally unbounded) stateless sanitizers

can answer at most Õ(n2) queries with non-trivial accuracy, while satisfying differential privacy.

The Laplace Mechanism is a stateless sanitizer that answers Ω̃(n2) queries, and thus their result is

tight in this respect. Although their result is information theoretic, and considers a highly restricted

type of sanitizer, their techniques are related to ours.

28

3.2 Traitor-Tracing Schemes

In this section we give define a traitor-tracing scheme. Throughout, we will use ATT to denote

algorithms associated with traitor-tracing schemes.

3.2.1 Traitor-Tracing Schemes

We now give a definition of a traitor-tracing scheme, heavily tailored to the task of proving

hardness results for generic sanitizers. We will sacrifice some consistency with the standard def-

initions. See below for further discussion of the ways in which our definition departs from the

standard definition of traitor-tracing. In some cases, the non-standard aspects of the definition will

be necessary to establish our results, and in others it will be for convenience. Despite these dif-

ferences, we will henceforth refer to schemes satisfying our definition simply as traitor-tracing

schemes.

Intuitively, a traitor-tracing scheme is a form of broadcast encryption, in which a sender can

broadcast an encrypted message that can be decrypted by each of a large set of users. The standard

notion of security for such a scheme would require that an adversary that doesn’t have any of the

keys cannot decrypt the message. A traitor-tracing scheme has the additional property that given

any decoder capable of decrypting the message (which must in a very loose sense “know” at least

one of the keys), there is a procedure for determining which user’s key is being used. Moreover,

we want the scheme to be “collusion resilient,” in that even if a coalition of users gets together and

combines their keys in some way to produce a decoder, there is still a procedure that identifies at

least one member of the coalition.

We now formally describe the syntax of a traitor-tracing scheme. For functions n, kTT : N→ N,

an (n, kTT)-traitor-tracing scheme is a tuple of four algorithms (GenTT,EncTT,DecTT,TraceTT).

The parameter n specifies the number of users of the scheme and the parameter kTT will specify

the number of queries that the tracing algorithm makes to the pirate decoder. We allow all the

algorithms to be randomized except for DecTT.5

• The algorithm GenTT takes a security parameter, κ, and returns a sequence of n = n(κ) user

keys ~sk = (sk(1), . . . , sk(n)) ∈ {0, 1}κ. Formally, ~sk = (sk(1), . . . , sk(n))←R GenTT(1κ).

5It would not substantially affect our results if DecTT were randomized, but we will assume that DecTT is deter-
ministic for ease of presentation.

29

• The algorithm EncTT takes a sequence of n user keys ~sk and a message bit b ∈ {0, 1}, and

generates a ciphertext c ∈ C = C(κ). Formally, c←R EncTT(~sk, b).

• The algorithm DecTT takes any single user key sk and a ciphertext c ∈ C, runs in time

poly(κ, n(κ)) and deterministically returns a message bit b̂ ∈ {0, 1}. Formally we write

b̂ = DecTT(sk, c).

• The algorithm TraceTT takes as input a set of user keys ~sk ∈ ({0, 1}κ)n(κ) and an oracle

P : (C(κ))kTT(κ) → {0, 1}kTT(κ), makes one kTT-tuple of queries, (c1, . . . , ckTT) ∈ C(κ) to

its oracle (kTT = kTT(κ)), and returns the name of a user i ∈ [n(κ)]. Formally, i ←R

TracePTT(~sk).

Intuitively, think of the oracle P as being given some subset of keys ~skS = (sk(i))i∈S for a

non-empty set S ⊆ [n], and TraceTT is attempting to identify a user i ∈ S. Clearly, if P ignores its

input and always returns 0, TraceTT cannot have any hope of success, so we must assume that P is

capable of decrypting ciphertexts.

Definition 3.3 (Available Pirate Decoder). Let ΠTT = (GenTT,EncTT,DecTT,TraceTT) be an

(n, kTT)-traitor-tracing scheme. Let P be a (possibly randomized) algorithm. We say that P is

a kTT-available pirate decoder if for every κ ∈ N, every set of user keys ~sk = (sk(1), . . . , sk(n)) ∈
{0, 1}κ, every S ⊆ [n] such that |S| ≥ n− 1, and every c1, . . . , ckTT ∈ C(κ),

Pr

 (̂b1, . . . , b̂kTT)←R P(~skS, c1, . . . , ckTT)

∃j ∈ [kTT], b ∈ {0, 1}
(

(∀i ∈ S,DecTT(sk(i), cj) = b) ∧
(
b̂j 6= b

)) ≤ o

(
1

n(κ)2

)
.

In other words, if every user key sk(i) (for i ∈ S) decrypts c to 1 (resp. 0), then P(~skS, ·) decrypts

c to 1 (resp. 0), with high probability.

We can now define a secure, (n, kTT)-traitor-tracing scheme:

Definition 3.4 (Traitor-Tracing Scheme). Let the scheme ΠTT = (GenTT,EncTT,DecTT,TraceTT)

be an (n, kTT)-traitor-tracing scheme. Let kTT : N → N be a function. We say that ΠTT is a

secure (n, kTT)-traitor-tracing scheme if for every S ⊆ [n(κ)] such that |S| ≥ n(κ) − 1, for

every (possibly randomized) algorithm P that 1) runs in time poly(κ, n(κ), kTT(κ)) and 2) is a

kTT-available pirate decoder, we have

Pr
~sk←RGenTT(1κ)
P’s, TraceTT’s coins

[
Trace

P(~skS ,·)
TT (~sk) 6∈ S

]
= o

(
1

n(κ)

)

30

Remarks About Our Definition of Traitor-Tracing The traitor-tracing schemes we consider

are somewhat different than those previously studied in the literature.

• We do not require the encryption or tracing algorithms to use public keys. In the typical ap-

plication of traitor-tracing schemes to content distribution, these would be desirable features,

however they are not necessary for proving hardness of sanitization.

• We only require that the tracing algorithm succeeds with probability 1 − o(1/n). Typically

one would require that the tracing algorithm succeeds with probability 1− n−ω(1).

• We do not give the pirate decoder access to an encryption oracle. In other words, we do not

require CPA security. Most traitor-tracing schemes in the literature are public-key, making

this distinction irrelevant. Here, we only need an encryption scheme that is secure for an a

priori bounded number of messages.

• We allow the pirate decoder to be stateful, but in an unusual way. In many other models,

the pirate is allowed to abort, and answer ⊥ if it detects that it is being traced. However,

in our model we require (roughly) that if any of the queries are ciphertexts generated by

Enc(~sk, b), then the pirate decoder answers b to those queries, regardless of the other queries

issued, which in a sense precludes aborting. However, we do allow our pirate to correlate its

answers to different queries, subject to this accuracy constraint. We also allow the pirate to

see all the queries made by the tracer at once, which is more power than is typically given to

the pirate.

Roughly, the first three modifications will allow us to find a candidate scheme with very simple

decryption and the fourth modification will allow us to trace stateful pirates even in the setting of

bit-encryption.

3.2.2 Decryption Function Families

For Theorem 6.3, we are interested in traitor-tracing schemes where DecTT is a “simple” func-

tion of the user key (for every ciphertext c ∈ C).

Definition 3.5 (Decryption Function Family). Let (GenTT,EncTT,DecTT) be any traitor-tracing

scheme where GenTT produces keys in {0, 1}κ and EncTT produce ciphertexts in C = C(κ). For

31

every c ∈ C, we define the c-decryption function qc : {0, 1}κ → {0, 1} to be qc(sk) = DecTT(sk, c).

We define the decryption function family Q(κ)
DecTT

= {qc}c∈C(κ) .

In what follows, we will say that ΠTT is an traitor-tracing scheme with decryption function

family Q(κ)
DecTT

.

3.3 Attacking Efficient Sanitizers

In this section we will prove our main result, showing that the existence of traitor-tracing

schemes (as in Definition 3.4) implies that efficient sanitizers cannot answer too many counting

queries while satisfying differential privacy.

Theorem 3.6 (Attacking Efficient Sanitizers). Assume that there exists an (n(κ), kTT(κ))-secure

traitor-tracing scheme ΠTT = (GenTT,EncTT,DecTT,TraceTT) with decryption function family

Q(κ) = Q(κ)
DecTT

. Then there does not exist any sanitizerM : ({0, 1}d)n × (Q(d))kTT(d) → RkTT(d)

that is simultaneously 1) differentially private, 2) efficient, and 3) accurate for kTT(d) queries from

Q = ∪d∈NQ(d).

In the typical setting of parameters, n(κ) = poly(κ), kTT(κ) = Θ̃(n2), and decryption can be

implemented by circuits of size poly(n) = poly(κ). Then Theroem 3.6 will state that there is no

sanitizer M that takes a database D ∈ ({0, 1}d)poly(d), runs in poly(d) time, and accurately an-

swers Θ̃(n2) queries implemented by circuits of size poly(d), while satisfying differential privacy.

The main difference between Theorem 3.6 and the result of Dwork et al. [32] is that we only

assume the existence of a sanitizer for kTT(d) queries from Q(d) = Q(d)
DecTT

, whereas Dwork et

al. assume the existence of a one-shot sanitizer that answers every query in Q(d). To offset the

weaker assumption on the sanitizer, we assume that the traitor-tracing scheme is secure against

certain stateful pirate decoders (as in Definition 3.3) whereas Dwork et al. only need to trace

stateless pirates. Theorem 3.6 also explicitly allows the traitor-tracing scheme to have the relaxed

functionality and security properties discussed at the end of Section 3.2, although it is implicit in

Dwork et al. that the relaxed properties are sufficient to prove hardness results.

We now sketch the proof: Every function qc ∈ Q(d) is viewed as a query qc(x) on a database

row x ∈ {0, 1}d. Assume there is an efficient sanitizer is that is accurate for kTT(d) queries from

Q(d). The fact that M is accurate for these queries will imply that (after small modifications)

32

M is a kTT-available pirate decoder (Definition 3.3). Here is where we differ from Dwork et al.,

who assume thatM accurately answers all queries in Q(d), in which caseM can be viewed as a

stateless pirate decoder (but must solve a harder sanitization problem).

We complete the proof as in Dwork et al. Consider two experiments: In the first, we construct

an n-row database D by running GenTT(1d) to obtain n user keys, and putting one in each row of

D. Then we run TraceTT onM(D, ·) and obtain a user i. SinceM is useful, and ΠTT is secure,

we will have that i ∈ [n] with probability close to 1, and thus there is an i∗ ∈ [n] such that i = i∗

with probability & 1/n.

In the second experiment, we construct a databaseD′ exactly as in the first, however we exclude

the key sk(i∗). Since D and D′ differ in only one row, differential privacy requires that TraceTT,

run with oracleM(D′, ·), still outputs i∗ with probability Ω(1/n). However, in this experiment,

i∗, sk(i∗) is no longer given to the pirate decoder, and thus security of ΠTT says that TraceTT, run

with this oracle, must output i∗ with probability o(1/n). Thus, we will obtain a contradiction.

Proof. Let ΠTT = (GenTT,EncTT,DecTT,TraceTT) be the assumed traitor-tracing scheme, and

assume there exists an efficient, differentially private, sanitizer M that is accurate for kTT(d)

queries from Q(d). We define the pirate decoder PM as follows:

Input: A set of user keys (~skS) ∈ {0, 1}d and a sequence of kTT ciphertexts c1, . . . , ckTT .

Construct circuits specifying the queries qc1 , . . . , qckTT ∈ QDecTT,d.

Construct a database D = (sk(i))i∈S ∈ ({0, 1}d)|S|.
Let a1, . . . , akTT ←R M(D, qc1 , . . . , qckTT).

Round the answers a1, . . . , akTT ∈ [0, 1] to obtain b̂1, . . . , b̂kTT ∈ {0, 1} (i.e. b̂j = dajc)
Output: b̂1, . . . , b̂kTT .

Figure 3: The pirate decoder PM

Since M is efficient, its running time is poly(d, n(d), kTT(d), |qc1| + . . . + |qckTT |), which is

poly(d, n(d), kTT(d)). Recall that the size of the circuits (queries) qc ∈ Q(d)
DecTT

is poly(d, n). In

this case PM runs in time poly(d, n(d), kTT(d)) as well, since constructing the queries can be done

in time polynomial in their size, and the final rounding step can be done in time poly(kTT(d)).

Next, we claim that ifM is accurate for Q(d), then PM is a useful pirate decoder.

33

Claim 3.7. IfM is accurate for kTT queries fromQDecTT , then PM is a kTT-useful pirate decoder.

Proof of Claim 3.7. Let ~sk ∈ {0, 1}d be a set of user keys for ΠTT and let S ⊆ [n] be a subset of

the users such that |S| ≥ n − 1. Suppose c ∈ C(d) and b ∈ {0, 1} are such that for every i ∈ S,

DecTT(sk(i), c) = b. Then we have that, for D as in PM,

qc(D) =
1

|S|
∑
i∈S

qc(sk
(i)) =

1

|S|
∑
i∈S

DecTT(sk(i), c) = b

Let c1, . . . , ckTT be a set of ciphertexts, qc1 , . . . , qckTT and a1, . . . , akTT be as in PM. The accuracy

ofM (with constant error α < 1/2) guarantees that

Pr
[
∃j ∈ [kTT],

∣∣aj − fcj(D)
∣∣ ≥ 1/2

]
= o(1/|S|2)

Since |S| ≥ n − 1, o(1/|S|2) = o(1/n2). Assuming a1, . . . , akTT is accurate up to error α < 1/2

for qc1 , . . . , qckTT , aj will be rounded to exactly qcj whenever qcj(D) ∈ {0, 1}. That is,

Pr

 ∃j ∈ [kTT], b ∈ {0, 1}
(∀i ∈ S,DecTT(sk(i), cj) = b) ∧

(
b̂j 6= b

) = o

(
1

n(κ)2

)

Thus, PM is kTT-useful. This completes the proof of the claim.

Since PM is a kTT-useful pirate decoder, and ΠTT is a (n, kTT)-secure traitor-tracing scheme,

running TraceTT on PM will always return some user i ∈ [n]. Thus there must be some user i∗ that

TraceTT returns with probability & 1/n. Specifically, for every κ ∈ N, there exists i∗(κ) ∈ [n(κ)]

such that,

Pr
~sk←RGenTT(1κ)
PM’s, TraceTT’s coins

[
Trace

PM(~sk,·)
TT (~sk) = i∗(κ)

]
≥ 1

n(κ)
− o

(
1

n(κ)

)
. (3.1)

Let S(κ) = [n(κ)] \ {i∗(κ)} Now we claim that if M is differentially private, then TraceTT

will output i∗(κ) with significant probability, even PM is not given the key of user i∗(κ).

Claim 3.8. IfM is differentially private (for ε = O(1), δ = o(1/n)), then

Pr
~sk←RGenTT(1κ)
PM’s, TraceTT’s coins

[
Trace

PM(~sk,·)
TT (~sk) = i∗(κ)

]
≥ Ω

(
1

n(κ)

)
.

Proof of Claim 3.8. Fix any κ and let kTT = kTT(κ) and i∗ = i∗(κ), S = S(κ) as above. Let

D = ~sk and D−i∗ = ~skS . Take T to be the set of responses b̂1, . . . , b̂kTT such that TraceTT(~sk),

34

after querying its oracle on ciphertexts c1, . . . , ckTT and receiving responses b̂1, . . . , b̂kTT , outputs i∗

(T depends on the coins of GenTT and TraceTT). By differential privacy, we have that

Pr
[
M(D, qc1 , . . . , qckTT) ∈ T

]
≤ eO(1) · Pr

[
M(D−i∗ , qc1 , . . . , qckTT) ∈ T

]
+ o

(
1

n

)
.

Note that the queries constructed by PM depends only on c1, . . . , ckTT , not on ~skS . Also note that

the final rounding step does not depend on the input at all. Thus, for every T ⊆ {0, 1}kTT

Pr
[
PM(~sk, c1, . . . , ckTT) ∈ T

]
≤ eO(1) · Pr

[
PM(~skS, c1, . . . , ckTT) ∈ T

]
+ o

(
1

n

)
. (3.2)

The claim follows by combining with (3.1).

To complete the proof, notice that the probability in Claim 3.8 is exactly the probability that

TraceTT outputs the user i∗, when given the oracle PM(~skS), for S = [n] \ {i∗}. However, the

fact that PM is efficient, and ΠTT is a secure traitor-tracing scheme implies that this probability is

o(1/n). Thus we have obtained a contradiction. This completes the proof of the Theorem.

3.4 Constructions of Traitor-Tracing Schemes

In this section we show how to construct traitor-tracing schemes that satisfy Definition 3.4,

and thus can be used to instantiate Theorem 3.6. First we will informally describe a simple con-

struction that requires the tracing algorithm to make a sub-optimal number of queries, but will

hopefully give the reader more intuition about the construction and how it differs from previous

constructions of traitor-tracing schemes. Then we will give precise definitions of the encryption

schemes (Section 3.4.2) and fingerprinting codes (Section 3.4.3) required for our construction.

Then we will present the final construction more formally (Section 3.4.4) and prove its security.

Finally, we will use the weakened security requirements of the encryption scheme to show that

our traitor-tracing scheme can be instantiated so that decryption is computable by constant-depth

circuits (Section 3.4.6).

3.4.1 A Simple Construction

Our construction is a variant of the most basic tracing traitor-tracing scheme [23]. Start with

an encryption scheme (Gen,Enc,Dec). Generate an independent key sk(i) ←R Gen for each user

35

(we will ignore the security parameter in the informal description). To encrypt a bit b ∈ {0, 1}, we

encrypt it under each user’s key independently and concatenate the ciphertexts. That is

EncTT(~sk, b) = (Enc(sk(1), b), . . . ,Enc(sk(n), b)).

Clearly each user can decrypt the ciphertext by applying Dec, as long as she knows which part of

the ciphertext to decrypt.

Now we describe how an available pirate decoder for this scheme can be traced. As with all

traitor-tracing schemes, we will form ciphertexts that different users would decrypt differently,

assuming they decrypt as intended using the algorithm DecTT(sk(i), ·). We can do so with the

following algorithm:

TrEncTT(~sk, i) = (Enc(sk(1), 1), . . . ,Enc(sk(i), 1),Enc(sk(i+1), 0), . . . ,Enc(sk(n), 0)

for i = 0, 1, . . . , n. The algorithm forms a ciphertext that users 1, . . . , i will decrypt to 0 and users

i+ 1, . . . , n will decrypt to 1.

The tracing algorithm generates a random sequence i1, . . . , ikTT ∈ {0, 1, . . . , n}, for kTT =

(n+1)s, such that each element of {0, 1, . . . , n} appears exactly s times, where s is a parameter to

be chosen later. Then, for every j it generates a ciphertext cj ←R TrEncTT(~sk, ij). Next, it queries

P ~skS(c1, . . . , ckTT). Given the output of the pirate, the tracing algorithm computes

Pi =
1

s

∑
j:ij=i

P(~sk, c1, . . . , ckTT)j

for i = 0, 1, . . . , n. Finally, the tracing algorithm outputs any i∗ such that Pi∗ − Pi∗−1 ≥ 1/n.

The tracing algorithm generates a random sequence of indices i1, . . . , ikTT ∈ {0, 1, . . . , n}, for

kTT = (n + 1)s, such that each element of {0, 1, . . . , n} appears exactly s times, where s is a

parameter to be chosen later. Then, for every j it generates a ciphertext cj ←R TrEncTT(~sk, ij).

Next, it queries P ~skS(c1, . . . , ckTT). Given the output of the pirate, the tracing algorithm computes

Pi = 1
s

∑
j:ij=i

P(~sk, c1, . . . , ckTT)j for i = 0, 1, . . . , n. Finally, the tracing algorithm outputs any

i∗ such that Pi∗ − Pi∗−1 ≥ 1/n.

Now we explain why this algorithm successfully traces efficient available pirate decoders. No-

tice that if we choose c according to TrEncTT(~sk, 0), then every user decrypts c to 0, so P0 = 0.

Similarly, Pn = 1. Thus, there exists i∗ such that Pi∗ −Pi∗−1 ≥ 1/n. Next, we argue that i∗ is in S

except with small probability. Notice that TrEncTT(~sk, i∗) and TrEncTT(~sk, i∗ − 1) differ only in

36

the message encrypted under key sk(i∗), so if i∗ 6∈ S, this key is unknown to the pirate decoder. The

security of the encryption scheme (made precise in Definition 3.10) guarantees that if sk(i∗) is un-

known to an efficient pirate, then we can replace kTT uses of Enc(sk(i∗), 1) with Enc(sk(i∗), 0), and

this change will only affect the success probability of the pirate by o(1/n). But after we make this

replacement, TrEncTT(~sk, i∗) and TrEncTT(~sk, i∗−1) are (perfectly, information-theoretically) in-

distinguishable to the pirate. Since the sequence of indices i1, . . . , ikTT is random, the pirate has no

information about which elements ij are i∗ and which are i∗ − 1. Thus, if the pirate wants to make

Pi∗ larger than Pi∗−1, for some i∗ 6∈ S, she can do no better than to “guess”. If we take s = Õ(n2),

and apply a Chernoff bound, it turns out that for every i 6∈ S, Pi−Pi−1 = o(1/n). This conclusion

also holds after we take into account the security loss of the encryption scheme, which is o(1/n).

Thus, the scheme we described is a secure traitor-tracing scheme in the sense of Definition 3.4.

In arguing that the scheme is secure, we used the fact that P0 = 0 and Pn = 1 no matter

what other queries are made to the pirate. In many applications, this assumption would not be

reasonable. However, when the pirate is derived from an accurate sanitizer, this condition will be

satisfied.

For this scheme, the tracer makes (n + 1)s = Õ(n3) queries. Before proceeding, we will

explain how to reduce the number of queries from Õ(n3) to Õ(n2). The high-level argument that

the scheme is secure used two facts:

1. By the availability of the pirate decoder, if every user in S would decrypt a ciphertext c to b,

then the pirate decrypts c to b (in the above, P0 = 0, Pn = 1).

2. Because of the encryption, a pirate decoder without user i’s key “doesn’t know” how user i

would decrypt each ciphertext.

Systems leveraging these two properties to identify a colluding user are called fingerprinting

codes [18], and have been studied extensively. In fact, the tracing algorithm we described is identi-

cal to the tracing algorithm we define in Section 3.4.4, but instantiated with the fingerprinting code

of Boneh and Shaw [18], which has length Õ(n3). Tardos [86] constructed shorter fingerprinting

codes, with length Õ(n2), which we use to reduce the number of queries to trace.

Next we define the precise security requirement we need out of the underlying encryption

scheme, and then we will give a formal definition of fingerprinting codes.

37

3.4.2 Encryption Schemes

We will build our traitor-tracing scheme from a suitable encryption scheme. An encryption

scheme is tuple of efficient algorithms (Gen,Enc,Dec). All the algorithms may be randomized

except for Dec. The scheme has the following syntactic properties:

• The algorithm Gen takes a security parameter κ, runs in time poly(κ), and returns a private

key sk ∈ {0, 1}κ. Formally sk ←R Gen(1κ).

• The algorithm Enc takes a private key and a message bit b ∈ {0, 1}, runs in time poly(κ),

and generates a ciphertext c ∈ C = C(κ). Formally, c←R Enc(sk, b).

• The algorithm Dec takes a private key sk ∈ {0, 1}κ and a ciphertext c ∈ C(κ), runs in time

poly(κ), and returns a message bit b̂.

First we define (perfectly) correct decryption6

Definition 3.9 (Correctness). An encryption scheme (Gen,Enc,Dec) is (perfectly) correct if for

every b ∈ {0, 1}, and every κ ∈ N,

Pr
sk←RGen(1κ)

[Dec(sk,Enc(sk, b)) = b] = 1.

We require that our schemes have the following kEnc-message security property.

Definition 3.10 (Security of Encryption). Let εEnc : N→ [0, 1] and kEnc : N→ N, TEnc : N×N→
N be functions. An encryption scheme ΠEnc = (Gen,Enc,Dec) is (εEnc, kEnc, TEnc)-secure if for

every TEnc(κ, kEnc(κ))-time algorithm AEnc and every b = (b1, . . . , bkEnc), b
′ = (b′1, . . . , b

′
kEnc

) ∈
{0, 1} (for kEnc = kEnc(κ)),∣∣∣∣∣ Pr

sk←RGen(1κ)
[AEnc(Enc(sk, b1), . . . ,Enc(sk, bkEnc)) = 1]

− Pr
sk←RGen(1κ)

[
AEnc(Enc(sk, b

′
1), . . . ,Enc(sk, b′kEnc)) = 1

] ∣∣∣∣∣ ≤ εEnc(κ).

Notice that we do not require ΠEnc to be secure against adversaries that are given Enc(sk, ·) as

an oracle. That is, we do not require CPA security.

6It would not substantially affect our results if Dec were allowed to fail with negligible probability, however we
will assume perfect correctness for ease of presentation.

38

Definition 3.11 (Encryption Scheme). We say that a tuple of algorithms ΠEnc = (Gen,Enc,Dec)

is an (εEnc, kEnc, TEnc)-encryption scheme if it satisfies correctness and (εEnc, kEnc, TEnc)-security.

3.4.3 Fingerprinting Codes

As we alluded to above, our tracing algorithm will use a fingerprinting code, introduced by

Boneh and Shaw [18]. A fingerprinting code is a pair of efficient (possibly randomized) algorithms

(GenFP,TraceFP) with the following syntax.

• The algorithm GenFP takes a number of users n as input and outputs a codebook of n

codewords of length `FP = `FP(n), W = (w(1), . . . , w(n)) ∈ {0, 1}`FP . Formally W ←R

GenFP(1n). We will think of W ∈ {0, 1}n×`FP as a matrix with each row containing a code-

word.

• The algorithm TraceFP takes an n-user codebook W and a word w′ ∈ {0, 1}`FP and returns

an index i ∈ [n]. Formally, i = TraceFP(W,w′).

Given a non-empty subset S ⊆ [n] and a set of codewords WS = (w(i))i∈S ∈ {0, 1}`FP , we

define the set of feasible codewords to be

F (WS) =
{
w′ ∈ {0, 1}`FP | ∀j ∈ [`FP] ∃i ∈ S w′j = w

(i)
j

}
.

Informally, if all users in S have a 0 (resp. 1) in the j-th symbol of their codeword, then they must

produce a word with 0 (resp. 1) as the j-th symbol. We also define the critical positions to be the

set of indices for which this constraint is binding. That is,

Crit(WS) =
{
j ∈ [`FP] | ∀i, i′ ∈ S w(i)

j = w
(i′)
j

}
.

The security of a fingerprinting code asserts that an adversary who is given a subset WS of the

codewords should not be able to produce an element of F (WS) that does not trace to a user i ∈ S.

More formally,

Definition 3.12 (Secure Fingerprinting Code). Let εFP : N→ [0, 1] and `FP : N→ N be functions.

A pair of algorithms (GenFP,TraceFP) is an (εFP, `FP)-fingerprinting code if GenFP(1n) outputs a

39

codebookW ∈ {0, 1}n×`FP(n), and furthermore, for every (possibly inefficient) algorithmAFP, and

every non-empty S ⊆ [n],

Pr
W←RGenFP(1n)

[AFP(WS) ∈ F (WS) ∧ TraceFP(W,AFP(WS)) 6∈ S] ≤ εFP(n)

where the two executions of AFP are understood to be the same.

Tardos [86] gave a construction of fingerprinting codes of essentially optimal length, improving

on the original construction of Boneh and Shaw [18]. As we mentioned in in Section 3.4.1, the

simple construction we sketched was just out eventual traitor-tracing scheme instantiated with the

Boneh-Shaw fingerprinting code. The construction and analysis of Tardos’ fingerprinting code

also follows the blueprint of the tracing algorithm that we sketched: construct a random set of

codewords such that 1) any feasible codeword will have some significant correlation with at least

one of the codewords, and 2) it is information-theoretically impossible (due to the randomness in

the codewords) to find a feasible codeword that has significant correlation with a codeword that

you haven’t seen, regardless of which codewords you have seen.

Theorem 3.13 ([86]). For every function εFP : N→ [0, 1], there exists an (εFP, O(n2 log(n/εFP)))-

fingerprinting code. In particular, there exists a (o(1/n2), O(n2 log n))-fingerprinting code.

3.4.4 The Traitor-Tracing Scheme

We are now ready to state the construction more formally. The key generation, encryption, and

decryption algorithms are as we described in the sketch (Section 3.4.1), and stated below.

3.4.5 Security of ΠTT

In this section we will prove that out construction of ΠTT = (GenTT,EncTT,DecTT,TraceTT)

is an (n, `FP(n))-secure traitor-tracing scheme. It can be verified from the specification of the

scheme that it has the desired syntactic properties, that it generates n(κ) user keys, and that the

tracing algorithm makes `FP(n(κ)) non-adaptive queries to its oracle.

Now we show how an available pirate decoder for this scheme can be traced. As in the sketch

(Section 3.4.1), we want to generate a set of ciphertexts that different users decrypt in different

ways. Specifically, given a fingerprinting code W ∈ {0, 1}n×`FP (represented as a matrix with

40

Let an encryption ΠEnc = (Gen,Enc,Dec) and a function n : N → N be parameters of the

scheme. Assume that n(κ) ≤ 2κ/2 for every κ ∈ N

GenTT(1κ) :

For: every user i = 1, . . . , n(κ)

Let sk
(i) ←R Gen(1κ/2)

Let sk(i) = (sk
(i)
, i) (padded with zeros to have length exactly κ).

Output: ~sk = (sk(1), . . . , sk(n))

(We will sometimes use sk(i) and sk
(i)

interchangeably)

EncTT(sk(1), . . . , sk(n), b) :

For every user i, let c(i) ←R Enc(sk
(i), b)

Output: c = (c(1), . . . , c(n))

DecTT(sk(i), c) :

Output: b̂ = Dec(sk(i), c(i))

Figure 4: The algorithms (GenTT,EncTT,DecTT) for ΠTT.

w(i) in the i-th row), we want to generate a set of ciphertexts c1, . . . , c`FP , such that user i, if she

decrypts as intended using DecTT(sk(i), ·), will decrypt cj to w(i)
j . That is, DecTT(sk(i), cj) = w

(i)
j .

TraceTT will query the pirate decoder on these ciphertexts, treat these responses as a word w′, run

the tracing algorithm for the fingerprinting code on w′, and use the output of TraceFP as its own

output.

If P is available, its output will be a feasible codeword for WS . To see this, recall that if every

user i ∈ S decrypts cj to the same bit, then an available pirate decoder P(~skS, ·), decrypts cj to that

bit. However, the critical positions ofWS are exactly those for which every user i ∈ S has the same

symbol in position j. Thus, the codeword returned by the pirate is feasible, and the fingerprinting

code’s tracing algorithm can identify a user in S.

The catch in this argument is that TrEncTT takes all of W as input, however an attacker for

the fingerprinting code is only allowed to see WS , and thus cannot simulate TrEncTT in a security

41

The tracing algorithm for ΠTT and the subroutine TrEncTT. Let a length `FP = `FP(n)

fingerprinting code ΠFP = (GenFP,TraceFP) be a parameter of the scheme and let ΠEnc =

(Gen,Enc,Dec) be the encryption scheme used above.

TrEncTT(sk(1), . . . , sk(n),W):

Let n× k be the dimensions of W

For: every i ∈ [n], j ∈ [k]

Let c(i)
j ←R Enc(sk

(i),Wi,j)

For: every j ∈ [k]

Let cj = (c
(1)
j , . . . , c

(n)
j)

Output: c1, . . . , ck

(Notice that Dec(sk(i), c
(i)
j) = Wi,j)

TracePTT(~sk):

Let n be the number of user keys and `FP = `FP(n)

Let W ←R GenFP(1n)

Let b̂1, . . . , b̂`FP ←R P(TrEncTT(~sk,W)) and let w′ = b̂1‖ . . . ‖b̂`FP
Output: i←R TraceFP(W,w′)

Figure 5: The algorithm TraceTT for ΠTT

reduction. However, if P only has keys ~skS , and i 6∈ S, then an efficient P cannot decrypt the

i-th component of a ciphertext c = (c(1), . . . , c(n)). But these are the only components that depend

on w(i). So w(i) is computationally hidden from P anyway, and we could replace that codeword

with a string of zeros without significantly affecting the success probability of P . Formalizing this

intuition will yield a valid attacker for the fingerprinting code, and obtain a contradiction.

Theorem 3.14 (From Encryption to Traitor-Tracing). Let ΠEnc be an (εEnc, kEnc, TEnc)-secure en-

cryption scheme, and ΠFP be a (εFP, `FP)-fingerprinting code, ΠFP. Let n, kTT : N → N be any

functions such that for every κ ∈ N, n(κ) ≤ 2κ/2 and

42

1. the encryption scheme and fingerprinting code have sufficiently strong security,

n(κ) · εEnc(κ) + εFP(n(κ)) = o

(
1

n(κ)2

)
,

2. the encryption scheme is secure for sufficiently many queries,

kEnc(κ) ≥ kTT(κ) = `FP(n(κ)),

3. the encryption scheme is secure against adversaries whose running time is as long as the

pirate decoder’s, for every a > 0,

TEnc(κ/2, kTT(κ)) ≥ (κ+ n(κ) + kTT(κ))a.

Then ΠTT instantiated with ΠEnc and ΠFP is an (n, kTT)-traitor-tracing scheme.

Proof. Suppose there exists a poly(κ, n(κ), kTT(κ))-time pirate decoder P that violates the secu-

rity of ΠTT. That is, for every κ ∈ N, there exists S = S(κ) ⊆ [n(κ)], |S| ≥ n(κ) − 1, such

that

Pr
~sk←RGenTT(1κ)

[
Trace

P(~skS(κ),·)
TT (~sk) 6∈ S

]
= Ω

(
1

n(κ)

)
where the probability is also taken over the coins of P and TraceTT. Since there are only n(κ) such

sets, for a randomly chosen i←R [n(κ)], we have

Pr
~sk←RGenTT(1κ)

i←R[n(κ)]

[
Trace

P(~skS−i ,·)
TT (~sk) 6∈ S

]
= Ω

(
1

n(κ)2

)
.

Both of these probabilities are also taken over the coins of P and TraceTT. We will show that such

a pirate decoder must either violate the security of the encryption scheme or violate the security of

the fingerprinting code.

Given a matrix W ∈ {0, 1}(n)×`FP(n), we define W−i ∈ {0, 1}(n−1)×`FP to be W with the i-th

codeword removed and W̃−i ∈ {0, 1}n×`FP(n) to be W with the i-th codeword replaced with ~0`FP(n).

We also use S−i as a shorthand for [n] \ {i}
Consider the following algorithm APFP
Since the fingerprinting code is secure, for a randomly chosen i ←R [n] (in fact, for every

i ∈ [n]),

Pr
W←RGenFP(1n)

i←R[n]

[
APFP(S−i,W−i) ∈ F (W−i) ∧ TraceFP(W,APFP(S−i,W−i)) = i

]
≤ εFP(n) (3.3)

43

APFP(S−i,W−i) :

Let n be the number of users for the fingerprinting code and κ be such that n(κ) = n

Generate keys ~sk ←R GenTT(1κ) and ciphertexts (c1, . . . , c`FP)←R TrEncTT(~sk, W̃−i)

Output w′ = (̂b1, . . . , b̂`FP)←R P(~sk−i, c1, . . . , c`FP)

(Note that W̃−i is just W−i with a row of zeros added, so the attacker is well-defined.)

Figure 6: The fingerprinting security adversary.

This condition could hold simply because AFP outputs an infeasible codeword with high proba-

bility, not because we are successfully tracing a user in S. The next claim states that if P is an

available pirate decoder, then this is not the case.

Claim 3.15. Let kTT = kTT(κ) = `FP(n(κ)) for every κ ∈ N. If P is a kTT-available pirate

decoder, then for every κ ∈ N, every i ∈ [n(κ)], and every W ∈ {0, 1}n×`FP(n) (for n = n(κ))

Pr
[
APFP(S−i,W−i) 6∈ F (W−i)

]
= o

(
1

n(κ)2

)
Proof of Claim 3.15. If P is kTT-useful, then, by definition, for every ~sk = (sk(1), . . . , sk(n)),

every i ⊆ [n], and every c1, . . . , ckTT , if every user i′ 6= i decrypts some cj to the same bit bj , then

so does P(~sk−i, ·) (with high probability). That is, for b̂1, . . . , b̂kTT ←R P(~sk−i, c1, . . . , ckTT),

Pr
[
∃j ∈ [kTT], b ∈ {0, 1}

((
∀i′ 6= i,DecTT(sk(i′), cj) = b

)
∧
(
b̂j 6= b

))]
= o

(
1

n(κ)2

)
(3.4)

Consider any critical position j ∈ Crit(W−i). These are the positions for which every user i′ 6= i

has the same bit w(i′)
j = bj . It’s easy to see from the definition of TrEncTT (and the correctness of

ΠEnc) that if c1, . . . , ckTT ←R TrEncTT(~sk, W̃−i) then every user i′ 6= i will decrypt cj to bj . Thus,

with probability close to 1, for every critical position j, the j-th output of P(~sk−i, c1, . . . , ckTT)

will be equal to bj , which implies w′ = (̂b1, . . . , b̂`FP) is feasible.

Since P outputs feasible codewords with high probability, we obtain

Pr
W←RGenFP(1n)

i←R[n]

[
TraceFP(W,APFP(S−i,W−i)) = i

]
≤ εFP(n(κ)) + o

(
1

n(κ)2

)
(3.5)

by combining the previous claim with (3.3).

44

There are only two differences between the success of the pirate decoder in fooling TraceTT

and the success of the fingerprinting adversary in fooling TraceFP (in the experiment described

in (3.5)): The first is that in the traitor-tracing security condition, P is given ~sk−i for a fixed

i ∈ [n], whereas the fingerprinting adversary is given W−i for a random i ←R [n]. This difference

only affects the error by a factor of n. That is, for every i ∈ [n]

Pr
[
Trace

P(~sk−i,·)
TT (~sk) = i

]
≤ n · Pr

i←R[n]

[
Trace

P(~sk−i,·)
TT (~sk) = i

]
The second difference is that in TraceTT, the ciphertexts given to the pirate are generated by

TrEncTT(~sk,W) whereas in AFP the ciphertexts are generated by TrEncTT(~sk, W̃−i). But these

ciphertexts only differ in the i-th component, and sk(i) is unknown to P , so this does not affect the

behavior of the pirate decoder significantly. This fact is established in the following claim.

Claim 3.16. If ΠEnc is (εEnc, kEnc, TEnc)-secure for kEnc, TEnc as in the statement of the Theorem,

then for every poly(κ, n(κ), kTT(κ)) pirate decoder P ,∣∣∣∣∣ Pr
W←RGenFP(1n)

~sk←RGenTT,i←R[n]

[
TraceFP(W,P(~sk−i,TrEncTT(~sk,W))) = i

]

− Pr
W←RGenFP(1n)

~sk←RGenTT,i←R[n]

[
TraceFP(W,P(~sk−i,TrEncTT(~sk, W̃−i))) = i

] ∣∣∣∣∣ ≤ εEnc(κ)

Proof of Claim 3.16. Let ΠEnc = (Gen,Enc,Dec) be the encryption scheme. The main observation

required to prove the claim is that the two experiments we want to relate can both be simulated

without sk(i), given challenges for the encryption scheme (Definition 3.10). Fix a codebookW ←R

GenFP(1n). Now consider two distributions on ciphertexts (of ΠEnc): In either case, generate a

random key sk(i) ←R Gen(1κ)

• In the first case c(i)
1 ←R Enc(sk

(i), w
(i)
1), . . . , c

(i)
`FP
←R Enc(sk

(i), w
(i)
`FP

)

• In the second case sk(i) ←R Gen(1κ) and c(i)
1 ←R Enc(sk

(i), 0), . . . , c
(i)
`FP
←R Enc(sk

(i), 0)

Suppose we receive a set of `FP ciphertexts from one of these two distributions. Note that GenTT
chooses keys for each user independently, and TrEncTT generates ciphertext components for each

user independently. So we can generate keys ~sk−i, and ciphertext components for users other

than i independently, and use the challenge ciphertexts in place of the ciphertext components for

user i, without knowing sk(i). Suppose we simulate TrEncTT(~sk,W) in this way. Notice that if the

45

challenge ciphertexts come from the first distribution, then simulated ciphertexts will be distributed

exactly as in TrEncTT(~sk,W), and if the challenge ciphertexts come from the second distribution,

then the simulated ciphertexts will be distributed exactly as in TrEncTT(~sk, W̃−i). But, if the claim

were false, then we would have found an adversary for the encryption scheme that can distinguish

between the two distributions with advantage greater than εEnc(κ). It is easy to see that if the pirate

decoder is efficient, then so will the adversary for the encryption scheme (since TraceFP,Gen,Enc

are all assumed to be efficient. We conclude that if the claim is false, thenAEnc violates the security

of ΠEnc.

We now complete the proof of the theorem by combining Equation (3.5) and Claim 3.16.

3.4.6 Decryption Function Family of ΠTT

Recall that the two goals of constructing a new traitor-tracing scheme were to trace stateful

pirates and to reduce the complexity of decryption. We addressed tracing of stateful pirates in the

previous section, and now we turn to the complexity of decryption. We do so by instantiating the

traitor-tracing scheme with various encryption schemes and making two observations: 1) The type

of encryption schemes we require are sufficiently weak that there already exist plausible candidates

with a very simple decryption operation, and 2) Decryption for the traitor-tracing scheme is not

much more complex than decryption for the underlying encryption scheme. We summarize the

second point with the following simple lemma.

Lemma 3.17 (Decryption Function Family for ΠTT). Let ΠTT be as defined, with ΠEnc as its

underlying encryption scheme. Let (sk, i) = sk ∈ {0, 1}κ and c = (c(1), . . . , c(n)) ∈ C(κ) be any

user key and ciphertext for ΠTT. Then

DecTT,c(sk) = DecTT,c(sk, i) =
∨
i′∈[n]

(
1i′(i) ∧ Decc(i′)(sk)

)
Here, the function 1x(y) takes the value 1 if y = x and 0 otherwise. The lemma follows directly

from the construction of DecTT. Also note that the function 1i′ : {0, 1}dlogne → {0, 1} is just a

conjunction of dlog ne bits (a single gate of fan-in O(log n)), and we need to compute n of these

functions. In addition to computing 1i′ and Decc(i′) , there are n conjunctions and a single outer

46

disjunction. Thus we add an additional n+ 1 gates, compute decryption n times, and increase the

depth by 2. Hence, an intuitive summary of the lemma is that if Dec can be implemented by circuits

of size s and depth h, DecTT can be implemented by circuits of size n · (s + O(log n)) = Õ(ns)

and depth h+ 2. This summary will be precise enough to state our main results.

By combining Lemma 3.17 with Theorem 3.14, we easily obtain the following corollary.

Corollary 3.18 (One-way Functions Imply Traitor-Tracing w/ Poly-Time Decryption). Let n =

n(κ) be any polynomial in κ. Assuming the existence of (non-uniformly secure) one-way functions,

there exists an (n, Õ(n2))-secure traitor-tracing scheme with decryption function family QDecTT,κ

consisting only of circuits of size poly(κ)

Proof. The existence of one-way functions implies the existence of an encryption scheme ΠEnc that

is (1/κa, κa, κa)-secure for every constant a > 0 and sufficiently large κ with decryption function

QDec,κ consisting only of circuits of size t(κ) = poly(κ) for every κ ∈ N. From Lemma 3.17, it is

easy to see that if ΠTT uses ΠEnc as its encryption scheme, then QDecTT,κ consists only of circuits

of size Õ(n(κ)t(κ/2)) = poly(κ).

Theorem 6.1 in the introduction follows by combining Theorem 3.6 with Corollary 3.18.

We will now consider the possibility of constructing a traitor-tracing scheme where the decryp-

tion functionality can be implemented by circuits of constant depth, and thus obtaining hardness

results for generic sanitizers that are efficient for constant-depth queries (Theorem 6.3). First,

we summarize our observation that the traitor-tracing scheme almost preserves the depth of the

decryption function.

Corollary 3.19 (Encryption with Constant-Depth Decryption Impies Traitor-Tracing w/ Constan-

t-Depth Decryption). Let n = n(κ) be any polynomial in κ. If there exists an encryption scheme,

(Gen,Enc,Dec), that is (o(1/n2), ω(n4), na)-secure for every a > 0 and has decryption fam-

ily Q(κ)
Dec consisting of circuits of size poly(κ) and depth h, then there exists a (n, Õ(n2))-secure

traitor-tracing scheme with decryption function family Q(κ)
DecTT

consisting of circuits of size

Õ(n) · poly(κ) and depth h+ 2.

The corollary is clear from Lemma 3.17 and Theorem 3.14. The corollary is not interesting

without an encryption scheme that can be decrypted by constant-depth circuits. However, we

observe that such a scheme (meeting our relaxed security criteria) can be constructed from a suf-

ficiently good local pseudorandom generator (PRG). A recent result of Applebaum [3] gave the

47

first plausible candidate construction of a local PRG for the range of parameters we need, giv-

ing plausibility to the assumption that such PRGs (and, as we show, traitor-tracing schemes with

constant-depth decryption) exist. We note that local PRGs actually imply encryption schemes with

local decryption, which is stronger than just constant-depth decryption. Although it may be sig-

nificantly easier to construct encryption schemes that only have constant-depth decryption, we are

not aware of any other ways of constructing such a scheme.

Definition 3.20 (Local Pseudorandom Generator). An algorithm G : {0, 1}κ → {0, 1}sPRG(κ) is a

εPRG-pseudorandom generator if it is efficient (poly(κ)-time) and for every poly(sPRG(κ))-time

adversary APRG ∣∣Pr [APRG(G(Uκ)) = 1]− Pr
[
APRG(UsPRG(κ)) = 1

]∣∣ ≤ εPRG(κ)

If, in addition, if each bit of the output depends only on some set of L bits of the input, then G is a

(εPRG, L)-local pseudorandom generator.

It is a well known result in Cryptography that pseudorandom generators imply encryption

schemes satisfying Definition 3.10 (for certain ranges of parameters). We will use a particular

construction whose decryption can be computed in constant-depth whenever the underlying PRG

is locally-computable (or, more generally, computable by constant-depth circuits). The construc-

tion is the standard “computational one-time pad”, however we give a construction to verify that

the decryption can be computed by constant-depth circuits.

Gen(1κ) :

Let s←R {0, 1}κ and output sk = s

Enc(sk, b) :

Let r ←R {1, 2, . . . , sPRG(κ)} and output c = (r,G(sk)r ⊕ b)

Dec(sk, c) :

Let (r′, b′) = c and output: b = G(sk)r ⊕ b′

Figure 7: An encryption scheme ΠLocalEnc that can be decrypted in constant depth.

48

Lemma 3.21 (Local PRGs → Encryption). If there exists a (εPRG(κ), L)-local pseudorandom

generator G : {0, 1}κ → {0, 1}sPRG(κ), then there exists an (εEnc = εPRG + k2
Enc/sPRG, kEnc)-Secure

Encryption Scheme (Gen,Enc,Dec) with decryption function family QDec,κ consisting of circuits

of size poly(κ) and depth 4.

Proof. The security follows from standard arguments: If we choose a random s ←R {0, 1}κ, then

G(s) is indistinguishable from uniform up to error εPRG. If we generate kEnc encryptions with

key s, and no two encryptions use the same choice of r, then the output is indistinguishable from

encryptions using uniform random bits in place of G(s). If we use uniform random bits in place of

G, then the message is information-theoretically hidden. The probability that no two encryptions

out of kEnc use the same choice of r is at most k2
Enc/sPRG, so we lose this term in the security of the

encryption scheme.

Let 1i(j) be the indicator variable for the condition j = i. For every c = (r, b) ∈ C, we can

write

Dec(r,b)(s) =
∨

i∈[sPRG(κ)]

(1i(r) ∧ (Gi(s)⊕ b)) .

Observe that, since Gi is a function of L bits of the input, it can be computed by a size-2L DNF

(depth-2 circuit), thus Gi(s)⊕ b can be computed by a size 2L+1, depth-3 circuit. The indicator 1i
can be computed by a conjunction of dlog2 sPRG(κ)e bits, which is a size-dlog2 sPRG(κ)e, depth-1

circuit. The outer disjunction increases the depth by one level and the size by 1. Putting it all to-

gether, we have shown that Decr,b(s) can be computed by depth-4 circuits of size Õ(2LsPRG(κ)) =

poly(sPRG(κ)).

Combining Corollary 3.19 with Lemma 3.21 easily yields the following corollary.

Corollary 3.22 (Local Pseudorandom Generators Imply traitor-tracing w/ AC0 Decryption). Let

n = n(κ) be any polynomial in κ. Assuming the existence of a (o(1/n2), n7, L)-local pseudoran-

dom generator for some constant L ∈ N, there exists an (n, Õ(n2))-secure traitor-tracing scheme

with decryption function family QDecTT,κ consisting of circuits of size Õ(n) · poly(κ) and depth 6.

Theorem 6.3 in the introduction follows by combining Theorem 3.6 with Corollary 3.22.

49

Chapter 4

The Hardness of Generating Private

Synthetic Data

In Chapter 3 we saw that if we want efficient sanitizers for counting queries that provide better

utility than the Laplace mechanism, then we have to do something more than just restrict the num-

ber of queries (as answering n2+o(1) queries is hard, by Theorem 3.1). In this chapter we take a

different approach and consider restricting the complexity of the queries. In particular, we focus on

a restricted family of counting queries, called marginal queries. Recall from the introduction that

a marginal query is specified by a set S ⊆ [d] and a pattern t ∈ {0, 1}|S|. The query asks, “What

fraction of the individual records in D has each of the attributes j ∈ S set to tj?” A natural restric-

tion is to the set of k-way marginal queries, which are marginal queries specified by sets of size

at most k. The set of answers to all k-way marginal queries is alternatively known as the “k-way

contingency table” of the database. Contingency tables are a workhorse of categorical data analy-

sis, as they are easy to interpret and are sufficient statistics for many popular probabilistic models.

For example, the set of pairwise correlations between different binary attributes—the covariance

matrix—is equivalent to the 2-way contingency table. Marginal queries are also sometimes known

as “conjunction queries” in the differential privacy literature, since a marginal query is simply a

counting query in which the predicate q is a conjunction on the bits of it input.

In this chapter, we focus on one-shot sanitizers for k-way marginal queries. Recall that a one-

shot sanitizer computes and releases a single differentially private “summary” of the database that

enables others to determine accurate answers to a large class of queries. What form should this

50

summary take? The most appealing form would be a synthetic database (defined in Chapter 2),

which is a new database D̂ =M(D) whose rows are “fake”, but come from the same universe as

those of D and are guaranteed to share many statistics with those of D (up to some accuracy). In

particular, we would like the synthetic database to yield answers to k-way marginal queries that

are approximately the same as those given by the input database. Some advantages of synthetic

data are that it can be easily understood by humans, and statistical software can be run directly on

it without modification.

The first result on producing differentially private synthetic data came in the work of Barak et

al. [8]. Given a database D consisting of n rows from {0, 1}d, they show how to construct a dif-

ferentially private synthetic database D̂, also of n rows from {0, 1}d, in which the answer to every

marginal query, is approximately preserved up to an additive error of 2O(d)/n. The running time of

their algorithm is poly(n, 2d), which is feasible for small values of d. They pose as an open prob-

lem whether the running time of their algorithm can be improved for the case where we only want

to preserve the k-way marginals for small k (e.g. k = 2). Indeed, the number of k-way marginal

queries is only dΘ(k) (when k � d), and we can produce differentially private estimates for all of

these queries in time poly(n, dk) with error dΘ(k)/n, using the Laplace mechanism (Lemma 2.9).

Moreover, a version of the Barak et al. algorithm [8] can ensure that even these noisy answers are

consistent with a real database.7

As we have discussed, there are more powerful techniques than the Laplace mechanism for

answering counting queries. Indeed, all of these techniques generate synthetic data, either explic-

itly or as a byproduct of their design. For every class Q = {q : {0, 1}d → {0, 1}} of predicates,

the private multiplicative weights algorithm (Lemma 2.16) yields a differentially private one-shot

sanitizerM that produces a synthetic database D̂ = M(D) such that all counting queries corre-

sponding to predicates in Q are preserved to within an accuracy of Õ(d1/4
√

log |Q|/n1/2), with

high probability. In particular, with n = poly(d), the synthetic data can provide simultaneous ac-

curacy for an exponential-sized family of queries (e.g. |Q| = 2d). Indeed, nearly every technique

we are aware of for answering a large number of counting queries crucially relies on synthetic data

as part of its design.8 Unfortunately, the running time of every such known algorithm is at least 2d.

7Technically, this “real database” may assign fractional weight to some rows.

8A notable exception is the new algorithm of Nikolov, Talwar, and Zheng [70], which does not explicitly maintain
a synthetic database as part of its state.

51

Dwork et al. [32] gave evidence that the large running time of the these latter algorithms is

inherent. Specifically, assuming the existence of one-way functions, they exhibit an efficiently

computable family Q of predicates (e.g. consisting of circuits of size d2) for which it is infeasible

to produce a differentially private synthetic database preserving the counting queries correspond-

ing to Q (for databases of any n = poly(d) number of rows). However, these results left open

the possibility that for natural families of counting queries (e.g. k-way marginal queries), pro-

ducing a differentially private synthetic database (or non-synthetic summarization) can be done

efficiently. Indeed, one may have gained optimism from a comparison to the early history of

computational learning theory, where one-way functions were used to show hardness of learning

arbitrary efficiently computable concepts in computational learning theory but natural subclasses

(like conjunctions) were found to be learnable [91].

4.1 Our Results and Techniques

We prove that it is infeasible to produce synthetic databases preserving even very simple count-

ing queries, such as 2-way marginals:

Theorem 4.1. Assuming the existence of one-way functions, there is a constant α > 0 such that

for any constant β < 1, there is no efficient one-shot sanitizer whose output is a synthetic database

that is (α, β)-accurate for 2-way marginals.

That is, for every polynomial p, there is no polynomial-time, differentially private algorithmM
that takes a database D ∈ ({0, 1}d)p(d) and produces a synthetic database D̂ ∈ ({0, 1}d)∗ such

that |q(D)− q(D̂)| ≤ α for all 2-way marginals q.

Stated differently, there is no efficient, differentially private, one-shot sanitizer for the family of

2-way marginals whose summary is a synthetic database. In fact, our impossibility result extends

from conjunctions of 2 literals to any family of constant arity predicates that contains a function

depending on at least two variables, such as parities of 3 literals.

As mentioned earlier, all 2-way marginals can be easily summarized with non-synthetic data

(by just adding noise to each of the (2d)2 values). Thus, our result shows that requiring a syn-

thetic database may severely constrain what sorts of differentially private data releases are possi-

ble. (Dwork et al. [32] also showed that there exists a poly(d)-sized family of counting queries that

52

are hard to summarize with synthetic data, thereby separating synthetic data from non-synthetic

data. Our contribution is to show that such a separation holds for a very simple and natural family

of predicates, namely 2-way marginals.)

This separation between synthetic data and non-synthetic data seems analogous to the separa-

tions between proper and improper learning in computational learning theory [73, 36], where it is

infeasible to learn certain concept classes if the output hypothesis is constrained to come from the

same representation class as the concept, but it becomes feasible if we allow the output hypothesis

to come from a different representation class. This analogy gives hope for designing efficient, dif-

ferentially private algorithms that take a database and produce a compact summary of it that is not

synthetic data but somehow can be used to accurately answer exponentially many questions about

the original database (e.g. all marginals). The negative results of Dwork et al. [32] and those of

Chapter 3 on non-synthetic data (assuming the existence of efficient traitor-tracing schemes) do not

say anything about natural classes of counting queries, such as marginals. Indeed, in Chapters 5

and 6 we will design one-shot sanitizers for marginal queries that do not generate synthetic data

and are faster than what can be achieved for arbitrary counting queries.

To bypass the complexity barrier stated in Theorem 4.1, it may not be necessary to introduce

exotic data representations; some mild generalizations of synthetic data may suffice. For example,

several recent algorithms [16, 78, 35] produce several synthetic databases, with the guarantee that

the median answer over these databases is approximately accurate. More generally, we can con-

sider summarizations of a database D that that consist of a collection D̂ of rows from the same

universe as the original database, and where we estimate q(D) by applying the predicate q to each

row of D̂ and then aggregating the results via some aggregation function f . With standard syn-

thetic data, f is simply the average, but we may instead allow f to take a median of averages, or

apply an affine shift to the average. For such relaxed synthetic data, we prove the following results:

• There is a constant k such that counting queries corresponding to k-juntas (functions de-

pending on at most k variables) cannot be accurately and privately summarized as relaxed

synthetic data with a median-of-averages aggregator, or with a symmetric and monotone

aggregator (that is independent of the predicate q being queried).

• For every constant k, counting queries corresponding to k-juntas can be accurately and pri-

vately summarized as relaxed synthetic data with an aggregator that applies an affine shift to

53

the average (where the shift does depend on the predicate being queried).

Our proof of Theorem 4.1 and our other negative results are obtained by combining the hard-to-

sanitize databases of Dwork et al. [32] with PCP reductions. They construct a database consisting

of valid message-signature pairs (mi, σi) under a digital signature scheme, and argue that any

differentially private sanitizer that preserves accuracy for the counting query associated with the

signature verification predicate can be used to forge valid signatures. We replace each message-

signature pair (mi, σi) with a PCP encoding πi that proves that (mi, σi) satisfies the signature

verification algorithm. We then argue that if accuracy is preserved for a large fraction of the

(constant arity) constraints of the PCP verifier, then we can “decode” the PCP either to violate

privacy (by recovering one of the original message-signature pairs) or to forge a signature (by

producing a new message-signature pair).

We remark that error-correcting codes were already used in [32] for the purpose of producing

a fixed polynomial-sized set of counting queries that can be used for all verification keys. Our

observation is that by using PCP encodings, we can reduce not only the number of counting queries

in consideration, but also their computational complexity.

Our proof has some unusual features among PCP-based hardness results:

• As far as we know, this is the first time that PCPs have been used in conjunction with crypto-

graphic assumptions for a hardness result. (They have been used together for positive results

regarding computationally sound proof systems [55, 64, 9].) It would be interesting to see

if such a combination could be useful in, say, computational learning theory (where PCPs

have been used for hardness of “proper” learning [2, 37] and cryptographic assumptions for

hardness of representation-independent learning [91, 52]).

• While PCP-based inapproximability results are usually stated as Karp reductions, we actu-

ally need them to be Levin reductions—capturing that they are reductions between search

problems, and not just decision problems. (Previously, this property has been used in the

same results on computationally sound proofs mentioned above.)

54

4.2 Relationship with Hardness of Approximation

The objective of a privacy-preserving sanitizer is to reveal some properties of the underlying

database without giving away enough information to reconstruct that database. This requirement

has different implications for sanitizers that produce synthetic databases and those with arbitrary

output.

The SuLQ framework of [15] is a well-studied and efficient technique for achieving (ε, δ)-

differential privacy, with non-synthetic output. To get accurate, private output for a family of

counting queries with predicates in Q, we can release a vector of noisy counts (q(D) + Zq)q∈Q

where the random variables (Zq)q∈Q are drawn independently from a distribution suitable for pre-

serving privacy (e.g. a Laplace distribution with standard deviation O(|Q| /εn)).

Consider the case of an n-row database D that contains satisfying assignments to a 3CNF

formulaϕ, and suppose our concept class includes all disjunctions on three literals (or, equivalently,

all conjunctions on three literals). Then the technique above releases a set of noisy counts that

describes a database in which every clause of ϕ is satisfied by most of the rows of D. However,

sanitizers with synthetic-database output are required to produce a database that consists of rows

that satisfy most of the clauses of ϕ.

Because of the noise added to the output, the requirement of a synthetic database does not

strictly force the sanitizer to find a satisfying assignment for the given 3CNF. However, it is

known to be NP-hard to find even approximate satisfying assignments to 3CNF formulae. In our

main result, Theorem 4.16, we will show that there exists a distribution over databases that is

hard-to-sanitize with respect to synthetic data for any concept class that is sufficient to express a

hard-to-approximate constraint satisfaction problem.

4.2.1 Hard to Approximate CSPs

We define a constraint satisfaction problem to be the following.

Definition 4.2 (Constraint Satisfaction Problem (CSP)). For a non-decreasing function q = q(d) ≤
d, a family of q(d)-CSPs, denoted Γ = (Γd)d∈N, is a sequence of sets Γd of boolean predicates

defined on up to q(d) variables. We assume for convenience that Γ1 ⊆ Γ2 ⊆ If q(d) and Γd do

not depend on d then we refer to Γ as a fixed family of q-CSPs.

55

For every d ≥ q(d), letQ(d)
Γ be the class consisting of all predicates q : {0, 1}d → R of the form

q(u1, . . . , ud) = γ(ui1 , . . . , uiq(d)) for some γ ∈ Γd and i1, . . . , iq(d) ∈ [d]. We call QΓ = ∪∞d=0Q
(d)
Γ

the class of constraints of Γ. Finally, we say a multiset ϕ ⊆ Q(d)
Γ is a d-variable instance of QΓ

and each ϕi ∈ ϕ is a constraint of ϕ.

We say that an assignment π satisfies the constraint ϕi if ϕi(π) = 1. For ϕ = {ϕ1, . . . , ϕm},
define

val(ϕ, π) =
1

m

m∑
i=1

ϕi(π) and val(ϕ) = max
π∈{0,1}d

val(ϕ, π).

Our hardness results will apply to concept classes Q(d)
Γ for CSP families Γ with certain addi-

tional properties. Specifically we define,

Definition 4.3 (Nice CSP). A family Γ = (Γd)d∈N of q(d)-CSPs nice if

1. q(d) = d1−Ω(1), and

2. for every d ∈ N, there exists a non-constant predicate ϕ∗ : {0, 1}q(d) → {0, 1}, and two

assignments u∗0, u
∗
1 ∈ {0, 1}q(d) such that ϕ∗(u0) = 0 and ϕ∗(u1) = 1 can be found in time

poly(d).

We note that any fixed family of q-CSP that contains a non-constant predicate is a nice CSP.

Indeed, these CSPs (e.g. conjunctions of 2 literals) are the main application of interest for our

results. However it will sometimes be useful to work with generalizations to nice CSPs with

predicates of non-constant arity.

For our hardness result, we will need to consider a strong notion of hard constraint satisfaction

problems, which is related to probabilistically checkable proofs. First we recall the standard notion

of hardness of approximation under Karp reductions (stated for additive, rather than multiplicative

approximation error).

Definition 4.4 (Inapproximability under Karp Reductions). Let α, γ : N → [0, 1] be functions. A

family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Karp reductions if there exists a

polynomial-time computable function R such that for every circuit C with |C| gates and input size

d, if we set ϕC = R(C) ⊆ QΓ, then

1. if C is satisfiable, then val(ϕC) ≥ γ(d), and

56

2. if C is unsatisfiable, then val(ϕC) < γ(d)− α(d).

For our hardness result, we will need a stronger notion of inapproximability, which says that

we can efficiently transform satisfying assignments of C into solutions to ϕC of high value, and

vice-versa. In order to make the statement of our hardness result more precise, we also want to

put explicit bounds on both the input length of the instance produced by the reduction and the time

required to transform assignments to C into solutions to ϕC and vice versa.

Definition 4.5 (Inapproximability under Levin Reductions). Let α, γ : N→ [0, 1] and LPCP : N→
N be functions. A family of CSPs Γ = (Γd)d∈N is (α, γ)-hard-to-approximate under Levin reduc-

tions with length blowup LPCP if there exist polynomial-time computable functions R,Enc,Dec

such that for every circuit C with |C| gates and input of size d

1. ϕC = R(C) ⊆ Q(d)
Γ for d = LPCP(|C|),

2. for every u ∈ {0, 1}d such that C(u) = 1, val(ϕC ,Enc(u,C)) ≥ γ(d),

3. for every π ∈ {0, 1}d such that val(ϕC , π) ≥ γ(d)− α(d), C(Dec(π,C)) = 1,

4. for every u ∈ {0, 1}d, Dec(Enc(u,C)) = u, and

5. Enc and Dec are both computable in time poly(|C|, d).

When we do not wish to specify the value γ we will simply say that the family Γ is α-hard-to-

approximate under Levin reductions with length blowup LPCP to indicate that there exists such

a γ ∈ (α, 1]. When we do not specify a length blowup LPCP, then LPCP is assumed to be a

polynomial. If we drop the requirement that R is efficiently computable, then we say that Γ is

(α, γ)-hard-to-approximate under inefficient Levin reductions with length blowup LPCP. Finally, if

LPCP(s) ≤ s1+o(1) then we will write that Γ is (α, γ)-hard-to-approximate under Levin reductions

with nearly-linear length blowup.

The notation Enc,Dec reflects the fact that we think of the set of assignments π such that

val(ϕC , π) ≥ γ as a sort of error-correcting code on the satisfying assignments to C. Any π with

value close to γ can be decoded to a valid satisfying assignment.

Levin reductions are a stronger notion of reduction than Karp reductions. To see this, let Γ be

α-hard-to-approximate under Levin reductions, and let R,Enc,Dec be the functions described in

57

Definition 4.5. We now argue that for every circuit C, the formula ϕC = R(C) satisfies condi-

tions 1 and 2 of Definition 4.4. Specifically, if there exists an assignment u ∈ {0, 1}d that satisfies

C, then Enc(u,C) satisfies at least a γ fraction of the constraints of ϕC . Conversely if any assign-

ment π ∈ {0, 1}d satisfies at least a γ − α fraction of the constraints of ϕC , then Dec(π,C) is a

satisfying assignment of C.

Variants of the PCP Theorem can be used to show that essentially every class of CSP is hard-

to-approximate in this sense. Indeed, π = Enc(u,C) corresponds to a “probabilistically checkable

proof” thatC is satisfiable: if we check a random constraint of ϕC = R(C) (which requires reading

only a few bits of π) then we will accept with probability at least γ. Conversely, if the above test

passes for some string π ∈ {0, 1}d with probability at least γ − α, then C must be satisfiable (as

Dec(π,C) is a satisfying assignment to C).

We restrict to CSP’s that are closed under negation as it suffices for our application.

Theorem 4.6 (variant of PCP Theorem). For every fixed family of CSPs Γ that is closed under

negation and contains a function that depends on at least two variables, there is a constant α =

α(Γ) > 0 such that Γ is α-hard to approximate under Levin reductions.

Proof sketch. Hardness of approximation under Karp reductions follows directly from the classi-

fication theorems of Creignou [24] and Khanna et al. [53]. These theorems show that all CSPs

are either α-hard under Karp reductions for some constant α > 0 or can be solved optimally in

polynomial time. By inspection, the only CSPs that fall into the polynomial-time cases (0-valid,

1-valid, and 2-monotone) and are closed under negation are those containing only dictatorships

and constant functions.

The fact that standard PCPs actually yield Levin reductions has been explicitly discussed and

formalized by Barak and Goldreich [9] in the terminology of PCPs rather than reductions (the

function Enc is called “relatively efficient oracle-construction” and the function Dec is called “a

proof-of-knowledge property”). They verify that these properties hold for the PCP construction

of Babai et al. [7], whereas we need it for PCPs of constant query complexity. While the prop-

erties probably hold for most (if not all) existing PCP constructions, the existence of the efficient

“decoding” function g requires some verification. We observe that it follows as a black box from

the PCPs of Proximity of [12, 27]. There, a prefix of the PCP (the “implicit input oracle”) can

be taken to be the encoding of a satisfying assignment of the circuit C in an efficiently decodable

error-correcting code. If the PCP verifier accepts with higher probability than the soundness error

58

s, then it is guaranteed that the prefix is close to a valid codeword, which in turn can be decoded

to a satisfying assignment. By the correspondence between PCPs and CSPs [6], this yields a CSP

(with constraints of constant arity) that is α-hard to approximate under Levin reductions for some

constant α > 0 (and γ = 1). The sequence of approximation-preserving reductions from arbitrary

CSPs to MAX-CUT [71] can be verified to preserve efficiency of decoding (indeed, the correctness

of the reductions is proven by specifying how to encode and decode). Finally, the reductions of

[53] from MAX-CUT to any other CSP all involve constant-sized “gadgets” that allow encoding

and decoding to be done locally and very efficiently.

It seems likely that optimized PCP/inapproximability results (like [47]) are also Levin reduc-

tions, which would yield fairly large values for α for natural CSPs (e.g. α = 1/8−ε if Γ contains all

conjunctions of 3-literals, because then QΓ contains MAX 3-SAT.) We are particularly interested

in optimizing the length of the PCP, in order to establish tighter reductions between generating

private synthetic data and forging digital signatures. Below we sketch a proof that a particular

construction of short PCPs is also a Levin reduction.

Theorem 4.7. There exists a fixed family of constant-arity CSPs Γ that is 1/2-hard-to-approximate

under nearly-linear Levin reductions.

Proof sketch. The existence of a family of constant-arity CSPs Γ that is 1/2-hard-to-approximate

under nearly-linear-length Karp reductions was shown by Dinur [25], building on a PCP construc-

tion of Ben-Sasson and Sudan [13]. Thus in order to establish the theorem we only need to verify

that satisfying assignments can be encoded and decoded in polynomial time. To this end, we will

outline the construction and sketch the encoding and decoding procedures. In the outline we will

focus only on the properties of the construction relevant to encoding and decoding of assignments.

See [13] and [25] for details regarding the length and soundness parameters of the construction.

1. The first step of the construction is a sequence of reductions from circuit satisfiability to a

certain “algebraic CSP”; efficient encoding and decoding of assignments is implicit in the

analysis of these reductions. See [13, Section 5.2] and [84, Section 4.3] for details of the

reductions.

2. Next, [13] gives a polylogarithmic-query PCP for this algebraic CSP with soundness er-

ror < 1/2. In the language of CSPs (Definition 4.4), this construction gives a family of

59

polylog(d)-CSPs that are 1/2-hard-to-approximate. In their PCP construction, the assign-

ment to the instance of the algebraic CSP—a low-degree univariate polynomial over a finite

field—is included as a prefix of the PCP. The remainder of the PCP consists of evaluations

of related polynomials on various linear subspaces of the field, which can all be computed

in polynomial time (in the size of the field, which is the measure of instance size for the

algebraic CSP). The soundness analysis of their construction shows implicitly that any PCP

accepted with probability greater than 1/2 contains a polynomial that is close (in Ham-

ming distance) to a valid satisfying assignment to the instance of the algebraic CSP. That

is, the prefix of the PCP that should contain a low-degree univariate polynomial satisfying

the algebraic CSP will be close to a unique polynomial that is a valid satisfying assignment.

This satisfying assignment can be efficiently decoded from the PCP using polynomial time

algorithms for decoding Reed-Solomon codes (see e.g. [14]). See [13] for details of the

construction. In particular, see Section 3.3.1 for the argument related to decoding.

3. This PCP can be transformed into a different PCP that only makes two queries to its proof,

at the cost of increasing the soundness error to be too large (1− o(1), rather than 1− Ω(1))

for our desired result. This reduction proceeds in two steps:

(a) First, in the CSP perspective, we add a new variable (over a large alphabet Σ =

{0, 1}polylog(d)) for each constraint. The correct proof will consist of a satisfying as-

signment to the original CSP and, for each new variable, a copy of all the variables rel-

evant to a particular constraint. The new encoding can clearly be produced efficiently

since there are only polynomially many constraints, and thus polynomially many new

variables that need to be assigned. The analysis in [25] shows that if any assignment

(PCP) satisfies a sufficiently large fraction of the constraints of the new CSP, then the

prefix of the assignment corresponding to the original CSP must in fact satisfy a large

fraction of the constraints of that CSP. See [25, Section 7.2] for details.

(b) The second is to reduce the alphabet size back down to binary. This can be accom-

plished using a standard composition with a PCP of Proximity (see e.g. [4]). The

new PCP will consist of an encoding of each symbol with a linear-rate, constant dis-

tance, error correcting code that admits efficient encoding and decoding, as well as a

polynomial-sized PCP of Proximity admitting efficient encoding. The existence of such

60

a PCP of Proximity is well-known (and discussed in the context of Theorem 4.6). Here

we can afford to use a PCP of Proximity with any polynomial length blowup, since it is

applied to symbols of length polylog(d). Dinur [25] establishes the existence of such a

PCP of Proximity using a small number of rounds of gap amplification (see Step 4) and

it can easily be seen that efficient encoding for each round of gap amplification holds

in the case of PCPs of Proximity as well. See [25, Section 3] for details of composition

and Section 8 for a construction of PCPs of Proximity.

4. Finally, we decrease the soundness error to a constant s < 1. This can be accomplished, as

in [25] via a small number of rounds of “gap amplification.” We will check that the CSP

produced by each round of gap amplification allows for efficient encoding and decoding.

Each step of gap amplification consists of three phases

(a) A preprocessing phase that ensures the CSP instance has certain useful properties. This

phase consists of several simple transformations on the CSP and its assignment and it

is implicit in the analysis of these transformations that assignments can be encoded and

decoded efficiently. See [25, Section 3.1] for details.

(b) A “powering” step that creates a new CSP over a larger (but still constant-sized) al-

phabet. In the correct proof, we replace each variable of the original CSP with a new

variable that contains an assignment to every original variable that is “nearby” in an ap-

propriate sense. Thus to encode we simply have to copy the assignment to each variable

a small (constant) number of times. The analysis of [25] shows that if an assignment

to this new CSP satisfies a large fraction of its constraints, then we can efficiently com-

pute an assignment to the original CSP that satisfies a large fraction of its constraints.

Specifically, we assign each variable in the original CSP to be a “plurality vote” of the

variables of the new CSP, and this plurality vote, which can be computed efficiently.

See [25, Section 5] for details.

(c) Finally, we want to produce a CSP over a binary alphabet. As in Step 3b, we can

achieve this via composition with a PCP of Proximity. However here the alphabet we

begin with is constant-sized, so we can afford to use an inefficient PCP of Proximity,

and encoding and decoding can be achieved via brute-force enumeration of code words.

See [25], Section 6 for details.

61

For some of our results we will need CSPs that are very hard to approximate (under possibly

inefficient reductions), which we can obtain by “sequential repetition” of constant-error PCPs.

Theorem 4.8. There is a constant C such that for every ε = ε(d) > 0, the constraint family

Γ = (Γd)d∈N of k(d)-clause 3-CNF formulas is (1 − ε(d))-hard-to-approximate under inefficient

Levin reductions, for k(d) = C log(1/ε(d)).

Proof sketch. As in the proof of Theorem 4.6, disjunctions of 3 literals are (1 − δ, 1)-hard-to-

approximate under Levin reductions for some constant δ > 0. By taking `(d) = logδ(ε(d))

sequential repetitions of this PCP, we get a PCP with completeness 1 and soundness ε(d) whose

constraints are 3-CNF formulas with `(d) = logδ(1/ε(d)) clauses. Note that the resulting CSP will

have arity at most k(d) = 3`(d).

We have to check that this resulting PCP preserves the properties of inefficient Levin reduc-

tions. The encoder for the `-fold sequential repetition is unchanged. If the initial reduction is

R(C) = ϕC = {ϕ1, . . . , ϕm} (a set of 3-literal disjunctions), then the reduction R`(C) for the `-

fold sequential repetition will produce m`, `-clause 3-CNF formulae by taking every subcollection

of ` clauses in ϕC . Specifically, for every i1, i2, . . . , i` ∈ [m], Rk(C) will contain a `-clause 3-CNF

formula ϕi1 ∧ ϕi2 ∧ · · · ∧ ϕi` .
The decoder also remains unchanged. If the value of an assignment π is at least δ` with respect

to R`(C) then it must have value at least δ with respect to R(C) and thus Dec(π,C) will return a

satisfying assignment to C, that is C(Dec(π,C)) = 1.

Notice that when k = k(d) = ω(1), the reduction will producemω(1) clauses and be inefficient.

Thus we will have an inefficient Levin reduction if we want to obtain ε(d) = o(1) from this

construction.

4.3 Hard-to-Sanitize Distributions from Hard CSPs

In this section we prove that to efficiently produce a synthetic database that is accurate for the

constraints of a CSP that is hard-to-approximate under Levin reductions, we must pay constant

error in the worst case. Following [32], we start with a digital signature scheme, and a database of

valid message-signature pairs. There is a verifying circuit Cvk and valid message-signature pairs

62

are satisfying assignments to that circuit. Now we encode each row of database using the function

Enc, described in Definition 4.5, that maps satisfying assignments to Cvk to assignments of the

CSP instance ϕCvk = R(Cvk) with value at least γ. Then, any assignment to the CSP instance that

satisfies a γ−α fraction of clauses can be decoded to a valid message-signature pair. The database

of encoded message-signature pairs is what we will use as our hard-to-sanitize distribution.

4.3.1 Hardness of Sanitizing

Differential privacy is a very strong notion of privacy, so it is common to look for hardness

results that rule out weaker notions of privacy. These hardness results show that every sanitizer

must be “blatantly non-private” in some sense. For these results, our notion of blatant non-privacy

roughly states that there exists an efficient adversary who can find a row of the original database

using only the output from any efficient sanitizer. Such definitions are also referred to as “row non-

privacy.” We define hardness-of-sanitization with respect to a particular concept class, and want

to exhibit a distribution on databases for which it would be infeasible for any efficient sanitizer

to give accurate output without revealing a row of the database. Specifically, following [32], we

define the following notions

Definition 4.9 (Database Distribution Ensemble). Let D = Dd be an ensemble of distributions on

d-column databases with n+1 rowsD ∈ ({0, 1}d)n+1. Let (D,D′, i)←R D̃ denote the experiment

in which we choose D0 ←R D and i ∈ [n] uniformly at random, and set D to be the first n rows of

D0 and D′ to be D with the i-th row replaced by the (n+ 1)-st row of D0.

Definition 4.10 (Hard-to-sanitize Distribution). Let Q be a concept class, α : N → [0, 1] and

TSan : N→ N be functions, and D = Dd be a database distribution ensemble.

The distribution D is (α, TSan,Q)-hard-to-sanitize if there exists an efficient adversary A such

that for any alleged sanitizerM running in time at most TSan(d) the following two conditions hold:

1. WheneverM(D) is α(d)-accurate, then A(M(D)) outputs a row of D:

Pr
(D,D′,i)←RD̃

M′s and A′s coins

[(M(D) is α(d)-accurate for Q) ∧ (A(M(D)) ∩D = ∅)] ≤ negl(d).

2. For every efficient sanitizerM, A cannot extract x(i) from the database D′:

Pr
(D,D′,i)←RD̃

M′s and A′s coins

[
A(M(D′)) = x(i)

]
≤ negl(d)

63

where x(i) is the i-th row of D.

In [32], it was shown that every distribution that is (α, TSan,Q)-hard-to-sanitize in the sense of

Definition 4.10, is also hard to sanitize while achieving even weak differential privacy

Claim 4.11. [32] If a distribution ensemble D = Dd on n(d)-row databases is (α, TSan,Q)-hard-

to-sanitize, then for every constant a > 0 and every β = β(d) ≤ 1 − 1/poly(d), no TSan(d)-

time one-shot sanitizer that is (α, β)-accurate with forQ can achieve (a log(n), (1− 8β)/2n1+a)-

differential privacy.

In particular, for all constants ε, β > 0, no TSan(d)-time one-shot sanitizer can be simultane-

ously (α, β)-accurate and (ε, negl(n))-differentially private.

We could use a weaker definition of hard-to-sanitize distributions, which would still suffice to

rule out differential privacy, and only require that for every efficientM, there exists an adversary

AM that almost always extracts a row of D from every α-accurate output ofM(D). In our defini-

tion we require that there exists a fixed adversary A that almost always extracts a row of D from

every α-accurate output of any efficientM. Reversing the quantifiers in this fashion only makes

our negative results stronger.

We are concerned with sanitizers that output synthetic databases, so we will relax Defini-

tion 4.10 by restricting the quantification over sanitizers to only those sanitizers that output syn-

thetic data.

Definition 4.12 (Hard-to-sanitize Distribution as Synthetic Data). A database distribution ensem-

bleD is (α, TSan,Q)-hard-to-sanitize as synthetic data if the conditions of Definition 4.10 hold for

every sanitizerM that outputs a synthetic database.

The definition of hard-to-sanitize databases can be specialized in a similar way to other output

representations besides synthetic data (e.g. medians of synthetic databases).

4.3.2 Super-Secure Digital Signature Schemes

Before proving our main result, we formally define a super-secure digital signature scheme.

These digital signature schemes have the property that it is infeasible under chosen-message attack

to find a new message-signature pair that is different from all those obtained during the attack, even

a new signature for an old message. First we formally define digital signature schemes

64

Definition 4.13 (Digital signature scheme). For a functions Lvk, TVer : N → N. A (Lvk, TVer)-

digital signature scheme is a tuple of three polynomial time algorithms Π = (Gen, Sign,Ver)

such that

1. Gen takes as input the security parameter 1κ and outputs a key pair (sk, vk) ←R Gen(1κ)

such that vk ∈ {0, 1}Lvk(κ) for a polynomial Lvk(κ).

2. Sign takes sk and a message m ∈ {0, 1}∗ as input and outputs σ ←R Signsk(m) such that

σ ∈ {0, 1}∗.

3. Ver takes vk and pair (m,σ) and deterministically outputs a bit b ∈ {0, 1}, such that for

every (sk, vk) in the range of Gen, and every message m, we have Ver vk(m, Signsk(m)) =

1. Moreover, whenm ∈ {0, 1}κ, andm is signed under (sk, vk) generated by Gen(1κ), then

Ver vk can be computed by a circuit of size TVer(κ) (for a polynomial TVer).

We define the security of a digital signature scheme with respect to the following game.

Definition 4.14 (Weak forgery game). For any signature scheme Π = (Gen, Sign,Ver) and prob-

abilistic polynomial time adversary F , WeakForge(F ,Π, κ,QFor) is the following probabilistic

experiment.

1. (sk, vk)←R Gen(1κ).

2. F is given vk and oracle access to Signsk. The adversary adaptively queries Signsk on

a set of at most QFor messages M ⊂ {0, 1}∗, receives a set of message-signature pairs

A ⊂ {0, 1}∗, and outputs (m∗, σ∗).

3. The output of the game is 1 if and only if (1) Ver vk(m∗, σ∗) = 1, and (2) (m∗, σ∗) 6∈ A.

The weak forgery game is easier for the adversary to win than the standard forgery game

because the final condition requires that the signature output by F be different from all pairs

(m,σ) ∈ A, but allows for the possibility that m∗ ∈ M . In the standard definition, the final

condition would be replaced by m∗ 6∈ M . Thus the adversary has more possible outputs that

would result in a “win” under this definition than under the standard definition.

65

Definition 4.15 (Super-secure digital signature scheme). For functions TFor, QFor : N → N.

A (Lvk, TVer)-digital signature scheme Π = (Gen, Sign,Ver) is a (TFor, QFor, Lvk, TVer)-super-

secure digital signature scheme (under adaptive chosen message attack) if for every TFor-time

adversary, F ,

Pr[WeakForge(F ,Π, κ,QFor(κ)) = 1] ≤ negl(κ).

Although the above definition is stronger than the usual definition of existentially unforgeable

digital signatures, in [40] it is shown how to modify known constructions [66, 75] to obtain a

super-secure digital signature scheme from any one-way function.

In our terminology, the existence of one-way functions implies the existence of a digital signa-

ture scheme that is a (TFor, QFor, Lvk, TVer)-super-secure digital signature scheme for Lvk, TVer =

poly(κ) and every polynomial TFor, QFor. Under stronger hardness assumptions, super-secure

digital signature schemes withe even better parameters exist. In particular, under certain hard-

ness assumptions in ideal lattices, there exists a digital signature scheme for TFor = 2κ
1−o(1) ,

Lvk = κ1+o(1), TVer = κ1+o(1) and every polynomial QFor [62]. For our results, we need a super-

secure digital signature scheme, and we do not know if the scheme of [62], or any other, satisfies

this additional property with the same parameters.

4.3.3 A Family of Hard-to-Sanitize Distributions

We are now ready to construct a general form of database distribution ensemble, which we can

instantiate with various CSPs and signature schemes to prove our hardness results.

Let Γ = (Γd)d∈N be a family of nice q(d)-CSPs (Definition 4.3) and let QΓ = ∪∞d=1Q
(d)
Γ be

the class of constraints of Γ (Definition 4.2). Let Π = (Gen, Sign,Ver) be a (Lvk, TVer)-digital

signature scheme and let Cvk be a circuit computing Ver vk. Let n : N→ N be a function.

We define the database distribution ensemble D = Dd(n,Γ,Π) for any function n : N→ N. A

sample from Dd consists of n(d) + 1 random message-signature pairs encoded as PCP witnesses

with respect to the signature-verification algorithm. Each row will also contain an encoding of the

verification key for the signature scheme using the non-constant constraint ϕ∗ : {0, 1}q(d) → {0, 1}
in Γd and the assignments u∗0, u

∗
1 ∈ {0, 1}q(d) such that ϕ∗(u∗0) = 0 and ϕ∗(u∗1) = 1, as described

in the definition of nice CSPs (Definition 4.3).

Recall that s1‖s2 denotes the concatenation of the strings s1 and s2. Before moving on to

66

Let n = n(d). Let ϕ∗ : {0, 1}q(d) → {0, 1} be a non-constant constraint in Γd and u∗0, u
∗
1 ∈

{0, 1}q(d) be such that ϕ∗(u∗0) = 0 and ϕ∗(u∗1) = 1. Let κ = κ(d) be the largest integer such

that LPCP(TVer(κ)) ≤ d/2 and Lvk(κ)q(d) ≤ d/2.

Let (sk, vk)←R Gen(1κ), let vk = vk1vk2 . . . vk`, where ` = Lvk(κ)

Let (m1, . . . ,mn+1)←R ({0, 1}κ)n+1

For: i = 1 to n+ 1

Let yi := Enc(mi‖Signsk(mi), Cvk), be a PCP encoding of mi and its signature, padded

with zeros to be of length exactly d/2

Let zi := u∗vk1
‖u∗vk2

‖ . . . ‖u∗vk` , be an encoding of vk, padded with zeros to length d/2

Let xi := yi‖zi be the concatenation of these two strings

Return: D0 := (x(1), . . . , x(n+1))

Figure 8: Database Distribution Ensemble D = Dd(n,Γ,Π):

instantiating D and proving our hardness results, we make some observations about the construc-

tion. First, observe that the construction is well defined. That is, the length of yi before padding

is exactly LPCP(TVer(κ)), and the length of zi before padding is exactly Lvk(κ)q(d) and κ was

chosen so that these quantities are both at most d/2. Also, note that κ(d) = dΩ(1). This statement

holds because Γ is nice (Definition 4.3), so q(d) = d1−Ω(1), and because LPCP, TVer, and Lvk are all

bounded by some polynomial in their input length. Finally, note that our distribution over d-column

databases contains PCPs of length L = LPCP(TVer(κ)) ≤ d/2, thus R(Cvk) ⊆ Q(d/2)
Γ ⊆ Q(d)

Γ (by

Definition 4.2).

4.3.4 Main Hardness Result

We are now ready to state and prove our main hardness result.

Theorem 4.16. Let Γ = (Γd)d∈N be a family of nice (Definition 4.3) q(d)-CSPs such that Γd∪¬Γd

is α-hard-to-approximate under (possibly inefficient) Levin reductions with length blowupLPCP for

α = α(d) ∈ (0, 1/2). Assume the existence of a (TFor, QFor, Lvk, TVer)-digital signature scheme,

Π. Let κ : N→ N be as defined in the construction of D and let κ = κ(d). Let TSan, n : N→ N be

67

any functions such that

n(d) · da + TSan(d) = o(TFor(κ(d)))

for any a > 0. and

n(d) ≤ QFor(κ(d))

for every d ∈ N. Then the distribution ensemble D = Dd(n,Γ,Π) on n(d)-row databases is

(α, TSan(d),Q(d)
Γ)-hard-to-sanitize as synthetic data.

Proof. Let Π = (Gen, Sign,Ver) be the assumed (TFor, QFor, Lvk, TVer)-super-secure digital sig-

nature scheme and let Cvk be a circuit computing Ver vk. Let Γ be the assumed family of nice

q(d)-CSPs that is α-hard-to-approximate under (possibly inefficient) Levin reductions with length

blowup LPCP. Let R,Enc,Dec be the functions corresponding to the Levin reduction to Γ and

γ = γ(d) ∈ (α, 1] be the parameter from Definition 4.5.

Every valid pair (m, Signsk(m)) is a satisfying assignment of the circuit Cvk, hence every row

of D0 constructed by D will satisfy at least a γ fraction of the clauses of the formula ϕCvk =

R(Cvk) ⊆ Q(d)
Γ . Additionally, for every bit of the verification key, there is a block of q = q(d)

bits in each row that contains either a satisfying assignment or a non-satisfying assignment of ϕ∗,

depending on whether that bit of the key is 1 or 0. Specifically, define the predicates ϕ∗j(x) =

ϕ∗(xd/2+(j−1)q+1, xd/2+(j−1)q+2, . . . , xd/2+jq) for j = 1, 2, . . . , Lvk(κ). Then, by construction,

ϕ∗j(D0) = vkj , the j-th bit of the verification key. Note that ϕ∗j ∈ Q
(d)
Γ for j = 1, 2, . . . , `, by

our construction of Q(d)
Γ (Definition 4.2).

We now prove the following two lemmas that will establish D is hard-to-sanitize:

Lemma 4.17. There exists a polynomial-time adversary A such that for every TSan-time sanitizer

M,

Pr
(D,D′,i)←RD̃

M′s and A′s coins

[
(M(D) is α-accurate for Q(d)

Γ) ∧ (A(M(D)) ∩D = ∅)
]
≤ negl(d) (4.1)

Proof. Our privacy adversary tries to find a row of the original database by trying to PCP-decode

each row of the “sanitized” database and then re-encoding it. In order to do so, the adversary needs

to know the verification key used in the construction of the database, which it can discover from

the answers to the queries ϕ∗j , defined above. Formally, we define the privacy adversary by means

of a subroutine that tries to learn the verification key and then PCP-decode each row of the input

database:

68

Subroutine K(D̂):

Let d be the dimension of rows in D̂, let κ be as in the construction of D, and ` = Lvk(κ).

For: j = 1 to `

v̂kj =
[
ϕ∗j(D̂) rounded to {0, 1}

]
Return: v̂k1‖v̂k2‖ . . . ‖v̂k`

Subroutine A0(D̂):

Let n̂ be the number of rows in D̂, v̂k = K(D̂)

For: i = 1 to n̂

If: Cv̂k(Dec(x̂(i), Cv̂k)) = 1

Return: Dec(x̂(i), Cv̂k)

Return: ⊥

Privacy Adversary A(D̂):

Let v̂k = K(D̂).

Return: Enc(A0(D̂), Cv̂k)

Figure 9: An adversary for private synthetic data.

LetM be a TSan-time sanitizer, we will show that Inequality (4.1) holds.

Claim 4.18. If D̂ = M(D) is α-accurate for Q(d)
Γ , then A0(D̂) will output a pair (m,σ) s.t.

Cvk(m,σ) = 1.

Proof. First we argue that if D̂ is α-accurate for Q(d)
Γ for α < 1/2, then K(D̂) = vk, where vk

is the verification key used in the construction of D0. By construction, ϕ∗j(D) = vkj . If vkj = 0

and D̂ is α-accurate for D then ϕ∗j(D̂) ≤ α < 1/2, and v̂kj = vkj . Similarly, if vkj = 1 then

ϕ∗j(D̂) ≥ 1 − α > 1/2, and v̂kj = vkj . Thus, for the rest of the proof we will be justified in

substituting vk for v̂k.

Next we show that if D̂ is α-accurate, then A0(D̂) 6= ⊥. It is sufficient to show there exists

x̂(i) ∈ D̂ such that val(ϕCvk , x
(i)) ≥ γ − α, which implies Cvk(Dec(x̂(i), Cvk)) = 1.

Since every (mi, Signsk(mi)) pair is a satisfying assignment to Cvk, the definition of Enc (Def-

inition 4.5) implies that each row x(i) of D has val(ϕCvk , x
(i)) ≥ γ. Thus if ϕCvk = {ϕ1, . . . , ϕm},

69

then
1

m

m∑
j=1

ϕj(D) =
1

m

m∑
j=1

(
1

n

n∑
i=1

ϕj(x
(i))

)
=

1

n

n∑
i=1

val(ϕCvk , x
(i)) ≥ γ.

Since D̂ is α-accurate for Q(d)
Γ , and for every constraint ϕj , either ϕj ∈ Γ or ¬ϕj ∈ Γ, then for

every constraint ϕj ∈ ϕCvk , we have ϕj(D̂) ≥ ϕj(D)− α. Thus

1

n̂

n̂∑
i=1

val(ϕCvk , x̂
(i)) =

1

m

m∑
j=1

ϕj(D̂) ≥ 1

m

m∑
j=1

ϕj(D)− α ≥ γ − α.

So for at least one row x̂() ∈ D̂ it must be the case that val(ϕCvk , x̂
()) ≥ γ − α. The definition of

Dec (Definition 4.5) implies Cvk(Dec(x̂(), Cvk)) = 1.

Now notice that if A0(M(D)) outputs a valid message-signature pair but A(M(D)) ∩ D =

∅, then this means A0(M(D)) is forging a new signature not among those used to generate D.

Formally, we construct a signature forger as follows:

Use the oracle Signsk to generate an n-row database D just as in the definition of Dd (con-

sisting of PCP encodings of valid message-signature pairs and an encoding of vk).

Let D̂ :=M(D)

Return: x̂(∗) := A0(D̂)

Figure 10: Forger F(vk) with oracle access to Signsk.

First we analyze the running time of F . In order to construct D, the forger must PCP-encode

the signatures, which requires time n(d) · poly(TVer(κ)) = n(d) · poly(d). RunningM requires

time TSan(d) by assumption. Finally, the time to run A0(D̂) to decode a message-signature pair is

n(d) · poly(d), since A0 has to run the PCP decoder on each row of D̂. Put together, the running

time of F is n(d) · poly(d) + TSan(d) = o(TFor(κ(d))), where the inequality is an assumption of

the theorem. Next, we note that the forger makes at most n(d) ≤ o(QFor(κ(d))) queries to Signsk,

and this inequality is also an assumption of the theorem.

Now observe that running F in the experiment WeakForge(F ,Π, κ,QFor(κ)) is equivalent to

running A in the experiment of Inequality (4.1), except that F does not re-encode the output of

A0(M(D)). By the super-security of the signature scheme, if the x̂(∗) output by F is a valid

70

message-signature pair (as holds if M(D) is α-accurate for Q(d)
Γ , by Claim 4.18), then it must

be one of the message-signature pairs used to construct D (except with probability negl(κ) =

negl(dΩ(1)) = negl(d)). This implies that A(M(D)) = Enc(x̂(∗), Cvk) ∈ D (except with negligi-

ble probability). Thus, we have

Pr
(D,D′,i)←RD̃
M′s coins

[M(D) is α-accurate for Q(d)
Γ ⇒ A(M(D)) ∈ D] ≥ 1− negl(d),

which is equivalent to the statement of the lemma.

Lemma 4.19.

Pr
(D,D′,i)←RD̃

M′s and A′s coins

[
A(M(D′)) = x(i)

]
≤ negl(d)

Proof. Since the messages mi used in D0 are drawn independently, D′ contains no information

about the message mi, thus no adversary can, on input M(D′) output the target row x(i) except

with probability 2−κ = negl(d).

These two claims suffice to establish that D is (α,QΓ)-hard-to-sanitize as synthetic data.

Theorem 4.1 in the introduction follows by combining Theorems 4.6 and 4.16.

If we assume the existence of an efficient digital signature scheme secure against nearly-

exponential-time adversaries then we obtain the following variant of Theorem 4.1.

Corollary 4.20. Assume the existence of a digital signature scheme that is (TFor, QFor, Lvk, TVer)-

super-secure for TFor = 2κ
1−o(1)

, Lvk = κ1+o(1), TVer = κ1+o(1) and every polynomial QFor. Then

there exists a family Γ of constant-arity CSPs such that for every polynomial n, the distribution

ensembleD = Dd(d,Γ,Π) on n(d)-row databases is (1/2, TSan,Q(d)
Γ)-hard-to-sanitize as synthetic

data for some TSan(d) = 2d
1−o(1)

.

Proof. By Theorem 4.7, there exists a fixed family of constant-arity q-CSPs that is 1/2-hard-to-

approximate under Levin reductions with nearly-linear length blowup. That is, LPCP(s) = s1+o(1).

Now in the construction of D, we can choose κ = d1−o(1) such that LPCP(TVer(κ)) ≤ d/2 and

Lvk · q ≤ d/2. Thus we have TFor(κ) = 2κ
1−o(1)

= 2d
1−o(1) .

Now we can find some function TSan(d) = 2d
1−o(1) , such that

n(d) · da + TSan(d) = o(TFor(κ(d)))

71

for every a > 0. Additionally, for every polynomial n(d), we will have

n(d) ≤ QFor(κ(d)).

Thus the assumptions of Theorem 4.16 are satisfied.

4.4 Relaxed Synthetic Data

The proof of Theorem 4.16 requires that the sanitizer output a synthetic database. In this

section we present similar hardness results for sanitizers that produce other forms of output, as

long as they still produce a collection of elements from {0, 1}d, that are interpreted as the data

of (possibly “fake”) individuals. More specifically, we consider sanitizers that output a database

D̂ ∈ ({0, 1}d)n̂ but are interpreted using an evaluation function of the following form: To evaluate

predicate q ∈ Q on D̂, apply q to each row x̂(i) of D̂ to get a string of n̂ bits, and then apply a

function f : {0, 1}n̂×Q → [0, 1] to determine the answer. For example, when the sanitizer outputs

a synthetic database, we have f(b1, . . . , bn̂, q) = (1/n̂)
∑n̂

i=1 bi, which is just the fraction of rows

that get labeled with a 1 by the predicate q (independent of q).

We now give a formal definition of relaxed synthetic data

Definition 4.21 (Relaxed Synthetic Data). A sanitizerM : ({0, 1}d)n → ({0, 1}d)n̂ with evaluator

E outputs relaxed synthetic data for a family of predicatesQ if there exists f : {0, 1}n̂×Q → [0, 1]

such that

• For every q ∈ Q
E(D̂, q) = f(q(x̂(1)), q(x̂(2)), . . . , q(x̂(n̂)), q),

and

• f is monotone9 in the first n̂ inputs.

This relaxed notion of synthetic data is of interest because many natural approaches to sanitiz-

ing yield outputs of this type. In particular, several previous sanitization algorithms [16, 78, 35]

produce a set of synthetic databases and answer a query by taking a median over the answers given

9Given two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) we say b � a iff bi ≥ ai for every i ∈ [n]. We say a
function f : {0, 1}n → [0, 1] is monotone if b � a =⇒ f(b) ≥ f(a).

72

by the individual databases. Sanitizers that use medians of synthetic databases no longer have the

advantage that they are “interchangeable” with the original data, but are still be desirable for data

releases because they retain the property that a small data structure can give accurate answers to a

large number of queries. We view such databases as a single synthetic database but require that f

have a special form. Unfortunately, the sanitizers of [78] and [35] run in time exponential in the

dimension of the data, d, and the results of the next subsection show this limitation is inherent even

for simple concept classes.

Throughout this section we will continue to use c(D̂) to refer to the answer given by D̂ when

interpreted as a synthetic database.

We now present our hardness results for relaxed synthetic data where the function f takes

the median over synthetic database (Section 4.4.1), where f is an arbitrary monotone, symmetric

function (Section 4.4.2), or when the family of concepts contains CSPs that are very hard to ap-

proximate (Section 4.4.3). Our proofs use the same construction of hard-to-sanitize databases as

Theorem 4.16 with a modified analysis and parameters to show that the output must still contain a

PCP-decodable row.

4.4.1 Hardness of Sanitizing as Medians

In this section we establish that the distribution D used in the proof of Theorem 4.16 is hard-

to-sanitize as medians of synthetic data, formally defined as:

Definition 4.22 (Medians of Synthetic Data). A sanitizer M : ({0, 1}d)n → ({0, 1}d)n̂ with

evaluator E outputs medians of synthetic data if there is a partition [n̂] = S1 ∪S2 · · · ∪S` such that

E(x̂(1), . . . , x̂(n̂), q) = median

{
1

|S1|
∑
i∈S1

q(x̂(i)),
1

|S2|
∑
i∈S2

q(x̂(i)), . . . ,
1

|S`|
∑
i∈S`

q(x̂(i))

}
.

Note that medians of synthetic data are a special case of relaxed synthetic data. In the following,

we rule out efficient sanitizers with medians of synthetic data for CSPs that are hard to approximate

within a multiplicative factor larger than 2. By Theorem 4.8, these CSPs include k-clause 3-CNF

formulas for some constant k.

Theorem 4.23. Let Γ = (Γd)d∈N be a family of nice (Definition 4.3) q(d)-CSPs such that Γd∪¬Γd

is ((α + γ)/2, γ)-hard-to-approximate under (possibly inefficient) Levin reductions with length

73

blowup LPCP for α = α(d) ∈ (0, 1/2). Assume the existence of a (TFor, QFor, Lvk, TVer)-digital

signature scheme, Π. Let κ : N → N be as defined in the construction of D and let κ = κ(d). Let

TSan, n : N→ N be any functions such that

n(d) · da + TSan(d) = o(TFor(κ(d)))

for any a > 0. and

n(d) ≤ QFor(κ(d))

for every d ∈ N. Then the distribution ensemble D = Dd(n,Γ,Π) on n(d)-row databases is

(α, TSan(d),Q(d)
Γ)-hard-to-sanitize as medians of synthetic data.

Proof. Let Γ be the assumed family of nice q(d)−CSPs that is ((α+γ)/2, γ)-hard-to-approximate

under (possibly inefficient) Levin reductions with length blowup LPCP. Let R,Enc,Dec be the

functions corresponding to the Levin reduction to Γ. LetM(D) = D̂ and let
{
D̂1, D̂2, . . . , D̂`

}
be the partition of the rows of D̂ corresponding to S1, . . . , S`, i.e. D̂i = (x̂(j))j∈Si .

Assuming that D̂ is α-accurate as medians of synthetic data, we will show that there must exist

a row x̂() ∈ D̂ such that val(ϕCvk , x̂
()) ≥ γ − (α + γ)/2 = (γ − α)/2. To do so, we observe that

if D̂ is accurate as medians of synthetic databases, then for each predicate, half of D̂’s synthetic

databases must give an answer that is “close to D’s answer”. Thus one of these synthetic datsbases

must be “close” to D for half of the predicates in ϕCvk . By our construction of D, we conclude

that each of these predicates is satisfied by many rows of this synthetic database and thus some row

satisfies enough of the predicates to decode a message-signature pair.

We need to show that there exists an adversary A such that for every TSan-time sanitizerM,

Pr
(D,D′,i)←RD̃

M′s and A′s coins

[
(M(D) is α-accurate for Q(d)

Γ) ∧ (A(M(D)) ∩D = ∅)
]
≤ negl(d) (4.2)

To do so, we will use the same subroutine A0(D̂) we used for the proof of Lemma 4.17. That

is, we consider a subroutine that looks for rows satisfying sufficiently many clauses of ϕCvk and

returns the PCP-decoding of that row. It will suffice to establish the following claim, analogous to

Claim 4.18:

Claim 4.24. If D̂ is α-accurate for Q(d)
Γ as medians of synthetic data, then A0(D̂) outputs a pair

(m,σ) s.t. Cvk(m,σ) = 1.

74

Proof. As in the proof of Claim 4.18, if D̂ is α-accurate for Q(d)
Γ for α < 1/2, then K(D̂) = vk,

the verification key used in the construction of D0. For the rest of the proof we will be justified in

substituting vk for v̂k.

If ϕCvk = {ϕ1, . . . , ϕm}, then 1
m

∑m
j=1 ϕj(D) ≥ γ. We say that D̂k is good for ϕj if ϕj(D̂k) ≥

ϕj(D)−α. Since the median over
{
D̂1, D̂2, . . . , D̂`

}
is α-accurate for every constraint ϕj ∈ ϕCvk

we have

Pr
k←R[`]

[
D̂k is good for ϕj

]
≥ 1

2

Then

E
k←R[`]

 1

|Sk|
∑
i∈|Sk|

val(ϕCvk , x̂
(i))

 = E
k←R[`]

[
1

m

m∑
j=1

ϕj(D̂k)

]

=
1

m

m∑
j=1

E
k←R[`]

[
ϕj(D̂k)

]
≥ 1

m

m∑
j=1

(
Pr

k←R[`]

[
D̂k is good for ϕj

]
· ((ϕj(D)− α)

)

≥ 1

m

m∑
j=1

(
1

2
· (ϕj(D)− α)

)
≥ γ − α

2

So for at least one row x̂() ∈ D̂ it must be the case that val(ϕCvk , x̂
()) ≥ (γ − α)/2. Since the

distribution D is unchanged, Lemma 4.19 still holds in this setting. Thus we have established that

D is (α(d), TSan(d),Q(d)
Γ)-hard-to-sanitize as medians of synthetic data.

4.4.2 Hardness of Sanitizing with Symmetric Evaluation Functions

In this section we establish the hardness of sanitization for relaxed synthetic data where the

evaluator function is symmetric.

Definition 4.25 (Symmetric Relaxed Synthetic Data). A sanitizer M : ({0, 1}d)n → ({0, 1}d)n̂

with evaluator E outputs symmetric relaxed synthetic data if there exists a monotone function

75

g : [0, 1]→ [0, 1] such that

E(x̂(1), . . . , x̂(n̂), q) = g

(
1

n̂

n̂∑
i=1

q(x̂(i))

)
.

Note that symmetric relaxed synthetic data is also a special case of relaxed synthetic data. Our

definition of symmetric relaxed synthetic data is actually symmetric in two respects, because we

require that g does not depend on the predicate q and also that g only depends on the fraction of

rows that satisfy q. Similar to medians of synthetic data,we show that it is intractable to produce

a sanitization as symmetric relaxed synthetic data that is accurate when the queries come from a

CSP that is hard to approximate.

Theorem 4.26. Let Γ = (Γd)d∈N be a family of nice (Definition 4.3) q(d)-CSPs that is closed

under complement (Γd = ¬Γd) and is (α + 1/2)-hard-to-approximate under (possibly inefficient)

Levin reductions with length blowup LPCP for α = α(d) ∈ (0, 1/2). Assume the existence of a

(TFor, QFor, Lvk, TVer)-digital signature scheme, Π. Let κ : N→ N be as defined in the construction

of D and let κ = κ(d). Let TSan, n : N→ N be any functions such that

n(d) · da + TSan(d) = o(TFor(κ(d)))

for any a > 0. and

n(d) ≤ QFor(κ(d))

for every d ∈ N. Then the distribution ensemble D = Dd(n,Γ,Π) on n(d)-row databases is

(α, TSan(d),Q(d)
Γ)-hard-to-sanitize as symmetric relaxed synthetic data.

By Theorem 4.8, the family of k-clause CNF formulas, for some constant k, is (1/2 +α)-hard-

to-approximate under Levin reductions for α > 0.

Proof. Let Γ be the assumed family of nice q(d) − CSPs that is (α + 1/2)-hard-to-approximate

under (possibly inefficient) Levin reductions with length blowup LPCP. Let R,Enc,Dec be the

functions corresponding to the Levin reudction to Γ and γ = γ(d) ∈ (α, 1] be the parameter from

Definition 4.5.

We will use the same approach as in the proof ofTheorem 4.16, which is to show that the

underlying synthetic database cannot contain a row that satisfies too many clauses of ϕCvk , in

76

order to show that g must map a small input to a large output and a large input to a small answer,

contradicting the monotonicity of g.

Let ϕCvk = {ϕ1, . . . , ϕm}, then 1
m

∑m
j=1 ϕj(D) ≥ γ. It must also be that 1

m

∑m
j=1 ϕj(D̂) ≤ γ−

α−1/2. Otherwise there would exist a row x̂() ∈ D̂ =M(D) such that val(ϕCvk) ≥ γ−α−1/2.

But if this were the case we could PCP-decode x̂() as in the proof of Theorem 4.16. Thus

1

m

m∑
j=1

(
ϕj(D)− ϕj(D̂)

)
≥ α + 1/2

so there must exist J ∈ [m] s.t. ϕJ(D) − ϕJ(D̂) ≥ α + 1/2. Since ϕJ(D̂) ≥ 0 we also have

ϕJ(D) ≥ α + 1/2 > 1/2, and since ϕJ(D) ≤ 1 we also have ϕJ(D̂) ≤ 1/2− α < 1/2.

By monotonicity of g and α-accuracy of D̂ as symmetric relaxed synthetic data we have

g(1/2− α) ≥ g(ϕJ(D̂)) ≥ ϕJ(D)− α ≥ 1

2
.

Consider the negation of ϕJ . Since ¬ϕJ(D) = 1 − ϕJ(D) we can conclude that ¬ϕJ(D) ≤
1/2− α and ¬ϕJ(D̂) ≥ 1/2 + α. Thus we have

g(1/2 + α) ≤ g(¬ϕJ(D̂)) ≤ ¬ϕJ(D) + α ≤ 1

2
.

But g(1/2− α) ≥ 1/2 ≥ g(1/2 + α) and α > 0 contradicts the monotonicity of g.

4.4.3 Hardness of Sanitizing Very Hard CSPs with Relaxed Synthetic Data

In this section we show that no efficient sanitizer can produce accurate relaxed synthetic data for

a sequence of CSPs that is (1 − negl(d))-hard-to-approximate under inefficient Levin reductions.

By Theorem 4.8, these CSPs include 3-CNF formulas of ω(log d) clauses.

Intuitively, an efficient sanitizer must produce a synthetic database of n̂(d) = poly(d) rows,

and thus as d grows, an efficient sanitizer cannot produce a synthetic database that contains a

row satisfying a non-negligible fraction of clauses from a particular CSP instance (the signature-

verification CSP from our earlier results). Thus using evaluators of the type in Definition 4.21

there can only be one answer to most queries, and thus we cannot get an accurate sanitizer.

Theorem 4.27. Let Γ = (Γd)d∈N be a family of nice (Definition 4.3) q(d)-CSPs such that Γd∪¬Γd

is (1− ε, 1)-hard-to-approximate under (possibly inefficient) Levin reductions with length blowup

77

LPCP for a negligible function ε = ε(d). Assume the existence of a (TFor, QFor, Lvk, TVer)-digital

signature scheme, Π. Let κ : N → N be as defined in the construction of D and let κ = κ(d). Let

TSan, n : N→ N be any functions such that

n(d) · da + TSan(d) = o(TFor(κ(d)))

for any a > 0. and

n(d) ≤ QFor(κ(d))

for every d ∈ N. Then the distribution ensemble D = Dd(n,Γ,Π) on n(d)-row databases is

(1/3, TSan(d),Q(d)
Γ)-hard-to-sanitize as relaxed synthetic data.

Proof. Let Γ be the assumed family of nice q(d) − CSPs that is (1 − ε(d), 1, LPCP)-hard-to-

approximate under (possibly inefficient) Levin reductions. Let R,Enc,Dec be the functions cor-

responding to the Levin reudction to Γ. Let D ←R Dd, andM(D) = D̂.

Let ϕCvk = {ϕ1, . . . , ϕm}. By the construction of Dd we have

ϕj(D) = 1

for every j ∈ [m]. As in the proof of Theorem 4.26 it must be that

1

m

m∑
j=1

ϕj(D̂) ≤ ε(d).

Otherwise there would exist a row x̂() ∈ D̂ =M(D) such that val(ϕCvk) ≥ ε(d). But if this were

the case we could PCP-decode x̂() as in the proof of Theorem 4.16.

Since Ej←R[m][ϕj(D̂)] ≤ ε(d), there must exist a subset J ⊆ [m] of size |J | ≥ 2m/3 such that

for all j ∈ J , ϕj(D̂) ≤ 3ε(d) ≤ negl(d).

Since D̂ ∈ ({0, 1}d)n̂ for n̂ = n̂(d) = poly(d) (by the efficiency ofM),

1

n̂

n̂∑
i=1

ϕj(x̂
(i)) = ϕj(D̂) ∈ {0, 1/n̂(d), 2/n̂(d), . . . , 1}

and thus ϕj(D̂) ≤ negl(d) implies ϕj(D̂) = 0 for large n.

Let E(D̂, q) = f(q(x̂(1)), . . . , q(x̂(n̂)), q). If we assume D̂ is 1/3-accurate as relaxed synthetic

data then f(0n̂, ϕj) ≥ 2/3 for every j ∈ J .

78

Now consider the execution ofM on the database D′ = (0d)n. With probability 1 − negl(d),

Dec(0d, Cvk) is not a valid message-signature pair, thus by Definition 4.5 Part 3, we have

ϕCvk(D
′) = ϕCvk(0

d) ≤ ε(d).

Since the rows of D′ are idenitcal, ϕj(D′) ∈ {0, 1} for every j ∈ [m]. So for at least a 1 − ε(d)

fraction of j ∈ [m], we have ϕj(D′) = 0.

Let D̂′ = M(D′). By repeating the signature-forging argument, we see that with probability

1− negl(d)

1

m

m∑
j=1

ϕj(D̂
′) ≤ ε(d)

and thus there must exist a subset J ′ ⊆ [m] of size |J ′| ≥ 2m/3 such that j ∈ J ′ =⇒ ϕj(D̂
′) ≤

3ε(d) ≤ negl(d). So ϕj(D̂′) = 0 for every j ∈ J ′ as well. There must also exist a set J ′′ ⊆ J ′

of size |J ′′| = (2/3 − ε(d))m, such that for every j ∈ J ′′, ϕj(D′) = ϕj(D̂
′) = 0. So if D̂′ is

1/3-accurate for Q as relaxed synthetic data it must be that f(0n̂, ϕj) ≤ 1/3 for every j ∈ J ′′.
By our choice of J and J ′′ there must exist j ∈ J ∩ J ′′ such that:

1. f(0n̂, ϕj) ≥ 2/3, and

2. f(0n̂, ϕj) ≤ 1/3,

which is a contradiction.

4.4.4 Positive Results for Relaxed Synthetic Data

In this section we present an efficient, accurate sanitizer for small (e.g. polynomial in d) fam-

ilies of parity queries that outputs symmetric relaxed synthetic data and show that this sanitizer

also yields accurate answers for any family of constant-arity predicates when evaluated as a relaxed

synthetic data. Our result for parities shows that relaxed synthetic data (and even symmetric re-

laxed synthetic data) allows for more efficient sanitization than standard synthetic data, since The-

orem 4.16 rules out an accurate, efficient sanitizer that produces a standard synthetic database, even

for the class of 3-literal parity predicates. Our result for parities also shows that our hardness result

for symmetric relaxed synthetic data (Theorem 4.26) is tight with respect to the required hardness

of approximation, since the class of 3-literal parity predicates is (1/2−ε)-hard-to-approximate [47]

79

A function f : {0, 1}d → {0, 1} is a k-junta if it depends on at most k variables. Let Jd,k be

the set of all k-juntas on d variables.

Theorem 4.28. There exists an ε-differentially private sanitizer that runs in time poly(n, d) and

produces relaxed synthetic data and is (α, β)-accurate for Jd,k when

n ≥
C
(
d
≤k

)
log
((

d
≤k

)
/β
)

αε

for a sufficiently large constant C, where
(
d
≤k

)
=
∑k

i=0

(
d
i

)
.

The privacy, accuracy, and efficiency guarantees of our theorem can be achieved without re-

laxed synthetic data simply by releasing a vector of noisy answers to the queries [30]. Our sanitizer

will, in fact, begin with this vector of noisy answers and construct relaxed synthetic data from those

answers. Our technique is similar to that of Barak et. al. [8], which begins with a vector of noisy

answers to parity queries (defined in Section 4.4.4) and constructs a (standard) synthetic database

that gives answers to each query that are close to the initial noisy answers. They construct their

synthetic database by solving a linear program over 2d variables that correspond to the frequency

of each possible row x ∈ {0, 1}d, and thus their sanitizer runs in time exponential in d. Our sani-

tizer also starts with a vector of noisy answers to parity queries and efficiently constructs symmetric

relaxed synthetic data that gives answers to each query that are close to the initial noisy answers

after applying a fixed linear scaling. We then show that the database our sanitizer constructs is also

accurate for the family of k-juntas using an affine shift that depends on the junta.

Efficient Sanitizer for Parities

To prove Theorem 4.28, we start with a sanitizer for parity predicates.

Definition 4.29 (Parity Predicate). A function χ : {0, 1}d → {−1, 1} is a parity predicate10 if

there exists a vector s ∈ {0, 1}d s.t.

χ(x) = χs(x) = (−1)〈x,s〉.

We will use wt(s) =
∑d

i=1 si to denote the number of non-zero entries in s.

10In the preliminaries we define a predicate to be a {0, 1}-valued function but our definition naturally generalizes
to {−1, 1}-valued functions. For q : {0, 1}d → {−1, 1} and database D = (x(1), . . . , x(n)) ∈ ({0, 1}d)n, we define
q(D) = 1

n

∑n
i=1 q(x(i))

80

Theorem 4.30. Let P be a family of parity predicates on d variables such that χ0d 6∈ P . There

exists an ε-differentially private sanitizer M(D,P) that runs in time poly(n, d) and produces

symmetric relaxed synthetic data that is (α, β)-accurate for P when

n ≥ 2|P| log (2|P|/β)

αε
.

The analysis of our sanitizer will make use of the following standard fact about parity predicates

Fact 4.31. Two parity predicates χs, χt : {0, 1}d → {−1, 1} are either identical or orthogonal.

Specifically, for s 6= t, s 6= 0d and b ∈ {−1, 1},

E
x←R{0,1}d

[χs(x)|χt(x) = b] = E
x←R{0,1}d

[χs(x)] = 0.

Our sanitizer will start with noisy answers to the predicate queries χs(D). Each noisy answer

will be the true answer perturbed with noise from a Laplace distribution. The Laplace distribution

Lap(σ) is a continuous distribution on R with probability density function pσ(y) ∝ exp(−|y|/σ).

The following theorem of Dwork, et. al. [30] shows that these queries are differentially private for

an appropriate choice of σ.

Theorem 4.32 ([30]). Let (q1, q2, . . . , qk) be a set of predicates and let σ = k/nε and let D ∈
({0, 1}d)n be a database. Then the mechanismM(D) = (q1(D)+Z1, q2(D)+Z2, . . . , qk(D)+Zk),

where (Z1, . . . , Zk) are independent samples from Lap(σ) is ε-differentially private.

In order to argue about the accuracy of our mechanism we need to know how much error is

introduced by noise from the Laplace distribution. The following fact gives a bound on the tail of

a Laplace random variable.

Fact 4.33. The tail of the Laplace distribution decays exponentially. Specifically,

Pr[|Lap(σ)| ≥ t] = exp(−t/σ).

Now we present our sanitizer for queries that are parity functions. We will not consider the

query χ0d as χ0d(x) = 1 for every x ∈ {0, 1}d. Let P be a set of parity functions that does not

contain χ0d . We now present a poly(n, d, |P|)-time sanitizer for P .

Our sanitizer starts by getting noisy estimates of the quantities χ(D) for each predicate χ ∈ P
by adding Laplace noise. Then it builds the relaxed synthetic data D̂ in blocks of rows. Each block

81

of rows is “assigned” to contain an answer to a query χ. In that block we randomly choose rows

such that the expected value of χ on each row equals the noisy estimate of χ(D). By Fact 4.31, the

expected value of every other predicate χ′ is 0 for rows in this block. The sanitizer is accurate so

long as the total number of rows is sufficient for the value of χ(D̂) to be concentrated around its

expectation.

SanitizerM(D,P), where P =
{
χ(1), . . . , χ(t)

}
:

Let σ := |P|/nε T := (2|P|/α2) log (4|P|/β)

For: j = 1, . . . , t

Let aj := χ(j)(D) + Lap(σ)

For: i = jT + 1 to (j + 1)T

With probability (aj + 1)/2: Let x̂(i) ←R

{
x ∈ {0, 1}d | χ(j)(x) = 1

}
Otherwise: Let x̂(i) ←R

{
x ∈ {0, 1}d | χ(j)(x) = −1

}
Return: D̂ = (x̂(1), . . . , x̂(tT))

Evaluator EP(D̂, χ):

Return: |P| · χ(D̂)

Figure 11: An efficient one-shot sanitizer for juntas generating relaxed synthetic data.

The following claims will suffice to establish Theorem 4.30

Claim 4.34. M is ε-differentially private.

Proof. The output ofM only depends on the answer to |P| predicate queries. By Theorem 4.32

the answers to |P| predicate queries perturbed by independent samples from Lap(|P|/nε) is ε-

differentially private.

Claim 4.35. M is (α, β)-accurate for P when

n ≥ 2|P| log(2|P|/β)

αε
.

Proof. We want to show that for every χ(j) ∈ P∣∣∣|P| · χ(j)(D̂)− χ(j)(D)
∣∣∣ ≤ α

82

except with probability β. To do so we consider separately the error introduced in going from

χ(j)(D) to aj using Laplacian noise and the error introduced in going from noisy answers aj to

χ(j)(D̂) by sampling rows at random.

First we bound the error introduced by the noisy queries to D. Specifically, we want to show

that for every χ(j) ∈ P ∣∣χ(j)(D)− aj
∣∣ ≤ α/2

except with probability β/2. For each χ(j) we have

Pr[|χ(j)(D)− aj| ≥ α/2] ≤ exp(−nεα/2|P|)

by Fact 4.33. So by a union bound we have

Pr[∃χ(j) |χ(j)(D)− aj| ≥ α/2] ≤ |P| exp(−α/2σ) ≤ |P| exp(−nεα/2|P|) < β/2,

so long as

n ≥ 2|P| log(2|P|/β)

αε
.

We also want to show that for every χ(j) ∈ P∣∣∣|P| · χ(j)(D̂)− aj
∣∣∣ ≤ α/2

except with probability β/2, where aj is the noisy answer for χ(j)(D) computed in M(D). To

do so, we will show that the expectation of |P|χ(j)(D̂) is indeed aj , then we will use a Chernoff-

Hoeffding bound to show that the random rows generated byM(D) are close to their expectation.

Finally we take a union bound over all χ ∈ P .

Fix χ(j) ∈ P and consider χ(j)(D̂). χ(j)(D̂) is the sum of T independent biased coin flips. In

rows jT + 1, jT + 2, . . . , (j + 1)T (the rows where we focus on χ(j)) the expectation of each coin

flip is aj , and in all other rows the expectation of each coin flip is 0 by Fact 4.31. Thus

E
[
χ(j)(D̂)

]
= E

[
1

n̂

n̂∑
i=1

χ(j)(x̂(i))

]
= aj/|P|

for every χ(j) ∈ P .

By a Chernoff-Hoeffding Bound11 we conclude

Pr
[∣∣∣|P| · χ(j)(D̂)− aj

∣∣∣ ≥ α/2
]
< 2 exp(−Tα2/2|P|).

11One form of the Chernoff-Hoeffding Bound states if X1, . . . , Xn are independent random variables over [0, 1]
and X = (1/n)

∑n
i=1 Xi then Pr[|X − E[X]| ≥ t] < 2 exp(−nt2/2)

83

By taking a union bound over P we conclude

Pr
[
∃χ(j)

∣∣∣|P · |χ(j)(D̂)− aj
∣∣∣ ≥ α/2

]
< 2|P| exp(−Tα2/2|P|) ≤ β/2.

Combining the two bounds suffices to prove the claim.

Efficient Sanitizer for k-Juntas

We now show that our sanitizer for parity queries can also be used to give accurate answers

for any family of k-juntas, for constant k. We start with the observation that k-juntas only have

Fourier mass on coefficients of weight at most k. Alternatively, this says that any k-junta can be

written as a linear combination of parity functions on at most k variables. (In the language of

our previous construction, χs such that wt(s) ≤ k.) Thus we start by running our sanitizer for

parity predicates on the set Pk containing all parity predicates on at most k variables. We have to

modify the evaluator function to take into account that not every k-junta predicate has the same

bias. Indeed, we cannot control χ0d(D̂) in our output, as χ0d(D) = 1 for any database. Thus our

evaluator will apply an affine shift to each result that depends on the junta. Because the evaluator

depends on the predicate, the resulting sanitizer no longer outputs symmetric relaxed synthetic

data.

The use of a sanitizer for parity queries as a building block to construct a sanitizer for arbitrary

k-juntas is inspired by [8], which uses a noisy vector of answers to parity queries as a building block

to construct synthetic data for a particular class of k-juntas (conjunctions on k-literals). However,

while their sanitizer constructs a standard synthetic database and is inefficient, our construction of

symmetric relaxed synthetic data for parity predicates is efficient, and thus our eventual sanitizer

for k-juntas will also be efficient.

Consider a predicate c : {0, 1}d → {0, 1}. Then we can take the Fourier expansion

c(x) =
∑

s∈{0,1}d
ĉ(s)χs(x)

where

ĉ(s) = E
x←R{0,1}d

[c(x)χs(x)].

The accuracy of our sanitizer relies on the following fact about the Fourier coefficients of k-juntas

Fact 4.36. If c : {0, 1}d → {0, 1} is a k-junta, then wt(s) > k =⇒ ĉ(s) = 0

84

Let Pk =
{
χs | s ∈ {0, 1}d, 1 ≤ wt(s) ≤ k

}
. Our sanitizer for k-juntas is just the sanitizer for

parities applied to the set Pk. We now define the evaluator that computes the answer to conjunction

queries from the output ofM(D,Pk).

Evaluator E(D̂, q) for a k-junta q:

return |Pk|q(D̂)− (|Pk| − 1) q̂(∅)

Efficiency and privacy follow from the analysis ofM. Let Jd,k be a family of all k-juntas on d

variables.

Theorem 4.37. M(D,Pk) is (α, β)-accurate for Jd,k using E when

n ≥ 2|Pk| log(2|Pk|/β)

αε
.

Proof. Let c ∈ Jd,k be a fixed predicate. Assume that D̂ is α-accurate for Pk using EP . This event

occurs with probability at least 1− β by Theorem 4.30 and our assumption on n. We now analyze

the quantity c(D̂).

q(D̂) =
1

n̂

n̂∑
i=1

q(x̂(i))

=
1

n̂

n̂∑
i=1

∑
s∈{0,1}d

q̂(s)χs(x̂
(i))

=
∑

s∈{0,1}d:|s|≤k

q̂(s)χs(D̂) (4.3)

= q̂(∅) +
∑

s∈{0,1}d:1≤|s|≤k

q̂(s)χs(D̂) (4.4)

≤ q̂(∅) +
∑

s∈{0,1}d:1≤|s|≤k

q̂(s)

(
χs(D) + α

|Pk|

)
(4.5)

≤ 1

|Pk|

(|Pk| − 1) q̂(∅) +
∑

s∈{0,1}d:|s|≤k

(q̂(s)χs(D) + α)

=

1

|Pk|
((|Pk − 1) q̂(∅) + q(D)) + α

where step 4.3 uses Fact 4.36, step 4.4 uses the fact that χ0d(x) = 1 everywhere, and step 4.5 uses

85

the fact that D̂ is α-accurate for Pk when evaluated by EP . A similar argument shows that

q(D̂) ≥ 1

|Pk|
((|Pk| − 1) q̂(∅) + q(D))− α

Thus D̂ =M(D) is α-accurate for Jd,k using E with probability at least 1− β.

86

Chapter 5

Faster Algorithms for Privately Releasing

Marginal Queries

In this chapter and the next, we continue our study of marginal queries, one of the most im-

portant classes of statistics on a dataset. In Chapter 4 we discussed some of the prior work on

differentially private release of marginal queries. However, we will review that background so that

the next two chapters will be reasonably self-contained.

Recall that a marginal query is specified by a set S ⊆ [d] and a pattern t ∈ {0, 1}|S|. The

query asks, “What fraction of the individual records in D has each of the attributes j ∈ S set

to tj?” Designing efficient one-shot sanitizers for marginals has been identified as a major open

problem in differential privacy (cf. [8]). That is, we would like an efficient algorithm to create

a differentially private summary of the database that enables analysts to answer each of the 3d

marginal queries up to some small additive error, say ±.01. A natural subclass of marginals are

k-way marginals, the subset of marginals specified by sets S ⊆ [d] such that |S| ≤ k.

As we’ve discussed in Chapter 2, if we perturb the answers to every marginal query with

independent noise, then we can release the answers to every k-way marginal query with non-trivial

accuracy as long as |D| & dΘ(k). However, it may not be practical to collect enough data to

ensure that this condition holds. Even if we do have a sufficiently large database, it would require

time dΘ(k) just to compute the answers to every k-way marginal query, which may be prohibitive.

Fortunately, algorithms such as private multiplicative weights show that it is possible to privately

answer all k-way marginals as long as |D| ≥ Θ̃(k
√
d). Unfortunately, all of these algorithms

87

have running time at least 2d, even when |Q| is the set of 2-way marginals. As we have shown in

Chapter 4, this running time is inherent for algorithms such as these that generate private synthetic

data. In fact, under a strong hardness assumption, even releasing a synthetic database that is

accurate for just the set of all 2-way marginals requires time nearly 2d.

Given this state of affairs, it is natural to seek efficient one-shot sanitizers that do not generate

synthetic data capable of privately releasing approximate answers to marginal queries even when

|D| � dk. A series of works [41, 22, 45] have shown how to construct such one-shot sanitizers

for k-way marginal queries with small average error (over various distributions on the queries)

with both running time and minimum database size much smaller than dk (e.g. dO(1) for product

distributions [41, 22] and min{dO(
√
k), dO(d1/3)} for arbitrary distributions [45]). Hardt et al. [45]

also gave an algorithm for privately releasing k-way marginal queries with small worst-case error

and minimum database size much smaller than dk. However the running time of their algorithm is

still dΘ(k), which is polynomial in the number of queries.

In this chapter, we give the first algorithms capable of releasing k-way marginals up to small

worst-case error with both running time and minimum database size substantially smaller than

dk. Specifically, we show how to create a private summary in time dO(
√
k) that gives approximate

answers to all k-way marginals as long as |D| is at least dO(
√
k). When k = d, our algorithm runs

in time 2Õ(
√
d), and is the first algorithm for releasing all marginals in time 2o(d) (and thus the first

to overcome the “synthetic data barrier.”

5.1 Our Results and Techniques

In this chapter, we present faster algorithms for releasing marginals and other classes of count-

ing queries.

Theorem 5.1 (Releasing Marginals). There exists a constant C such that for every k, d, n ∈ N
with k ≤ d, every α ∈ (0, 1], and every ε > 0, there is an ε-differentially private one-shot sanitizer

that, on input a database D ∈ ({0, 1}d)n, runs in time |D| · dC
√
k log(1/α) and releases a summary

that enables computing each of the k-way marginal queries on D up to an additive error of at most

α, provided that |D| ≥ dC
√
k log(1/α)/ε.

For notational convenience, we focus on monotone k-way disjunction queries. However, our

results extend straightforwardly to general non-monotone k-way disjunction queries (see Sec-

88

tion 5.4.1), which are equivalent to k-way marginals. A monotone k-way disjunction is specified

by a set S ⊆ [d] of size k and asks what fraction of records in D have at least one of the attributes

in S set to 1.

Our algorithm is inspired by a series of works reducing the problem of private query release

to various problems in learning theory [41, 22, 45, 38]. One ingredient in this line of work is

a shift in perspective introduced by Gupta, Hardt, Roth, and Ullman [41]. Instead of viewing

disjunction queries as a set of functions on the database, they view the database as a function

fD : {0, 1}d → [0, 1], in which each vector s ∈ {0, 1}d is interpreted as the indicator vector of a

set S ⊆ [d], and fD(s) equals the evaluation of the disjunction specified by S on the database D.

They use the structure of the functions fD to privately learn an approximation gD that has small

average error over any product distribution on disjunctions.12

Cheraghchi, Klivans, Kothari, and Lee [22] observed that the functions fD can be approximated

by a low-degree polynomial with small average error over the uniform distribution on disjunctions.

They then use a private learning algorithm for low-degree polynomials to release an approximation

to fD; and thereby obtain an improved dependence on the accuracy parameter, as compared to [41].

Hardt, Rothblum, and Servedio [45] observe that fD is itself an average of disjunctions (each

row of D specifies a disjunction of bits in the indicator vector s ∈ {0, 1}d of the query), and

thus develop private learning algorithms for threshold of sums of disjunctions. These learning

algorithms are also based on low-degree approximations of sums of disjunctions.

They show how to use their private learning algorithms to obtain a sanitizer with small average

error over arbitrary distributions with running time and minimum database size dO(
√
k). They then

are able to apply the private boosting technique of Dwork, Rothblum, and Vadhan [35] to obtain

worst-case accuracy guarantees. Unfortunately, the boosting step incurs a blowup of dk in the

running time.

We improve the above results by showing how to directly compute (a noisy version of) a poly-

nomial pD that is privacy-preserving and still approximates fD on all k-way disjunctions, as long

as |D| is sufficiently large. Specifically, the running time and the database size requirement of

our algorithm are both polynomial in the number of monomials in pD, which is dO(
√
k). By “di-

rectly”, we mean that we compute pD from the database D itself and perturb its coefficients, rather

12In their learning algorithm, privacy is defined with respect to the rows of the database D that defines fD, not with
respect to the examples given to the learning algorithm (unlike earlier works on “private learning” [51]).

89

than using a learning algorithm. Our construction of the polynomial pD uses the same low-degree

approximations exploited by Hardt et al. in the development of their private learning algorithms.

In summary, the main difference between prior work and ours is that prior work used learning

algorithms that have restricted access to the database, and released the hypothesis output by the

learning algorithm. In contrast, we do not make use of any learning algorithms, and give our

release algorithm direct access to the database. by doing so, we enable our algorithm to achieve

a worst-case error guarantee while maintaining a minimal database size and running time much

smaller than the size of the query set. Our algorithm is also substantially simpler than that of Hardt

et al.

Our approach extends beyond approximations by polynomials. More generally, suppose there

is a feature space of functions S such that for every database D, fD can be approximated by a

linear combination of functions in S with bounded coefficients. Then there is an algorithm that

releases an approximation to fD with running time and minimum database size polynomial in |S|.
In the case where we approximate fD by a polynomial of degree t, the feature space would consist

of all monomials of total degree at most t.

We also consider other families of counting queries. We define the class of r-of-k queries.

Like a monotone k-way disjunction, an r-of-k query is defined by a set S ⊆ [d] such that |S| ≤ k.

The query asks what fraction of the rows of D have at least r of the attributes in S set to 1. For

r = 1, these queries are exactly monotone k-way disjunctions, and r-of-k queries are a strict

generalization.

Theorem 5.2 (Releasing r-of-k Queries). For every r, k, d, n ∈ N with r ≤ k ≤ d, every α ∈
(0, 1], and every ε > 0 there is an ε-differentially private one-shot sanitizer that, on input a

database D ∈ ({0, 1}d)n, runs in time |D| · dÕ
(√

rk log(1/α)
)

and releases a summary that enables

computing each of the r-of-k queries on D up to an additive error of at most α, provided that

|D| ≥ d
Õ
(√

rk log(1/α)
)
/ε.

Since monotone k-way disjunctions are just r-of-k queries where r = 1, thus Theorem 5.2

implies a release algorithm for disjunctions with quadratically better dependence on log(1/α), at

the cost of slightly worse dependence on k (implicit in the switch from O(·) to Õ(·)).

Finally, we give a sanitizer for privately releasing databases in which the rows of the database

are interpreted as decision lists, and the queries are inputs to the decision lists. That is, instead

of each record in D being a string of d attributes, each record is an element of the set DLk,m,

90

which consists of all length-k decision lists over m input variables. (See Section 5.4.3 for a precise

definition.) A query is specified by a string y ∈ {0, 1}d and asks “What fraction of database

participants would make a certain decision based on the input y?”

As an example application, consider a database that allows high school students to express

their preferences for colleges in the form of a decision list. For example, a student may say, “If

the school is ranked in the top ten nationwide, I am willing to apply to it. Otherwise, if the school

is rural, I am unwilling to apply. Otherwise, if the school has a good basketball team then I am

willing to apply to it.” And so on. Each student is allowed to use up to k attributes out of a set

of m binary attributes. Our sanitizer allows any college (represented by its m binary attributes) to

determine the fraction of students willing to apply.

Theorem 5.3 (Releasing Decision Lists). For any k,m ∈ N s.t. k ≤ m, any α ∈ (0, 1], and any

ε > 1/n, there is an ε-differentially private one-shot sanitizer with running time mÕ(
√
k log(1/α))

that, on input a database D ∈ (DLk,m)n, releases a summary that enables computing any length-

k decision list query up to an additive error of at most α on every query, provided that |D| ≥
mÕ(

√
k log(1/α))/ε.

For comparison, we note that all the results on releasing k-way disjunctions (including ours)

also apply to a dual setting where the database records specify a k-way disjunction over m bits

and the queries are m-bit strings (in this setting m plays the role of d). Theorem 5.3 generalizes

this dual version of Theorem 5.1, as length-k decision lists are a strict generalization of k-way

disjunctions.

We prove the latter two results (Theorems 5.2 and 5.3) using the same approach outlined for

marginals (Theorem 5.1), but with different low-degree polynomial approximations appropriate

for the different types of queries.

See Table 1 for a summary of the prior results on differentially private release of k-way

marginal queries. In that table, the database size column indicates the minimum database size

required to release answers to k-way marginals up to an additive error of α. For clarity, Table 1

ignores the dependence on the privacy parameters and the failure probability of the algorithms.

91

Table 1: Summary of results on differentially private release of k-way marginals.
Paper Running Time Database Size Error Type Synth. Data

[26, 34, 15, 30] dO(k) O(dk/2/α) Worst case N

[8] 2O(d) O(dk/2/α) Worst case Y

[16, 32, 35, 43] 2O(d) Õ(k
√
d/α2) Worst case Y

[41] dÕ(1/α2) dÕ(1/α2) Product Dists. N

[38] Õ(d2/α10) Õ(d/α6) Uniform Dist. N

[38] d · 2log2(1/α) d2 · 2log2(1/α) Uniform Dist. Y

[45] dO(d1/3 log(1/α)) dO(d1/3 log(1/α)) Any Dist. N

[45] dO(k) dO(d1/3 log(1/α)) Worst case N

[45] dO(
√
k log(1/α)) dO(

√
k log(1/α)) Any Dist. N

[45] dO(k) dO(
√
k log(1/α)) Worst case N

This chapter dO(
√
k log(1/α)) dO(

√
k log(1/α)) Worst case N

5.2 Preliminaries

5.2.1 The Vector-Valued Laplace Mechanism

In Chapter 2 we described the Laplace mechanism as a technique for answering real-valued

queries. For the results of this chapter it will be more convenient to apply the Laplace mechanism

to a vector-valued query. In cases where the query is vector-valued, we can apply the Laplace

mechanism to each coordinate individually. Suppose f : ({0, 1}d)n → Rm has low (global) L∞-

sensitivity, which we define to be

∆f = max
D∼D′

‖f(D)− f(D′)‖∞.

Let Lapm(σ) denote the m-variate probability distribution that arises when each coordinate is

chosen independently according to Lap(σ). We have the following lemma, which is a corollary of

Lemma 2.9.

Lemma 5.4. Let f : ({0, 1}d)n → Rm be a query with L∞-sensitivity ∆f and letMLap(D, f) =

f(D) + Z = a, where Z ←R Lapm(σ) for a parameter σ > 0. Then the following both hold:

1. For any ε > 0, if Z is chosen according to Lapm(∆fm/ε), thenMLap is (ε, 0)-differentially

92

private. Furthermore, for any β > 0, with probability at least 1− β,

‖a− f(D)‖1 ≤
∆fm

2 log(m/β)

ε
.

2. For any ε, δ > 0, if Z is chosen according to Lapm(∆f

√
8m log(1/δ)/ε), then MLap is

(ε, δ)-differentially private. Furthermore, for any β > 0, with probability at least 1− β,

‖a− f(D)‖1 ≤
∆fm

3/2
√

8 log(1/δ) log(m/β)

ε
.

Recall from Chapter 2 that we are assuming that noise from the Laplace distribution is replaced

with noise from a similar discrete distribution, and that a sample from this distribution can be

drawn in time poly(σ). Thus the running time of the Laplace mechanism as used in Lemma 5.4 is

poly(σ) = poly(∆f ,m, 1/ε, log(1/δ), log(1/β)).

5.2.2 Query Function Families

We take the approach of Gupta et al. [41] and think of the database D as specifying a function

fD mapping queries q to their answers q(D), which we call the Q-representation of D. We now

describe this transformation more formally:

Definition 5.5 (Q-Function Family). Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting queries on a

data universe X , where each query is indexed by an m-bit string. We define the index set of Q to

be the set YQ = {y ∈ {0, 1}m | qy ∈ Q}.
We define the Q-function family FQ = {fx : {0, 1}m → {0, 1}}x∈X as follows: For every

possible database row x ∈ X , the function fQ,x : {0, 1}m → {0, 1} is defined as fQ,x(y) = qy(x).

Given a database D ∈ X n we define the function fQ,D : {0, 1}m → [0, 1] where fQ,D(q) =

1
n

∑n
i=1 fQ,x(i)(q). WhenQ is clear from context we will drop the subscriptQ and simply write fx,

fD, and F .

For some intuition about this transformation, when the queries are monotone k-way disjunc-

tions on a database D ∈ ({0, 1}d)n, the queries are defined by sets S ⊆ [d] , |S| ≤ k. In this case

each query can be represented by the d-bit indicator vector of the set S, with at most k non-zero

entries. Thus we can take m = d and YQ =
{
y ∈ {0, 1}d |

∑d
j=1 yj ≤ k

}
.

93

5.2.3 Low-Dimensional Linear Approximations

Let S = {s : {0, 1}m → [0, 1]} be a feature space of efficiently computable (time poly(m))

m-variate functions. For a vector ~c = (cs)s∈S ∈ R|S|, let g~c be the function

g~c(y) =
∑
s∈S

cs · s(y).

Abusing notation, we will often associate the function g~c with its coefficient vector ~c and use ~c(y)

in place of g~c(y). Notice that computing ~c(y) is equivalent to computing ~c · ~y, where ~y ∈ [0, 1]|S|

is the vector (ys)s∈S formed by taking ~ys = s(y) for every s ∈ S.

In many cases, the function fQ,x : {0, 1}m → {0, 1} can be approximated well on all the

indices in YQ by a linear combination of functions in S, where the linear combination has bounded

coefficients. Formally:

Definition 5.6 (Uniform Approximation by a Feature Space). Given a family of m-variate func-

tions F = {fx}x∈X and a set Y ⊆ {0, 1}m, we say that the feature space S uniformly γ-

approximates F on Y with (L∞-)norm T if for every x ∈ X , there exists ~cx ∈ [−T, T]|S| such

that

∀y ∈ Y, |fx(y)− ~cx(y)| ≤ γ.

We say that S efficiently and uniformly γ-approximates F if there is an algorithm SF that takes

x ∈ X as input, runs in time poly(log |X |, |S|, log T) and outputs a coefficient vector ~cx such that

∀y ∈ Y, |fx(y)− ~cx(y)| ≤ γ.

5.3 From Low-Dimensional Approximations to One-Shot San-

itizers

In this section we present a one-shot sanitizer for any family of counting queriesQ such thatFQ
that can be efficiently and uniformly approximated by a feature space S. The algorithm will take an

n-row database D and, for each row x ∈ D, constructs a linear combination of functions in S, ~cx
that uniformly approximates the function fQ,x (recall that fQ,x(q) = q(x), for each q ∈ Q). From

these, it constructs a new linear combination ~cD = 1
n

∑
x∈D ~cx that uniformly approximates fQ,D.

94

The final step is to perturb each of the coefficients of ~cx using noise from a Laplace distribution

(Lemma 5.4) and bound the error introduced from the perturbation.

Theorem 5.7 (Releasing Low-Dimensional Approximations). Let Q = {qy}y∈YQ⊆{0,1}m be a set

of counting queries over X , and FQ be the Q function family (Definition 5.5). Assume that S
efficiently and uniformly γ-approximates FQ on YQ with norm T (Definition 5.6). Then there is a

sanitizerM : X n → R|S| that

1. is ε-differentially private,

2. runs in time poly(n, log |X |, |S|, log T, log(1/ε)), and

3. is (α, β)-accurate for Q for

α = γ +
4T |S|2 log (|S|/β)

εn
.

Proof. First we construct the sanitizerM. See the relevant codebox below.

Input: A database D ∈ X n, an explicit feature space S, and a parameter ε > 0.

For: i = 1, . . . , n

Using efficient approximation of F by S, compute a coefficient vector ~cx(i) = SF(x(i))

that γ-approximates fx(i) on YQ.

Let ~cD = 1
n

∑n
i=1 ~cx(i) , where the sum denotes standard entry-wise vector addition.

Let ĉD = ~cD + Z, where Z is drawn from an |S|-dimensional Laplace distribution with

parameter 2T/εn (Section 5.2.1).

Output: ĉD.

Figure 12: The SanitizerM

Privacy. We establish thatM is ε-differentially private. This follows from the observation that

for any two adjacent D ∼ D′ that differ only on row i∗,

‖~cD − ~cD′‖∞ =

∥∥∥∥∥ 1

n

n∑
i=1

~cx(i) −
1

n

n∑
i=1

~cx′(i)

∥∥∥∥∥
∞

=
1

n
‖~cx(i∗) − ~cx′(i∗)‖∞ ≤

2T

n
.

95

The last inequality is from the fact that for every x, ~cx is a vector of L∞ norm at most T . Part 1

of the Theorem now follows directly from the properties of the Laplace Mechanism (Lemma 5.4).

Now we construct the evaluator E .

Input: A vector ĉ ∈ R|S| and the description of a query y ∈ {0, 1}m.

Output: ĉ(y). Recall that we view ĉ as an m-variate function and ĉ(y) is the evaluation of

that function on the point y.

Figure 13: The Evaluator E for the SanitizerM.

Efficiency. Next, we show thatM runs in time poly(n, log |X |, |S|, log T, log(1/ε)). Recall that

we assumed the polynomial construction algorithm SF runs in time poly(log |X |, |S|, log T). The

algorithm M needs to run SF on each of the n rows, and then it needs to generate a sample

from a |S|-dimensional Laplace distribution. This sampling can be done simply by taking |S|
samples from a univariate Laplace distribution with magnitude poly(|S|, T, 1/n, 1/ε). As we have

discussed in Section 5.2.1, these samples can be computed in time poly(|S|, T, n, 1/ε). We also

establish that E runs in time poly(|S|, log T, log n, log(1/ε)), observe that E needs to expand the

input into an appropriate vector of dimension |S| and take the inner product with the vector c̃,

whose entries have magnitude poly(|S|, T, 1/n, 1/ε). These observations establish Part 2 of the

Theorem.

Accuracy. Finally, we analyze the accuracy of the sanitizerM. First, by the assumption that S
uniformly γ-approximates F on Y ⊆ {0, 1}m with norm T , we have

max
y∈Y
|fD(y)− ~cD(y)| = max

y∈Y

∣∣∣∣∣ 1n
n∑
i=1

fx(i)(y)− 1

n

n∑
i=1

~cx(i)(y)

∣∣∣∣∣
≤ 1

n

n∑
i=1

max
y∈Y
|fx(i)(y)− ~cx(i)(y)| ≤ γ.

Now we want to establish that

Pr

[
max

y∈{0,1}m
|ĉD(y)− ~cD(y)| ≤ α′

]
≥ 1− β

96

for

α′ =
4T |S|2 log (|S|/β)

εn
,

where the probability is taken over the coins ofM. Part (3) of the Theorem will then follow by

the triangle inequality.

To see that the above statement is true, observe that by the properties of the Laplace mechanism

(Lemma 5.4), we have Pr [‖ĉD − ~cD‖1 ≤ α′] ≥ 1−β,where the probability is taken over the coins

ofM. Given that ‖ĉD − ~cD‖1 ≤ α′, it holds that for every y ∈ {0, 1}m,

|ĉD(y)− ~cD(y)| = |(ĉD − ~cD) · ~y| ≤ ‖ĉD − ~cD‖1 ≤ α′.

The first inequality follows from the fact that every monomial evaluates to 0 or 1 at the point y,

and thus ‖y‖∞ ≤ 1. This completes the proof of the theorem.

Using the second part of Lemma 5.4, we can improve the bound on the error at the expense of

relaxing the privacy guarantee to (ε, δ)-differential privacy. This improved error only affects the

hidden constants in Theorems 5.1-5.3, so we only state those theorems for ε-differential privacy.

Theorem 5.8. Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting queries over X , and FQ be the Q
function family (Definition 5.5). Assume that S efficiently and uniformly γ-approximates FQ on

YQ with norm T (Definition 5.6). Then there is a sanitizerM : ({0, 1}d)n → R|S| that

1. is (ε, δ)-differentially private,

2. runs in time poly(n, log |X |, |S|, log T, log(1/ε), log(1/δ)),

3. is (α, β)-accurate for Q for α = γ +
12T |S|3/2 log(|S|/β)

√
log(1/δ)

εn
.

The proof of this theorem is identical to that of Theorem 5.7, but using the second property of

the Laplace mechanism from Theorem 5.4 in place of the first property.

5.4 Low-Dimensional Approximations

In this section we establish the existence of explicit low-dimensional linear approximations for

the families FQ for some interesting query sets. All of our low-dimensional approximations are

derived from low-degree polynomials with bounded coefficients.

97

An m-variate real multilinear polynomial p~c : {0, 1}m → R of degree t and (L∞-)norm T can

be written as

p~c(y) =
∑
S⊆[m]

cS
∏
`∈S

y`

where |cS| ≤ T for every S ⊆ [m]. Note that a polynomial of degree t is simply a linear combi-

nation of functions over the feature space Pt =
{
pS(y) =

∏
`∈S y` | S ⊆ [m]

}
. If the polynomial

has coefficients bounded in absolute value by T , the the linear combination of features in Pt has

L∞-norm bounded by T . The size of this feature space is Hm,t :=
∑t

j=0

(
m
t

)
. We remark that it

is essentially without loss of generality to restrict to multilinear polynomials, since the domain is

{0, 1}m.

Definition 5.9 (Uniform Approximation by Polynomials). Given a family of m-variate functions

F = {fx}x∈X and a set Y ⊆ {0, 1}m, we say that the family Pt uniformly γ-approximates F on

Y if for every x ∈ X , there exists ~cx ∈ [−T, T]Hm,t such that

∀y ∈ Y, |fx(y)− p~cx(y)| ≤ γ.

We say that Pt efficiently and uniformly γ-approximates F if there is an algorithm PF that

takes x ∈ X as input, runs in time poly(log |X |, Hm,t, log T), and outputs a coefficient vector ~cx
such that

∀y ∈ Y, |fx(y)− p~cx(y)| ≤ γ.

5.4.1 Releasing Monotone Disjunctions

We define the class of monotone k-way disjunctions as follows:

Definition 5.10 (Monotone k-Way Disjunctions). Let X = {0, 1}d. The query set QDisj,k =

{qy}y∈Yk⊆{0,1}d of monotone k-way disjunctions over {0, 1}d contains a query qy for every y ∈
Yk =

{
y ∈ {0, 1}d | |y| ≤ k

}
. Each query is defined as qy(x1, . . . , xd) =

∨d
j=1 yjxj . The QDisj,k

function family FQDisj,k
= {fx}x∈{0,1}d contains a function fx(y1, . . . , yd) =

∨d
j=1 yjxj for every

x ∈ {0, 1}d.

Thus the family FQDisj,k
consists of all disjunctions, and the image ofQDisj,k, which we denote

Yk, consists of all vectors y ∈ {0, 1}d with at most k non-zero entries. We can approximate

disjunctions over the set Yk using a well-known transformation of the Chebyshev polynomials (see,

e.g., [58] and [45]). First we recall the useful properties of the univariate Chebyshev polynomials.

98

Fact 5.11 (Chebyshev Polynomials). For every k ∈ N and γ > 0, there exists a univariate real

polynomial gk(x) =
∑tk

i=0 cix
i of degree tk such that

1. tk = O(
√
k log(1/γ)),

2. for every i ∈ {0, 1, . . . , tk} , |ci| ≤ 2O(
√
k log(1/γ)),

3. gk(0) = 0, and

4. for every x ∈ {1, . . . , k}, 1− γ ≤ gk(x) ≤ 1 + γ.

Moreover, such a polynomial can be constructed in time poly(k, log(1/γ)) (e.g. using linear pro-

gramming, though more efficient algorithms are known).

We can use Lemma 5.11 to approximate k-way monotone disjunctions. Note that our result

easily extends to monotone k-way conjunctions via the identity

∧dj=1xjyj = 1 − ∨dj=1(1 − xj)yj . Moreover, it extends to non-monotone conjunctions and dis-

junctions: we may extend the data universe as in [45, Theorem 1.2] to {0, 1}2d, and include the

negation of each item in the original domain. Non-monotone conjunctions over domain {0, 1}d

correspond to monotone conjunctions over the expanded domain {0, 1}2d.

The next lemma shows that FQDisj,k
can be efficiently and uniformly approximated by poly-

nomials of low degree and low norm. The statement is a well-known application of Chebyshev

polynomials, and a similar statement appears in [45] but without bounding the running time of the

construction or a bound on the norm of the polynomials. We include the statement and a proof for

completeness, and to verify the additional properties we need.

Lemma 5.12 (Approximating FQDisj,k
by polynomials, similar to [45]). For every k, d ∈ N such

that k ≤ d and every γ > 0, the family Pt consisting of d-variate real polynomials of degree

t = O(
√
k log(1/γ)) and norm T = dO(

√
k log(1/γ)) efficiently and uniformly γ-approximates the

family FQDisj,k
on the set Yk.

Proof. The algorithm PDisj,k for constructing the polynomials appears in the relevant codebox

above.

Since px is a degree-tk polynomial applied to a degree-1 polynomial (in the variables yj), its

degree is at most tk. To see the stated norm bound, note that every monomial of total degree

99

Input: a vector x ∈ {0, 1}d.
Let gk be the polynomial described in Lemma 5.11.

Let ~px ∈ R(m+tk
tk

) be the expansion of px(y1, . . . , yd) = gk

(∑d
j=1 yjxj

)
.

Output: ~px.

Figure 14: PDisj,k.

i in px comes from the expansion of
(∑d

j=1 yjxj

)i
, and every coefficient in this expansion is a

non-negative integer less than or equal to ki. In px, each of these terms is multiplied by ci (the

i-th coefficient of gk). Thus the norm of px is at most maxi∈{0,1,...,tk} k
i · |ci| = kO(

√
k log(1/γ)) =

dO(
√
k log(1/γ)). To see that PDisj,k is efficient, note that we can find every coefficient of px of total

degree i by expanding
(∑d

j=1 yjxj

)i
into all of its di terms and multiplying by ci, which can be

done in time poly(dtk) = poly(
(
d+tk
tk

)
), as is required.

To see that PDisj,k γ-approximates FQDisj,k
, observe that for every x, y ∈ {0, 1}d, fx(y) = 0⇒

px(y) = 0, and for every x ∈ {0, 1}d, y ∈ Yk, fx(y) = 1⇒ 1−γ ≤ px(y) ≤ 1+γ. This completes

the proof.

Theorem 5.1 in the introduction follows by combining Theorems 5.7 and 5.12.

5.4.2 Releasing Monotone r-of-k Queries

We define the class of monotone r-of-k queries as follows:

Definition 5.13 (Monotone r-of-k Queries). Let X = {0, 1}d and r, k ∈ N such that r ≤ k ≤ d.

The query set Qr,k = {qy}y∈Yk⊆{0,1}d of monotone r-of-k queries over {0, 1}d contains a query

qy for every y ∈ Yk =
{
y ∈ {0, 1}d | |y| ≤ k

}
. Each query is defined as qy(x1, . . . , xd) =

1∑d
j=1 yjxj≥r

. The Qr,k function family FQr,k = {fx}x∈{0,1}d contains a function fx(y1, . . . , yd) =

1∑d
j=1 yjxj≥r

for every x ∈ {0, 1}d.

Sherstov [81, Lemma 3.11] gives an explicit construction of polynomials that can be used

to approximate the family FQr,k over Yk with low degree. It can be verified by inspecting the

construction that the coefficients of the resulting polynomial are not too large.

100

Lemma 5.14 ([81]). For every r, k ∈ N such that r ≤ k and γ > 0, there exists a univariate

polynomial gr,k : R→ R of degree tr,k such that gr,k(x) =
∑tk

i=0 cix
i and

1. tr,k = O
(√

rk log(k) +
√
k log(1/γ) log(k)

)
,

2. for every i ∈ {0, 1, . . . , tk} , |ci| ≤ 2Õ(
√
kr log(1/γ)),

3. for every x ∈ {0, 1, . . . , r − 1}, −γ ≤ gr,k(x) ≤ γ, and

4. for every x ∈ {r, . . . , k}, 1− γ ≤ gr,k(x) ≤ 1 + γ.

Moreover, gr,k can be constructed in time poly(k, r, log(1/γ)) (e.g. using linear programming).

We can use these polynomials to approximate monotone r-of-k queries.

Lemma 5.15 (Approximating FQr,k on Yk). For every r, k, d ∈ N such that r ≤ k ≤ d and every

γ > 0, the family Pt of d-variate real polynomials of degree t = Õ(
√
kr log(1/γ)) and norm

T = dÕ(
√
kr log(1/γ)) efficiently and uniformly γ-approximates the family FQr,k on the set Yk.

Proof. The construction and proof is identical to that of Theorem 5.12 with the polynomials of

Lemma 5.14 in place of the polynomials described in Lemma 5.11.

Theorem 5.2 in the introduction now follows by combining Theorems 5.7 and 5.15. Note that

our result also extends easily to non-monotone r-of-k queries in the same manner as Theorem 5.1.

Remark 5.16. Using the principle of inclusion-exclusion, the answer to a monotone r-of-k query

can be written as a linear combination of the answers to kO(r) monotone k-way disjunctions. Thus,

a sanitizer that is (α/kO(r), β)-accurate for monotone k-way disjunctions implies a sanitizer that

is (α, β)-accurate for monotone r-of-k queries. However, combining this implication with Theo-

rem 5.1 yields a sanitizer with running time dO(r
√
k log(k/β)), which has a worse dependence on r

than what we achieve in Theorem 5.2.

5.4.3 Releasing Decision Lists

A length-k decision list over m variables is a function which can be written in the form “if `1

then output b1 else · · · else if `k then output bk else output bk+1,” where each `i is a boolean literal

in {x1, . . . , xm}, and each bi is an output bit in {0, 1}. Note that decision lists of length-k strictly

101

generalize k-way disjunctions and conjunctions. We use DLk,m to denote the set of all length-k

decision lists over m binary input variables.

Definition 5.17 (Evaluations of Length-k Decision Lists). Let k,m ∈ N such that k ≤ m and

X = DLk,m. The query set QDLk,m = {qy}y∈{0,1}m of evaluations of length-k decision lists

contains a query qy for every y ∈ {0, 1}m. Each query is defined as qy(x) = x(y) where x ∈ DLk,m

is a length-k decision list over m variables. The QDLk,m function family FQDLk,m
= {fx}x∈DLk,m

contains functions fx(y) = x(y) for every x ∈ DLk,m. That is, FQDLk,m
= DLk,m.

We clarify that in this setting, the records in the database are length-k decision lists over {0, 1}m

and the queries inputs in {0, 1}m. Thus |X | = |DLk,m| = mO(k) and |Q| = 2m. Alternatively,

X = {0, 1}d for d = k(logm + 2) + 1, since a length-k decision list can be described using this

many bits. Klivans and Servedio [58, Claim 5.4] have shown that decision lists of length k can be

uniformly approximated to accuracy γ by low-degree polynomials.

Lemma 5.18 ([58]). For every k,m ∈ N such that k ≤ m and every γ > 0, the family Pt of

m-variate real polynomials of degree Õ
(√

k log(1/γ)
)

and norm T = mÕ(
√
k log(1/γ)) efficiently

and uniformly γ-approximates the family FQDLk,m
= DLk,m on all of {0, 1}m.

We obtain Theorem 5.3 of the introduction by combining Theorems 5.7 and 5.18.

102

Chapter 6

Faster Algorithms for Marginal Queries on

Small Databases

6.1 Introduction

In Chapter 5, we presented a one-shot sanitizer for the set of k-way marginals that has both run-

ning time and minimum database size dO(
√
k). Although this algorithm achieves the best-known

running time for answering all k-way marginals, the minimum database size required is still sig-

nificantly larger than Θ̃(k
√
d), which we know would be sufficient if we were not concerned with

efficiency. In addition to the results of Chapter 5, there are several one-shot sanitizers whose run-

ning time is� dk and guarantee small average error for k-way marginals when the database size is

� dk [41, 22, 45, 38]. However, even in the easiest case where we want small average error under

the uniform distribution over all marginals, none of these algorithms matches private multiplicative

weights with respect to the minimum database size (see Table 5.1)

However, recent experimental work of Hardt, Ligett, and McSherry [43] suggests that in some

cases, it may be more important to optimize the minimum database than the running time. In-

deed they show that for some databases of interest, even the 2d-time private multiplicative weights

algorithm is practical. They also demonstrate that more efficient algorithms based on adding in-

dependent noise do not provide good accuracy for these databases. These findings suggest that a

promising approach to designing practical algorithms is to achieve a minimum database size com-

parable to that of private multiplicative weights (say, poly(d, k)), and seek to optimize the running

103

time of the algorithm as much as possible under this constraint. Unfortunately, there is no algo-

rithm we are aware of that has running time 2o(d) and provides a meaningful accuracy guarantee

for k-way marginals on a database of size comparable to O(k
√
d). If we want accurate answers to

all k-way marginals then there is no 2o(d) time algorithm with minimum database size poly(d, k).

In this chapter we give the first algorithms for privately answering marginal queries for this

parameter regime. We show how to privately answer marginal queries in time 2o(d) on databases

of size Õ(kd.51), which is nearly the smallest a database can be while admitting any differentially

private approximation to marginal queries.13

6.1.1 Our Results and Techniques

More specifically, we construct differentially private sanitizers (as opposed to one-shot santiz-

ers) for answering k-way marginal queries.

Theorem 6.1. There exist constants C1, C2 > 0 such that for every k, d, n ∈ N, k ≤ d, and every

ε, δ > 0, there is an (ε, δ)-differentially private sanitizer that on input a database D ∈ ({0, 1}d)n,

with n ≥ C2 · d.51 log |Q| log(1/δ)/ε, runs in time

poly
(
n, |Q|,min

{
exp

(
d1−1/C1

√
k
)
, exp

(
d/ log.99 d

)})
and is (.01, .01)-accurate for the set of k-way marginal queries.

Theorem 6.1 easily gives rise to a one-shot sanitizer for k-way marginals. We can obtain

this one-shot sanitizer simply by requesting answers to each of the dΘ(k) distinct k-way marginal

queries from the online sanitizer. In this case we obtain the following corollary.

Corollary 6.2. There exist constantsC1, C2 > 0 such that for every k, d, n ∈ N, and every ε, δ > 0,

there is an (ε, δ)-differentially private one-shot sanitizer that, on input a database D ∈ ({0, 1}d)n,

with n ≥ C2 · kd.51 log d log(1/δ)/ε, runs in time

poly

(
n,

(
d

≤ k

)
,min

{
exp

(
d1−1/C

√
k
)
, exp

(
d/ log.99 d

)})
and (.01, .01)-accurate for the set of k-way marginal queries.

13It is information-theoretically impossible for a differentially private algorithm to answer even 1-way marginal
queries with non-trivial accuracy on a database of size o(

√
d/ log d) [88, 90]

104

Table 2: A simplified summary of prior work on k-way marginals for k � d.
Paper Running Time Database Size

[26, 15, 30] dΘ(k) O(dk/2)

[16, 32, 35, 43] 2O(d) Õ(kd.5)

Chapter 5 dO(
√
k) dO(

√
k)

This chapter 2O(d/ log.99 d) kd.5+o(1)

This chapter 2d
1−Ω(1/

√
k)

Õ(kd.51)

Here
(
d
≤k

)
:=
∑k

j=0

(
d
j

)
, and the number of k-way marginal queries is polynomial in this

quantity. Note that for k = O(d/ log d), the per-query running time of the online sanitizer is the

dominant term.

See Table 2 for a simplified summary of known one-shot sanitizers with error ±.01 on every

k-way marginal when k � d, including the results of this chapter. See Table 1 (Chapter 5) for

a more complete summary including one-shot sanitizers with average case error. In Table 2, the

running time statements ignore dependence on the database size and privacy parameters.

We make a few additional remarks about these results:

Remark 1. When k = Ω(log2 d), the minimum database size requirement can be improved to

|D| ≥ Ckd.5+o(1) log(1/δ)/ε (for some universal constant C > 0) without affecting the running

time significantly, but we have stated the theorems with a looser bound for simplicity. Here the

o(1) term is a vanishing function of d.

Remark 2. Our algorithm can be modified so that instead of releasing approximate answers to

each k-way marginal explicitly, it releases a summary of the database of size Õ(kd.01) from which

an analyst can compute an approximate answer to any k-way marginal in time Õ(kd1.01).

Remark 3. Theorem 6.1 can actually be strengthened to give an online sanitizer for k-way

marginal queries. Intuitively an online sanitizer is just a sanitizer where the input queries are given

one at a time, and the sanitizer must answer each query immediately after it is issued. See [44] for

a formal treatment of online sanitizers.

Recall that a monotone k-way disjunction is specified by a set S ⊆ [d] of size k and asks what

fraction of records in D have at least one of the attributes in S set to 1. Also recall that we view the

105

database as a function fD : {0, 1}d → [0, 1], in which each input vector s ∈ {0, 1}d is interpreted

as the indicator vector of a set S ⊆ [d], and fD(s) equals the evaluation of the disjunction query

specified by S on the database D. As in Chapter 5, our algorithm is based on techniques for

approximating the function fD.

The starting point for our algorithm is the online private multiplicative weights algorithm

(PMW) [44], which has running time 2d per query and answers any sequence of arbitrary count-

ing queries provided |D| &
√
d log |Q|. Gupta, Roth, and Ullman [42] introduced the “IDC

framework”—capturing PMW and other algorithms—for designing differentially private sanitizers

and, in particular, showed that such an algorithm can be derived from any (non-privacy preserving)

online learning algorithm.

Informally, an online learning algorithm is one that plays the following game: In each round,

j, the learner receives a (possibly adaptively chosen) input sj , and must produce a “guess” aj as to

the value of fD(sj) for the unknown function fD. After making each guess aj , the learner is given

some information about the value of fD(sj). If the guess aj is “far” from the true value fD(sj),

then we say that the learner has made a “mistake” in round j. Ultimately, for the sanitizer derived

in the IDC framework, the notion of far will correspond to the accuracy, the per query running time

will essentially be equal to the running time of the online learning algorithm, and the minimum

database size required by the private algorithm will be proportional to the maximum number of

mistakes that the learning algorithm makes in this game.

The algorithm of Hardt and Rothblum [44], is derived from an online learning algorithm that

runs in time 2d and makesO(d) mistakes. A common approach to obtaining a faster online learning

algorithm that still makes few mistakes is to use a polynomial approximation14 to the target function

fD. Indeed, it is well-known in computational learning theory that if fD can be approximated to

within high accuracy on every input by a d-variate polynomial pD : {0, 1}d → R of degree t

and weight at most W (where the weight is defined to be the sum of the absolute values of the

coefficients), then there is an online learning algorithm that runs in time poly
((

d
≤t

))
and makes

O(Wd) mistakes. Thus, if t � d, the running time of such an online learning algorithm will be

significantly less than 2d and the number of mistakes (and thus the minimum database size of the

14For this informal introduction, we are using the term polynomial a bit loosely. More precisely, we will approx-
imate fD : {0, 1}m → [0, 1] by a low-weight linear combination of low-width parity functions over {0, 1}m, which
could alternatively be viewed as a polynomial approximation if wrote fD as a function mapping {−1, 1}m to [−1, 1]
in the standard fashion.

106

resulting private algorithm) will only increase by a factor of W .

In order to obtain a faster online learning algorithm that makes few mistakes, it suffices to

show that for every database, D, there is a low-degree, low-weight polynomial pD such that

|pD(s) − fD(s)| is small for all vectors s ∈ {0, 1}d corresponding to monotone k-way disjunc-

tion queries. As we implicitly showed in Chapter 5, it is sufficient to construct a low-degree,

low-weight polynomial that can approximate the d-variate OR function on inputs s ∈ {0, 1}d of

Hamming weight at most k. Indeed, we show that for every k ≤ d, there is a suitable polynomial

of degree d1−Ω(1/
√
k) and weight d.01. For larger values of k, this upper bound approaches the trivial

upper bound of d. However, we also show that for the hardest case of k = d, there exists a suitable

polynomial of degree d/ log.99 d and weight do(1).

If our construction could be improved to give a polynomial of even smaller degree and weight

poly(d) that approximates the OR function on all inputs of Hamming weight at most k, then it

would immediately imply a faster algorithm for answering k-way marginals with a similar accuracy

guarantee. However, we prove a lower bound showing that it is not possible to significantly im-

prove on our construction. We believe this lower bound is of independent approximation-theoretic

interest.

Theorem 6.3. Let ORd : {0, 1}d → {0, 1} denote the OR function on d variables, and for every

vector x ∈ {0, 1}d, let |x| denote
∑d

i=1 xi, the Hamming weight of x. Fix k = o(log d), and let p

be a real d-variate polynomial satisfying |p(x)− ORd(x)| ≤ 1/6 for all x ∈ {0, 1}d with |x| ≤ k.

If the sum of the absolute values of the coefficients of p is bounded by dO(1), then the total degree

of p is at least d1−O(1/
√
k).

As was the case in Chapter 5, our algorithm can be extended to the case where fD is ap-

proximated not by a low-degree polynomial, but rather by a low-weight linear combination of

functions from an arbitrary feature space S. In this case the running time will be proportional to

|S|. Theorem 6.3 shows that we cannot construct a smaller feature space containing a low-weight

approximation to fD by restricting to monomials of lower degree. We leave it as an interesting

open question to determine whether or not there exists a smaller feature space such that every dis-

junction over d variables can be approximated on inputs of low Hamming weight by a low-weight

linear combination of these features. A positive answer to this question would immediately yield a

more efficient algorithm for answering k-way marginals with a similar accuracy guarantee to ours.

107

6.2 Preliminaries

6.2.1 Query Function Families

We recall the notion of a query-function family from Chapter 5.

Definition 6.4 (Q-Function Family). Let Q = {qy}y∈YQ⊆{0,1}m be a set of counting queries on a

data universe X , where each query is indexed by an m-bit string. We define the index set of Q to

be the set YQ = {y ∈ {0, 1}m | qy ∈ Q}.
We define the Q-function family FQ = {fx : {0, 1}m → {0, 1}}x∈X as follows: For every

possible database row x ∈ X , the function fQ,x : {0, 1}m → {0, 1} is defined as fQ,x(y) = qy(x).

Given a database D ∈ X n we define the function fQ,D : {0, 1}m → [0, 1] where fQ,D(q) =

1
n

∑n
i=1 fQ,x(i)(q). WhenQ is clear from context we will drop the subscriptQ and simply write fx,

fD, and F .

For some intuition about this transformation, when the queries are monotone k-way disjunc-

tions on a database D ∈ ({0, 1}d)n, the queries are defined by sets S ⊆ [d] , |S| ≤ k. In this case

each query can be represented by the d-bit indicator vector of the set S, with at most k non-zero

entries. Thus we can take m = d and YQ =
{
y ∈ {0, 1}d |

∑d
j=1 yj ≤ k

}
.

6.2.2 Low-Weight Linear Approximations

As in Section 5.2.3, let S = {s : {0, 1}m → [−1, 1]} be a feature space of efficiently (time

poly(m)) computable m-variate functions. For a vector ~c = (cs)s∈S ∈ R|S|, let g~c be the function

g~c(y) =
∑
s∈S

cs · s(y).

Abusing notation, we will often associate the function g~c with its coefficient vector ~c. Notice that

computing g~c(y) is equivalent to computing 〈~c, ~y〉, where ~y ∈ [0, 1]|S| is the vector (ys)s∈S formed

by taking ~ys = s(y) for every s ∈ S. In contrast to Section 5.2.3, we now wish to work with linear

combinations of function in S that have bounded L1-norm (as opposed to L∞-norm). To reduce

ambiguity between different norms, we define the weight of g~c to be

W (g~c) = ‖~c‖1 =
∑
s∈S

|~cs|.

108

We will tend to restrict attention to functions g~c that have weight exactly W . This restriction is

essentially without loss of generality if we assume that S includes a function that is identically 0.

Then if we are given a function g~c over S with weight W ′ < W , we can place additional weight of

W −W ′ on the identically 0 function so that g~c has weight exactly W . We also restrict attention

to functions g~c such that ~c lies in R|S|≥0. This restriction is also essentially without loss of generality

if we assume that S is closed under negation (s ∈ S ⇒ −s ∈ S). If either of these two restrictions

fails to hold for a given feature space S, then we can obtain a new feature space of size 2|S| + 1

for which they do hold, which will not have a significant effect on the statement of our results.

We are interested in cases where the function fQ,x : {0, 1}m → {0, 1} can be approximated

well on all the indices in YQ by a linear combination of functions in S with low weight. Formally:

Definition 6.5 (Uniform Approximation by a Feature Space). Given a family of m-variate func-

tions F = {fx : {0, 1}m → [−1, 1]}x∈X and a set Y ⊆ {0, 1}m, we say that the feature space

S = {s : {0, 1}m → [−1, 1]} uniformly γ-approximatesF on Y with weightW if for every x ∈ X ,

there exists ~cx ∈ R|S|≥0 such that W (~c) = W and

∀y ∈ Y, |fx(y)− 〈~cx, ~y〉| ≤ γ.

6.3 From Low-Weight Approximations to Sanitizers

In this section we show that low-weight polynomial approximations imply data release algo-

rithms that provide approximate answers even on small databases. Informally, if a feature space

S of m-variate functions γ-approximates F with weight W , for a sufficiently small constant γ,

then there is a differentially private online algorithm with running time poly(m, |S|) that releases

answers to every sequence of queries Q in Q within error ±.01 as long as n & W
√
m log |Q|/ε.

We will prove this result by constructing a new IDC that has a good mistake bound and running

time for families of queries that can be approximated with low-weight over a small feature space.

We then invoke Theorem 2.15 from Section 2.4.3 to obtain our differentially private sanitizer.

6.3.1 From Low-Weight Approximations to IDCs

The new IDC is derived from the standard (non-privacy-preserving) multiplicative weights

algorithm, and is specified in Figure 15. For this IDC, the data structure approximating the database

109

will be a low-weight linear combination of features from a feature space S, which is a coefficient

vector ~c(t) ∈ R|S|≥0.

For a given vector ~c ∈ R|S|≥0 of weight W , we define c = ~c/W . We observe two things about

c: (1) Given a query y ∈ {0, 1}m, we can construct a vector ~y of length |S| in which ~ys = s(yi)

for every s ∈ S, and this vector will satisfy W 〈c, ~y〉 = 〈~c, ~y〉. (2) c now represents a probability

distribution on the |S| coefficients.

UMW
α,S,W (~c(t), y(t), â(t)):

Input: An approximation ~c(t) over feature space S, a query y(t) ∈ Q, and â(t) ∈ R.

If: ~c(t) = ∅ then: output ~c(t+1) = (1, . . . , 1) and halt.

Let c(t) = ~c(t)/W and let η ← α/4W .

If: â(t) < W 〈c(t), ~y(t)〉
Let r(t) = ~y(t)

Else:

Let r(t) = −~y(t)

Update: For all s ∈ S let

c(t+1)
s ← exp(−ηr(t)

s) · c(t)
s

c(t+1) ← c(t+1)

‖c(t+1)‖1

Output ~c(t+1) = W · c(t+1).

Figure 15: The Multiplicative Weights Algorithm for Low-Weight Feature Spaces.

We summarize the properties of the multiplicative weights algorithm in the following theorem:

Theorem 6.6. For every α > 0, and every family of counting queries Q if S (α/4)-uniformly

approximates F on Y with weight W then UMW (Figure 15) is an iterative database construction

with mistake bound B for Qfor

B =
16W 2 log |S|

α2
.

Moreover, U runs in time poly
(
|S|, log(1/α), logW

)
.

Proof. Let D ∈ ({0, 1}d)n be any database and consider a (UMW , D,Q, α, B)-database update

sequence,
{

(~c(t), y(t), â(t))
}
t=1,...,B

. It will be sufficient if we can show that B ≤ 16W 2 log |S|/α2.

110

Specifically, that after B = 16W 2 log |S|/α2 invocations of UMW , the function ~c(B) is such that

∀y ∈ YQ, |〈~c(B), ~y〉 − fD(y)| ≤ α.

That is, ~c(B) represents a function that approximates fD.

The assumption of our theorem is that for every x(i) ∈ D, there exists ~cx(i) ∈ R|S|≥0, of weight

W , such that

∀y ∈ YQ, |〈~cx(i) , ~y〉 − fx(i)(y)| ≤ α

4
.

Thus, since fD = 1
n

∑n
i=1 fx(i) , the function ~cD = 1

n

∑n
i=1 ~cx(i) will satisfy

∀y ∈ YQ, |〈~cD, ~y〉 − fD(y)| ≤ α

4
.

Note that ~cD ∈ R|S|≥0, thus, viewing ~cD as a vector, and considering its normalized version cD, we

have

∀y ∈ YQ, |W 〈cD, ~y〉 − fD(y)| ≤ α

4
.

Given the existence of cD, we will define a potential function capturing how far c(t) is from cD.

Specifically, we define

Ψt := KL(cD||c(t)) =
∑
s∈S

cD,s log

(
cD,s

c(t)
s

)

to be the KL divergence between cD and the current approximation c(t). We have the following

fact about KL divergence.

Fact 6.7. For all t: Ψt ≥ 0, and Ψ0 ≤ log |S|.

We will argue that in each step the potential drops by at least α2/16W 2. Because the potential

begins at log |S|, and must always be non-negative, we know that there can be at most B ≤
16W 2 log |S|/α2 steps before the algorithm outputs a (vector representation of) a low-weight linear

combination over S that approximates fD on YQ.

The following lemma is standard in the analysis of multiplicative-weights-based algorithms.

We include a proof for completeness.

Lemma 6.8 (See e.g. [5]).

Ψt −Ψt+1 ≥ η
(
〈c(t), r(t)〉 − 〈cD, r(t)〉

)
− η2

111

Proof. We can prove the lemma via the following calculation:

Ψt −Ψt+1 =
∑
s∈S

cD,s log

(
cD,s

c(t)
s

)
−
∑
s∈S

cD,s log

(
cD,s

c(t+1)
s

)
=
∑
s∈S

cD,s log

(
c(t+1)
s

c(t)
s

)

=
∑
s∈S

cD,s log

(
exp(−ηr(t)

s)∑
u∈S exp(−ηr(t)

u)c(t)
u

)

= −η〈cD, r(t)〉 − log

(∑
u∈S

exp(−ηr(t)
u)c(t)

u

)

≥ −η〈cD, r(t)〉 − log

(∑
u∈S

c(t)
u (1 + (ηr(t)

u)2 − ηr(t)
u)

)

≥ −η〈cD, r(t)〉 − log

(∑
u∈S

c(t)
u ((ηr(t)

u)2 − ηr(t)
u)

)
≥ −η〈cD, r(t)〉 −

∑
u∈S

c(t)
u ((ηr(t)

u)2 − ηr(t)
u)

= η
(
〈c(t), r(t)〉 − 〈cD, r(t)〉

)
− η2

In this calculation, we have used the fact that, by construction, r(t)
u ∈ [0, 1] and using the

elementary facts that for x > 0, log(1 + x) ≤ x and e−x ≤ 1− x+ x2.

The rest of the proof now follows easily. By the conditions of an iterative database construction

algorithm, |â(t) − fD(y(t))| ≤ α/2. Hence, for each t such that |W 〈c(t), ~y(t)〉 − fD(y(t))| ≥ α, we

also have that W 〈c(t), ~y(t)〉 > fD(y(t)) if and only if W 〈c(t), ~y(t)〉 > â(t).

In particular, if r(t) = y(t), then W 〈c(t), ~y(t)〉 −W 〈cD, ~y(t)〉 ≥ α/2. Similarly, if r(t) = −y(t),

then W 〈cD, ~y(t)〉 −W 〈c(t), ~y(t)〉 ≥ α. Here we have utilized the fact that |~cD(y)− fD(y)| ≤ α/4.

Therefore, by Lemma 6.8 and the fact that η = α/4W :

Ψt −Ψt+1 ≥
α

4W

(
〈c(t), r(t)〉 − 〈cD, r(t)〉

)
− α2

16W 2
≥ α

4W

(α

2W

)
− α2

16W 2
=

α2

16W 2

112

6.4 Low-Weight Approximations

In the previous section we reduced the problem of designing efficient online algorithms for

marginal queries to designing certain low-weight linear approximations. In this section we show

that such low-weight linear approximations exist using low-degree, low-weight polynomials. In

this and the following section we give upper and lower bounds on the degree of suitable low-weight

polynomials. For technical convenience, and consistency with the literature in approximation the-

ory, the notation used for these sections differs somewhat from what we have used in Chapter 5

and in the previous sections. This section and the next are intended to be self-contained, and in

Theorem 6.10 we clarify the relationship between the two settings.

In this section we are interested in m-variate real polynomials p : {−1, 1}m → R, written as

p(y) =
∑
S⊆[m]

cS ·
∏
i∈S

yi.

We define the degree of the polynomial to be

deg(p) := max{|S| : S ⊆ [m], cS 6= 0},

and we define the weight w(.) and non-constant weight w∗(.) of the polynomial to be

w(p) :=
∑
S⊆[m]

|cS|, w∗(p) :=
∑

S⊆[m],S 6=∅

|cS|.

We use
(

[m]
≤t

)
to denote {S ⊆ [m] | |S| ≤ t} and

(
m
≤t

)
=
∣∣∣([m]
≤t

)∣∣∣ =
∑t

j=0

(
m
j

)
.

The next definition is similar to Definition 6.5 but with different notation and specialized to

polynomials.

Definition 6.9 (Restricted Approximation by Polynomials). Given a function f : Y → R, where

Y ⊆ Rm, and a subset Y ′ ⊆ Y , we denote the restriction of f to Y ′ by f |Y ′ . Given an m-variate

real polynomial p, we say that p is a γ-approximation to the restriction f |Y ′ , if |f(y) − p(y)| ≤ γ

∀y ∈ Y ′. Notice there is no restriction whatsoever placed on p(y) for y ∈ Y \ Y ′.
Given a family of m-variate functions F = {fx : Y → R}x∈X , where Y ⊆ Rm, a set Y ′ ⊆ Y

and a family P of m-variate real polynomials, we say that the family P is a γ-approximation to

F|Y ′ if for every x ∈ X , there exists px ∈ P that is a γ-approximation to fx|Y ′ .

113

We view the d variate OR function, ORd as mapping inputs from {−1, 1}d to {−1, 1}, with the

convention that −1 is TRUE and 1 is FALSE. Let Hm,k = {x ∈ {−1, 1}m :
∑m

i=1(1− xi)/2 ≤ k}
denote the set of inputs of Hamming weight at most k. Let Pt,W denote the family of all m-variate

real polynomials of degree t and weight W . For the upper bound, we will show that for certain

small values of t and W , the family Pt,W is a γ-approximation to the family of all disjunctions

restricted to Hm,k.

The next theorem reconciles the notation and terminology of this section with that of the pre-

vious sections.

Theorem 6.10. LetQ be the set of all monotone k-way disjunctions on {0, 1}d and let FQ and YQ

be the corresponding function family and index set. Here, a k-way disjunction qy(x) =
∨
i:yi=1 xi

is specified by its indicator vector y ∈ YQ =
{
y ∈ {0, 1}d |

∑d
j=1 yj ≤ k

}
. Let FQ be the cor-

responding function family. Assume that there is a d-variate polynomial of degree at most t and

weight at most W that γ-approximates the function ORd on all inputs in Hm,k. Then there exists

a feature space of size at most 2
(
d
≤t

)
+ 1 that γ-uniformly approximates the family F on Y with

weight W .

Proof of Theorem 6.10. For any x ∈ {0, 1}d, let ORd,x(y) =
∨
i|xi=1 yi. We note that qy(x) =

ORd,x(y) Suppose that there is a polynomial p such that

∀y ∈ Hm,k, |p(y)−ORd(y)| ≤ γ.

Then the polynomial px(y) = p(yx1
1 , . . . , y

xd
d) is such that

∀y ∈ Hm,k, |px(y)−ORd,x(y)| ≤ γ.

Further, it is easy to see that (since xi ∈ {0, 1}), the degree and weight of px are no larger than that

of p. Now observe that the functions fx ∈ F are exactly the functions ORd,x, except that fx maps

{0, 1}d → {0, 1} (with 1 representing logical TRUE), whereas ORd,x maps {−1, 1}d → {−1, 1}
(with −1 representing logical TRUE). Thus, for every monomial

∏
i∈S yi, we can instead use the

feature 1
2
− 1

2

∏
i∈S(1 − 2yi) to obtain an equivalent function mapping {0, 1}d → {0, 1}. Thus,

the feature space St =
{
sS(y) = 1

2
− 1

2

∏
i∈S(1− 2yi) | S ⊆ [d], |S| ≤ t

}
, will γ-approximate the

family F on Y with weight at most W . Also note that the size of this feature space is
(
d
≤t

)
. Finally,

and we will expand the feature set to be closed under negation and contain a constant 0 feature

114

to be consistent with the requirement in Definition 6.5 that the weight of the approximation be

exactly W and that the coefficients be non-negative. This expanded feature space will have size

2
(
d
≤t

)
+ 1.

With Theorem 6.10 in hand, we can focus on understanding the choices of weight and degree

for which there admits a polynomial approximation to the function ORd.

For our lower bound, we will show that any collection of polynomials with small weight that

is a γ-approximation to the family of disjunctions restricted to Hm,k should have large degree. We

need the following definitions in place:

Definition 6.11 (Approximate Degree). Given a function f : Y → R, where Y ⊆ Rm, the γ-

approximate degree of f is

degγ(f) := min{d : ∃ real polynomial p that is a γ-approximation to f , deg(p) = d}.

Analogously, the (γ,W)-approximate degree of f is

deg(γ,W)(f) := min{d : ∃polynomial p that is a γ-approximation to f , deg(p) = d, w(p) ≤ W}.

It is clear that degγ(f) = deg(γ,∞)(f).

We let w∗(f, t) denote the degree-t non-constant margin weight of f , defined to be:

w∗(f, t) := min{w∗(p) : deg(p) ≤ t, f(y)p(y) ≥ 1 ∀ y ∈ Y }.

The above definitions extend naturally to the restricted function f |Y ′ .
Our definition of non-constant margin weight is closely related to the well-studied notion of

the degree-t polynomial threshold function (PTF) weight of f (see e.g. [83]), which is defined as

minpw(p), where the minimum is taken over all degree-t polynomials p with integer coefficients,

such that f(x) = sign(p(x)) for all x ∈ {−1, 1}d. Often, when studying PTF weight, the require-

ment that p have integer coefficients is used only to ensure that p has non-trivial margin, i.e. that

|p(x)| ≥ 1 for all x ∈ {−1, 1}d; this is precisely the requirement captured in our definition of non-

constant margin weight. We choose to work with margin weight because it is a cleaner quantity to

analyze using linear programming duality; PTF weight can also be studied using LP duality, but

the integrality constraints on the coefficients of p introduces an integrality gap that causes some

loss in the analysis (see e.g. Sherstov [83] and Klauck [57]).

115

The ORd function is easily seen to have an exact polynomial representation of constant weight

and degree d (e.g. see Fact 6.14 below); however, an approximation with smaller degree may

be achieved at the expense of larger weight. The best known weight-degree tradeoff (implicit in

Servedio et al. [80]), can be stated as follows: there exists a polynomial p of degree t and weight

(d log (1/γ)/t)(d(log 1/γ)2/t) that γ-approximates the ORd function on all Boolean inputs, for every

t larger than
√
d log (1/γ). Setting the degree t to be O(d/ log.99 d) yields a polynomial of weight

at most d0.01 that approximates the ORd function over the entire Boolean hypercube to any desired

constant accuracy. On the other hand, Lemma 8 of [80] can be shown to imply that any polynomial

of weight W that 1/3-approximates the ORd function requires degree Ω(d/ logW), essentially

matching the O(d/ log.99 d) upper bound of Servedio et al. when W = dO(1) in Lemma 6.12.

However, in order to privately release k-way marginals, we have shown that it suffices to con-

struct polynomials that are accurate only on inputs of low Hamming weight. In this section, we

give a construction that achieves significantly improved weight degree trade-offs in this setting.

In the next section, we demonstrate the tightness of our construction by proving matching lower

bounds.

We construct our approximations by decomposing the d-variate OR function into an OR of

OR’s, which is the same approach taken by Servedio et al. [80]. Here, the outer OR has fan-in m

and the inner OR has fan-in d/m, where the subsequent analysis will determine the appropriate

choice of m. In order to obtain an approximation that is accurate on all Boolean inputs, Servedio

et al. approximate the outer OR using a transformation of the Chebyshev polynomials of degree
√
m, and compute each of the inner OR’s exactly.

For k � log2 d, we are able to substantially reduce the degree of the approximating polyno-

mial, relative to the construction of Servedio et al., by leveraging the fact that we are interested in

approximations that are only accurate on inputs of Hamming weight at most k. Specifically, we

are able to approximate the outer OR function using a polynomial of degree only
√
k rather than

√
m, and argue that the weight of the resulting polynomial is still bounded by a polynomial in d.

We now proceed to prove the main lemmas. For the sake of intuition, we begin with weight-

degree tradeoffs in the simpler setting in which we are concerned with approximating the ORd

function over the entire Boolean hypercube. The following lemma, proved below for completeness,

is implicit in the work of [80].

Lemma 6.12. For every γ > 0 and m ∈ [d], there is a real-valued polynomial of degree t =

116

O(d log(1/γ)/
√
m) and weight W = mO(

√
m log(1/γ) that γ-approximates the ORd function.

Our main contribution in this section is the following lemma that gives an improved polynomial

approximation to the ORd function restricted to inputs of low Hamming weight.

Lemma 6.13. For every γ > 0, k < d and integer k < m ≤ d, there is a polynomial of degree

t = O(d
√
k log(1/γ)/m) and weight W = mO(

√
k log(1/γ)) that γ-approximates the ORd function

restricted to inputs of Hamming weight at most k.

For any constant accuracy γ, one may take m = dO(1/
√
k) in the lemma (here the choice of

constant depends on the constants in Fact 6.15 and the desired accuracy) and obtain a polynomial

of degree d1−Ω(1/
√
k) and weight d.01.

Our constructions use the following basic facts.

Fact 6.14. The real polynomial pd : {−1, 1}d → R

pd(x) = 2

∑
S⊆[d]

2−d
∏
i∈S

xi

− 1 = 2
d∏
i=1

(
1 + xi

2

)
− 1

computes ORd(x) and has weight w(pd) ≤ 3.

Fact 6.15. For every k ∈ N and γ > 0, there exists a univariate real-valued polynomial p =∑tk
i=0 cix

i of degree tk such that

1. tk = O(
√
k log(1/γ)),

2. for every i ∈ {1, . . . , tk}, |ci| ≤ 2O(
√
k log(1/γ)),

3. p(0) = 0, and

4. for every x ∈ {1, . . . , 2k}, |p(x)− 1| ≤ γ/2.

Proof of Lemma 6.12. We can compute ORd(y) as a disjunction of disjunctions by partitioning the

inputs y1, . . . , yd into blocks of size d/m and computing:

ORm(ORd/m(y1, . . . , yd/m), . . . ,ORd/m(yd−d/m+1, . . . , yd)).

117

In order to approximately compute ORd(y), we compute the inner disjunctions exactly using the

polynomial pd/m given in Fact 6.14 and approximate the outer disjunction using the polynomial

from Fact 6.15. Let

Z(y) = pd/m(y1, . . . , yd/m) + · · ·+ pd/m(yd−d/m+1, . . . , yd).

Setting k = m in Fact 6.15, let qm be the resulting polynomial of degree O(
√
m log(1/γ)) and

weight O(m
√
m log (1/γ)). Our final polynomial is

1− 2qm(m− Z(y)).

Note that m − Z(y) takes values in {0, . . . ,m} and is 0 exactly when all inputs y1, . . . , yd are

FALSE. It follows that our final polynomial indeed approximates ORd to additive error γ on all

Boolean inputs.

We bound the degree and weight of this polynomial in y. By Fact 6.14, the inner disjunc-

tions are computed exactly using degree d/m and weight at most 3. Hence, the total degree is

O(
√
m log(1/γ) · d/m). To bound the weight, we observe that the outer polynomial qm(·) has at

most T = mO(
√
m log(1/γ)) terms where each one has degree at most Douter = O(

√
m log(1/γ)) co-

efficients of absolute value at most couter = 2O(
√
m log (1/γ)). Expanding the polynomials for Z(y),

the weight of each term incurs a multiplicative factor of cinner ≤ 3Douter = 3O(
√
m log 1/γ) so the total

weight is at most cinner · couter · T = mO(
√
m log 1/γ).

Proof of Lemma 6.13. Again we partition the inputs y1, . . . , yd into blocks of size d/m and view

the disjunction as:

ORm(ORd/m(y1, . . . , yd/m), . . . ,ORd/m(yd−d/m+1, . . . , yd)).

Once again, we compute the inner disjunctions exactly using the polynomial from Fact 6.14. Let

Z(y) = pd/m(y1, . . . , yd/m) + · · ·+ pd/m(yd−d/m+1, . . . , yd).

If the input y has Hamming weight at most k, then Z(y) also takes values in {m, . . . ,m − 2k}.
Thus, we may approximate the outer disjunction using a polynomial of degree O(

√
k log(1/γ))

from Fact 6.15. Our final polynomial is:

1− 2qk(m− Z).

The bound on degree and weight may be obtained as in the previous lemma.

118

6.4.1 Proof of Theorem 6.1

We now confirm that the results presented so far suffice to establish Theorem 6.1 in the intro-

duction.

Proof of Theorem 6.1. First we take m = O
(
(log d/ log log d)2

)
in Lemma 6.12 and take m =

dO(1/
√
k) in Lemma 6.13. Combining with Theorem 6.10, it follows that for some constant C > 0,

the family of d-variate disjunctions restricted to Hd,k is 0.01-approximated by the family of d-

variate real polynomials of degree t and weight W where

t = min

{
d

1− 1

C
√
k ,

d

log0.995 d

}
and W = d0.01.

Consequently, by Theorem 6.6, we have an algorithm that is aB-iterative database construction

where

B = O(d0.02t log d) = O

(
d0.02 log d ·min

{
d

1− 1

C
√
k ,

d

log0.99 d

})
and the algorithm runs in time T = poly(

(
d
≤t

)
)

By Theorem 2.15, we have an (ε, δ)-differentially private sanitizer that is (0.01, 0.01)-accurate

for any set Q of (possibly adaptively chosen) k-way marginal queries provided the size of the

database

n ≥ C ·
((

1

ε
log(100|Q|) log

(
1

δ

))
d0.01

√
log d ·min

{
d

0.5− 1

2C
√
k ,

d0.5

log0.48 d

})
for an appropriate constant C > 0. Further, the algorithm runs in time

poly(n, T) = poly

(
n,

(
d

≤ t

))
= poly

(
n,min

{
exp

(
d1−1/C

√
k
)
, exp

(
d/ log.99 d

)})
.

Remark 1 in the introduction follows from using a slightly different choice ofm in Lemma 6.12,

namely m = O(log2 d/ log3 log d).

To obtain the summary of the database promised in Remark 2, we request an answer to each

of the k-way marginal queries B(1/400) times. Doing so, will ensure that we obtain a maximal

database update sequence, and it was argued in Section 2.4.3 that the polynomial resulting from

any maximal database update sequence accurately answers every k-way marginal query. Finally,

we obtain a compact summary by randomly choosing Õ(kd.01) samples from the normalized coef-

ficient vector of this polynomial to obtain a new sparse polynomial. By a straightforward Chernoff

119

bound argument, this polynomial will accurately answer every k-way marginal query (see e.g. [19],

for an example of this argument in the setting of polynomial approximations). Our compact sum-

mary is this final sparse polynomial.

6.5 Limitations of Low-Weight Approximations

In the previous section we saw that the degree required to approximate the function ORd on

inputs of Hamming weight at most k can be significantly smaller than the degree required to do so

on all inputs. In this section, we address the question of whether or not the degree can be improved

further for inputs of bounded Hamming weight. More generally, we address the general problem of

approximating a block-composed function G = F (. . . , f(.), . . .), where F : {−1, 1}k → {−1, 1},
f : Y → {−1, 1}, Y ⊆ Rd/k over inputs restricted to a set Y ⊆ Y k using low-weight polynomials.

We give a lower bound on the minimum degree of such polynomials. In our main application, G

will equal ORd, and Y will be the set of all length d Boolean vectors of Hamming weight at most

k.

Our proof technique is inspired by the composition theorem lower bounds shown in [82, The-

orem 3.1], where it is shown that the γ-approximate degree of the composed function G is at least

the product of the γ-approximate degree of the outer function and the PTF degree of the inner

function. Our main contribution is a generalization of such a composition theorem along two di-

rections: (1) we show degree lower bounds that take into account the size of the coefficients of

the approximating polynomial, and (2) our lower bounds hold even when we only require the ap-

proximation to be accurate on inputs of low Hamming weight, while prior work only considered

approximations that are accurate on the entire Boolean hypercube.

Our main theorem is stated below. In parsing the statement of the theorem, it may be helpful

to think of G = ORd, Y = Hd,k, the set of all length d Boolean vectors of Hamming weight at

most k, f = ORd/k, F = ORk, Y = {−1, 1}d/k, and H = Hd/k,1, the set of all Boolean vectors

of Hamming weight at most 1. This will be the setting of interest in our main application of the

theorem.

Theorem 6.16. Let Y ⊂ Rd/k be a finite set and γ > 0. Given f : Y → {−1, 1} and F :

{−1, 1}k → {−1, 1} such that deg2γ(F) = D, let G : Y k → {−1, 1} denote the composed

function defined by G(Y1, . . . , Yk) = F (f(Y1), . . . , f(Yk)). Let Y ⊆ Y k. Suppose there exists

120

H ⊆ Y such that for every (Y1, . . . , Yk) ∈ Y k \ Y there exists i ∈ [k] such that Yi ∈ Y \H . Then,

for every t ∈ Z+,

deg(γ,W)(G|Y) ≥ 1

2
tD for every W ≤ γ2−kw∗(f |H , t)

D
2 .

We derive the following corollary from Theorem 6.16. Theorem 6.3 follows immediately from

Corollary 6.17 by considering any k = o(log d).

Corollary 6.17. Let k ∈ [d]. Then, there exists a universal constant C > 0 such that

deg(1/6,W)(ORd|Hd,k) = Ω

(
d√
k
· W

− 1

C
√
k

2
√
k/C

)
.

Intuition underlying our proof technique. Recall that our upper bound in Section 6.4 worked

as follows. We viewed ORd as an “OR of ORs”, and we approximated the outer OR with a poly-

nomial p of degree degouter chosen to be as small as possible, and composed p with a low-weight

but high-degree polynomial computing each inner OR. We needed to make sure the weight Winner

of the inner polynomials was very low, because the composition step potentially blows the weight

up to roughly W degouter
inner . As a result, the inner polynomials had to have very high degree, to keep

their weight low.

Intuitively, we construct a dual solution to a certain linear program that captures the intuition

that any low-weight, low-degree polynomial approximation to ORd must look something like our

primal solution, composing a low-degree approximation to an “outer” OR with low-weight approx-

imations to inner ORs. Moreover, our dual solution formalizes the intuition that the composition

step must result in a massive blowup in weight, from Winner to roughly W degouter
inner .

In more detail, our dual construction works by writing ORd as an OR of ORs, where the outer

OR is over k variables, and each inner ORs is over d/k variables. We obtain our dual solution

by carefully combining a dual witness Γ to the high approximate degree of the outer OR, with a

dual witness ψ to the fact that any low-degree polynomial with margin at least 1 for each inner

OR, must have “large” weight, even if the polynomial must satisfy the margin constraint only on

inputs of Hamming weight 0 or 1. This latter condition, that ψ must witness high non-constant

margin weight even if restricted to inputs of Hamming weight 0 or 1, is essential to ensuring that

our combined dual witness does not place any “mass” on irrelevant inputs, i.e. those of Hamming

weight larger than k.

121

6.5.1 Duality Theorems

In the rest of the section, we let χS(x) =
∏

i∈S xi for any given set S ⊆ [d]. The question of

existence of a weight W polynomial with small degree that γ-approximates a given function can

be expressed as a feasibility problem for a linear program. Now, in order to show the non-existence

of such a polynomial, it is sufficient to show infeasibility of the linear program. By duality, this is

equivalent to demonstrating existence of a solution to the corresponding dual program. We begin

by summarizing the duality theorems that will be useful in exhibiting this witness.

Theorem 6.18 (Duality Theorem for (γ,W)-approximate degree). Fix γ ≥ 0 and let f : Y →
{−1, 1} be given for some finite set Y ⊂ Rd. Then, deg(γ,W)(f) ≥ t + 1 if and only if there exists

a function Ψ : Y → R such that

1.
∑

y∈Y |Ψ(y)| = 1,

2.
∑

y∈Y Ψ(y)f(y)−W · |
∑

y∈Y Ψ(y)χS(y)| > γ for every S ⊆ [d], |S| ≤ t.

Proof. By definition, deg(γ,W)(f) ≤ t if and only if ∃(λS)S⊆[d],|S|≤t :∑
S⊆[d],|S|≤t

|λS| ≤ W, and∣∣∣∣∣∣f(y)−
∑

S⊆[d],|S|≤t

λSχS(y)

∣∣∣∣∣∣ ≤ γ ∀ y ∈ Y.

By Farkas’ lemma, deg(γ,W)(f) ≤ t if and only if @ Ψ : Y → R such that

1

W

∑
y∈Y

(f(y)Ψ(y)− γ|Ψ(y)|) >

∣∣∣∣∣∑
y∈Y

χS(y)Ψ(y)

∣∣∣∣∣ ∀ S ⊆ [d], |S| ≤ t.

The dual witness that we construct to prove Theorem 6.16 is obtained by combining a dual

witness for the large non-constant margin weight of the inner function with a dual witness for the

large approximate degree for the outer function. The duality conditions for these are given below.

The proof of the duality condition for the case of γ-approximate degree is well-known, and we

omit the proof for brevity (see e.g. [83, 92, 20]).

122

Theorem 6.19 (Duality Theorem for γ-approximate degree). Fix γ ≥ 0 and let f : Y → {−1, 1}
be given, where Y ⊂ Rd is a finite set. Then, degγ(f) ≥ t+ 1 if and only if there exists a function

Γ : Y → R such that

1.
∑

y∈Y |Γ(y)| = 1,

2.
∑

y∈Y Γ(y)p(y) = 0 for every polynomial p of degree at most d, and

3.
∑

y∈Y Γ(y)f(y) > γ.

Theorem 6.20 (Duality Theorem for non-constant margin weight). Let Y ⊂ Rd be a finite set, let

f : Y → {1,−1} be a given function and w > 0. The non-constant margin weight w∗(f, t) ≥ w if

and only if there exists a distribution µ : Y → [0, 1] such that

1.
∑

y∈Y µ(y)f(y) = 0

2.
∣∣∣∑y∈Y µ(y)f(y)χS(y)

∣∣∣ ≤ 1
w

for every S ⊆ [d], |S| ≤ t.

Proof. Let S = {S ⊆ [d] : |S| ≤ t}, S = S \ {∅}. By definition, w∗(f, t) is expressed by the

following linear program:

min
∑
S∈S

|λS|

f(y)
∑
S∈S

λSχS(y) ≥ 1 ∀ y ∈ Y.

The above linear program can be restated as follows:

min
∑
S∈S

αS

αS + λS ≥ 0 ∀ S ∈ S,

αS − λS ≥ 0 ∀ S ∈ S,

f(y)
∑
S∈S

λSχS(y) ≥ 1 ∀ y ∈ Y, and

αS ≥ 0 ∀ S ∈ S.

123

The dual program is expressed below:

max
∑
y

µ(y)

u1(S) + u2(S) ≤ 1 ∀ S ∈ S,∑
y∈Y

µ(y)f(y)χS(y) + u1(S)− u2(S) = 0 ∀ S ∈ S,

∑
y∈Y

µ(y)f(y) = 0,

µ(y) ≥ 0 ∀ y ∈ Y, u1(S), u2(S) ≥ 0 ∀ S ∈ S.

By standard manipulations, the above dual program is equivalent to

max
∑
y

µ(y)

|
∑
y∈Y

µ(y)χS(y)f(y)| ≤ 1 ∀ S ∈ S

∑
y∈Y

µ(y)f(y) = 0,

µ(y) ≥ 0 ∀ y ∈ Y

Finally, given a distribution µ′ satisfying the hypothesis of the theorem, one can obtain a dual

solution µ to show that w∗(f, t) ≥ w with the choice w−1 = maxS∈S |
∑

y∈Y µ
′(y)χS(y)f(y)|,

µ(y) = wµ′(y) ∀ y ∈ Y . In the other direction, if w∗(f, t) ≥ w, then we have a dual solu-

tion µ satisfying the above dual program such that
∑

y∈Y µ(y) = w∗(f, t). By setting µ′(y) =

µ(y)/w∗(f, t) ∀ y ∈ Y , we obtain the desired distribution.

6.5.2 Proof of Theorem 6.16

Our approach to exhibiting a dual witness as per Theorem 6.18 is to build a dual witness by

appropriately combining the dual witnesses for the “hardness” of the inner and outer functions.

Our method of combining the dual witnesses is inspired by the technique of [82, Theorem 3.7].

Proof of Theorem 6.16. Let w = w∗(f |H , t). We will exhibit a dual witness function Ψ : Y → R
corresponding to Theorem 6.18 for the specified choice of degree and weight. For y ∈ Y k, let Yi =

124

(y(i−1)(d/k)+1, . . . , yid/k). By Theorem 6.20, we know that there exists a distribution µ : H → R
such that ∑

y∈H

µ(y)f(y) = 0, (6.1)∣∣∣∣∣∑
y∈H

µ(y)f(y)χS(y)

∣∣∣∣∣ ≤ 1

w
∀ S ⊆

[
d

k

]
, |S| ≤ t (6.2)

We set µ(y) = 0 for y ∈ Y \H .

Since deg2γ(F) = D, by Theorem 6.19, we know that there exists a function Γ : {−1, 1}k → R
such that ∑

x∈{−1,1}k
|Γ(x)| = 1, (6.3)

∑
x∈{−1,1}k

Γ(x)p(x) = 0 for every polynomial p of degree at most D, and (6.4)

∑
x∈{−1,1}k

Γ(x)F (x) > 2γ. (6.5)

Consider the function Ψ : Y k → R defined as Ψ(y) = 2kΓ(f(Y1), . . . , f(Yk))
∏k

i=1 µ(Yi). By

the hypothesis of the theorem, we know that if (Y1, . . . , Yk) ∈ Y k \ Y , then there exists i ∈ [k]

such that Yi ∈ Y \H and hence µ(Yi) = 0 and therefore Ψ(Y1, . . . , Yk) = 0.

1.

∑
y∈Y

|Ψ(y)| =
∑
y∈Y

2k|Γ(f(Y1), . . . , f(Yk))|
k∏
i=1

µ(Yi)

= 2kEy∼Φ(|Γ(f(Y1), . . . , f(Yk))|)

where y ∼ Φ denotes y chosen from the product distribution Φ : Y k → [0, 1] defined

by Φ(y) =
∏

i∈[k] µ(Yi). Since
∑

y∈Y µ(y)f(y) = 0, it follows that if Yi is chosen with

probability µ(Yi), then f(Yi) is uniformly distributed in {−1, 1}. Consequently,∑
y∈Y

|Ψ(y)| = 2kEz∼U{−1,1}k(|Γ(z1, . . . , zk)|) = 1.

The last equality is by using (6.3).

125

2. By the same reasoning as above, it follows from (6.5) that∑
y∈Y

Ψ(y)G(y) =
∑

z∈{−1,1}k
Γ(z)F (z) > 2γ.

3. Fix a subset S ⊆ [d] of size at most tD/2. Let Si = S ∩ {(i − 1)(d/k) + 1, . . . , id/k} for

each i ∈ [k]. Consequently, χS(y) =
∏k

i=1 χSi(Yi).

Now using the Fourier coefficients Γ̂(T) of the function Γ, we can express

Γ(z1, . . . , zk) =
∑
T⊆[k]

Γ̂(T)
∏
i∈T

zi =
∑
T⊆[k],
|T |≥D

Γ̂(T)
∏
i∈T

zi

since Γ̂(T) = 0 if |T | < D by (6.4). Hence,

Ψ(y) = 2k
∑
T⊆[k],
|T |≥D

Γ̂(T)
∏
i∈T

f(Yi)µ(Yi) ·
∏

i∈[k]\T

µ(Yi)

Therefore,
∑

y∈Y Ψ(y)χS(y)

=
∑
y∈Y

Ψ(y)
∏
i∈[k]

χSi(Yi)

= 2k
∑
y∈Y

∑
T⊆[k],
|T |≥D

Γ̂(T)
∏
i∈T

f(Yi)µ(Yi) ·
∏

i∈[k]\T

µ(Yi)

∏
i∈[k]

χSi(Yi)

= 2k
∑
T⊆[k],
|T |≥D

Γ̂(T)
∑
y∈Y

∏
i∈T

f(Yi)µ(Yi) ·
∏

i∈[k]\T

µ(Yi)
∏
i∈[k]

χSi(Yi)

= 2k
∑
T⊆[k],
|T |≥D

Γ̂(T)
∑

Y1,...,Yk∈H

∏
i∈T

f(Yi)µ(Yi)χSi(Yi) ·
∏

i∈[k]\T

µ(Yi)χSi(Yi)

 .

Rearranging, we have
∑

y∈Y Ψ(y)χS(y) =

2k
∑
T⊆[k],
|T |≥D

Γ̂(T)
∏
i∈T

(∑
Yi∈H

f(Yi)µ(Yi)χSi(Yi)

) ∏
i∈[k]\T

(∑
Yi∈H

µ(Yi)χSi(Yi)

)
. (6.6)

126

Now, we will bound each product term in the outer sum by w−D/2. We first observe that for

every i ∈ [k], ∑
x∈H

µ(x)χSi(x) ≤
∑
x∈H

µ(x) = 1.

If |Si| ≤ t, by (6.2) ∣∣∣∣∣∑
x∈H

f(x)µ(x)χSi(x)

∣∣∣∣∣ ≤ 1

w
.

If |Si| > t, then ∣∣∣∣∣∑
x∈H

f(x)µ(x)χSi(x)

∣∣∣∣∣ ≤∑
x∈H

µ(x) = 1.

Since
∑k

i=1 |Si| ≤ tD/2, it follows that |Si| ≤ t for more than k − D/2 indices i ∈ [k].

Thus, for each T ⊆ [k] such that |T | ≥ D, there are at least D/2 indices i ∈ T such that

|Si| ≤ t. Hence, ∣∣∣∣∣∑
y∈Y

Ψ(y)χS(y)

∣∣∣∣∣ ≤ 2kw−
D
2

∑
T⊆[k],
|T |≥D

∣∣∣Γ̂(T)
∣∣∣ ≤ 2kw−

D
2 .

Here, the last inequality is because |Γ̂(T)| ≤ 2−k from (6.3).

From 1, 2 and 3, we have∑
y∈Y

Ψ(y)G(y)−W max
S⊆[d],|S|≤ tD

2

∣∣∣∣∣∑
y∈Y

Ψ(y)χS(y)

∣∣∣∣∣ > γ

if W ≤ γ2−kwD/2.

We now derive Corollary 6.17. We need the following theorems on the approximate degree and

the non-constant margin weight of the ORd function.

Theorem 6.21 (Approximate degree of ORd). [72] deg1/3(ORd) = Θ(
√
d).

Lemma 6.22 (Non-constant margin weight of ORd). w∗(ORd|Hd,1 , t) ≥ d/t.

Proof. The function

µ(x) =

{
1/2 if x = (1, . . . , 1),

1/2d if x ∈ Hd,1 \ {(1, . . . , 1)}.
acts as the dual witness in Theorem 6.20.

127

Proof of Corollary 6.17. We use Theorem 6.16 in the following setting. Let Y = {−1, 1}d/k, the

inner function f : Y → {−1, 1} be ORd/k and the outer function F : {−1, 1}k → {−1, 1} be ORk,

Y = Hd,k andH = Hd/k,1. By a simple counting argument, if (Y1, . . . , Yk) ∈ {−1, 1}d\Hd,k, then

there exists i ∈ [k] such that Yi ∈ {−1, 1}d/k \ Hd/k,1. Further, by Theorem 6.21, we know that

deg1/3(F) = Θ(
√
k) and by Claim 6.22, we know that w∗(f |H , t) ≥ d/kt. Therefore, by Theorem

6.16, we have that, for every t ∈ Z+,

deg1/6,W (ORd|Hd,k) = Ω
(
t
√
k
)

for every W ≤ 1

6
2−k

(
d

kt

)C√k
.

We obtain the conclusion by taking t = b(d/k)(6W2k)−1/C
√
kc.

128

Chapter 7

New Analyst-Private Algorithms

7.1 Introduction

Consider a tracking network that wants to sell a database of consumer data to several compet-

ing analysts conducting market research. The administrator of the tracking network faces many

opposing constraints when deciding how to provide analysts with this data. The focus of research

on differential privacy has been to resolve the dilemma between providing privacy for the data

subjects (the consumers in this example) and utility for the data analysts. But the administrator

faces another concern—how to provide privacy for the data analysts, namely hiding their queries

from other data analysts. Indeed, the most interesting databases are going to be analyzed by several

competing firms, who will be unwilling to risk disclosing their proprietary strategies.

To address this concern, Dwork, Naor, and Vadhan [33] introduced the notion of analyst dif-

ferential privacy. First, they demonstrated that this concern is valid by showing that any stateless

sanitizer that answers each query without consideration of the other queries can answer at most

Õ(n2) queries with non-trivial accuracy.15 This result essentially rules out sanitizers that answer

a large number of queries while ensuring perfect analyst privacy.16 Fortunately, they were able to

construct a sanitizer that provides a differential-privacy-like guarantee of privacy for the analysts.

15The Laplace mechanism is a stateless sanitizer—it adds independent noise to each answer—and answers Ω̃(n2)
queries with non-trivial accuracy (Lemma 2.9).

16One can construct a sanitizer that is not stateless but does ensure perfect analyst privacy. However we are not aware
of any construction that answers more than Õ(n2) queries, and conjecture that (non-stateless) sanitizers satisfying
perfect analyst privacy can answer at most Õ(n2) queries.

129

In particular, Dwork et al. [33] design a sanitizer with the guarantee that the marginal distribu-

tion on answers given to each analyst does not depend significantly on the set of queries asked

by all the other analysts. This sanitizer answers a set of counting queries Q on {0, 1}d with error

poly(d, log |Q|)/n1/4, and thus can answer exponentially many queries (i.e. |Q| = 2n
Ω(1)) with

non-trivial accuracy.

However, as they note, their sanitizer has several shortcomings. First, it does not promise

differential privacy for the joint distribution on answers given to multiple analysts. Therefore, if

multiple analysts collude, or if a single malicious analyst interacts with the sanitizer under several

identities, then the sanitizer no longer guarantees analyst privacy. Second, their sanitizer achieves

a weaker level of accuracy than sanitizers without guarantees of analyst privacy, such as the private

multiplicative weights mechanism (Lemma 2.16). That is, analyst privacy is achieved at a cost

to accuracy, and it is unknown if this cost is inherent. Finally, their sanitizer can only answer

linear queries, rather than arbitrary low-sensitivity queries. See Lemma 2.9 and the surrounding

material for the definition of low-sensitivity and results about the Laplace mechanism for arbitrary

low-sensitivity queries. Although we have focused on counting queries in this thesis, algorithms

similar to the private multiplicative weights algorithm are capable of answering an exponential

number of arbitrary low-sensitivity queries with non-trivial accuracy.

In this chapter, we design new analyst-private sanitizers that fully or partially address all of

these issues. First, we consider sanitizers that guarantee one-query-to-many-analyst privacy—for

each analyst a, the joint distribution over answers given to all other analysts a′ 6= a is differentially

private with respect to the change of a single query asked by analyst a. This privacy guarantee is

incomparable to the one considered by Dwork, et al. [33]; it is weaker, in that we protect the privacy

of only a single query asked by a single analyst (rather than protecting the privacy of all queries

asked by multiple analysts), but stronger, in that it protects the privacy of one query against all

other analysts, even if they collude (rather than protecting against only a single malicious analyst).

Our first result is a sanitizer achieving this notion of analyst privacy, that answers counting queries

with error poly(d, log |Q|)/
√
n. This dependence on n is optimal up to polylog(n) factors, even

when comparing to sanitizers that only guarantee data privacy.

Our next result is a variant of the first sanitizer that achieves one-analyst-to-many-analyst

privacy—the sanitizer preserves the privacy of every query made by a single analyst, even if all

other analysts collude. This sanitizer answers counting queries with error poly(d, log |Q|)/n1/3.

130

Unfortunately in this setting we don’t know how to achieve error approaching 1/
√
n, or whether

such error is possible under this privacy definition.

These sanitizers operate in the offline setting, which is the setting we established in Chapter 2

and have used throughout this thesis. Although we have not discussed the online setting in this

thesis, algorithms such as private multiplicative weights are capable of answering an exponen-

tial number of queries, even if those queries arrive one at a time, and each query must be accu-

rately answered before seeing the remaining queries. Our final result is a sanitizer that satisfies

one-query-to-many-analyst privacy and answers counting queries with error poly(d, log |Q|)/n2/5.

This sanitizer also admits a natural extension to answering arbitrary low-sensitivity queries, and

can answer arbitrary (1/n)-sensitive queries with error poly(d, log |Q|)/n1/10. We remark that our

online algorithms are capable of answering a long fixed sequence of queries, but these queries need

not be specified in advance. Most online sanitizers without analyst privacy are capable of answer-

ing a long adaptively chosen sequence of queries, but we do not know how to achieve this property

under the constraint of analyst privacy.

When answering k counting queries on a database D ∈ ({0, 1}d)n all of our algorithms run in

time Õ(n·(2d+k)). As we’ve shown in Theorem 3.1, assuming the existence of one-way functions,

this running time cannot be improved to poly(n, d, k) since these algorithms are sanitizers that

accurately answer n2+o(1) arbitrary counting queries.

7.1.1 Our Techniques

To prove our results, we take a novel view of private query release as a two player zero-sum

game between a data player and a query player. For each element of the data universe x ∈ {0, 1}d,
the data player has an action ax. Recall that a database can be viewed as a probability distribution

over the data universe, and that a distribution over the data universe can be viewed as a database

consisting of “fractional rows,” or alternatively a database of infinite size, and this interpretation

is equivalent for the purpose of counting queries. Thus a mixed strategy for the data player can be

interpreted as such a database. The goal of the data player is to choose a database that approximates

the input database D well.

Given a set of queries Q, we give the query player two actions for each q ∈ Q, aq and a¬q.

The query player tries to play queries for which the data player’s approximation to the database

performs poorly. The two actions for each query allow the query player to penalize the data player’s

131

approximation both when the approximate answer to q is too high, and when it is too low. Formally,

we define the cost matrix by

GD,Q(aq, ax) = q(x)− q(D) GD,Q(a¬q, ax) = q(D)− q(x).

The query player wishes to maximize the cost, whereas the database player wishes to minimize the

cost. We show that the value of this game is 0, and that for any pair of ρ-approximate equilibrium

strategies, the strategy of the data player corresponds to a synthetic database that answers every

query q ∈ Q correctly up to additive error O(ρ).

Different privacy constraints for the private query release problem can be mapped into privacy

constraints for solving two-player zero-sum games by defining different notions of adjacency be-

tween two cost matrices G,G′. If we consider the standard problem of privately answering a set of

counting queries Q, then we want to define G and G′ to be adjacent if they differ by at most 1/n

in every entry, as this is the type of change to G that can arise from changing one row of the input

database.

If we consider one-query-to-many-analyst privacy, then we want to define G and G′ to be

adjacent if they differ arbitrarily on at most two rows of the game matrix, as this is the type of

change that can arise if we change one of the input queries in Q. Our main result can be viewed

as an algorithm for privately computing an approximate equilibrium of a zero-sum game while

protecting the privacy of a two rows in the cost matrix.

To construct an approximate equilibrium, we use a well-known result: when each of the two

players in a zero-sum game choose their actions using no-regret algorithms, the empirical distri-

bution of play quickly converges to a pair of approximate equilibrium strategies. When we say

that a player uses a no-regret algorithm, we mean she has an algorithm that observes the actions

of the opposing player and chooses her actions to ensure she cannot achieve a significantly higher

payoff in hindsight by playing any single action (or, equivalently, by playing a random choice from

a single distribution on actions) at every turn. Thus, to compute an equilibrium of G, we have the

query player and the data player play against each other using no-regret algorithms, and output the

empirical play distribution of the data player as the synthetic database. We can now discuss the

challenges in converting this approach into a differentially private algorithm.

The first problem is that the distribution on actions computed by the no-regret algorithm will

not be privacy-preserving on its own, as it necessarily depends on the cost matrix. In previous

approach to privately answering counting queries such as [78, 44, 42, 50], which are also based

132

on no-regret algorithms, privacy has been achieved by perturbing the inputs to the no-regret algo-

rithm. Unfortunately, when the inputs contain information about the queries that we now consider

sensitive information, there does not appear to be a natural way to perturb the inputs that maintains

convergence.

To circumvent this problem, we use the additional structure of a particular no-regret algorithm,

the multiplicative weights algorithm. We crucially rely on the fact that sampling actions from the

distributions maintained by the multiplicative weights algorithm is privacy preserving. Intuitively,

privacy will come from the fact that the multiplicative weights algorithm does not adjust the weight

on any action too aggressively, meaning that when we view the weights as defining a distribution

over actions, changing the losses experienced by the algorithm in various ways will have a lim-

ited effect on the distribution over actions. We note that this property is not used in the private

multiplicative weights mechanism of Hardt and Rothblum [44], who use the distribution itself as

a hypothesis. Indeed, without the constraint of query privacy, any no-regret algorithm can be used

in place of multiplicative weights [78, 42], which is not the case in our setting. Dwork, Rothblum,

and Vadhan [35] used the multiplicative weights algorithm in a similar way in their “private boost-

ing algorithm,” however they needed to use a modified form of multiplicative weights for their

results. Our techniques can be seen a generalization of their approach.

The second problem is that sampling from the multiplicative weights algorithm only guarantees

privacy with respect to a small number of its inputs, which in this case will be the queries chosen

by the query player. If the query player chooses the same action repeatedly, then altering one of

the input queries could change a large number of inputs to the multiplicative weights algorithm.

Intuitively, we must ensure that changing one query from one analyst does not affect the costs

experienced by the data player too dramatically. To this end, we force the query player to play

mixed strategies from the set of smooth distributions, which do not place too much weight on any

single action. It is known that playing any no-regret algorithm, but projecting into the set of smooth

distributions in the appropriate way (via a Bregman projection), will ensure no-regret with respect

to any smooth distribution on actions. For comparison, no-regret is typically defined with respect

to the best single action, which is a not a smooth distribution on actions. This technique of using

smooth distributions was inspired by the work of Barak, Hardt, and Kale [10], and was also used

in the results of Dwork et al. [35] on private boosting.

Once we constrain the query player to the set of smooth strategies, we obtain something slightly

133

weaker than a pair of approximate equilibrium strategies. However, we do obtain a mixed strategy

for the data player that ensures a cost no worse than the value of the game as long as the query

player does not choose an action from some set of at-most s actions, where 1/s is the maximum

probability the query player was allowed to place on any single strategy. Moving back to our

original goal of answering counting queries, the data player’s mixed strategy corresponds to a

synthetic database that answers all but s queries accurately, and we release this synthetic database

to all analysts. Now, the last step in our algorithm is a cleanup phase, in which we identify and

answer each of the remaining s queries. Since we will chose s to be small, in fact s = O(n), we

will be able to identify all of the remaining queries using the sparse vector technique, and then

answer each one with Laplacian noise of magnitude Õ(
√
s/n) = Õ(1/

√
n). The result is a nearly

optimal error rate of poly(d, log |Q|)/
√
n.

This approach natural extends to the setting of one-analyst-to-many-analyst privacy by giving

the query player one action for each analyst. Here, we will design the cost matrix so that the query

player is rewarded for finding an analyst such that at least one query issued by that analyst is not

answered well. As before, we will compute a synthetic database that answers the queries of most

analysts accurately, and we will have a cleanup phase in which we accurately answer the queries

for the small number of remaining analysts.

Finally, in Section 7.6 we use these techniques to convert the private multiplicative weights

algorithm of Hardt and Rothblum [44] into an online algorithm that preserves one-query-to-many-

analyst privacy, and also answers arbitrary low-sensitivity queries. This algorithm does not directly

use the zero-sum game perspective, but does crucially make use of the technique of sampling from

the mixed strategy maintained by the multiplicative weights algorithm.

7.2 Preliminaries

The notation we use in this chapter differs slightly from what we have used in Chapters 3-

6. These changes are made primarily to improve the clarity of the results by maintaining a clear

notational hierarchy. To this end, we will often use X = {0, 1}d to denote the data universe. Addi-

tionally, in this algorithm we only consider sanitizers (as opposed to one-shot sanitizers) that take

arbitrary counting queries as input, thus we will use the calligraphic Q to refer to the set of input

queries and (infrequently) use bold Q to refer to the set of allowable queries. For comparison, in

134

the previous chapters we typically used capitalQ to denote the set of input queries and calligraphic

Q to refer to the set of allowable queries.

7.2.1 Definitions of Analyst Differential Privacy

To define analyst privacy, we first define many-analyst sanitizers. Let Q be the set of all

counting queries. We will assume there are m analysts and will use I = [m] to denote the set

of analysts. The input to the sanitizer is a database D ∈ ({0, 1}d)n and m sets of k queries,

Q1, . . . ,Qm ∈ Qk. The assumption that each set contains exactly k queries is for convenience,

and has no bearing on the results. The sanitizer returns a sequence A1, . . . , Am ∈ Rk, where each

set Aid is understood to be a sequence of answers to the queries asked by some analyst id ∈ I .

Thus, a many-analyst sanitizer has the formM : ({0, 1}d)n × (Qk)m → (Rk)m. For each id ∈ I
we writeM(D,Q)−id to denote (A1, . . . , Aid−1, Aid+1, . . . , Am), the output given to all analysts

other than id.

Let Q = Q1, . . . ,Qm and Q = Q′1, . . . ,Q′m. We say that Q and Q′ are analyst-adjacent if

there exists id∗ ∈ I such that for every id 6= id∗,Qid = Q′id. That is,Q andQ′ are analyst adjacent

if they differ only on the queries asked by one analyst. Intuitively, a sanitizer satisfies one-analyst-

to-many-analyst privacy if changing all the queries asked by analyst id∗ does not significantly

affect the output given to all analysts other than id∗.

Definition 7.1. A many-analyst sanitizerM : ({0, 1}d)n × (Qk)m → (Rk)m satisfies (ε, δ)-one-

analyst-to-many-analyst privacy if for every database D ∈ ({0, 1}d)n, every two analyst-adjacent

query sequences Q,Q′ that differ only on one set of queries Qid,Q′id, and every S ⊆ (Rk)m−1,

Pr [M(D,Q)−id ∈ S] ≤ eεPr [M(D,Q′)−id ∈ S] + δ.

LetQ = Q1, . . . ,Qm andQ′ = Q′1, . . . ,Q′m. We say thatQ andQ′ are query-adjacent if there

exists id∗ ∈ I such that for every id 6= id∗, Qid = Q′id and |Qid∗4Q′id∗| ≤ 1. That is, Q,Q′ are

query adjacent if they differ only on a single query asked by some analyst id∗. Intuitively, we say

that a sanitizer satisfies one-query-to-many-analyst privacy if changing one query asked by analyst

id∗ does not significantly affect the output given to all analysts other than id∗.

Definition 7.2. A many-analyst sanitizerM : ({0, 1}d)n × (Qk)m → (Rk)m satisfies (ε, δ)-one-

query-to-many-analyst privacy if for every database D ∈ ({0, 1}d)n, every two query-adjacent

135

query sequencesQ,Q′ that differ only on one query asked by analyst id∗, and every S ⊆ (Rk)m−1,

Pr [M(D,Q)−id∗ ∈ S] ≤ eεPr [M(D,Q′)−id∗ ∈ S] + δ.

7.3 Solving Two-Player Zero-Sum Games

7.3.1 (Non-Private) Multiplicative Weights

Let A : A → [0, 1] be a measure over a set of actions A. We use |A| =
∑

a∈AA(a) to denote

the density of A. A measure naturally corresponds to a probability distribution Ã in which

Pr
[
Ã = a

]
= A(a)/|A|

for every a ∈ A. Throughout, we will use calligraphic letters (A) to denote a set of actions, lower

case letters (a) to denote the actions, capital letters (A) to denote a measure over actions, and capital

letters with a tilde to denote the corresponding distributions (Ã). We will use the KL-divergence

between two distributions, defined to be

KL(Ã||Ã′) =
∑
a∈A

Ã(a) log
(
Ã(a)/Ã′(a)

)
.

Let L : A → [0, 1] be a loss function (losses L). Abusing notation, we can define L(A) =

E
[
L(Ã)

]
. Given an initial measure A1, we can define the multiplicative weights algorithm in

Figure 16.

For t = 1, 2, . . . , T :

Sample at ←R Ãt

Receive losses Lt (may depend on A1, a1, . . . , At−1, at−1)

Update:

For: each a ∈ A:

Let At+1(a) = e−ηLt(a)At(a) for every a ∈ A

Figure 16: The Multiplicative Weights Algorithm, MWη

The following theorem about the multiplicative weights update is well-known.

136

Theorem 7.3 (Multiplicative Weights. See e.g. [74]). Let A1 be the uniform measure of density 1,

and let {a1, . . . , aT} be the actions obtained by MWη with losses {L1, . . . , Lt}. Let A∗ = 1a=a∗ ,

for some a∗ ∈ A, and δ ∈ (0, 1]. Then with probability at least 1− β,

E
t←R[T]

[Lt(at)] ≤ (1 + η) E
t←R[T]

[Lt(A
∗)] +

KL(Ã∗||Ã1)

ηT
+

4 log(1/β)√
T

≤ E
t←R[T]

[Lt(A
∗)] + η +

log |A|
ηT

+
4 log(1/β)√

T
.

We need to work with a variant of multiplicative weights that only produces measuresA of high

density, which will imply that Ã does not assign too much probability to any single element of A.

To this end, we will apply (a special case of) the Bregman projection to the measures obtained

from the multiplicative weights update rule.

Definition 7.4. Let s ∈ (0,U]. Given a measure A such that |A| ≤ s, let ΓsA be the (Bregman)

projection of A into the set of density-s measures, obtained by computing c ≥ 1 such that s =∑
a∈Amin{1, cA(a)} and setting ΓA(a) = min{1, cM(a)} for every a ∈ A. We call s is the

density of measure A.

For t = 1, 2, . . . , T :

Let A′t = ΓsAt, and sample at ←R Ã
′
t

Receive losses Lt (may depend on A1, a1, . . . , At−1, at−1)

Update:

For each a ∈ A:

Let At+1(a) = e−ηLt(a)At(a)

Figure 17: The Dense Multiplicative Weights Algorithm, DMWs,η

Given an initial measure A1 such that |A1| ≤ s, we can define the dense multiplicative weights

algorithm in Figure 17. Note that we update the unprojected measure At, but sample at using the

projected measure ΓsAt. Observe that the update step can only decrease the density, so we will

have |At| ≤ s for every t. Like before, given a sequence of losses {L1, . . . , LT} and an initial

measure A1 of density s, we can consider the sequence {A1, . . . , AT} where At+1 is given by the

projected multiplicative weights update applied to At, Lt. The following theorem is known.

137

Theorem 7.5. Let A1 be the uniform measure of density 1 and let {a1, . . . , aT} be the sequence of

measures obtained by DMWs,η with losses {L1, . . . , LT}. Let A∗ = 1a∈S∗ for some set S∗ ⊆ A
of size s, and δ ∈ (0, 1]. Then with probability 1− β,

E
t←R[T]

[Lt(ΓAt)] ≤ (1 + η) E
t←R[T]

[Lt(A
∗)] +

KL(Ã∗||Ã1)

ηT
+

4 log(1/β)√
T

≤ E
t←R[T]

[Lt(A
∗)] + η +

log |A|
ηT

+
4 log(1/β)√

T
.

7.3.2 Regret Minimization and Two-Player Zero-Sum Games

Let G : AR × AC → [0, 1] be the cost-matrix for a two-player zero-sum game between two

players, (R)ow and (C)olumn, who take actions r ∈ AR and c ∈ AC and receive losses G(r, c)

and−G(r, c), respectively. Let ∆(AR),∆(AC) be the set of measures over actions inAR andAC ,

respectively. The well-known minimax theorem states that

v := min
R∈∆(AR)

max
C∈∆(AC)

G(R,C) = max
C∈∆(AC)

min
R∈∆(AR)

G(R,C).

We define this quantity v to be the value of the game.

Freund and Schapire [39] showed that if two sequences of actions {r1, . . . , rT} , {c1, . . . , cT}
are “no-regret with respect to one another”, then r̃ = 1

T

∑T
t=1 rt and c̃ = 1

T

∑T
t=1 ct form an

approximate equilibrium strategy pair. More formally, if

max
c∈AC

E
t

[G(rt, c)]− ρ ≤ E
t

[G(rt, ct)] ≤ min
r∈AR

E
t

[G(r, ct)] + ρ,

then

v − 2ρ ≤ G(r̃, c̃) ≤ v + 2ρ.

Thus, if Row chooses actions using the multiplicative weights update rule with losses Lt(rt) =

G(rt, ct) and Column chooses actions using the multiplicative weights rule with losses Lt(rt) =

−G(rt, ct), then each player’s distribution on actions converges to a minimax strategy. That is, if

we play until both players have regret at most ρ:

max
c
G(r̃, c) ≤ v + 2ρ v − 2ρ ≤ min

r
G(r, c̃).

For query privacy in our view of query release as a two player game, Column must not put

too much weight on any single query. Thus, we need an analogue of this result in the case where

138

Column is not choosing actions according to the multiplicative weights update, but rather using

the projected multiplicative weights update. In this case we cannot hope to obtain an approximate

minimax strategy, since Column cannot play any single action with significant probability. How-

ever, we can define an alternative notion of the value of a game where Column is restricted in this

way: let ∆s(AC) be the set of measures over AC of minimum density at least s, and define

vs := min
R∈∆(AR)

max
C∈∆s(AC)

G(R,C).

Notice that vs ≤ v, and vs can be very different from v.

Theorem 7.6. Let {r1, . . . , rT} ∈ AR be a sequence of row-player actions, {C1, . . . , CT} ∈
∆s(AC) be a sequence of high-density measures over column-player actions, and {c1, . . . , cT} ∈
AC be a sequence of column-player actions such that cj ←R Cj for every t ∈ [T]. Further, suppose

that

E
t

[G(rt, ct)] ≤ min
R∈∆(AR)

E
t

[G(R, ct)] + ρ and E
t

[G(rt, ct)] ≥ max
C∈∆s(AC)

E
t

[G(rt, C)]− ρ.

Then,

vs − 2ρ ≤ G(r̃, c̃) ≤ v + 2ρ.

Moreover, r̃ is an approximate min-max strategy with respect to strategies in ∆s(AC), i.e.,

vs − 2ρ ≤ max
C∈∆s(AC)

G(r̃, C) ≤ v + 2ρ.

Proof. For the first set of inequalities, we handle each part separately. For one direction,

vs = min
R∈∆(AR)

max
C∈∆s(AC)

G(R,C)

≤ max
C∈∆s(AC)

E
t

[G(rt, C)] ≤ E
t

[G(rt, ct)] + ρ

≤ min
R∈∆(AR)

E
t

[G(R, ct)] + 2ρ = min
R∈∆(AR)

G(R, c̃) + 2ρ

≤ G(r̃, c̃) + 2ρ.

The other direction is similar, starting with the fact that v = maxc∈C minr∈RG(r, c).

For the second set of inequalities, we also handle the two cases separately. For the upper bound,

max
C∈∆s(AC)

E
t

[G(r̃, C)] ≤ E
t

[G(rt, ct)] + ρ

≤ min
R∈∆(AR)

E
t

[G(R, ct)] + 2ρ = min
R∈∆(AR)

G(R, c̃) + 2ρ

≤ v + 2ρ.

139

For the lower bound,

max
C∈∆s(AC)

G(r̃, C) ≥ E
t

[G(r̃, c̃)] ≥ vs − 2ρ

This completes the proof of the theorem.

Corollary 7.7. Let G : AR × AC → [0, 1]. If the row player chooses a sequence of actions

{r1, . . . , rT} by running MWη with loss functions Lt(r) = G(r, ct) and the column player chooses

a sequence of actions {c1, . . . , cT} by running DMWs,η with the loss functions Lt(c) = −G(rt, c),

then with probability at least 1− β,

vs − 2ρ ≤ max
c∈Cs

G(r̃, c) ≤ v + 2ρ,

for

ρ = η +
max{log |AR|, log |AC |}

ηT
+

4 log(2/β)√
T

.

7.4 A One-Query-to-Many-Analyst Private Sanitizer

We specify our new sanitizer achieving one-query-to-many-analyst privacy in Figure 18. Recall

that we use X = {0, 1}d to specify the algorithm.

7.4.1 Accuracy

Theorem 7.8. The algorithm in Figure 18 is (α, β)-accurate for

α = O

(√
log(2d + 2km) log(1/δ) log(2km/β)

ε
√
n

)
.

Proof. Observe that the algorithm computes an approximate equilibrium of the game GD(x, q) =
1+q(D)−q(x)

2
. Let v, vs be the value and constrained value of this game, respectively. First, we pin

down the quantities v and vs.

Claim 7.9. For every D, the value and constrained value of GD is 1/2.

Proof of Claim 7.9. It’s clear that the value (and hence constrained value) is at most 1/2, because

min
x

max
q

1 + q(D)− q(x)

2
≤ max

q

1 + q(D)− q(D)

2
=

1

2
.

140

Input: Database D ∈ X n and m sets of k counting queries Q1, . . . ,Qm.

Initialize: Let Q =
⋃

id∈[m]Qid ∪ ¬Qid, let D0(x) = 1/|X | for every x ∈ X , and let

Q0(q) = 1/|Q| for every q ∈ Q,

T = n ·max{log |X |, log |Q|}, η =
ε

4
√
T log(1/δ)

, s = 12T

For: t = 1, . . . , T

DataPlayer:

On input a query q̂t, for each x ∈ X :

Update Dt(x) = Dt−1(x) · exp
(
−η
(

1+q̂t(D)−q̂t(x)
2

))
Choose x̂t ←R D̃t and send x̂t to QueryPlayer

(Recall that, Dt is a measure and D̃t the distribution corresponding to that measure.)

QueryPlayer:

On input a data element x̂t, for each q ∈ Q:

Update Qt+1(q) = Qt(q) · exp
(
−η
(

1+q(D)−q(x̂t)
2

))
Let Pt+1 = ΓsQt+1

Choose q̂t+1 ←R P̃t+1 and send q̂t+1 to DataPlayer

(Recall that, Pt+1 is a measure and P̃t+1 the corresponding distribution.)

End For:

GenerateSynopsis:

Let D̂ = (x̂1, . . . , x̂T) be a synthetic database.

For a parameter αD̂ > 0 to be chosen later, run the sparse vector algorithm on the set

of queries F =
{
fq(D) = |q(D)− q(D̂) | q ∈ Q

}
to obtain 3s queries Qfinal ⊆ Q.

Run Laplace mechanismMLap(σ)(D,Qfinal) to obtain an answer aq for each q ∈ Qfinal

Output D̂ to all analysts and, for each q ∈ Qfinal, output (q, aq) to the appropriate analyst.

Figure 18: A One-Query-to-Many-Analyst Private Sanitizer

141

Suppose we choose x such that (1 + q(D)− q(x))/2 < 1/2 for some q ∈ Q. Then, since the query

q′ = 1−q is also inQ, (1+q′(D)−q′(x))/2 > 1/2. But then maxq∈Q(1+q(D)−q(x))/2 > 1/2,

so the value of the game is at least 1/2.

For the constrained value, suppose we choose x such that Eq←RQ [(1 + q(D)− q(x))/2] < 1/2

for some s-smooth distribution on queries Q. Then we can flip the output of every query in Q to

get a new distributionQ′ such that Eq←RQ′ [(1 + q(D)− q(x))/2] > 1/2. So vs ≥ 1/2 as well.

Let D̂ = 1
T

∑T
t=1 xt. By Corollary 7.7,

vs − 2ρ ≤ max
Q∈∆s(Q)

(
1

2
E

q←RQ̃

[
1 + q(D)− q(D̂)

])
≤ v + 2ρ.

Applying Claim 7.9 and rearranging terms, with probability at least 1− β/3,∣∣∣∣ max
Q∈∆s(Q)

(
E

q←RQ̃

[
q(D)− q(D̂)

])∣∣∣∣ = max
Q∈∆s(Q)

(
E

q←RQ̃

[∣∣∣q(D)− q(D̂)
∣∣∣]) ≤ 4ρ

= 4

(
η +

max{log |X |, log |Q|}
ηT

+
4 log(2/β)√

T

)
= O

(√
log(|X |+ |Q|) log(1/δ) + log(1/β)

ε
√
n

)
:= αD̂.

The previous statement suffices to show that |q(D)− q(D̃)| ≤ αD̂ for all but s queries. Other-

wise, the uniform distribution over the bad queries would be a distribution over queries contained

in ∆s(Q), with expected error larger than αD̂.

We can now run the sparse vector algorithm (Lemma 2.11). With probability at least 1− β/3,

it will identify every query q with error larger than αD̂ + αSV for

αSV = O

(√
s log(1/δ) log(Q/β)

εn

)
.

Since there are at most s such queries, with probability at least 1 − β/3, the Laplace mechanism

(Lemma 2.11) answers these queries to within error

αLap = O

(√
s log(1/δ) log(s/β)

εn

)
.

Now, observe that in the final output, there are two ways that a query can be answered: either by D̂,

in which case its answer can have error as large as αD̂+αSV, or by the Laplace mechanism, in which

142

case its answer can have error as large as αLap. Thus, with probability at least 1−β, every query has

error at most max{αD̂ + αSV, αLap}. Substituting our choice of s = 12T = O(n · log(|X |+ |Q|))
and simplifying, we conclude that the sanitizer is (α, β)-accurate for

α = O

(√
log(|X |+ |Q|) log(1/δ) log(|Q|/β)

ε
√
n

)
.

7.4.2 Data Privacy

Theorem 7.10. The algorithm in Figure 18 satisfies (ε, δ)-differential privacy for the database.

Before proving the theorem, we will state a useful lemma about the Bregman projection onto

the set of high density measures (Definition 7.4).

Lemma 7.11 (Projection Preserves Differential Privacy). Let A0, A1 : A → [0, 1] be two full-

support measures over a set of actions A and s ∈ (0, |A|) be such that |A0|, |A1| ≤ s and

| ln(A0(a)/A1(a))| ≤ ε for every a ∈ A. Let A′0 = ΓsA0 and A′1 = ΓsA1. Then we have

that | ln(A′0(a)/A′1(a))| ≤ 2ε for every a ∈ A.

Proof of Lemma 7.11. Recall that to compute A′ = ΓsA, we find a “scaling factor” c > 1 such that∑
a∈A

min{1, cA(a)} = s,

and set A′(a) = min{1, cA(a)}. Let c0 and c1 be the scaling factors for A′0 and A′1 respectively.

Assume without loss of generality that c0 ≤ c1. First, observe that∣∣∣∣ln(min{1, c0A0(a)}
min{1, c0A1(a)}

)∣∣∣∣ ≤ ∣∣∣∣ln(A0(a)

A1(a)

)∣∣∣∣ ≤ ε,

for every a ∈ A. Second, we observe that c1/c0 ≤ eε. If this were not the case, then we would

have c1A1(a) ≥ c0A1(a)eε ≥ c0A0(a) for every a ∈ A, with strict inequality for at least one a.

But then, ∑
a∈A

min{1, c1A1(a)} >
∑
a∈A

min{1, c0A0(a)} = s,

which would contradict the choice of c1. Thus,∣∣∣∣ln(min{1, c0A0(a)}
min{1, c1A1(a)}

)∣∣∣∣ ≤ ∣∣∣∣ln(min{1, c0A0(a)}
min{1, c0A1(a)}

)∣∣∣∣+

∣∣∣∣ln(c1

c0

)∣∣∣∣ ≤ ε+ ε = 2ε,

for every a ∈ A.

143

Now we prove the main result of this section.

Proof of Theorem 7.10. We focus on analyzing the privacy properties of the synthetic database

D̂ = (x̂1, . . . , x̂T), the privacy of the final stage of the sanitizer will follow from the privacy

analysis of the sparse vector algorithm and the Laplace mechanism. We will actually show the

stronger guarantee that the sequence v = (x̂1, q̂1, . . . , x̂T , q̂T) is differentially private for the data.

Fix a pair of adjacent databases D0 ∼ D1 and let V0, V1 denote the distribution on sequences v

when the sanitizer is run on database D0, D1 respectively. We will show that with probability at

least 1− δ/3 over v = (x̂1, q̂1, . . . , x̂T , q̂T)←R V0,∣∣∣∣ln(V0(v)

V1(v)

)∣∣∣∣ ≤ ε

3
,

which is no weaker than (ε/3, δ/3)-differential privacy. To do so, we analyze the privacy of each

element of v, x̂t or q̂t, and apply the composition analysis of Dwork, Rothblum, and Vadhan [35].

Define ε0 = 2ηT/n.

Claim 7.12. For every v, and every t ∈ [T],∣∣∣∣ln(V0(x̂t | x̂1, q̂1, . . . , x̂t−1, q̂t−1)

V1(x̂t | x̂1, q̂1, . . . , x̂t−1, q̂t−1)

)∣∣∣∣ ≤ ε0.

Proofof Claim 7.12. We can prove the statement by the following direct calculation.

∣∣∣∣ln(V0(x̂t | x̂1, q̂1, . . . , x̂t−1, q̂t−1)

V1(x̂t | x̂1, q̂1, . . . , x̂t−1, q̂t−1)

)∣∣∣∣ =

∣∣∣∣∣∣ln
exp

(
−(η/2)

∑t−1
j=1 1 + q̂j(D0)− q̂j(x̂t)

)
exp

(
−(η/2)

∑t−1
j=1 1 + q̂j(D1)− q̂j(x̂t)

)
∣∣∣∣∣∣

=
η

2

∣∣∣∣∣
(

t−1∑
j=1

1 + q̂j(D0)− q̂j(x̂t)

)
−

(
t−1∑
j=1

1 + q̂j(D1)− q̂j(x̂t)

)∣∣∣∣∣
=
η

2

∣∣∣∣∣
t−1∑
j=1

q̂j(D0)− q̂j(D1)

∣∣∣∣∣ ≤ η(t− 1)

2n
≤ ηT

2n
≤ ε0

Claim 7.13. For every v, and every t ∈ [T],∣∣∣∣ln(V0(q̂t | x̂1, q̂1, . . . , x̂t)

V1(q̂t | x̂1, q̂1, . . . , x̂t)

)∣∣∣∣ ≤ ε0.

144

Proof of Claim 7.13. The sample q̂t is made according to P̃t, which is the distribution correspond-

ing to the projected measure Pt. First we’ll look at the unprojected measure Qt. Observe that, for

any database D and query q,

Qt(q) = exp

(
−(η/2)

t−1∑
j=1

1 + q(D)− q(x̂j)

)
.

Thus, if Q0(q) is the measure we would have when database D0 is the input, and Q1(q) is the

measure we would have when database D1 is the input, then∣∣∣∣ln(Q0(q)

Q1(q)

)∣∣∣∣ ≤ η

2

∣∣∣∣∣
t−1∑
j=1

qj(D0)− qj(D1)

∣∣∣∣∣ ≤ ηT

2n
,

for every q ∈ Q. Given that Q0 and Q1 satisfy this condition, Lemma 7.11 guarantees that the

projected measures satisfy ∣∣∣∣ln(P0(q)

P1(q)

)∣∣∣∣ ≤ ηT

n
.

Finally, we note that if the above condition is satisfied for every q ∈ Q, then the distributions

P̃0, P̃1 satisfy ∣∣∣∣∣ln
(
P̃0(q)

P̃1(q)

)∣∣∣∣∣ ≤ 2ηT

n
≤ ε0,

because the value of the normalizer also changes by at most a multiplicative factor of e±ηT/n. We

observe that Vb(q̂t | x̂1, q̂1, . . . , x̂t) = P̃b(q̂t) for b ∈ {0, 1}, which completes the proof of the

claim.

Now, the composition lemma (Theorem 2.3) (for 2T -fold composition) guarantees that with

probability at least 1− δ/3,∣∣∣∣ln(V0(v)

V1(v)

)∣∣∣∣ ≤ ε0

√
4T log(3/δ) + 4ε2

0T,

which is at most ε/3 by our choice of ε0. This implies that D̂ is (ε/3, δ/3)-differentially private.

We can choose the parameters of the sparse vector computation so that the set of queries Qfinal

is (ε/3, δ/3)-differentially private, and we can choose the parameters of the Laplace mechanism

so that the answers to the queries in Qfinal are (ε/3, δ/3)-differentially private.

145

7.4.3 Analyst Privacy

Theorem 7.14. The algorithm in Figure 18 satisfies (ε, δ)-one-query-to-many-analyst differential

privacy.

Before query privacy, we will state a useful composition lemma. The lemma is a generalization

of the “secrecy of the sample lemma” [51, 35] to the interactive setting. Consider the following

game:

• Fix an (ε, δ)-differentially private algorithm A : U∗ → R and a bit b ∈ {0, 1}. Let D0 = ∅.

• For t = 1, . . . , T :

– The (randomized) adversaryB(y1, . . . , yt; r) chooses two distributionsB0
t , B

1
t such that

SD(B0
t , B

1
t) ≤ σ.

– Choose xt ←R B
b
t and let Dt = Dt−1 ∪ {xt}.

– Choose yt ←R A(Dt).

For a fixed algorithm A and adversary B, let V 0 be the distribution on (y1, . . . , yT) when b = 0

and V 1 be the distribution on (y1, . . . , yT) when b = 1.

Lemma 7.15. If ε ≤ 1/2 and Tσ ≤ 1/12, then with probability at least 1 − Tδ − δ′ over y =

(y1, . . . , yT)←R V
0, ∣∣∣∣ln(V 0(y)

V 1(y)

)∣∣∣∣ ≤ ε(Tσ)
√

2T log(1/δ′) + 30ε2(Tσ)T.

We prove this lemma in Section 7.7.

We also need another lemma about the Bregman projection onto the set of high-density mea-

sures (Definition 7.4)

Lemma 7.16. Let A0 : A → [0, 1] and A1 : A ∪ {a∗} → [0, 1] be two full-support measures over

their respective sets of actions and s ∈ (0, |A|) be such that 1) |A0|, |A1| ≤ s and 2) A0(a) =

A1(a) for every a ∈ A. Let A′0 = ΓsA0 and A′1 = ΓsA1. Then SD(Ã′0, Ã
′
1) ≤ 1/s.

Proofof Lemma 7.16. Using the form of the projection (Definition 7.4), it is not hard to see that for

a 6= a∗, A′0(a) ≥ A′1(a). For convenience, we will write A′0(a∗) = 0 even though a∗ is technically

146

outside of the domain of A′0. We can now show the following.∑
a∈A∪{a∗}

|A′0(a)− A′1(a)| = |A′0(a∗)− A′1(a∗)|+
∑
a6=a∗
|A′0(a)− A′1(a)|

≤ 1 +
∑
a6=a∗
|A′0(a)− A′1(a)|

= 1 +
∑
a6=a∗

A′0(a)− A′1(a) (A′0(a) ≥ A′1(a) for a 6= a∗)

= 1 + |A′0| − (|A′1| − A′1(a∗)) ≤ 1 + |A′0| − (|A′1| − 1)

= 1 + s− (s− 1) = 2

We also have that |A′0| = |A′1| = s, so

SD(Ã′0, Ã
′
1) =

1

2

∑
a∈A∪{a∗}

∣∣∣∣A′0(a)

|A′0|
− A′1(a)

|A′1|

∣∣∣∣
=

1

2s

∑
a∈A∪{a∗}

|A′0(a)− A′1(a)| ≤ 1

s
.

Now we can prove one-query-to-many-analyst privacy.

Proof of Theorem 7.14. Fix a database D. Consider two query-adjacent query sets Q0,Q1 and,

without loss of generality assume Q0 be Q1 with an arbitrary query by some analyst id replaced

with q∗. We write the output to all analysts as v = (x̂1, . . . , x̂T , b1, . . . , b|Q|, a1, . . . , a|Q|) where

D̂ = {x̂1, . . . , x̂T} is the database that is released to all analysts, b1, . . . , b|Q| is a sequence of bits

that indicates whether or not q(D̂) is close to q(D), and a1, . . . , a|Q| is a sequence of approximate

answers to the queries q(D) (or ⊥, if q(D̂) is already accurate). We write v−id for the portion of

v that excludes outputs specific to analyst id’s queries. Let V0, V1 be the distribution on outputs

when the query set is Q0 and Q1, respectively.

We analyze the three parts of v separately. First we show that D̂, which is shared among all

analysts, satisfies analyst privacy.

Claim 7.17. With probability at least 1− δ over the samples x̂1, . . . , x̂T ←R V0,∣∣∣∣ln(V0(x̂1, . . . , x̂T)

V1(x̂1, . . . , x̂T)

)∣∣∣∣ ≤ ε/2.

147

Proofof Claim 7.17. To prove the claim, we show how the output x̂1, . . . , x̂T can be viewed as

the output of an instantiation of the algorithm analyzed by Lemma 7.15. For every t ∈ [T] and

q̂1, . . . , q̂t−1, we define the measure Dt over database items to be

Dt(x) = exp

(
−(η/2)

t−1∑
j=1

1 + q̂j(D)− q̂j(x)

)
.

Notice that if we replace a single query q̂` with q̂′` and obtain the measureD′t, then for every x ∈ X ,∣∣∣∣∣ln
(
D̃t(x)

D̃′t(x)

)∣∣∣∣∣ ≤ η.

Thus we can view x̂t as the output of an η-differentially private algorithmAD(q̂1, . . . , q̂t−1), which

fits into the framework of Lemma 7.15. (Here, x̂t plays the role of yt and q̂1, . . . , q̂t−1 plays the

role of Dt−1 in the description of the game, while the input database D is part of the description of

A).

Now, in order to apply Lemma 7.15, we need to argue the distribution on samples q̂t when the

query set is Q0 is statistically close to the distribution on samples q̂t when the query set is Q1. Fix

any t ∈ [T] and let Q0, Q1 be the measure Qt over queries maintained by the query player when

the input query set is Q0,Q1, respectively. For q 6= q∗, we have

Q0(q) = Q1(q) = exp

(
−(η/2)

t−1∑
j=1

1 + q(D)− q(x̂j)

)
.

Additionally, we set Q0(q∗) = 0 (for notational convenience), while Q1(q∗) ∈ (0, 1]. Thus, if

we let P0 = ΓsQ0 and P1 = ΓsQ1, we will have SD(P̃0, P̃1) ≤ 1/s by Lemma 7.16. Since the

statistical distance is 1/s = 1/12T , we can apply Lemma 7.15 to show that with probability at

least 1− δ,∣∣∣∣ln(V0(x̂1, . . . , x̂T)

V1(x̂1, . . . , x̂T)

)∣∣∣∣ ≤ η
√
T log(1/δ)

8
+

5η2T

2
≤ ε

2
. (η = ε/4

√
T log(1/δ))

Now that we have shown D̂ satisfies (ε/2, δ)-one-query-to-many-analyst differential privacy,

it remains to show that the remainder of the output satisfies perfect one-query-to-many-analyst

privacy. Recall from the proof of Theorem 7.8 that D̂ will be accurate for all but s queries. That

is, if we let {fq}q∈Q consist of the functions fq(D) = |q(D)− q(D̂)|, then

| {j | fj(D) ≥ α} | ≤ s,

148

where α is chosen as in Theorem 7.8. By Lemma 2.11, the sparse vector algorithm will release

bits b1, . . . , b|Q| (the indicator vector of the subset of queries with large error) such that for every

id ∈ I , the distribution on b−id is (ε/2, 0)-differentially private with respect to a change in the

queries corresponding to any analyst id′ 6= id. Finally, for each query qj such that bj = 1, the

output to the owner of that query will include aj = qj(D) + zj where zj is an independent sample

from the Laplace distribution. These outputs do not depend on any other query, and thus are

perfectly one-query-to-many analyst private. This completes the proof of the theorem.

7.5 A One-Analyst-to-Many-Analyst Private Sanitizer

In this section we present an algorithm for answering counting queries that satisfies the stronger

notion of one-analyst-to-many-analyst privacy. The algorithm is similar to that of Figure 18, but

with two notable modifications.

First, instead of the “query player,” we will have an “analyst player” who chooses analysts as

actions and is trying to find an analyst id ∈ [m] for which there is at least one query in Qid with

large error (recall that the queries are given to the algorithm in sets Q1, . . . ,Qm). That is, the

analyst player attempts to find id ∈ [m] to maximize maxq∈Qid
q(D)− q(D̂).

Second, we will compute a database D̂ such that maxq∈Qid
|q(D) − q(D̂)| is small for all but

s analysts in the set [m], rather than having the s mishandled queries. We can still use sparse

vector to find these s analysts, however we can’t answer the queries with the Laplace mechanism,

since each of the analysts may ask an exponential number of queries. However, since there are

not too many analysts remaining, we can use s independent copies of the multiplicative weights

mechanism (each run with ε′ ≈ ε/
√
s) to handle each analyst’s queries.

7.5.1 Accuracy

Theorem 7.18. The algorithm in Figure 19 is (α, β)-accurate for

α = Õ

(√
log(2d +m) log k log(m/β) log3/4(1/δ)

εn1/3

)
.

149

Input: Database D ∈ X n, and m sets of k linear queriesQ1, . . . ,Qm. For id ∈ I = [m], let

Qid = Qid ∪ ¬Qid.

Initialize: Let D0(x) = 1/|X | for each x ∈ X , let I0(q) = 1/m for each id ∈ I ,

T = n2/3 max{log |X |,m}, η =
ε

4
√
T log(1/δ)

, s = 12T.

DataPlayer:

On input an analyst îdt, for each x ∈ X , update:

Dt(x) = Dt−1(x) · exp

(
−η max

q∈Q
îdt

(
1 + q̂t(D)− q̂t(x)

2

))

Choose x̂t ←R D̃t and send x̂t to AnalystPlayer

AnalystPlayer:

On input a data element x̂t, for each id ∈ I, update:

It+1(id) = It(id) · exp

(
−η max

q∈Qid

(
1 + q(D)− q(x̂t)

2

))
Let Pt+1 = ΓsIt+1

Choose îdt+1 ←R P̃t+1 and send îdt+1 to DataPlayer

GenerateSynopsis:

Let D̂ = (x̂1, . . . , x̂T) be a synthetic database.

For a parameter αD̂ > 0 to be chosen later, run the sparse vector algorithm

on the set of queries F =
{
fid(D) = maxq∈Qid

|q(D)− q(D̂) | id ∈ I
}

to

obtain a set of at most 3s analysts Ifinal ⊆ I .

For each analyst id ∈ Ifinal, runMMW(D,Qid) with parameters ε′ = ε

10
√
s log(3s/δ)

and δ′ = δ
3s

to obtain a set of answers A(id)

Output D̂ to all analysts and f each id ∈ Ifinal, output Aid to analyst id.

Figure 19: A One-Analyst-to-Many-Analyst Private Sanitizer

150

Proof. As we discussed above, the algorithm is computing an approximate equilibrium of the game

GD,Q(x, id) = max
id∈[m]

max
q∈Qid

1 + q(D)− q(x)

2
.

Let v, vs be the value and constrained value of this game, respectively. First we pin down the

quantities v and vs.

Claim 7.19. For every D,m,Q, the value and constrained value of GD,m,Q is 1/2.

The proof of this claim is omitted, but is nearly identical to that of Claim 7.9.

Let D̂ = 1
T

∑T
t=1 x̂t. By Corollary 7.7,

vs − 2ρ ≤ max
I∈∆s([m])

E
id←RĨ

[
max
q∈Qid

(
1 + q(D)− q(D̂)

2

)]
≤ v + 2ρ.

Applying Claim 7.19 and rearranging terms, we have that with probability 1− β/3,∣∣∣∣ max
I∈∆s([m])

(
E

id←RĨ

[
max
q∈Qid

q(D)− q(D̂)

])∣∣∣∣ = max
I∈∆s([m])

(
E

id←RĨ

[
max
q∈Qid

∣∣∣q(D)− q(D̂)
∣∣∣]) ≤ 4ρ

= 4

(
η +

max{log |X |, logm}
ηT

+
4 log(3/β)√

T

)
= O

(√
log(|X |+m) log(1/δ) + log(1/β)

εn1/3

)
:= αD̂.

The previous statement suffices to show that maxq∈Qid
|q(D) − q(D̃)| ≤ αD̂ for all but s analysts

id ∈ I . Otherwise, the uniform distribution over the analysts for which the error bound of αD̂ does

not hold would be a distribution over analysts, contained in ∆s([m]) with expected error larger

than αD̂.

Since there are at most s such analysts we can run the sparse vector algorithm (Lemma 2.11),

and, with probability at least 1−β/3, it will identify every analyst id such that the maximum error

over all queries in Qid is larger than αD̂ + αSV for

αSV = O

(√
s log(1/δ) log(m/β)

εn

)
.

There are at most s such analysts. Thus, running the private multiplicative weights algorithm

(Lemma 2.16) independently for each of these analysts’ queries—with privacy parameters ε′ =

151

Θ(ε/
√
s log(s/δ)) and δ′ = Θ(δ/s)—will yield answers such that, with probability 1 − β/3, for

every id ∈ I ′,

max
q∈Qid

|q(D)− aq| ≤ O

(
s1/4 log1/4 |X |

√
log(s|Qid|/β) log3/4(s/δ)√

εn

)

≤ Õ

(
n1/6

√
log(|X |+m) log(|Qid|/β) log3/4(1/δ)√

εn

)

≤ Õ

(√
log(|X |+m) log(|Qid|/β) log3/4(1/δ)

n1/3
√
ε

)
:= αMW.

Taking a union bound, observing that the maximum error on any query is max{αD̂ + αSV, αMW},
and simplifying, we get that the sanitizer is (α, β)-accurate for

α = Õ

(√
log(|X |+m) log |Qid| log(m/β) log3/4(1/δ)

εn1/3

)
.

7.5.2 Data Privacy

Theorem 7.20. The algorithm in Figure 19 satisfies (ε, δ)-differential privacy for the data.

We omit the proof of this theorem, which follows that of Theorem 7.10 almost identically.

The only difference is that in the final step, we need to argue that running s independent copies

of multiplicative weights with privacy parameters ε′ = Θ(ε/
√
s log(s/δ)) and δ′ = Θ(δ/s) sat-

isfies (ε/3, δ/3)-differential privacy, which follows directly from the composition properties of

differential privacy (Theorem 2.3).

7.5.3 Query Privacy

In this section we prove query privacy for our one analyst to many analyst sanitizer.

Theorem 7.21. The algorithm in Figure 19 satisfies (ε, δ)-one-analyst-to-many-analyst differential

privacy.

Proof. Fix a database D. Consider two analyst-adjacent sets of queries Q0,Q1. Without loss

of generality assume Q0 is just Q1 with all the queries by some analyst id replaced with a new

152

set Q′(id). We write the output to all analysts as v = (x̂1, . . . , x̂T , b1, . . . , bm, A1, . . . , Am) where

D̂ = x̂1, . . . , x̂T is the database that is released to all analysts, b1, . . . , bm is a sequence of bits that

indicates whether or not qj(D̂) is close to qj(D) for every q ∈ Qid, and A1, . . . , Am is a sequence

consisting of the output of the multiplicative weights mechanism for every analyst id ∈ I and ⊥
for every other analyst. Let V0, V1 be the distribution on outputs when the queries are Q0 and Q1,

respectively.

The proof closely follows the proof of one-query-to-many-analyst privacy for Algorithm 3.

Showing that the final two parts b, A of the output are query private is essentially the same, so we

will focus on proving that D̂ satisfies one-analyst-to-many-analyst privacy.

Claim 7.22. With probability at least 1− δ over x̂1, . . . , x̂T ←R V0,∣∣∣∣ln(V0(x̂1, . . . , x̂T)

V1(x̂1, . . . , x̂T)

)∣∣∣∣ ≤ ε.

Proofof Claim 7.22. To prove the claim, we show how the output x̂1, . . . , x̂T can be viewed as the

output of an instantiation of the sanitizer analyzed by Lemma 7.15. Notice that for every t ∈ [T]

and îd1, . . . , îdt−1, we can write the measure Dt over database items as

Dt(x) = exp

(
−(η/2)

t−1∑
j=1

max
q∈Q(îdj)

1 + q̂j(D)− q̂j(x)

)
.

If we replace a single analyst îd` with îd
′
`, and obtain the measure D′t, then for every x ∈ X ,∣∣∣∣∣ln
(
D̃t(x)

D̃′t(x)

)∣∣∣∣∣ ≤ η.

Thus we can view x̂t as the output of an η-differentially private algorithm MD(îd1, . . . , îdt−1),

which fits into the framework of Lemma 7.15. (Here, x̂t plays the role of yt and îd1, . . . , îdt−1

plays the role of Dt−1 in the description of the game, while the input database D is part of the

description of A).

As before, we apply Lemma 7.15, to argue that the distribution on analysts îdt when the query

set is Q0 is statistically close to the distribution on analysts îdt when the analyst set is Q1. The ar-

gument does not change significantly, thus we can apply Lemma 7.15 to show that with probability

at least 1− δ,∣∣∣∣ln(V (x̂1, . . . , x̂T)

V ′(x̂1, . . . , x̂T)

)∣∣∣∣ ≤ η
√
T log(1/δ)

8
+

5η2T

2
≤ ε

2
. (η = ε/(4

√
T log(1/δ)))

153

As before, the remainder of the output satisfies perfect one-analyst-to-many-analyst privacy.

This completes the proof of the theorem.

7.6 Another One-Query-to-Many-Analyst Private Sanitizer

So far we have presented two analyst-private sanitizers capable of answering exponentially

many queries. These sanitizers were in the offline setting, which has been the focus of the thesis.

These sanitizers were also limited in that they were only capable of answering counting queries,

whereas variants of the median mechanism [78] can answer exponentially many arbitrary low-

sensitivity queries while ensuring differential privacy.

In this section, we present a new sanitizer satisfying one-query-to-many-analyst privacy that

addresses these issues. Since we have only introduced notation and terminology for the offline

setting, we will present and analyze our sanitizer in that setting. However, it will be clear from

the construction that the sanitizer would be just as effective if the queries were specified online, so

long as the entire sequence of queries is fixed in advance. That is, the sequence need not be known

to the sanitizer ahead of time, but may not be chosen adaptively in response to the answers given

by the sanitizer. In contrast, many non-query-private online sanitizers are capable of answering an

exponentially long sequence of adaptively chosen queries. See [44] for a more formal treatment of

the online setting. Although we will only describe this sanitizer formally in the case of counting

queries, in Section 7.6.4 we will discuss how it can be extended to the case of arbitrary low-

sensitivity queries.

The new sanitizer is similar to the multiplicative weights algorithm of Hardt and Rothblum [44].

In their algorithm, a “hypothesis” about the true database is maintained throughout the sequence

of queries. In particular, the hypothesis will be a probability distribution over the data universe—

essentially an infinite database. When a query arrives, it is classified according to whether or

not the current hypothesis accurately answers that query. If it does, then the query is answered

according to the hypothesis. Otherwise, the query is answered with a noisy answer computed from

the true database and the hypothesis is updated using the multiplicative weights update rule.

The main challenge in making that algorithm query-private is to argue that the current hypoth-

esis does not depend too much on the previous queries. We overcome this difficulty by “sampling

from the hypothesis” to obtain a finite database that represents the hypothesis well, but satisfies

154

query-privacy. We must balance the need to take many samples—so that the database we obtain by

sampling accurately reflects the hypothesis database, and the need to limit the impact of any one

query on the sampled database. To handle both these constraints, we introduce batching—instead

of updating every time we find a query not well-answered by the hypothesis, we batch together s

queries at a time, and do one update on the average of these queries to limit the influence of any

single query.

A note on terminology: the execution of the algorithm takes place in several rounds, where

each round processes one query. Rounds where the query is answered using the real database are

called bad rounds; rounds that are not bad are good rounds. We will split the rounds into T epochs

and the distributions Dt and hypotheses Ht correspond to the t-th epoch.

7.6.1 Accuracy

First, we sketch a proof that the online sanitizer answers counting queries accurately. Intu-

itively, there are three ways that our algorithm might give an inaccurate answer, and we treat each

separately. First, in a good round, the answer given by the hypothesis may be a bad approximation

to the true answer. Second, in a bad round, the answer given may have too much noise. We ad-

dress these two cases with straightforward arguments showing that the noise is not too large in any

round.

The third way the algorithm may be inaccurate is if there are more than R bad rounds, and

the algorithm terminates early. We show that this is not the case using a potential argument: after

sufficiently many bad rounds, the hypothesisDT and the sampleHT will be accurate for all queries

in the stream, and thus there will be no more bad rounds. The potential argument is a natural

extension of the argument in Hardt and Rothblum [44] to handle the additional error coming from

taking samples from Dt to obtain Ht.

Theorem 7.23. The algorithm in Figure 20 is (α, β)-accurate for

α = O

(
log3/10 |X |

√
log(|Q|/β) log(1/δ)

ε3/2n2/5

)
.

Proof. First we condition on the event that the magnitude of the noise is sufficiently small in every

round. Specifically,

∀i ∈ [k], |zi| ≤ σ log(4k/β). (7.1)

155

Input: Database D ∈ X n, sequence Q = {q1, . . . , qk} of counting queries

Initialize: D0(x) = 1/|X | for each x ∈ X , H0 = D0, U0 = ∅, s0 = s + Lap(2/ε), t = 0,

r = 0,

η =
2
√

log(4|Q|/β) log(1/δ) log3/10 |X |
ε3/5n2/5

, n̂ =

√
4 log(4|Q|/β)

τ 2
, T =

log |X |
η2

,

s =
2
√

8n̂T log(1/δ)

ε
, R = 2sT, σ =

4
√
R log(1/δ)

εn
,

τ =
16
√

log(4|Q|/β) log(1/δ) log3/10 |X |
ε3/5n2/5

.

AnswerQueries:

While t < T, r < R, i ≤ k, on input query qi:

Let zi = Lap(σ)

If |qi(D)− qi(Ht)− zi| ≤ τ : Output: qi(Ht)

Else:

Let u = sgn(qi(D)− qi(Ht) + zi) · qi and let Ut = Ut ∪ {u}, r = r + 1

Output: qi(D) + zi

If |Ut| > st:

Let (Dt+1, Ht+1) = Update(Dt,Ut)
Let Ut+1 = ∅, and let st+1 = s+ Lap(2/ε) and let r = 0.

Advance to query qt+1

Update:

Input: Distribution Dt, update queries Ut = {u1, . . . , ust}
For each x ∈ X :

Let ut(x) = 1
s

∑st
j=1 uj(x) and update Dt+1(x) = e(η/2)ut(x) ·Dt(x).

Normalize Dt+1 and let Ht+1 be n̂ independent samples from Dt+1

Return: (Dt+1, Ht+1)

Figure 20: Analyst-Private Multiplicative Weights for Counting Queries

156

A standard analysis of the tails of the Laplace distribution shows that (7.1) holds with probability

at least 1− β/4.

Next we show that, conditioned on (7.1), the algorithm answers every query accurately so long

as it has not terminated before answering all k queries.

Claim 7.24. Assume (7.1) holds. Then prior to termination of the algorithm, every query is an-

swered with error at most τ + σ log(4k/β)

Proofof Claim 7.24. First we consider bad rounds. In these rounds qi is answered with qi(D) + zi.

Conditioned on (7.1), all of these queries are answered sufficiently accurately.

Now we consider good rounds. In these rounds we answer with qi(Ht), and we will only have

a good round if |qi(D) − qi(Ht) − zi| ≤ τ . Conditioned on (7.1), we can only have a good round

if |qi(D)− qi(Ht)| ≤ τ + σ log(4k/β).

Now we must show that the algorithm does not terminate early. Recall that it can terminate

early either because it hits a limit on the number of epochs, or because it hits a limit on the number

of bad rounds. We will use a potential argument to show that there cannot be too many epochs.

The number of bad rounds that is in epoch t is a random variable st, and we will also show that

with high probability, there are not too many bad rounds within the T epochs.

In doing the analysis, it will be useful to establish the property that the values of st are close to

s on average. Let St = st − s, be the value of the noise added to s in the t-th epoch. We want to

condition on the event

|S| ≤ 8
√
T log(4/β)

ε
≤ T

2
, (7.2)

where the final equality holds for large enough T , so long as ε and β are not too small as a function

of T . We can easily deduce that event (7.2) holds with probability at least 1 − β/2 from the

following lemma.

Lemma 7.25 ([42]). Let X1, . . . , XT be T independent draws from Lap(2/ε), and let X =∑T
t=1 Xt. Then,

Pr

[
|X| > 8

√
T log(2/β)

ε

]
< β.

We also want to establish that, in every epoch, Ht is “close” to Dt in the sense that

∀i ∈ [k], |qi(Dt)− qi(Ht)| ≤ τ/4, (7.3)

157

where t is the epoch in which the i-th query is asked. Recall that Ht consists of n̂ random samples

from the distribution Dt. Thus, a standard Chernoff bound will establish that |qi(Dt)− qi(Ht)| ≤√
4 log(4k/β)/n̂ ≤ τ/4 with probability at least 1− β/4.

We will now demonstrate that, with high probability, the algorithm does not terminate early.

Claim 7.26. Assume (7.1), (7.2), and (7.3) hold. Then the algorithm does not terminate before

answering all k queries.

Proofof Claim 7.26. We will use a potential argument on the sequence of distributions Dt. The

potential function will be

Φt = KL(D||Dt) :=
∑
x∈X

D(x) log

(
D(x)

Dt(x)

)
.

Elementary properties of the potential function show that Φt ≥ 0 and Φ0 = KL(D||D0) ≤ log |X |.
The decrease in potential from epoch to epoch can be expressed in terms of the error of the current

distribution on the update query.

Lemma 7.27 (See e.g. [44]).

Φt−1 − Φt ≥ η (ut(D)− ut(Dt−1))− η2.

Since the potential function is bounded between 0 and log |X |, we can get a bound on the num-

ber of epochs by showing that the potential decreases significantly between most epochs. Given

the preceding lemma, we simply need to show that the queries u1,u2, . . . have large (positive)

error.

Recall that ut = 1
s

∑
u∈Ut u. Also recall that if u ∈ U and u = qi, then the reason qi is in U is

because qi(D)− qi(Ht−1) + zi > τ . Similarly, if u = ¬qi, then qi(D)− qi(Ht−1) + zi < −τ . We

will focus on the first case where qi(D)− qi(Ht−1) + zi > τ , the other case will follow similarly.

We can get a lower bound on u(D)− u(Dt−1) as follows.

u(D)− u(Dt−1) = (u(D)− u(Ht−1) + zi) + (qi(Ht−1)− qi(Dt−1) + zi)

≥ (u(D)− u(Ht−1) + zi)− |zi| − |qi(Ht−1)− qi(Dt−1)|

≥ τ − |zi| − |qi(Ht−1)− qi(Dt−1)|

158

We need to show that the right-hand side of the final expression is large. By (7.1), we have that

|zi| ≤ σ log(4k/β) ≤ τ/4. By (7.3), we have that |qi(Ht−1) − qi(Dt−1)| ≤ τ/4. So we have

stablished that for every u ∈ Ut,

u(D)− u(Dt−1) ≥ τ − τ/4− τ/4 = τ/2.

We can now express the error on ut in terms of |Ut| as

ut(D)− ut(Dt−1) =
1

s

∑
u∈Ut

u(D)− u(Dt−1) ≥ τ |Ut|
2s

.

In turn, we get an expression for the total decrease in potential after T epochs in terms of
∑

t≤T |Ut|,
and can apply (7.2) to lower bound the total decrease in potential.

ΦT − Φ0 ≥
ητ

2s

(∑
t≤T

|Ut|

)
− Tη2

=
ητ

2s

(∑
t≤T

st

)
− Tη2 =

ητT

2
+
ητ

2s

(∑
t≤T

St

)
− Tη2 =

ητT

4
− Tη2.

Now, noting that τ ≥ 8η, we have

ΦT − Φ0 ≥ 2η2T − η2T ≥ η2T.

Thus, conditioning on all the events above, T ≤ log |X |/η2 ≤ n4/5 log |X |. Thus we have shown

that the algorithm will not terminate by reaching its limit of epochs. Finally, we must show that

the algorithm does not terminate because it reaches its limit of bad rounds. Assuming (7.2), the

number of bad rounds is at most

T∑
t=1

st =
T∑
t=1

(s+ St) ≤ 2Ts.

Thus, assuming (7.1), (7.2), and (7.3), the algorithm does not terminate due to reaching its limit

on the number of epochs or bad rounds, and indeed answers all k queries prior to terminating.

By a union bound, the probability that all of (7.1), (7.2), and (7.3) hold is at least 1− β. Thus,

combining the two claims proves the theorem.

159

7.6.2 Data Privacy

In this section we establish that our sanitizer satisfies differential privacy. As discussed in the

introduction, we will rely on the generic blueprint of MIDC—the combination of sparse vector

with an IDC (Section 2.4.3).

Theorem 7.28. The algorithm in Figure 20 satisfies (ε, δ)-differential privacy.

Proof sketch. We will simply outline how to cast our algorithm as the combination of an IDC with

the sparse vector algorithm. There is some ambiguity caused by our use of the term “update”

within the specification of the algorithm. Here, the different periods for the IDC correspond to the

intervals between bad rounds (rather than update rounds). The approximation maintained in each

period is the state (Dt, Ht,Ut, st, r). The updates have two types, if |Ut| < st then the update is

simply to add the query u to Ut. If |Ut| = st, then the update is to perform a multiplicative weights

computation and resample the hypothesisHt and reset the other parameters. Notice that the number

of update rounds, in this sense, is at most B = TR. Thus, we can verify that the parameters for the

surrounding sparse vector algorithm are set appropriately to ensure (ε, δ)-differential privacy.

7.6.3 Query Privacy

More interestingly, we show that this sanitizer satisfies one-query-to-many-analyst privacy.

Theorem 7.29. The algorithm in Figure 20 is (ε, δ)-one-query-to-many-analyst private.

Proof. Fix the input database D and the values of the Laplace noise, z1, . . . , zk. We will show that

for every value of the Laplace random variables, the sanitizer satisfies analyst privacy. Consider

any two adjacent sequences of queries Q0,Q1. It will be sufficient to restrict to the case where

Q0 = q1, . . . , qk and Q1 = q∗, q1, . . . , qk. If the query on which Q0 and Q1 differ is not the first

query in the sequence, then the portion of the transcript of the sanitizer that answers the common

prefix of queries will reveal no information about whether the query sequence is Q0 or Q1.

We want to argue that the answers to all queries in Q are private, but not that the answer to

q∗ is private (if it is requested). We will represent the answers to the queries in Q by a sequence

{(Ht, it)}t∈[T] where Ht is the hypothesis used in the t-th epoch and it is the index of the last query

in that epoch (the one that caused the sanitizer to switch to hypothesis Ht). Observe that for a

fixed database D, Laplace noise, and sequence of queries Q, we can simulate the output of the

160

sanitizer for all queries in Q given only this information—once we fix a hypothesis Ht, we can

determine whether any query q will be added to the update set Ut for this epoch. So once we begin

epoch t with hypothesis Ht, we have fixed all the bad rounds, and once we are given it, we have

determined when epoch t ends and epoch t + 1 begins. At this point, we fix the next hypothesis

Ht+1 and continue simulating.

Formally, let V0, V1 be distribution over sequences {(Ht, it)} when the query sequence is

Q0,Q1, respectively. We will show that with probability at least 1 − δ, if {(Ht, it)}t∈[T] is drawn

from V0, then ∣∣∣∣ln(V0({(Ht, it)})
V1({(Ht, it)})

)∣∣∣∣ ≤ ε.

Recall that Ut is the set of queries that are used to update the distribution Dt to Dt+1. We will

use U≤t =
⋃t
j=0 Ut to denote the set of all queries used to update the distributions D0, . . . , Dt.

Notice that if q∗ does not get added to the set U0, then V0 and V1 will be distributed identically.

Therefore, suppose q∗ ∈ U0. First we must reason about the joint distribution of the first component

of the output.

Claim 7.30. For all H0, i0, ∣∣∣∣ln(V0(H0, i0)

V1(H0, i0)

)∣∣∣∣ ≤ ε

2
.

Proofof Claim 7.30. Since H0 does not depend on the query sequence, it will be identically dis-

tributed in both cases. Indeed, H0 is simply n̂ random samples from the uniform distribution over

X . Once H0 is fixed, we can determine whether a query q will cause an update. Fix query qi0 and

assume that it is the s-th update query in the sequence q1, . . . , qk and the (s + 1)-st update query

in the sequence q∗, q1, . . . , qk. Then V0(i0|H0) = Pr [s0 = s] and V1(i0|H0) = Pr [s0 = s+ 1]. By

the basic properties of the Laplace distribution,∣∣∣∣ln(V0(i0|H0)

V1(i0|H0)

)∣∣∣∣ ≤ ε

2
.

Now we reason about the remaining components (H1, i1), . . . , (HT , iT).

161

Claim 7.31. For every H0, i0, with probability at least 1 − δ over the choice of the sequence of

components v = (H1, i1, . . . , HT , iT)←R (V0 | vt−1), we have∣∣∣∣ln(V0(v | H0, i0)

V1(v | H0, i0)

)∣∣∣∣ ≤ ε

2
.

Proofof Claim 7.31. We will show that v is the n̂T -fold composition of (ε0, 0)-differentially pri-

vate algorithms for suitable ε0. Fix a prefix vt−1 = H0, i0, . . . , Ht−1, it−1. Given this prefix, we

can determine for any given sequence of queries q1, . . . , qit−1 or q∗, q1, . . . , qit−1 which queries are

in the update set. Moreover, if U<t is the set of all update queries from the first query sequence,

and U ′<t is the set of all update queries from the second sequence, then U<t4U ′<t = q∗.

Now consider the distribution of Ht. Each sample in Ht comes from the distribution Dt, which

is either

Dt(x) ∝ exp

(
−η
s

∑
u∈U<t

u

)
or D′t(x) ∝ exp

−η
s

∑
u∈U ′<t

u

Given this, it is easy to see that for any x we have∣∣∣∣ln(Dt(x)

D′t(x)

)∣∣∣∣ ≤ 2η/s := ε0.

Notice that once it−1 and Ht are fixed, it depends only on the choice of st (the number of bad

rounds to allow before updating the hypothesis), which is independent of the query sequence and

thus incurs no additional privacy loss. Thus the only privacy loss comes from the n̂ samples in

each of the T epochs, and the algorithm is a n̂T -fold adaptive composition of (ε0, 0) differentially

private algorithms. A standard composition analysis (Theorem 2.3) shows that the components v

are (ε′, δ)-DP for ε′ = ε0

√
2n̂T log(1/δ)+2ε2

0T ≤ ε/2. This completes the proof of the claim.

Combining these two claims proves the theorem.

7.6.4 Handling Arbitrary Low-Sensitivity Queries

We can also modify this algorithm to answer arbitrary ∆-sensitive queries, albeit with worse

accuracy bounds. As with our offline algorithms, we modify the algorithm to run the multiplicative

weights updates over the set of databases X n and adjust the parameters. When we run multiplica-

tive weights over a support of size |X |n (rather than |X |), the number of epochs increases by a

factor of n, which in turn affects the amount of noise we have to add to ensure privacy.

162

We will now sketch the argument, ignoring the parameters β and δ for simplicity. In order

to get convergence of the multiplicative weights distribution, we need to take T ≈ n log |X |
η2 and

in order to ensure that Ht approximates Dt sufficiently well, we take n̂ ≈
√

log k
η2 . Recall that to

argue analyst privacy, we viewed the algorithm as being (essentially) the n̂T -fold composition of

ε0-analyst private algorithms, where ε0 = η/s. In order to get analyst privacy, we needed

η

s
.

ε√
n̂T
≈ εη2√

n log |X | log1/4 k

=⇒ s &

√
n log |X | log1/4 k

εη
.

Once we have set s (as a function of the other parameters) to achieve analyst privacy, we can work

on establishing data privacy. As before, the number of bad rounds will be

R ≈ sT ≈ n3/2 log3/2 |X | log1/4 k

εη3
.

Given this bound on the number of bad rounds, we need to set

σ ≈ ∆
√
R

ε
≈ ∆n3/4 log3/4 |X | log1/8 k

εη3/2

to obtain data privacy, and

τ ≈ σ log k ≈ ∆n3/4 log3/4 |X | log9/8 k

εη3/2

to ensure that all the update queries truly have large error on the current hypothesis Ht.

The final error bound will come from observing that η and τ are both lower bounds on the

error. The error is bounded below by τ because that is the noise threshold set by the algorithm, and

τ must be larger than η or else we cannot argue that multiplicative weights makes progress during

update rounds. Thus setting η = τ will approximately minimize the error.

The final error bound we obtain (ignoring the parameters β and δ) is

O

(
∆2/5n3/10 log3/10 |X | log9/20 k

ε2/5

)
,

which gives a non-trivial error guarantee when ∆� 1/n3/4.

163

7.7 A Secrecy-of-the-Sample Lemma

In this section we give a formal proof of Lemma reflem:sdtodp. First we restate the lemma.

Consider the following process:

• Fix an (ε, δ)-differentially private algorithm A : U∗ → R and a bit b ∈ {0, 1}. Let D0 = ∅.

• For t = 1, . . . T

– The (possibly randomized) adversary B(y1, . . . , yt; r) chooses two distributionsB0
t , B

1
t

such that SD(B0
t , B

1
t) ≤ σ.

– Choose xt ←R B
b
t and let Dt = Dt−1 ∪ {xt}.

– Choose yt ←R A(Dt).

For a fixed algorithm A and adversary B, let V 0 be the distribution on (y1, . . . , yT) when b = 0

and V 1 be the distribution on (y1, . . . , yT) when b = 1.

Lemma 7.32. If ε ≤ 1/2 and Tσ ≤ 1/12, then with probability at least 1 − Tδ − δ′ over y =

(y1, . . . , yT)←R V
0, ∣∣∣∣ln(V 0(y)

V 1(y)

)∣∣∣∣ ≤ ε(Tσ)
√

2T log(1/δ′) + 30ε2(Tσ)T.

Proof. Given distributions B0, B1 such that SD(B0, B1) ≤ σ, there exist distributions C0, C1, C

such that B0 = σC0 + (1− σ)C and B1 = σC1 + (1− σ)C. An alternative way to sample from

the distribution Bb is to flip a coin c ∈ {0, 1} with bias σ, and if the coin comes up 1, sample from

Cb, otherwise sample from C.

Consider a partial transcript (r, y1, . . . , yt−1). Fixing the randomness of the adversary will fix

the coins c1, . . . , cT , which determine whether or not the adversary samples from Cb
j or Cj for

j ∈ [T]. Let w =
∑T

j=1 cj . Fixing the randomness of the adversary and y1, . . . , yt−1 will also fix

the distributions Cj for j ≤ t and, in rounds for which cj = 0, will fix the samples xj for j ≤ t. If

we let D0
t , D

1
t denote the database Dt in the case where b = 0, 1, respectively, then we have

|D0
t −D1

t | ≤
t∑

j=1

cj ≤
T∑
j=1

cj = w.

164

Thus, ∣∣∣∣ln(V 0
t (yt|r, y1, . . . , yt−1)

V 1
t (yt|r, y1, . . . , yt−1)

)∣∣∣∣ ≤ wε,

and

E
[
ln

(
V 0
t (yt|r, y1, . . . , yt−1)

V 1
t (yt|r, y1, . . . , yt−1)

)]
≤ wεmin {ewε − 1, 1} ,

where the expectation is taken over V 0
t |r, y1, . . . , yt−1.

Fix w ∈ {0, . . . , T}. Conditioning on any r such that
∑T

t=1 ct = w, we can apply Azuma’s

inequality as in [35] to obtain

DTδ+δ′

∞ (V 0|w||V 1|w) ≤ wε
√

2T log(1/δ′) + wεmin {ewε − 1, 1}T.

Thus,

DTδ+δ′

∞ (V 0||V 1) ≤
T∑
w=1

Pr [w]
(
wε
√

2T log(1/δ′) + wεmin {ewε − 1, 1}T
)

=
T∑
w=1

Pr [w]wε
√

2T log(1/δ′) +
T∑
w=1

Pr [w]wεmin {ewε − 1, 1}T. (7.4)

First, we consider the left sum in (7.4).

T∑
w=1

Pr [w]wε
√

2T log(1/δ′)

= ε
√

2T log(1/δ′)
T∑
w=1

(
T

w

)
σw(1− σ)T−ww

= ε
√

2T log(1/δ′)(Tσ)
T−1∑
w=0

(
T − 1

w

)
σw(1− σ)T−1−w (

(
T
w

)
w =

(
T−1
w−1

)
T)

= ε
√

2T log(1/δ′)(Tσ)

165

Now, we work on the right sum in (7.4).

T∑
w=1

Pr [w] (wεmin {ewε − 1, 1}T)

=
T∑
w=1

(
T

w

)
σw(1− σ)T−w (wεmin {ewε − 1, 1}T)

=
(
4ε2T

) 1/ε∑
w=1

(
T

w

)
σw(1− σ)T−ww + (εT)

T∑
w=1/ε

(
T

w

)
σw(1− σ)T−ww

=
(
4ε2T

) 1/ε∑
w=1

(
eTσ

w

)w
w2 + (εT)

T∑
w=1/ε

(
eTσ

w

)w
w

≤
(
4ε2T

) 1/ε∑
w=1

(eTσ)w + (εT)
T∑

w=1/ε

(eTσ)w (w2/ww ≤ 1 for w ∈ N)

≤ 4ε2T (2eTσ) + 2(eTσ)−1/εεT ≤ 3ε2T (eTσ ≤ 1/4)

≤ 24ε2(Tσ)T + 4ε2(Tσ)T ≤ 30ε2(Tσ)T

Combining our bounds for the left and right sums in (7.4) completes the proof.

166

Chapter 8

Conclusion

In this thesis, we have made several contributions to understanding the computational complex-

ity of natural privacy-preserving data analysis tasks. We first examined the question of how many

arbitrary counting queries can be answered by an efficient sanitizer. In Chapter 3, we answered this

question by showing that, assuming the existence of one-way functions, there is no differentially

private sanitizer that can accurate answer n2+o(1) arbitrary counting queries.

In light of the previous result, it was natural to ask whether or not it is possible to efficiently and

privately answer many more than n2 simple counting queries. In particular, we studied the com-

putational complexity of answering marginal queries. In Chapter 4, we showed that computational

complexity is still a major barrier even for marginal queries. Specifically, we showed that, assum-

ing the existence of one-way functions, there is no efficient, differentially private one-shot sanitizer

that generate private synthetic data preserving even the answers to all 2-way marginals. We also

showed that if synthetic data is not required, then there exist sanitizers for marginal queries that

are faster and require less data than previous approaches. In Chapter 5 we introduced a one-shot

sanitizer for k-way marginals on a database with d attributes that has running time and mini-

mum database size roughly dO(
√
k), which is much less than the number of such queries. Then in

Chapter 6 we considered one-shot sanitizers that have nearly optimal minimum database size. We

showed that when k � d, such a one-shot sanitizer for k-way marginals exists with running time

2o(d), improving on the 2d running time required by the private multiplicative weights algorithm

with only a slight decrease in utility.

Despite these results, there is still a significant gap in our knowledge between private-data-

167

analysis tasks for which we have efficient algorithms and tasks that we know are intractable. One

important open problem is to design faster algorithms for answering k-way marginal queries. Ar-

guably, the “holy grail” would be a one-shot sanitizer that is .01-accurate for all k-way marginal

queries with running time poly(d, k, n) and minimum database size poly(d, k). We would like to

call attention to one appealing step towards this goal that may be open to attack: find a differen-

tially private one-shot sanitizer that is .01-accurate for all k-way marginal queries and has running

time poly(dk, n) and minimum database size poly(d, k).

Another significant open question is whether we can prove hardness results (that do not rely on

synthetic data) for simple families of counting queries. Currently, the simplest family for which

we know answering n2+o(1) counting queries is hard consists of depth-6 circuits of size poly(d, n),

which is a family of size � 2n. Dwork et al. [32] showed that, under certain cryptographic

assumptions there is a family of size roughly 2
√
n queries for which private and accurate one-shot

sanitization is hard. An unsatisfying feature of these results is that the size of the query families in

question depends on n. Most natural families of counting queries, such as marginals, have size that

is independent of n, and depends only on d. Given our current state of knowledge, it is possible that

for every family of queries of size 2poly(d), there exists an efficient one-shot sanitizer that guarantees

accuracy on databases of size poly(d). However, we conjecture that such a statement is false. Thus,

a major open problem is to find a (possibly not natural) family of counting queries of size 2poly(d)

for which there is no private, efficient, and accurate one-shot sanitizer. Dwork et al. [32] showed

that such a result would imply the existence of a certain weak form of traitor-tracing scheme

with “constant-size ciphertexts” (length that depends only on the security parameter), which is

a notorious open problem. However, recent advances in cryptography, in particular functional

encryption, suggest that this open problem may be close to a resolution, which could in turn lead

to new hardness-of-sanitization results.

In addition to studying the complexity of natural tasks in private data analysis, in Chapter 7

we designed new sanitizers that ensure differential privacy for both the data subjects and for the

data analysts. In particular, we focused on sanitizers that guarantee privacy for the analyst even

if all other analysts collude, and constructed sanitizers that answer exponentially many queries

while ensuring the privacy of a single query asked by one analyst (one-query-to-many-analyst

privacy) or all of the queries asked by one analyst (one-analyst-to-many-analyst privacy). In the

former case, we were able to answer many arbitrary counting queries while achieving accuracy

168

Õ(1/
√
n), which is the optimal dependence on n up to polylogarithmic factors. Although our

analyst-private sanitizers achieved better accuracy than was previously known, they still do not

match the accuracy achieved by differentially private sanitizers without a guarantee of analyst

privacy. Thus, the main open question raised by the results of Chapter 7 is whether or not there

is any gap between sanitizers satisfying some notion of analyst differential privacy and those that

merely satisfy differential privacy for the data subjects.

Our belief is that the study of each of these open problems will lead to progress towards resolv-

ing the dilemma of privacy-preserving data analysis.

169

Bibliography

[1] 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25-27, 2009, Atlanta, Georgia, USA. IEEE Computer Society, 2009.

[2] Michael Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans, and Toniann
Pitassi. The complexity of properly learning simple concept classes. J. Comput. Syst. Sci.,
74(1):16–34, 2008.

[3] Benny Applebaum. Pseudorandom generators with long stretch and low locality from random
local one-way functions. In Howard J. Karloff and Toniann Pitassi, editors, STOC, pages
805–816. ACM, 2012.

[4] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge, UK, 2009.

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012.

[6] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[7] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Cris Koutsougeras and Jeffrey Scott Vitter, editors, STOC, pages
21–31. ACM, 1991.

[8] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Ku-
nal Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Leonid Libkin, editor, PODS, pages 273–282. ACM, 2007.

[9] Boaz Barak and Oded Goldreich. Universal arguments and their applications. In SIAM J.
Comput., volume 38, pages 1661–1694, 2008.

[10] Boaz Barak, Moritz Hardt, and Satyen Kale. The uniform hardcore lemma via approximate
bregman projections. In Claire Mathieu, editor, SODA, pages 1193–1200. SIAM, 2009.

[11] M. Barbarao and T. Zeller. A face is exposed for AOL searcher 4417749. The New York
Times, page Page A1, August 9, 2006.

170

[12] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Ro-
bust PCPs of proximity, shorter PCPs, and applications to coding. In SIAM J. Comput.,
volume 36, pages 889–974, 2006.

[13] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM J.
Comput., 38(2):551–607, 2008.

[14] Elwyn R. Berlekamp. Algebraic coding theory. McGraw-Hill, New York, 1968.

[15] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
SuLQ framework. In Chen Li, editor, PODS, pages 128–138. ACM, 2005.

[16] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive
database privacy. In Cynthia Dwork, editor, STOC, pages 609–618. ACM, 2008.

[17] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with
short ciphertexts and private keys. In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 573–592. Springer, 2006.

[18] Dan Boneh and James Shaw. Collusion-secure fingerprinting for digital data. IEEE Transac-
tions on Information Theory, 44(5):1897–1905, 1998.

[19] Jehoshua Bruck and Roman Smolensky. Polynomial threshold functions, AC0 functions, and
spectral norms. SIAM J. Comput., 21(1):33–42, 1992.

[20] Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and markov-
bernstein inequalities. CoRR, abs/1302.6191, 2013.

[21] Karthekeyan Chandrasekaran, Justin Thaler, Jonathan Ullman, and Andrew Wan. Faster
private release of marginals on small databases. CoRR, abs/1304.3754, 2013.

[22] Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K. Lee. Submodular func-
tions are noise stable. In Dana Randall, editor, SODA, pages 1586–1592. SIAM, 2012.

[23] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In Yvo Desmedt, editor, CRYPTO,
volume 839 of Lecture Notes in Computer Science, pages 257–270. Springer, 1994.

[24] Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. In
J. Comput. Syst. Sci., volume 51, pages 511–522, 1995.

[25] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[26] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS,
pages 202–210. ACM, 2003.

[27] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the pcp
theorem. SIAM J. Comput., 36(4):975–1024, 2006.

171

[28] Cynthia Dwork. The differential privacy frontier (extended abstract). In Omer Reingold,
editor, TCC, volume 5444 of Lecture Notes in Computer Science, pages 496–502. Springer,
2009.

[29] Cynthia Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–95,
2011.

[30] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors, TCC, volume 3876
of Lecture Notes in Computer Science, pages 265–284. Springer, 2006.

[31] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy
under continual observation. In Schulman [79], pages 715–724.

[32] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the
complexity of differentially private data release: efficient algorithms and hardness results. In
Michael Mitzenmacher, editor, STOC, pages 381–390. ACM, 2009.

[33] Cynthia Dwork, Moni Naor, and Salil P. Vadhan. The privacy of the analyst and the power of
the state. In FOCS, pages 400–409. IEEE Computer Society, 2012.

[34] Cynthia Dwork and Kobbi Nissim. Privacy-preserving datamining on vertically partitioned
databases. In Matthew K. Franklin, editor, CRYPTO, volume 3152 of Lecture Notes in Com-
puter Science, pages 528–544. Springer, 2004.

[35] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy. In
FOCS, pages 51–60. IEEE Computer Society, 2010.

[36] Vitaly Feldman. Hardness of proper learning. In The Encyclopedia of Algorithms. Springer-
Verlag, 2008.

[37] Vitaly Feldman. A complete characterization of statistical query learning with applications
to evolvability. In FOCS [1], pages 375–384.

[38] Vitaly Feldman and Pravesh Kothari. Learning coverage functions. Manuscript, 2013.

[39] Y. Freund and R.E. Schapire. Game theory, on-line prediction and boosting. In Proceedings
of the ninth annual conference on Computational learning theory, pages 325–332. ACM,
1996.

[40] Oded Goldreich. Foundations of Cryptography, volume 2. Cambridge University Press,
2004.

[41] Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately releasing con-
junctions and the statistical query barrier. In Lance Fortnow and Salil P. Vadhan, editors,
STOC, pages 803–812. ACM, 2011.

172

[42] Anupam Gupta, Aaron Roth, and Jonathan Ullman. Iterative constructions and private data
release. In Ronald Cramer, editor, TCC, volume 7194 of Lecture Notes in Computer Science,
pages 339–356. Springer, 2012.

[43] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for
differentially private data release. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher
J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, NIPS, pages 2348–2356, 2012.

[44] Moritz Hardt and Guy N. Rothblum. A multiplicative weights mechanism for privacy-
preserving data analysis. In FOCS, pages 61–70. IEEE Computer Society, 2010.

[45] Moritz Hardt, Guy N. Rothblum, and Rocco A. Servedio. Private data release via learning
thresholds. In Dana Randall, editor, SODA, pages 168–187. SIAM, 2012.

[46] Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In Schulman [79],
pages 705–714.

[47] Johan Håstad. Some optimal inapproximability results. In J. ACM, volume 48, pages 798–
859, 2001.

[48] Heritage Provider Network, Inc. Heritage Health Prize. http://www.
heritagehealthprize.com/, 2011.

[49] Nils Homer. Resolving individuals contributing trace amounts of DNA to highly complex
mixtures using high-density SNP genotyping microarrays. PLoS Genetics, 2008.

[50] Prateek Jain and Abhradeep Thakurta. Mirror descent based database privacy. In Anupam
Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio, editors, APPROX-RANDOM,
volume 7408 of Lecture Notes in Computer Science, pages 579–590. Springer, 2012.

[51] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? SIAM J. Comput., 40(3):793–826, 2011.

[52] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. In J. ACM, volume 41, pages 67–95, 1994.

[53] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approxima-
bility of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–1920, 2000.

[54] Aggelos Kiayias and Moti Yung. On crafty pirates and foxy tracers. In Tomas Sander, editor,
Digital Rights Management Workshop, volume 2320 of Lecture Notes in Computer Science,
pages 22–39. Springer, 2001.

[55] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
Kosaraju et al. [59], pages 723–732.

[56] Gary King. The changing evidence base of social science research. The Future of Political
Science: 100 Perspectives, 2009.

173

[57] Hartmut Klauck. On arthur merlin games in communication complexity. In Proceedings
of the 26th Annual Conference on Computational Complexity (CCC), CCC, pages 189–199,
2011.

[58] Adam R. Klivans and Rocco A. Servedio. Toward attribute efficient learning of decision
lists and parities. In John Shawe-Taylor and Yoram Singer, editors, COLT, volume 3120 of
Lecture Notes in Computer Science, pages 224–238. Springer, 2004.

[59] S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors. Proceedings of
the 24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British
Columbia, Canada. ACM, 1992.

[60] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Optimizing
linear counting queries under differential privacy. In Jan Paredaens and Dirk Van Gucht,
editors, PODS, pages 123–134. ACM, 2010.

[61] Chao Li and Gerome Miklau. An adaptive mechanism for accurate query answering under
differential privacy. PVLDB, 5(6):514–525, 2012.

[62] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In Ran Canetti, editor, TCC, volume 4948 of Lecture Notes in Computer Science,
pages 37–54. Springer, 2008.

[63] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Rox-
burgh, and Angela Hung Byers. Big data: The next frontier for innovation, competition, and
productivity. Technical report, McKinsey Global Institute, 2011.

[64] Silvio Micali. Computationally sound proofs. In SIAM J. Comput., volume 30, pages 1253–
1298, 2000.

[65] Ilya Mironov. On significance of the least significant bits for differential privacy. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM Conference on Computer and Commu-
nications Security, pages 650–661. ACM, 2012.

[66] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic appli-
cations. In David S. Johnson, editor, STOC, pages 33–43. ACM, 1989.

[67] Arvind Narayanan, Hristo Paskov, Neil Zhenqiang Gong, John Bethencourt, Emil Stefanov,
Eui Chul Richard Shin, and Dawn Song. On the feasibility of internet-scale author identifica-
tion. In IEEE Symposium on Security and Privacy, pages 300–314. IEEE Computer Society,
2012.

[68] Arvind Narayanan, Elaine Shi, and Benjamin I. P. Rubinstein. Link prediction by de-
anonymization: How we won the kaggle social network challenge. CoRR, abs/1102.4374,
2011.

174

[69] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets.
In IEEE Symposium on Security and Privacy, pages 111–125. IEEE Computer Society, 2008.

[70] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: the
sparse and approximate cases. CoRR, abs/1212.0297, 2012.

[71] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and com-
plexity classes. In J. Comput. Syst. Sci., volume 43, pages 425–440, 1991.

[72] Ramamohan Paturi. On the degree of polynomials that approximate symmetric boolean func-
tions (preliminary version). In Kosaraju et al. [59], pages 468–474.

[73] Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. In
J. ACM, volume 35, pages 965–984, 1988.

[74] A. Rakhlin and K. Sridharan. Statistical Learning Theory and Sequential Prediction. http:
//www-stat.wharton.upenn.edu/˜rakhlin/courses/stat928/, 2012.

[75] John Rompel. One-way functions are necessary and sufficient for secure signatures. In
Harriet Ortiz, editor, STOC, pages 387–394. ACM, 1990.

[76] Aaron Roth. Differential privacy and the fat-shattering dimension of linear queries. In
Maria J. Serna, Ronen Shaltiel, Klaus Jansen, and José D. P. Rolim, editors, APPROX-
RANDOM, volume 6302 of Lecture Notes in Computer Science, pages 683–695. Springer,
2010.

[77] Aaron Roth. The algorithmic foundations of data privacy, course notes. http://www.
cis.upenn.edu/˜aaroth/courses/privacyF11.html, 2011.

[78] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In Schul-
man [79], pages 765–774.

[79] Leonard J. Schulman, editor. Proceedings of the 42nd ACM Symposium on Theory of Com-
puting, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010. ACM, 2010.

[80] Rocco Servedio, Li-Yang Tan, and Justin Thaler. Attribute-efficient learning and weight-
degree tradeoffs for polynomial threshold functions. In 25th Annual Conference on Compu-
tational Learning Theory (COLT), JMLR Workshop and Conference Proceeding, volume 23,
pages 14.1–14.19, 2012.

[81] Alexander A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions.
Computational Complexity, 18(2):219–247, 2009.

[82] Alexander A. Sherstov. The intersection of two halfspaces has high threshold degree. In
FOCS [1], pages 343–362.

[83] Alexander A. Sherstov. The pattern matrix method. SIAM J. Comput., 40(6):1969–2000,
2011.

175

[84] Daniel Spielman. Computationally Efficient Error-Correcting Codes and Holographic
Proofs. PhD thesis, MIT, Cambridge, MA, 1995.

[85] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[86] Gábor Tardos. Optimal probabilistic fingerprint codes. J. ACM, 55(2), 2008.

[87] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately releas-
ing marginals. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer,
editors, ICALP (1), volume 7391 of Lecture Notes in Computer Science, pages 810–821.
Springer, 2012.

[88] Jonathan Ullman. Answering n2+o(1) counting queries with differential privacy is hard. STOC
2013 (To appear).

[89] Jonathan Ullman and Salil P. Vadhan. PCPs and the hardness of generating private synthetic
data. In Yuval Ishai, editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages
400–416. Springer, 2011.

[90] Salil Vadhan. Personal communication. March 2013.

[91] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[92] Robert Špalek. A dual polynomial for OR. CoRR, abs/0803.4516, 2008.

176

