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AĶňŉŇĵķŉ

Recently, ZnO has garnered widespread aĨention in the semiconductor com-

munity for its large set of useful properties, which include a wide bandgap and its

resulting optical transparency, a large exciton binding energy, a signiėcant piezo-

electric response, and good electrical conductivity. In many ways, it shares many

properties with a widely used and technologically important semiconductorGaN,

which is widely used for blue LEDs and lasers. However, ZnO cannot substitute

for GaN in most optoelectronic applications, because it cannot be doped p-type.

On the other hand, unlike many traditional, covalently bonded semiconductors

like GaN, ZnO can be easily formed aqueous solutions at close to room tempera-

ture andpressure in the formof large crystals or a varietyof nanostructures,making

possible applications that are normally very difficult with traditional semiconduc-

tors.

In this light, weaimed to take advantageof aqueous solution-based, ZnOgrowth

techniques and incorporated ZnO structures novel optoelectronic and photonic

structures. Bycontrolling themorphologyofZnO,we studied the effectsof nanowire-

based ZnO/Cu O solar cells. Carrier collection was increased using a nanowire-

based device architecture. ĉemain result, however, was the time evolution of the

performance of these devices due to the movement of ionized defects in the ma-

terial. ĉe effects of geometry on the ageing characteristics were studied, which
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showed that the carrier collectioncouldbe increased furtherwith ageing in ananowire

Cu O solar cell. ĉe aging behavior was substantially different between nanowire

and planar solar cells, which implies that future design of nanostructured solar

cells must long term aging effects. In addition to solar cells, we explored the possi-

bilities of using aqueous solution growth of ZnO to fabricated whispering gallery

mode optical cavities and waveguides for enhancing extraction from a single pho-

ton source. In both applications, we used templated growth of ZnO to fabricate

geometrically (near) perfect rods and disks for these photonics applications. Fi-

nally, since epitaxy is important in the process of optimizing device performance

and fabrication, we showed the ability to growZnOepitaxially on single crystalline

plates of Au, expanding the options of epitaxial substrates to include a metal.
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1
IntroduČion

When Jack Kilby[ǉ] and Robert Noyce[Ǌ] separately invented the integrated cir-

cuit, it ushered in an age where millions of transistors could be made not one at a

time but millions at a time, paving the way for the basis for all modern computa-

tion. Standard photolithography became the crucial element of themanufacturing

process to make modern computer microchips, enabling us to produce computer

ǉ



chips in a very similar way to the way we make books. However, for the last half

century, in the same way that books must be printed on two-dimensional sheets

of paper, the manufacturing process for computer chips oěen limited the design

of computer chips to two-dimensional layers. As new forms of materials synthesis

and fabrication now extend the control of structure in relevant materials to three

dimensions, the architecture of devicesmust still be somewhat two-dimensionally

based in order to be compatible with existing technologies and designs. ĉerefore,

the ability to form controlled semiconducting or conducting nanostructures, in

ways differenct from those used in the integrated circuits industry, has been criti-

cal for many new emerging technologies.

In the recent decades, the number of publications on ZnO have exploded[ǋ].

At the same time the promises of “nanotechnology” garnered widespread aĨen-

tion and GaN was discovered as material for blue LEDs[ǌ] and lasers[Ǎ], ZnO

nanoparticles and thin ėlms also started to become heavily investigated as a mate-

rial to be used in optoelectronics. BeĨer understanding of the properties of ZnO

and the increased control ofZnOstructurehas fueled thedramatic increase inpub-

lications related to ZnO since the ǉǑǑǈs. ZnO, sharingmany of the desirable prop-

erties as GaN, has been investigated as a low-cost replacement to GaN[ǎ]. ZnO,

like GaN[Ǐ], is a high bandgap material making it aĨractive for blue LEDs and

lasers[ǐ]. An exciton binding energy (ǎǈ meV[ǐ]) that is greater than the room

temperature thermal energy ( ǊǎmeV[Ǐ]) is amajor advantage of ZnO over other

materials,making it possible to create a low threshold laser. It has an internal piezo-

electric ėeld, suitable for surface acousticwave applications[Ǒ]. Highly conductive

Ǌ



ZnO can be achieved with proper doping, which has been used for creating trans-

parent electronics[ǉǈ, ǉǉ].
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Figure 1.0.1: Number of ZnO publications by year, resulting from a search of
“ZnO” in ISI Web of Science.[3]

Despite these aĨractive properties of ZnO for optoelectronic applications, ZnO

remains a low-cost alternative to the more commonly employed material, GaN.

However, ZnO cannot substitute for GaN in most applications, because it can-

ǋ



not be doped p-type and remain stable[ǉǊ]. Experimental reports of p-type dop-

ing usually come with the caveat that eventually the p-type doping degrades over

time[ǉǋ]. Although most optoelectronic devices rely on the presence of a p-n

junction, n-type ZnO can be used creatively to form structures and devices with-

out the need for p-type ZnO, such as some of the examples previouslymentioned.

While ZnO as a powder has been long used in metallurgy, medicine, and as a

pigment[ǉǌ], newer applications that take advantage of these newly discovered or

re-discovered properties have required ZnO to be used as a thin ėlm. ĉe abil-

ity to make fantastic new structures– ranging from nanowire arrays to stars and

structures resembling UFOs[ǉǍ–ǉǑ]– also potentially enables even more exotic

applications. BoĨom up control of thin ėlms and these ever more complicated

nanostructures can be well-controlled, but making arbitrary structures in a well-

controlled manner while integrating them into a thin ėlm remains a challenge.

Already, the ability to control themorphology and grain size of ZnO in thin ėlm

formhas proven to be critical tomaterial properties and subsequent device perfor-

mance. Conduction in a thin ėlm of ZnO is partially dependent on the grain size

of the crystals making up the thin ėlm[Ǌǈ, Ǌǉ]. Conduction electrons scaĨer off

of or get trapped at grain boundaries[Ǌǉ, ǊǊ], impeding current Ěow and acting

detrimentally on devices that depend on maximizing conduction in thin ėlms of

ZnO.ĉerefore, minimizing the grain boundaries in ZnO when used as transpar-

ent conducting oxide (TCO) in solar cell, light emiĨing diode (LED), and display

applications is important. Control over the crystal direction in ZnO has enabled

the utilization of the piezoelectric properties of ZnO in surface acoustic wave de-

ǌ



vices (SAW)[Ǒ]. Without the ability to align ZnO crystals within a thin ėlm, de-

vices that rely on the piezoelectric response of ZnO would not be able to take full

advantage of the additive effects of multiple ZnO crystals in a thin ėlm.

ĉe integration of three-dimensional structures with a two-dimensional ėlm

has been applied to varied ėeld for improved device performance. ZnO “nan-

otips” have been used as excellent ėeld emiĨers that avoid the problems of oxi-

dation and radiation damage upon continued use[Ǌǋ]. Nanopiezoelectric gener-

ators can convert small amounts of mechanical energy into small amounts of elec-

trical energy, making them ideal for implanted biomedical devices[Ǌǌ, ǊǍ]. ZnO

nanostructures have been used as sensors for gas[Ǌǎ], liquid chemicals[ǊǏ], and

biomolecules[Ǌǐ–ǋǉ], taking advantage of high surface area and changes in con-

ductivity or mechanical resonance when speciėc molecules are adsorbed on the

surface of ZnO. Furthermore, surface functionalization can tune the weĨability of

ZnO nanostructures from superhydrophillic to superhydrophobic. [ǋǊ]

Nanowires have also been incorporated into ZnOėlms for optoelectronics pur-

poses. Highly branched ZnO nanowires are used as an electrode in dye-sensitized

solar cells (DSSCs), because they provide a large surface area for dye adsorption

and direct pathways for charge transport. Still, power efficiencies of state-of-the-

art DSSCs made from ZnO nanowire arrays still lag far behind those made with

sinteredTiO nanoparticles[ǋǋ]. TypicalDSSCsuse liquid electrolytes in order to

achieve these high efficiencies. ĉe drawback is that liquid electrolytes have lower

thermal and chemical stability[Ǌǋ]. AĨempts to use gel electrolytes to ameliorate

the problems of liquid electrolytes have failed due to the difficulties of effectively

Ǎ



impregnating a sintered nanoparticle ėlm with viscous gels[Ǌǋ]. ZnO nanowire

arrays have performed beĨer in DSSCs based on gel electrolytes, because the gel

electrolyte can more easily penetrate the straight gaps between nanowires com-

pared to the tortuous pathways found in the nanoparticle ėlms. ĉus, the spac-

ing and morphology of the ZnO nanowire ėlm become important to the ability

to load the ėlm with electrolyte and still maximize surface area for dye adsorption

and, therefore, solar cell performance.

ZnO nanowires have also been incorporated in GaN LEDs to increase light ex-

traction efficiency. In planar GaN LED structures, much of the light generated

is trapped within the device. Only ǋ.ǋƻ of the internally generated in a planar

GaN LED is extracted[ǋǌ]. ZnO nanowire arrays grown on the top layer of the

LED structure can improve the extraction efficiency by increasing the roughness

on the surface of the LED, which allows much more of the light to approach the

air/LED interface with an angle that is less than the critical angle for total inter-

nal reĚection[Ǌǋ, ǋǌ]. ĉe thin ėlm of ZnO that supports the nanowire array can

also be used as a current spreading layer in GaN LEDs, increasing the electrical

performance of LEDs[ǋǍ].

Despite these advances in incorporating ǋDZnO structures in ǊDdevices to in-

crease the performance of optoelectronic devices, muchmore is possible. Most of

the methods to create these ZnO ėlms and nanowire arrays have been completely

boĨom-up. ĉat is, the ZnO structure was made by atoms and molecules being

assembled to create the resulting structure. Conversely, top-down approaches re-

move material until the desired structure is obtained. ĉe boĨom-up strategy re-
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duces material waste and forms structures with oěen atomic precision but is lim-

ited tomaking simple structures. Top-down processing canmake complicated, ar-

bitrary structures with high precision and accuracy but can be very costly for large

area applications and can damage important parts of the material during process-

ing. By combining theboĨom-up ability to alterZnOgrowth and taking advantage

of the top-down capabilities that have been the foundation of silicon microelec-

tronics, new opportunities in ZnO optoelectronics can be uncovered.

ǉ.ǉ SŉŇŊķŉŊŇĹ Ńĺ ŉļĽň ŌŃŇĿ

ĉis work aims to expand the capabilities of ZnO in the realm of optoelectron-

ics. Speciėcally, I will show how ZnO growth can be tailored by both boĨom-up

and top-down techniques to achieve desired structures for some optoelectronics

applications.

In Chapter Ǌ, I will highlight some of the important optical and electrical prop-

erties and the crystalline structure of ZnO.ĉe basic concepts and techniques for

the synthesis of ZnO nanostructures by aqueous synthesis methods will also be

reviewed. In addition, past works on the control of ZnO growth will be reviewed.

We have already brieĚy reviewed how ZnO nanowire arrays have been used in

DSSCs. In Chapter ǋ, we will discuss how we used ZnO nanowire arrays to in-

crease the efficiency of fully solid-state solar cells, speciėcally for ZnO/Cu O solar

cells. We will discuss how carrier collection increased with the incorporation of a

nanostructured interface and the problems associated with ageing that were not

as apparent in the planar version of these solar cells. ĉemorphology and control
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of morphology of the ZnO became important in being able to tune the efficiency

parameters.

In order tomore fully control themorphology of ZnOgrowth on substrates, we

employed a combination of top-down lithographic process to template boĨom-up

growth of ZnO. Chapter ǌ describes effort to grow ZnO paĨerned polymers and

metals in order to build optical resonator structures and waveguides to enhance

single photon collection. ĉe growth of ZnOon paĨerned templates was found to

depend on the type of material from which the template was made.

In Chapter Ǎ, we describe a method to achieve epitaxial growth of ZnO on sin-

gle crystalline Aumicroplates andmethods to change themorphology of the ZnO

ėlm. Epitaxial ėlms of ZnO on metal enabled the possibility of making beĨer

electrical contacts for devices and having precise control of crystal orientation of

the grown ZnO. ĉe quality of the interface was investigated through transmis-

sion electron microscopy (TEM) and atomic force microscopy (AFM), showing

a rough but continuous epitaxial interface with periodic line defects.

Finally, Chapter ǎ offers a summary of conclusions of the accomplishedwork in

this thesis.
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2
Review of ZnOproperties and solution

growth

ĉis chapter is a review of ZnO optical and electrical properties and the solution

growth of ZnO ėlms and nanowires. We will focus on the role of surfaces on the

optical andelectrical properties ofZnO.Discussionon the solutiongrowthofZnO
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will review the chemistry of the growth process and previous epitaxial thin ėlms

formed with ZnO grown in aqueous solutions. Finally, we end the chapter with a

review of previous works of templated ZnO growth.

Ǌ.ǉ CŇŏňŉĵŀŀĽłĹ ňŉŇŊķŉŊŇĹ

ZnO can crystallizes into two forms: the hexagonal wurtzite crystal structure and

the cubic rocksalt crystal structure. ĉe cubic rocksalt structure is a metastable

phase and is seldomseenwithouthighpressure synthesis or inZnOnanocrystals[ǋǎ,

ǋǏ]. ĉe hexagonal wurtzite crystal structure belongs to the C v SchoenĚies space

group or the Pǎ mc in short standard notation[ǎ]. ĉe hexagonal unit cell of ZnO

has laĨice constants a = ǈ.ǋǊǍ nm and c = ǈ.ǍǊ nm and consists of two interpen-

etrating close-packed hexagonal laĨices. ĉe Zn sublaĨice is shiěed along the c-

axis from the O sublaĨice. Each Zn atom is surrounded by ǌ O atoms in a slightly

distorted tetrahedral conėguration. ĉe Zn-O distance along the c-axis direction

(ǈ.ǉǑǈnm) is slightly smaller than theother threeZn-Odistances (ǈ.ǉǑǐnm)[ǋǐ].

ĉe most referenced and important surfaces of the ZnO crystal are the basal

planes (ǈǈǈǉ) and (ǈǈǈƥ), the prism planes (ǉǈƥǈ) and (ǉǉƦǈ), and the pyramidal

planes (ǉƥǈǊ). ĉebasal plane is oěen refered to as the c-plane. ĉec+-plane refers

to the (ǈǈǈǉ) plane, and the c−-plane refers to the (ǈǈǈƥ). ĉe low-index prism

planes are known as the a-plane and m-plane, and the low-index pyramidal planes

are known as the r-plane. Figure Ǌ.ǉ.ǉ shows where these low-index planes lie in

the hexagonal crystal structure.
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a-plane m-plane

(c)

Figure 2.1.1: Crystal structure and important planes of ZnO. a) Heavy lines
outline the primitive unit cell of the wurtzite lattice within the hexagonal prism.
b) Selected surface planes are depicted in the schematic drawing. An example
for a polar, non-polar, and semi-polar surface is selected. c) Both non-polar
planes (a-plane and m-plane) are shown in the schematic.[6, 39]
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In the model picture of a ZnO crystal, the (ǈǈǈǉ) plane is composed of Zn

atoms only, while the (ǈǈǈƥ) plane is only composed of O atoms. ĉe non-zero

dipolemoment in the unit cell along the c-axis direction produces a diverging elec-

trostatic surface energywith increasing crystal size, creating anunstable surface[ǋǑ].

Compensation of the diverging electrostatic potential is possible through the rear-

rangement of charges at the surface through a variety ofmechanisms: (ǉ) creation

of a metallic surface through surface states or excessive potential to create free car-

riers, (Ǌ) removal of surface atoms, and (ǋ) adsorption of charge impurities at the

surface [ǋǑ, ǌǈ]. All of these mechanisms have been invoked for compensating

charge on the polar surfaces of ZnO[ǌǈ]. Regardless, the polar surface of ZnO is a

feature in the ZnO crystal structure that strongly inĚuences electronic and piezo-

electric properties and growth behavior in ZnO.

Ǌ.Ǌ OńŉĽķĵŀ ńŇŃńĹŇŉĽĹň

ZnO has become an alternative material to GaN, because their fundamental band

gap energies are very close to each other – ZnO has a fundamental direct band

gap energy of ǋ.ǋǏ eV[ǐ]; GaN’s fundmental direct band gap is ǋ.ǌ eV[Ǐ] – mak-

ing both materials suitable for UV optoelectronics devices. An advantage of ZnO

over GaN is that it has a exciton binding energy that is substantially larger than

thermal energy at room temperature. ZnO’s exciton binding energy is ǎǈmeV[ǐ],

whileGaN’s exciton binding energy is only ǉǐ-ǊǐmeV[ǎ]. Since thermal energy at

room temperature is ǊǎmeV, excitons inGaN are easily dissociated by thermal en-

ergy, while excitons in ZnO can stay bound. Conseqeuently, stimulated excitonic
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emission in ZnO devices is possible at room temperature, but may be impossible

in pure GaN devices[ǌǉ].

Many ZnO defects also emit in the visible wavelength range and, therefore, can

greatly inĚuence overall emission characteristics of any forthcoming optical de-

vice. ĉedeep level emission from these defects can be divided into emission from

extrinsic and intrinic defects. Native defects in ZnO include oxygen vacancies

(VO), zinc vacancies (VZn), oxygen interstitials (Oi), zinc interstitials (Zni), oxy-

gen anti-sites (OZn), and zinc anti-sites (ZnO)[ǌǊ, ǌǋ]. Defect complexes or clus-

ters can also formwhen twoormore defects bind to eachother likeVOZni[ǌǊ, ǌǋ].

Extrinsic defects refer to defects in the crystal laĨice that are the result of incorpo-

ration of an atom that is neither zinc or oxygen. Common impurities that originate

deep level emission are Li, Cu, Fe, Mn, and OH[ǌǊ, ǌǌ, ǌǍ].

ĉe most common bands due to deep level emission are the green, yellow, and

red luminescence bands[ǌǊ]. ĉe green band is the most common and emits at

energies of Ǌ.ǌ-Ǌ.Ǎ eV[ǌǊ]. It is the most studied band and, in regards to under-

standing the origin, themost controversial. Many authors have suggested that zinc

vacancies are the single source responsible for the green band luminescence[ǌǎ–

ǌǐ]. Among the intrinsic defects in ZnO, VZn has the lowest formation energy in

n-type ZnO[ǌǋ]. In thermodynamic equilibrium, the concentration of point de-

fects is related to the formation energy by [ǌǋ]

c = Nsitesexp
(

Ef

kBT

)
, (Ǌ.ǉ)

where c is the defect concentration, Ef is the formation energy, Nsites is the number
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of available sites where the defect can form, kB is Boltzmann’s constant, and T is

the temperature. ĉerefore, the concentration of VZn should be the highest among

the intrinsic defects. Zinc vacancies occupy an energy level ǈ.Ǒ eV above the va-

lence band minima, yielding emission of Ǌ.ǌ eV when transitions occur between

the conduction band and the defect[ǌǋ]. In positron annihiliation spectroscopy

studies, it was conėrmed that zinc vacancies were the dominant defect in electron-

irradiated n-ZnO samples[ǌǑ, Ǎǈ]. Other defects including oxygen vacancies, zinc

interstitials, and extrinsic defects that include copper have also been suggested as

the source of the green luminescence band in ZnO[ǌǌ, ǌǍ, Ǎǉ]. ĉere is also in-

creasing evidence that the green luminescence is located at the surface[ǍǊ, Ǎǋ].

ĉeyellow luminescencebandappears at Ǌ.Ǌ eV.Atėrst, itwas entirely aĨributed

to Li dopants and impurities, which appear ǈ.ǐ eV above the valence band and are

considered deep acceptors in ZnO[Ǎǌ, ǍǍ]. However, experiments in which the

green luminescence was bleached revealed a yellow luminescence band, suggest-

ing that the yellowemissionband is alwayspresent at a lowdensity[ǌǍ]. ĉeyellow

emission observed in aqueously grown ZnO nanorods have been aĨributed to Oi

or Li impurities[Ǎǎ]. Residual Zn(OH) groups on the surface of ZnO nanorods

have alsobeenproposedas the sourceof the yellow luminescence in solutiongrown

ZnO nanorods[ǍǏ]. Post-annealing of the solution grown ZnO can eliminate the

yellow emission band by desorbing the OH groups on the surface of ZnO[ǍǏ], al-

thougheventually it canbe replacedbyorange, orange-red, and red luminescence[ǍǏ].

Orange luminescence, rarely seen in ZnO, is aĨributed to oxgyen interstitials[Ǎǐ].

Orange-red luminescence is aĨributed to zinc vacancy complexes[ǍǑ]. Zinc inter-
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stitials are proposed to the be the origin of red luminescence[Ǎǋ].

Ǌ.Ǌ.ǉ TļĹ ňŊŇĺĵķĹ

Photoluminescence (PL) from various ZnO nanostructures results in variations

in the position and intensity of the peak. ĉe room temperature near band-edge

PL for ZnOnanostructures has been reported at ǋǏǋ, ǋǏǐ, ǋǐǈ, ǋǐǉ, ǋǐǋ, ǋǐǌ-ǋǑǉ,

ǋǐǏ.Ǎ, ǋǐǑ, and ǋǑǈ nm[ǎǈ]. Time-resolved PL has shown that defect densities on

ZnO nanostructures with high surface-to-volume ratios can also be very different

from the bulk. Evenwhen the sizes of ZnOnanostructures are larger than theBohr

radius of ZnO[ǎǉ], the critical size for themanifestation of quantum conėnement

effects, a blue shiě in the near band-edge luminescence can be observed in several

systems[ǉǑ, ǎǊ, ǎǋ]. It has been proposed that the blue-shiě in these systems are

the result of surface effects[ǎǈ].

As mentioned earlier, the oěen observed green band luminescence is oěen at-

tributed to surface effects. In experimentswith alignedZnOnanorods, polarization-

dependent PL showed that the near band-edge emission in the UV and the green

band emission were both highly polarized[ǎǌ]. ĉe intensity of the UV emission

was maximum in the c-axis direction of the ZnO nanorod, while the green emis-

sion was minimum in the same direction. ĉe polarization-dependent emission

provided information to identify that the green emission mostly occurs at sur-

face defects on the nanorods. Additionally, the green band could be suppressed

by coating the surface of nanostructures with a surfactant[ǎǍ]. Analysis on the ra-

diusof nanowires also showed that once ananowirebecomes thin enough, thenear

ǉǍ



band-edgeemissioncanbecompletelyquenchedby the surface recombination[ǎǎ].

Furthermore, because of the high absorption coefficient for photons in ZnO,most

excitons are generated near the surface of the material, increasing the probability

of interaction with surface defects. Consequently, surface defects are incredibly

important to the emission properties of ZnO nanostructures.

Ǌ.ǋ EŀĹķŉŇĽķĵŀ ńŇŃńĹŇŉĽĹň

ZnO is oěen used as a transparent conducting oxide and in thin ėlm transistors

because of its superior electrical properties. ĉe mobility for single crystal ZnO

needles was ėrst characterized by Hutson from Bell Labs in ǉǑǍǏ [ǎǏ]. ĉe room

temperature mobilities for his crystals with carrier concentrations lower than ǉǈ

cm− were ǉǐǈ cm V− s− . It is a testament to the high quality of crystal growth

achieved by Hutson in ǉǑǍǏ that the room temperature mobility of single crystal

ZnO has not improved much since then.

As doping levels in ZnO increase, scaĨering due to ionized impurity atoms in-

creases causes mobility to decrease. Mobility meta-data from single crystal ZnO

were collected byEllmer as a function of carrier concentrations as low as ǉǈ cm−

in undoped ZnO to as high as Ǐ x ǉǈ cm− in indium-doped ZnO (See Figure Ǌ.ǎ

in [Ǌǉ]). ScaĨer in the data is high between carrier concentrations between ǉǈ

to Ǎ x ǉǈ cm− , but they range from Ǐǈ-ǉǍǈ cm V− s− . ĉe highest reported

mobilities are in the ǊǊǈ-ǊǊǍ cm V− s− range. ĉe lowmobility value compared

to Si (ǉǌǉǍ cm V− s− ) or GaAs (ǐǍǈǈ cm V− s− )[Ǌǉ] is due to the strong polar

optical scaĨering in ZnO. ĉe functional relationship between mobility and car-
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rier concentration can be described by the empirical equation originally derived

for silicon[ǎǐ]:

μ = μmin +
μmax − μmin
ƥ+ (n/nref )α

−
μ

ƥ+ (n/nref )α
, (Ǌ.Ǌ)

where μ is the mobility of electrons; μmax is the laĨice mobility at low carrier con-

centrations; μmin is the ionized impurity mobility at high carrier concentrations;

(μmax − μ is the clustering mobility at very high carrier concentrations, n is the

carrier concentration; and α , α , nref and nref are ėĨing parameters.

In comparison to single crystal ZnO, polycrystalline ZnO thin ėlms have much

lower mobilities of ǉǈ cm V− s− [ǎǑ]. Epitaxially grown ZnO on c-plane GaN

throughaqueous solutiondepositionhas amobility of Ǐǈ cm V− s− with a carrier

concentration of Ǌ.ǋ x ǉǈ cm [ǋǍ], which corresponds to other single crystalline

ZnO at similar carrier concentration levels. Polycrystalline ZnO grown by aque-

ous solutionmethods exhibits lowermobilities of Ǐ cm V− s− [Ǐǈ]. ĉegrain size

of these ėlms plays an important role in the mobility and electrical properties of

these ėlms, since the grain boundaries are the site of electron traps and scaĨer-

ing events[ǊǊ]. Some authors however have reported unusually high mobilities

and low resistivities for polycrystalline ėlms[Ǐǉ, ǏǊ], although the reason for these

electrical characteristics remains unclear.

ĉe other major contributor to the conductivity of a ėlm is the carrier con-

centration, which is determined by the effectiveness of doping of the material.

ZnO is typically unintentionally doped n-type[Ǐǋ, Ǐǌ] and very difficult to dope

p-type[ǉǊ]. Extrinsic n-type doping of ZnO by group-III elements B, Al, In, and
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Ga have been used to make degenerately doped ZnO, increasing conductivity by

orders of magnitude[ǎǈ]. Currently, Al-doped ZnO is oěen used as a low cost

alternative to tin-doped indium oxide (ITO) for use in thin ėlm solar cells[ǏǍ].

Yet, the most important dopant in ZnO is hydrogen. Hydrogen is present in

nearly all growth processes; and due to its small size, it is incredibly difficult to iso-

late it from ZnO. While the role of hydrogen as a shallow donor was discovered

in the ǉǑǍǈs[Ǐǎ–Ǐǐ], the knowledge was forgoĨen for several decades. Instead,

intrinsic defects like oxygen vacancies and zinc interstitials[ǏǑ] (and references

therein)were thought to be source of the n-type conductivity in ZnO. In Ǌǈǈǈ, van

deWalle[ǐǈ] showed that hydrogen always acts as a shallowdonor inZnOthrough

a density functional theory study. In ǊǈǈǊ, Hofmann et al.[ǐǉ] conėrmed exper-

imentally that hydrogen was a shallow donor in nominally undoped ZnO single

crystals using electron paramagnetic resonance and Hall measurements. In aque-

ously grown ZnO, hydrogen is readily incorporated into the laĨice during growth

as residual water or Zn(OH) [ǍǏ, ǐǊ]. Upon annealing at Ǌǈǈ-ǊǍǈ◦C, trapped hy-

drogen is activated and serves as a dopant, thereby dramatically increasing the con-

ductivity ofZnO[ǐǋ] in some cases somuch that the conductivity rivals ITOwith-

out the need for intentional extrinsic doping[ǋǍ]. In some cases of doping ZnO

with hydrogen, the conductivity was observed to increase over time, although it

was aĨributed to chemisorption of oxygen and water at grain boundaries and sur-

faces rather than diffusion of excess hydrogen[ǐǌ].

ǉǐ



Ǌ.ǋ.ǉ TļĹ ňŊŇĺĵķĹ

ĉe state of the surface of ZnO affects the electical transport behavior, especially

in nanostructured ZnO.ĉe switching of the transport behavior is strongly corre-

lated to the presence of adsorbed oxygen at the surface of ZnO. A common theory

is that when oxygen molecules chemisorb onto the surface of ZnO, they capture

electrons from the laĨice, depleting the surface of free electrons [O (g) + e− →

O−(ad)] and forming an electronic depletion layer at the surface[ǎǈ]. ĉe sur-

face depletion of free electrons decreases the surface conductivity and can dramat-

ically affect the carrier concentration in nanowires if they become fully depleted.

Furthermore, the mobility of carriers is affected by scaĨering and trapping by the

newly formed surface states. ĉe surface can be restored with heating in a vac-

uum or inert gas[ǐǍ], UV light exposure[ǐǎ], or exposure to reductive gases, like

ethanol, H , CO, or H S[ǎǈ, ǐǏ]. ĉese surface treatments cause the adsorbed

oxygenmolecule to desorb from the surface of theZnO, restoring the original con-

ductivity of the surface.

However, a signiėcant drop in conductivity due to oxygen exposure can bemea-

sured even when the thickness of the sample is much larger than the thickness of

the depletion layer. Instead, it has been proposed that a highly conducting sur-

face layer, which has a higher conductivity than the bulk, is eliminated or masked

by the presence of the adsorbed oxygen molecules[ǐǐ]. ĉe origin of the highly

conducting surface layer is not well known. It has been hypothesized that a high

density of oxygen vacancies, generated by ambient light, could create the con-

ducting layer[ǐǏ]. Other pre-existing positively charged donors could be drawn
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to the surface, forming the conducting layer, by the adsorbed negatively charged

oxygen[ǐǏ]. Mobile donors could be hydrogen or other group III dopants. Evi-

dence of the accumulation of group III dopants at the surface was found through

secondary ionmass spectroscopy (SIMS)[ǐǑ]. X-ray photoelectron spectroscopy

and electron irradiation experiments have also demonstrated accumulation of hy-

drogen donors near the surface[Ǒǈ].

Ǌ.ǌ GŇŃŌŉļ Ńĺ ZłO Ľł ĵŅŊĹŃŊň ňŃŀŊŉĽŃł

ZnO thin ėlms can bemade through conventional thin ėlmdeposition techniques

that include magnetron spuĨering[Ǒǉ], chemical vapor deposition[ǑǊ], pulsed-

laserdeposition[Ǒǋ],molecular beamepitaxy[Ǒǌ], andatomic layerdeposition[ǑǍ].

Othermethodsnot generally available tomore traditional, covalentlybonded, semi-

conductor materials are methods that rely on chemical reactions and solution de-

positions including spray-pyrolysis[Ǒǎ], electrodeposition[ǑǏ], and sol-gel depo-

sition [Ǒǐ], hydrothermaldeposition[ǑǑ], andchemical bathdeposition(CBD)[ǉǈǈ].

In this section, we will describe some of the details of low temperature aqueous

ZnO synthesis. ĉis technique shares many features with chemical bath deposi-

tion, where the desired material is deposited on a substrate via an in situ chemical

reaction typically in an aqueous solution. Unlike chemical bath deposition, this

technique does not take place in an open bath. Instead, the deposition occurs in

a closed container, in which the pressure can increase to above atmospheric pres-

sure. Under these conditions, growth is expected to proceed in a manner similar

to hydrothermal growth, where solubility of ZnO is greater and growth is typically
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slower[ǉǈǈ].

Typically, the synthesis begins with the seeding of the substrate with nanocrys-

talline ZnO. ĉe seed layer can be synthesized through the decomposition of a

solution deposited zinc-organic precursor[ǉǈǉ], the solution deposition of pre-

formed ZnO nanoparticles[ǉǈǊ], or vapor deposition. ĉe aqueous growth step

slowly grows ZnO from a supersaturated solution onto any existing ZnO surface,

sincegrowthofZnOonZnOrequires a smallerdriving force thaneither thegrowth

ofZnOona foreign surfaceor thehomogenousnucleationofZnOin solution[ǉǈǋ].

Growth occurs preferentially in the c-direction of ZnO, in the absence of any ad-

ditives, because the polar faces in ZnO have the highest surface energies[ǉǈǌ]. As

a result, arrays of nanowires are formed on the substrate. ĉe orientation of the

nanowires are subject to the orientation of the initially deposited seed layer. It is

also possible to skip the deposition of the seed layer by forcing heterogenous nu-

cleation on the substrate during the aqueous growth step[ǉǈǍ].

ĉegrowth process is affected by the speciėcs of the solution, such as the choice

of ligand, pH, zinc counter-ion, ionic strength, and other parameters, like the tem-

perature, the substrate, and concentration of the zinc salt. Details of how these

can affect ZnO growth can be found in the work by Govender et al.[ǉǈǈ] How-

ever, the general solution chemistry can be summarized. Zn + cations are dis-

solved in an aqueous solution, which are solvated by water, resulting in aqua-ions

[Zn(OH )n] +. ĉe aqua-ion undergoes hydrolysis, because the polarized M-

OH bond facilitates thedeprotonationof the aĨachedwater. A rangeofmonomeric

species can exist, depending on howmany waters are solvating the cation with the
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general form of [Zn(OH )n−p(OH)p]( −p)+, also wriĨen as [M(OH)p] by omit-

ting the water. Condensation reactions occur for the polynuclear species which

eventually become ZnO. ĉe ėrst step is called olation, where an ”ol” bridge is

formed:

M− OH+M− OH → M− OH−M+ H O. (Ǌ.ǋ)

ĉe second step is oxolation, where dehydration of the hydroxo-species results in

an ”oxo” bridge:

M − (OH) → M− O−M+ H O. (Ǌ.ǌ)

Oěen, in literature, hexamine, also known as hexamethylenetetramine (HMT),

is used as a pHbuffer[ǉǈǈ]. Hexamine slowly decomposes into formaldehyde and

ammonia, which increases the pH of the solution, forcing hydrolysis of the aqua-

ions in solution and eventually leading to the formation of ZnO.

Ammonia also serves as a complexing ligand for Zn ions. Other ligands like

ethylenediamineand triethanolamine[ǉǈǈ]havebeenused inZnOgrowth. Richard-

son and Lange analyzed the thermodyamics of aqueous ZnO solution growth us-

ing ammonia as the ligand, because it appears to be the fundamental unit for the

other complexing ligands that are also oěen used[ǉǈǎ]. ĉey found that the zinc-

amine complex that is formed in solution causes ZnO to have retrograde solubility.

As the temperature of the solution is raised to Ǒǈ◦C, the solubility of the Zn ions

surprisingly decreases. As the reaction vessel is slowly heated, ZnO becomes su-

persaturated slowly and growth proceeds to alleviate the supersaturation of ZnO
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in solution.

In order to achieve thin coalesced ėlms of ZnO, citrate is used to slow the c-axis

growth. Citrate ions bind to the (ǈǈǈǉ) surface of ZnO and block access to the

surface from zinc ions. As a result, increasing the concentration of citrate ions de-

creases the height-to-width ratio of theZnOcrystals that are formed[ǉǈǏ]. At very

high citrate concentrations, layered structures form instead ofmonolithic ZnOpil-

lars or plates[ǉǈǏ]. A consequence of using citrate ions at low concentration is the

ability to shape the tips of ZnO needles. Normally without the use of citrate, ZnO

needles have pointed tips. ĉose tips become Ěat with the inclusion of citrate,

which may be useful when using similar synthesis technique to make ėeld emit-

ters, where a sharp tip is desired[ǉǈǐ], or piezoelectric nanogenerators, where a

Ěat top is desired for making electrical contact[ǊǍ, ǉǈǑ].

ĉeability to coalesceZnOcrystals ona substrate tomake thinėlmshas allowed

exploration into ėnding epitaxial relationships with some substrates. Substrates

with similar crystal structures, like c-plane GaN and (ǉǉǉ) MgAl O have been

used to form epitaxial thin ėlms of ZnO[ǋǍ, ǉǉǈ–ǉǉǊ]. Epitaxial thin ėlms of ZnO

on c-plane GaN have been used as a current spreading layer in GaN-based LEDs,

with performance equivalent to the more expensive alternative of ITO[ǋǍ, ǉǉǊ].

More applications for epitaxial ZnO in electronics and optoelectronics is expected

to be forthcoming.

Photolithography was also used to mask the surface of the substrate to create

lateral epitaxial overgrowth (LEO) ėlms[ǉǉǋ]. Similar to LEO ėlms in GaN, the

overgrown regions had fewer dislocations than the regions growndirectly from the
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substrate. PaĨerned growth was also possible on epitaxial ėlms to formmicrorods

and microtunnels, because, unlike ėlms seeded by randomly oriented nanocrys-

talline ZnO, the direction of vertical growth was deėned by the epitaxial relation

to the substrate[ǉǉǌ].
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3
EffeČs of nanowiremorphology on the

aging of ZnO/CuƦO solar cells

ǋ.ǉ IłŉŇŃĸŊķŉĽŃł

Although inventedalmost Ǌǈǈyears ago[ǉǉǍ], solar cells remain anaĨractivemethod

of converting solar energy into electrical energy. ĉe problem remains that photo-
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voltaics, in their current form, are still too expensive to overthrow fossil fuels like

coal and natural gas from the dominant position that they have established them-

selves in over the last ǉǈǈ years. For practical economic reasons, the ėgure ofmerit

has becomeWaĨs per dollar, in efforts to truly reĚect the costs of electricity from

solar cells. ĉe costs for solar cells have dropped in the recent years, obtaining a

cost curve similar to Moore’s Law[ǉǉǎ, ǉǉǏ]. Still, concerns over the toxicity of

Cd[ǉǉǐ, ǉǉǑ] and thematerial scarcity of Te[ǉǊǈ] inCdTe solar cells and the high

capital costs for Si solar cells[ǉǊǉ] have pushed researchers to look for alternative

materials for solar cells.

Among thematerialswith thehighest potential formakingefficientbut extremely

cheap solar cells is Cu O [ǉǊǊ, ǉǊǋ]. If solar cells are to supply the energy with a

signiėcant fraction of its energy demand, the solar cell must consist of materials

that are abundant and easy to process. A survey done by Anderson[ǉǊǋ] (Fig-

ure ǋ.ǉ.ǉ) shows that the copper is an element that is both widely available in the

Earth’s crust and that has the established infrastructure to extract large quantities.

Cuprous oxide’s (Cu O) non-toxic nature, its abundance, and simple process-

ing made it extremely aĨractive as a potential solar cell material in the ǉǑǏǈs and

ǉǑǐǈs[ǉǊǌ–ǉǊǐ]. ĉe theoretical maximum efficiency has been estimated to be

as high as Ǌǈ%[ǉǊǐ]. It has a direct band gap of Ǌ.ǈ eV¹[ǉǊǑ, ǉǋǈ], making it a

good candidate for the top cell in amultijunction solar cell. However, Cu O could

¹Cu O actually has a direct forbidden bandgap, which means that electric dipole transitions
are forbidden at the absorption edge due to parity selection rules even though the boĨom of
the conduction band and top of the valence band occur at the zone center. ĉe transition is
only disallowed at the critical k=ǈ point. As a result, absorption is beĨer than indirect bandgap
semiconductor but worse than normal direct bandgap semiconductors.
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Figure 3.1.1: Metal abundance in the Earth’s crust and metal use in
society.[122]

not be doped n-type, making homojunction impossible. It became clear that a

heterojunction device was necessary to maximize the potential efficiency. ZnO

became the material of choice as the n-type complement to the inherently p-type

Cu O[ǉǊǍ, ǉǋǉ–ǉǋǋ].

ĉemethod of deposition for Cu O has been an important factor in determin-

ing the ėnal efficiency of the device. Cu O can be grown using inexpensive meth-

ods suchas electrochemical deposition[ǉǋǌ, ǉǋǍ], hydrothermal growth[ǉǋǎ, ǉǋǏ],

chemical solutiondeposition[ǉǋǐ], orhigh temperatureoxidationof copper[ǉǋǑ].

However, substantial increases in efficiencyhavebeenobservedonly forZnO/Cu O

solar cells made through the furnace oxidation of Cu. ĉe efficiency of solar cells

made through the electrochemical deposition of Cu O have remained low[ǉǌǈ–
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ǉǌǌ]. Smaller grain sizes, the inability to increase carrier concentration through

extrinsic dopants, and more defective interface states are all barriers for creating

high efficiency devices through electrodeposition.

Due to the lower crystalline quality and smaller diffusion length in solution de-

posited Cu O, an effort to increase the efficiency of ZnO/Cu O solar cells has led

to the incorporation of nanowires into the solar cell structure. Planar solar cells

must have a minority carrier diffusion length on the order of the optical absorp-

tion length if one hopes to efficiently collect most of the photoexcited carriers.

On the other hand, nanowire solar cells have shown potential in improving so-

lar cell efficiencies by enabling increased light absorption while retaining efficient

carrier collection. Using a nanowire structure, the thickness of the absorber layer

is no longer limited to the minority carrier diffusion length. ĉe photogenerated

carriers no longer travel the same path as the incident photon. Instead, the carri-

ers have a much shorter distance to travel to reach a nanowire junction. Despite

observing increased carrier collection compared to planar structures[ǉǌǍ–ǉǍǌ],

efficiencies of nanowire ZnO/Cu O solar cells are still well below the record ǌƻ

efficient ZnO/Cu O solar cells[ǉǍǍ].

Many studieshavedrawnaĨention to the additional designconsiderationsneeded

for nanowire solar cells[ǉǌǎ, ǉǍǎ–ǉǎǉ]. Light manangement schemes may be de-

veloped by engineering the nanowire dimensions and placement within the Cu O

matrix to increase photon absorption[ǉǎǊ]. Musselman et al. have done consider-

able work in developing design rules for the charge transport within ZnO/Cu O

solar cells[ǉǌǎ, ǉǎǉ]. ĉey found that, although the nanowires do increase charge
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collection, the high density of nanowires inhibits the formation of the full built-in

potential, effectively restricting the open circuit voltage. ĉe diffusion length for

Cu O is less than ǉ μm, but more than Ǌ μm of Cu O are required to sustain the

full built-in potential. Additionally, the increase junction area leads to a larger leak-

age current, which can have further deleterious effects on the built-in potential. A

more detailed explanation is save for the following section.

In order to be viable as a useful solar cell, ZnO/Cu O solar cells must also be

stable for long periods of time. While it may seem that oxides are inherently stable

in atmospheric conditionsbecause thematerials are alreadyoxidized, oxides are fa-

mously known to have ionic conductivity and to be very sensitive to defects[ǉǎǋ].

Some exploration has been done regarding the aging of ZnO/Cu O solar cells,

however we are not aware of any studies regarding the aging of nanowire-based so-

lar cells. In the work on planar ZnO/Cu O solar cells, persistent photoconductiv-

ity and themovement of copper vacancies inCu Ohave been investigated through

capacitance transients[ǉǎǌ].

In thiswork,wecreatedbothnanowire andplanarZnO/Cu Osolar cells through

aqueous deposition methods. ZnO deposition was controlled through solution

chemistry to yield either nanowire arrays or coalesced, polycrystalline thin ėlms.

ĉe relative ease of forming and controlling both structures of ZnO allowed us to

fairly compare the performance of the resulting solar cells. Furthermore, we inves-

tigated how the nanowire architecture of ZnO/Cu O solar cells affected aging and

their performance over time. We show that the movement of copper vacancies by

the internal electric ėeld affects the performance of nanowire solar cells very differ-
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ently from planar solar cells. We believe that the results from this relatively simple

material system helps broaden our understanding in ionic photoconductive ma-

terials, where ionized dopant atoms are not necessarily ėxed in the laĨice. ĉe

results also have implications on the future design of nanowire solar cells made

from non-traditional semiconductor materials.

ǋ.Ǌ TļĹ IĸĹĵŀ SŃŀĵŇ CĹŀŀ

A solar cell is a device that creates an electrical current due to the absorption of

photons in a material. Semiconductor p-n junctions are oěen used to create the

driving force necessary to separate photoexcitedholes and electrons. ĉep-n junc-

tion creates an internal electric ėeld at the junction that drives the separation of

electrons andholes. ĉe equilibriumbanddiagram is deėnedby thePoisson equa-

tion:

▽ ϕ = −ρ
ε
, (ǋ.ǉ)

where ϕ is the electric potential, ρ is the charge density, and ε is the permiĨivity of

themedium. In the depletion approximation, we assume that there are no free car-

riers within the charged regions surrounding the junction. ĉis region, “depleted”

of majority carriers, is called the depletion region (Figure ǋ.Ǌ.ǉ). As a result of the

approximation, the potential drop is conėnedwithin the depletion region near the

junction, and the electric ėeld vanishes to zero beyond the boundaries of the de-

pletion region, leaving the remainder of the p- and n-type regions neutral. Since

the internal electric ėeld is conėned to the depletion region, minority carriers can
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only move outside of the depletion region through diffusion.
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Figure 3.2.1: Schematic of model p-n junction. The depletion region is marked
in dashed lines. Ec is the conduction band, Ev is the valence band, and EF is the
Fermi level. The red abd white circles depict an electron and hole, respectively.

In an ideal solar cell, light is incident on a p-n junction. ĉe amount of electron-

hole pairs that are created at a speciėc depth is described by the Beer’s Law:

I(x) = I(Ƥ)exp(−α(λ)x), (ǋ.Ǌ)

where I(x) is the intensity of light that has penetrated a distance x into the ma-

terial, I(Ȕ) is the intensity of the light incident on the material, and α(λ) is the

wavelength-dependent absorption coefficient of the material. Carriers that are

generated within the depletion region are considered to be collected with ǉǈǈƻ

efficiency. ĉe limiting factor in the collection of all carriers is considered to be the

diffusion length of the minority carriers. If carriers cannot diffuse to the junctions
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and instead recombine, the energy from those excited carriers is lost and cannot

contribute to the energy output of the device.

A commonmethod to evaluate the ability for thedevice to collect thephotogen-

erated carriers is through a measurement of external quantum efficiency (EQE).

EQE is the probability that an incident photon of a certain wavelength will deliver

an electron to the external circuit. It is determinedbymeasuring the current gener-

ated bymonochromatic light of a known intensity. EQE is a product of the photon

absorption probability and carrier collection probability.

Solar cells are oěen designed with a thin, heavily doped, n-type layer closer to

the surface followed by a thick, lightly doped, p-type layer. Since short wavelength

photons have high absorption coefficients in most crystalline materials, they are

absorbed near the surface of the solar cell; and since the junction is close to the

surface, carriers generated by these short wavelength photons are easily collected.

ĉerefore, the EQE is nearly ǉǈǈƻ for highly efficient solar cells in the spectral

range that is above the bandgap of the material. As the absorption coefficient de-

creases for longer wavelength photons, the depth at whichmost of the photons are

absorbed increases. Eventually, the wavelength of light is long enough such that

most of the photons are generated beyond the depletion region and beyond the

minority carrier diffusion length. As the electron-hole pairs are generated deeper

within the device, the collection probability of the minority carriers decreases,

which causes EQE to decrease. ĉe rate that the EQE decreases with increasing

wavelength oěen follows the absorption curve for the material.

ĉe short circuit current density ( Jsc) is the current densitymeasuredwhen the
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solar cell is measured in AM ǉ.Ǎ light under ǉ Sun illumination without an ap-

plied bias. AM ǉ.Ǎ described the spectrum of light incident on the Earth’s surface

if the sun was at an angle of elevation of ǌǊ◦; it is the standard for solar cell mea-

surements. ǉ Sun illumination corresponds to an integrated irradiance of ǉǈǈǈ

W/m . Jsc can also be obtained by the EQE and incident spectral photon Ěux den-

sity, bs(E):

Jsc = q
∫

bs(E)EQE(E)dE, (ǋ.ǋ)

where E is the photon energy and q is the charge of an electron.

While a solar cell can be considered a current generator, we oěen apply a volt-

age to simulate the presence of a load. ĉe current density vs. voltage curve then

provides information about the power efficiency of the device. ĉe ideal p-n junc-

tion solar cell is described as an ideal p-n junction with an added photogenerated

current:

J = −Jsc + Jo(eqV/kBT − ƥ), (ǋ.ǌ)

where J is the current density, Jo is the saturation current density, V is the applied

voltage, kB is Boltzmann’s constant, and T is temperature.

Voc, along with Jsc, is another ėgure of merit for solar cells, and is marked by the

voltage when zero current Ěows. By solving for the case of zero current, one can

ėnd the formula for Voc from the diode equation:

Voc =
kBT
q

ln
(
Jsc
J

+ ƥ
)
, (ǋ.Ǎ)

where Voc is the open circuit voltage. ĉe current densities, Jsc and J , are normal-
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ized by device area projected on a ǊD plane. An extra consideration for nanowire

solar cells is that the actual junction area of the device is much larger so J is much

larger for nanowire devices, which according to the above equation, decreases Voc.

Fortunately, Voc only depends logarithmically on the junction area.

Power density is deėned by

P = JV. (ǋ.ǎ)

ĉe region of highest power density in a solar cell is marked in Figure ǋ.Ǌ.Ǌ with

a star. From the diagram, one can see that the rectangle deėned by the point of

maximum power (and the associated current Jm and voltage Vm points) is smaller

than the rectangle deėned by the Jsc and Voc. ĉe correction is accomodated by

another ėgure of merit called the ėll factor,

FF =
JmVm

JscVoc
, (ǋ.Ǐ)

which describes “squareness” of the curve. ĉe overall power efficiency η of the

solar cell is described by the maximum power generated divided by the power in-

cident on the solar cell Ps:

η =
JmVm

Ps
. (ǋ.ǐ)

In terms of the solar cell’s ėgures of merit, the efficiency can be described as

η =
JscVocFF

Ps
. (ǋ.Ǒ)
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Figure 3.2.2: Model JV curve for ideal p-n junction solar cell. The star marks
the point of maximum power.

ǋ.ǋ DŃńĽłĻ Ľł CŊƦO

In this work, we control the structure of ZnO in the ZnO/Cu O solar cell, but the

solar cell would not be possibewithout the unique doping characteristics ofCu O.

Most wide bandgap oxides are electrically insulating, but a few exhibit semicon-

ducting properties, like ZnO. An even smaller group of wide bandgap oxides are

naturally p-type semiconductors. Cu O is the model of a p-type wide bandgap

semiconductor and, therefore, has been investigated thoroughly[ǉǎǍ–ǉǏǈ].

Cu O oěen exists in a non-stoichiometic state. ĉe fact that the cation, Cu+, is

futher oxidizable to Cu + naturally leads to a cation-deėcient state for the oxide.

Copper vacancies, therefore, are abundant in this material in order to compensate
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for the cation deėciency.

Raebiger et al. have studied the origins of the p-type nature and cation deė-

ciency inCu Othroughėrst principles calculations[ǉǎǍ]. ĉey showed thatCu O

satisėes all of the conditions for making a p-type conductor: (i) a low formation

energy for hole-producing defects, (ii) a small ionization energy for those defects

to release the holes, and (iii) a high formation energy for compensating defects.

ĉey calculated an ionization energy of ǈ.Ǌǐ eV above the valence band, which is

in agreement with the hole trap experimentally found at ǈ.Ǌǐ eV above the valence

band. ĉe potential compensating defects were oxygen vacancies and copper in-

terstitials. Oxygen vacancies have a low formation energy but are not sufficiently

stable as charged defects to fully compensate holes. Copper interstitials have a

high formation energy and, therefore, do not exist in sufficient concentrations to

compensate the copper vacancies. ĉus, the copper vacancies lead to the p-type

doping in Cu O.

ǋ.ǌ PĹŇňĽňŉĹłŉ ńļŃŉŃķŃłĸŊķŉĽŋĽŉŏ Ľł CŊƦO

Cu O also exhibits persistent photoconductivity (PPC). In typical semiconduc-

tors, the conductivity of the semiconductor switches to a state of increased con-

ductivitywhen illuminated and returns to itsmore insulating statewhen the light is

removed. Photoconductivity can be explained by the generation of excess carrier

by the incident light. Since conductivity is proportional to the concentration of

carriers, conductivity of the semiconductor increases. When the light is removed,

the carriers recombine quickly and the conductivity returns to its dark state con-
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ductivity.

When a semiconductor exhibits PPC, the switching response is much slower.

When the semiconductor is illuminated, conductivity increases for some time be-

fore it plateaus. Similarly, when the light is removed, conductivity very slowly de-

cays over a long period of time.

Formanydecades, thePPC inCu Owas explainedby a simple electronicmodel

where deep donors slowly trapped and re-emiĨed electrons but had a very small

capture cross section for holes[ǉǏǉ–ǉǏǋ]. As thedonor stateswereėlledbyphoto-

generated electrons, the conductivity slowly increased since they no longer com-

pensated the copper vacancies. When light was removed and electrons were no

longerphotogenerated, the conductivity slowlydecreasedas trappedelectronswere

emiĨed and again began to compensate the copper vacancies.

Recently, it was shown through a disagreement between the time constants ob-

tained through transient capacitance measurements and those calculated through

PPC decay curves (resistivity vs time) that this simple model could not be correct

[ǉǎǌ]. A newmodel based on vacancy complexes was proposed[ǉǎǌ].

In this model, the compensating donors are charged oxygen vacancies V+
O or

V++
O . ĉe highly mobile copper vacancies V−

Cu[ǉǏǌ] associate with the charged

oxygen vacancies through electrostatic interactions, forming a complexW+ orW

(Figure ǋ.ǌ.ǉ). W+ is the stable complex; W simply dissociates again at room

temperature. When the sample is illuminated, theW+ captures a photogenerated

electron, becomingW . ĉeW complex dissociates, increasing the acceptor den-

sity. Since V−
Cu is extremely mobile, it diffuses in the laĨice aěer some time and
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is redistributed away from the V+
O that had originally captured it. When the light

is removed, V+
O cannot be restored to its original oxidation state by hole capture,

becausewe assume that the V+
O energy level is below the Fermi level. ĉis assump-

tion is supported by the calculations by Raebier et al.[ǉǎǍ] Instead, the V−
Cu must

diffuse back to a V+
O tomake theW , which can be stabilized toW+ with hole cap-

ture. ĉe PPC in Cu O can therefore be seen to be intimately connected to the

highly mobile nature of the copper vacancies.
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Figure 3.4.1: V−
Cu and V++

O bind to form a complex W+ to prevent V−
Cu from

donating a hole to the valence band. Illumination breaks this complex apart and
the V−

Cu can migrate to contribute a hole to the valence band.

ǋ.Ǎ EŎńĹŇĽŁĹłŉĵŀ ŁĹŉļŃĸň

ǋ.Ǎ.ǉ FĵĶŇĽķĵŉĽŃł Ńĺ ńŀĵłĵŇ ĵłĸ łĵłŃŌĽŇĹ ňŃŀĵŇ ķĹŀŀň

FTO-coated glass (TEC ǐ grade), purchased fromHartford Glass Co. Inc. (Hart-

ford City, IN), acted as the substrate for the solar cell. Prior to any deposition, it

was cleaned thoroughlywithAlconox soap andwater, rinsedwith deionizedwater,
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and ultrasonically cleaned with deionized water, acetone, and ėnally isopropanol.

Cleaning the substrate was important in ensuring uniform growth of both ZnO

andCu O in subsequent steps. Organicmaterial, such as ėngerprints, could block

the growth and cause deweĨing of solution.

A seed layer was spin-coated onto the substrate with a solution of ǈ.ǏM zinc ac-

etate dihydrate and ǈ.Ǐ M monoethanolamine in isopropanol at ǋǈǈǈ rpm for ǌǍ

seconds. Monoethanolaminewasused to complex the zinc ions, increasing the sol-

ubility of zinc acetate in isopropanol, and to increase the viscosity of the solution.

ĉe coated substrate was immediately heated to ǋǍǈ◦C on a hotplate for ǉ hour.

ĉis annealing step ensures the oxidation of the existing zinc-organic coating into

ZnO: the organic material in the ėlm is burned off leaving behind nanocrystalline

ėlm of ZnO about ǎǈ nm thick.

ZnO nanowires or ZnO thin ėlms were then grown from the seeded substrate.

For ZnO nanowires, the growth solution consisted of ǈ.Ǌ g of zinc nitrate hexahy-

drate and ǉ.ǊǍ mL of ǉǍ M ammonium hydroxide in Ǌǌ mL of deionized water,

whichwas equivalent to ǈ.ǈǊǐMZn(NO ) ·ǎH Oand ǈ.ǏǍMNH OH.ĉe sub-

strate was suspended with the growth-side down in a TeĚon vessel to prevent un-

wanted ZnO particle from seĨling onto the growth face. ĉe vessel with the so-

lution and substrate was heated to Ǒǈ◦C in an oven for typically Ǌ hours, resulting

in nanowires that were about Ǌ μm tall. Longer growth times greatly increased the

length of the nanowires. Shorter wires were much more difficult to obtain, be-

cause the growth rate at the beginning of growth is very high. For example, at ǉ.Ǎ

hours, no growth of ZnO nanowires was observed. Aěer the designated growth
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period, the sample was removed from the vessel and the rinsed throroughly with

deionized water.

Continuous ZnO thin ėlms were made with procedure that is almost identical

to the procedure described for synthesizing ZnO nanowires. ĉe growth solution

for ZnO thin ėlms consisted of ǈ.Ǌ g zinc nitrate hexahydrate, ǉ.ǊǍ mL of ǉǍ M

ammonium hydroxide, and ǈ.ǈǍ g of sodium citrate tribasic dihydrate in Ǌǌ mL of

deionized water, equivalent to ǈ.ǈǊǐ M Zn(NO ) ·ǎH O, ǈ.ǏǍ M NH OH, and

ǈ.ǈǈǐMHOC(COONa)(CH COONa) · ǊH O.ĉe addition of sodium citrate

inhibited thenormal c-axis growth rateofZnO.As growthproceeded, neighboring

ZnO crystals merged together, forming a coalesced thin ėlm. ĉese ėlms were

grown similarly at Ǒǈ◦C, but the growth times were ǌ hours or more. ĉe typical

thicknesses of these ZnO thin ėlms were ǋ-ǌ μm.

To increase the conductivity, ZnOwas annealed andexposed toUV light, which

improved thequality anduniformityof the electrodepositedCu O.ZnOnanowires

or thin ėlms were annealed at ǊǍǈ◦C for ǋǈminutes. ĉe annealing step improved

the conductivity of ZnO due to liberation of hydrogen in the remaining Zn(OH)

[ǐǋ], which remains to some extent in all aqueously derived ZnO due to incom-

plete conversion to ZnO[ǍǏ, ǐǊ]. Hydrogen is known to be an n-type dopant in

ZnO, and the annealing step has been observed to push the carrier concentration

to ǉǈ cm− [ǐǋ]. ĉeUV light exposure further increased the conductivity of the

ZnO by surface modiėcation[ǐǎ] as described in Chapter Ǌ.

Immediately following theUV light treatment, aCu Oėlmwaselectrodeposited

onto the ZnO[ǉǋǍ, ǉǏǍ–ǉǏǑ]. ĉe aqueous solution for Cu O electrodeposition
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was made using ǈ.ǌ M CuSO ·ǍH O and ǋ M lactic acid, where pH was adjusted

to ǉǊ using ǌMNaOH solution. ĉe samplewas suspended in this solutionwhere

deposition occurred cathodically at ǈ.ǌǍVwith respect to a standard calomel elec-

trode at ǎǈ°C[ǉǏǍ]. ĉe sample was thoroughly washedwith deionized water and

blown dry with nitrogen. Gold contact pads were deposited using an electron

beam evaporator through a shadowmask with areas of ǈ.Ǌ cm each.

ǋ.Ǎ.Ǌ CļĵŇĵķŉĹŇĽŐĵŉĽŃł Ńĺ ňŃŀĵŇ ķĹŀŀň

Current density-voltage ( J-V) measurements were taken with a Keithley ǊǎǋǎA

by sweeping voltage from -ǉV to ǉV. Current-time measurements were also taken

with the Keithley ǊǎǋǎA by applying a ǉV bias and measuring current over time

under different illumination conditions. For measurements under illumination, a

ǋǈǈWmercury xenon arc lampwith a AMǉ.Ǎ global ėlter was used at an illumina-

tion intensity of ǉǈǈmW/cm . EQEmeasurements were completed using a New-

port Merlin digital lock-in radiometry system with the ǋǈǈ Wmercury xenon arc

lamp focused on a Newport Cornerstone Ǌǎǈ monochromator with appropriate

bandpass ėlters and chopper. A calibrated UV Si photodetector (Newport) was

used to measure the intensity of the incident light for EQE measurements. ĉe

EQE scan rate was ǉ nm/sec.
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ǋ.ǎ CŇŃňň-ňĹķŉĽŃłĵŀ ňŉŇŊķŉŊŇĹ Ńĺ łĵłŃŌĽŇĹ ĵłĸ ńŀĵłĵŇ ňŃ-

ŀĵŇ ķĹŀŀň

Cross-sectional scanning electron microscopy conėrmed the architectures of the

planar andnanowireZnO/Cu Osolar cells (Figure ǋ.ǎ.ǉ). ĉe interfaceof thepla-

nar solar cell was slightly rough since theZnOwas polycrystalline and each colum-

nar crystal was oriented slightly differently with respect to the substrate (Figure

ǋ.ǎ.ǉa). In the nanowire solar cell, nanowires grew initially in random directions,

but the fast c-axis growth eliminatednanowires that didnot growvertically (Figure

ǋ.ǎ.ǉb). ĉerefore, the aggregate structure was much more chaotic near the sub-

trate compared to the tops of the nanowires, where they were nearly completely

vertically oriented. ĉe cross-sectional view also showed that the ZnO nanowires

were completely encased in the Cu O matrix (Figure ǋ.ǎ.Ǌ). Due to the violent

nature of the cleaving process, which was necessary to create the cross-section

of the sample, some ZnO nanowires were pulled out. Impressions of the ZnO

nanowires indicated intimate contact with the Cu O and complete ėlling of the

space between nanowires with the electrodeposited Cu O.

ǋ.Ǐ NĵłŃŌĽŇĹ ĻĹŃŁĹŉŇŏ ĽłķŇĹĵňĹň ķĵŇŇĽĹŇ ķŃŀŀĹķŉĽŃł

Weconėrmed through J-Vmeasurements andEQEmeasurements that carrier col-

lection was improved through the incorporation of ZnO nanowires. In the com-

parison of the J-V plots between solar cells made with planar and nanowire mor-
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Figure 3.6.1: Cross-sectional SEM micrographs compare the microstructure of
(a) the planar ZnO/Cu O solar cell and (b) the nanowire ZnO/Cu O solar cell.
Scale bars = 3 μm and 1 μm, respectively.

Figure 3.6.2: High magnification, cross-sectional, SEM micrograph of a
nanowire ZnO/Cu O solar cell, showing the impression of ZnO nanowires in
the Cu O matrix after pull out. Several of the many nanowire impressions have
been highlighted. Scale bar = 300 nm.
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phology (Figure ǋ.Ǐ.ǉ), short circuit current Jsc was markedly increased in solar

cells with nanowire architecture. However, the open circuit voltage Voc roughly

stayed the sameor evendecreasedwith the incorporationof nanowires. ĉemech-

anism for the decrease in Voc for nanowire solar cells was explained in the ”Ideal

Solar Cell” section.

EQE measurements conėrmed that the increased Jsc was due to the increased

collection efficiency for carrier generated deep in the material by long wavelength

photons. A comparison of EQE between the planar and the nanowire solar cells

(Figure ǋ.Ǐ.Ǌd) showed the difference in carrier collection for longer wavelength

photons. Figure ǋ.Ǐ.Ǌa,b show how the planar and the nanowire structure col-

lect carriers differently, which affects the resulting EQE. For the planar solar cell,

the driě-diffusion length (Ldd)must be greater than the absorption length (αL) in

Cu O for efficient collection. EQEmeasurements of the planar solar cells followed

this general explanation. Short wavelength photons with energies greater than the

bandgap of ZnOwere all fully absorbed in the ZnO and did not contribute to pho-

tocurrent in the Cu O. ĉese carriers were not generated close enough to the in-

terface of ZnOandCu O to be separated by the internal electric ėeld. For photons

in the ǋǏǍ - Ǎǈǈ nm range, the absorption length[ǉǋǈ] is less than theminority car-

rier driě-diffusion length in Cu O, which has been measured to be Ǌǈǈ nm[ǉǎǉ].

Figure ǋ.Ǐ.Ǌc,d shows how the carriers generated by these photons have a high

EQE and how the EQE saturates in this wavelength range. For longer wavelength

photons, the absorption length is longer than the minority carrier driě-diffusion

length, and so the EQE decreased to nearly zero in these wavelength ranges, even
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for photons with energies above the bandgap of Cu O. In contrast, the EQEmea-

surements for the nanowire solar cell did not show the same limitations of carrier

collection as a function of absorption length (Figure ǋ.Ǐ.Ǌd). EQE was increased

for long wavelength photons in nanowire solar cells. Even though the absorption

length was much larger in the Ǎǈǈ - ǎǍǈ nm range, EQE remained high in this re-

gion. ĉus, we showed that the incorporation of nanowires in the solar cell in-

creased the collection of carriers generated by photons with an absorption length

longer than the Ldd.
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Figure 3.7.1: Current density - voltage comparison between nanowire and pla-
nar ZnO/Cu O solar cell geometries.
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Figure 3.7.2: The conflict between minority carrier drift-diffusion length (Ldd)
and photon absorption length (αL) in comparing EQE for planar and nanowire
solar cells. a) In a planar solar cell, carriers are not collected, where αL > Ldd,
since path of the photon and the minority carrier are in the same direction. b)
In a nanowire solar cell, carriers can be collected, where αL > Ldd, since path of
the photon and the minority carrier are in orthogonal directions. c) Absorption
length[130] in Cu O and AM 1.5 solar irradiance. Critical wavelength ranges are
delineated. d) EQE of planar vs. nanowire solar cell. EQE for nanowire solar
cell is increased for wavelengths where αL > Ldd.
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ǋ.ǐ EĺĺĹķŉň Ńĺ ńĹŇňĽňŉĹłŉ ńļŃŉŃķŃłĸŊķŉĽŋĽŉŏ

During J-V and EQE testing of many devices, it was noted that the performance of

the devices depended on the history of the device. For example, the typical order

of testing the J-V characteristics of these devices aěer being made was to test all of

thedevices in thedark, then illuminate and test inAMǉ.Ǎ, ǉ Sun illumination, then

test again in the dark. ĉe two J-V plots in the dark were alwaysmarkedly different

(Figure ǋ.ǐ.ǉ). Prior to illumination, rectiėcation was extremely poor, if there was

rectiėcation at all. Aěer illumination, the devices that generated photocurrent all

displayed much beĨer rectiėcation.

1.0 0.5 0.0 0.5 1.0

Voltage (V)

20

10

0

10

20

30

40

50

C
u
rr

e
n
t

d
e
n
si

ty
(m

A
/c

m
2
)

Measured immediately

Measured in 1 Sun light

Measured after 1 Sun light exposure

1.0 0.5 0.0 0.5 1.0
10-3

10-2

10-1

100

101

102

Figure 3.8.1: J-V plot of nanowire ZnO/Cu O solar cell. Prior light exposure to
the solar cell made the diode more rectifying in the dark. Inset shows a semilog
plot of the J-V plot, showing the different degrees of rectification.

ĉe cause of this history-dependent behavior was traced back to the persistent
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photoconductivity in Cu O. While ZnO has also been reported to display per-

sistent photoconductivity (PPC), the mechanism has always been traced back to

surface-relatedphenomena[ǎǈ, ǐǏ]. In the case ofZnO/Cu Osolar cells, theZnO

interfaceswere buried. With buried interfaces, thePPCeffects have been shown to

decrease dramatically in ZnO[ǉǐǈ]. On the other hand, PPC effect in Cu Owere

due to long-lived trap states that reside throughout the volume of the material as

discussed earlier in this chapter[ǉǎǌ, ǉǏǉ–ǉǏǋ].

To further study the persistent photoconductivity, wemonitored the EQE over

time. ĉesolar cellswere initially illuminatedwithAMǉ.Ǎ light for Ǎminutes to set

the solar cell in the photoconductive state. Unlike other semiconductors that do

not display PPC, Cu O remained in the photoconductive state aěer illumination

ceased. EQE measurements were then taken periodically in the dark. During the

EQE measurement, a spectrum of monochromatic light must shine on the sam-

ple. However, the intensity of the monochromatic light, that is a part of the EQE

measurement, is low compared to the AMǉ.Ǎ illumination. Slowly, the photocon-

ductive Cu O reverted to its more insulating state. As carrier density decreased,

the series resistance in the solar cell decreased, accompanied by a general decrease

in EQE (Figure ǋ.ǐ.Ǌ). Since the decay in EQE was related to PPC, a bulk prop-

erty, the decay in EQE was not selective to any particular wavelength, i.e., EQE

decayed for all wavelengths.

Another method by which PPC was observed was through current-time mea-

surements. Here, the solar cell was pre-illuminated for Ǎ minutes under ǉV bias.

ĉe current decaywasmonitored aěer the illumination ceased (Figure ǋ.ǐ.ǋ). ĉe
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Figure 3.8.2: EQE decay over time of ZnO/Cu O nanowire solar cell. (b) shows
the magnified version of the highlighted box in (a). EQE intensity in units of
percent.

decay in the currentwas faster than theEQEdecay, because the device remained in

the dark during themeasurement period for current. However, even aěer Ǎ hours,

the current was still decaying to the insulating state, the state of the device before

any illumination. ĉe EQE measurement, on the other hand, required low inten-

sity, monochromatic light to be incident on the device to measure photocurrent,

which decreased the rate of decay. Bothmeasurement techniques showed that the

devices displayed characteristics of PPC.

An important caveat to PPC decay is that charging the device to be in the fully

photoconductive state also takes time[ǉǏǊ, ǉǏǋ]. Measurements of current vs.

time under a ǊV bias and illumination showed that the device took more than ǉ

hour to become fully charged (Figure ǋ.ǐ.ǌ).

ĉere are beĨer methods of measuring PPC, such as Hall measurements[ǉǎǌ]

and resistivity of a thin ėlm of Cu Owith semi-transparent Ohmic contacts[ǉǏǊ].
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Figure 3.8.3: The decay of measured current on ZnO/Cu O with the applica-
tion of 1V bias. The slow decay of current is observed after the initial illumination
was turned off.
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Figure 3.8.4: The measured current with the application of 2V bias slowly
increased in the ZnO/Cu O solar cell under illumination.
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However, these methods were not possible with these electrodeposited samples.

Hall measurements required the Cu O to be separated from the conducting sub-

strate. Although therewere reports of separating the thin ėlm from the conducting

substrate though thermal ormechanical shock[ǉǐǉ, ǉǐǊ], we were unable to sepa-

rate the substrate and thin ėlm and process it without inducing a network of cracks

in the Cu O thin ėlm (Figure ǋ.ǐ.Ǎ). ĉe cracking rendered the thin ėlm too insu-

lating to measure through Hall measurements. Measuring resistivity of thin ėlms

of Cu O was also difficult due to the insulating nature of electrodeposited Cu O.

Prior reportsmeasuring resistivity through semi-transparentOhmic contacts used

single crystal Cu O[ǉǏǊ]. Electrodeposited Cu O was polycrystalline and much

more insulating[ǉǐǊ].

Figure 3.8.5: Picture of the cracks that formed after processing in electrode-
posited Cu O films that had been separated from the substrate. Scale bar =
1mm.
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ǋ.Ǒ EQE ňļĽĺŉň ĸŊĹ ŉŃ ĸŃńĵłŉ ŁĽĻŇĵŉĽŃł

Given these short-term changes in the electrical characteristics of the solar cell due

toPPC, a longer time framewas studiedwithEQEmeasurements. ĉesemeasure-

ments started with the solar cell illuminated for ǋǈ minutes before the ėrst EQE

measurement took place. During the actual EQE measurement, the device was

only exposed to themonochromatic light thatwasused tomeasureEQE.Each scan

took about ǐ minutes. For the ǋǈ minutes between each scan, the devices were il-

luminated with light. Both planar and nanowire solar cells were measured. ĉe

results show that over long periods of time, the EQE decreases as the devices age

(Figure ǋ.Ǒ.ǉ). Another striking feature was the leěward shiě in the color bands

during the ėrst Ǎ hours of themeasurement. EQE plots are typically characterized

by a plateau, where the EQE is highest due to the wavelength of light being long

enough to pass through the window layer (ZnO in our case) but short enough to

be absorbed by the absorber layer (Cu O). ĉe shiě in the color bands indicated

that this plateau was shiěing toward higher energy regions. ĉe shiě was more

markedly seen in the EQE for Ěat solar cells. ĉe major difference between the

two types of devices was that, for the nanowire solar cells, the shiě was accompa-

nied by a rightward shiě at longer wavelength. ĉis shiě continued well past the

ėrst Ǎ hours. ĉe end result of these two effects is that for nanowire solar cells the

total plateau becomes wider as the solar cell ages.

In Figure ǋ.Ǒ.Ǌ, we ploĨed each EQE spectrum as a change from the ėrst EQE

spectrum. ĉe changes in the EQE spectrum are easier to see. For the planar
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Figure 3.9.1: EQE shifts over time while under illumination for a) planar
ZnO/Cu O solar cell and b) nanowire ZnO/Cu O solar cell. Colormap is in
units of percent EQE. Dashed rectangles (1 in a and 2 in b) highlight the areas
of changing EQE.

solar cell (Figure ǋ.Ǒ.Ǌa), EQE increases just beyond the bandgap of ZnO. For

wavelengths beyond this narrow wavelength range of increasing EQE, the EQE

decreases substantially over time. Figure ǋ.Ǒ.Ǌb shows the changes in EQE for the

nanowire solar cell. Similar to the planar solar cell, the EQE increases in the region

just below the ZnO bandgap and decreases in the region up to Ǎǈǈ nm. Unlike the

planar solar cell, the EQE increases for much longer wavelengths in the region of

Ǎǈǈ - ǎǈǈ nm. ĉe reasons for these changes will be explained in the following

sections.

As previously discussed in the PPC section, the EQE evolution over time in

the dark was different from the EQE evolution in the light. Figure ǋ.ǐ.Ǌ showed

the EQE evolution over time in the dark aěer the initial illumination to light was

turned off. As these solar cells aged in the dark, the EQE measurements did not

indicate any shiěing of the color bands. ĉe boundaries of the plateau remained at
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Figure 3.9.2: Change in EQE under illumination for a) planar ZnO/Cu O solar
cell and b) nanowire ZnO/Cu O solar cell.

the same wavelengths as in the beginning of the aging process (Figure ǋ.Ǒ.ǋ).

ǋ.Ǒ.ǉ TļĹ ĽĸĹĵ

A typical assumption in semiconductor p-n junctions is that the ionized donors

and acceptors, residing in the depletion region, are immobile even though the elec-

trons or holes that they donate to the laĨice are mobile. ĉe mobile holes in the

p-type region near the interface diffuse across the junction to the n-type region,

and similarly, the mobile electrons from the n-type region near the interface dif-

fuse across the junction to the p-type region. As the diffusion is occurring, the

ionized acceptors and donors are assumed to not move and therefore constitute

an electric ėeld, establishing a potential difference to prevent more mobile holes

and electrons from diffusing across the electric ėeld.

ĉe immovable nature of these ionized acceptors and donors appears not to

hold true for the ZnO/Cu O solar cells studied here. Since the typical p-n junc-

tion in oěen modelled in silicon, this assumption is usually a very good approx-
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Figure 3.9.3: Selected EQE plots of ZnO/Cu O nanowire solar cell after ceasing
initial illumination. EQE was measured after the specified time. EQE decayed
very slowly over time after initial illumination was turned off.

imation of reality. ĉe diffusion coefficients for typical silicon dopants residing

in the silicon laĨice are exceedingly small at room temperature[ǉǐǋ]. However,

the same is not true for other materials like Cu O and ZnO.ĉe diffusion of free

electrons and holes is still much faster than the diffusion of ionized donors and ac-

ceptors. ĉerefore, an electric ėeld still forms due to the equilibration of holes and

electrons. ĉe electric ėeld that is set up by these ionized donors and acceptors,

though, now begins to act on the slightly mobile ionized donors and acceptors.

In Cu O, the ionized acceptors are copper vacancies. In ZnO, the ionized donors

are hydrogen atoms. ĉemotion of these ionized acceptors and donors can cause

changes to the electric potential proėle of the device.

ĉe movement of native point defects by an internal electric ėeld has some

precedence. Aluminum and gallium vacancies in AlGaN high electron mobility
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transistors have been shown to move in regions of very high electric ėelds ( ǉǈ

MV/cm)[ǉǐǌ]. In addition, nativedefects inZnOhavealsopreviouslybeen shown

tomassively redistribute near the surface, resulting in unexpected SchoĨky barrier

heights[ǉǐǍ, ǉǐǎ].

In solar cells, changes in the width of the depletion region and the electric ėeld

will cause changes in how effectively the charges generated at different positions in

the device will be collected. Carriers are collected through a combination of driě

and diffusion. Diffusion lengths are only a function of concentration gradient and

quality of the material. We normally assume for Si p-n junction solar cells that the

diffusion length limits carrier collection. Once theminority carrier crosses into the

depletion region, we assume that the electric ėeld is sufficient to sweep all carriers

away. So, a larger depletion region will increase the collection efficiency of charge

carriers generated deeper in the solar cell. However, in a case for very lightly doped

materials, the electric ėeld in thedepletion region canbe insufficient to sweep away

minority carriers before recombination. A driě length can be deėned:

Ldrift = μE⃗τ, (ǋ.ǉǈ)

where μ is the mobility of the carrier, E⃗ is the electric ėeld, and τ is the lifetime of

the carrier. ĉerefore, a combination of driě and diffusion lengths Ldd is the more

realistic limit to the length that minority carriers can travel before recombination.

ĉe Ldd and therefore the probability of carrier collection also a function of the

electric ėeld.

Like thedriě-diffusion equations that govern the transport behavior of free elec-
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trons and holes, driě-diffusion equations can be applied to themobile, ionized ac-

ceptors and donors:

∂c
∂t

= ∇ · (D∇c)−∇ · (cμE⃗) + R, (ǋ.ǉǉ)

where c is the concentration of the ionized acceptor or donor, t is time, D is the dif-

fusion coefficient of the ionized species, μ is the mobility of the ionized species, E⃗

is the electric ėeld and R is the rate of defect compensation. ĉe driě component

is found to dominate the motion of these ionized species initially. ĉe diffusion

component remains negligible until the driving force for diffusion, the concentra-

tion gradient, becomes appreciable due to the redistribution of the ionized species

by the electric ėeld.

ĉedistance that an ionizeddefect, suchas an ionizedcopper vacancy, canmove

in the depletion region in a speciėed period of time can be calculated. ĉe velocity

of the ionizeddefects is dependent on themobility of the defects, μ and the electric

ėeld, E:

v = μE⃗, (ǋ.ǉǊ)

where μ can be found from the diffusion coefficient from the Einstein relation:

μ =
Dq
kBT

, (ǋ.ǉǋ)

where kB is Boltzmann’s constant. ĉe electric ėeld proėle can be calculated from

the Poisson equation if the charge proėle is known. Assuming an initially constant
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charge proėle within the depletion region,

v = μE⃗ = μ
ρx
εrε

, (ǋ.ǉǌ)

where ρ is the charge density, x is position with x=ǈ at the edge of the depletion

region, and εr is the relative dielectric constant of thematerial and ε is the permit-

tivity of free space. Bymaking the naive assumption that the electric ėeld does not

change as the defects move, an assumption that is later removed, we can ėnd how

far a defect moves within a period of time:

v =
dx
dt

=
μρ
εrε

x (ǋ.ǉǍ)

∫ x

x

dx
x

=

∫ t

t

μρ
εrε

dt (ǋ.ǉǎ)

Δx = x− x = x (exp[
μρ
εrε

(t− t )]− ƥ) (ǋ.ǉǏ)

Since only the ionized defects move under the inĚuence of the electric ėeld, a re-

gion consisting of fewer defects is created near the edge of the depletion region.

ĉis region is called the highly compensated region byMiĨiga et al.[ǉǎǌ]

In the Cu O/ZnO system, the copper vacancies and hydrogen interstitials driě

towards each other to the interface. Two types of boundary conditions are possi-

ble at the interface of ZnO andCu O. In the ėrst case, the hydrogen from the ZnO

and copper vacancies from theCu O are allowed to interact with each other. With
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the conĚuence of the two ionized species, the mobile donor and acceptors com-

pensate each other at the interface and the concentrations of both species are zero

at the boundary. As donors and acceptors are removed from the system near the

interface, the depletion region increases but the electric ėeld decreases. In the sec-

ond case, the Ěux of hydrogen and copper vacancies across the boundary is zero.

Copper vacancies in the depletion region accumulate in a thin layer near the in-

terface, draining the rest of the depletion region of copper vacancies. In the thin

layer of copper vacancy accumulation near the interface, the electric ėeld can be

greatly increased. In the region of the depletion region that has been drained of

copper vacancies, the electric ėeld becomes much smaller. Overall, the depletion

region is also increased. Regardless of which boundary condition is present, the

PPC effects of Cu O also result in more ionized acceptors with some exposure to

light. ĉerefore, the effects ofmobile, ionized, copper vacancies inCu Oaremuch

more evident under the exposure of light.

ǋ.Ǒ.Ǌ MŊŉŊĵŀ ķŃŁńĹłňĵŉĽŃł Ńĺ ŁĽĻŇĵŉĽłĻ, ķļĵŇĻĹĸ ĸĹĺĹķŉň

Based on literature values of ZnO and Cu O prepared by similar methods, car-

rier densities of ǉǈ cm− and ǉǈ were used, respectively[ǋǍ, ǉǐǊ]. Figure ǋ.Ǒ.ǌ

shows the doping density and the calculated charge proėle, electric ėeld proėle,

and band diagram for a device where the doping density is constant in each ma-

terial. Because the ZnO is so heavily doped compared to the Cu O, the depletion

region in the ZnO is extremely thin and conėned very close to the interface. ĉe

ionized hydrogen donors in the ZnO can therefore easily diffuse or driě across
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the interface into the Cu O and compensate the acceptors that also cluster at the

interface[ǉǐǏ]. In fact, hydrogen has been used by others to passivate the surface

and grain boundaries of Cu O[ǉǐǐ, ǉǐǑ]. ĉe compensation of the copper vacan-

cies at the interface by hydrogen would imply that a build-up of copper vacancies

would not occur at the interface. Rather, the concentration of copper vacancies

would be ėxed at zero at the interface.

As explained in the previous section, ionized copper vacancies move under the

inĚuence of the internal electric ėeld. If the copper vacancies are compensated by

the hydrogen in the ZnO at the interface, then accumulation of the copper vacan-

cies will not occur. A cartoon version of this process can be seen in Figure ǋ.Ǒ.Ǎ. In

this cartoon version, the depletion approximation is used, making the distribution

of charged vacancies uniform within the depletion width. We also assumed that

the electric ėeld that was applied to the ionized copper vacancies was uniform, re-

sulting in a simple translation in the ionized copper vacancy distribution. As seen

in themiddle panel of Figure ǋ.Ǒ.Ǎ, themovement of the charged vacancies results

in a region without any copper vacancies near the edge of the depletion region.

In order to drop the same built-in voltage, deėned by the difference in work func-

tion of the Cu O and the ZnO and proportional to the area under the electric ėeld

proėle, the electric ėeld must be extended beyond the original depletion region.

ĉus, within these approximations and assumptions, the depletion region is ex-

tended when ionized copper vacancies move toward the ZnO/Cu O interface.

Similarly, when thedepletion approximation is not usedanddiffusion is allowed
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the depletion, a region forms near the edge of the depletion regionwith fewer cop-

per vacancies, increasing the extent of the depletion region. Eventually, this region

with fewer copper vacancies expands to encompass the entire depletion region.

ĉe depletion region as seen in Figure ǋ.Ǒ.ǎ expands well beyond the original de-

pletion region aěer long time periods. ĉe longer depletion region can increase

the collection efficiency for carriers generated farther away from the ZnO/Cu O

interface.

ǋ.Ǒ.ǋ AķķŊŁŊŀĵŉĽŃł Ńĺ ķļĵŇĻĹ ĵŉ ŉļĹ ĽłŉĹŇĺĵķĹ

ĉeopposite case is where there is no compensation of the defects at the interface,

and the copper vacancies are allowed to accumulate at the interface. Similar to the

previous case, a region that is depleted of ionized copper vacancies is created at the

edge of the original depletion region. ĉe ionized copper defects at the edge of the

original depletion region encounter sufficient electric ėeld to move them toward

the interface. ĉe diffusion of the nearby copper vacancies is still too slow to ėll in

the region. However, unlike the previous case, a region with a high concentration

of copper vacancies forms near the interface. Because there is back diffusion, the

high concentration region will have a ėnite thickness. (Unfortunately, the motion

and accumulation of ionized copper vacancies could not be simulated due to insta-

bilities brought by the abruptness of the interface and the highly non-linear nature

of the governing equations[ǉǑǈ].)

We simulated a cartoon depiction of distribution of ionized copper vacancies

aěer some period of time (Figure ǋ.Ǒ.Ǐ). Similar to the previous case, we assumed
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that the electric ėeld that drove the ionized copper vacancies was constant in the

depletion region and that diffusion of the copper vacancies was negligible in the

driving of the copper vacancies. ĉe number of ionized copper vacancies is con-

served and the Ěux of copper vacancies across the ZnO/Cu O interface is zero.

ĉe depletion region in the Cu O is slightly more than Ǌ μmwide, so the ionized

copper vacancies residing in the ėnal ǉ.Ǎ μm of the depletion region were moved

to a region Ǎǈǈ nm wide adjacent to the interface. Since the number of ionized

copper vacancies was conserved, the concentration added to the Ǎǈǈ nm region

was ǉxǉǈ m− �ƥ.ƩxƥƤ− m/Ǎǈǈxǉǈ− m= ǋxǉǈ m− .

While the band diagram was not affected very much by the dramatic redistri-

bution of the ionized copper vacancies, the electric ėeld proėle changed dramati-

cally. ĉemaximumof the electric ėeldwithin theCu O region increased in order

to satisfy the Vbi requirement set by the difference in ZnO and Cu O work func-

tions. ĉe accumulation of charge at the interfacemakes the electric ėeld decrease

much faster near the interface. ĉerefore, to conserve the area under the electric

ėeld proėle (which equals Vbi), the maximum electric ėeld at the interface must

increase and the depletion region must also increase. With passing time, (ǉ) the

accumulation of the ionized copper vacancies increases, (Ǌ) the electric ėeld near

the interface increases, (ǋ) the band bending near the interface increases, (ǌ) the

depletion width increases, and (Ǎ) the ėeld within the depletion width that is not

in the accumulation layer decreases. Eventually, the voltage on the Cu O side will

effectively all be dropped in the thin accumulation layer, and the ėeld outside of

the accumulation layer will be zero.
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Figure 3.9.7: Effect of the accumulation of ionized copper vacancies near the
interface due to drift. (a) Copper vacancy density, (b) ionized copper density,
(c) electric field, and (d) energy band diagram with the assumption that all
copper vacancies at the ZnO/Cu O interface will accumulate.
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While we have presented two extreme cases for movement of ionized copper

vacancies near the ZnO/Cu O junction, the most likely case is a combination of

both. In the following sections, we will discuss how the experimental data show

evidence of both accumulation and compensation of ionized copper vacancies at

the interface.

ǋ.Ǒ.ǌ BŀŊĹ ňļĽĺŉ Ľł ŉļĹ EQE ĵŉ ňļŃŇŉ ŉĽŁĹň

In typical silicon pn junction solar cells, it is assumed that allminority carriers gen-

erated within the depletion width of the junction and the a minority carrier diffu-

sion length away form the junction for both p- and n-type regions are collected.

ĉe electric ėeld within the depletion region is assumed to be strong enough that

all minority carriers that reach this region are instantaneously swept away. ĉe

limiting factor for carrier collection is considered the diffusion of theminority car-

riers. Carrierswithin aminority carrier diffusion length of the depletion region are

considered to be collected, because they are considered to have enough mobility

and time to meander to the junction before they recombine.

Recently, it was shown by Musselman et al.[ǉǌǎ, ǉǎǉ] that in the ZnO/Cu O

system, we have to consider both the driě and diffusion length ofminority carriers

in the Cu O. ĉey calculated using the driě diffusion model that the driě length

Ldrift was ǉǉǈ nm and the diffusion length Ldiff was ǉǈǈ nm in electrodeposited

Cu O[ǉǎǉ]. Although these values are only estimates, the fact that the driě length

is smaller than the depletion width (Ǌ.Ǐμm in their case) implies that recombina-

tion within the depletion width is an important issue[ǉǎǉ].
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ĉedriě length is proportional to the electric ėeld and theminority carrier life-

time. ĉe driě length can be calculated by the following equation:

Ldrift = μE⃗τ, (ǋ.ǉǐ)

where μ is theminority carriermobility, E⃗ is the electric ėeld, τ is theminority car-

rier lifetime. Higher electric ėeld values can increase the driě length and thereby

increase the probability of carrier collection from the region with the higher mag-

nitude of the electric ėeld. We believe that the blue shiě of the EQE in the ėrst

Ǎ hours of light exposure (Figure ǋ.Ǒ.ǉ and ǋ.Ǒ.Ǌ) appearing for both planar and

nanowire geometry solar cells is a result of higher electric ėeld near the interface

due to the accumulation of ionized copper vacancies. ĉe creation of this accu-

mulation layer close to the interface increases the probability of carrier collection

within this layer. Since the layer is very close to the interface, short wavelength

photons, photons with energies just below the absorption edge of ZnO, will be

absorbed in this layer. From the toymodel in the previous section, we can see that

the result of copper vacancy accumulation was also a decrease in electric ėeld in

the region beyond the accumulation layer. Minority carriers that were generated

by longer wavelength photon, that were previously collected by the electric ėeld,

no longer are able todriě to the interface for carrier collection. As a result, theEQE

decreases for low energy photons and increases for high energy photons (Figure

ǋ.Ǒ.Ǌ), manifesting in a blue-shiě of the EQE curve (Figure ǋ.Ǒ.ǉ).

As seen in Figure ǋ.Ǐ.Ǌ, the absorption length is directly correlated to the wave-

length of incident light, so an EQE measurement can be used to measure the car-
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rier collection efficiency as a function of depth in the Cu O. For depths with an

increased copper vacancy concentration, the electric ėeld and carrier collection

efficiency are increased. For depths with a decreased copper vacancy concentra-

tion, the electric ėeld andcarrier collection efficiency aredecreased. ĉerefore, the

change in EQE can be seen a depth proėle for the change in the copper vacancy

distribution, which is evidenced by the similarity in Figure ǋ.Ǒ.Ǌa and the copper

vacancy density proėle aěer accumulation in Figure ǋ.Ǒ.Ǐ.

For theplanar solar cell, the changes in copper vacancydistributionoccur evenly

everywhere along the interface. In contrast, we believe that this initial change in

copper vacancy redistribution is due to only an accumulation at the tips of the

nanowires. Between nanowires, the Cu O is completely depleted and lacks the

strong electric ėeld needed to cause the driě of ionized copper vacancies (Figure

ǋ.Ǒ.ǐ). At the tips of the nanowire, theCu Oextends enough to sustain the full Vbi

with a full depletion layer. ĉe electric ėeld in this depletion layer can move the

ionized copper vacancies to accumulate at the tips of the ZnO nanowires.

Aěer Ǎ hours, the shiěing ceases in both planar and nanowire solar cells. From

our model, both driě and diffusion of ionized copper vacancies take place. Aěer

sufficient accumulation of copper vacancies at the interface, the concentration gra-

dient becomes large and begins to drive back diffusion at a similar rate to the driě

of ionized copper vacancies. Another possibility is that some compensation from

the hydrogen defects in ZnO could be slowly eliminating the accumulated copper

vacancies. Either case or a combination of both effects could result in a steady state

of accumulated ionized copper vacancies at the interface.

ǎǑ



Figure 3.9.8: 2D simulation of the conduction band for a nanowire ZnO/Cu O
junction. The lines represent the moving front of the high electric field region
as copper vacancies move to the region between nanowires.
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ǋ.Ǒ.Ǎ RĹĸ ňļĽĺŉ Ńĺ ŉļĹ EQE ĵŉ ŀŃłĻ ŉĽŁĹň Ľł łĵłŃŌĽŇĹ ňŃŀĵŇ ķĹŀŀň

In the previous section, we considered the accumulation of ionized copper vacan-

cies in the short time regime (< ǎ hours). For planar solar cells, a quasi-steady state

is reached. Figure ǋ.Ǒ.ǉ showed that EQE did not change much for the planar so-

lar cell aěer Ǎ hours. On the other hand, the EQE in the long wavelength regime

continues to evolve in the nanowire solar cell.

As previously mentioned, the region between the nanowires is completely de-

pleted initially. From Figure ǋ.Ǒ.ǐ, it appears that the effect of the nanowires on

the energy band proėle is merely smeared out over the nanowires. In other words,

a minority carrier, generated in a region above the nanowires, would not feel any

effect of the nanowires. Still, diffusionofminority carriers leads to the charge sepa-

rationbetweennanowires at the type II heterojunction interface ofZnOandCu O

despite the lack of electric ėeld in the region between nanowires.

However, aěer the driě of ionized copper vacancies causes accumulation near

the tip of the nanowires, the redistributed electric ėeld is closer to the nanowires.

ĉe electric ėeld is no longer smeared out over the nanowires but instead begins

to conform to the outline of the nanowires and causes driě of ionized copper va-

cancies into the region between nanowires. As a result, the region of Cu O be-

tween ZnO nanowires slowly becomes rich with ionized copper vacancies. ĉe

electric ėeld increases along the full length of the nanowire. ĉus, minority car-

riers generated by lower energy photons in this region of enhanced electric ėeld

between the nanowires have a greater probability of being collected. ĉe higher

collection probability ismanifested by the slowly increasingEQE in the highwave-
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length regime (Figure ǋ.Ǒ.Ǌb), which appears as a red shiě in theEQE for nanowire

solar cells (Figure ǋ.Ǒ.ǉb).

ǋ.Ǒ.ǎ LĵķĿ Ńĺ ňļĽĺŉĽłĻ EQEŌļĹł ŀĽĻļŉ Ľň Ńĺĺ

ĉe shiěs in EQE described in the previous sections require light. Between each

EQEmeasurement, the device was illuminated with white light. ĉe illumination

ensured that the device was constantly in its photoconductive state. Alternatively,

when a similar test was done but without the white light illumination between

EQE measurements, no shiě was observed (Figure ǋ.ǐ.Ǌ). In agreement with the

observed persistent photoconductivity in Cu O in literature and in our devices,

the decay of photoconductivity is an exponential decay[ǉǎǌ, ǉǏǉ–ǉǏǋ]. Effects of

the initial exposure to light may persist for very long times, but the proportion of

ionized copper vacancies decreases rapidly aěer illumination ceases. When most

of the copper vacancies become compensated by donor defects within the Cu O

(the origin of PPC in Cu O), they lose their charge and are not affected by the

electric ėeld. ĉerefore, the driě of ionized copper defects is minimized by the

limited availability of ionized copper defects, and the EQE does not shiě.

ǋ.ǉǈ DĵŇĿĹłĽłĻ Ńĺ CŊƦOŌĽŉļ ŀĽĻļŉ ĹŎńŃňŊŇĹ

Both accumulation of ionized copper vacancies and the compensation of these

ionized copper vacancies at the interface by hydrogen in the ZnOor another com-

pensating defect are possible and likely. ĉe compensation of the ionized copper

vacancies result in adefect complex that is neutral. ĉere are likely tobeboth anex-

ǏǊ



tremely high concentration of ionized copper vacancies and a high concentration

of ionizedhydrogen interstitials at the interface that are available for compensation

process. Other possible compensating defect complexes that may form include

copper divacancies[ǉǏǈ] or copper vacancy-oxygen vacancy complexes[ǉǎǌ]. As

a result of many charged defects being compensated, complexing, and becoming

neutral, voids may form at the interface. ĉese voids can increase the scaĨering

of light and make it seem like the ėlm is becoming darker. Another compensating

mechanism is the oxidation of copper(I) to copper(II). With a very high number

of copper vacancies, it is possible pockets of CuO to form at the interface[ǉǎǍ].

Aěer these long exposures to bright light, the nanowire solar cells appeared

darker than the Ěat solar cells. Pictures were taken to show the effects of long light

exposure on the visual appearance of the solar cells, especially the nanowire solar

cells. Since the entire solar cell was not illuminated during the test, the shadowed

regions act as a control for the effect of light exposure on the visual appearance of

these solar cells. Absorption measurements were done to monitor the change in

the absorption aěer long exposures of light. Absorption still increased dramati-

cally at the wavelength corresponding to the Cu O bandgap. At photon energies

lower than the bandgap, background absorption increased slightly for areas that

had been exposed to light for long periods of time. However, no other distinct

changes were observed for the darker regions.

Figure ǋ.ǉǈ.ǉ shows the resulting absorption spectra for solar cells that have

been exposed to white light for long periods of time. Figure ǋ.ǉǈ.ǉc shows the

change in absorption for each type of solar cell. ĉe gradual increase in absorption
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Figure 3.10.1: Comparison of darkening in ZnO/Cu O solar cells after long
light exposure. (a) Nanowire ZnO/Cu O solar cell darkened after long light
exposures. (b) Flat ZnO/Cu O solar cell remained the same even after long
light exposures. c) Difference in absorbance before and after long light exposure
for flat and nanowire solar cells.
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until ǎǌǈnmmaybe indicative of the formationofCuO, an indirect bandgapmate-

rial with reported bandgaps between ǉ.ǌ-ǉ.Ǐ eV[ǉǑǉ]. ĉewavelength-dependent

change in absorption in the nanowire solar cell is consistent with the transforma-

tion of some Cu O to CuO. An alternative explanation is the formation of voids

due to the vacancy accumulation at the interface[ǐǋ]. ĉe formationof small voids

on the order of the wavelength of light could scaĨer light and increase the absorp-

tion. When the darkened area of a nanowire solar cell was cross-sectioned and

inspected under the SEM, no large voids could be identiėed. Although the disor-

der of the nanowire array could make possible voids hard to see, nanowires still

maintained intimate contact with the Cu Omatrix. For these reasons, we believe

that the formation of voids is not responsible for the darkening of these solar cells.

ĉedarkening effectwasonly seen innanowire solar cells aěer long exposures to

white light. ĉis effect is due to thegeometry. ĉeCuOformsalong theZnO/Cu O

interface. In the planar solar cell, the path length through the CuO region is small.

ĉe absorption is therefore minimized. However, the geometry of the nanowires

allows the path length of a photon through region of CuO that can be as long as

the nanowire itself. ĉerefore, the absorption in the nanowire geometry is much

larger.

ĉe formation of CuO, while increasing absorption in the solar cell, did not

increase the efficiency of the solar cell. ĉese defects that form in the most criti-

cal point in the device, the interface, likely were sites of recombination. Since the

EQE is a product of the probabilities of photon absorption and carrier collection,

the increase in absorption likely was dominated by the large decrease in carrier
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collection.

ǋ.ǉǉ IŁńŀĽķĵŉĽŃłň

We have shown the ability to control the nanostructure of ZnO with the chem-

istry in aqueous solution synthesis to createZnO/Cu Osolar cells with planar and

nanowire architecture. By easily creating both types of solar cells through aque-

ous methods, we were able to compare the performance of these solar cells as a

function of internal architecture. ĉe incorporation of nanowires into the device

architecture of ZnO/Cu O solar cells proved to increase the carrier collection of

minority carriers that were generated by long wavelength photons. As a result, Jsc

of the solar cell increased by more than ǉǈǈƻ and EQE increased substantially in

the Ǎǈǈ-ǎǈǈ nm range. ĉese result demonstrated that the nanowires can remove

the constraint of only being able to efficiently collect carriers generated within a

minority carrier diffusion length from the p-n junction.

However, long-term testing remains critical for new solar cell structures and

materials. In this case, we studied both a new structure with the nanowire archi-

tecture and an unusual material in Cu O. We evaluated the aging characteristics

in ZnO/Cu O solar cells and determined how they depend on the geometry of

the device. ĉe difference in aging behavior was stark in comparing planar and

nanowire structures. ĉemotion of dopants created a region of enhanced electric

ėeldnear the interface anda regionof lower electric ėeld in thedepletion region. In

the planar solar cell, the EQE curves simply became blue-shiěed. In the nanowire

solar cell, the the region of high EQE in the EQE curve expanded due to where
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the enhanced electric ėelds resided in the overall structure of the solar cell. ĉis

result was unexpected and was due to the geometry of the solar cell. ĉese results

also imply that the dopant distribution in ionic semiconductors like Cu O can be

creatively engineered to enhance device performance. Onemethod to control the

dopant distribution, as demonstrated in this study, is the geometry of the solar cell.

ĉis method of controlling dopant distribution in ZnO/Cu O solar cells may

be a way to address a fundamental problem in these solar cells. In ZnO/Cu O

nanowire solar cells, theminority carrier collection length and the depletionwidth

are incompatible lengths[ǉǌǎ]. Because the minority carrier collection length is

smaller than the depletion width, the choice is either to collect all of the gener-

ated carrier, which maximizes current, or design the solar cell to use the entire

built-in bias, which maximizes voltage. By effectively doping the regions between

nanowires at a higher concentration through dopant diffusion, it may be possible

to not sacriėce current for voltage. Full control over the spacing between ZnO

nanowires could help in designing beĨer performing solar cells with predictable

aging characteristics.
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4
Templated growth of ZnO

ǌ.ǉ IłŉŇŃĸŊķŉĽŃł ĵłĸŁŃŉĽŋĵŉĽŃł

In the design of ZnO/Cu O solar cells, we showed in the previous section the im-

portanceof of controllingZnOmorphology in thedevice. UsingpurelyboĨom-up

methods,we switched themorphologyof theZnOfromaplanarėlm tonanowires.

However, the nanowires themselves were randomly arranged and poorly aligned.
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Although the nanowire solar cells proved to bemore efficient than the planar solar

cells, more control over the geometry of the nanowires could allow beĨer design

and higher efficiency solar cells.

ĉe geometrical requirements for many optoelectronic components and de-

vices ismuchmore rigorous than those needed to fabricate solar cells. In dielectric

optical structures like waveguides, photonic crystals, andmicrodisks, the exact ge-

ometry of the structure determines the functionality and the relevant wavelength

for the optical component. Larger degrees of conėnement require more precise

control over the dimensions of the component. For example, in a photonic crystal

cavity, the displacement of one of the crystalline elements by nanometers be the

difference between a working device and a worthless device[ǉǑǊ].

Twooptical devices inwhichZnOcanplay a critical role aremicrodisks and sin-

gle photon emiĨers. An advantage of the aqueous solution growth of ZnO is the

near atomic control of some features in morphology. ZnO grains develop crystal

habits that are deėned by the surface energies of the ZnO crystal planes. Typi-

cally, ZnO grains form in hexagonal cylinders or prisms that are deėned by the

low-index planes of ZnO, making each face of the ZnO grain extremely smooth

and the morphology predictable by growth conditions.

However, the ability to arbitrarily place these optical components in a speciėc

location on a wafer is also extremely important. By templating the growth of these

structures, the location of ZnOgrowth on thewafer and, to some extent, the shape

of the structure can be controlled. Previous approaches to templated growth of

ZnO have paĨerned a mask on a substrate by photolithography[ǉǉǋ, ǉǉǌ, ǉǑǋ],
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electronbeam(e-beam) lithography[ǉǑǌ], nanoimprint lithography[ǉǑǍ], or laser

interference lithography[ǉǑǎ, ǉǑǏ] and allowed ZnO to grow through the mask.

Some authors have creatively used polystyrene-based colloidal crystals to deėne

masks to create ZnO nanowire arrays or ZnO bowls[ǉǑǐ]. In order to create op-

tical structures from aqueously grown ZnO, we created undercut ZnO pillar with

Ěat tops to act as whispering gallery mode (WGM) resonators and tapered ZnO

nanowires as a part of a nanowire single photon source device.

ǌ.Ǌ ZłOWGMŇĹňŃłĵŉŃŇň

Recently, several groups have investigated ZnOWGM resonator by taking advan-

tage of the hexagonal cylindrical shape that results from the growth of ZnO[ǉǑǑ–

Ǌǈǐ]. ĉe growth techniques used for these works was vapor phase transport,

which requires high temperatures and vacuum systems. From the few reports of

ZnOWGMresonators formed through solution synthesis, none of themmade the

ZnO structure directly on a substrate in a controlled manner[Ǌǈǎ, ǊǈǑ, Ǌǉǈ]. In-

stead, ZnOmicrodisks, nanodisks, and microrods are formed in random location

with random orientations on the substrates. It may be that the ZnO structures

formed in solution and merely adhered to the substrate as the substrate was re-

moved from the solution.

In our synthesis,MgAl O was used as a substrate. MgAl O is known as a sub-

strate suitable for the epitaxial growth of ZnO[ǉǉǈ]. A continuous, epitaxial thin

ėlm of ZnO was ėrst formed on the substrate. ĉe ėlm was paĨerned with stan-

dard photolithography or e-beam lithography. Finally, ZnO was grown through
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the paĨern to obtain undercut hexagonal structures.

In order to achieve ZnO epitaxy, the substrate had to be cleaned extremely well.

ĉe substrate was cleaned in ultrasonically cleaned in acetone and isopropanol.

Residual organic surface contaminants were burned off by annealing at ǐǈǈ◦C for

ǐ hours. A “nucleation” layer of ZnO was epitaxially formed on the substrate by

suspending the substrate into a solution A, which consisted of ǈ.Ǌ g of zinc nitrate

hexahydrate and ǉ.ǊǍ mL of ǉǍ M ammonium hydroxide in Ǌǌ mL of deionized

water, and microwave heating it for ǊǍ seconds. ĉe sudden increase in tempera-

ture to nearly ǉǈǈ◦Ccaused very small pillars ( ǉǈǈ nm tall) to growepitaxially and

densely on the surface of the substrate. A second growth step to grow a continuous

thin ėlm of ZnO was performed by by suspending the substrate into a solution B,

which consisted of ǈ.Ǌ g of zinc nitrate hexahydrate, ǈ.ǈǍ g of sodium citrate trib-

asic dihydrate, and ǉ.ǊǍ mL of ǉǍM ammonium hydroxide in Ǌǌ mL of deionized

water, and heating it to Ǒǈ◦C for ǉǐ hours. On some samples, standard photolitho-

graphic techniqueswere usedwith Shipley ǉǐǈǈ series photoresist to paĨern holes

of various sizes. Onother samples, e-beam lithographywasdoneusingPMMAand

standard e-beam lithography procedures to paĨern smaller holes. Aěer lithogra-

phy and development, the samples were again suspended in solution B at Ǒǈ◦C

for times between Ǌ hours and ǌ hours, creating a hexagonal ZnO structure with

a Ěat top. ĉe photoresist or e-beam resist was removed with acetone, leaving an

undercut ZnO structure. We will refer to these structures as “microdisks” for the

remainder of this chapter.

Figure ǌ.Ǌ.ǉ shows a cross section of ZnO growing along the curved shape of
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the photoresist, proving that the ZnO can bemolded by using resist as a template.

Figure ǌ.Ǌ.Ǌ shows the microdisks that are formed growing ZnO through circular

paĨerns in photoresist. ĉe curved stem region indicates that the contrast of the

photoresist was poor. ĉerefore, the undercut was not as sharp as desired. More

than Ǌ.ǊǍ hours of growth through the paĨerned photoresist were required to ob-

tain a structure that resembled a hexagonal disk. Figure ǌ.Ǌ.Ǌa shows that for times

under Ǌ.ǊǍ hours, the the microdisk still lacked the deėned crystal facets that are

oěen seen in single crystal ZnO structures. However, for microdisks that grew

for longer than Ǌ.ǊǍ hours, the facets were extremely smooth, the roughness being

much smaller than wavelengths of visible light.

Photoresist

ZnO

Figure 4.2.1: SEM micrograph of ZnO growth following the shape of photore-
sist. Scale bar = 2 μm.

At these time scales for growth, the vertical growth rate is approximately equal

to the horizontal growth rate as evidenced by the shape of the microdisk. While

the citrate ions in the growth solution slow down c-axis growth of the ZnO, it does
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Figure 4.2.2: Time series of ZnO microdisks grown through photoresist.

not affect the growth of the other planes of ZnO[ǉǈǏ, Ǌǉǈ]. ĉerefore, microdisks

with an aspect ratio of less than ǉ should not be expected with this growth tech-

nique.

Aěer ǋ hours of growth, one of the samples was again immersed in solution B

at Ǒǈ◦C for ǌ hours Ǎǈ minutes. Surprisingly, the microdisk continued to grow on

the single crystal of ZnO without any obvious defects signalling that growth was

interrupted.

2 μm

Figure 4.2.3: SEM of microdisk whose growth was interrupted and resumed
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Because of the poor resist contrast with photolithography, e-beam lithography

was used to create a much sharper undercut. Figure ǌ.Ǌ.ǌ shows a series of mi-

crodisks formed by growing through various size holes in the paĨerned e-beam

resist. ĉe facets of themicrodisk were very smooth, except for the base of themi-

crodisk. A defective region circumscribedmanyof themicrodisks formed through

e-beam lithography. However, the undercut in these microdisks were are superior

to those deėned by photolithography.

Figure 4.2.4: Series of ZnO microdisks grown through e-beam resist. The hole
size through the e-beam resist was varied: (a) 2 μm, (b) 1 μm, and (c) 200 nm.

ĉe defective region at the base of the e-beam deėned microdisks is peculiar.

ĉeway that the diameter of themicrodisk decreases at the center of the defective

region is reminiscentof twinning inZnOmicroplates[Ǌǉǉ–Ǌǉǋ] andmicrorods[ǉǈǈ,

Ǌǈǎ]. Dai et al.[Ǌǈǎ] explains the growth of the twin-rods by aĨributing different

growthmechanisms to the (ǈǈǈǉ) plane and the (ǈǈǈƥ) plane of ZnO.As the ZnO

grows through the paĨerned hole, it grows both horizontally and vertically, caus-

ing the sides of the microdisk to slant away from the center. Figure ǌ.Ǌ.Ǎ describes

two scenarios. In the ėrst case (Figure ǌ.Ǌ.Ǎa), the horizontal and vertical growth
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rate are constant throughout growth process. ĉe resulting sidewalls would have

a constant slope. In the second case (Figure ǌ.Ǌ.Ǎb), the horizontal growth rate

decreases as growth progresses, as described by He et al., who claim that a criti-

cal concentration of nutrient ions is required for horizontal growth[Ǌǉǌ]. As the

concentration of nutrients in the closed system decreases during the growth, the

horizontal growth rate also decreases. Since the boĨomof themicrodisk becomes

exposed to the solution, a different mechanism of growth on the (ǈǈǈƥ) could be

responsible for growth in the downward direction. As the space ėlls in, the defec-

tive region is formed.

substrate

E-beam resist ZnO

substrate

E-beam resist ZnO

A) B)

Figure 4.2.5: Schematic of sloping of sidewalls in microdisks. a) Case where
the vertical growth rate and the horizontal growth rate are constant throughout
the growth process. b) Case where the horizontal growth rate decreases as
growth progresses.

We have not been able to detect the presence of whispering gallery modes in

these structures throughphotoluminescence. Evenwith theseminordefects, whis-

pering gallery modes should be able to be detected through photoluminescence

if one compares the quality of these structures with those structures that report

WGM in literature[Ǌǈǎ, ǊǈǑ, Ǌǉǈ]. Despite the failure of detecting WGMs, we

have shown the ability to manufacture ZnO structures that resemble WGM res-
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onators at precise locationsona substrate through standard lithography techniques.

ǌ.ǋ TĵńĹŇĹĸ ZłOłĵłŃŌĽŇĹň ĺŃŇ ĹłļĵłķĽłĻ ńļŃŉŃł ĹŎŉŇĵķ-

ŉĽŃł ĺŇŃŁ ĵ ňĽłĻŀĹ ńļŃŉŃł ňŃŊŇķĹ

ĉesearch for a solid-state single photon source is essential in fulėlling the techno-

logical advances promised by quantum computation and information processing

[ǊǉǍ]. ĉepotential beneėts for using theGaNnitride family ofmaterials to serves

as a single photon source arenumerous. ĉe largebuilt-in electric ėeld foundalong

the c-axis of GaN could be used to probe large two-qubit interactions[Ǌǉǎ]. ĉe

wide range of wavelengths available to the nitride family enlarges the potential ap-

plications for a nitride single photon source[ǊǉǏ]. Furthermore, nitrides have a

potential for being able to perform at higher temperatures and can be electrically

contacted[ǊǉǏ].

Quantumdots inGaNhave the potential to be single photon sources[ǊǉǏ], but

the extraction of emiĨed photon is complicated by the high index of refraction

of GaN. Only ǋ% of emiĨed light in LEDs are extracted[ǋǌ]. ĉis low extrac-

tion efficiency poses a serious problem for engineering a reliable single photon

emiĨer in GaN. To address a similar problem in the GaAs system, Claudon et al.

used a tapered nanowire to guide photons away from the emiĨer and avoid scat-

tering at the top facet of the nanowire[Ǌǉǐ]. We propose a similar approach using

ZnOnanowires grownonGaN to extract emiĨedphotons fromembedded InGaN

quantum dots. In order to enable this technology, tapered ZnO nanowires must

be epitaxially grown over a single InGaN quantum dot.
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Inorder todemonstrate the ability todogrow taperednanowires at pre-determined

locations, we used a thin ėlm, goldmask with apertures having diameters between

ǉǈǈ nm to Ǌ μm and grew through the apertures where only the GaN surface was

exposed. ĉe gold mask was prepared through metal liě-off that was paĨerned

with standard e-beam lithography. ĉe gold was deposited in a thermal evapora-

tor with thin layer of chromium ( Ǌnm) used as an adhesion layer. ĉe sample

was cleaned in oxygen plasma for Ǎ minutes at ǉǍǈ W to remove residual organic

contaminants. For ZnO growth, the samples were immersed in solution A (ZnO

growth solution without citrate) at Ǒǈ◦C for ǌ, ǎ, and ǉǏ hours without the depo-

sition of a nucleation layer.

Tapered nanowires were grown from the apertures in the gold ėlm. ĉe height

of the nanowires did not vary systematically with the tested times. Likely, most

growth stops aěer around ǌ hours. Figure ǌ.ǋ.ǉ shows one of the smallest diameter

nanowires. ĉe diameter of the nanowire was ǊǏǈ nm and the height was ǌ.Ǌ μm.

ĉe smallest diameter apertures did not have any nanowires growing from them.

On the other hand, the largest apertures oěen had multiple microwires of ZnO

growing from the same aperture. Since ZnO grows epitaxially on GaN[ǋǍ, ǉǉǉ,

ǉǉǊ], all of the ZnO nanowires were vertically aligned from the surface.

Curiously, many nanowires did not occupy the entire space alloĨed by the aper-

ture as in Figure ǌ.ǋ.ǉa. Cole et al. observed that, in Mg-doping GaN, theMg oxi-

dises at the surface when exposed to oxygen plasma[ǉǑǋ]. ĉeMgOat the surface

then blocks OH− aĨachment to the surface, effectively blocking ZnO nucleation

and growth. Although their growth chemistry is slightly different, the same pro-
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1 µm 10 µm

a) b)

Figure 4.3.1: SEM of tapered ZnO nanowires grown on GaN though Au film
apertures. a) Single ZnO nanowire. b) The entire array of aperture sizes from
100 nm to 2 μm.

cess could be occurring here. Some portions of the GaN surface may have MgO

blocking nucleation and growth of ZnO.ĉerefore in some apertures, only a frac-

tion of the apertures is used by the growing ZnO nanowire.

We have seen how difficult good control over the exact shape and position can

be. In our case those difficulties were manifested in the defects at the base of

the microdisks and off-centered growth of nanowires in apertures. Yet, we have

demonstrated the ability to purposefully grow in place ZnO optical components

and devices and taken a step in the formation of useful boĨom-up ZnO optical

devices.
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5
Aqueous epitaxial growth of ZnOon

single crystalline Aumicroplates

Ǎ.ǉ IłŉŇŃĸŊķŉĽŃł

ĉequality ofmetal/oxide interfaces is an important determinant of the efficiency

of electrical[ǊǉǑ], plasmonic[ǊǊǈ, ǊǊǉ], and catalytic devices[ǊǊǊ]. Typically,
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metal/oxide interfaces are formed by vapor-phase deposition, resulting in poly-

crystalline ėlmswith variousmorphologies, textures, grain sizes, and orientations.

Here we demonstrate a method for growing epitaxial ZnO from an aqueous solu-

tion at Ǒǈ◦C on single crystalline Aumicroplates. ĉese results could have impor-

tant implicationson the advancementofmetal/ZnO-basedelectronicdevices[ǊǊǋ],

plasmonic devices[ǊǊǌ, ǊǊǍ], and heterogeneous catalysts[ǊǊǎ, ǊǊǏ]. As seen in

previouswork, inwhichepitaxialZnOwasusedas a current spreading layer inGaN

LEDs[ǋǍ], and in Chapter ǌ, where the epitaxal growth was critical in the tem-

plated growth of ZnO, epitaxial growth on a commonly used metal, like gold, can

enablemanymoreoptoelectonic applications forZnO, inwhichmetal-semiconductor

integration is essential.

While epitaxial growth of ZnO on nearly laĨice-matched substrates, includ-

ing GaN[ǊǊǐ], sapphire[Ǒ, ǊǊǑ], and SiC[ǊǊǑ], has become well established, het-

eroepitaxy with metals has not been as well explored. ĉe common challenges of

epitaxial growth on highly dissimilar materials[Ǌǋǈ] apply to the Au/ZnO system

as well. Au and ZnO have different crystal structures, chemical bonding, and lat-

tice constants. Gold has a face-centered cubic (FCC) crystal structure with a lat-

tice constant a = ǈ.ǌǈǏǑ nm. ZnO has a hexagonal wurtzite crystal structure with

laĨice constants a = b = ǈ.ǋǊǍǈ nm and c = ǈ.ǍǊǈǏ nm. In the close-packed plane

of each structure, this yields a laĨice mismatch of

(aZnO − aAu
√
Ʀ/Ʀ)/(aAu

√
Ʀ/Ʀ) = ƥƦ.ƫ%. (Ǎ.ǉ)

Despite these challenges, there has been some success in epitaxial growth of
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ZnO on Au[Ǌǋǉ]. Because the thermal expansion coefficients of the two mate-

rials are so different, low temperature deposition techniques have been crucial in

their heteroepitaxy. Aqueous, epitaxial electrodeposition of ZnO nanopillars on

large single crystalline gold substrates has been demonstrated[ǊǋǊ, Ǌǋǋ]. How-

ever, smooth ZnO ėlms are oěen required for most practical optoelectronic appli-

cations. Additionally, gold, while ubiquitous in semiconductor technologies and

plasmonics, is rarely used as single crystalline substrates. Recently, a simple ther-

molysis procedure for producing very large, gold microplates[Ǌǋǌ, ǊǋǍ] has been

developed. ĉeseplates are single crystalline,making thematomically smooth and

ideal for modular plasmonic[Ǌǋǌ] and microelectronic devices.

Our technique is a simple solution-based aqueous synthesis, and, unlike thepre-

viously demonstrated epitaxial electrodeposition of ZnO on Au[ǊǋǊ, Ǌǋǋ], does

not require an external electrical bias. Another advantage of our work is that we

demonstrate the coalescence of epitaxial ZnO columns into a smooth, thin ėlm;

which is essential formost device fabrication. ĉe single crystalline gold plates can

also be grownon any substrate that can survive the ǉǋǈ◦Cdeposition andbe stable

in the growth solution[ǊǋǍ]. ĉe simple synthesis method for obtaining epitax-

ial ZnO therefore opens more opportunities for modular Au/ZnO devices made

through boĨom-up processes.

Ǎ.Ǌ EŎńĹŇĽŁĹłŉĵŀ ŁĹŉļŃĸň

Single crystalline Au microplates were ėrst grown on Si substrates by thermolysis

of (AuCl )−-tetraoctylammonium bromide (TOAB) complex in air[Ǌǋǌ, ǊǋǍ].
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BrieĚy, ǋ.Ǌ mL of ǊǍ mM hydrogen tetrachloroaurate(III) hydrate in deionized

water were mixed with ǐ mL of ǍǈmM tetraoctylammonium bromide (TOAB) in

toluene. Aěer vigorous stirring, the top layer, consisting of a Au-TOAB complex in

toluene, was separated and drop-cast onto a Si substrate. ĉe substrate was heated

to ǉǋǈºC on a hotplate for Ǌǌ-ǌǐ hours and gently rinsed with toluene and dried.

Aqueous ZnO deposition followed procedures similar to those reported in lit-

erature [ǉǉǈ, ǉǉǊ, Ǌǋǎ]. In order to maintain control over ėlmmorphology, a two

step method was used to separate the nucleation and growth of the ZnO ėlms

as much as possible. ĉe nucleation step was either done by rapid heating us-

ing a microwave oven or by slow heating in a conventional oven. Substrates were

cleaned with an Anatech ǉǈǎ oxygen plasma barrel asher for ǉ minute immedi-

ately prior to seed layer deposition to remove adsorbed organic contaminants. For

the microwave-based nucleation, the substrate was suspended with the growth-

face facing down in a solution of ǈ.Ǌ g zinc nitrate hexahydrate, ǉ.ǊǍ mL of ǉǍ

M ammonium hydroxide, and Ǌǌ mL of deionized water in a TeĚon vessel. ĉe

vessel was heated on high power for ǊǍ seconds in a microwave oven (GE model

JESǏǋǐWJǈǊ), heating the solution to approximately ǑǍ◦C very rapidly. ĉe sub-

strate was immediately removed from the vessel aěer heating, gently rinsed in wa-

ter, and dried. For nucleation in a conventional oven, the substrate was identically

suspended facedown in aTeĚonvesselwith the same solution. ĉevesselwas then

kept at Ǒǈ◦C in an oven for at least ǉ.Ǎ hours. Aěerwards, the samplewas removed,

gently rinsed in water, and dried.

ĉe second step was to grow the nucleated seed layer into a continuous, co-
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alesced ėlm. ĉe growth solution consisted of ǈ.Ǌ g of zinc nitrate hexahydrate,

ǉ.ǊǍ mL of ǉǍ M ammonium hydroxide, Ǌǌ mL of deionized water, and ǈ.ǈǍ g of

sodium citrate tribasic dihydrate. Again, the substrate was sealed in a TeĚon ves-

sel face down in the solution and heated in a conventional oven to Ǒǈ◦C for ǌ-Ǌǌ

hours. ĉe growth rate decreases substantially aěer the ėrst ǌ hours, but some

samples remained in the oven for Ǌǌ hours to ensure completion of the growth

process. Aěerwards, the substrate was removed, gently rinsed in water, and dried.

To reveal the boĨom surface of the ZnO, the sample was Ěipped and pressed

onto a new, resist-coated Si substrate. AZ ǍǊǉǌE (Clariant) photoresist was spun

onto the Si substrate Ǌǈǈǈ rpm for ǋǈ seconds, then soě-baked at ǉǈǈ◦C for ǉ

minute, resulting in a resist thickness of approximately Ǌ µm. Ametal blockweigh-

ingǉ.ǎ kgwasplacedon topof the sandwich structure, and the structurewasheated

to ǉǋǈ◦C, above the glass temperature of the photoresist[ǊǋǏ]. ĉe sandwiched

structure remained at ǉǋǈ◦C for ǋǈ minutes and was slowly cooled back to room

temperature. ĉe metal block was then removed, and the two Si substrates were

separated with tweezers. As a result, some of themicroplates were transferred into

the layer of photoresist on the new Si substrate. ĉis sample, with Ěipped mi-

croplates on it, was dipped into Au etchant Type TFA (Transene Company) until

all Au was removed. Since the Au microplates were of various thicknesses, the to-

tal etching time also varied from ǉǈminutes to ǎǈ minutes. ĉe boĨom surface of

the ZnOwas revealed aěer all of the Au was removed.

Scanning electron microscopy (SEM) and electron backscaĨered diffraction

(EBSD) were performed using a SupraǍǍVP ėeld emission SEM (Carl Zeiss AG,
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Germany) equipped with an EBSD detector. AFM was performed using an Asy-

lumMFP-ǋD AFM. Photoluminescence (PL) was performed on the grown ZnO

using a LabĆMAĆMIS system (HORIBA Scientiėc, Japan). Samples were ex-

cited with a ǋǊǍ nm (HeCd) laser for PL. Cross-sectional specimens for transmis-

sion electronmicroscopy (TEM)were prepared using the “liě-out” technique in a

focused ionbeam(FIB) (ZeissNVision ǌǈ) system. TEM(JEOL-Ǌǉǈǈ at ǊǈǈkV)

and selected area electron diffraction (SAED) were conducted in order to study

the orientational relationship between the Au and the ZnO.ĉe HRTEMmicro-

graph was acquired using a Zeiss Libra Ǌǈǈmonochromic, Cs-corrected transmis-

sion electron microscope (TEM) at Ǌǈǈ kV (Cs-corrected to -ǉμm).

Ǎ.ǋ RĹňŊŀŉň ĵłĸ ĸĽňķŊňňĽŃł

ZnO ėlms on the Au microplates were made by a two step procedure to separate

nucleation and growth as much as possible, and therefore to exercise beĨer con-

trol on the structure and morphology of the ZnO. We refer to the ZnO grown on

the Au microplates aěer the nucleation step as the seed layer. Growth of the ZnO

proceeded by slowly decreasing the solubility of zinc species in solution through

the gradual elevation of temperature[ǉǈǎ, Ǌǋǎ]. ĉemain difference between the

nucleation step and the growth step was the speed at which the temperature was

raised. Figures Ǎ.ǋ.ǉb,d and Ǎ.ǋ.Ǌa,c show schematics of the overall structure of

ZnO grown on Aumicroplates at the different stages of synthesis. Also shown are

micrographs fromscanning electronmicroscopy (SEM)of theZnOėlmat various

stages of growth. Overall ėlmmorphology could be changed fromĚat and smooth
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(Figure Ǎ.ǋ.ǉb,c and Ǎ.ǋ.Ǌa,b) to rough and faceted (Figure Ǎ.ǋ.ǉd,e and Ǎ.ǋ.Ǌc,d)

by altering the kinetics of the nucleation step.

When the nucleation step was fast, the resulting ZnO ėlm aěer the growth step

was smooth (AFM RMS roughness was Ǐnm) and uniform in height. Individual

grainswere nearly impossible to discern by SEM(Figure Ǎ.ǋ.ǉg). Microwave heat-

ing was used to raise the temperature to Ǒǈ◦C in ǊǍ seconds in order to make the

nucleation step fast and increase the rate of ZnO formation. Figure Ǎ.ǋ.ǉc shows

that the initial seed layer was composed of small densely packed ZnO crystallites

on the Au surface. ĉe crystallites were faceted with the expected hexagonal crys-

tal habits and had a columnar structure. ĉe height of each crystallite was uniform

across the surface of each Au microplate. Each crystallite grew and coalesced dur-

ing the growth stage at the same rate, resulting in a smooth ZnO ėlm.

Conversely, a conventional oven raised the sample temperature to ǑǈºCover ǉ.Ǎ

hours, resulting in amuch slower nucleation rate. It has been previously shown by

Wen et al. that ZnO nanowire arrays may grow without the aid of a seed layer on

metal ėlms[Ǌǌ]. ĉe nucleation step in the oven described in this work is akin

to a very short growth by the method described by these authors. ĉe ėnal ZnO

ėlmmorphologywas composed ofmany large, hexagonal grains of ZnOwith each

hexagonal grain oriented in the same direction (Figure Ǎ.ǋ.Ǌd). ĉe alignment of

each grain indicates that there was an epitaxial relationship between the ėlm and

the substrate. Each grain appears smooth and sharply faceted, but since the ėlm is

composed of many of these grains, each with a different height, the overall ėlm is
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Au plate

ZnO nanopillars Unfaceted ZnO

Au plate

Fast nucleation Slow nucleation

e)

Figure 5.3.1: Film morphology of epitaxial ZnO nucleation layer on Au con-
trolled through growth kinetics. (a) SEM micrograph of the initial Au microplate.
Scale bar = 10μm. Left column: Nucleation and growth steps of microwave-
nucleated ZnO on Au. (b) Schematic of dense nanopillars formed on the Au
microplate during the fast nucleation step. (c) SEM micrograph showing ZnO
on Au microplate after the fast nucleation step. Scale bar = 5μm. Insets show
high magnification views of the corner of the plate, showing the uniform height
of the nanopillars (lower left, scale bar = 1μm), and middle of the plate, showing
the crystal habits (top right, scale bar = 200nm) of the ZnO. (d) Schematic of
sparse, unfaceted ZnO of varying sizes on a Au microplate formed during the
slow nucleation step. (e) SEM micrograph showing Au microplate after the slow
nucleation step, viewed at a tilt of 45◦. Scale bar = 1μm.
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Flat Growth Faceted Growth
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d)

Figure 5.3.2: Film morphology of epitaxial ZnO growth layer on Au controlled
through growth kinetics. (a) Schematic of flat ZnO on Au showing the Au
substrate underneath a smooth ZnO film. (b) SEM micrograph showing the
smooth and flat morphology of microwave-nucleated ZnO after the growth step.
Scale bar = 5μm. Inset shows a low magnification view of the entire film on the
Au microplate. Scale bar = 40μm. Right column: Nucleation and growth steps
of oven-nucleated ZnO on Au. (c) Schematic of ZnO on Au showing the Au
substrate underneath a highly faceted ZnO film. (d) SEM micrograph showing
rough and faceted morphology of oven-nucleated ZnO after the growth step
viewed at a tilt of 45◦. Scale bar = 5μm. Inset shows a low magnification view
of the entire film on the Au microplate. Scale bar = 20μm.
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extremely rough. ZnO grown on the Si substrate, but not on the Au microplates,

shows no signature of alignment. Figure Ǎ.ǋ.ǉe shows that the initial seed layer

was composed of islands of ZnO that formed over the course of the nucleation

step. ZnO crystallites sparsely populated the surface of the Au. ĉe crystallites

that formed were columnar and tall. Because the nucleation did not occur all at

the same time, the height of each ZnO column depended on when it was formed

during the ǉ.Ǎ hour period. ĉe largest crystallites were ǉ μm tall. A large por-

tion of the surface aěer the slow nucleation step was populated by granular ZnO

particles that lacked any obvious crystal facets. Each of these crystallites, which

started growing at different times within the ǉ.Ǎ hour nucleation period, eventu-

ally coalesced into a ėlm during the growth step, resulting in a ėlm composed of

large hexagonal grains of different heights.

ĉe ėnal thickness of the ėlm grown by fast nucleation was approximately ǋ

μm (Figure Ǎ.ǋ.ǋa) whereas the ėnal thickness of ėlms grown by slow nucleation

was approximately ǉǈ μm (Figure Ǎ.ǋ.ǋb). ĉe discrepancy in the thickness is due

selectivity of ZnO growth. ĉe amount of ZnO precursor was the same in both

growth solutions, and so we expected to see the total volume of ZnO grown to

be equal. When fast nucleation was used, non-selective nucleation occurred on

the Si substrate in addition to the nucleation on the Au microplates. ĉerefore,

during the growth step, ZnO was deposited over a large area. In contrast, during

slow nucleation, ZnO only nucleated on the metal, which is similar to a previous

report[Ǌǌ]. Hence, all of theZnOgrowthoccurredonly on theAumicroplates. As

a result, the ZnO grown on the slow nucleated samples are much thicker, because
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the ZnO grew over a smaller area.

a) b)

ZnO

Au

Si

ZnO

Au
Si

Figure 5.3.3: Focused ion beam (FIB) cross-section of ZnO/Au film. (a) ZnO
on Au grown though the fast nucleation method. Scale bar = 4μm. (b) ZnO
on Au grown through the slow nucleation method. Scale bar = 10μm.

To examine the boĨom surfaces of ėlms produced by both techniques, the ėlms

were inverted and the Au was removed using a gold wet etch. ĉe boĨom surfaces

of the ėlms indicate the quality of the interface on larger scale than cross-sectional

TEMand reveal some of the kinetics at the beginning of ZnOgrowth. ĉe boĨom

surface of the ėlm produced by fast nucleation was porous (Figure Ǎ.ǋ.ǌ) and had

a root-mean-squared roughness of approximately Ǎǈ nm as measured by atomic

force microscopy (AFM) (Figure Ǎ.ǋ.ǌb). Rapid nucleation and growth of the

ZnO using microwave heating caused gaps to form between each ZnO nanopillar

in the initial ZnO layer. Growth of the ZnO nanopillars and their eventual coa-

lescence occurs as the zinc species in solution undergo a condensation reaction at

the surface of the nanopillars. However, for ėlms produced by fast nucleation, we

believe that the high density of nanopillars makes it difficult for the zinc species to

diffuse to the boĨomof the pillars, preventing coalescence of the ZnOnear the Au

surface before access to the solution is cut off by the growing ėlm. SEM and AFM
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(Figure Ǎ.ǋ.ǌc) of the ėlm produced by slow nucleation revealed amuch smoother

surface (RMS roughness of approximately ǌ nm) compared to the ėlm prepared

by fast nucleation. Here, the nucleation process is much slower and the seed layer

is much less dense. ĉerefore, the zinc species more readily access the space be-

tween ZnO seeds, creating intimate contact with the Au surface. Large grains are

visible in the SEM and AFMmicrographs, but the boundaries do not correspond

to a speciėc crystallographic direction. We are currently investigating the origin of

the boundaries which may result from disturbances in the solution growth during

the long nucleation period, such as loose precipitates adhering to the substrate, or

deformation in the Au microplate.

ElectronbackscaĨer diffraction (EBSD)was used to reveal the single crystalline

nature of the ZnOėlm on the (ǉǉǉ) Au surface and infer the epitaxial relationship

over large areas. EBSD IPF (inverse pole ėgure) determined the surface of the

ZnO to be a single grain of (ǈǈǈǉ) ZnO (Figure Ǎ.ǋ.Ǎb) onmonocrystalline (ǉǉǉ)

Au (Figure Ǎ.ǋ.Ǎa). Relativemisorientation inZnOandAuat eachmeasuredpoint

on the plate was negligible (Figure Ǎ.ǋ.ǎ), conėrming the absence of large angle

grain boundaries. ĉe tight distribution of crystallographic directions in both pole

ėgures showed that the Aumicroplate andZnOėlmwere single crystalline or very

close to single crystalline (Figure Ǎ.ǋ.ǎa,b). ĉedistribution of crystallographic di-

rections for the Au microplate appeared tighter than for the ZnO ėlm in the pole

ėgures, and the distubution is represented in the histogram of point-to-point an-

gular misorientation (Figure Ǎ.ǋ.ǎc). A small portion (less than ǋ%) of the points

measured in the ZnO ėlm registered an angular misorientation greater than Ǌ◦,
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Figure 5.3.4: Bottom surface of the ZnO. SEM and AFM micrographs of the
flipped ZnO/Au microplates after the Au has been removed. a) Low magnifi-
cation, 45◦ tilt view (SEM) of the entire flipped ZnO membrane embedded in
photoresist after Au has been etched away. Scale bar = 10μm. b) Bottom sur-
face of ZnO nucleated rapidly by microwave heating. (Top: SEM, scale bar =
1μm; bottom: AFM, 5μm x 5μm image.) c) Bottom surface of ZnO nucleated
slowly by heating in a conventional oven. (Top: SEM, scale bar = 1μm; bottom:
AFM, 5μm x 5μm image).
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the approximate resolution of the EBSD measurement. ĉe points on the ZnO

ėlm with greater than Ǌ◦ misorientation indicated that small angle grain bound-

aries were present in the ZnO ėlm.

111

001 101

Au

1010

0001 2110
- -

-

ZnO

a)

b)

Figure 5.3.5: EBSD of a Au microplate before and after ZnO growth. (a)
EBSD IPF map of single crystalline Au microplate. (b) EBSD IPF map of ZnO
grown on the same Au microplate. Insets for a) and b): top right indicates the
orientation of the unit cell of the Au microplate; bottom left is the corresponding
SEM micrograph for the EBSD IPF map. Scale bars = 25μm.

Aěer accounting for the slight difference of rotation between the two SEMmi-

crographs, the unit cell orientations corresponding to the Au microplate and the

ZnO are shown in the insets of Figure Ǎ.ǋ.Ǎa,b, which demonstrate the epitax-

ial relationship. From the EBSD data, we can infer the full epitaxial relationship

between the ZnO ėlm and the Au substrate, ZnO [ǉƥǈǈ](ǈǈǈǊ)∥Au [Ǌƥƥ](ǉǉǉ)

, which persists over the area of the entire Au microplate. ĉe fast nucleation
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Figure 5.3.6: Angular characterization of a Au microplate and ZnO film from
electron backscattered diffraction. a) Pole figure from a Au microplate. b) Pole
figure from the ZnO film. c) Distribution of point-to-point angular misorienta-
tion of Au plate and ZnO.

method was used to produce the ėlm shown in Figure Ǎ.ǋ.Ǎ. However, ZnO ėlms

produced by the slow nucleation method also showed the same epitaxial relation-

ship as probed by EBSD. Ultimately, due to the low angular resolution in EBSD,

we relied on TEM and electron diffraction to conėrm the epitaxial relationship.

Cross-sectional TEM was acquired to conėrm the epitaxy between the ZnO

ėlm and Aumicroplate. ĉe ZnO ėlm used in cross-sectional TEMwas produced

by the fast nucleationprocess. ĉehigh-resolutioncross-sectionalTEM(HRTEM)

micrograph (Figure Ǎ.ǋ.Ǐc) shows alignment between the Au and ZnOplanes and

a fully crystalline interface between Au and ZnO. Fourier mask ėltering was ap-

plied to cross-sectional HRTEMmicrographs to reduce noise and delineate dislo-

cations present at the interface. Fourier mask ėltering is done by ėrst applying a

Fourier transform to the original image. A speciėc ėlter is used to select only cer-

tain spatial frequencies for the subsequent inverse Fourier transform. ĉe inverse

Fourier transform reconstructs the real space image from the selectively ėltered

spatial frequencies. In Figure Ǎ.ǋ.ǐb, a paĨern mask is applied corresponding to

the expected ZnO and Au periodicity, resulting in a less noisy image. In Figure
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Ǎ.ǋ.ǐc, we selected only the spots in the Fourier transformed image corresponding

the set of planes parallel to the dislocations. ĉe resulting real-space image delin-

eates the location of the dislocations. By Fourier ėltering theHRTEM image using

only the (ǉǉƦǈ) ZnO and (ǈǊƦ) Au planes (Figure Ǎ.ǋ.ǐ), we obtained an image

that highlights the dislocations. On average, dislocations were present for every

ǐ.Ǐ planes of Au and for every Ǐ.Ǐ planes of ZnO (sAu planes = ǉ.ǌ, sZnO planes =

ǉ.ǋ, and n = ǋǐ dislocations). ĉe observed frequency of dislocations corresponds

closely with the expected frequency of dislocations when the two laĨices are not

rotated with respect to each other, Ǒ Au planes for every ǐ ZnO planes (Figure

Ǎ.ǋ.Ǐb).

Bright ėeld TEM imaging (Figure Ǎ.ǋ.Ǒ) shows a columnarmicrostructure, sig-

naling that ZnO on Au initially grew in islands before coalescing. Selected area

electron diffraction (SAED) was used to index the planes present in the cross-

sectional TEMmicrograph at the interface (Figure Ǎ.ǋ.Ǐa). (Streaks in the SAED

are camera artifacts.) Unexpectedly, two zone axes of ZnO were present in the

SAED, indicating that twoorientations ofZnOwere epitaxial to theAu substrate at

the interface: ZnO [ǉƥǈǈ](ǈǈǈǊ)∥Au [Ǌƥƥ](ǉǉǉ), which has no rotation between

the two close packed laĨices, and ZnO [ƥǊƥǈ](ǈǈǈǊ)∥Au [Ǌƥƥ](ǉǉǉ), which has

a ǋǈ◦ rotation between the two close packed laĨices(Figure Ǎ.ǋ.Ǐb). ĉe [ǉƥǈǈ]

reĚections from the ZnO were much stronger than the [ƥǊƥǈ] reĚections, indicat-

ing a preferred and dominant crystal orientation. While the ǋǈ◦ rotation is fa-

vored in some epitaxial wurtzite ėlms on cubic (ǉǉǉ) surfaces, such as ZnO on
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Figure 5.3.7: Cross-sectional TEM and SAED confirm epitaxial relationship
between Au and ZnO. a) SAED of (left) ZnO only, (middle) ZnO and Au, and
(right) Au only near the interface. b) Schematic of the 2D projection of the
close-packed planes of ZnO (0001) and Au (111) at the interface. The solid
line represents the unit cell for Au. The dashed line represents the unit cell for
ZnO. The shaded region represents the coincidence lattice. The two possible
orientations are those with the ZnO lattice rotated 0º and 30º about the [0001]
axis with respect to the (111)[111] Au lattice. These orientations correspond
to the two epitaxial relationships found in the SAED. c) The top panel shows
high resolution TEM micrograph of the ZnO/Au interface. The bottom panel
is a Fourier filtered image of the top panel, which highlights shows the misfit
dislocations present at the interface. Scale bars = 5 nm.
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Figure 5.3.8: Image processing of cross-sectional HRTEM micrograph. Left
panels show the real space representation. Right panels show the corresponding
Fourier transform of the image. Lines delineating the interface are meant to
guide the eye. The interface is not completely flat and cannot be represented by
a flat line. a) Raw micrograph without any post-processing. b) Fourier-filtered
image with pattern mask filtering. c) Fourier-filtered image, selecting only the
planes parallel to the dislocations. Scale bars = 5 nm.
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MgAl O [ǉǉǈ], it is slightly more unusual for an analogous epitaxial system, Ag/

ZnO [Ǌǋǐ]. Both Ag and Au have similar laĨice constants, ǌ.ǈǐ Å and ǌ.ǈǑ Å

respectively, and the same crystal structure. For the Ag/ZnO system, both epi-

taxial relationships had similar interfacial energies and the resulting structure was

dependent on surface conditions. In experiments of Ag nanocrystal deposition

on ZnO[ǊǋǑ], both variants were initially observed, but the ǋǈ◦ epitaxial growth

was strongly inhibited by the compressive strain in the Ag. In other cases of ZnO

grownon texturedAgėlms by solution growth, the ǋǈ◦ rotated growthwas not ob-

served at all[Ǌǌǈ]. Similarly, since we did not observe evidence of the ǋǈ◦ rotation

in EBSD aěer complete growth of the ZnO ėlms, we believe that the not rotated

variant also dominated our growth process.

Finally, to conėrm the quality of the ZnO, photoluminescence spectra were

measured (Figure Ǎ.ǋ.ǉǈ). Data presented in Figure Ǎ.ǋ.ǉǈ is from ZnO ėlms pro-

duced aěer a fast nucleation step. Similar PL spectra were also obtained fromėlms

produced aěer a slow nucleation step. As-grown ZnO ėlms showed photolumi-

nescence at unexpectedly low wavelengths. Two peaks were resolved at ǋǍǌ nm

and ǋǏǏ nm corresponding to energies of ǋ.Ǎǈ eV and ǋ.Ǌǐ eV, respectively, with

the peak at ǋǏǏ nmbeingmore intense. Aěer a stepped annealing of the sample on

a hotplate at ǊǍǈ◦C for ǋǈminutes and then ǋǈǈ◦C for ǋǈminutes, an asymmetric

peak was observed around ǋǐǈ nm (ǋ.Ǌǎ eV).ĉe shiě in photoluminescence was

aĨributed to the effects of residual water remaining in the ėlm aěer growth in an

aqueous solution[ǐǊ]. Aěer annealing, residual Zn(OH) was dehydrated and the

remaining water was expelled from the ėlm. With quenching defects from the ex-
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Figure 5.3.9: Bright field TEM of ZnO/Au cross-section. Columnar structures
near the interface imply an island growth mechanism at the initial stages of
film growth. The top part of the columns are due to thinning involved sample
preparation. The original thickness of the film was several microns. Scale bar
= 200 nm.
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cess water eliminated by the short anneal, the annealed ZnO exhibited strong UV

band edge photoluminescence, characteristic of high quality ZnO,with a small de-

fect band centered around ǎǈǈ nm.
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Figure 5.3.10: Effects of annealing on photoluminescence of ZnO grown on
Au microplates. Photoluminescence spectra of ZnO grown on Au microplates
as-grown and after a stepped anneal. The fast nucleation method was chosen
to produce the ZnO film for this sample. Inset: Logarithmic-linear scale shows
the effects of thin film interference in the defect band of the ZnO.

Ǎ.ǌ CŃłķŀŊňĽŃł

In summary, heteroepitaxial deposition of continuous ZnO ėlms on single crys-

talline Aumicroplates through solution-based techniques has been demonstrated.

Our method improves on previous work of epitaxial deposition of ZnO on Au by

using a deposition technique without a need for electrical contacts and by obtain-

ing a fully continuous and smooth ėlm. Nucleation of the ZnO seed layer was

also investigated and shown to dramatically affect themorphology of the resulting
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ėlm aěer growth. Our method of producing modular single crystalline ZnO/Au

plates, which may be formed on a large range of substrates, can facilitate detailed

study of metal - semiconductor junctions and new devices, such as microsystems-

enabled photovoltaics[Ǌǌǉ], micron-scale metal/oxide catalysts, or fully epitaxial

ZnO nanopiezoelectric generators[ǉǈǑ]. ĉese promising results will enable fur-

ther studies of the electrical and optical properties of the epitaxial ZnO/Au junc-

tion.
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6
Conclusions

In this work, we showed an example of how ZnO could affect the performance

of a solar cell and critical methods to making controlled ZnO structures for fu-

ture applications in optoelectronics. ĉe incorporation of nanowire ZnO to cre-

ate a nanostructured p-Cu O/n-ZnO junction improved the immediate perfor-

mance of the solar cells. Carrier collection of minority carriers created in Cu O
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increased as evidenced by the increase in short-circuit current, and the expansion

of the wavelength range in which external quantum efficiency was substantial. We

also showed that the movement of copper vacancies, the doping defect in Cu O,

drivenby the internal electric ėeld could alter the performanceof the solar cell over

time. ĉe ageing behavior was substantially different between nanowire and pla-

nar solar cells, which implies that future design of nanostructured solar cells must

long term ageing effects.

ĉe investigationof the effectsof nanostructureZnO/Cu Osolar cellswasmade

possible by controlling themorphologyofZnOmadeby aqueous solution growth.

Only the solutionparameterswere changed, but even this allowedcontrol in switch-

ing from planar to nanowire geometries. To further control ZnO structures to be

applicable formore sophisticatedoptical devices, weused templated growth to ob-

tain tall, undercut, hexagonal ZnOmicrodisks and precisely, placed, tapered ZnO

nanowires. ĉepurpose for theundercut,microdiskwas todemonstrate the ability

to create structures that could act as WGM cavities. ĉe tapered ZnO nanowires

could be used for enhancing extraction of photons emiĨed from a quantumdot on

in a GaN device, providing a single photon source.

Epitaxy was critical for the controlled growth of these paĨerned structures. In

these cases, the epitaxial substrate forZnOwasalways adielectric: GaNorMgAl O .

It may be desirable to have a substrate that is metallic for some optoelectronic ap-

plications to have a reĚecting interface, a high quality electrical contact, or to serve

as a sacriėcial layer. We produced single crystal Au plates to be used as epitaxial

substrates for aqueously grown ZnO.ĉe ZnOwas conėrmed to be epitaxial with
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the underlying Au plates through EBSD and TEM. ĉe morphology of the ZnO

on the Au plates could again be controlled through solution chemistry (through

the presence of citrate ions) and through the kinetics of growth.

We are hopeful that these advances in understanding the role of ZnO nanos-

tructure in devices and in controlling ZnO structure during growth will enable

advances in optoelectronic devices.
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