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Truthful and Fair Resource Allocation

Abstract

How should we divide a good or set of goods among a set of agents? There are various

constraints that we can consider. We consider two particular constraints. The first is

fairness – how can we find fair allocations? The second is truthfulness – what if we do

not know agents valuations for the goods being allocated? What if these valuations need

to be elicited, and agents will misreport their valuations if it is beneficial? Can we design

procedures that elicit agents’ true valuations while preserving the quality of the allocation?

We consider truthful and fair resource allocation procedures through a computational

lens. We first study fair division of a heterogeneous, divisible good, colloquially known as

the cake cutting problem. We depart from the existing literature and assume that agents

have restricted valuations that can be succinctly communicated. We consider the problems

of welfare-maximization, expressiveness, and truthfulness in cake cutting under this model.

In the second part of this dissertation we consider truthfulness in settings where pay-

ments can be used to incentivize agents to truthfully reveal their private information. A

mechanism asks agents to report their private preference information and computes an al-

location and payments based on these reports. The mechanism design problem is to find

incentive compatible mechanisms which incentivize agents to truthfully reveal their private

information and simultaneously compute allocations with desirable properties. The tradi-

tional approach to mechanism design specifies mechanisms by hand and proves that certain

desirable properties are satisfied. This limits the design space to mechanisms that can be

written down and analyzed. We take a computational approach, giving computational pro-

cedures that produce mechanisms with desirable properties. Our first contribution designs

a procedure that modifies heuristic branch and bound search and makes it usable as the

allocation algorithm in an incentive compatible mechanism. Our second contribution draws

a novel connection between incentive compatible mechanisms and machine learning. We use

this connection to learn payment rules to pair with provided allocation rules. Our payment

rules are not exactly incentive compatibility, but they minimize a measure of how much

agents can gain by misreporting.
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Chapter 1

Introduction

Resource allocation problems arise in all facets of life. Individuals and families decide how

to allocate their monetary resources and how to spend their time. Companies decide how

to allocate their human resources across different departments and priorities. Governments

must decide how to allocate military resources and how to divide pollution rights. These

are a just a tiny fraction of the resource allocation problems that are being considered and

solved on a daily basis.

In addition to looking at resource allocation problems across larger and larger cross-

sections of society, resource allocation problems can also be classified in terms of the re-

sources being allocated. The resources can be physical goods, such as precious metals or

a painting. They can be vanishing digital goods such as advertising slots on the Internet

[Edelman et al., 2007] and television [Nisan, 2010] or computing resources in the cloud.

As in the examples from the previous paragraph, it is also possible to consider monetary

resources as well as human capital.

The main take away is that resource allocation problems are widespread and important.

More formally, in a resource allocation problem, there is some resource or set of resources

that needs to be allocated among a set of agents. The agents have preferences for different

allocations of the resources. A resource allocation algorithm takes the agents’ preferences

and determines an allocation of the resources to the agents and optionally an amount that

each agent needs to pay in exchange for its allocation.

In this dissertation, we undertake the rigorous study of resource allocation algorithms

with a focus on two desirable properties. The first desirable property is fairness, which

requires that the algorithm find an allocation (and optionally payments) that is deemed fair.

Fairness is a natural criterion to consider, and in certain settings fairness is an important

1



CHAPTER 1 INTRODUCTION

consideration. For instance, when the government allocates resources, it has a strong interest

in fairness and not favoring any parties over others. In settings like divorce settlement, the

goal is to try and give the interested parties their fair share. If people have pooled together

resources for a shared resource such as computing servers, then it is important to allocate

time on the server in a fair way. There are several possible definitions of fairness and we

discuss the alternatives in the sequel, but an example of a natural fairness requirement is

envy-freeness, which requires that each agent prefer its own situation to that of any other

agent.

The second desirable property is truthfulness. While in some settings it is reasonable

to assume that the true preferences of the agents are known, in many settings, agents may

be self-interested and will misreport their preferences in order to increase their utility from

participation. In almost all commercial allocation settings the participants are companies

that are trying to maximize their profit and may or may not reveal their true preferences

depending on whether it is in their best interest. For instance, in the FCC’s wireless

spectrum auctions, participants have used their bids to send signals to and implicitly collude

with other participants [Cramton and Schwartz, 2000]. With the coming of the digital age

and the Internet, many new resource allocation problems have been created, almost all

of which involve self-interested agents with private information. Perhaps the best-studied

example is the setting of sponsored search auctions, which provide the main source of

Google’s revenue [Edelman et al., 2007].

Informally, truthfulness requires that it is (weakly) in an agent’s best interest to report

its true preferences. Using the simple single-item auction setting as an example, consider a

first-price auction and a second-price auction. Both auctions give the item to the highest

bidder, but a first-price auction charges the bidder its bid while a second-price auction

charges the bidder the second highest bid. The first-price auction is not truthful, since a

bidder has an incentive to shade its bid. It is an easy exercise to show that an agent’s best

strategy is to bid its value for the item in a second-price auction, and the intuition is that

the agent cannot affect its payment since it is set by the second highest bid.

One might see the appeal of truthfulness, but still wonder why truthfulness matters if

non-truthful mechanisms still result in good allocations of our resources. We discuss this

more in the sequel, but there are several justifications, ranging from practical to theoretical.

On the practical side, truthfulness makes it easy for agents to participate and makes for

procedures that are more fair in the sense that there is no advantage to being more sophis-

ticated or having more information about othe agents. On the theoretical side, economic

2



CHAPTER 1 INTRODUCTION

theory establishes that it is in some sense without loss to study truthful procedures due to

the revelation principle.

In studying truthful and fair resource allocation, we adopt a computational lens. When

implementing resource allocation algorithms in practice, there can be two computational

barriers. First, if agent preferences are very rich, then it may not be possible for agents

to completely communicate their preferences. Second, it is necessary to ensure that our

resource allocation algorithms are computationally tractable, i.e., run in time polynomial in

the size of a natural input representation. Our discussion of fair resource allocation focuses

on restricted families of valuations (mappings from allocations to values) and is motivated

by the first computational barrier. In our discussion of truthful mechanisms computation

is relevant in two ways: we use computational approaches to design mechanisms, and this

in turn helps to address settings where polynomial time computation is a barrier to some

otherwise truthful mechanisms.

1.1 Fairness and Cake Cutting

Our discussion of fair resource allocation algorithms focuses on fair division or the cake

cutting problem. In this setting, there is a single divisible good to be allocated among a set

of agents. The good is heterogeneous, in the sense that agents have different values for the

different parts of the good. As a concrete example, the divisible good could be time on a

compute server or a newly cleared plot of land. The typical goal in cake cutting is to give

a procedure that finds a fair allocation of the good. There are various notions of fairness,

but informally, proportionality requires that each agent receive at least 1/n of its value for

the entire good if there are n agents, envy-freeness requires that each agent prefer its own

allocation to that of any other agent, and equitability requires that all agents receive the

same value from their allocations.

Work on cake cutting dates back to Steinhaus in the 1940s [Steinhaus, 1948], and has

traditionally been studied by mathematicians, economists, and political scientists. More

recently, cake cutting has gained the attention of computer scientists and the artificial

intelligence (AI) community (Procaccia [2009], Chen et al. [2010], Zivan et al. [2010], Cara-

giannis et al. [2011], Cohler et al. [2011], Brams et al. [2012a], Maya and Nisan [2012],

Brânzei and Miltersen [2013], Brânzei et al. [2013], Kurokawa et al. [2013]). The survey

by Procaccia [2013] provides a nice summary of recent work. Cake cutting is of interest

to AI due to its potential importance in multi-agent resource allocation [Chevaleyre et al.,

3



CHAPTER 1 INTRODUCTION

2006]. Additionally, computer science provides a new and interesting perspective on cake

cutting by thinking about the representation of agent preferences and the computational

complexity of cake cutting.

Slightly more formally, there is a set of n agents and the cake is represented by the

interval [0, 1]. Each agent has a value density function vi over the interval. The agent’s

value for some set of disjoint subintervals is the integral of its value density function over

those subintervals. This definition makes agent’s valuation functions additive and non-

atomic so that agents derive no value from receiving a subinterval [x, x] consisting of a

single point. Agent valuations are assumed to be normalized so that each agent receives

value 1 for the entire cake. This assumption is typically without loss of generality and

makes our exposition simpler, and we will discuss whether our results extend to the more

general unnormalized case. A cake cutting procedure or algorithm outputs an allocation

A1, . . . , An where Ai represents a set of disjoint subintervals of [0, 1] and Ai ∩ Aj = ∅. An

allocation is proportional if each agent receives value at least 1/n, envy-free (EF) if each

agent values its assigned piece weakly more than the pieces of other agents, and equitable

(EQ) if all agents have the same value for the pieces they are assigned, i.e., for any two

agents i, j, agent i’s value for Ai is the same as agent j’s value for Aj .

1.1.1 Cake Cutting under Restricted Valuations

The classic cake cutting literature operates under the assumption that agents can have any

integrable value density function. As a result, classic cake cutting procedures never fully

pin down agents’ valuations but instead guarantee that the computed allocation will have

the desired fairness properties with respect to any value density function consistent with

the agents’ actions and responses to queries. As a simple example of a classic cake cutting

procedure, consider the Cut and Choose procedure for two agents. Agent 1 splits the cake

into two pieces of equal value, and agent 2 chooses the more preferred piece, leaving the

other piece to agent 1. While the final allocation is fair, we do not know agent 2’s exact

values for these two pieces, and we don’t have much information about the agents’ exact

value density functions on subintervals of each of these two pieces.

A key conceptual contribution of this dissertation, motivated by thinking about the rep-

resentation of agent valuations as inputs to a computational procedure, is the introduction

of the study of cake cutting when agents have restricted preferences. Indeed, the study of

restricted valuations can help with gaining a better understanding of the difficulties of cake

cutting as well as make it easier for cake cutting algorithms to gain traction in practice.
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Specifically, we consider cases where agent’s value density functions have very specific

forms. We consider the piecewise uniform case where the density function is either 0 or

some constant c, the piecewise constant case where the value density function is piecewise

constant, and the piecewise linear case where the value density function is piecewise linear.

Though these families of valuation functions are restrictive, there are natural settings

where they might be appropriate. Piecewise uniform valuations capture the setting where

an agent has intervals that are preferred and intervals that yield no value, but the agent has

the same marginal value for the preferred intervals. If the divisible good is being allocated is

time on a shared compute server, then an agent could plausibly have such preferences if there

are some scheduling constraints that prevent it from making use of certain time intervals

but the agent is indifferent among intervals without scheduling conflicts. Similarly, if the

divisible good being allocated is land, then agents may have simple preferences that makes

plots of land acceptable only if they have access to a canal. Piecewise uniform valuations

capture these simple settings. In comparison, though piecewise constant and piecewise

linear valuations are also restrictive, they can be used to approximate general valuations

and so in a sense are not restrictive at all.

It is tempting to draw an analogy between agents with piecewise constant valuations

and an indivisible goods setting where there is an indivisible good for each subinterval

on which agents’ value density functions are constant. Then allocations of cake can be

associated with probabilities of receiving each of these indivisible goods. The problem with

this analogy is that piecewise constant valuations allow agents to control the identity and

number of indivisible goods available whereas in indivisible good settings it is typically

assumed that the goods are pre-defined and cannot be affected by agents’ preferences. We

discuss this point further in Chapter 6 when we compare our setting with the random

assignment problem.

We have thus far discussed the disadvantage of these restricted families, namely that

they are not as expressive as general valuations. However, these restricted families are very

useful for the following reason:

It is possible to succinctly communicate these preferences, thereby allowing for a new

class of cake cutting algorithms which operate directly on the underlying value density func-

tions.

For example, a piecewise uniform valuation can be communicated by listing the end-

points of an agent’s intervals of interest. Similarly, a piecewise constant valuation can be

communicated by listing the endpoints of intervals on which an agent’s density function is
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constant and providing the value of the density function on each of these intervals. Like-

wise, a piecewise linear valuation can be communicated by listing the endpoints of intervals

on which an agent’s density function is linear and providing the slope and intercept of the

density function on each of these intervals.

In the context of mechanism design (to be discussed in the next section), assuming

restricted families of valuation functions allows for the study of direct mechanisms. Indeed,

the inspiration for studying restricted families of valuations came from our study of truthful

cake cutting (Chapter 6), but it turns out that allowing the algorithm to operate on the

exact valuations also gives rise to many other interesting questions.

1.1.2 Welfare Maximization in Cake Cutting

With restricted families of valuations and assuming that the algorithm has access to agent’s

exact valuations, a natural question to ask is:

How should we choose among the set of fair allocations for various notions of fairness?

This question is less natural under the classic cake cutting model since an allocation

may be better or worse depending on the particular value density function that is consistent

with the agents’ responses to queries made by the algorithm. A natural tie-breaker is to

consider the social welfare or total value created by an allocation (we will often drop the

modifier social and just refer to social welfare as welfare). An allocation is maxsum fair if

it has the highest total welfare among allocations that are fair. For instance, a maxsum EF

allocation is an allocation that has the highest total welfare among all EF allocations.

Since welfare involves summing values across agents, the assumption that agent value

density functions are normalized so that Vi([0, 1]) = 1 is no longer without loss since the

maxsum fair allocations will differ before and after normalization. In our study of maxsum

cake divisions we assume normalization, but the positive algorithmic results extend natu-

rally to settings where valuations are not normalized and the negative impossibility results

are only strengthened by expanding the set of possible valuations.

Our first contribution is to consider algorithms for computing maxsum EF allocations.

When valuations are piecewise constant, we provide a linear program (LP) that finds a

maxsum EF allocation in time polynomial in the number of bits needed to specify the

agents’ value density functions. For the case of two agents and piecewise linear valuations,

we show that exactly computing a maxsum EF allocation is not possible for polynomial time

algorithms. The reason is not due to computational complexity, but due to the fact that

there are cases where every maxsum EF allocation requires cuts at irrational points in [0, 1]
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even when agents’ value density functions can be expressed using rational numbers. We then

give an algorithm that computes an approximately EF allocation with welfare at least as

great as any maxsum EF allocation for two agents. This algorithm runs in time polynomial

in the input size and in O(log(1/ε)) where ε controls the level of approximate envy-freeness.

We then consider general value density functions under a Lipschitz continuity condition

and leverage our piecewise constant result to give an algorithm that is approximately EF

and has welfare that approximates any maxsum EF allocation. This algorithm runs in time

polynomial in 1/ε where ε controls the amount of deviation from exact envy-freeness and the

deviation from the welfare of any maxsum EF allocation. Though we focus our exposition

on maxsum EF allocations, our techniques extend to maxsum proportional and maxsum

EQ allocations (allocations that have maximal welfare among all proportional and all EQ

allocations respectively).

Having considered the problem of computing maxsum fair allocations, we next turn our

attention to understanding properties of these allocations. The goal is to shed light on the

relative qualities of these different maxsum fair allocations and help to choose among them

for particular applications. Specifically, we consider whether these maxsum fair allocations

are Pareto-efficient, meaning that there are no allocations that make all agents weakly better

off and at least one agent strictly better off. When considering Pareto-efficiency we allow the

allocations we compare against to be unfair, as maxsum fair allocations are trivially Pareto-

efficient if we limit our comparisons to fair allocations. We find, surprisingly, that there

exist piecewise constant valuations for three agents in which every maxsum EF allocation

is not Pareto-efficient. For maxsum EQ or maxsum EF+EQ allocations the situation is

even more dire, as there piecewise uniform valuations where all maxsum EQ and maxsum

EF+EQ allocations are not Pareto-efficient. In contrast, it is an easy exercise to argue that

all maxsum proportional allocations are Pareto-efficient (for any valuations).

The second result along these lines compares the social welfare of maxsum EQ and max-

sum EF allocations. We prove that for piecewise linear valuations, the welfare of maxsum

EF allocations is always weakly greater than the welfare of maxsum EQ allocations. We

also use this result to show an approximate version of this result for general valuations.

This suggests that an exact result holds for the general case as well, but the proof of this

remains an open question.
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1.1.3 Expressiveness

We next turn our attention to a different aspect of cake cutting while still operating in a

direct revelation model on restricted families of valuations. One assumption that is made

in cake cutting is that agent valuation functions are additive. This is a consequence of the

definition of agent values as the integral of a value density function. One implication of this

is that agents gain positive value from disjoint intervals that are each very small in size.

While this idealized model may hold in certain settings, there are some settings where it is

unrealistic. For instance, when allocating time on a compute server, there are significant

context switching costs that make many disjoint chunks of compute time less valuable.

Similarly, in the allocation of television advertising slots, slots that are less than 10 seconds

in length may not be useful. As a result, we undertake the study of cake cutting in a setting

where agents have piecewise uniform valuations with a minimum length parameter λ. This

parameter states that agents have no value for intervals less than λ in length and prevents

the algorithm from allocating many disjoint intervals that are each very tiny.

While proportional and EF allocations always exist in the traditional cake cutting model,

the same is no longer true when agents have a minimum length parameter. As a simple

example, consider the case where both agents have a minimum length parameter of 1. In

this case, an agent must receive the entire interval to have positive value, leaving nothing

for the other agent. Hence, exact proportionality is impossible in this setting. However,

we provide a polynomial time algorithm that guarantees an approximately proportional

allocation where the approximation is additive. Our algorithm is a carefully constructed

generalization of a proportional cake cutting procedure for n agents, and we show that

it attains the optimal additive approximation guarantee. The approximation is worse for

larger values of λ, capturing the fact that it is more difficult to satisfy agents with large

values of λ. We prove that the additive approximation we provide is essentially optimal

among all algorithms that give an additive worst-case approximation guarantee.

We then consider proportionality and envy-freeness together in this model with a mini-

mum length parameter. For two agents, we give a polynomial time algorithm that finds an

allocation that satisfies the best possible approximation to proportionality while preserving

exact envy-freeness. The algorithm is quite intricate and specific to the two agent case and

finding a generalization for any number of agents is likely quite challenging.
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1.2 Truthfulness and Mechanism Design

Having touched on our contributions to fair resource allocation, we discuss truthfulness and

mechanism design (we will also consider truthfulness and fairness together for cake cutting).

We provide a more rigorous treatment of mechanism design in Chapter 2, but we give a brief

introduction here. In order to study truthfulness of resource allocation algorithms, we must

clearly define what is meant by truthfulness. Our requirement of truthfulness arises from

the economic theory of mechanism design. In mechanism design, there are have n agents,

each agent has a type, there is a set of possible decisions. An agent’s type specifies how

much utility it derives from every possible decision. In full generality, a mechanism allows

the agents to send a message to the mechanism, and the mechanism selects a decision based

on the messages passed by the agents. In this dissertation, we focus on direct mechanisms,

or mechanisms where the messages are direct reports of an agent’s type. A mechanism is

therefore a mapping from a set of reported types, one for each agent, to a decision.

It is often the case that the decision can be broken down into an outcome component

and a payments component. The payments component may or may not be a part of the

decision. For example, in the cake cutting setting, the set of possible outcomes consists of

the permitted allocations of the cake and there are no payments, so the set of outcomes

coincides with the set of possible decisions. On the other hand, consider a single-item

auction. The possible outcomes consist of which agent the item is given to, and this is a

setting with payments, so the decision made by the mechanism includes the outcome and a

payment for each agent. When there are payments, we assume that agents have quasi-linear

utilities, so that an agent’s utility for receiving some outcome and paying some amount is

equal to its value for the outcome minus the required payment. We often use the term

algorithm interchangeably with outcome rule, since the outcome rule is typically solving

some sort of optimization problem to maximize an objective given the agents’ reported

valuations.

The goal of mechanism design is to make a good decision, where the quality of the

decision is evaluated with respect to the agents’ true types. It is assumed that agents will

behave in a way that maximizes their utility and will not not necessarily report their true

types. A strategy maps an agent’s true type to a reported type. Given strategies of other

agents, an agent has a set of strategies that are best responses. An equilibrium is a set of

strategies where each agent’s strategy is a best response to the strategies of other agents.

To understand the quality of the decisions of a mechanism, it is necessary to identify the

equilibria of the mechanism.
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In this dissertation, we focus on truthful mechanisms, i.e., mechanisms with equilibria

where each agent’s strategy is to report its true type. In truthful mechanisms, it is easy to

analyze the quality of the mechanism, as we can just measure the quality of the decision

with respect to reported types (which we can assume are the same as the true types) and

do not need to reason about the agent’s true underlying types. It is also simple for agents

to participate in truthful mechanisms since agents need only report their true types and

need not strategize about their reports. Furthermore, it turns out that there is a sense in

which studying truthful mechanisms is without loss due to what is known as the revelation

principle.

There are various notions of truthful mechanisms depending on definition of what con-

stitutes an equilibrium. The strongest notion of equilibrium we consider, dominant strategy

equilibrium, requires that agents’ best responses do not depend on the strategies of other

agents. Mechanisms with a truthful dominant strategy equilibrium are known as dominant

strategy incentive compatible (DSIC). In these mechanisms, reporting truthfully maximizes

an agents’ utility regardless of the actual types of the other agents. A weaker notion of

equilibrium is Bayes-Nash equilibrium, which applies to settings where agents’ types are

drawn from a commonly known distribution. In Bayes-Nash equilibrium, agent strategies

are best responses in expectation to the strategies of other agents, where the expectation is

taken over the possible types of the other agents. Mechanisms with a truthful Bayes-Nash

equilibrium are known as Bayes-Nash incentive compatible (BIC). In these mechanisms, re-

porting truthfully maximizes an agents’ expected utility, assuming that other agents’ types

are randomly drawn from the common knowledge distribution and that other agents re-

port truthfully. This is a weaker notion than DSIC because reporting truthfully is only

guaranteed to be a best response in expectation and only if other agents’ report truthfully.

1.2.1 Truthful Cake Cutting

Our first contribution to truthful resource allocation revisits the cake cutting problem with

restricted valuation functions. In particular, we examine the case of piecewise uniform

valuations and seek a mechanism that is both truthful and fair in this setting. Recall that

a mechanism in this setting is simply an algorithm that computes an allocation given the

agents’ reported types.

Most prior work on cake cutting ignores strategic issues and simply assumes that agent

valuations are either publicly known or truthfully revealed. Indeed, our other contributions

to the cake cutting literature have this flavor. Work that did consider strategic issues
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examines a very weak notion of truthfulness. The notion considered in previous papers

by Brams et al. [2006] and Brams et al. [2008] assumes that an agent will report its true

valuation rather than lie if there exist valuations of the other agents such that reporting

truthfully yields at least as much value as lying. In the words of Brams et al.,

The players are risk-averse and never strategically announce false measures if it
does not guarantee them more-valued pieces. ... Hence, a procedure is strategy-
proof if no player has a strategy that dominates his true value function [Brams
et al., 2008, page 362]

We depart from this prior work and instead attempt to find mechanisms that are DSIC.

In contrast to the notion of of truthfulness studied by Brams et al., DSIC requires that

truthfully revealing one’s type weakly dominates any other type report for all possible

reports of other agents.

We also depart from prior work by assuming that agents have piecewise uniform valua-

tions. This allows us to consider direct mechanisms, whereas prior work on strategic issues

operates in the classic cake cutting model where agent valuations are never fully revealed.

Indeed, our main result depends crucially on the piecewise uniform assumption and knowing

the agents’ exact valuations.

Our main result is a deterministic mechanism that is DSIC, proportional, and EF. In

addition, this mechanism computes a Pareto-efficient allocation (relative to the reported

types) and runs in polynomial time. We also discuss randomized mechanisms and provide

mechanisms that are truthful in expectation and universally fair. Truthfulness in expectation

requires that an agent maximizes its expected utility by reporting truthfully where the

randomness is over the random choices of the mechanism. Universal fairness requires that

the computed allocation is always fair, regardless of the random choices of the mechanism.

We give randomized mechanisms that are truthful in expectation and universally fair for

piecewise linear valuations. The mechanisms rely on the existence of perfect partitions which

divide the cake into n pieces such that every agent has value 1/n for every piece. Though

these partitions seem very special, their existence has been known since the 1940s [Neyman,

1946]. These proofs are non-constructive, though, and our contribution is to provide explicit

constructions for agents with piecewise linear valuations.

1.2.2 Combinatorial Auctions

Combinatorial auctions (CAs) are a focus of the rest of our discussion of truthful resource

allocation, though we point out where our results are also applicable to more general set-

tings. In a combinatorial auction, we wish to allocate a set of items to a set of agents, and
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agents hold private valuations over subsets or bundles of items. Combinatorial auctions are

useful (when compared with running separate single item auctions) when agent valuations

exhibit complementarities, i.e. the value for a bundle of items exceeds the sum of the values

of the individual items in the bundle.

The canonical example of complementary items is a left shoe and a right shoe, but many

real world resource allocation settings exhibit complementarities as well. For example, in

national wireless spectrum auctions in the United States, the individual items are bands of

spectrum in a particular region [Cramton, 2002]. A national cellular provider like Verizon

would exhibit strong complementarities for having spectrum across all regions (since it seeks

to be a national provider). Indeed, combinatorial auctions have found application in the

allocation of congested landing slots at airports [Ball et al., 2006], the procurement of service

providers for operating bus routes in London [Cantillon and Pesendorfer, 2006], and various

industrial procurement settings [Caplice and Sheffi, 2006, Bichler et al., 2006, Sandholm,

2013].

Combinatorial auctions determine an assignment of items to each agent and charge each

agent a payment. We assume that we are in a quasi-linear setting where agent utilities are

equal to their value for the items they receive minus the payment they make.

Combinatorial auctions provide a canonical example where the economic theory of mech-

anism design is at odds with limited computational power and serve as a motivation for the

study of computational mechanism design. Computational mechanism design adds the con-

straint that a mechanism needs to be computationally tractable, both in terms of eliciting

the valuations from the agents and in terms of computing the outcome and payments.

Slightly more formally, there is a set of n agents and a set of m items. Each agent

has a private type which determines its value for different possible subsets of items. An

agent’s type provides a value for every possible bundle of items. An allocation assigns a

subset of items to each agent, ensuring that each item is allocated at most once. The

direct mechanism design problem is to find an outcome rule that maps reported types to

an allocation and a payment rule that maps reported types to a payment for each agent.

Computational Challenges

Combinatorial auctions present two computational challenges. The first is that in full gener-

ality, reporting an agent’s valuation may require the specification of 2m real numbers, each

representing a value for a possible subset of items the agent receives. This preference elici-

tation problem makes direct mechanisms infeasible if agents do indeed have such complex
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preferences. One approach to circumvent these issues is to consider indirect mechanisms

(see Parkes [2001]). A second approach, which is the one we use in this dissertation, is to

focus on restricted classes of preferences. Specifically, we examine cases where agents are

single-minded or multi-minded. What this means is that agents have a set of target bundles

in mind. If the agents receive a subset of items that does not include any target bundle,

then the agent receives value 0 for that subset. Otherwise, the agent receives a value equal

to the largest included target bundle. As a result, agents need only communicate their

target bundles and their values for those bundles, and this pins down their entire valuation

function.

The second computational challenge is that optimizing over the set of possible alloca-

tions can be a computationally difficult problem. As an example, consider the case where

the outcome rule maximizes social welfare. Finding a welfare-maximizing allocation is NP-

hard in most combinatorial auction settings, including the single-minded setting discussed

above [Rothkopf et al., 1998, Lehmann et al., 2002]. If computational constraints were

not important, then the class of Vickrey-Clarke-Groves (VCG) mechanisms are incentive

compatible and have an outcome rule that exactly maximizes social welfare [Vickrey, 1961,

Clarke, 1971, Groves, 1973]. The key to incentive compatibility in VCG mechanisms is the

design of a payment rule that aligns agents’ incentives with the social welfare of the com-

puted allocation. Unfortunately, the VCG mechanism cannot be used if polynomial time

computation is required due to the NP-hardness of finding an allocation that exactly max-

imizes social welfare. A natural approach is to replace the outcome rule with an algorithm

that approximates the optimal social welfare while using a payment rule that is similar in

spirit to the VCG payment rule. The Clarke-Pivot version of the VCG mechanism can

be thought of as charging agent i the externality it imposes on other agents. The same

idea can be adapted to any outcome rule. Unfortunately, this new mechanism is no longer

incentive compatible. In fact, the outcome rule that approximately maximizes welfare may

not satisfy the necessary monotonicity properties for there to exist payment rules that form

an incentive compatible mechanism when combined with the outcome rule.

One approach to this problem is to develop polynomial time algorithms that find al-

locations whose welfare is provably within some factor of the optimal welfare while si-

multaneously satisfying the required monotonicty properties for there to exist incentive

compatible payment rules. Specializing to the setting of single-minded combinatorial auc-

tions, Lehmann et al. [2002] take this approach and give a simple greedy algorithm that

satisfies the required monotonicity properties and guarantees that the computed allocation

13



CHAPTER 1 INTRODUCTION

has welfare at least O(1/
√
m) times the optimal welfare. Similarly, Mu’alem and Nisan

[2008] devise algorithms that satisfy the monotonicity properties and compute an alloca-

tion with welfare at least O(1/(ε
√
m)) times the optimal for any fixed ε > 0 with runtime

that is exponential in 1/ε2. These approaches are analytical in the sense that these approx-

imation algorithms are completely specified, and the proofs of monotonicity and worst-case

approximation involve reasoning about the specifics of the approximation algorithm.

In this dissertation, we focus on more computational approaches, where we do not

attempt to give a specification of the approximation algorithm, but rather we give compu-

tational procedures that produce algorithms with certain desirable properties. Specifically,

we provide an approach that computationally modifies Branch-and-Bound (BnB) search for

solving integer programs and makes it usable as the outcome rule for a truthful mechanism.

We also develop an approach that given an outcome rule, uses machine learning to find

a payment rule that is approximately incentive compatible when paired with the outcome

rule. We discuss existing work related to these directions in the next section.

1.2.3 Computational Approaches to Mechanism Design

Conitzer and Sandholm [2002] introduced the agenda of automated mechanism design (AMD)

and formulated mechanism design as the search for an allocation rule and (possibly) a pay-

ment rule among a class of rules satisfying incentive constraints. While the basic idea was of

course already familiar from the seminal work of Myerson [1981], a novel aspect of the work

of Conitzer and Sandholm is that it explicitly represents a mechanism as a mapping from

type profiles, where type spaces are assumed to be discrete, to outcomes and payments.

This explicit representation makes AMD intractable in general because the number of type

profiles is exponential in the number of agents, and possibly also in other natural param-

eters of a problem such as the number of items in a combinatorial auction. One approach

that was adopted to make AMD more tractable is to search through a parameterized space

of incentive compatible mechanisms [Likhodedov and Sandholm, 2005, Guo and Conitzer,

2010b]. More recently, advances in AMD have been made in application to the design of

revenue optimal mechanisms and by considering BIC rather than DSIC [Cai et al., 2012a].

A different computational approach assumes that access to some approximation algo-

rithm that we wish to use as our outcome rule. The challenge, however, is that the approx-

imation algorithm may not have the proper monotonicity properties to guarantee existence

of incentive compatible payment rules.

For the target of DSIC mechanisms, Briest et al. [2005] give a construction that converts
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pseudopolynomial time algorithms that maximize welfare welfare into incentive compati-

ble fully polynomial time approximation schemes (FPTAS).1 Their insights also yield new

truthful mechanisms for settings without pseudopolynomial time algorithms, though these

mechanisms do not have the flavor of converting a non-truthful algorithm; rather, they are

fully specified algorithms like those of Lehmann et al. [2002] and Mu’alem and Nisan [2008].

For the target of randomized truthful in expectation mechanisms, Lavi and Swamy [2011]

give a construction that converts a non-truthful approximation algorithm into a randomized

truthful in expectation mechanism that preserves the worst-case approximation guarantee

(in expectation) of the original rule. They require that the optimization problem can be

written as an integer program and that there exists an α-approximation algorithm that also

bounds the integrality gap of the LP relaxation of the problem by α. Their construction

yields a truthful in expectation mechanism with approximation guarantee of O(1/
√
m) when

applied to (general) CAs. Dughmi and Roughgarden [2010] give a construction that yields

a randomized truthful in expectation mechanis (with outcome rules which are an FPTAS)

for any welfare maximization problem that has an FPTAS and can be encoded as a set

packing problem.

For the target of BIC mechanisms, Hartline and Lucier [2010] and Hartline et al. [2011]

provide a general approach, for both single-parameter and multi-parameter domains, for

converting any algorithm into a BIC mechanism with essentially the same welfare as the

original algorithm. Related to this, Bei and Huang [2011] also tackle multi-parameter dis-

crete domains and give a construction that converts any algorithm into an ε-BIC while

losing a small amount in welfare. Recent work by Cai et al. [2012b] give a construction

that takes an algorithm that maximizes welfare and converts it into a revenue optimal BIC

mechanisms. This construction is computationally tractable when agents are additive (their

value for a bundle of items is the sum of their value for each item) and independent (an

agent’s type is not correlated with other agent types). Cai et al. [2013] extend this construc-

tion to convert algorithms that only approximately maximize welfare into BIC mechanisms

that approximate the revenue optimal BIC mechanism with the same approximation factor.

Conitzer and Sandholm [2007] propose an incremental mechanism design approach

where a mechanism is incrementally made more truthful by finding and correcting vio-

lations of truthfulness. In a similar vein, Parkes [2009] proposes an agenda of heuristic

1A pseudopolynomial time algorithm runs in time that is polynomial in the numeric value of the input
rather than the number of bits needed to represent the input. An FPTAS is a scheme that given a desired
error ε gives a solution within a factor 1 − ε of optimal and runs in time polynomial in 1/ε and the size of
the input to the algorithm.
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mechanism design where heuristic algorithms are modified for the purposes of mechanism

design. The modifications may not be black box (like those in the previous paragraph) in

the sense that they can be specific to the particular algorithm. These algorithms may not

have worst case guarantees, but they work well in practice. Along these lines, Parkes and

Duong [2007] and Constantin and Parkes [2009] apply a so-called “computational ironing”

approach to online stochastic combinatorial optimization (OSCO). Our work on monotone

branch and bound search is closely related to this agenda (see next section and Chapter

8). Also thematically related to heuristic mechanism design is the GrowRange method of

Parkes and Schoenebeck [2004], which provides an anytime algorithm for welfare optimiza-

tion in general CAs by expanding the range of a VCG-based algorithm, while allowing for

a time-based interruption by the center (although without providing full incentive compat-

ibility).

1.2.4 Monotone Branch and Bound Search

We make two contributions to work on computational approaches to mechanism design.

The first investigates the setting of known single-minded CAs. A known single-minded CA

is the same as a single-minded CA, with the added assumption that agents’ single target

bundles are publicly known. The only private information is therefore an agent’s value for

its target bundle, thereby transforming the problem into a single-dimensional mechanism

design problem. While the known single-minded assumption is restrictive, Lehmann et al.

[2002] describe a pollution rights auction where companies bid for the right to emit certain

chemicals into the air, and the pollution profiles of the companies are known. They also

describe communication network settings where bidders own nodes in the network and wish

to connect their nodes. If there is only a single path available between any pair of nodes,

then bidders are single-minded. If it is also public knowledge which companies own which

pairs of nodes, then this becomes a known single-minded setting.

Even in known single-minded CAs, computing the exact welfare-maximizing alloca-

tion is NP-hard, thereby preventing the application of the VCG mechanism computational

tractability is required. As discussed in the previous section, Lehmann et al. [2002] and

Mu’alem and Nisan [2008] tackle this problem and give incentive compatible mechanisms

that are computationally tractable, have worst-case guarantees on welfare, and satisfy the

requirements of incentive compatibility. These mechanisms rely on relatively simple allo-

cation algorithms, such as a greedy algorithm which ranks bundles by score and greedily

assigns bundles in order in decreasing score, or an allocation function which iterates over all
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feasible allocations that allocate fewer than some number of agents. However, if incentives

were not a concern, there are more sophisticated algorithms such as Branch-and-Bound

(BnB) search, which can efficiently find optimal solutions to the winner determination

problem on typical instances.

Specifically, we consider a variant of BnB search where the search continues until a

solution is found that is within a factor γ < 1 of optimal. This is possible due to the various

bounds that are maintained during the BnB search procedure. While running BnB search

to completion is monotone in each agent’s reported value, running to a tolerance γ < 1 is

no longer monotone. As a result, we devise a procedure that performs sensitivity checking

on the BnB search tree to check for monotonicity violations. If violations are found, i.e. an

agent is allocated for some initial report but deallocated for a higher report (recall that we

are in a single minded setting where an agent’s report is just a single number so a higher

report is well-defined), we decide not to allocate the agent at its initial report. The core

technical contribution is the design of an optimized sensitivity checking procedure that takes

advantage of the structure in a BnB search tree.

We perform experiments on instances from the Combinatorial Auctions Test Suite

[Leyton-Brown et al., 2000], and we find that the best parameterizations of our proce-

dure can outperform the existing methods of Lehmann et al. [2002] and Mu’alem and Nisan

[2008] in terms of welfare while taking less runtime than running BnB search to completion.

Additionally, our monotone BnB is fully parallelizable (the sensitivity checking can consider

each agent in isolation), thereby further reducing the runtime cost.

1.2.5 Learning Payment Rules

Our second contribution to computational approaches to mechanism design considers the

setting where there is some outcome rule that we wish to use but we do not have a payment

to pair with the outcome rule. For instance, we might have some heuristic algorithm that

finds allocations with good welfare, or we might have an algorithm that finds allocations

that maximize a non-standard objective function such as egalitarian welfare (maximize the

minimum value). Instead of imposing incentive compatibility as a hard constraint (which

might require us to modify the outcome rule), we relax the requirement of exact incentive

compatibility. Taking the outcome rule as given, we attempt to find a payment rule with

good incentive properties.

Specifically, we adopt statistical machine learning to infer payment rules that minimize

agents’ expected ex post regret. The ex post regret (or just regret where it causes no confu-
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sion) of an agent for truthful reporting in a given instance is the maximum amount by which

its utility could increase through a misreport holding constant the reports of others. The

expected ex post regret is the average ex post regret over all agents and all preference types,

calculated with respect to a distribution on types. In addition to minimizing expected ex

post regret, we enforce an agent independence property on the payment rule that ensures

that (small) changes in an agent’s report that do not change the computed outcome will

not be beneficial.

At the core of our approach lies a relationship between incentive compatible mechanisms

and multi-class classifiers. Given an outcome rule, the related multi-class classification

problem is to predict, given a type profile, the outcome that the outcome rule produces when

given the type profile. If we have an admissible classifier, then based on the parameters of

the classifier, it is possible to derive a payment rule to pair with the provided outcome rule.

We formally show that an exact, admissible classifier yields a payment rule that is incentive

compatible when paired with the provided outcome rule, and that an incentive compatible

mechanism ensures the existence of an exact, admissible classifier. We also show that an

admissible classifier that minimizes a particular generalization error yields a payment rule

that minimizes expected regret.

We train our admissible, discriminant-based classifiers by adapting structural support

vector machines [Joachims et al., 2009] to our mechanism design setting. We implement our

techniques and apply them to three problem domains where incentive compatible mecha-

nisms are not known. The first setting is multi-minded CAs. We seek to maximize welfare,

but we adopt a greedy heuristic algorithm as the outcome rule since exactly maximizing

welfare is NP-hard. The second setting is CAs where agents have positive, k-wise dependent

valuations [Conitzer et al., 2005, Chevaleyre et al., 2008]. Exact welfare-maximization is

NP-hard in this setting as well, so we also adopt a greedy outcome rule that attempts to

maximize welfare, and we seek a payment rule that minimizes regret. The final setting is

an assignment setting where there are as many items as agents and the goal is to find an

assignment of exactly one item to each agent. Here we adopt an egalitarian outcome rule

that computes an assignment that maximizes the minimum value attained by any agent.

Because of the egalitarian objective, incentive compatible mechanisms are not known for

this setting. Our results show that we are able to find payment rules with better regret

than natural VCG-based payment rules. These VCG-based payment rules adopt a similar

approach of charging an agent the externality it imposes on other agents, except that the

externality is measured with respect to an outcome rule that does not necessarily exactly
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maximize social welfare.

Several interesting complications arise in learning payment rules, and we provide solu-

tions to each of these. For CAs, the space of possible outcomes is exponential in the number

of items. This creates an exponentially large number of constraints in the structural support

vector machine formulation of the training problem. Solving the training problem requires

the existence of a polynomial time separation oracle. We do note that training can be per-

formed offline, so the runtime requirements for training may not be as stringent as those for

computing the actual payments given agent reports. For multi-minded CAs, we do not have

such a polynomial time separation oracle and are thus limited to training payment rules for

small problem sizes. On the other hand, by adopting positive k-wise dependent valuations,

we are able to formulate a polynomially sized training problem by drawing connections to

the literature on tractable maximum a-posteriori (MAP) estimation for associative Markov

networks [Taskar et al., 2004]. Another problem that arises is that the learned payment

rules may violate individual rationality (IR) in that an agent may be charged more than

its value for the outcome. We present several ways of mitigating IR violation by modifying

the training problem to learn payment rules with less IR violation and providing several IR

fixes that modify the learned payment rule. We experimentally show that these solutions

are effective in the domains we study.

1.3 Outline

This dissertation can be thought of as consisting of two parts. In the first part, we consider

cake cutting and fairness, without considering truthfulness. In the second part, we focus on

mechanism design problems and truthfulness. In this second part, we first discuss truthful-

ness in a cake cutting setting and then proceed to develop two computational approaches

to mechanism design.

Chapter 2 provides background on resource allocation and mechanism design. We cover

some main results from mechanism design theory and provide precise definitions of truth-

fulness and motivations for the study of truthful mechanisms.

Chapter 3 formally defines the cake cutting problem and reviews some classic results

from the cake cutting literature. We discuss a direct revelation model which departs from

the classic model of cake cutting, and introduce the study of cake cutting under restricted

families of valuation functions. Chapters 4 and 5 consider questions related to the direct

revelation model and restricted families of valuations. In particular, Chapter 4 examines
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welfare-maximizing fair allocations, while Chapter 5 investigates a model that extends the

expressiveness of piecewise uniform valuations.

Chapter 6 begins our investigation of truthfulness and mechanism design. We con-

sider the cake cutting problem when agents have piecewise uniform valuations. Chapter

7 introduces some necessary background on combinatorial auctions (CAs). We introduce

the problem, touch on real world applications, and explain how combinatorial auctions

demonstrate the tension between a purely economic approach to mechanism design and

computational tractability. Chapters 8 and 9 describe our two computational approaches

to mechanism design, with Chapter 8 describing our monotone BnB search procedure and

Chapter 9 describing our procedure for learning payment rules using machine learning.

Chapter 10 concludes and discusses some possible future directions.
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Chapter 2

Resource Allocation and

Mechanism Design

This chapter formally introduces the model for resource allocation and provides necessary

background on mechanism design.

2.1 Formal Model

A resource allocation problem is given by a set N = {1, 2, . . . , n} of agents that interact to

make a collective decision. D denotes the set of possible decisions and d denotes a member

of this set. Each agent i ∈ N is associated with a type θi from a set Θi of possible types.

There exists a utility function ui : Θi ×D → R for each agent i that maps a possible type

and decision to the agent’s utility for that decision.

We write θ = (θ1, . . . , θn) for a profile of types for the different agents, Θ = "i∈NΘi for

the set of possible type profiles, and θ−i ∈ Θ−i for a profile of types for all agents but i.

We are interested in procedures or algorithms that take the agent’s types and compute

decisions.

Definition 2.1.1. A social choice function f : Θ → D maps a profile of types θ to a

decision d.

2.1.1 Concrete Examples

To make the setting concrete, consider the two main topics we discuss in this these: cake

cutting and combinatorial auctions. Chapters 3 and 7 provide a more formal and detailed

discussion, but here we give a brief overview of how these problems map to the formal model
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CHAPTER 2 RESOURCE ALLOCATION AND MECHANISM DESIGN

we have just defined. In cake cutting, there is a single divisible good being allocated. The

possible decisions D are assignments of parts of the divisible good to each agent, making

sure that the parts received by each agent are disjoint. The agents’ types specify how much

utility they derive from different parts of the good. For instance, an agent of type θ1
i might

prefer only the vanilla part of the cake; on the other hand, an agent of type θ2
i might prefer

only the cherry. The combinatorial auction (CA) problem involves allocating a set of items

to the set of agents. The possible decisions D consist of an assignment of sets of items to

each agent as well as a payment that each agent has to make. The agents’ types specify

how much utility they derive from a particular assignment of items and a specification of

payments for each agent.

2.1.2 Payments and Quasi-Linear Utility

As seen in the example, the set of possible decisions D may sometimes include a payment

that each agent has to make. We refer the settings with and without payments as mechanism

design with and without money respectively.

The social choice function f can be separated into an outcome rule (which specifies the

part of the decision unrelated to payments) and an optional payment rule (which specifies

the payments that each agent makes). Specifically, we assume that there is some set of

outcomes Ω, with o denoting an element of this set. For example, in cake cutting, the

set of outcomes Ω is equivalent D (since there are no payments) and consists of the fea-

sible allocations of cake. In the CA setting, the set of outcomes consists of the feasible

assignments of items to each agent, whereas the set of possible decisions consists of feasible

assignments along with payments charged to each agent. We assume that agents have a

valuation function Vi : Θi × Ω→ R that specifies their values for elements of Ω.

Definition 2.1.2. An outcome rule g : Θ→ Ω maps a set of reported types to an outcome,

and a payment rule p : Θ→ Rn≥0 maps a set of reported types to a payment for each agent.

We use gi(θ) to denote the part of the outcome affiliated with agent i when appropriate.

In cake cutting, this is the part of the cake given to the agent. In CAs, this is the set

of items the agent obtains in the auction. In settings without money, ui(θi, d) = Vi(θi, o)

where o is the outcome chosen by decision d. In settings with money, we make the standard

assumption of quasi-linear preferences, i.e. ui(θi, d) = Vi(θi, o)− pi where o is the outcome

associated with decision d and pi is the payment of agent i specified by decision d.
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2.1.3 Properties

We are interested in social choice functions with specific properties. A natural and perhaps

the most common property to consider is the total value that agents receive from the

decision.

Definition 2.1.3. Given agent types θ and decision d, the efficiency or social welfare of

decision d is defined as:

sw(θ, d) =

n∑
i=1

Vi(θi, o),

where o is the outcome associated with decision d.

We can use this definition to define what it means for social choice function to be

efficient.

Definition 2.1.4. A social choice function f is efficient if for all θ ∈ Θ,

g(θ) ∈ arg max
d∈D

sw(θ, d),

where g is the outcome part of the social choice function f .

A weaker property than efficiency that does not require comparison of values across

different agents is Pareto-efficiency.

Definition 2.1.5. A social choice function f is Pareto-efficient if for all θ ∈ Θ, there

does not exist an outcome o ∈ Ω such that Vi(θi, o) ≥ Vi(θi, gi(θ)) for every agent i and

Vj(θj , o) > Vj(θj , gj(θ)) for some agent j, where g is the outcome part of the social choice

function f .

In other words, f always selects an outcome such that it is not possible to make every

agent weakly better off and at least one agent strictly better off. Note that the definitions

of efficiency and Pareto-efficiency look at the value that agents receive rather than agent

utilities. This captures the perspective of a system designer who wants to create maximal

value for society. Payments are not considered in these definitions though they affect agents’

utilities for the chosen decision.

2.2 Mechanism Design

In the previous section, we assume that we somehow know the agents’ true type θ, whether

it is because agents are truthful or because their types are publicly known. In this section,
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we consider the mechanism design problem, which assumes that this information is private

to each agent. We separate our discussion into two separate cases. In the first case, we

assume a mechanism design without money setting. In other words, we are not able to

use payments to incentivize agents to report their valuations truthfully. This is a realistic

assumption in certain settings where payments may be inappropriate such as negotiating

land allocation in peace treaties or deciding how to allocate assets in a divorce settlement

[Brams and Taylor, 1996]. The cake cutting problem typically assumes that payments are

not permitted. In the second case, we consider a mechanism design with money setting

where payments can be used to incentize agents to report truthfully. This setting includes

CAs.

In the first case, a direct mechanism h consists of just an outcome rule g. In the second

case, a direct mechanism h is a pair (g, p), where g is an outcome rule, and p : Θ → Rn≥0

specifies a payment for each agent. A direct mechanism takes on the same form as a social

choice function. The reason we separate the terminology is to allow for indirect mechanisms

which allow agents to make reports that lie in a space different than Θi. Indirect mechanisms

are beyond the scope of this dissertation, but we give a brief discussion in relation to the

revelation principle in Section 2.2.2.

Since we assume agent types are private information, we seek mechanisms that induce

agents to make truthful reports. To unify our discussion of the two settings, we define agent

utilities in each setting.

Definition 2.2.1. For a given mechanism h, the utility of an agent i depends on its true

type θi, its reported type θ′i, and the reports of other agents θ−i.

For a mechanism without money h = g, g : Θ→ Ω, the utility of an agent i is simply its

value for the chosen outcome:

ui((θ
′
i, θ−i), θi) = Vi(θi, g(θ′i, θ−i))

For a mechanism with money h = (g, p), g : Θ→ Ω, p : Θ→ Rn≥0, we make the standard

assumption of quasi-linear preferences. The agent’s utility is its value for the outcome minus

the payment it has to make:

ui((θ
′
i, θ−i), θi) = Vi(θi, g(θ′i, θ−i))− pi(θ′i, θ−i)

Given these definitions, it is possible to quantify the amount that an agent can gain by

misreporting its type.
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Definition 2.2.2. Suppose that agent i has true type θi and the other agents report types

θ−i. Agent i’s ex post regret is defined as:

rgt i(θi, θ−i) = max
θ′i∈Θi

ui
(
(θ′i, θ−i), θi

)
− ui

(
(θi, θ−i), θi

)
.

It is natural to consider mechanisms that do not make agents worse off if we assume

that the agents’ reported types are their true types.

Definition 2.2.3. A mechanism h is individually rational (IR) if agents reporting their

true types are guaranteed non-negative utility, i.e., if for all i ∈ N , θi ∈ Θi, and θ−i ∈ Θ−i,

ui((θi, θ−i), θi) ≥ 0.

The mechanism h plays an implicit role in the definitions for both regret and individual

rationality since agent utilities ui depend on the particular choice of h.

2.2.1 Truthful Mechanisms

We can now define precisely what it means for a mechanism to induce truthful reports.

Definition 2.2.4. A mechanism (without money) h = g, g : Θ→ Ω or a mechanism (with

money) h = (g, p), g : Θ → Ω, p : Θ → Rn≥0 is dominant strategy incentive compatible

(DSIC) if each agent maximizes its utility by reporting its true type, irrespective of the

reports of the other agents, i.e., if for all i ∈ N , θi ∈ Θi, θ−i ∈ Θ−i, and θ′i ∈ Θi,

ui((θi, θ−i), θi) ≥ ui((θ′i, θ−i), θi).

We often use incentive compatible or strategyproof to refer to DSIC. If a mechanism

is DSIC, agents experience zero ex post regret. In the case where the outcome rule and

payment rule are non-deterministic,2 we require an alternate notion of truthfulness.

Definition 2.2.5. A mechanism (without money) h = g or a mechanism (with money)

h = (g, p) is truthful in expectation, if each agent maximizes its expected utility by reporting

truthfully (regardless of the reports of other agents), where the expectation is taken over

the randomness of the mechanism, i.e., if for all i ∈ N, θi ∈ Θi, θ−i ∈ Θ−i, θ
′
i ∈ Θi,

E[ui((θi, θ−i), θi)] ≥ E[ui((θ
′
i, θ−i), θi)].

2In this case it is more sensible to consider a combined outcome and payment rule that maps to the
simplex over Ω× Rn≥0.
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We mostly consider deterministic mechanisms in this dissertation and do not focus on

truthfulness in expectation, but we introduce it here to give background for understanding

related work. In the situation where agents’ types are drawn from some distribution P (Θ),

we can also define a weaker notion of truthfulness.

Definition 2.2.6. Given that agent types are drawn from P (Θ), a mechanism (without

money) h = g or a mechanism (with money) h = (g, p) is Bayes-Nash incentive compatible

(BIC) if each agent maximizes its expected utility by reporting its true type, assuming that

other agents are truthful, i.e., if for all i ∈ N , θi ∈ Θi

Eθ−i∼P (Θ−i|θi)[ui((θi, θ−i), θi)] ≥ Eθ−i∼P (Θ−i|θi)[ui((θ
′
i, θ−i), θi)].

BIC is a weaker notion than DSIC since BIC only requires that reporting the true type

θi is weakly best in expectation. It could be that there are some types of other agents

θ−i for which θi is not the best report, but θi yields weakly better expected utility over

the random draw of θ−i. Unlike DSIC mechanisms where agents have zero ex post regret,

agents may experience positive ex post regret in truthful in expectation and BIC mechanisms

depending on the particular random choice of the mechanism or random draw of agents’

types. However, in expectation (and assuming other agents are truthful in the case of BIC),

an agent maximizes its utility by reporting its true type.

A Characterization of Strategyproof Mechanisms

Having provided the definition of a DSIC mechanism, it is possible to give a characterization

of the outcome rule and payment rule pairs (for mechanism design with money settings)

that yield DSIC mechanisms. For the purposes of this dissertation, we consider settings

with natural restrictions on the agents’ valuations and the outcome rules g.

Definition 2.2.7. Agent valuations exhibit no externalities if an agent’s value for an out-

come only depends on its part of the outcome, i.e. Vi(θi, o) = Vi(θi, oi).

Definition 2.2.8. Outcome rule g satisfies consumer sovereignty if for all i ∈ N , oi ∈ Ωi,

and θ′−i ∈ Θ−i, there exists θ′i ∈ Θi such that gi(θ
′
i, θ
′
−i) = oi.

In other words for every possible outcome, there exists some reported type for agent i

that causes the mechanism to select that outcome. For example, in a single-item auction

that assigns the item to the highest bidder, if an agent submits a high enough bid, the agent

will win the item.
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Definition 2.2.9. Outcome rule g satisfies reachability of the null outcome if for all i ∈ N ,

θi ∈ Θi, and θ′−i ∈ Θ−i, there exists θ′i ∈ Θi such that vi(θi, gi(θ
′
i, θ
′
−i)) = 0.

Reachability of the null outcome requires that there always exists some outcome that

gives the agent zero utility, and the agent can always cause this outcome to be selected. In

the single-item auction example, an agent can always receive zero utility by bidding zero.

The agent will not receive the item and pays zero and ends up with utility zero.3

Given the definitions of DSIC mechanisms and individual rationality from the previous

sections, observe that a DSIC mechanism with an outcome rule that satisfies reachability

of the null outcome implies individual rationality. The following characterization of DSIC

mechanisms is well-known (see e.g., Proposition 9.27 in Nisan [2007]) and easy to prove.

It is crucial to the discussion in Chapter 9 which draws connections between mechanism

design and classification problems in machine learning. We adapt it here for the case where

consumer soveriegnty holds.

Theorem 2.2.10. A mechanism with money (g, p) that satisfies consumer sovereignty is

DSIC if and only if the payment of an agent is independent of its reported type and the

chosen outcome simultaneously maximizes the utility of all agents, i.e., if for every type

profile θ ∈ Θ,

pi(θ) = ti(θ−i, gi(θ)) for all i ∈ N, and (2.1)

gi(θ) ∈ arg max
o′i∈Ωi

(
vi(θi, o

′
i)− ti(θ−i, o′i)

)
for all i ∈ N, (2.2)

for a price function ti : Θ−i × Ωi → R.

The first property is the agent-independent property: conditioned on reports of others,

and an outcome, an agent’s payment is independent of its own report. The second property

is the agent-optimizing property: the outcome should maximize an agent’s utility given

these agent-independent prices and its reported valuation.

DSIC mechanisms can also be characterized in regard to necessary and sufficient prop-

erties of outcome rules alone, and especially through monotonicity properties. These prop-

erties characterize those outcome rules for which there exists a payment rule such that the

outcome rule and payment rule form a DSIC mechanism [Saks and Yu, 2005, Ashlagi et al.,

2010].

3If all other agents bid zero there might be some chance the agent wins the item and gains positive utility.
To preclude this case we can let the agent bid a negative amount.
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A simple necessary condition for DSIC mechanisms is weak monotonicity [Lavi et al.,

2003, Bikhchandani et al., 2006].

Definition 2.2.11. An outcome rule g is weakly monotone if for all θi, θ
′
i ∈ Θi, θ−i ∈ Θ−i,

Vi(θ
′
i, g(θ′i, θ−i))− Vi(θ′i, g(θi, θ−i)) ≥ Vi(θi, g(θ′i, θ−i))− Vi(θi, g(θi, θ−i))

In other words, the difference in value for between outcomes g(θ′i, θ−i) and g(θi, θ−i) is

weakly greater when an agent has type θ′i versus type θi.

Depending on the domain of permitted agent valuations (i.e., the definitions of the sets

Θi), weak monotonicity may also be a sufficient condition for the existence of a payment rule

p such that (g, p) is DSIC. A full discussion of this is beyond the scope of this dissertation

and the interested reader can consult [Lavi et al., 2003, Bikhchandani et al., 2006] and

references therein.

2.2.2 Truthfulness and the Revelation Principle

We have given definitions for truthful mechanisms. In this section, we provide some moti-

vation for the study of truthful mechanisms. One advantage of truthful mechanisms is that

is it easy for agents to participate in a truthful mechanism. In a DSIC or truthful in ex-

pectation mechanism, agents need need not reason about possible reports that other agents

are making. Related to this, a DSIC or truthful in expectation mechanism is fair in the

sense that unsophisticated agents are not at a disadvantage relative to more sophisticated,

strategic agents or agents with more information about other agents’ types. Additionally,

truthful mechanisms are more predictable from the perspective of the mechanism designer.

If we depart from DSIC or truthful in expectation mechanisms, we need to think about

what deviations agents will make and how agents will respond to these deviations. In other

words, we need to consider equilibrium behavior. BIC mechanisms also depend on equilib-

rium reasoning (the expected utility is taken over the true type distribution), but we can

argue that this truthful equilibrium is more likely than other more complicated equilibria

given that it consists of the straightforward strategy of reporting one’s true type. A final

reason for the study of truthful mechanisms is that they are in some sense without loss due

to what is known as the revelation principle.

Before we discuss the revelation principle, we consider mechanisms that are not truthful

and how we can think about analyzing such mechanisms. The following section is specifically

focused on the application of game theory to mechanism design, but we introduce several
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general game theory concepts such as strategies and equilibrium. Mas-Colell et al. [1995]

and Nisan et al. [2007] offer more comprehensive treatments.

Strategies, Indirect Mechanisms, and Solution Concepts

While we have introduced direct, truthful mechanisms, we can also consider non-truthful,

indirect mechanisms. An indirect mechanism asks for agents to report some message mi ∈

Mi, whereMi is not necessarily the same as Θi. It then takes the messages and computes

an outcome and optionally payments for each agent. We use the notation ui((mi,m−i), θi)

to denote an agent’s utility in an indirect mechanism when it has type θi, it reports m−i,

and other agents report m−i.

The first step in thinking about non-truthful mechanisms is to realize that agents will

now have strategies. A strategy dictates the actions an agent will take in different states

of the world. In the context of indirect mechanisms, a strategy si indicates for every type

θi, the message si(θi) = mi the agent will report to the mechanism.4 We would like to

make predictions about what kinds of strategies will arise when we deploy our non-truthful

mechanism. This brings us to the concept of equilibrium, i.e. strategies that are mutual

best responses to each other. We can now discuss increasingly general notions of equilibrium

in mechanisms. We refer to these different notions of equilibrium as solution concepts.

Definition 2.2.12. A set of strategies (s1, . . . , sn) is a dominant-strategy equilibrium of a

mechanism if for all i, for all θi ∈ Θi, for all mi ∈Mi, for all m−i ∈M−i,

ui((si(θi),m−i), θi) ≥ ui((mi,m−i), θi).

Dominant-strategy equilibrium is very strong. It requires that for every possible type

θi of an agent, there exists some report si(θi) that dominates all other reports, regardless

of the reports of other agents. We also have a weaker notion when agent types are drawn

from a distribution P (Θ).

Definition 2.2.13. Assuming that agent types are drawn from P (Θ), a set of strategies

(s1, . . . , sn) is a Bayes-Nash equilibrium of a mechanism if for all i, for all θi ∈ Θi, mi ∈Mi,

Eθ−i∼P (Θ−i|θi)[ui((si(θi), s−i(θ−i)), θi)] ≥ Eθ−i∼P (Θ−i|θi)[ui((mi, s−i(θ−i)), θi)].

4Technically we can also allow randomization so that si maps Θ to ∆Mi, but this distinction is not
important for the purposes of our discussion.

30



CHAPTER 2 RESOURCE ALLOCATION AND MECHANISM DESIGN

Recalling our definitions of DSIC and BIC mechanisms from the previous section, these

equilibrium definitions look very similar, except that we have introduced strategies si(θi)

to replace the agents’ true type θi and we have generalized the space of possible reports to

be Mi rather than Θi. Indeed, the revelation principle makes this relationship precise and

basically says that any mechanism with a dominant strategy or Bayes-Nash equilibrium can

be converted to a DSIC or BIC mechanism.

When agents strategize, from the system design perspective, we are interested in the

decision (either the outcome or the outcome-payment pair) that is chosen with respect to

the agents’ true types. In other words, we are interested in the social choice function that

results from running a mechanism.

Definition 2.2.14. Given a set of strategies (s1, . . . , sn) that is a dominant strategy or

Bayes-Nash equilibrium of a mechanism h, we can defined the affiliated social choice function

f that takes into takes into account the strategies, i.e. f(θ) = h(s(θ)). In this case, we say

that (s1, . . . , sn) implements f in {dominant strategies, Bayes-Nash equilibrium}.

We are now ready to give the revelation principle.

Theorem 2.2.15. If some set of strategies s1, . . . , sm and possibly indirect mechanism h

implement a social choice function f in dominant strategies or Bayes-Nash equilibrium,

then there exists a direct truthful mechanism that implements f in dominant strategies or

Bayes-Nash equilibrium respectively.

We do not give a formal proof of the theorem, but the intuition is that given some

indirect mechanism with an equilibrium, we can consider a direct mechanism that plays

the equilibrium on behalf of the agents and feeds this into the indirect mechanism. The

equilibrium conditions then guarantee that truthful reporting is the agent’s best strategy

in the constructed direct mechanism.

The revelation principle was discovered for dominant strategies by Gibbard [1973] and

extended to Bayes-Nash equilibria by Dasgupta et al. [1979], Holmström [1979], and Myer-

son [1979]. The principle states that if we have some non-truthful indirect mechanism that

implements a social choice function f , then there exists a truthful, direct mechanism that

also implements f (if our solution concepts are dominant strategy equilibrium or Bayes-Nash

equilibrium). Therefore, in some sense, it is without loss of generality to focus our study on

truthful mechanisms. Indeed, it is much simpler to reason about truthful mechanisms than

to think about indirect mechanisms which can allow agents to make very complicated re-
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ports to the mechanism, and in addition, among direct mechanisms, the revelation principle

says that we can focus on truthful mechanisms.

On the other hand, the revelation principle does not have anything to say about the

particular details of a mechanism. It states that there is a truthful, direct mechanism that

implements the same social choice function f , but an indirect mechanism may implement

the same function with far less communication and/or computation. Indeed, communication

and computation become very relevant for settings like CAs and it may be beneficial to use

indirect mechanisms (see e.g., Parkes [2001]).

2.2.3 Classic Mechanism Design Results

Having presented the mechanism design problem and provided some motivation for studying

truthful mechanisms, we now give some fundamental results from the mechanism design with

money literature.

Vickrey-Clarke-Groves Mechanisms

Definition 2.2.16. Suppose the agents’ reported types are θ. A Vickrey-Clarke-Groves

(VCG) mechanism [Vickrey, 1961, Clarke, 1971, Groves, 1973] is a direct mechanism that

consists of the following:

1. An outcome rule g that selects an outcome o ∈ Ω that maximizes social welfare with

respect to the reported types θ.

2. A payment rule pi that charges

pi = ti(θ−i)−
∑
j 6=i

Vj(θj , gj(θ)),

where ti is any function that depends only on θ−i.

VCG mechanisms define an entire family of mechanisms since the choice of ti is left

open. VCG mechanisms are of great interest as they are DSIC.

Theorem 2.2.17. VCG mechanisms are DSIC.

32



CHAPTER 2 RESOURCE ALLOCATION AND MECHANISM DESIGN

Proof. Consider an agent’s utility when reporting type θ′i when its true type is θi:

Ui((θ
′
i, θ−i), θi) = Vi(θi, g(θ′i, θ−i))− pi(θ′i, θ−i) (2.3)

= Vi(θi, g(θ′i, θ−i))−

ti(θ−i)−∑
j 6=i

Vj(θj , g(θ′i, θ−i))

 (2.4)

=

n∑
j=1

Vj(θj , g(θ′i, θ−i))− ti(θ−i). (2.5)

Agent i has no effect on the term ti(θ−i), so we can focus on the first term. g maximizes

social welfare, so if θ′i = θi, then the outcome o∗ chosen will maximize
∑n

j=1 Vj(θj , o). If

the agent reports θ′i 6= θi, then g will choose an outcome that maximizes social welfare with

respect to (θ′i, θ−i), and this outcome may not maximize
∑n

j=1 Vj(θj , o). Therefore, agent i

is weakly better off by reporting its true type θi.

Not only are VCG mechanisms DSIC, they are the only efficient, DSIC mechanisms if

the space of possible valuations satisfies a connectedness property [Green and Laffont, 1973,

Holmström, 1979]. A common choice for the function ti is the Clarke-Pivot rule, which sets

ti = max
o∈Ω

∑
j 6=i

Vj(θj , o).

The appeal of this particular choice for ti is that the resulting mechanism is individually

rational for many natural settings including combinatorial auctions without externalities

(i.e. each agent’s value for an outcome only depends on the items it receives).

Single-Parameter Mechanism Design

VCG mechanisms are very general and apply to many different settings as long as the

outcome rule maximizes social welfare. In this section, we discuss mechanism design in the

special setting where agents’ valuations can be summarized by a single real number. In

this setting, we have very nice characterizations of incentive-compatible mechanisms. The

following discussion is adapted from [Nisan et al., 2007].

In a single-parameter mechanism design problem, each agent’s type is a single real

number θi that lies in some interval Θi = [`i, ui], `i ≥ 0, and each agent has a publicly

known set of winning outcomes Ω∗i ⊆ Ω. The agent’s value for a winning outcome is θi and

0 for any other outcome. As an example, we can consider a single-item auction. Here the

single-parameter is an agent’s value for the item, and the winning outcomes are the outcomes
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that allocate the item to the agent. A more complex example of a single-parameter setting

is a CA where each agent is interested in exactly one publicly known target bundle of items

(but their value for that bundle is not known). This is what is called a known single-minded

CA and is discussed further in Chapter 7. Here Ω∗i consists of all allocations that give the

agent any superset of its target bundle.

A mechanism is normalized if an agent pays 0 when it is not winning. We have an exact

characterization of normalized incentive compatible mechanisms.

Theorem 2.2.18 ([Myerson, 1981]). A normalized mechanism (g, p) is incentive compatible

iff

1. For all θ−i ∈ Θ−i, θi, θ
′
i ∈ Θi, θi < θ′i, gi(θi, θ−i) ∈ Ω∗i ⇒ gi(θ

′
i, θ−i) ∈ Ω∗i . In other

words, if non-winning outcomes are mapped to 0 and winning outcomes are mapped

to 1, then gi(·, θ−i) should be monotone.

2. pi(θi, θ−i) is defined as

(a) 0 if gi(θi, θ−i) /∈ Ω∗i ,

(b) sup{θ′i ∈ Θi : gi(θ
′
i, θ−i) /∈ Ω∗i } if there exists some θ′i ∈ Θi where gi(θ

′
i, θ−i) /∈ Ω∗i ,

(c) qi(θ−i) otherwise.

The payment rule part of the Theorem 2.2.18 requires that payments to non-winning

agents are 0 and that we charge winning agents the threshold value at which they start

winning. If an agent always wins when other agents report θ−i, then we just require that

the payment be some value that does not depend on the agent’s report.

Theorem 2.2.18 reduces the problem of finding truthful mechanisms to the problem of

finding monotone outcome rules. Once we have a monotone outcome rule, the payment

rule is pinned down by finding the threshold at which an agent goes from non-winning to

winning. The theorem can be generalized to randomized mechanisms and BIC mechanisms

for single-parameter settings. We refer the interested reader to [Myerson, 1981] or [Hartline

and Karlin, 2007] for more details.
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Chapter 3

Cake Cutting

Cutting a cake is often used as a metaphor for allocating a divisible good. The difficulty

is not cutting the cake into pieces of equal size, but rather that the cake is not uniformly

tasty: different agents prefer different parts of the cake, depending, e.g., on whether the

toppings are strawberries or cookies. The goal is to divide the cake in a way that is “fair”;

the definition of fairness is a nontrivial issue in itself, which we discuss in the sequel.

The cake cutting problem dates back to the 1940s [Steinhaus, 1948] and for over sixty

years has attracted the attention of mathematicians, economists, and political scientists.

While most of the work in artificial intelligence, and computer science in general, has focused

on the allocation of indivisible resources, recent years have seen an increasing interest among

computer scientists in the allocation of divisible resources ([Edmonds and Pruhs, 2006b,a,

Procaccia, 2009, Chen et al., 2010, Zivan et al., 2010, Maya and Nisan, 2012, Kurokawa

et al., 2013, Brânzei and Miltersen, 2013, Brânzei et al., 2013]).

On the one hand, the allocation of divisible resources is of relevance to multi-agent re-

source allocation [Chevaleyre et al., 2006]. On the other hand, computer science brings an

interesting perspective to the study of cake cutting related to thinking about the compu-

tational complexity of cake cutting and the representation and communication of agents’

valuations. In this chapter, we formally define the cake cutting problem and the necessary

foundation to understand our contributions to the cake cutting literature.

3.1 Model

We consider a heterogeneous cake, represented by the interval [0, 1]. A piece of cake is a

finite union of subintervals of [0, 1]. We sometimes abuse this terminology by treating a

piece of cake as the set of the (inclusion-maximal) intervals that it contains. The length
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of the interval I = [x, y], denoted len(I), is y − x. For a piece of cake X we denote

len(X) =
∑

I∈X len(I).

The set of agents is denoted N = {1, . . . , n}. Each agent i ∈ N holds a private val-

uation function Vi, which maps given pieces of cake to the value agent i assigns them.

Formally, each agent i has a value density function, vi : [0, 1] → [0,∞), that is piecewise

continuous. The function vi characterizes how agent i assigns value to different parts of the

cake. The value of a piece of cake X to agent i is then defined as Vi(X) =
∫
X vi(x)dx =∑

I∈X
∫
I vi(x)dx. We note that the valuation functions are additive, i.e. for any two disjoint

pieces X and Y , Vi(X∪Y ) = Vi(X)+Vi(Y ), and non-atomic, that is Vi([x, x]) = 0 for every

x ∈ [0, 1]. The last property implies that we do not have to worry about the boundaries of

intervals, i.e., open and closed intervals are identical for our purposes. While some of the

cake-cutting literature assumes that valuations are absolutely continuous (see e.g., Brams

et al. 2012b), i.e., that if any agent attaches zero value to a portion of the cake, then all

other players do, we do not make this assumption.

The output of a cake cutting algorithm is an allocation A1, . . . , An of pieces of cake to

each agent such that pieces Ai are pairwise disjoint. For each i ∈ N the piece Ai is allocated

to agent i, and the rest of the cake, i.e., [0, 1] \
⋃
i∈N Ai, is thrown away. We assume free

disposal, i.e., it is not necessary for the algorithm to allocate the entire cake and resources

can be thrown away without incurring a cost.

3.2 Fairness

Various notions of fairness have been studied in the literature. Here we introduce the two

most prominent notations: proportionality and envy-freeness. An allocation A1, . . . , An is

proportional if for every i ∈ N , Vi(Ai) ≥ Vi([0, 1])/n, that is, each agent receives at least a

(1/n)-fraction of the cake according to its own valuation. An allocation is envy-free (EF) if

for every i, j ∈ N , Vi(Ai) ≥ Vi(Aj), i.e., each agent prefers its own piece of cake to the piece

of cake allocated to any other agent. A proportional (resp., EF) cake cutting algorithm

always returns a proportional (resp., EF) allocation.

Note that when n = 2 proportionality implies envy-freeness. Indeed, Vi(Ai)+Vi(A3−i) ≤

1, and hence if Vi(Ai) ≥ 1/2 then Vi(A3−i) ≤ 1/2. Under the free disposal assumption the

converse is not true. For example, an allocation that throws away the entire cake is EF

but not proportional. In general, when n > 2 proportionality neither implies nor is implied

by envy-freeness. If free disposal is not assumed, that is, the entire cake is allocated, then
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envy-freeness implies proportionality for any n.

A third, less commonly studied notion of fairness is equitability (EQ). An allocation is

equitable if Vi(Ai) = Vj(Aj) for all pairs of agents i, j.

3.3 Normalization of Valuations

Throughout our discussion, we assume that agent valuations are normalized so that Vi([0, 1]) =

1 for every agent i, i.e., we divide each agents’ density function by Vi([0, 1]). This assump-

tion is without loss if we are looking at proportional and/or EF allocations. An allocation

is proportional and/or EF for normalized valuations if and only if it is also proportional

and/or EF when valuations are not normalized. Similarly, the assumption is without loss if

we consider notions such as Pareto-efficiency. On the other hand, if we consider optimizing

social welfare or the fairness notion of EQ, then normalizing valuations can change the

allocations we consider to be fair or welfare maximal. In Chapter 4, we look at maximizing

social welfare and EQ, so the assumption is not without loss. However, our algorithmic re-

sults extend to the unnormalized case as well, and our impossibilities are only strengthened

by widening the possible valuations. In Chapter 5 and 6, we discuss only fairness criteria

for which the assumption is without loss of generality.

3.4 Models of Interaction

The existence of proportional, EF, and EQ allocations has been well-known since the 1940s

(see Brams and Taylor [1995]). The cake cutting challenge is to come up with procedures

that find such allocations. Prior work focuses on algorithms that accommodate arbitrarily

complex valuation functions. One of our innovations is advocating the study of cake cutting

under a direct revelation model that restricts consideration to cases when valuation functions

have a succinct representation.

3.4.1 Classic Model

Most of the literature on cake cutting looks for procedures that interact with the agents

and make decisions based on these interactions. Agents’ complete valuations are never fully

revealed, but the procedures guarantee that a fair division will be found if agents follow the

procedure truthfully. A discrete cake cutting procedure is a procedure where there are a

discrete number of interactions with the agents, with later interactions possibly conditioned
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on earlier interactions. We are purposely vague about what constitutes an interaction here,

but this will become clearer later in this section. In contrast to a discrete procedure, a

moving knife algorithm allows an impartial referee to move a knife continuously across the

cake, stopping along the way when certain conditions are met (e.g., when an agent’s value

for the part to the left of the cake exceeds a certain value). The key difference is that

moving knives require this continuous maneuver of the knife, and there are some moving

knife procedures that cannot be simulated using a discrete procedure. We survey some of

the classic cake cutting results below.

Cut and Choose

Perhaps the most well-known cake cutting procedure is the Cut and Choose procedure for

two agents. In Cut and Choose, the first agent cuts the cake at a point a such that it values

[0, a] at 1/2 and [a, 1] at 1/2. The second agent chooses the piece that it prefers. This is a

discrete procedure as there are just two steps in the algorithm. It is easy to see that this

procedure is both proportional and EF. For proportionality, both agents receive value at

least 1/2. For EF, agent 1 is indifferent between the two pieces and agent 2 receives the

piece it prefers.

Dubins-Spanier and Banach-Knaster

In order to obtain proportionality for n agents, we need a more clever procedure. We

start by examining the moving knife procedure of Dubins and Spanier [1961]. An impartial

referee moves a knife starting from 0 to the right. Whenever the piece to the left of the

knife is worth value 1/n to an agent, the agent shouts ‘stop’ and is given the piece to the

left of the knife. We then restart the procedure with the remaining cake.

This moving knife procedure results in a proportional allocation. It is clear that the

agent that shouts ‘stop’ receives value at least 1/n. The key observation is that for the

remaining agents, the rest of the cake is worth at least value (n − 1)/n. We can make an

inductive argument and argue that n− 1 agents will yell ‘stop’ (and therefore receive value

exactly 1/n) and that the last agent remaining will have value at least 1/n for the remaining

cake.

While this procedure uses a moving knife, it can be converted to a discrete cake cutting

procedure that does not require an impartial referee to continuously move the knife across

the cake. We can ask each agent to cut a piece starting at 0 and moving right that is worth

value exactly 1/n. We then give the agent with the leftmost cut the piece starting from 0
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and ending at its cutpoint. We can then repeat the procedure for the rest of the cake. This

is essentially the procedure discovered by Banach and Knaster circa 1944 (see e.g., [Brams

and Taylor, 1996]).

Though this procedure gives a proportional allocation, the allocation may not be EF.

Indeed, though agent 1 receives a piece worth exactly 1/n, there is no guarantee that the

pieces cut by the remaining agents will have value at most 1/n. In the extreme case,

suppose that agent 1 uniformly values [0, 1] but the other agents only receive value from

[(n− 1)/n, 1.0]. Agent 1 will be very envious of the second agent who yells stop since that

agent will receive at least the interval [1/n, (n− 1)/n] which is a worth a lot more to agent

1 than [0, 1/n] if n > 2. Indeed, finding EF allocations proves to be significantly more

challenging than finding proportional allocations.

Selfridge-Conway

An EF procedure for three agents was discovered around 1960 independently by John L.

Selfridge and John H. Conway [Brams and Taylor, 1996]. The clever procedure proceeds in

a number of steps. We label the players as 1, 2, and 3.

1. Initial division.

(a) Player 1 cuts the cake into three pieces A,B,C that have equal value from its

perspective.

(b) Player 2 takes the piece that it prefers the most and splits it into two pieces such

that one of the two pieces has the same value as the second most preferred piece.

Wlog assume that the piece preferred most by player 2 is A and the second most

preferred piece is B. Player 2 splits A into A′ and A′′ such that V2(A′) = V2(B).

(c) Player 3 chooses the piece it prefers most from among A′, B,C.

(d) If player 3 did not choose A′, player 2 chooses A′. Otherwise, player 2 chooses

its more preferred piece from B,C.

(e) Player 1 is given the remaining piece of A′, B,C.

2. Division of the trimmings (A′′).

(a) Either player 2 or player 3 receives A′. Let the player that receives A′ be denoted

by p and the other player by p′.

(b) p′ divides A′′ into three equal pieces (according to its valuation).
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(c) p chooses its most preferred piece out of these three.

(d) Player 1 chooses its most preferred piece out of the remaining two pieces.

(e) p′ is allocated the remaining piece.

We now show that this division is indeed EF. First, consider player 1. Player p receives the

trimmed piece A′ along with part of the trimmings A′′. Player 1 receives either B or C,

which from its perspective has value equal to A′ ∪ A′′. As a result, player 1 will not envy

player p. Player p′ receives either B or C along with part of A′′. But player 1 prefers its

share of A′′ to that of player p′ (player 1 goes before player 2 when dividing A′′) and views

B and C equally. So player 1 does not envy p′ either.

Consider player 2. Player 2 does not envy anyone after the initial division. If player 2

is p′, then player 2 does not envy anyone when viewing the division of A′′ in isolation; after

all, A′′ is divided so that the three pieces are equal according to p′. If player 2 is p, then

player 2 also does not envy anyone when viewing the division of A′′ in isolation; after all,

player p goes first in choosing the division of A′′. Therefore, player 2 has no envy since it

has no envy after the initial division and no envy for the division of A′′ (and valuations are

additive).

Consider player 3. Player 3 also does not envy anyone after the initial division since it

goes first. Player 3 does not envy the division of A′′ based on the same argument as for

player 2. Therefore, player 3 also has no envy.

This procedure is quite clever and seems quite delicately constructed so that the ultimate

division is EF. Indeed, an EF procedure for n > 3 agents is significantly more complex.

Brams and Taylor

Brams and Taylor [1995] made a breakthrough when they introduced a discrete procedure

that finds an EF allocation for any number of agents in a finite number of steps. We do not

provide a detailed outline of the procedure here (the procedure for just four agents consists

of 20 steps), but the procedure operates by creating EF allocations for a fraction of the cake

(by having the agents trim pieces to introduce ties as in the Selfridge-Conway procedure)

and then recursively handling the leftover parts of the cake. Though the procedure is finite,

it is not bounded. For any number of steps T , there exist some valuations of agents for

which the procedure takes more than T steps to finish. Saberi and Wang [2009] introduce

a moving knife procedure that terminates in a bounded number of steps for 5 agents, but

it is not clear if this procedure can be simulated by some discrete procedure. For n > 5, we
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do not have any bounded EF algorithms that allocate the entire cake. (We can always just

throw away the entire cake if we only insist on envy-freeness but allow some parts of the

cake to be thrown away.)

3.4.2 Complexity of Cake Cutting

While we have informally defined a discrete cake cutting procedure as a procedure that

has a discrete number of steps (in contrast to a moving knife procedure which requires

continuously moving a knife), a natural question to consider is how computationally complex

is it to find different fair allocations. In order to answer this question, we need to be precise

about how we measure complexity.

Robertson and Webb [1998] introduced a concrete model of complexity for cake cutting

algorithms; under their model an algorithm is restricted to making two types of queries: an

evaluation query (whereby the algorithm learns the value of an agent with respect to a given

interval) and a cut query (whereby the algorithm obtains a piece worth a given value to an

agent). Through the queries the algorithm must obtain sufficient information to output a

fair allocation. This model is very general and can capture all the well known discrete cake

cutting procedures. For example, the Cut and Choose procedure can be executed by asking

the first agent to cut a piece, starting at 0 and moving right, that is worth value exactly

1/2. We can then issue an eval query for one of the pieces to the second agent and give the

second agent the piece that is worth at least 1/2.

Under the Robertson and Webb model, proportional cake cutting is well understood.

Even and Paz [1984] provide a divide-and-conquer procedure that uses O(n log n) queries,

and lower bound of Ω(n log n) was established by Edmonds and Pruhs [2006a]. On the

other hand, there remains a large gap in the understanding of EF procedures. Procaccia

[2009] establishes a lower bound of Ω(n2), but as mentioned above, there are no bounded

procedures known for n > 5 agents. Recently, Kurokawa et al. [2013] showed that the

difficulty of finding bounded procedures persists even if we consider the restricted family of

piecewise uniform valuations (introduced below in Section 3.5) as any bounded procedure

for piecewise uniform valuations would imply a bounded procedure for general valuations.

3.4.3 Direct Revelation Model

In this disseration, we depart from Robertson and Webb model and instead assume that

the agents report their full valuation functions to the algorithm. In order for this to be

reasonable, we restrict agents’ valuations to families that allow for succinct representations.
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(a) Value density function for a piecewise
constant valuation that is not piecewise
uniform.
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(b) Value density function for a piecewise
uniform valuation.

Figure 3.1: An illustration of special value density functions.

We discuss these families of valuation functions in the next section.

A side effect of work in the direct revelation model is that our algorithms are centralized

whereas many of the classic algorithms can be implemented in a decentralized way (e.g.,

Cut and Choose). In particular, an interesting question that we leave to future work is

whether the algorithms we present can be efficiently implemented via evaluation and cut

queries.

3.5 Families of Valuation Functions

A valuation function Vi is piecewise linear if its corresponding value density function vi

is piecewise linear, that is [0, 1] can be partitioned into a finite number of intervals such

that vi is linear on each interval. Similarly, a valuation function Vi is piecewise constant

if its corresponding value density function vi is piecewise constant (see Figure 3.1(a)). A

valuation function Vi is piecewise uniform if moreover vi is either some constant c ∈ R+

(the same one across intervals) or zero. See Figure 3.1(b) for an illustration.

Piecewise uniform valuation functions imply that each agent i ∈ N is uniformly inter-

ested in a finite union of intervals, which we call its reference piece of cake and denote by Ui.

For example, in Figure 3.1(b), Ui = [0, 0.25] ∪ [0.6, 0.85]. Given a piece of cake X, it holds

that Vi(X) = len(X ∩ Ui)/len(Ui). Though simple, piecewise uniform valuations capture

some natural settings. As an example, suppose that the cake represents access time to a

backup server. Each agent is equally interested in time intervals when its computer is idle

or when it is not modifying its data.

Piecewise constant and piecewise linear valuation functions are significantly more general

than piecewise uniform valuations. Though they can both be succinctly communicated (see

the next section), they can both approximate general valuations by using a large number of

intervals and selecting a constant or linear density on each interval that approximates the
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general value density function.

3.5.1 Computational Complexity

In the sequel, we will discuss various cake cutting algorithms under the direct revelation

model and for different families of valuation functions. We are not operating in the Robert-

son and Webb model, so it will not make sense to measure complexity by the number of

queries we make to the agents. Instead, we would like the algorithm that computes the

allocation based on agents’ reported preferences to take time that is polynomial in the size

of the input representation. Therefore, in order to discuss computational complexity (and

how computation time scales with the size of the input), we need to clearly define the size

of the input to the algorithm.

In all cases, the size of the input is the number of bits needed to specify the agents’ pref-

erences. For piecewise uniform valuations, this involves telling the algorithm the endpoints

of the desired intervals. For piecewise constant valuations, this involves communicating the

endpoints of the desired intervals as well as the value of the density function on each of

these intervals. For piecewise linear valuations, this involves communicating the endpoints

of the desired intervals as well as the slope and intercept of the density on each of these

intervals. We assume that the endpoints of intervals as well as any slopes or intercepts can

be expressed using k-bit rationals (i.e., a/b where a and b are both k-bit integers). We seek

algorithms that run in time polynomial in k.

43



Chapter 4

Welfare Maximization and Cake

Cutting

The classic literature on cake cutting focuses on finding fair allocations. However, depending

on the fairness criterion and agents’ valuations, there may by multiple fair allocations. A

natural way to choose a single allocation from a set of fair allocations is to consider the

social welfare of different fair allocations. In this chapter, we provide algorithms for finding

welfare-maximizing fair allocations and discuss properties of these allocations.

4.1 Preliminaries

We define the social welfare or efficiency of an allocation A = (A1, . . . , An), which we denote

e(A), as the sum of agent values for the pieces they are given, i.e.,

e(A) =
n∑
i=1

Vi(Xi).

An allocationA is maxsum among a set of possible allocations S if e(A) = maxA′∈S e(A
′).

An allocation A is efficient if it is maxsum among all possible allocations. We will be in-

terested in looking at maxsum fair allocations, where S is a set of fair allocations (either

proportional, EF, EQ, or combinations of the three). We append the notion of fairness to

maxsum when we have a specific notion of fairness in mind. For instance, a maxsum EF

allocation refers to an allocation that has maximal social welfare among all EF allocations.

As we note in Section 3.3, we assume throughout this chapter that agent values are

normalized so that Vi([0, 1]) = 1 for every agent i. Since we are discussing maximizing
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social welfare, this assumption is not without loss. We discuss in Sections 4.2.5 and 4.3.3

why our results do not crucially depend on this assumption. Even if normalization were

required, we could consider a setting where agents’ utilities are relative and depend on the

fraction of their total perceived value for the good they end up receiving.

We assume a direct revelation model as discussed in Section 3.4.3. In this model, agents

report their valuations V1, . . . , Vn to the algorithm (by reporting their value density functions

v1, . . . , vn, and the algorithm makes an allocation based on these reports. These reports

reports may differ from the agent’s true valuations. We do not consider truthfulness in this

chapter, so our algorithms and results can be thought to compute maxsum fair allocations

with respect to reported valuations, or one can assume agents are truthful. We ignore

this distinction in the sequel and adopt value Vi and value density vi in describing our

algorithms.

4.2 Computing Welfare Maximizing Fair Allocations

In this section, we consider the problem of giving tractable algorithms for computing a

maxsum fair allocation. Our notion of tractability is that our algorithms run in time

polynomial in the number of bits needed to communicate the agents’ value density functions.

We focus specifically on maxsum EF allocations, but we will point our where our methods

can be easily adapted to other notions of fairness Section 4.2.5. Our goal in this section is

therefore:

Given the value density functions, tractably compute a maxsum EF allocation.

In some cases we relax this goal, asking only for approximate efficiency, approximate envy-

freeness, or both.

Our presentation of the results progresses through three levels of generality in terms of

the supported valuation functions. In Section 4.2.2 we assume that the valuation functions

are piecewise constant. We give a polynomial-time algorithm that computes maxsum EF

allocations via a simple linear programming approach.

In Section 4.2.3 we deal with piecewise linear valuations, a rather general class of val-

uation functions that strictly contains the class of piecewise constant valuations. We first

provide an algorithm that singles out a maxsum EF allocation for the case of two agents.

Unfortunately, we show that in this setting, and even with two agents, no tractable algorithm

exists, as in some instances any maxsum EF allocation must be specified using irrational
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numbers. We therefore leverage our (intractable) algorithm to produce a tractable algo-

rithm that computes approximately EF allocations for two agents that are as efficient as

any maxsum EF allocation. The algorithm runs in time polynomial in log 1/ε, where ε

specifies the amount of envy permitted. Technically, this is facilitated by a delicate search

procedure, which in particular employs a technique of Papadimitriou [1979] for searching

over rational numbers.

Section 4.2.4 deals with general valuation functions and any number of agents. We

design a tractable algorithm that computes approximately maxsum, approximately EF

allocations by approximating the given valuation functions by piecewise constant functions

and employing the results of Section 4.2.2. Our algorithm runs in time polynomial in

1/ε, where ε specifies the deviation from optimality as well as the amount of envy that is

permitted.

4.2.1 Related Work

Caragiannis et al. [2009] present a framework for quantifying the efficiency loss due to fair-

ness requirements, including envy-freeness, under general valuation functions. Their price

of envy-freeness is the worst-case ratio between the total utility under an (unconstrained)

maxsum allocation, and the total utility under a maxsum EF allocation. Caragiannis et al.

provide a lower bound of Ω(
√
n) and a weak upper bound of O(n) on the price of envy-

freeness, where n is the number of agents. Note that an upper bound singles out in every

instance (set of valuation functions) an allocation that achieves a certain ratio (O(n) in this

case), but makes no claim as to whether the allocation is optimal in terms of social welfare.

Reijnierse and Potters [1998] design a clever but complex algorithm that computes a

Pareto-efficient EF allocation, i.e., an EF allocation such that no other allocation (including

non-EF allocations) is at least as good for all the agents and better for at least one agent,

when agents hold piecewise constant valuations. The core of their algorithm involves map-

ping the cake cutting problem for piecewise constant valuations to a linear Fisher market.

A linear Fisher market is a setting where there is a set of divisible items, and an agent’s

value for an item is linear in the amount of the item they receive and additive across items.

The subintervals on which all agents’ value densities are constant are mapped to items in

the Fisher market, and each agent is endowed with the same fixed budget. A Walrasian

equilibrium in this market (prices for items such that the market clears, agents spend their

budgets, and agents only purchase items with maximal utility to price ratio) turns out

to correspond to a Pareto-efficient EF allocation. Such an equilibrium can be computed
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approximately using the Eisenberg-Gale convex program [Eisenberg and Gale, 1959] or ex-

actly using methods developed by Devanur et al. [2002]. The main contrast with our work

is that we focus on finding maxsum EF allocations. It is easy to see that Pareto-efficient

EF allocations may not be maxsum EF. Consider a simple case where agent 1 uniformly

wants [0, 0.5] and agent 2 uniformly likes the entire cake [0, 1]. Giving [0, 0.25] to agent 1

and [0.25, 1.0] to agent 2 is EF and Pareto-efficient, but it is not maxsum EF. Indeed, we

can increase the total value obtained by giving [0, 0.5] and [0.5, 1.0] to agent 2. On the other

hand, we show in the next section (see Theorem 4.3.7) that even when agents have piece-

wise constant valuations, maxsum EF allocations may not be Pareto-efficient. Therefore,

our work examines a different question than this earlier work.

Reijnierse and Potters ultimately use their algorithm to compute approximately Pareto-

efficient EF allocations under general valuations; our approximation approach for general

valuations, presented in Section 4.2.4, is inspired by theirs.

Zivan et al. [2010] present a way to find Pareto-efficient EF allocations that reduce

untruthful manipulations, also assuming agents hold piecewise constant valuations. As

discussed, maxsum EF allocation are different than Pareto-efficient EF allocations. Addi-

tionally, we do not examine strategic issues in this paper.

Nuchia and Sen [2001] provide a procedure which starts from an externally given EF

allocation and improves its efficiency while maintaining envy-freeness. However, this proce-

dure is not guaranteed to produce an maxsum EF allocation. In Section 4.2.3 we do provide

such a guarantee by starting from an efficient allocation and improving its envy-freeness.

For general valuations, computing EF allocations is notoriously difficult (see, e.g., Pro-

caccia [2009]). However, there is a known approach for computing ε-EF allocations via

Sperner’s Lemma [Su, 1999]. If one is only interested in approximate envy-freeness, our

approach is comparably simple, but significantly more general as it makes it possible to also

optimize social welfare.

4.2.2 Piecewise Constant Valuations

We first consider algorithms for computing maxsum EF allocations for piecewise constant

valuations (see Section 3.5). Though these valuations functions are restrictive, they model

certain real settings and these results are leveraged in Section 4.2.4 to address general

valuations.

The main result of this section is a simple polynomial-time algorithm for finding a

maxsum EF allocation when agents have piecewise constant valuations. As discussed in
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Algorithm 1

1. Mark the boundaries of the reported intervals of all agents, as well as 0 and 1.

2. Let J be the set of subintervals of [0, 1] formed by consecutive marks.

3. Solve the following linear program:

max
n∑
i=1

∑
I∈J

xiIVi(I) (4.1)

s.t.
n∑
i=1

xiI ≤ 1 ∀I ∈ J (4.2)∑
I∈J

xiIVi(I) ≥
∑
I∈J

xjIVi(I) ∀i, j ∈ N (4.3)

xiI ≥ 0 ∀i ∈ N, I ∈ J (4.4)

4. Return an allocation which for all i ∈ N and I ∈ J allocates an xiI fraction of
subinterval I to agent i.

Section 3.5.1, we assume that the endpoints are agents’ desired intervals are k-bit rationals

and that their value density functions take on values that are k-bit rationals.

Our procedure for finding a maxsum EF allocation is formally given as Algorithm 1.

Step 1 of the algorithm is illustrated in Figure 4.1. The linear program (LP) in Step 3 has

variables xiI for each i ∈ N and I ∈ J (where J is defined in Step 2), which represent the

fraction of interval I given to agent i. Crucially, the value density functions of all agents

are constant on each interval I ∈ J , hence the value of each agent i ∈ N for a fraction xiI

of interval I is xiIVi(I), and the agent’s value for its piece is
∑

I∈J xiIVi(I). The objective

function (4.1) then simply gives the social welfare of the allocation. The first constraint (4.2)

ensures that the allocation of each interval in J is valid, while the second constraint (4.3)

is the envy-freeness constraint. We have the following result.

Theorem 4.2.1. Assume that there are n agents with piecewise constant valuation func-

tions. Then Algorithm 1 computes a maxsum EF allocation in polynomial time.

Interestingly, setting the variables xiI to 1/n for every i ∈ N and I ∈ J—allocating to

each agent a 1/n-fraction of each interval in J—produces an allocation where Vi(Xj) = 1/n

for every i, j ∈ N ; we call the partition X1, . . . , Xn with this property a perfect partition.

The allocation induced by a perfect partition is in particular EF. So, under piecewise con-

stant valuation functions finding an EF allocation is trivial, and computing a maxsum EF

allocation only slightly less so.
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0 0.5 1
0

1

2

Figure 4.1: An illustration of piecewise contant value density functions, where n = 2 and
the area under the density function of agent 1 (resp., agent 2) is filled with horizontal
(resp., vertical) lines. Marks made by Algorithm 1 are represented by white circles on the
horizontal axis. Note that both value density functions are constant between every pair of
consecutive marks.

4.2.3 Piecewise Linear Valuations

Piecewise linear valuation functions offer added expressiveness, yet can still be concisely

represented. As discussed in Section 3.5.1, the agent can specify the endpoints of the

intervals on which its value density function is linear, and then for each interval can provide

the slope and intercept of the value density function on that interval.

While Algorithm 1 exactly solves the piecewise constant case, it is not directly general-

izable to the piecewise linear case. The algorithm relies on the fact that we can split [0, 1]

into a finite number of intervals on which agent value densities were constant. This allows

us to focus only on the fraction of each interval given to each agent rather than the specific

part of the interval. With piecewise linear valuations, it is not longer possible to split [0, 1]

into a finite number of intervals on which value densities are constant.

The main result of this section is an algorithm that finds a maxsum EF allocation

for two agents when valuations are piecewise linear. Envy-freeness and proportionality

are equivalent in the case of two agents if the entire cake is allocated, so the algorithm

equivalently finds a maxsum proportional allocation. We first outline an abstract algorithm

for handling these valuation functions. We then prove an impossibility result that an exact

implementation of this abstract algorithm is intractable. We conclude by sketching an

approximate implementation of the algorithm. An algorithm for any number of agents is

left open.

An abstract algorithm

At a high level, the algorithm starts with a maxsum (not necessarily EF) allocation, and

transfers pieces to the envious agent until the agent is no longer envious. The crux of the

procedure lies in the choice of which pieces are given to the envious agent. A key notion
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Algorithm 2

1. If V1(Y1≥2) ≥ 1/2 and V2(Y2≥1) ≥ 1/2, give agent 1 Y1>2, agent 2 Y2>1.

(a) If V1(Y1>2) ≥ 1/2, give Y1=2 to agent 2.

(b) Otherwise, divide Y1=2 so that agent 1 receives value exactly 1/2.

2. Without loss of generality, assume V1(Y1≥2) < 1/2. Give Y1≥2 to agent 1. Let r∗ be
the maximal r such that V1(Y1≥2 ∪ YR1≥r) ≥ 1/2. Give Y>r∗ to agent 1, and divide
Y=r∗ so that agent 1 receives exactly value 1/2.

will be that of the ratio between the density functions of agent 1 and agent 2.

Definition 4.2.2. For x ∈ [0, 1] where v2(x) 6= 0, the value ratio at x for agent 1 is

R1(x) = v1(x)/v2(x). For x ∈ [0, 1] where v1(x) 6= 0, the value ratio at x for agent 2 is

R2(x) = v2(x)/v1(x).

Notationally, define the sets

Yi op j = {x ∈ [0, 1] : vi(x) op vj(x)} (4.5)

YR1op r = {x : v1(x) ≤ v2(x), v2(x) > 0, R1(x) op r} (4.6)

YR2op r = {x : v2(x) ≤ v1(x), v1(x) > 0, R2(x) op r} (4.7)

where i, j ∈ {1, 2} and op ∈ {>,≥,=}. For instance, Y1≥2 = {x ∈ [0, 1] : v1(x) ≥ v2(x)}

and YR1>r = {x ∈ [0, 1] : v1(x) ≤ v2(x), v2(x) > 0, R1(x) > r}.

Using these notations we can present our algorithm, given as Algorithm 2. In the rest

of this subsection we prove the following theorem.

Theorem 4.2.3. Assume that there are two agents with piecewise linear valuations. Algo-

rithm 2 finds a maxsum EF allocation.

Before proving Theorem 4.2.3, we establish a few useful lemmas.

Lemma 4.2.4. Suppose that agent i ∈ {1, 2} receives a piece of cake Xi, with Vi(Xi) ≥ 1/2.

Agent i will not envy the other agent.

Proof. By additivity, Vi(Xi) +Vi([0, 1] \Xi) = 1. The proposition follows by observing that

the other agent receives at most [0, 1] \Xi if agent i receives Xi.

Lemma 4.2.5. In any maxsum EF allocation, all intervals desired by at least one agent

are allocated (i.e., desired intervals are not discarded).

50



CHAPTER 4 WELFARE MAXIMIZATION AND CAKE CUTTING

Proof. Suppose for contradiction that there is some maxsum EF allocation X1, X2 that

does not allocate an interval I where v1(I) > 0 or v2(I) > 0. We can augment X1, X2

with an allocation of I that maintains envy-freeness while improving efficiency. Indeed,

assume without loss of generality that there exists on I where v1(I) > 0. Divide I into

two subintervals I ′, I ′′ such that V1(I ′) = V1(I ′′). Allocate to agent 2 the subinterval with

higher value according to V2, and give the remaining subinterval to agent 1. Social welfare is

improved because agent 1 receives strictly greater value and agent 2 receives weakly greater

value. Envy-freeness is maintained since agent 1 is indifferent between the two pieces, and

agent 2 prefers the additional piece it receives.

The following is a simple consequence of this observation.

Lemma 4.2.6. In any maxsum EF allocation, V1(X1) ≥ 1/2 and V2(X2) ≥ 1/2.

Proof. By Lemma 4.2.5, all desired intervals are allocated to one of the agents, so for

i ∈ {1, 2}, Vi(X1) + Vi(X2) = 1, and envy-freeness requires that Vi(Xi) ≥ 1/2.

We are now ready to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. Consider each of the cases specified by Algorithm 2.

Case 1: V1(Y1≥2) ≥ 1/2, V2(Y2≥1) ≥ 1/2. Algorithm 2 allocates Y1>2 to agent 1 and Y2>1

to agent 2. The allocation made by Algorithm 2 is always efficient, since the agent who

strictly prefers an interval always receives it. What is left to be shown is that the allocation

is EF.

Case 1(a): V1(Y1>2) ≥ 1/2. Algorithm 2 gives Y1=2 to agent 2. V2(Y2≥1) ≥ 1/2 by

assumption. Both agents have value at least 1/2, and by Lemma 4.2.4 are not envious.

Case 1(b): V1(Y1>2) < 1/2. Algorithm 2 splits Y1=2 so that agent 1 receives value exactly

1/2 after adding in Y1>2. This must be possible since V1(Y1≥2) ≥ 1/2. Agent 1 is not

envious by Lemma 4.2.4. Let X2 be the piece given to agent 2 (the remaining portion of Y1=2

along with Y2>1). Algorithm 2 allocates the entire interval, so by additivity, V1(X2) = 1/2.

However, the piece X2 consists only of intervals where v2(x) ≥ v1(x), so V2(X2) ≥ V1(X2) =

1/2.

Case 2: V1(Y1≥2) < 1/2. First, note that Algorithm 2 finds an EF allocation X1, X2.

Indeed, as before, agent 1 is not envious as V1(X1) = 1/2. Since agent 2 is given all the

intervals not given to agent 1, V1(X2) = 1/2. The piece X2 consists only of intervals where

v2(x) > v1(x), so V2(X2) ≥ V1(X2) = 1/2.

51



CHAPTER 4 WELFARE MAXIMIZATION AND CAKE CUTTING

Because V1(Y1≥2) < 1/2, envy-freeness requires us to sacrifice efficiency since we need

to give agent 1 some intervals that are strictly preferred by agent 2. To show that X1, X2

is a maxsum EF allocation, let X ′1, X
′
2 be any maxsum EF allocation. Define the following

three pieces of cake:

A = X1 ∩X ′1 ∩ Y2>1,

B = (X1 \X ′1) ∩ Y2>1,

C = (X ′1 \X1) ∩ Y2>1.

A gives the intervals where both allocations lose efficiency due to giving pieces preferred

by agent 2 to agent 1. B gives the intervals where X1, X2 loses efficiency, and C gives the

intervals where X ′1, X
′
2 loses efficiency.

Let V1(Y1≥2) = 1/2 − ε, ε > 0. Note that A ∩ B = ∅, A ∩ C = ∅, and A ∪ B =

X1 ∩ Y2>1, A ∪ C = X ′1 ∩ Y2>1. Algorithm 2 gives agent 1 exactly value 1/2 yielding:5

V1(A) + V1(B) =

∫
A
v1(x)dx+

∫
B
v1(x)dx = ε. (4.8)

Similarly, Lemma 4.2.6 says that since X ′1, X
′
2 is a maxsum EF allocation, agent 1 must

receive value at least ε from its allocation of Y2>1:

V1(A) + V1(C) =

∫
A
v1(x)dx+

∫
C
v1(x)dx ≥ ε. (4.9)

Combining (4.8) and (4.9) yields∫
C
v1(x)dx−

∫
B
v1(x)dx ≥ 0. (4.10)

Let `(X1, X2) denote the difference between the efficiency of a maxsum allocation (not

necessarily EF) and the efficiency of X1, X2.

`(X1, X2) =

∫
A

(v2(x)− v1(x))dx+

∫
B

(v2(x)− v1(x))dx

`(X ′1, X
′
2) ≥

∫
A

(v2(x)− v1(x))dx+

∫
C

(v2(x)− v1(x))dx

The loss for X ′1, X
′
2 is an inequality because while Algorithm 2 gives all of Y1>2 to agent 1,

X ′1, X
′
2 need not and may lose efficiency from those intervals as well.

5We slightly abuse notation and take the integral over A,B,C to signify the sum of integrals over inclusion-
maximal subintervals of A,B,C respectively.
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To complete the proof, recall how Algorithm 2 constructs X1. Let r∗ be the value

computed in Step 2 of Algorithm 2. By definition of Algorithm 2, X1 ∩ Y2>1 consists of all

points with R1(x) > r∗ and some or all of the points with R1(x) = r∗. Therefore, if x ∈ B

then R1(x) ≥ r∗, and if x ∈ C then R1(x) ≤ r∗. We conclude that

`(X ′1, X
′
2)− `(X1, X2)

≥
∫
C

(v2(x)− v1(x))dx−
∫
B

(v2(x)− v1(x))dx

=

∫
C

(
v1(x)

R1(x)
− v1(x)

)
dx−

∫
B

(
v1(x)

R1(x)
− v1(x)

)
dx

≥
(

1

r∗
− 1

)(∫
C
v1(x)dx−

∫
B
v1(x)dx

)
≥ 0,

where the last inequality follows from (4.10).

Interestingly, Algorithm 2 does not make specific use of the assumption that valuations

are piecewise linear. In theory, it can be applied to more general classes of valuation

functions, provided that the sets Y1>2, Y1=2, Y2>1, Y≥r correspond to legal pieces of cake.

However, we do use the piecewise linear assumption in the next subsection.

Implementing Algorithm 2

To discuss implementation details, we need to be careful about how we represent the input

to our algorithm. As discussed in Section 3.5.1, we assume that the input to our algorithm

consists of the endpoints of agents’ desired intervals and the slopes and intercepts of their

density functions on each of these intervals. We assume that the endpoints, slopes, and

intercepts can be specified with k-bit rationals. Since slopes and intercepts can be negative,

in this section we take k-bit rationals to include numbers of the form −a/b where a, b are

k-bit rationals.

While it is tempting to apply Algorithm 2 to produce a maxsum EF allocation, there

is a barrier to this approach. Even when the inputs are k-bit rational numbers, the r∗

defined in Step 2 of Algorithm 2 and the boundaries of the resulting allocation may be

irrational. In fact, this limitation is not specific to Algorithm 2. There are cases where the

allocation computed by Algorithm 2 is the unique maxsum EF allocation and has irrational

boundaries.

Theorem 4.2.7. There exist piecewise linear valuations whose interval boundaries, slopes,
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and intercepts are all rational numbers yet whose maxsum EF allocations can only be spec-

ified with irrational numbers.

Proof. Suppose agent 2 has value density function v2(x) = 2x over the entire interval [0, 1]

and agent 1 has value density function

v1(x) =


1
2 if 0 ≤ x ≤ 1

4

32x+1
18 if 1

4 < x ≤ 1
(4.11)

The first step of Algorithm 2 will give [0, 1/4] to agent 1 and [1/4, 1] to agent 2 since agent

1 has higher density on [0, 1/4] and agent 2 has higher density on [1/4, 1]. At this point,

agent 1 will be envious of agent 2, having only value (1/2)(1/4) = 1/8 for its piece (and

therefore value 7/8 for agent 2’s piece).

The next step of Algorithm 2 takes parts of [1/4, 1] from agent 2 and gives them to

agent 1 until agent 1 obtains value exactly 1/2. In particular, the algorithm allocates some

interval of the form [1/4, a∗] to agent 1 since R1(x) is decreasing on [1/4, 1]. For agent 1

to obtain value exactly 1/2, the piece [1/4, a∗] must be worth exactly 3/8 to agent 1 (since

[0, 1/4] is worth exactly 1/8). Thus, a∗ will satisfy

∫ a∗

1
4

v1(x)dx =
3

8
.

Solving this equation, we find that a∗ is given by

a∗ =
−1 + 3

√
57

32
.

Therefore, the maxsum EF allocation computed by Algorithm 2 has irrational boundaries

and we cannot hope to specify it with a finite number of bits. To finish the proof, note

that in this example, there are no ties or places where we can specify multiple different

allocations as R1(x) is strictly increasing on [1/4, 1]. We can therefore argue that the

allocation produced by Algorithm 2 is the unique maxsum EF allocation since any other

allocation would result in transfers of intervals with lower R1(x) from agent 2 to agent 1,

leading to more efficiency loss (using similar arguments as the proof of Theorem 4.2.3. As a

result, we cannot get around the problem of irrational boundaries by selecting a particular

maxsum EF allocation.

As a result, it is necessary to resort to approximation. Indeed, we relax envy-freeness
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by considering approximately EF allocations. Specifically, an allocation is ε-EF if for all

i, j ∈ N , Vi(Xi) ≥ Vi(Xj)−ε (see, e.g., Lipton et al. [2004]). The following theorem formally

presents our approximation guarantees.

Theorem 4.2.8. Assume that there are two agents with piecewise linear valuations. For

any ε > 0 there is an algorithm that runs in time polynomial in the input and log(1/ε), and

finds an ε-EF allocation A′ such that e(A′) ≥ e(A), where A is a maxsum EF allocation.

Proof (Sketch). The full proof is deferred to the appendix of this chapter, but we give a

brief sketch here. In the case considered in Step 1 of Algorithm 2, we would like to find a

point x∗ such that

V1(([0, x∗] ∩ Y1=2) ∪ Y1>2) = 1/2.

Using binary search over [0, 1], we find a point x that is smaller but very close to x∗. It

is then possible to bound the envy, while the resulting allocation is at least as efficient as

any maxsum EF allocation. In Step 2 of Algorithm 2, we need to search for a ratio r close

to r∗. This is more subtle, because very small differences in |r − r∗| can lead to significant

differences in the derived value when there is a long interval with constant value ratio.

Fortunately, in this problematic case it can be shown that r∗ is a rational, and hence it is

sufficient to find the rational r closest to r∗. This can be done using a delicate search over

rationals, via techniques due to Papadimitriou [1979].

4.2.4 General Valuations

In this section we give a method for handling general valuation functions (under some mild

conditions) and for any number of agents. We approximate general valuation functions with

piecewise constant valuations and leverage Algorithm 1. We construct an allocation that is

ε-EF and whose efficiency is within ε of any maxsum EF allocation.

Lemma 4.2.9. Given ε > 0 and value density functions v1, . . . , vn, suppose that v′1, . . . , v
′
n

are piecewise constant value density functions such that for all i ∈ N ,

vi(x) ≤ v′i(x) ≤ vi(x) + ε/2. (4.12)

Let A = (X1, . . . , Xn) be a maxsum EF allocation with respect to valuations Vi (induced by

vi), and let A′ = (X ′1, . . . , X
′
n) be a maxsum ε/2-EF allocation with respect to valuations V ′i

(induced by v′i). Then A′ is ε-EF and e(A′) ≥ e(A)− ε/2.
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Proof. To show that A′ is ε-EF with respect to V1, . . . , Vn, let i, j ∈ N , and note that A′

is ε/2-EF with respect to V ′i , so V ′i (X ′i) ≥ V ′i (X ′j) − ε/2. Thus, using (4.12), Vi(X
′
i) ≥

V ′i (X ′i)− ε/2 ≥ V ′i (X ′j)− ε ≥ Vi(X ′j)− ε.

For the second part of the lemma, we first claim that

n∑
i=1

V ′i (X ′i) ≥
n∑
i=1

V ′i (Xi). (4.13)

To prove this, it is sufficient to show that A is ε/2-EF with respect to V ′1 , . . . , V
′
n, as A′

represents the maxsum ε/2-EF allocation with respect to V ′1 , . . . , V
′
n (so A cannot possibly

provide more welfare). Indeed, A is EF with respect to V1, . . . , Vn, and hence

V ′i (Xi) ≥ Vi(Xi) ≥ Vi(Xj) ≥ V ′i (Xj)− ε/2.

Next, it holds that

n∑
i=1

Vi(X
′
i) =

n∑
i=1

∫
X′i

vi(x)dx

≥
n∑
i=1

∫
X′i

(v′i(x)− ε/2)dx

=

(
n∑
i=1

∫
X′i

v′i(x)dx

)
− ε/2

=

(
n∑
i=1

V ′i (X ′i)

)
− ε/2.

(4.14)

Now, the assertion that e(A′) =
∑n

i=1 Vi(X
′
i) ≥ (

∑n
i=1 Vi(Xi))−ε/2 = e(A)−ε/2 directly

follows by combining Equations (4.13), (4.14), and (4.12).

Given piecewise constant value density functions v′1, . . . , v
′
n that satisfy (4.12), it is easy

to find a maxsum ε/2-EF allocation A′ by applying Algorithm 1 to these valuations, where

the envy-freeness constraint (4.3) is relaxed by ε/2.

To find v′1, . . . , v
′
n that satisfy (4.12), we assume that v1, . . . , vn are K-Lipschitz, i.e., for

all x, y ∈ [0, 1],

|vi(x)− vi(y)| ≤ K · |x− y|.

Now, split [0, 1] into d4K/εe intervals of size at most ε/(4K). Let S = {k/2p : k ∈ [0,M2p]},

where M is an upper bound on vi(x) for all i ∈ N and x ∈ [0, 1], and p will be specified later.
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For each interval I and agent i, let v∗(I) = maxx∈I vi(x). For all x ∈ I let v′i(x) = s∗(I),

where s∗(I) = min{s ∈ S : s ≥ v∗(I)}.

The K-Lipschitz condition ensures that the density function varies by at most ε/4 on

each interval. If we take p = d2 + log(1/ε)e, then s∗(I) − v∗(I) ≤ ε/4, and v′i satisfies

condition 4.12.

While the K-Lipschitz condition rules out valuation density functions with discontinu-

ities, our results extend to valuation density functions with a finite number of discontinuities

that are K-Lipschitz on each continuous subinterval. In particular, we can use the described

procedure separately on each continuous subinterval to find v′i that satisfy (4.12). We have

the following theorem.

Theorem 4.2.10. Assume that there are n agents with value density functions v1, . . . , vn

that have a finite number of discontinuities, are K-Lipschitz on each continuous subinterval,

and have maximum value M . For any ε > 0, there is an algorithm that runs in time

polynomial in n, logM,K, 1/ε and computes an ε-EF allocation whose efficiency is within ε

of any maxsum EF allocation.

4.2.5 Discussion

Normalization

Though we assume normalization for ease of exposition, the results in this section extend

naturally to unnormalized valuations. With unnormalized valuations, we let each agent have

a different value for the entire cake [0, 1]. For piecewise constant valuations (Section 4.2.2),

the LP still returns the maxsum EF allocation even if agent valuations are not normalized.

For piecewise linear valuations and two agents (Section 4.2.3), the intuition of trying to

swap intervals with high ratios before intervals with smaller ratios still applies when agent

valuations are not normalized. The difference is that the cases need to be separated based

on whether agent values are at least Vi([0, 1])/2 instead of 1/2. For approximating general

valuations, the same techniques apply when agent valuations are not normalized. We first

approximate the valuations with piecewise constant valuations. Then we find a maxsum

ε/2-EF allocation using the LP for piecewise constant valuations. Then we argue that

this allocation is approximately EF with respect to the true valuations and approximately

maximizes social welfare.
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Comparison of Section 4.2.3 with Theorem 4.2.10

Given the rather strong Theorem 4.2.10, one may wonder in what way the results of Sec-

tion 4.2.3 are superior. In fact, for the (interesting, we believe) case of two agents with

piecewise linear valuations, the method of Section 4.2.3 has two technical advantages. First,

it produces an ε-EF allocation that is as efficient as the maxsum EF allocation. Second,

Theorem 4.2.8 provides running time that is polynomial in the representation and therefore

logarithmic in the slope of the valuation functions, as the slope is specified by O(k)-bit

rationals. In contrast, the running time in Theorem 4.2.10 is polynomial in the slope (since

the maximum slope determines the Lipschitz constant), and hence exponential in the rep-

resentation. Finally, note that piecewise linear (rather than constant) valuation functions

can in theory be used to approximate general valuations, making it possible to relax the

assumptions of Theorem 4.2.10 (when there are only two agents).

Proportionality

Envy-freeness can be replaced with the weaker notion of proportionality in all of our results.

The purpose of our focus on envy-freeness is to simplify the exposition. As mentioned in

Section 3.2, any EF allocation is proportional, and for the case of two agents the two

notions coincide. Using the last observation, the results of Section 4.2.3 immediately hold

for proportionality. The results of Section 4.2.2 can easily be adapted by modifying (4.3).

This can then be used to obtain results similar to Section 4.2.4.

Direct Revelation

We have assumed a direct revelation model of cake cutting throughout this section. Of

course, in Section 4.2.4, which deals with general valuations, we cannot adopt this model.

However, notice that Theorem 4.2.10 merely requires finding values that are close to vi(x)

for a polynomial number of points x ∈ [0, 1]; an implicit, reasonable assumption is that the

valuation information at these points can be elicited from agents.

4.3 Properties of Maxsum Fair Allocations

Intuitively, a maxsum fair allocation is superior to an arbitrary fair allocation, for any

fairness criterion. Nevertheless, we do not know how good maxsum fair allocations are; can

one argue that they are truly more desirable than other allocations? Moreover, there are
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several notions of fairness to choose from; under which notion should one optimize social

welfare?

In this section, we consider different maxsum fair allocations. In particular, we focus on

maxsum EF, EQ and (EF and EQ) allocations. Specifically, we ask whether these allocations

are Pareto-efficient (PE) among the set of all possible allocations. We then consider the

question of whether we can say anything of the social welfare of these different allocations.

We do not consider maxsum proportional allocations, as they are not interesting from the

perspective of Pareto-efficiency. Indeed, it is easy to see that any maxsum proportional

allocation must be Pareto-efficient among all allocations. If not, we could make all agents

weakly better off, increasing social welfare while preserving proportionality.

We first observe that, if there are only two agents, PE is guaranteed for maxsum EF allo-

cations, maxsum EQ allocations, and even maxsum EF and EQ allocations (i.e., allocations

that are maxsum among allocations that are both EF and EQ).

Our other results are more subtle and hinge on the structure of agents’ valuation func-

tions. We consider the special case of piecewise uniform valuations and piecewise constant

valuations. We show that under piecewise uniform valuations, maxsum EF allocations are

always PE whereas there are cases where all maxsum EQ and maxsum EF+EQ allocations

are not PE. Under piecewise constant valuations, there are examples with three agents such

that all maxsum EF allocations are also not PE.

We then move onto comparing the social welfare under maxsum EF and maxsum EQ

allocations. We show that under piecewise linear valuations the social welfare of a maxsum

EF allocation is at least as great as the social welfare of a maxsum EQ allocation. We also

extend this result to general valuation functions albeit only approximately, in that (i) we

optimize among allocations that are EF up to ε, and (ii) the inequality holds up to ε.

4.3.1 Pareto Efficiency of Maxsum Allocations

In this section, we study the Pareto efficiency of maxsum allocations. In particular, we

establish the Pareto efficiency of maxsum EF, EQ, and EF+EQ allocations in the case of

two agents and general valuations, and complement this result by showing that for three

agents or more, these allocations are not necessarily Pareto efficient.

Two Agents, General Valuations

The two-agent case has special significance (for example, in the context of divorce settle-

ments), so we give special consideration to this case.
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Theorem 4.3.1. For general valuations and two agents, every maxsum EF, EQ, or EF+EQ

allocation is PE.

Before proving Theorem 4.3.1, we introduce the notion of ratio-based allocations for

the two-agent setting. Ratio-based allocations generalize the type of allocation produced

by Algorithm 2 in Section 4.2.3. We adopt the same notation for Ri, Yi op j , and YRi op r

introduced in that section. In addition, we let Y1 and Y2 denote the intervals on which only

agent 1’s density is positive and only agent 2’s density is positive respectively.

Definition 4.3.2. An allocation A = (A1, A2) is ratio-based if Y1 ⊆ A1, Y2 ⊆ A2 and either

one of the following holds:

• There exists an r∗ ∈ [0, 1] such that

A1 = Y1>2 ∪ YR1>r∗ ∪ C,

where C ⊆ YR1=r∗ .

• There exists an r∗ ∈ [0, 1] such that

A2 = Y2>1 ∪ YR2>r∗ ∪ C,

where C ⊆ YR2=r∗ .

We refer to agent 1 as the receiving agent in the first case and agent 2 as the receiving agent

in the second case. We refer to r∗ as the critical ratio.

In a ratio-based allocation, the receiving agent is always allocated intervals that it

strictly desires, as well as some intervals weakly desired by the other agent. For the special

case where the critical ratio is 1, both agents can be seen as receiving agents. In this case,

the allocation is efficient since all intervals are allocated to agents who weakly prefer the

interval. When the critical ratio is less than 1, there is a unique receiving agent i that

receives all intervals it weakly desires (Yi≥3−i) along with some intervals strictly desired

by the other agent. This necessarily results in a loss of welfare relative to the efficient

allocation. However, ratio-based allocations minimize the obtained loss. This is formalized

in the following lemma.

Lemma 4.3.3. Let A = (A1, A2) be a ratio-based allocation with agent 1 as the receiving

agent such that v = V1(A1) ≥ V1(Y1≥2). It holds that:
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1. For every allocation A′ = (A′1, A
′
2) such that V1(A′1) = v, sw(A) ≥ sw(A′).

2. For every allocation A′ = (A′1, A
′
2) such that V1(A′1) > v, sw(A) > sw(A′).

An analogous assertion holds for agent 2.

Proof (sketch). The proof of the lemma closely resembles the proof of Theorem 4.2.3.

Among all allocations that grant agent 1 value v, the allocation that maximizes welfare

is one in which agent 1 is first allocated all the intervals it strictly desires, and then, pos-

sibly, intervals that are strictly desired by agent 2, in a decreasing order of Ri(x). The

first part entails no loss in welfare. The second part may entail some loss, but allocating

these intervals in a decreasing order of Ri(x) ensures that this is the lowest possible loss.

In addition, if agent 1 receives value greater than v, it must come from additional intervals

that are strictly desired by agent 2. This entails a greater loss in welfare.

The following is an immediate corollary of Lemma 4.3.3.

Lemma 4.3.4. Every ratio-based allocation is PE.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. We address the three different allocation types.

Maxsum EF. We distinguish between two cases, as follows. If there exists an EF allocation

that is efficient, then every maxsum EF allocation is trivially PE. Otherwise, there must

exist an agent i such that Vi(Yi≥3−i) < 1/2 (Step 2 of Algorithm 2). While Algorithm 2

focuses on piecewise linear valuation functions, the algorithm works for general valuation

functions. Wlog, suppose V1(Y1≥2) < 1/2. Theorem 4.2.3 establishes the existence of

a ratio-based allocation that gives agent 1 value of exactly 1/2 and is maxsum EF. Let

A = (A1, A2) be such an allocation. By Lemma 4.3.4, A is PE. Let A′ = (A′1, A
′
2) be

another maxsum EF allocation. In what follows we show that A′ is PE. We distinguish

between three cases.

1. If V1(A′1) = 1/2, then, since A′ is maxsum EF, it follows that V2(A′2) = V2(A2). In

this case, the fact that A is PE implies that A′ is PE as well.

2. If V1(A′1) < 1/2, then V1(A′2) < 1/2 (otherwise, contradicting EF). It follows by

Lemma 4.2.5 that A′ is not maxsum EF, a contradiction.

3. If V1(A′1) > 1/2, then we get V1(A′1) > 1/2 > V1(Y1≥2). It follows by Lemma 4.3.3

that sw(A′) < sw(A), in contradiction to A′ being a maxsum EF allocation.
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Maxsum EQ. We distinguish between two cases.

• V1(Y1≥2) ≥ V2(Y2>1) and V2(Y2≥1) ≥ V1(V1>2). In this case we show that there exists

a maxsum EQ allocation that is efficient. This, in turn, implies that every maxsum

EQ allocation is PE. In particular, allocate Y1>2 to agent 1, Y2>1 to agent 2, and split

Y1=2 such that the agents’ values for their pieces are equal. To see why this is feasible,

note that if we give Y1=2 to agent 1 in its entirety, then agent 1 has a greater value.

On the other hand, if we give all of Y1=2 to agent 2, then agent 2 has a greater value.

Therefore, there must exist some allocation of Y1=2 that equalizes their values. This

allocation is EQ and efficient.

• Wlog, suppose V1(Y1≥2) < V2(Y2>1). We claim that in this case there exists a ratio-

based allocation with agent 1 as the receiving agent that is EQ. To see this, note that

as the critical ratio decreases from 1 to 0, agent 1 goes from receiving all of Y1≥2 to

receiving the entire cake, i.e., from a value of V1(Y1≥2) to a value of 1. On the other

hand, agent 2 goes from receiving all of Y2>1 to receiving none of the cake, i.e., from

value V2(Y2>1) > V1(Y1≥2) to 0. Therefore, the agents’ values must cross at some

point, and the assertion follows. By Lemma 4.3.4 this allocation is PE, and hence

maxsum EQ. Clearly, any maxsum EQ allocation must grant each agent the same

value as in the ratio-based maxsum EQ allocation. It follows that every maxsum EQ

allocation is PE.

Maxsum EF+EQ. In every maxsum EQ allocation, both agents receive value at least 1/2.

To see why this is true, consider the allocation given by cut and choose. Each agent obtains

value at least 1/2 in this allocation, and we can make it EQ by destroying intervals given to

the agent with higher value. Since both agents receive value at least 1/2, the maxsum EQ

allocation is also EF. It follows that for two agents, the set of maxsum EF+EQ allocations

coincides with the set of maxsum EQ allocations, for which the assertion of the theorem is

proved above.

Any Number of Agents, Restricted Valuations

We next turn to investigate maxsum EF, maxsum EQ, and maxsum EF+EQ allocations

under restricted valuations, but for any number of agents. As it turns out, at least un-

der piecewise uniform valuation functions, maxsum EF allocations are always PE whereas

maxsum EQ and maxsum EF+EQ allocations may not be.

Theorem 4.3.5. For piecewise uniform valuations, every maxsum EF allocation is PE.
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Proof sketch. When agent valuations are piecewise uniform, a sufficient condition for PE is

that all intervals desired by at least one agent are allocated to an agent that has positive

density on the entire interval. To see why this is true, recall that when agents have piecewise

uniform valuations, their total value is exactly determined by the total length of desired

intervals they receive. If all desired intervals are allocated to agents with positive density,

then an allocation that makes everyone weakly better off and one agent strictly better off

cannot exist because this would require additional desired lengths to be created. It remains

to show that a maxsum EF allocation must have this property.

Suppose that a maxsum EF allocation A = (A1, . . . , An) allocates some intervals to

agents that do not desire them or discards intervals altogether. Let X ′ denote these inter-

vals. Under piecewise uniform valuations, we can split X ′ into subintervals on which agent

densities are constant, and then give each agent a 1/n share of each of these subintervals.

We can append this allocation of X ′ to A. Envy is not created, because each agent i has

value exactly (1/n)Vi(X
′) for every piece in this allocation, but social welfare increases,

contradicting the assumption that A is maxsum.

Theorem 4.3.6. For piecewise uniform valuations and three agents, there are valuation

functions where all maxsum EQ and EF+EQ allocations are not PE.

Proof. Consider the following valuations. Agents 1 and 2 desire [0, 0.1] and agent 3 desires

all of [0, 1]. A maxsum EQ or maxsum EF+EQ allocation must split [0, 0.1] between agents

1 and 2 and allocate [0, 1] to agent 3 so that agent 3 receives value exactly 0.5. This is not

PE because we can split [0, 0.1] between agents 1 and 2 and give agent 3 all of [0.1, 1].

While there are cases where no maxsum EQ or EF+EQ allocation is PE under piecewise

uniform valuations, we need to move to piecewise constant valuations in order to find cases

where no maxsum EF allocation is PE.

Theorem 4.3.7. For piecewise constant valuations and three agents, there are cases where

no maxsum EF allocation is PE.

Proof (sketch). Consider the following valuations for three agents. The cake is split into

three equal intervals, i.e., [0, 1/3], [1/3, 2/3], [2/3, 1]. Each agent’s value densities are con-

stant on each of these intervals. Agent 1 values interval 1 at 51/101 and interval 2 at 50/101,

i.e., has densities 153/101 on interval 1 and 150/101 on interval 2. Agent 2 values interval

1 at 50/101 and interval 2 at 51/101. Agent 3 values interval 1 at 51/111, interval 2 at

10/111, and interval 3 at 50/111 (Figure 4.2).
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Agent 1
Agent 2
Agent 3

0

1

2

Figure 4.2: Value density functions for example where maxsum EF is not PO.

The efficient solution gives interval i to agent i. However, this allocation is not EF

because agent 3 envies agent 1. It can be shown via the LP formulation for the computation

of a maxsum EF allocation that to reduce this envy, there is a maxsum EF allocation that

gives agent 1 a share of intervals 1 and 2, agent 2 a share of intervals 1 and 2, and agent 3

all of interval 3. Further, an examination of this LP shows that this allocation is the unique

maxsum EF allocation. However, this allocation is not PE because agent 1 receives shares

of interval 2 (where agent 2 has higher density) while agent 2 receives shares of interval 1

(where agent 1 has higher density). As a result, there is a way to swap agent 1’s shares

of interval 2 with agent 2’s shares of interval 1 that leaves both agents better off. The full

proof is given in the appendix of this chapter.

4.3.2 Maxsum EQ vs. Maxsum EF Allocations

In this section, we show that for piecewise linear valuations, a maxsum EF allocation has

social welfare at least as large as any maxsum EQ allocation. We obtain an approximate

version of this result for general valuation functions.

Denote the social welfare of a maxsum EF (resp., EQ) allocation by OPTEF (resp.,

OPTEQ). Note that the two-agent version of the inequality OPTEQ ≤ OPTEF, for any

valuation functions, follows from the fact that a maxsum EQ allocation is also EF, which

was established in passing in the proof of Theorem 4.3.1. As a recap, both agents receive

value at least 1/2 in a maxsum EQ allocation, and for two agents, this is a sufficient

condition for envy-freeness.

For three agents, this argument no longer holds, even in the case of piecewise constant

valuations: a maxsum EQ allocation must give utility at least 1/3 to each agent, but this
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does not imply EF. For example, consider the piecewise uniform valuations where agents 1

and 2 value the whole cake (with density 1) and agent 3 only values [0.8, 1] (with density

5). A maxsum EQ allocation would be to give agent 1 [0, 5/11], agent 2 [5/11, 10/11], and

agent 3 [10/11, 1]. Each agent receives value 5/11, yet agent 3 envies agent 2.

Another interesting (but common) feature of this example is that OPTEQ < OPTEF,

with a strict inequality. One EF allocation is to give [0.8, 1] to agent 3 and split [0, 0.8]

between agents 1 and 2. This has social welfare of 1.8 compared to the maxsum EQ welfare

of 15/11 ≈ 1.364.

Having built some intuition, we next present the main result of this section. An ε-EF

allocation is one where Vi(Ai) ≥ Vi(Aj)− ε for all i, j ∈ N . Let OPTε-EF denote the social

welfare under a maxsum ε-EF allocation.

Theorem 4.3.8. For piecewise linear valuations,

OPTEQ ≤ OPTEF.

Moreover, for general valuation functions and any ε > 0,

OPTEQ ≤ OPTε-EF + ε.

The proof of Theorem 4.3.8 relies on a connection between piecewise linear valuation

functions and market equilibria for a collection of divisible goods inspired by Reijnierse and

Potters [1998]. Before we begin the proof, we draw this connection and cite the relevant

results from the market equilibria literature required in the proof.

A linear Fisher market is a market where agents N = {1, . . . , n} have additive, linear

utility functions for a set G = {1, . . . ,m} of divisible goods. Each agent i ∈ N is given a

budget ei and has a utility uij for each good j ∈ G. A feasible allocation gives a fraction xij

of good j to agent i such that no good is over-allocated. The agent’s total utility from an

allocation xij is
∑

j uijxij . When agent valuations are piecewise linear, utilities in a feasible

Fisher market allocation can be replicated in the cake cutting setting.

Lemma 4.3.9. Let A1, . . . , An be an allocation in the cake cutting setting. Define a Fisher

market with the same agents, and a good j corresponding to each Aj and uij = Vi(Aj).

Let xij be a feasible allocation of goods in the Fisher market. There exists an allocation

A′1, . . . , A
′
n such that Vi(A

′
j) = uijxij. In other words, we can replicate agent utilities in the
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Fisher market with an allocation of the cake.

Proof. Given a feasible allocation xij in the Fisher market, create an allocation A′1, . . . , A
′
n

as follows. For each original piece Aj , split Aj into subintervals on which every agent’s value

density function is linear (this is possible since agent value densities are piecewise linear).

We would like to give each agent i a piece of Aj that it values at xijVi(Aj). Since the

valuations are linear, this can be achieved by giving agent i two equally-sized pieces from

each linear subinterval. For a given linear subinterval, process each agent one by one. For

each next agent, give the agent a
xij
2 fraction of the remaining interval starting from the

left and moving right, and a
xij
2 fraction of the remaining interval starting from the right

and moving left. Since the linear utilities are symmetric, agent i’s value from its share of

Aj is xijVi(Aj) = xijuij , and summing over all intervals establishes the assertion of the

lemma.

Linear Fisher markets have the following very special properties (see e.g., Vazirani

[2007]).

Theorem 4.3.10. Consider a linear Fisher market where agent i has budget ei,
∑

i∈N ei =

1, and each good gives at least one agent positive utility. There exists a price vector p =

(p1, . . . , p|G|), pj > 0,
∑

j∈G pj = 1, and a feasible allocation xij such that:

1. ∀j ∈ G,
∑

i∈N xij = 1,

2. ∀i ∈ N, j ∈ G, If xij > 0, then j ∈ argmaxj′(uij′/pj′),

3. ∀i ∈ N,
∑

j∈G pjxij = ei.

Leveraging this result, we prove Theorem 4.3.8.

Proof of Theorem 4.3.8. Begin with a maxsum EQ allocation A∗ = (A∗1, . . . , A
∗
n). Construct

a Fisher market where good j corresponds to A∗j , uij = Vi(A
∗
j ) and each agent has budget

ei = 1/n. Let p, xij be the price vector and feasible allocation guaranteed by Theorem

4.3.10. Consider the allocation A′1, . . . , A
′
n described in Lemma 4.3.9. We need to show

that this allocation is EF and yields total welfare weakly greater than that of the original

maxsum EQ allocation. Due to Lemma 4.3.9, we can relate the values for A′1, . . . , A
′
n to the

utilities in the Fisher market.
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The proof that A′1, . . . , A
′
n is EF appears in Reijnierse and Potters [1998]; the next

equations replicate it for completeness. Let u∗i = maxk(uik/pk).

Vi(A
′
i) =

∑
k

uikxik =
∑
k

uik
pk
pkxik

=
∑
k

u∗i pkxik = u∗i /n

Vi(A
′
j) =

∑
k

uikxjk =
∑
k

uik
pk
pkxjk

≤
∑
k

u∗i pkxjk = u∗i /n

It remains to show that
∑

i Vi(A
′
i) ≥

∑
i Vi(A

∗
i ). Suppose Vi(A

∗
i ) = C for all i ∈ N ; then

OPTEQ =
∑

i Vi(A
∗
i ) = nC. u∗i maximizes uik/pk, so u∗i is at least uii/pi, the utility to price

ratio for the good in the Fisher market corresponding to A∗i . Therefore, Vi(A
′
i) = u∗i /n ≥

uii/(npi) = C/(npi).

Then,

OPTEF ≥
∑
i

Vi(A
′
i) ≥

∑
i

C

npi
=
C

n

∑
i

1

pi
.

Since
∑

i pi = 1,
∑

i(1/pi) is minimized by pi = 1/n for each i and is at least n2. Therefore,

OPTEF ≥
C

n

∑
i

1

pi
≥ C

n
n2 = nC = OPTEQ.

Next we establish our result for general valuation functions V1, . . . , Vn (with Riemann

integrable value density functions). For ε > 0, Riemann integrability of v1, . . . , vn implies

that for all i ∈ N there are 0 = x1 < · · · < xm = 1 such that the upper Darboux sum of vi

satisfies

1 =

∫ 1

x=0
vi(x)dx

≤
m∑
k=1

[
(xk − xk−1) ·

(
sup

x∈[xk−1,xk]
vi(x)

)]
≤ 1 +

ε

n
.

(4.15)

For every k = 1, . . . ,m and every y ∈ [xk−1, xk], let v′i(y) = supx∈[xk−1,xk] vi(x). We claim

that the corresponding piecewise constant valuation functions V ′1 , . . . , V
′
n approximate the
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original valuation functions in the sense that for every piece of cake X,6

Vi(X) ≤ V ′i (X) ≤ Vi(X) +
ε

n
. (4.16)

Indeed, the left hand side of the inequality is trivial, and the right hand side follows from

Equation (4.15) and the fact that v′i(x) ≥ vi(x) for all x ∈ [0, 1]:

V ′i (X)− Vi(X) =

∫
X

(v′i(x)− vi(x))dx

≤
∫ 1

x=0
(v′i(x)− vi(x))dx ≤ ε

n
.

Assume as before that the maxsum EQ allocation A∗ satisfies Vi(A
∗
i ) = C for all i ∈ N . It

therefore holds that V ′i (A∗i ) ≥ C for all i ∈ N . Using the same arguments as before (and

the fact that piecewise constant valuations are in particular piecewise linear), there exists

an allocation A′ that is EF with respect to V ′1 , . . . , V
′
n and satisfies

∑
i∈N

V ′i (A′i) ≥ nC =
∑
i∈N

Vi(A
∗
i ) = OPTEQ.

Equation (4.16) directly implies that the allocation A′ is ε-EF (in fact, (ε/n)-EF) with

respect to the valuations V1, . . . , Vn. Therefore, it holds that

OPTε-EF ≥
∑
i∈N

Vi(A
′
i) ≥

∑
i∈N

(
V ′i (A′i)−

ε

n

)
=
∑
i∈N

V ′i (A′i)−
∑
i∈N

ε

n
≥ OPTEQ − ε.

4.3.3 Discussion

Normalization

As in the previous section, we assume in this section that agent valuations are normalized

so that Vi([0, 1]) = 1 for all i. The PE results for two agents naturally extend to the setting

where agent valuations are not normalized. In particular, ratio-based allocations still play

an important role and maxsum fair allocations will be ratio-based. For settings with any

number of agents, the positive PE results for piecewise uniform valuations still hold. The

6It may be the case that V ′i ([0, 1]) > 1.
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other PE results are mostly impossibilities and clearly continue to hold if we expand the set

of allowable valuations. The results relating the welfare of maxsum EF and maxsum EQ do

not rely on agent valuations being normalized and should continue to hold when valuations

are not normalized.

Which Allocations to Choose?

Our work can be seen as another step on the path to identifying the most desirable al-

locations of divisible goods. In recent work, Brams et al. [2012b] coined the term perfect

allocations to describe allocations that are PE, EF, and EQ. Unfortunately, they show that

such allocations may not exist when there are three or more agents, however many cuts

are allowed. We therefore argue that maximizing social welfare under a subset of these

three properties provides an especially appealing solution, but as we discuss below, there

are trade-offs among the different properties.

One may wonder, in light of Theorem 4.3.8, whether a maxsum EF allocation is superior

to a maxsum EQ allocation. While we believe that this is often true, we wish to add a

caveat. Consider an example where there are three agents with value density functions

v1(x) = v2(x) = 1, v3(x) = 2x. A maxsum EF allocation gives [0, 1/3] to agent 1, [1/3, 2/3]

to agent 2, and [2/3, 1] to agent 3, for a sum of 1/3 + 1/3 + 5/9 ≈ 1.22. This allocation

also happens to be PE. But there is a maxsum EQ allocation that is also EF (by dividing

the left portion of the cake between agents 1 and 2 in a way that 3 does not envy either)

and gives each agent a value of roughly 0.39, for a slightly lower sum of 1.17. The latter

allocation seems more desirable, because it maximizes the minimum value to the agents.

Indeed, the EF allocation creates significant inequity between agents 1 and 2, on the one

hand, and agent 3 on the other (1/3 vs. 5/9); this 67% difference in values in exchange

for only a 4% higher social welfare, compared with EQ (1.22 vs. 1.17), arguably tips the

balance in favor of the maxsum EQ allocation: it not only gives all agents the same “fair

share,” unlike the maxsum EF allocation, but it is also EF.

4.4 Summary and Future Work

In this chapter, we explore maxsum fair allocations when agents have piecewise uniform,

piecewise constant, and piecewise linear valuations. Section 4.2 examines the algorithmic

problem of computing these maxsum fair allocations. The main results are an exact algo-

rithm for piecewise constant valuations and an approximate algorithm for piecewise linear
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and more general valuations.

Section 4.3 analyzes the properties of maxsum fair allocations in an attempt to shed

some light on which allocations should be chosen in a cake cutting setting. We show that

maxsum fair allocations are imperfect, and we crystallize some of the trade-offs among

them. Our contributions inform the discussion of good methods for resource allocation

by (i) ruling out the possibility that maxsum EF allocations are always superior to other

allocations (by showing that they may not be PE), and (ii) demonstrating that moving from

EF to the egalitarian notion of EQ can only decrease social welfare.

4.4.1 Future Work

1. We have shown that maxsum EF allocations may not be PE, and hence one may

consider choosing an allocation that Pareto-dominates the maxsum EF allocation.

However, in the examples that we have been able to construct where the maxsum EF

allocation is indeed not PE, the difference in social welfare between the maxsum EF

allocation and its Pareto-dominating allocation is very small. Bounding this difference

(or ratio) remains an open question (which is somewhat related to work on the so-

called price of fairness [Caragiannis et al., 2009]), but if it is indeed always small, we

would argue that preserving EF is more important than a small gain in social welfare.

2. Another alternative is to satisfy PE by taking the maxsum over both EF and PE. Rei-

jnierse and Potters [1998] designed an elaborate algorithm that computes EF and PE

allocations. However, these allocations are not maxsum necessarily. The techniques

of Section 4.2 enable the computation of maxsum EF allocations, which are not nec-

essarily PE. Our most important, and presumably quite challenging, open problem is

finding a (tractable) algorithm that computes maxsum EF and PE allocations.

Appendix: Proof of Theorem 4.2.8

We first state the following simple propositions which shows that we can tractably compute

some quantities of interest.

Proposition 1. Suppose v1(x) = a1x + b1, v2(x) = a2x + b2 on some interval I, where

a1, a2, b1, b2 are k-bit rationals.

1. The intersection point of v1(x), v2(x) can be computed in time polynomial in k, and

the intersection point will be a 4k-bit rational.
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2. Let r be an O(k)-bit rational. The point x where v1(x)/v2(x) = r can be computed

in time polynomial in k, and this point is an O(k)-bit rational.

3. Let v, w ∈ I, v < w, v, w are O(k)-bit rationals.

(a)
∫ w
v vi(x)dx can be computed in time polynomial in k.

(b) Consider δ such that w− δ ∈ I, w− δ ≥ v. |
∫ w
v vi(x)dx−

∫ w−δ
v vi(x)dx| ≤ δ2k+1.

Proof. 1. To compute the intersection, we set a1x + b1 = a2x + b2. Solving for x, we

have x = (b2− b1)/(a1−a2). It is straightforward to show that this intersection point

remains a 4k-bit rational.

2. Similar to 1., we set (a1x+b1)/(a2x+b2) = r and solve for x. x = (b2r−b1)/(a1−ra2).

3. (a) The result follows by observing that
∫
vi(x)dx =

∫
(aix+bi)dx = aix

2/2+bix+C.

(b) The maximum value a density function can obtain using k-bit rationals is 2k +

2k = 2k+1. As a result, δ2k+1 bounds the area under the curve over an interval

of size δ.

Proposition 2. Consider an interval [x1, x2], where x1 and x2 were either reported as an end

point by the agents or the result of densities that crossed. Suppose v1(x) = a1x+b1, v2(x) =

a2x+ b2 on this interval, where a1, a2, b1, b2 are k-bit rationals.

1. R1(x) is either strictly increasing, strictly decreasing, or constant on [x1, x2]. If R1(x)

is constant, then R1(x) is an 2k-bit rational.

2. Suppose that R1(x) is not constant on the interval. Let r = v1(x)/v2(x), r′ =

v1(x′)/v2(x′). |r − r′| ≤ δ ⇒ |x− x′| ≤ δ27k+1.

Proof. 1. The first observation is straightforward. If R1(x) is constant, then the ratio

must be determined solely by the slopes of the density functions and is a1/a2. This

is a 2k-bit rational.

2. To prove this, we want to bound dR1(x)/dx. dR1(x)/dx = (b2a1 + b1a2)/(a2x+ b2)2.

We notice that this value is maximized when the denominator is close to 0. This

occurs at one of the end points of the interval. If a2x+ b2 = 0 at one of the endpoints,

then a1x + b2 = 0 as well at that end point (we assume that v1(x) ≤ v2(x) on the

interval.) This implies that the ratio is constant on the interval, so we need not
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consider that case. Therefore, a2x + b2 is strictly positive. Endpoints of the interval

are 4k-bit rationals, so the smallest possible value for the denominator occurs when

a2 = 1/2k, x = 1/24k. The value at this point is 1/25k. So we can bound dR1(x)/dx by

27k+1 (a bound for the numerator of dR1(x)/dx is 22k+1, and we set the denominator

to 1/25k).

We now proceed to a proof of Theorem 4.2.8.

Proof sketch. We demonstrate how we can approximately implement Algorithm 1 to a given

precision ε. Make a mark at the beginning and end of each interval as well as at 0 and 1. Let

J be the set of intervals formed by consecutive marks. |J | = O(m). On each I ∈ J , check

whether the agents’ value density functions intersect. If they do, break I into two separate

intervals at the point of intersection. Each agent’s value density function has constant slope

on each I ∈ J , so each original interval creates at most 2 new intervals, resulting in O(m)

intervals. By Proposition 1 the intersection points can be computed in time polynomial in

k and will be 4k-bit rationals. Let J ′ denote the new set of intervals after accounting for

intersecting value density functions.

Every I ∈ J ′ has the following properties:

1. v1(x) = a1x+ b1, v2(x) = a2x+ b2 on I, for some k-bit rationals a1, a2, b1, b2.

2. Exactly one of the following holds:

(a) v1(x) < v2(x) ∀x ∈ int(I)

(b) v1(x) = v2(x) ∀x ∈ int(I)

(c) v1(x) > v2(x) ∀x ∈ int(I)

With J ′ defined, we can check the different cases of Algorithm 2. We use the same

notation as used in Algorithm 2, and the steps below refer to the steps in Algorithm 2.

Each interval in J ′ either belongs entirely to Y1≥2 or to Y2>1. V1(Y1≥2) and V2(Y2≥1) can

be computed by finding each agent’s value on the appropriate intervals, applying Proposi-

tion 1:3a.

Step 1a: Allocate Y1>2 to agent 1, Y2≥1 to agent 2.

Step 1b: We need to find an allocation of Y1=2 such that Y1>2 along with the allocation of

Y1=2 gives agent 1 value approximately 1/2. Since V1(Y1≥2) ≥ 1/2, there is some x∗ such
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that giving agent 1 V1([0, x∗] ∩ Y1=2 ∪ Y1>2) = 1/2. Let x be the multiple of 1/2p that is

closest to x∗ without going over, with p to be specified later. x can be found by doing binary

search over p-bits. Proposition 1:3b tells us that V1([0, x] ∩ Y1=2 ∪ Y1>2) will be within ε/2

of 1/2 for some p = O(log(1/ε) + k), ensuring that envy is at most ε. Note that we always

allocate intervals to an agent who weakly prefers the interval, so the allocation is optimal.

Step 2 : We perform a search over the space of p1-bit rationals (value of p1 to be specified).

We search for a value ratio in our search space that is close to and at least r∗. By stipulating

that the value ratio is at least r∗, we ensure that we at least match the efficiency of the

maximally efficient EF allocation since we give away fewer intervals where agent 1 has a

smaller density function. Search over p1-bit rationals can be done in O(p1) steps due to the

result in Papadimitriou [1979].

The search described in Papadimitriou [1979] requires a custom subroutine given as

Algorithm 3, which returns whether or not the desired value is at most some rational

number r.

Algorithm 3

AtMost(r)

1. Let u = V1(Y≥r ∪ Y1≥2), len = V1(Y>r ∪ Y1>2) (for upper and lower bound).

2. u, len > 1/2. Return true.

3. u ∈ [1/2− ε/2, 1/2]. Give agent 1 Y≥r in addition to Y1>2. Break.

4. len < 1/2 < u. Give agent 1 Y>r. Let x be the largest p2-bit rational such that
V1(Y>r ∪ Y1≥2 ∪ ([0, x] ∩ Y=r) ≤ 1/2. Break.

5. Return false.

AtMost can be performed tractably due to Proposition 1, which says that agent values

for Y≥r and Y>r can be computed in time polynomial in k. The final step involves showing

that for appropriately chosen values of p1, p2, we will find an allocation that is ε-EF and

as efficient as the maximally EF allocation. To show this, we revisit the different steps in

Algorithm 2. Let p1 ≥ 7k + 1 + log(1/ε) + logm and p2 ≥ k + 2 + log(1/ε).

Step 2 : There are two cases:

1. Y=r∗ contains at least one entire interval I ∈ J ′. Algorithm 2 divides Y=r∗ so that

agent 1’s value from Y=r∗ , Y>r∗ , Y1≥2 is exactly 1/2. Proposition 2.1 tells us that r∗ is

a 2k-bit rational, so our search either finds r∗ exactly or quits early because it found

some r that gives agent 1 value in [1/2 − ε/2, 1/2]. In the latter case, agent 1 is not
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envious, and we have given away fewer intervals in Y2>1 to agent 1 (compared with

the optimal EF allocation). In the former case, there is some x∗ such that giving

agent 1 Y>r∗ ∪ (Y=r∗ ∩ [0, x∗]) ∪ Y1≥2 gives agent 1 value exactly 1/2. By searching

over p2-bit rationals, we can find an x close enough to x∗ such that agent 1’s value is

within ε/2 of 1/2, without going over (Proposition 1.3b). This ensures that agent 1 is

EF and that efficiency is at least that of an optimal EF allocation because we allocate

strictly fewer intervals where agent 1 has lower value.

2. Y=r∗ does not contain an interval I ∈ J ′. Therefore, if I is an interval with constant

value ratio, Y≥r∗ either contains all of I or contains none of I. By Proposition 2.2,

if we are close enough to r∗, then the induced x values will be closed to x∗ on each

I ∈ J ′. By choice of p1, we ensure that there is an r in our search space such that

V1(Y≥r ∪ Y1≥2) ∈ [1/2 − ε, 1/2]. The search procedure finds such an r, and agent 1

has most ε envy.

Appendix: Proof of Theorem 4.3.7

Proof. Suppose we split the cake into three equal intervals on which agents have the follow-

ing unnormalized values:

Agent 1 : [51, 50, 0] (4.17)

Agent 2 : [50, 51, 0] (4.18)

Agent 3 : [51, 10, 50] (4.19)

Suppose we write down the primal LP constraints in vector and matrix form. The vari-

ables will be x11, x12, x21, x22, x31, x32, x33, and the constraints are ordered by 1.) interval

constraints, 2.) EF constraints, ordered by agent.

Objective:

[
51
101

50
101

50
101

51
101

51
111

10
111

50
111

]
Matrix:
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1 0 1 0 1 0 0

0 1 0 1 0 1 0

0 0 0 0 0 0 1

− 51
101

− 50
101

51
101

50
101

0 0 0

− 51
101

− 50
101

0 0 51
101

50
101

0

50
101

51
101

− 50
101

− 51
101

0 0 0

0 0 − 50
101

− 51
101

50
101

51
101

0

51
111

10
111

0 0 − 51
111

− 10
111

− 50
111

0 0 51
111

10
111

− 51
111

− 10
111

− 50
111



≤



1

1

1

0

0

0

0

0

0



In order to make the system a system of equalities, we add slack variables for each

constraint. Consider the basic feasible solution that corresponds to choosing the variables

x11, x12, x21, x22, x33 along with the slack variables for the EF constraints for (1, 3), (2, 1), (2, 3), (3, 2).

This results in the following solution where these variables are set as follows and all other

variables are set to 0:

[
133/136 1/80 3/136 79/80 1 1/2 13/680 693/1360 13/37

]
It remains to show that this solution is optimal. To do so, we compute the reduced costs

for each variable (including the slack variables). These are:

[0, 0, 0, 0,−9/2960,−6077/15096, 0,−39/80,−203/408,−1195/2516,−61/4080, 0, 0, 0,−37/680, 0]

Since only the basic variables have non-negative reduced costs, this is the unique optimal

solution. Since agent 1 obtains some of interval 2 and agent 2 obtains some of interval 1,

this is not a PO solution (since we can swap) and make both agents better off.
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Chapter 5

Towards More Expressive Cake

Cutting

Suppose that agents’ valuation functions are piecewise uniform. Under the standard cake

cutting model, agent valuations are additive. That is, agents receive value from arbitrarily

small subintervals, even if the subintervals are separated from other subintervals. Using the

metaphor of cake, agents are assumed to have use for “crumbs” of cake. However, there are

settings where agents’ valuation functions are plausibly piecewise uniform but agents have

no use for these crumbs. For example, thinking of the cake as time, consider the allocation

of advertising time: an agent may be interested in time slots when related shows are aired,

but does not derive value from slots that are shorter than, say, thirty seconds. Similarly,

one can consider priority access time to an Internet service provider for, e.g., streaming

video or gaming. As a different example, consider the allocation of a strip of beach to real

estate developers; each developer is interested in areas with specific properties, but has no

use for tiny plots.

Therefore, more expressiveness is called for in the class of valuation functions. We

augment piecewise uniform valuations with an option to specify the minimum length of a

usable interval; we call these augmented valuations piecewise uniform with minimum length

(PUML). An agent’s value for a piece of cake under PUML valuations is proportional to

the total length of its intersection with the agent’s desired intervals, excluding subintervals

in the intersection that are shorter than the agent’s specified minimum length.

PUML valuations depart from those used in the cake cutting literature since they can be

non-additive: it may be the case that two disjoint intervals each have zero value but their

union forms a contiguous interval that is longer than the minimum. In this respect, PUML

76



CHAPTER 5 TOWARDS MORE EXPRESSIVE CAKE CUTTING

valuations blur the line between divisible and indivisible goods: some divisions of a good

(i.e., an interval) are possible, whereas other divisions are impossible (as they would induce

worthless subintervals). We are aware of a single existing paper that studies cake cutting

under non-additive valuations [Berliant et al., 1992, Section 5], but these valuations do not

include PUML valuations, and are studied only in the context of the existence of Pareto-

efficient allocations. Expressiveness in mechanisms has been studied by Benisch et al. [2008]

and Dütting et al. [2011], but the focal point of that work is to study the tradeoffs between

simplicity and expressiveness and they assume a setting where payments are permitted. We

focus on designing algorithms for our more expressive valuations.

5.1 Our Results

Consider two agents with PUML valuations, where the minimum length for each agent is

1 (that is, any strict subinterval of the entire cake is worthless). Clearly no proportional

allocation exists, but an EF allocation does exist. In fact, any division that gives some

nonempty piece to each agent will be EF. In such an alocation, both agents have value

zero for both pieces (this shows that under PUML valuations envy-freeness does not imply

proportionality even if the entire cake is allocated). Worse, one of the agents must have value

zero, so even approximate proportionality in a multiplicative sense, as studied in Edmonds

and Pruhs [2006a], is unattainable. We therefore consider approximate proportionality in

an additive sense, to be made formal later.

In Section 5.3 we propose a polynomial-time algorithm for any number of agents with

PUML valuations that provides an additive worst-case approximate proportionality guar-

antee. The algorithm is a generalization of a well-known fully proportional algorithm in

the traditional cake cutting setting. We also prove that our algorithm is optimal, as no

algorithm can attain a better worst-case proportionality guarantee.

With proportionality understood, in Section 5.4 we consider envy-freeness in combi-

nation with proportionality. For two agents with PUML valuations, we find that (rather

surprisingly) we can obtain full envy-freeness while still satisfying the optimal approximate

proportionality guarantee, in polynomial time. We do this via an algorithm that is very

different from the approximately proportional algorithm for n agents and makes extensive

use of discarding intervals in order to attain full envy-freeness.

As in the previous chapter, we do not consider self-interested agents in this chapter.

In other words, our algorithm returns proportional and EF allocations with respect to the
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reported valuations V1, . . . , Vn.

5.2 PUML Valuations

We augment piecewise uniform valuations with a minimum length parameter. Given i ∈ N ,

the minimal length parameter λi indicates that agent i has no value for intervals of length

less than λi. As described in Section 3.5, agents with piecewise uniform valuations have a

reference piece of cake Ui that describes the intervals the agent desires. Let D(i,X) ≡ Ui∩X

describe the intervals in X desired by agent i and d(i,X) ≡ len(D(i,X)) describe the length

of these intervals. An agent’s value for a piece of cake X can be written as

Vi(X) =
d(i,X)

d(i, [0, 1])
.

In words, it is the ratio of desired lengths received to the total lengths desired by agent i.

For example, if D(i, [0, 1]) = {[0, 0.2], [0.5, 0.8]} and X = {[0.1, 0.3], [0.4, 0.7]}, then

D(i,X) = {[0.1, 0.2], [0.5, 0.7]}, d(i,X) = 0.3, d(i, [0, 1]) = 0.5, and Vi(X) = 0.6.

Definition 5.2.1. Under valuations that are piecewise uniform with minimum length (PUML),

each agent i ∈ N uniformly desires a piece of cake D(i, [0, 1]), and holds a minimum length

parameter λi. The valuation function of the agent is defined by

Vi(X) =

∑
I∈D(i,X): |I|≥λi |I|
d(i, [0, 1])

.

Note that the summation only includes intervals with length at least λi.

Going back to the previous example, if D(i, [0, 1]) = {[0, 0.2], [0.5, 0.8]} and X =

{[0.1, 0.3], [0.4, 0.7]}, and in addition λi = 0.2, then {I ∈ D(i,X) : |I| ≥ λi} = {(0.5, 0.7)},

and therefore Vi(X) = 0.4.

We will assume that every interval I in D(i, [0, 1]) satisfies |I| ≥ λi, that is, agents do

not desire worthless intervals. We also assume free disposal, in that we can choose not

to allocate part of the cake without penalty. Under PUML valuations, this assumption

is without loss of generality, because we can “destroy” intervals by partitioning them into

worthless tiny subintervals. Even under PUML valuations, when we write D(i,X), we refer

to Ui ∩X, even if some of these intervals might have length less than λi. Similarly, d(i,X)

refers to the length of the desired intervals that intersect X, ignoring the minimum length

requirement.

In order to discuss computational complexity, as we do below, we must understand how
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the input is represented. PUML valuations can be concisely represented via the boundaries

of the desired intervals, and λ1, . . . , λn. The size of the input is the number of bits used to

represent these parameters. As we have been assuming in this thesis, we assume the direct

revelation model where agents report their entire valuation function to the algorithm.

5.3 Proportionality

As discussed in Section 3.4.1, under standard assumptions on agent valuations, the Dubins-

Spanier moving knife procedure proves that proportional allocations always exist. Under

PUML valuations, proportionality (or even multiplicative approximate proportionality) is

not always achievable, as demonstrated by the example given earlier in this chapter where

both agents desire the entire cake and λ1 = λ2 = 1. Therefore, we seek to achieve an

additive approximate proportionality guarantee. This guarantee will depend on λi: agents

with larger λi are guaranteed less, as having a larger λi restricts the allocations that can

give the agent its proportionality guarantee. Let `i = λi/d(i, [0, 1]) for each i ∈ N .

Definition 5.3.1. An allocation X1, . . . , Xn is β-proportional with respect to valuations

V1, . . . , Vn if for all i ∈ N , Vi(Xi) ≥ 1/n− β · `i. A direct revelation cake cutting algorithm

is β-proportional if when given input V1, . . . , Vn, it always produces an allocation that is

β-proportional with respect to V1, . . . , Vn.

Equivalently, a β-proportional algorithm guarantees that

∑
I∈D(i,Xi): |I|≥λi

|I| ≥ d(i, [0, 1])

n
− β · λi.

5.3.1 Algorithmic Results

To achieve approximately proportional allocations, we present Algorithm 4. This algorithm

is inspired by the Dubins-Spanier procedure, but shifts the points where agents metaphor-

ically say “stop” in a way that, as we shall see, provides optimal guarantees. The output

of the algorithm is the allocation X1, . . . , Xn, which is fully assigned before the algorithm

returns.

This is obviously a polynomial-time algorithm. The following theorem quantifies its

proportionality guarantees.

Theorem 5.3.2. Under PUML valuations, Algorithm 4 is (2(n− 1)/n) -proportional and

polynomial-time.
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Algorithm 4 (2(n− 1)/n)-proportional algorithm

Input: V1, . . . , Vn
1. PropAllocate(N, 0, (V1, . . . , Vn))

PropAllocate(S, u, (V1, . . . , Vn)):

1. If S = {i}, set Xi = [u, 1] and return.

2. For each i ∈ S:
r∗i = min{r : r ∈ [u, 1], Vi([u, r]) ≥ Vi([u,1])

|S| − 2(|S|−1)`i
|S| }.

3. r∗ = mini∈S r
∗
i , i
∗ = arg mini∈S r

∗
i (break ties arbitrarily).

4. Set Xi∗ = [u, r].

5. PropAllocate(S \ {i∗}, r)

In particular, the algorithm is at most 1-proportional for n = 2. Before proving the

theorem, we establish a simple lemma.

Lemma 5.3.3. Consider a contiguous interval [u, v]. Let w ∈ [u, v]. Then Vi([w, v]) ≥

Vi([u, v])− Vi([u,w])− 2`i.

Proof. Vi([u,w]) + Vi([w, v]) can be smaller than Vi([u, v]) because the cut point w might

break an interval that was previously of length at least λi into two intervals that have length

less than λi. For instance, suppose w ∈ (b, c) where (b, c) ∈ Di([u, v]). If w− b ≥ λi, c−w ≥

λi, then no value is lost by adding the values for [u,w], [w, v] separately compared to the

value for [u, v]. However, if w − b < λi or c − w < λi, then we lose value by adding values

over [u,w], [w, v] separately. The most value that can be lost is 2`i (`i on either side of the

cut at w). Vi([u,w]) + Vi([w, v]) ≥ Vi([u, v])− 2`i, and rearranging yields the lemma.

Proof of Theorem 5.3.2. The proof proceeds by induction on |S| and showing that PropAl-

locate gives each i ∈ S at least value Vi([u, 1])/|S|−2(|S|−1)`i/|S|, i.e., PropAllocate

is 2(|S| − 1)/|S|- proportional with respect to [u, 1] and the agents in S. This is straight-

forward to show for the allocated agent i∗. For the remaining agents, we use the fact that

the agents were not chosen in combination with Lemma 5.3.3 to conclude that they have

a large enough value for the unallocated cake such that the inductive hypothesis provides

their proportionality guarantee.

5.3.2 Impossibility Results

Consider once more the case of two agents. In this case Algorithm 4 guarantees that

each agent receives value of 1/2 − `i. Suppose that both agents desire the entire cake and

λ1 = `1 = λ2 = `2 = 1/2+ε; then one agent will receive value of zero, that is, it is impossible
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to guarantee a value of more than 1/2− `i + ε for any ε > 0; hence the algorithm is optimal

for the case of n = 2. More generally, the following theorem establishes that the algorithm

is worst-case optimal for any number of agents.

Theorem 5.3.4. For every n there exist PUML valuations such that no cake cutting algo-

rithm is β-proportional for β < 2(n− 1)/n.

Proof. Let ε = ε(n) < 1/n, and consider n − 1 disjoint subintervals of length ε. Assume

each agent desires each of the n− 1 subintervals. Set λi = ε/2 + δ for δ > 0 and all i ∈ N .

Let x be the linear multiplier of `i that specifies the guarantee for each agent. Clearly in

any allocation there is at least one agent i ∈ N that gets zero in desired intervals, that is,

1

n
− x λi

d(i, {0, 1})
≤ 0.

Substituting, we get

1

n
− x ε/2 + δ

(n− 1)ε
≤ 0

⇒ n− 1

n
· ε− x

( ε
2

+ δ
)
≤ 0.

Rearranging yields

x ≥ 2(n− 1)

n
− 2δ

ε
2 + δ

· n− 1

n
≥ 2(n− 1)

n
− 4δ

ε
.

The theorem follows by taking δ → 0.

Theorem 5.3.4 does not exclude the possibility that, for a given instance, there is an

allocation with a better degree of proportionality than the one computed by Algorithm

4. Indeed, there could be an algorithm that matches Algorithm 4 in the worst case but

returns allocations that have better proportionality guarantees in other cases. However,

the combinatorial richness of PUML valuations imposes limits on what can be achieved via

polynomial-time algorithms due to the following “inapproximability result.”

Theorem 5.3.5. For any constant ε ∈ (0, 1/2), given n agents with PUML valuations such

that `i < 1/n, it is NP-hard to distinguish between the following two statements: (a) there

is a (1/2 + ε)-proportional allocation and (b) no (3/2− ε)-proportional allocation exists.

Proof (Sketch). We reduce the 3-dimensional matching problem to deciding whether an in-

stance of PUML valuations has an (1/2+ε)-proportional allocation or no (3/2-ε)-proportional
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allocation exists. A full proof is deferred to the appendix of this chapter.

In particular, for a given set of valuations V1, . . . , Vn, let γ(V1, . . . , Vn) be the smallest

value γ such that a γ-proportional allocation exists. Theorem 5.3.5 says that there is

no polynomial time algorithm that always returns a (γ(V1, . . . , Vn) + 1 − 2ε)-proportional

allocation for every set of valuations (if there were then we could solve the NP-hard problem

in the statement of Theorem 5.3.5). In other words, their is no polynomial-time algorithm

that approximates the best proportional allocation within an additive factor of 1. Algorithm

1 is close to optimal when viewed under this measure since it provides an additive 2(n−1)/n

approximation guarantee.

5.4 Proportionality and Envy-Freeness

While Theorem 5.3.2 provides an optimal worst-case proportionality guarantee, it does not

address envy-freeness. In fact, it is possible for an agent to be the first allocated yet have

greater value for pieces later allocated to other agents.

A natural question to ask is whether we can attain envy-freeness while satisfying the

proportionality guarantee of Algorithm 4. In other words, is there an algorithm that is

2(n − 1)/n-proportional and fully EF? For the case of two agents, we show that indeed

there is an algorithm (that is 1-proportional and EF), and we leave open the challenging

question of a general number of agents.

Under general classic valuations, finding an EF and proportional allocation is trivial

when n = 2 as we can use the Cut and Choose algorithm However, immediate variations

of this algorithm do not yield envy-freeness under PUML valuations. In fact, we will see

that achieving envy-freeness and 1-proportionality under PUML valuations is surprisingly

difficult. Our solution makes extensive use of the free disposal assumption, which was not

required above, in order to attain envy-freeness.

We introduce some new notation that is specific to this section. Lengths of intervals

will be denoted by Greek letters. It will be convenient to refer to disjoint subintervals of a

given interval. We define a filtering F to be a function that takes an interval and returns

a set of disjoint subintervals of the given interval. For instance, for the interval [0, 0.25],

we might choose to only allocate {[0, 0.1], [0.2, 0.25]}, throwing away [0.1, 0.2]. In this case,

F ([0, 0.25]) = {[0, 0.1], [0.2, 0.25]}.

82



CHAPTER 5 TOWARDS MORE EXPRESSIVE CAKE CUTTING

5.4.1 An Algorithmic Skeleton

We first observe that if a filtering with specific properties exists, then a 1-proportional and

EF allocation exists for two agents.

Definition 5.4.1. A filtering, point pair (Fi, xi) is fair if

Vi(Fi([0, xi])) = Vi(Fi([xi, 1])) (5.1)

Vi(Fi([0, xi])) ≥ 1/2− `i (5.2)

Assuming that we can find fair filtering, point pair, Algorithm 5 is 1-proportional and

EF. The high level idea is to start with a feasible allocation is that 1-proportional based on

the fair filtering, point pair. If some agent is envious, then let that agent choose between

the pieces generated by the other agent’s fair filtering, point pair.

Algorithm 5 1-proportional and EF algorithm for n = 2

1. Compute fair filtering and point pairs (F1, x1), (F2, x2).

2. Assume x1 ≤ x2. Otherwise, the roles can be reversed.

3. Let X1 = F1([0, x1]), X2 = F2([x2, 1]). If this is EF, return.

4. If both agents are envious, then swap the allocations and return.

5. If agent 1 is envious, let agent 1 choose between F2([0, x2]) and F2([x2, 1]), giving agent 2 the
piece that was not chosen.

6. If agent 2 is envious, let agent 2 choose between F1([0, x1]) and F1([x1, 1]), giving agent 1 the
piece that was not chosen.

Lemma 5.4.2. Assume that there exist fair filtering, point pairs (F1, x1), (F2, x2). Then

Algorithm 5 is 1-proportional and EF.

Proof. If Algorithm 5 terminates at Step 3, then both agents receive their proportionality

guarantee by (5.2) and are not envious. If Algorithm 5 terminates at Step 4, there is no envy

since both agents preferred the other’s initial allocation. The proportionality guarantee is

satisfied since each agent prefers its final allocation to its initial, but the initial allocation

satisfies (5.2). If Algorithm 5 terminates at Step 5, agent 2 receives its proportionality

guarantee, is indifferent, and so is not envious. Agent 1 receives its proportionality guarantee

since it at worst receives F2([x2, 1]) which it preferred to F1([0, x1]). Since agent 1 gets to

choose between F2([0, x2]) and F2([x2, 1]), agent 1 cannot be envious. A similar argument

applies to termination at Step 6.
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If we can carry out Step 1 of Algorithm 5, that is, compute fair filtering, point pairs

(F1, x1), (F2, x2), then Lemma 5.4.2 allows us to find a 1-proportional and EF allocation.

We show that such filtering, point pairs always exist (and can be computed efficiently) in

the next section.

5.4.2 Finding Fair Filtering, Point pairs

Algorithm 5 implies that we can treat the agents independently, as long as for any vi and

λi we can find a filtering, point pair Fi, xi. Therefore, we drop the agent subscripts and

pretend we are dealing with a single agent.

Before proceeding to the main constructive proof, we establish a result about what

lengths in desired intervals are attainable by throwing away intervals in the allocation.

Lemma 5.4.3. Suppose d(X) = kλ+ ε for some positive integer k and 0 ≤ ε < λ, i.e., the

length of the agent’s desired intervals on X total kλ+ε. It is possible to throw away intervals

in X so that the agent receives desired lengths worth exactly kλ+ ε1 for any 0 ≤ ε1 ≤ ε. It

is also possible to throw away intervals in X so that the agent receives exactly (k − 1)λ in

desired lengths.

Proof. (a). Let 0 ≤ ε1 ≤ ε. If there is some desired interval that has length greater than 2λ,

then we can remove ε− ε1 in lengths from one side of the interval. If no interval has length

greater than 2λ, then each interval has length in [λ, 2λ). The sum of the excess above λ

must be at least ε, so we can remove lengths of ε− ε1 without decreasing any interval to less

than λ in length. (b) By (a), we can attain desired lengths of exactly kλ. If any remaining

interval has length exactly λ, then we can remove that interval. Otherwise, there is at least

λ in excess that can be removed without decreasing any interval to length less than λ.

We now proceed to the main proof that a fair filtering, point pair (F, x) always exists.

Let c be the center of the cake from the point of view of the agent, i.e. d([0, c]) = d([c, 1]) =

d([0, 1])/2. Note that there may be an infinite number of such points, so we take the

right-most one.

Let y and z denote the left and right end points of the desired interval that contains c,

as seen in Figure 5.1.

Although the agent may not receive value 1/2 from [0, c] and [c, 1] because c − y and

z− c may be smaller than λ, [0, c] and [c, 1] always satisfy the proportionality guarantee for

both agents. This is formalized in the following Lemma.

Lemma 5.4.4. V ([0, c]) ≥ 1/2− `, V ([c, 1]) ≥ 1/2− `.
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cy z0 1

Figure 5.1: Desired intervals are shaded. The points y and z are the left and right boundaries
of the interval containing c.

Proof. The proof is immediate by observing that each agent can lose at most λ in value on

either side of the cut point c.

In the case where V ([0, c]) = V ([c, 1]), the identity filtering along with c is a fair filtering,

point pair.

We therefore assume V ([0, c]) < V ([c, 1]). To construct a fair filtering, point pair (F, x),

we choose an x ∈ {y, c, z} based on certain conditions. We then apply Lemma 5.4.3 to

throw away intervals in [0, x], [x, 1] until the agent is indifferent between the two intervals.

Symmetric arguments can be applied to handle the case V ([0, c]) > V ([c, 1]).

We consider two separate cases, based on whether z − c < λ or z − c ≥ λ. Since

V ([0, c]) < V ([c, 1]) ≤ 1/2, we also have c− y < λ.

Case I: z − c < λ.

Let δ = c− y, γ = z − c, as depicted in Figure 5.2.

c zy

δ γ

Figure 5.2: The case where z − c < λ.

From above, we have that c − y < λ, so δ < λ. Therefore, V ([0, c]) = V ([0, y]) =

1/2 − δ/d([0, 1]) and (since γ < λ) V ([c, 1]) = 1/2 − γ/d([0, 1]). Since V ([0, c]) < V ([c, 1]),

we obtain that γ < δ.

Suppose that the desired lengths in [z, 1] and [0, y] are uniquely expressed as kλ + ρ

and k2λ + ρ2, respectively, where k, k2 are positive integers and 0 ≤ ρ, ρ2 < λ. Since

V ([0, c]) < V ([c, 1]), k2λ + ρ2 < kλ + ρ. First, we show that k2 ≥ k − 1. Given the way

we chose c, k2λ + ρ2 + δ = kλ + ρ + γ. Therefore, (k − k2)λ = ρ2 − ρ + δ − γ. Since the

variables on the right hand side are all non-negative and ρ2 < λ, δ < λ, (k − k2)λ < 2λ so

k2 ≥ k − 1. Now there are two cases:

Case I.1: k2 = k, therefore ρ > ρ2. Set x = c and, using Lemma 5.4.3a, we throw away

intervals in [z, 1] so that the agent receives desired lengths k2λ+ ρ2 in both [0, x] and [x, 1].
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Case I.2: k2 = k − 1. First observe that γ + δ ≥ λ (otherwise, the agent would not have

desired this interval). Set x = z and throw away [y + λ, z]. The agent receives desired

lengths kλ+ ρ2 and kλ+ ρ in [0, x] and [x, 1], respectively. If ρ ≥ ρ2, by Lemma 5.4.3a, we

throw away intervals in [x, 1] so that the agent receives desired lengths exactly kλ + ρ2 in

both [0, x] and [x, 1]. If ρ < ρ2, by Lemma 5.4.3a, we throw away intervals in [0, x] so that

the agent receives desired lengths exactly kλ+ ρ in both [0, x] and [x, 1].

In both cases, 1-proportionality is satisfied as the agent always receives at least k2λ+ρ2

in desired intervals and therefore at least its value for [0, c]. By Lemma 5.4.4 we know that

this satisfies 1-proportionality.

Case II: z − c ≥ λ.

c z − λ zy

δ γ λ

Figure 5.3: The case where z − c ≥ λ.

V ([c, 1]) = 1/2 since the agent does not lose desired lengths in [c, 1]. Let δ = c− y, γ =

z − λ − c, as seen in Figure 5.3. It is easy to handle the case where γ ≥ δ by throwing

away interval [c, c+ δ] and by setting x = c. The crucial observation is that since γ ≥ δ, no

desired lengths are lost in [c+δ, 1] and, hence, the agent has desired lengths of d([0, 1])/2−δ

in both [0, x] and [x, 1]. In the following, assume γ < δ. δ < λ since we assume that

V ([0, c]) < V ([c, 1]) = 1/2.

Let [0, y] and [z−λ, 1] provide k2λ+ρ2 and kλ+ρ in desired lengths for positive integers

k, k2 and 0 ≤ ρ, ρ2 < λ. As in the previous case, we can show that k2 ≥ k − 1 by using the

fact that k2λ+ ρ2 + δ = γ + kλ+ ρ. The details are omitted since they are the same as in

the previous case. We can now distinguish between two cases:

Case II.1: k2 = k. Since γ < δ and V ([0, c]) < V ([c, 1]), ρ ≥ ρ2. Set x = c, throw away

interval [c, z − λ] and use Lemma 5.4.3a to throw away intervals in [z − λ, 1] so that the

agent gets exactly kλ+ ρ2 in both [0, x] and [x, 1].

Case II.2: k2 = k − 1. Then, the interval [z, 1] gives desired lengths of (k − 1)λ+ ρ. First,

use Lemma 5.4.3b to throw away lengths in [z, 1] so that the desired lengths in [z, 1] are

exactly (k − 2)λ. Set x = y. If ρ2 ≤ γ + δ, throw away interval [y, z − λ − ρ2] in order to

obtain desired lengths of (k − 1)λ + ρ2 in both [0, x] and [x, 1]. If ρ2 > γ + δ, use Lemma
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5.4.3a to throw away lengths in [0, x] so that the desired lengths in [0, x] and [x, 1] are

exactly (k − 1)λ + γ + δ. This is the only case in which the desired lengths in [0, x] and

[x, 1] are less than V ([0, c]). So, we still need to prove that (k − 1)λ + γ + δ satifies the

proportionality requirement (5.2). By the definition of point c, we have (k− 1)λ+ ρ2 + δ =

γ + kλ+ ρ = d([0, 1])/2, i.e., ρ2 = λ+ ρ+ γ − δ which implies that δ > ρ+ γ since ρ2 < λ.

Hence, (k − 1)λ+ γ + δ > (k − 1)λ+ ρ+ 2γ ≥ d([0, 1])/2− λ.

5.4.3 Tying Things Together

Now that we have proven the existence of fair (F, x) for any agent valuations, we can apply

Lemma 5.4.2. In addition, note that Section 5.4.2 implicitly provides a computationally

efficient implementation of Step 1 of Algorithm 5, so the algorithm is clearly polynomial-

time. We therefore have the following result.

Theorem 5.4.5. Assume that n = 2 and the agents have PUML valuations. Then Algo-

rithm 5 is 1-proportional, envy-free, and polynomial-time.

5.5 Discussion

Normalization

Though we have presented this chapter assuming that agent valuations are normalized, the

positive results still hold even if agent valuations are not normalized. The main difference

is that the proportionality guarantees now scale with the agent’s total value for [0, 1]. If an

agent has total value α for [0, 1], then the proportionality guarantee becomes α/n−α ·β · `i.

The negative results trivially still hold since we allow a larger set of agent valuations.

5.6 Summary and Future Work

In this chapter, we consider valuations that are more expressive than standard piecewise

uniform valuations. Specifically, we allow agents to have a minimum length parameter which

indicates that they have no value for intervals less than a certain length. This captures the

possibility that agents do not gain value for very small, disjoint intervals of the divisible good

being allocated. The main results are an algorithm for finding approximately proportional

allocations (and a theorem showing that this result is tight) and an algorithm for finding

approximately proportional and EF allocations for two agents.
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5.6.1 Future Work

1. A positive side effect of our algorithmic framework is that it encourages agents not to

be “greedy”: the smaller an agent’s λi is, the larger the degree of proportionality the

agent is guaranteed. We wish to emphasize though that this is not a formal game-

theoretic statement. Indeed, under the algorithms presented in this paper, agents can

certainly gain by lying about their valuation function or even about their minimum

length. In contrast, in the next chapter, we design a fully proportional, EF algorithm

that is also truthful under piecewise uniform valuations (without minimum length).

There is a large gap, both conceptual and technical, between piecewise uniform and

PUML valuations. It would be interesting to know whether there is a (2(n − 1)/n)-

proportional and truthful algorithm under PUML valuations.

2. Algorithm 4, which works for any number of agents, is inspired by a proportional

algorithm that works for all valuations functions under classic assumptions. Similarly,

in a sense Algorithm 5 extends the Cut and Choose algorithm. Unfortunately, in

general envy-freeness is hard to obtain for more than two agents (see Section 3.4.1),

and in particular the techniques of Algorithm 5 do not appear to generalize to any

number of agents. Progress on this front would require fundamentally new techniques.

Appendix: Proof of Theorem 5.3.5

Proof. Sketch of proof. The reduction uses a trick from an old paper on scheduling of

Lenstra, Shmoys, and Tardos (Mathematical Programming, 1990).

We start with an instance of the NP-hard 3-dimensional matching problem consisting

of three sets A,B, and C with m elements each and a collection of q triplets of the form

(ai, bj , ck) where ai, bj , and ck belong to A,B, and C, respectively. The question is whether

there exist m triplets that cover all the elements or not.

We call triplets that contain aj triplets of type j. Let tj be their number. Let δ be a

negligibly small positive number. We have the following disjoint intervals:

• A triplet interval of length 3 + δ for each triplet.

• Many additional intervals of length 3− δ. Let L be their number.

We have the following agents:
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• For each element of B ∪C, there is an element agent. Such an agent has value for the

triplet intervals corresponding to a triplet to which its corresponding element belongs

and all additional intervals. Its minimum length requirement is 1.

• For each j = 1, ...,m, there are 2tj − 1 type agents. Each such agent has value for the

triplet intervals corresponding to triplets of type j and the additional intervals. Its

minimum length requirement is 1 + δ.

• Many auxiliary agents. Their exact number is twice the number of additional intervals.

These agents have value for the additional intervals only. Their minimum length

requirement is 1 + δ.

Note that the total number of agents is exactly 3m + 2(qm) + 2L and the number of

intervals is q+L. By setting L to a (polynomially) large number compared to m and q, we

have that the exact proportionality requirement for each agent is slightly below 3/2.

Observe that one triplet interval can accommodate either at most two element agents

(the ones corresponding to the two elements of B and C that are contained in the triplet)

and at most one type agent (the one with type equal to the type of the triplet), or (at most)

two type agents (and no element agents). Also, one additional interval can accommodate

at most two element, type, or auxiliary agents.

Now, if the original instance has a perfect matching then there exists an allocation in

which each agent has non-zero value (either 1 or 1 + δ depending on whether it is element,

type, or auxiliary agent). The element agents take their triplet interval corresponding to

the triplet of the perfect matching, the type agents ll the space in triplet intervals of their

type, and the auxiliary agents occupy the additional intervals. This is an almost 1/2-

proportional allocation. Otherwise, this means that, there are at most m − 1 intervals

that accommodate three agents, so some agent should receive no value, i.e., amost 3/2-

proportional allocation.
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Chapter 6

Truthful Cake Cutting

Thus far we have discussed various cake cutting problems that emerge once we adopt a

direct revelation model with restricted valuation functions. In Chapter 4 we examine max-

sum fair allocations, both in terms of computing these allocations and understanding the

properties of different maxsum fair allocations. In Chapter 5, we present a slight modifica-

tion to the classic cake cutting model and piecewise uniform valuations that allows for more

expressiveness. We did not consider strategic issues in either chapter, but rather assumed

access to true information on agent valuations.

In this chapter, we view cake cutting as a mechanism design problem where payments

are not permitted. Our goal is to find cake cutting mechanisms (or algorithms) that are

DSIC. Very little prior work considers strategic issues in cake cutting, and the work that does

examines a very weak notion of truthfulness. Specifically, prior work considers an algorithm

to be truthful if there exist valuations of other agents such that reporting truthfully is a strict

best response [Brams et al., 2006, 2008]. In contrast, DSIC requires that for all valuations

of other agents reporting truthfully weakly dominates any other report. Additionally, this

earlier work also operates in the classic cake cutting model. To make things precise, for the

rest of this chapter, we refer to mechanisms that satisfy the notion of truthfulness in prior

work as weakly-truthful and we refer to DSIC mechanisms as truthful.

As a concrete illustration of the difference between the two notions, consider the most

basic cake cutting mechanism for the case of two agents, the Cut and Choose mechanism

introduced in Section 3.4.1. The mechanism as described in Section 3.4.1 is described with

the agents taking actions; equivalently, in a direct revelation approach, the mechanism can

act on behalf of agents using the reported valuations. Cut and Choose is weakly truthful,

since if agent 1 divides the cake into two pieces that are unequal according to its valuation
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then agent 2 may prefer the piece that is worth more to agent 1. Agent 2 clearly cannot

benefit by lying. However, the mechanism is not truthful (in the DSIC sense). Indeed,

consider the case where agent 1 would simply like to receive as much cake as possible,

whereas the single-minded agent 2 is only interested in the interval [0, ε] where ε is small

(for example, it may only be interested in the cherry). If agent 1 follows the protocol it

would only receive half of the cake. Agent 1 can do better by reporting that it values the

intervals [0, ε] and [ε, 1] equally.

In this chapter we consider the design of truthful and fair (proportional and EF) cake

cutting mechanisms. We restrict ourselves to considering agents with piecewise uniform

valuations and operate under a direct revelation model. It is trivial to find proportional

and EF allocations in this setting; the richness of our problem stems from our desire to

additionally achieve truthfulness.

6.1 Our Results

In Section 6.4 we consider deterministic mechanisms when agent valuations are piecewise

uniform. Our main result is a deterministic mechanism for any number of agents that

is truthful, proportional, EF, Lorenz dominant in a certain sense, Pareto-efficient, and

polynomial-time when agents have piecewise uniform valuations.

To gain intuition for our mechanism, it is insightful to examine the special case of two

agents. In the two agent mechanism, the crux of the allocation is how we should allocate

intervals that both agents desire. We can throw away intervals that are undesired by any

agent, and allocate the intervals that are only desired by a single agent to that agent.

Our mechanism then allocates the intervals desired by both agents to try to equalize the

total lengths given to each agent. If the length of intervals only desired by agent i exceeds

the length of intervals only desired by agent j, then agent i will be given a smaller share

of the mutually desired intervals. To see how this encourages truthfulness, consider the

deviation where an agent misstates and increases the lengths of intervals only desired by

that agent. The agent receives all of these intervals (which include intervals it does not

actually desire), but obtains a smaller share of the mutually desired intervals. It turns out

that the equalization of lengths removes the incentive for agents to misstate their valuations.

In the general mechanism for n agents, our mechanism examines what the fairness

requirement means for the allocation given to different agents. Agents who receive a small

amount of the cake due to fairness requirements are handled first and given the best possible
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fair allocation. As an example of agents who might be handled first, there could be a set

of agents who all desire the same small interval of the cake. For fairness to be maintained,

each of these agents must receive the same fraction of this small interval. These agents

would be selectively handled earlier by the mechanism. By protecting the disadvantaged

agents in this way, the mechanism removes the incentive to report larger intervals than those

that are truly desired. Our mechanism is highly dependent on the assumption that agents

hold piecewise uniform valuations and there is no easy way to generalize our techniques to

piecewise constant valuations.

In Section 6.5 we consider randomized mechanisms. We slightly relax truthfulness by

asking that the mechanism be truthful in expectation, that is, an agent cannot hope to

increase its expected value by lying for any reports of other agents. For general valuations,

we present a simple randomized mechanism that is truthful in expectation, and is ex-post

proportional and EF. Our result relies on the existence of perfect partitions, which are parti-

tions of the cake where every agent has value exactly 1/n for every element of the partition.

Given a perfect partition, the randomized mechanism constructs an allocation by indexing

the elements of the partition, and allocating the elements to agents based on a randomly

drawn permutation. The perfect partition guarantees fairness, while truthfulness in expec-

tation is preserved because the agent’s expected value is a function of the agent’s value

for the entire cake and not of the specific partition. While perfect partitions are known to

exist, there is no known algorithm for constructing perfect partitions for general valuations.

We provide explicit constructions of perfect partitions when agents hold piecewise linear

valuations.

6.2 Related Work

In independent parallel work, Mossel and Tamuz [2010] ask similar questions about truthful

and fair cake cutting. However, their work only considers randomized mechanisms, and they

provide existence results rather than concrete mechanisms for specific classes of valuations.

They also focus solely on proportionality rather than proportionality and envy-freeness

together. Under general assumptions on valuation functions (which are essentially the same

as our definition of valid valuations), they show that there exists a mechanism that is

truthful in expectation and always guarantees each agent a value of more than 1/n. The

results are then extended to the case of indivisible goods. The technical overlap between

the two papers is very small; we refer the reader’s attention to this overlap in a footnote in
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Section 6.5.

Thomson [2007] showed that a truthful and Pareto-efficient mechanism must be dicta-

torial in the slightly different setting of pie-cutting. In pie cutting, the pie is modeled as a

circular object and the feasible cuts are wedges, while in cake cutting the cake is modeled as

the interval [0,1] and feasible cuts are subintervals. Though the two settings appear similar

and even possibly equivalent, they are actually distinct and results for one setting do not

readily carry over to the other. Brams et al. [2008] provide a more in depth discussion.

Note that Pareto-efficiency is not a fairness property and neither implies, nor is implied by,

envy-freeness or proportionality.

Our deterministic mechanism is closely related to the egalitarian solution studied by

Dutta and Ray [1989] for cooperative games and Bogomolnaia and Moulin [2004] for the ran-

dom assignment problem with dichotomous preferences. It is also related to the probabilistic

serial mechanism studied by Bogomolnaia and Moulin [2001] and Katta and Sethuraman

[2006] for the random assignment problem. However, the cake cutting setting is distinct

from the cooperative games setting and the random assignment problem, so though our

mechanism uses similar ideas and techniques, our results are not implied by these earlier

results. The proof of strategyproofness in Bogomolnaia and Moulin [2004] does carry over to

our setting (when interpreted through the correct lens), but we provide our independently

discovered proof in the sequel.

Dutta and Ray [1989] propose the egalitarian solution for cooperative games with trans-

ferable utility. As cake cutting is not a transferable utility setting, the connection to Dutta

and Ray [1989] involves defining a convex, cooperative game when agents have piecewise

uniform valuations in the cake cutting setting. Our deterministic mechanism finds an allo-

cation that is closely related to the egalitarian solution, and our algorithm for finding the

solution also resembles that proposed in this earlier work. We expand on this connection in

Section 6.4.5, where we use it to show that our deterministic mechanism finds an allocation

that is Lorenz dominant in a certain sense.

Our mechanism also resembles the mechanisms proposed by Bogomolnaia and Moulin

[2001], Katta and Sethuraman [2006], and Bogomolnaia and Moulin [2004] for the random

assignment problem under different assumptions on preferences. Bogomolnaia and Moulin

[2001] study the setting where agents have strict ordinal preferences, Katta and Sethuraman

[2006] extend this to the full preference domain (where indifferences are allowed), and

Bogomolnaia and Moulin [2004] study the case when agents have dichotomous preferences

(i.e., items are either acceptable or unacceptable and agents are indifferent between any two
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acceptable items).

Because we study cake cutting when agents have piecewise uniform valuations, we can

relate the cake cutting setting to the random assignment setting as follows. Given agents’

reports, make a mark at the beginning of and end of each agent’s desired intervals. Construct

an item for every subinterval formed by consecutive marks. Giving an agent an item with

probability p is the same as allocating the agent a p-fraction of the associated subinterval.

While this transformation converts cake cutting into a discrete allocation problem, there

are fundamental differences between our setting and the random assignment setting. First,

in our setting, agents’ valuations affect the items that are created, whereas in the random

assignment problem items are assumed to be given. Second, in our setting, agents want

as many items as possible, while the random assignment setting assumes that each agent

wants at most one item. In addition to these two general differences, there are differences

specific to each of the previously studied settings.

If we look specifically at dichotomous preferences studied by Bogomolnaia and Moulin

[2004], our agents may not have dichotomous preferences for items created based on agent

reports; that is, some subintervals might be larger than others and agents, though they

have piecewise uniform valuations, might not have the same value for all desired items.

Even if we discretize the cake into many tiny items (to try and equalize agent values for

desired items), our agents still desire as many of the created items as possible. Despite these

differences, Theorem 2 of Bogomolnaia and Moulin [2004] does carry over to our setting if

we view the allocation matrices Z as specifying assignments of agents to intervals of [0, 1].

We discovered this relationship after publication of our results, and we describe this in more

detail in Section 6.4.5.

If we look specifically at strict ordinal preferences studied by Bogomolnaia and Moulin

[2001], our agents may be indifferent between the items formed by subintervals between

consecutive marks. On the other hand, our agents cannot hold arbitrary ordinal preferences

over subintervals between consecutive marks, since if two agents desire two subintervals,

both agents would value the longer subinterval more than the shorter. This last difference

also persists under the full preference domain studied by Katta and Sethuraman [2006].

Because of these differences, our results cannot be derived from these earlier results, despite

the underlying dependence on similar ideas.

The network flow ideas that we use to prove properties of our mechanism are similar

to those used by Katta and Sethuraman [2006] to show that the egalitarian assignment

solution can be computed in polynomial time. Interestingly, Katta and Sethuraman [2006]
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note that the egalitarian assignment solution is identical to another independent mechanism

for finding a lexicographically optimal flow in a network due to Megiddo [1979].

Recently, after the initial publication of our work, Maya and Nisan [2012] consider

the two agent case where agents have piecewise uniform valuations. They characterize

truthful mechanisms in this setting and derive bounds on the welfare of truthful mechanisms

in comparison to the optimal social welfare. Interestingly, they show that the truthful

mechanisms that have the best worst-case guarantees on social welfare are the truthful

and fair mechanisms, which are equivalent to our deterministic mechanism applied to two

agents.

6.3 Preliminaries

A cake cutting mechanism f is truthful if when an agent lies it is allocated a piece of cake

that is worth, according to its real valuation, no more than the piece of cake it was allocated

when reporting truthfully. Formally, denote Ai = fi(V1, . . . , Vn), and let V be a class of

valuation functions. The mechanism f is truthful if for every agent i, every collection of

valuations functions V1, . . . , Vn ∈ V, and every V ′i ∈ V, it holds that Vi(fi(V1, . . . , Vn)) ≥

Vi(fi(V1, . . . , Vi−1, V
′
i , Vi+1, . . . , Vn)).

Our results require that agent valuations be elements of a restricted family of valuation

functions. For our deterministic mechanism, we require that agent valuations are piecewise

uniform. For our randomized mechanism, we allow agent valuations to be piecewise linear.

6.4 Deterministic Mechanisms

In order to attain a truthful, deterministic mechanism, we focus on the restricted family

of piecewise uniform valuations. The restricted family is still rich enough to make the

problem challenging and capture real world situations, and we believe that our results

provide a foundation for future work on truthful cake cutting. Indeed, it remains an open

question whether truthful, deterministic mechanisms exist for even the slightly richer family

of piecewise constant valuations. In the rest of this section, we assume that valuations are

piecewise uniform.

6.4.1 A Deterministic Mechanism

Before introducing our mechanism we present some required notation. Let S ⊆ N be a

subset of agents and let X be a piece of cake. Let D(S,X) denote the portions of X that
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are valued by at least one agent in S. Formally, recalling that Ui is the reference piece of cake

for agent i (the piece that specifies the agents’ desired intervals), D(S,X) =
(⋃

i∈S Ui
)
∩X,

and is itself a union of intervals.

Let avg(S,X) = len(D(S,X))/|S| denote the average length of intervals in X desired

by at least one agent in S. We say that an allocation is exact with respect to S and X

if it allocates to each agent in S a piece of cake of length avg(S,X) comprised only of

desired intervals. Clearly this requires allocating all of D(S,X) since the total length of

allocated intervals is avg(S,X) · |S| = len(D(S,X)). Suppose S = {1, 2} and X = [0, 1]:

if U1 = U2 = [0, 0.2] then agents 1 and 2 receiving [0, 0.1] and [0.1, 0.2] respectively is an

exact allocation; but if U1 = [0, 0.2], U2 = [0.3, 0.7] then there is no exact allocation. since

agent 1 cannot be given 0.3 in desired lengths.

The deterministic mechanism for n agents with piecewise uniform valuations is a recur-

sive mechanism that finds a subset of agents with a certain property, makes the allocation

decision for that subset, and then makes a recursive call on the remaining agents and the

remaining intervals. Specifically, for a given set of agents S ⊆ N and a remaining piece of

cake to be allocated X, we find the subset S′ ⊆ S of agents with the smallest avg(S′, X).

We then give an exact allocation of D(S′, X) to S′. We recurse on S \ S′ and the intervals

not desired by any agent in S′, i.e. X \ D(S′, X). The pseudocode of the mechanism is

given as Mechanism 6.

Mechanism 6 (V1, . . . , Vn)

1. FairAllocate({1, . . . , n}, [0, 1], (V1, . . . , Vn))

FairAllocate(S, X, V1, . . . , Vn):

1. If S = ∅, return.

2. Let Smin ∈ argmin
S′⊆S

avg(S′, X) (breaking ties arbitrarily).

3. Let E1, . . . , En be an exact allocation with respect to Smin, X (breaking ties arbitrarily). For
each i ∈ Smin, set Ai = Ei.

4. FairAllocate(S \ Smin, X \D(Smin, X), (V1, . . . , Vn)).

In particular, Steps 2 and 3 of FairAllocate imply that if S = {i} then Ai = D(S,X).

For example, suppose X = [0, 1], U1 = [0, 0.1], U2 = [0, 0.39], and U3 = [0, 0.6]. In this

case, the subset with the smallest average is {1}, so agent 1 receives all of [0, 0.1] and we

recurse on {2, 3}, [0.1, 1]. In the recursive call, set {2} has average 0.39−0.1 = 0.29, set {3}

has average 0.6 − 0.1 = 0.5, and set {2, 3} has average (0.6 − 0.1)/2 = 0.25. As a result,

the entire set {2, 3} is chosen as the set with smallest average, and an exact allocation of
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[0.1, 1.0] is given to agents 2 and 3. One possible allocation is to give agent 2 [0.1, 0.35] and

agent 3 [0.35, 0.6]. Note that if agent 1 uniformly values [0, 0.2] instead, the first call would

choose {1, 2} as the subset with the smallest average, equally allocating [0, 0.39] between

agents 1 and 2 and giving the rest, [0.39, 0.6], to agent 3.

Our goal in the rest of this section is to prove the following theorem.

Theorem 6.4.1. Assume that the agents have piecewise uniform valuation functions. Then

Mechanism 6 is truthful, proportional, EF, Lorenz dominant (in a certain sense), Pareto-

efficient, and polynomial-time.

To prove the theorem we exploit a connection to network flow in Section 6.4.3. As

explained in Section 6.2, this technique is a simple generalization of related results in the

economics and operations research literature, but we include some of the details for com-

pleteness. Our main technical contributions in this section are the truthfulness and fairness

of Mechanism 6, which are established in Section 6.4.5.

6.4.2 The Two Agent Mechanism

To gain intuition for the general case of Theorem 6.4.1 we first describe the special case of

two agents. Note that designing truthful, proportional and EF mechanisms even for this case

is nontrivial. To see the difficulty, consider an intuitive first attempt at a proportional and

EF mechanism. We have already seen that Cut and Choose is not truthful for two agents.

Another straightforward approach would be to mark the end points of all submitted intervals

and divide every resulting subinterval equally between the two agents. One possibility is

to always give the left half of each subinterval to agent 1 and the right half to the agent 2.

This mechanism is clearly proportional and EF since every agent receives value exactly 1/2.

However, it is not truthful due to a simple example. Under this mechanism, if both agents

value the entire cake, agent 1 receives [0, 0.5] and the agent 2 receives [0.5, 1]. Suppose

that agent 1’s true valuation consists of only [0, 0.5]. If it reports truthfully, it receives

[0, 0.25], [0.5, 0.75] which gives value 0.5. The agent can gain by instead reporting that it

values all of [0, 1] and receive [0, 0.5] which gives it value 1. In particular, suppose that

when both agents report [0, 1], agent 1 receives [0, 0.5]. In order for the mechanism to be

truthful, whenever agent 1 reports some set of subintervals of [0, 0.5] and agent 2 reports

[0, 1], the mechanism must allocate to agent 1 all of this agent’s desired intervals.

We now discuss our truthful Mechanism 6 for the case of two agents. Recall that Ui

denotes the reference piece of cake of agent i ∈ N , and for i ∈ {1, 2} let Wi = Ui \U3−i, and
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W12 = U1 ∩ U2. W1,W2,W12 are disjoint, and this will allow us to interchangeably write

len(W1) + len(W2) + len(W12) and len(W1 ∪W2 ∪W12).

For two agents, the decision of the mechanism hinges on the choice of Smin in the first call

to FairAllocate. There are three possibilities for Smin : {1}, {2}, {1, 2}. If Smin = {i},

then agent i receives Ui = Wi ∪W12 and agent 3 − i receives U3−i \ Ui = W3−i. On the

other hand, if Smin = {1, 2}, then the mechanism gives an exact allocation with each agent

receiving equal lengths. Agent i receives all of Wi and W12 is split so that the total lengths

for each agent are equal.

Properties of the two agent mechanism

To prove that the mechanism for two agents is well-defined, fair, Pareto-efficient, and truth-

ful,7 it is useful to introduce variables δi = (len(W12)−len(Wi)+len(W3−i))/2 for each agent.

It holds that δ1 + δ2 = len(W12) and δ1 + len(W1) = len(W12 ∪W1 ∪W2)/2 = δ2 + len(W2).

Qualitatively, δi measures the share of W12 that agent i is entitled to due to the size of

Wi. Smaller values of len(Wi) give the agent a larger claim to W12 and increase δi. We can

relate values of these variables to the choices of Smin made by the mechanism.

By definition of Wi and W12, avg({1}) = len(W1 ∪W12), avg({2}) = len(W2 ∪W12),

avg({1, 2}) = len(W1 ∪W2 ∪W12)/2. There are three cases:

1. δ1 < 0, δ2 > len(W12). Since len(W1) + δ1 = len(W2) + δ2, len(W1) > len(W2) and

therefore avg({1}) > avg({2}). Moreover, using δ2 > len(W12), we have

len(W12)− len(W2) + len(W1)

2
> len(W12),

and it follows that

len(W12) + len(W2) + len(W1)

2
> len(W12) + len(W2),

that is, avg({1, 2}) > avg({2}).

This case corresponds to Smin = {2}, and the mechanism gives all of W2 ∪W12 to

agent 2 and all of W1 to agent 1.

2. 0 ≤ δ1 ≤ len(W12), 0 ≤ δ2 ≤ len(W12). We can use the same arguments as the

previous case with the inequalities flipped to show that avg({1, 2}) < avg({1}) and

7We defer a discussion of Lorenz dominance to the proof for the general case with n agents.
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avg({1, 2}) < avg({2}). This case corresponds to Smin = {1, 2}, and the mechanism

gives an exact allocation of W1 ∪W2 ∪W12 to the agents.

3. δ2 < 0, δ1 > len(W12). The analysis is the same as case 1, with agents 1 and 2 changing

roles. This corresponds to Smin = {1}. Agent 1 receives all of W1 ∪W12 and agent 2

receives all of W2.

First, we show that Mechanism 6 is well-defined. Mechanism 6 calls for an exact alloca-

tion to be made to Smin at each step, but this may not always be possible. When |Smin| = 1

an exact allocation is trivial, but when Smin = {1, 2}, we need to guarantee that we can

exactly split D({1, 2}, [0, 1]). Because Smin = {1, 2} only when 0 ≤ δ1, δ2 ≤ len(W12), this

is possible by giving Wi and δi of W12 to agent i.

Next, we establish the fairness properties of proportionality and envy-freeness. If Smin =

{1, 2}, proportionality and envy-freeness are clear. If Smin = {1}, then agent 1 receives all

of its desired intervals so its value is 1. Agent 2 receives only W2, but since Smin = {1},

len(W1∪W12) ≤ len(W1∪W12∪W2)/2 which implies len(W12) ≤ len(W2), and hence agent

2 receives value at least 1/2 and is not envious of agent 1.

Pareto-efficiency is easy to see because in all cases, we allocate Wi to agent i and fully

allocate W12, so it is not possible to give more lengths to one agent without decreasing the

allocation of the other.

In order to establish Theorem 6.4.1 for the two agent case it remains to show truthfulness.

We will take the point of view of agent i ∈ {1, 2}. If it holds that δi > len(W12) then the

agent receives all desired intervals and has no incentive to deviate, hence we can assume

that δi ≤ len(W12).

Note that an agent always receives all of Wi, so profitable manipulations will try to

obtain more of W12 by increasing δi while not losing too much of Wi. Also note that by

definition of δi, an increase or decrease of len(Wi) by k will respectively decrease or increase

δi by k/2.

Suppose that agent i reports U ′i 6= Ui, inducing new pieces W ′12, W ′1, W ′2. Before

manipulating the agent receives len(Wi) + max(δi, 0). Note that

len(W ′12) + len(W ′3−i) = len(U3−i) = len(W12) + len(W3−i),

that is, this sum is not affected by the report of agent i.

If len(W ′1) = len(W1) then δi is unchanged, and the agent receives the same length of

intervals (though the actual intervals received may not be desired). If len(W ′i ) = len(Wi)−k
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then the agent loses at least k of Wi and gains at most k/2 from an increase in δi; this is

not profitable. Finally, if len(W ′i ) = len(Wi)+k, then the agent gains undesired intervals of

length k and δi is weakly smaller, so the agent does not gain any more of W12 by deviating.

An interpretation of the two agent mechanism.

When |S| = 2, the mechanism is equivalent to a swapping procedure. The proof of this

equivalence is postponed to the appendix of this chapter. As before, letW1,W2,W12 describe

the intervals that only agent 1 desires, only agent 2 desires, and both agents desire. Discard

the intervals that neither agent desires, and give an initial grant of half of W1,W2,W12

to each agent. Assume without loss of generality that len(W1) ≤ len(W2). The swapping

procedure can be described as follows.

1. Swap pieces X,Y of equal length where agent 1 owns X, agent 2 owns Y , X ⊆ W2,

Y ⊆W1.

2. Swap pieces X,Y of equal length where agent 1 owns X, agent 2 owns Y , X ⊆ W2,

Y ⊆W12.

3. If there are still pieces of W2 owned by agent 1, give these intervals to agent 2.

This procedure first gives each agent an equal piece of each kind of interval. The first

swaps performed are mutually beneficial: each agent gives pieces of the other agent’s desired

intervals in exchange for pieces of its own desired intervals. However, eventually, agent 1

obtains all of W1 and these swaps no longer exist. The second swaps involve trades where

agent 2 receives remaining pieces of W2 in exchange for giving up pieces of W12. This trade

does not improve the utility of agent 2, but does improve the utility of agent 1. If agent 2

gives away all of its share of W12, then agent 1 receives all of W1 and W12, and agent 2 is

given all of W2 due to step 3 which gives the remaining shares of W2 to agent 2 for free. If

agent 2 obtains all of W2 without relinquishing all of its share of W12, then agents 1 and 2

split W12 (potentially unequally), and each agent i receives Wi.

6.4.3 Exact Allocations and Maximum Flows

Having defined Mechanism 6 and shown that it has the desired properties in the case of two

agents, we now generalize the proofs to n agents. Before turning to properties of truthfulness

and fairness, we point out that, as in the two agent case, it is unclear whether Mechanism 6

is well-defined. In particular, the mechanism requires an exact allocation E with respect to
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Figure 6.1: The flow network induced by the example.

the subset Smin and X, but it remains to show that such an allocation exists, and to provide

a way to compute it. To this end we exploit a close relationship between exact allocations

and maximum flows in networks.

For a given set of agents S ⊆ N and a piece of cake to be allocated X, define a graph

G(S,X) as follows. We keep track of a set of marks, which will be used to generate nodes

in G(S,X). First mark the left and right boundaries of all intervals that are contained

in X. For each agent i ∈ N and subinterval in Ui, mark the left and right boundaries of

subintervals that are contained in Ui ∩X. When we have finished this process, each pair of

consecutive markings will form an interval such that each agent either uniformly values the

entire interval or values none of the interval. In G(S,X), create a node for each interval

I formed by consecutive markings, and add a node for each agent i ∈ N , a source node s,

and a sink node t. For each interval I, add a directed edge from source s to I with capacity

equal to the length of the interval. Each agent node is connected to t by an edge with

capacity avg(S,X). For each interval-agent pair (I, i), add a directed edge with infinite

capacity from node I to the agent i if agent i desires interval I.

For example, suppose U1 = [0, 0.25] ∪ [0.5, 1] and U2 = [0.1, 0.4]. If X = [0, 1] then

the interval markings will be {0, 0.1, 0.25, 0.4, 0.5, 1}. Agent 1 values [0, 0.1], both agents

value [0.1, 0.25], agent 2 values [0.25, 0.4], neither agent values [0.4, 0.5] and agent 1 values

[0.5, 1]. It holds that len(D({1, 2}, [0, 1])) = 0.9. Average values are 0.75, 0.3 and 0.45 for

sets {1}, {2} and {1, 2} respectively. See Figure 6.1 for an illustration of the induced flow

network.

Lemma 6.4.2. Let S ⊆ N , and let X be a piece of cake. There is a flow of size len(D(S,X))

in G(S,X) if and only if for all S′ ⊆ S, avg(S′, X) ≥ avg(S,X).

We prove the lemma using an application of the classic Max-Flow Min-Cut Theorem

101



CHAPTER 6 TRUTHFUL CAKE CUTTING

(see, e.g., Cormen et al. [2001]).

Proof. Assume that for all S′ ⊆ S, avg(S′, X) ≥ avg(S,X). By the Max-Flow Min-Cut

Theorem, the minimum capacity removed from a graph in order to disconnect the source

and sink is equal to the size of the maximum flow. The only edges with finite capacity in

G(S,X) are the ones that connect agent nodes to the sink, and the ones that connect the

source to the interval nodes.

Construct a candidate minimum cut by disconnecting some set of agent nodes T ⊆ S

from the sink at cost |T | · avg(S,X) and then disconnecting all the (s, I) connections to

interval nodes I desired by an agent i ∈ S\T . This means that the total additional capacity

we need to remove is len(D(S \ T,X)), the total length of intervals desired by at least one

agent in S \ T . By assumption, this is at least |S \ T | · avg(S,X). As a result, this cut has

capacity of at least

|T | · avg(S,X) + |S \ T | · avg(S,X) = |S| · avg(S,X) = len(D(S,X)).

In the other direction, assume that there is a flow of size len(D(S,X)) in G(S,X),

and assume for contradiction that there exists S′ ⊆ S such that avg(S′, X) < avg(S,X).

Construct a cut by disconnecting the (s, I) connections to interval nodes desired by an agent

i ∈ S′, and disconnecting the agent nodes S \ S′ from the sink. The total capacity of the

cut is

|S′| · avg(S′, X) + |S \ S′| · avg(S,X) < |S′| · avg(S,X) + |S \ S′| · avg(S,X)

= |S| · avg(S,X)

= len(D(S,X)),

and by the Max-Flow Min-Cut Theorem the maximum flow must be of size less than

len(D(S,X)), in contradiction to our assumption.

The following lemma establishes that a flow of size len(D(S,X)) in G(S,X) induces an

exact allocation.

Lemma 6.4.3. Let S ⊆ N , and let X be a piece of cake. There exists an exact allocation

with respect to S,X if and only if there exists a maximum flow of size len(D(S,X)) in

G(S,X).
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Proof. Suppose that we have a maximum flow of size len(D(S,X)); we show how to use this

flow to generate an exact allocation with respect to S,X. For each edge between interval

node I and agent i ∈ N that receives positive flow of c in the max flow, allocate c of I to

agent i. This allocation is feasible because the interval nodes represent disjoint subintervals

of X and the flow to the interval’s node is limited by the capacity of the edge between s

and the interval node, which is the length of the interval. In addition, this allocation must

give each agent exactly avg(S,X) in desired intervals. To see this, note that all paths to

the sink must pass through agent nodes, and the sum of capacities of the edges between

between the agents and the sink is D(S,X). For a maximum flow to have size D(S,X),

these edges must saturated.

In the other direction, suppose that we have an exact allocation with respect to S,X.

We can generate a feasible flow of size len(D(S,X)) by setting a flow of c on an edge (I, i)

if agent i receives c of interval I in the exact allocation, and saturating all the edges (s, I)

and (i, t) for intervals I and agents i ∈ N .

By combining the “if” directions of Lemma 6.4.2 and Lemma 6.4.3 we see that the

mechanism is indeed well-defined: if S has the smallest average then there exists an exact

allocation with respect to S,X. The network in Figure 6.1 does not satisfy the minimum

average requirement and does not provide a corresponding exact allocation. Moreover,

we obtain a tractable mechanism for computing an exact allocation, by computing the

maximum flow and deriving an exact allocation. A maximum flow can be computed in

time that is polynomial in the number of nodes, that is, polynomial in our input size (see,

e.g., Cormen et al. [2001]).

6.4.4 Polynomial Time

In order to show that Mechanism 6 can be implemented in polynomial time it remains to

show that it is also possible to implement Step 2 of FairAllocate in polynomial time.

Indeed, an efficient implementation of Step 2 would mean that FairAllocate can be

implemented in polynomial time, and there are at most n+ 1 calls to FairAllocate. So,

the task is to find Smin ∈ argminS′⊆Savg(S,X) in polynomial time, given S ⊆ N and a piece

of cake X. This can be done using network flow arguments, which are an easy variation on

those employed by Katta and Sethuraman [2006] (see Section 6.2 for a full discussion). For

completeness we quickly describe an implementation that is less efficient than Katta and

Sethuraman [2006] but nevertheless polynomial time.
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Given S ⊆ N , a piece of cake X, and c > 0, construct a graph G′(S,X, c); this graph

is identical to G(S,X) as defined above, except that the capacity on the edges between the

agents and the sink is c (instead of avg(S,X)). The proof of the following statement is

identical to the proof of Lemma 6.4.2 (by replacing avg(S,X) with c everywhere): there is

a flow of size c|S| in the network G′(S,X, c) if and only if for all S′ ⊆ S, avg(S′, X) ≥ c.

Assume that the boundaries of the agents’ reference pieces of cake are represented by

at most k bits, i.e. multiples of 1/2k. For ease of exposition (so that we deal with integers

rather than rationals), scale the interval by 2kn! so that the boundaries are an element of

{0, n!, 2n!, . . . , 2kn!}.

There is a maximum c∗ such that G′(S,X, c∗) has a flow of size c∗|S|. This c∗ is a

member of a set of numbers that includes all the possible values of avg(S′, X) for S′ ⊆ S.

Because we have scaled the boundaries, the possible values for the average are contained

in {0, 1, . . . , 2kn!}. Indeed, the numerator is an element of {0, n!, 2n!, . . . , 2kn!}, and the

denominator is in {1, . . . , n}. It holds that we can search for c∗ by performing binary search

over {0, 1, . . . , 2kn!} in polynomial time. Binary search takes O(k+n log n) iterations, with

each iteration taking time polynomial in k, n. Even though we multiply values by 2kn!, the

number of bits needed is only O(k + n log n) and still polynomial in n, k.

Now, consider c∗+ 1. This network does not have a network flow of size (c∗+ 1)|S|. We

can find a minimum cut in this network in polynomial time (see, e.g., [Cormen et al., 2001]).

In this cut there is a subset T ⊆ S such that the cut separates S \T from the sink, and the

intervals desired by T from the source. This subset T must have avg(T,X) < c∗ + 1, and

since avg(T,X) (after scaling) must be an integer, avg(T,X) ≤ c∗.

We wish to claim that T is the Smin we are looking for. Indeed, note that since there is

a flow of size c∗|S| in G′(S,X, c∗), it must hold that for all S′ ⊆ S, avg(S′, X) ≥ c∗, which

directly implies the claim.

6.4.5 Fairness, Efficiency, Truthfulness

Our main tool in proving that Mechanism 6 is truthful and EF is the following lemma.

Lemma 6.4.4. Let S1, . . . , Sm be the ordered sequence of agent sets with the smallest av-

erage as chosen by Mechanism 6 and X1, . . . , Xm be the ordered sequence of pieces to be

allocated in calls to FairAllocate. That is, X1 = [0, 1], X2 = X1 \D(S1, X1), . . . , Xm =

Xm−1 \D(Sm−1, Xm−1). Then for all i > j, avg(Si, Xi) ≥ avg(Sj , Xj), and agents that are

members of later sets receive weakly more in desired lengths.
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Proof. Suppose not. Then at some point, avg(Si, Xi) > avg(Si+1, Xi+1). Now consider

Si∪Si+1. We will show that avg(Si∪Si+1, Xi) < avg(Si, Xi), contradicting the choice of Si

as the subset of agents with the smallest avg at step i. Note that Si and Si+1 are disjoint

since agents are removed once they have been part of the subset with the smallest average.

Thus,

avg(Si ∪ Si+1, Xi) =
len(D(Si ∪ Si+1, Xi))

|Si|+ |Si+1|

=
len(D(Si, Xi)) + len(D(Si+1, Xi \D(Si, Xi)))

|Si|+ |Si+1|

=
|Si| · avg(Si, Xi) + |Si+1| · avg(Si+1, Xi+1)

|Si|+ |Si+1|

<
|Si| · avg(Si, Xi) + |Si+1| · avg(Si, Xi)

|Si|+ |Si+1|
= avg(Si, Xi),

where the second transition is true since Si and Si+1 are disjoint, and the inequality follows

from our assumption.

Envy-freeness

Envy-freeness now follows immediately from Lemma 6.4.4. Indeed, consider an agent i ∈ N ,

and as before let Sj be the subset of agents with the smallest average in the j’th call to

FairAllocate. Suppose i ∈ Sj . The agent does not envy other agents in Sj since these

agents are given an exact allocation and all receive the same length in desired intervals. By

Lemma 6.4.4, the agent does not envy agents in Sk for k < j because the amount agents

receive weakly increases with each call. The agent does not envy agents in Sk for k > j

because all intervals desired by the agent are allocated and removed from consideration

when the agent receives its allocation.

Proportionality

Before we establish proportionality, we prove the following useful lemma, which shows that

no intervals are wasted in the allocation produced by Mechanism 6.

Lemma 6.4.5. Mechanism 6 assigns all subintervals desired by at least one agent to an

agent who desires the interval.

Proof. Every interval in [0, 1] is either allocated in one of the calls to FairAllocate, or it

is left unallocated by the final call to FairAllocate. If an interval is allocated in one of
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the calls to FairAllocate, then it is part of an exact allocation, and in an exact allocation,

each allocated agent receives only desired intervals. If an interval is left unallocated in the

final call to FairAllocate, then it must be that no agent desired the interval. Indeed, all

intervals desired by agents allocated prior to the final call have already been allocated, and

the final call allocates all of D(S′, X ′) to agents in S′, where S′ and X ′ are the inputs to

the final call of FairAllocate.

Combining Lemma 6.4.5 with envy-freeness gives us proportionality. Indeed, suppose

that some agent i receives less than len(D({i}, [0, 1])/|S| of its desired intervals. Because

no desired intervals are thrown away, some other agent must receive a length of at least

len(D({i}, [0, 1])/|S| of the desired intervals of agent i, in contradiction to envy-freeness.

Lorenz Dominance

The allocation produced by Mechanism 6 is related to the egalitarian solution for super-

modular transferable utility cooperative games described by Dutta and Ray [1989]. In

particular, the length in intervals received by an agent in Mechanism 6 is equal to the value

assigned to an agent in the egalitarian solution of a corresponding convex cooperative game.

To translate our setting into the cooperative game setting, consider the following coali-

tional value function for each set of agents S:

v(S) = len(D(S, [0, 1]))

This value function is clearly concave, so to translate to the convex setting, we consider

the negation. Viewed in this light, we have a cost-sharing scenario, where the interval [0, 1]

represents inputs to production which must be purchased. For instance, we can think of

[0, 1] as a strip of land, and each agent requires irrigation canals on certain subintervals of

this strip of land. Once irrigation canals are built on a given subinterval, they can be used

jointly by all the agents.

For convex games, Dutta and Ray [1989] give an algorithm (which is very similar to

Mechanism 6) to find the egalitarian solution, and they show that the egalitarian solution

Lorenz dominates every solution in the core of the cooperative game. To understand the

significance of this result in our setting, we first need to understand Lorenz dominance and

the core.

Translated to our setting, Lorenz dominance is the following criterion. For a given allo-

cation A1, . . . , An, define a lengths vector `(A1, . . . , An) which sorts the lengths in intervals
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agents receive from smallest to largest. An allocation A1, . . . , An Lorenz dominates an allo-

cation A′1, . . . , A
′
n if

∑k
i=1 `i(A1, . . . , An) ≥

∑k
i=1 `i(A

′
1, . . . , A

′
n) for all 1 ≤ k ≤ n with strict

inequality for some k. In other words, the partial sums of the lengths vector are weakly

greater, with strict inequality for at least one partial sum. As an example, if we have two

agents that split the interval [0,1] (they each receive lengths of 0.5), then this allocation

Lorenz dominates an allocation that gives the entire interval to a single agent.

Translated to our setting, the core consists of all allocations where no subset of agents

S is allocated more than len(D(S, [0, 1])) in intervals. In particular, the core contains at

least all allocations that do not allocate intervals to agents who do not desire them. Indeed,

if agents only receive desired intervals, there is no way that the total length of intervals

received by agents in a subset S can exceed len(D(S, [0, 1]).

Given the correspondence between the egalitarian solution and the allocation produced

by Mechanism 1, the allocation Lorenz dominates any other allocation that only allocates

intervals to agents who desire them and has a distinct lengths vector. There may be multiple

allocations with the same lengths vector. As a result, the allocation we produce does not

Lorenz dominate every other allocation; however, it does Lorenz dominate every other

allocation that generates a distinct lengths vector.

It was a priori unclear whether there would exist an allocation in which the desired

lengths received by agents corresponds to the values in the egalitarian solution because our

setting is not a transferable utility setting. This is what is established in Section 6.4.3.

Moreover, our definition of Lorenz dominance looks at the lengths vector and not agent

utilities. Indeed, it is easy to show that a similar criterion is not satisfied if we characterize

allocations by the vectors of agent’s utilities.

Pareto-efficiency

Each agent’s utility is a function of the length in desired intervals it receives. As a result,

Pareto-efficiency follows directly from the discussion on Lorenz dominance.

Truthfulness

We establish truthfulness by examining the possible ways in which an agent can affect the

progression of Mechanism 6. In particular, we examine whether an agent i ∈ S would want

to deviate from truthfulness in each call to FairAllocate(S,X). Let Smin denote the

set of agents with the smallest average if agent i reports truthfully. For a given call to

FairAllocate, agent i can report a valuation which changes the exact allocation made to
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Smin or which changes the choice of Smin (or both).

We first consider deviations which try to modify the exact allocation for Smin, X. The

exact allocation for Smin only depends on the reports of agents in Smin, so we assume

i ∈ Smin. If agent i reports truthfully, it receives exactly len(D(Smin, X))/|Smin| in

desired lengths. Agent i can deviate, causing the set of desired intervals to change to

D′(Smin, X). If len(D′(Smin, X)) ≤ len(D(Smin, X)), then this is not profitable. Suppose

that len(D′(Smin, X)) > len(D(Smin, X)). Now each agent receives len(D′(Smin, X))/|Smin|

of intervals. The intervals received by agents other than i are in D(Smin, X) since the other

agents have not changed their reports. Subtracting off these intervals, the maximum length

in desired intervals agent i can receive from this deviation is len(D(Smin, X)) − (|S| − 1) ·

len(D′(Smin, X))/|Smin| ≤ len(D(Smin, X))/|Smin|, and this deviation is not profitable.

We next consider deviations which attempt to change the choice of subset with the

smallest average. There are two cases to consider. Let avg′ denote the new averages

induced by a deviation of agent i.

1. i /∈ Smin. For any set S′, if i /∈ S′, agent i cannot change D(S′, X) with its reports.

As a result, agent i cannot make the mechanism choose some other S′, i /∈ S′ since the

agent cannot change avg(Smin, X) or avg(S′, X). Therefore, the agent’s only deviation

is to try and make the mechanism choose a set S′, i ∈ S′. However, in order to do

so, the agent must make avg′(S′, X) ≤ avg(Smin, X) and will receive avg′(S′, X) in

desired lengths. By Lemma 6.4.4, the agent was receiving at least avg(Smin, X) under

truthful reports since the agent was chosen in a later round, so this is not profitable.

2. i ∈ Smin. Agent i receives avg(Smin, X) if it reports truthfully. Suppose agent i

deviates and forces selection of another set S′ as the set with the smallest aver-

age. If i ∈ S′, then to be profitable, avg′(S′, X) ≥ avg(Smin, X). If i /∈ S′, then

agent i could not have affected avg(S′, X) and S′ was not chosen when i was truth-

ful, so avg′(S′, X) ≥ avg(Smin, X). Either way, to be profitable, it must be that

avg′(S′, X) ≥ avg(Smin, X). Now consider some agent j ∈ Smin. When agent i re-

ported truthfully, agent j was receiving avg(Smin, X) of D(Smin, X). If j ∈ S′, then

agent j receives exactly avg′(S′, X) in intervals. If j /∈ S′, then by Lemma 6.4.4,

agent j receives at least avg′(S′, X) in intervals. In either case, agent j receives at

least avg′(S′, X) in intervals.

Using arguments similar to the case above, we can now show that no deviation is

profitable. While agent i deviates, the other agents in Smin do not, so the intervals
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they receive are a part of D(Smin, X). This leaves

len(D(Smin, X))− (|Smin| − 1) · avg′(S′, X)

≤ len(D(Smin, X))− (|Smin| − 1) · avg(Smin, X)

= avg(Smin, X)

in desired intervals for agent i, so the deviation is not profitable.

This completes the proof of truthfulness. Putting everything together gives us Theo-

rem 6.4.1.

Group Strategyproofness

Group strategyproofness is a stronger notion than truthfulness that requires that it is not

possible for any group of agents to collectively deviate and make each of their allocations

weakly better off while making at least one agent strictly better off. Theorem 2 of Bogo-

molnaia and Moulin [2004] proves that essentially the same procedure as Algorithm 6 when

applied to the random assignment problem with dichotomous preferences yields a group

strategyproof mechanism.

Upon closer examination of the proof of Theorem 2, though the proof was written

specifically in the context of random assignment, the same ideas essentially carry over to

the cake cutting setting. The proof relies on similar ideas, essentially arguing that by

deviating it is not possible to gain more of the intervals that are also desired by the non-

deviating agents. The proof itself is very specific to the random assignment setting and

argues about allocation matrices Z that specify what fraction of each item each agent

receives. However, if we instead view Z not as an allocation matrix but instead as a

specification of a cake cutting allocation (an assignment of subintervals of [0, 1]) to each

agent, then the proof carries through for the cake cutting setting as well. As a result, their

proof shows that not only is Algorithm 6 truthful, but it also satisfies the stronger notion

of group strategyproofness. We do not make this a main part of our Theorem 6.4.1 since it

was not an independent contribution of ours.

6.5 Randomized Mechanisms

In the previous section we saw that designing deterministic truthful and fair mechanisms

is not an easy task, even if the valuation functions of the agents are rather restricted. In
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this section we demonstrate that by allowing randomness we can obtain significantly more

general results.

A randomized cake cutting mechanism outputs a random allocation given the reported

valuation functions of the agents. There are very few previous papers regarding randomized

mechanisms for cake cutting. A rare example is the paper by Edmonds and Pruhs [2006b],

where they give a randomized mechanism that achieves approximate proportionality with

high probability. We are looking for a more stringent notion of fairness. We say that

a randomized mechanism is universally proportional (resp., universally EF ) if it always

returns an allocation that is proportional (resp., EF).

One could also ask for universal truthfulness, that is, require that an agent may never

benefit from lying, regardless of the randomness of the mechanism. A universally truthful

mechanism is simply a probability distribution over deterministic truthful mechanisms.

However, asking for both universal fairness and universal truthfulness would not allow us

to enjoy the additional flexibility that randomization provides. Therefore, we slightly relax

our truthfulness requirement. Informally, we say that a randomized mechanism is truthful

in expectation if, for all possible valuation functions of the other agents, the expected value

an agent receives for its allocation cannot be increased by lying, where the expectation is

taken over the randomness of the mechanism.

We remark that while truthfulness in expectation seems natural, consistent as it is with

expected utility maximization, fairness (i.e., proportionality and envy-freeness) is something

that we would like to hold ex-post ; fairness is a property of the specific allocation that is

being made, and continues to be relevant after the mechanism has terminated. Interest-

ingly enough, if we were to turn this around, then achieving universal truthfulness and

envy-freeness/proportionality in expectation is trivial: simply allocate the entire cake to a

uniformly random agent!

There is a simple class of randomized mechanisms which are truthful in expectation.

Specifically, define a partition mechanism as follows. On input V1, . . . , Vn a partition mech-

anism chooses a partition {X1, . . . , Xn} of [0,1]. The mechanism then uniformly samples a

random permutation π over the n agents, and assigns agent i the piece Xπ(i). If an agent

reports truthfully, then in expectation, it receives value
∑n

j=1
1
nVi(Xj) = 1/n. If the agent

reports some other valuation V ′i , then the partition the mechanism chooses may change to

{X ′1, . . . , X ′n}, but the agent still receives value
∑n

j=1
1
nVi(X

′
j) = 1/n.

However, depending on the partitions chosen, a partition mechanism may not be univer-

sally proportional and EF. In order to obtain a mechanism that is universally proportional
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and EF, we require that the partitions selected are perfect partitions. A partition is perfect

for reports V1, . . . , Vn if Vi(Xj) = 1/n for every i and j. As the agents have value exactly

1/n for every element of the partition, a partition which always selects perfect partitions is

clearly universally proportional and EF.8

Though partition mechanisms which select perfect partitions are truthful in expectation

and universally proportional and EF, there still remains the obstacle of actually finding a

perfect partition given the valuation functions of the agents. Does such a partition exist, and

can it be computed? More than sixty years ago, Neyman [1946] proved that if the valuation

functions of the agents are defined by the integral of a continuous probability measure then

there exists a perfect partition. Unfortunately, Neyman’s proof is nonconstructive, and to

this day there is no known constructive method under general assumptions on the valuation

functions. This is not surprising since a perfect partition induces an EF allocation, and

finding an EF allocation in a bounded number of steps for more than four agents is an open

problem.

However, if we assume more structure on agent preferences, then it is possible to explic-

itly construct perfect partitions. As an example, consider the class of piecewise constant

valuation functions. Each agent makes a mark at the left and right boundaries of each of the

intervals it is interested in, and we add two marks at 0 and 1. The value density function of

each agent is constant over each subinterval between two consecutive marks, as this subin-

terval is either contained in one of the subintervals agent i is interested in or completely

disjoint from any of them. Hence, the allocation that assigns to each agent exactly 1/n of

each of the subintervals between two consecutive marks is a perfect partition. A similar

procedure can be applied to piecewise linear valuation functions by observing that if agent

densities are linear on a subinterval, we can partition the subinterval into n elements that

have the same value to each agent. Specifically, we can divide the subinterval into 2n pieces

of equal length and label the pieces 1, . . . , 2n from left to right. To construct element i of

the partition, we match piece i with piece 2n− i+ 1. An agent has the same value for every

element of the partition due to the assumption of linear densities on the subinterval.

8Mossel and Tamuz [2010] also observe that partition mechanisms which select perfect partitions are
truthful in expectation and universally proportional.
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6.6 Discussion

The free disposal assumption

For our deterministic result we rely heavily on the ability to throw undesired pieces of the

cake away. The reason this is important is that it prevents agents from being able to gain by

reporting smaller intervals, in hopes of gaining a larger share of the overlap while obtaining

desired intervals for free. The following example illustrates why removing the free disposal

assumption can be problematic.

Since we can no longer discard undesired intervals, we must specify how to allocate

the undesired intervals. Suppose we decide to allocate undesired intervals evenly between

agents 1 and 2, giving the left half to agent 1. While this seems benign, our mechanism is

no longer truthful.

Suppose there are two agents. Consider the allocation made when both agents report

that they desire the interval [0, 0.2]. Mechanism 6 calls for any allocation that splits [0, 0.2]

equally between the agents.9 Assume a simple implementation that gives [0, 0.1] to agent 1

and [0.1, 0.2] to agent 2. Our rule for allocating undesired intervals gives [0.2, 0.6] to agent

1 and [0.6, 1] to agent 2.

Now consider the case where agent 1 values [0, 0.6] and agent 2 values [0, 0.2]. If the

agents report truthfully, Mechanism 6 gives [0, 0.2] to agent 2 and [0.2, 0.6] to agent 1.

Agent 1 receives [0.6, 0.8] and agent 2 receives [0.8, 1] due to our rule for allocating undesired

intervals. Agent 1 receives value 2/3. On the other hand, if agent 1 reports [0, 0.2] (assuming

agent 2 remains truthful), it receives [0, 0.1] ∪ [0.2, 0.6] which gives value 5/6. Notice that

the problem here persists even if we allocate [0.2, 0.6] to agent 2 when both agents report

[0, 0.2]. In this case, agent 2 can deviate when it has true value [0, 0.6] and agent 1 reports

[0, 0.2].

It is unclear whether we can dispose of the free disposal assumption. Indeed, it may be

that there is an impossibility result when we force all intervals to be allocated. It would be

nice to be able to apply the same insights of Mechanism 6, though as the example shows, we

now have to be careful about the exact mechanics of how intervals are allocated rather than

simply the fraction of each interval each agent receives. This adds significant complexity to

the problem which we are able to avoid in Mechanism 6 when we assume free disposal.

9In Mechanism 6, any exact allocation suffices in FairAllocate, and it is not necessary to worry about
the specific way an exact allocation is achieved.
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6.7 Summary and Future Work

Departing from the discussion in Chapters 4 and 5, which do not consider strategic issues,

this chapter considers the question of finding DSIC mechanisms for cake cutting under

restricted valuations. The main result is a polynomial time DSIC mechanism that is pro-

portional, EF, and PE when agents have piecewise uniform valuations. A secondary result

shows that if randomized mechanisms are allowed, there exists a polynomial time random-

ized mechanism that always finds an allocation that is proportional and EF when agents

have piecewise linear valuations.

6.7.1 Future Work

1. The most prominent technical challenge is to generalize Mechanism 6. The first step

would be a deterministic, truthful, proportional, and EF mechanism under the as-

sumption that the agents have piecewise constant valuations, and the second step

would be achieving the same result with respect to piecewise linear valuations. While

our mechanism for piecewise uniform valuations is Pareto-efficient, Schummer [1997]

proves that in a setting of pre-defined divisible goods, the only Pareto-efficient and

truthful mechanism is a dictatorship that gives all goods to a single agent. Since piece-

wise constant valuations contain this setting (by creating separate intervals for each

good and letting agents express their level of utility for each good by varying their

utility function on each interval), we cannot hope for truthfulness, Pareto-efficiency,

and fairness when we move to piecewise constant valuations. However, we might still

be able to attain truthfulness and fairness (proportionality and envy-freeness). Un-

fortunately we cannot rule out the scenario where no such mechanisms exist; future

work would have to resolve this issue.

2. As we have done throughout this thesis, we have worked with restricted valuations

and a direct revelation model.

It is unclear whether our mechanisms can be efficiently implemented via evaluation

and cut queries. In particular, it is unclear whether it is possible to exactly isolate

the agents’ desired intervals using a finite number of queries. This does not preclude,

however, the existence of results that are analogous to ours via mechanisms that only

rely on evaluation and cut queries.
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Appendix: Equivalence of Swapping Procedure and Mecha-

nism 6

We prove that the swapping procedure from Section 6.4.2 is equivalent to Mechanism 6 for

two agents. In the swapping procedure from Section 6.4.2, there are two cases. The first is

where agent 2 gives away all of its share of W12, and the second is where agents 1 and 2 divide

W12. We can give precise conditions for when each of the two cases occurs. After the first set

of swaps, agent 1 has all of W1, and agent 2 has len(W2 ∪W1)/2 of W2 and still desires the

(len(W2)− len(W1))/2 of W2 still held by agent 1. If len(W12)/2 ≥ (len(W2)− len(W1))/2

then agent 2 can get all of W2 without exhausting all of its share of W12, and the agents

equally split W1∪W2∪W12. Otherwise, agent 1 receives all of W1,W12 and agent 2 receives

only W2.

The crux of the swapping procedure is the allocation of W12. Each agent always receives

Wi, and W12 is allocated to try and equalize the total lengths of intervals obtained by each

agent. However, this may not always be possible because agent 1 may desire less than

len(W1 ∪W2 ∪W12)/2, and in this case, agent 1 receives all of W12. To summarize, there

are two cases in the swapping procedure:

1. len(W1 ∪W12) ≥ len(W1 ∪W2 ∪W12)/2. Agent 1 receives W1, agent 2 receives W2

and the agents split W12 so that their allocated lengths are equal.

2. len(W1 ∪ W12) < len(W1 ∪ W2 ∪ W12)/2. Agent 1 receives W1 ∪ W12 and agent 2

receives W2.

To see that this swapping procedure is exactly equivalent to Mechanism 6 for two agents,

assume again without loss of generality that len(W1) ≤ len(W2). In Mechanism 6, either

{1} or {1, 2} is the subset with the smallest average. {1, 2} is the chosen subset if len(W1)+

len(W12) ≥ (len(W1∪W2∪W12)/2. If {1, 2} is chosen, then agents 1 and 2 splitW1∪W2∪W12

in an exact allocation. If {1} is chosen, then agent 1 receives all of W1,W12, and agent 2

receives all of W2.
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Combinatorial Auctions

Combinatorial auctions are a canonical problem at the heart of the intersection of computer

science and economics. In combinatorial auctions, multiple items are auctioned at the

same time. We assume that agent valuations are private and must be elicited by the

auction mechanism. On the economic side, these auctions are desirable as they naturally

accommodate complex bidder preferences for the goods.

As an example, suppose that two items exhibit strong complementarities. More con-

cretely, consider an auction for wireless spectrum, where spectrum rights for different regions

of the US are being auctioned. Verizon gains a significant bonus if it is able to obtain rights

in all the regions and build a national network. A combinatorial auction allows this to be

expressed as all the regions are allocated in a single auction.

On the other hand, running separate auctions for each region would force Verizon to

guess about its probability of obtaining subsequent regions when bidding for a region. In

particular, in hopes of obtaining a national network, Verizon is willing to pay more than its

value for regional spectrum. If Verizon ultimately does not receive a national network (for

instance because of an aggresive regional provider), it could be left paying more than its

value for the spectrum it actually receives. This is known as the exposure problem and is one

of the arguments in favor of combinatorial auctions. Indeed, combinatorial auctions have

been adopted to allocate wireless spectrum in many different countries (see e.g. [Cramton,

2002]), to find bus route operators in London [Cantillon and Pesendorfer, 2006], to procure

goods and services in industrial settings [Caplice and Sheffi, 2006, Bichler et al., 2006,

Sandholm, 2013].

Though combinatorial auctions are able to accommodate complex bidder preferences,

allocating a set of items altogether gives rise to interesting computational challenges. If
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we have m items, then there are 2m possible subsets of items that an agent can obtain.

A fully general preference would allow for the bidder to specify a different value for every

possible subset of items. Even if we impose natural restrictions such as monotonicity (i.e.,

an agent’s value for a superset of a set S is at least its value for S), this still does not decrease

the number of values needed to pin down a bidder’s valuation. As a result, combinatorial

auctions give rise to a preference elicitation problem where we need to learn enough about

an agent’s preference so we can make an intelligent allocation decisions without forcing the

agent to communicate its entire valuation function since that is computationally intractable

(in a worst case sense). We will not address preference elicitation in this dissertation, but

more information on the topic can be found in Cramton et al. [2006]. Instead, we limit the

valuations we consider to families of valuations that can be succinctly communicated (e.g.

by listing values for target bundles of interest and having rules for how these translate to

values for any bundle of items).

Another computational issue that arises is the winner determination problem. Suppose

that we are given agent preferences and wish to find an allocation that maximizes social

welfare. It turns out that in many combinatorial auction settings this problem is compu-

tationally intractable. In this chapter, we present the model for combinatorial auctions as

well as some basic results that will be relevant to the next two chapters on monotone branch

and bound search and learning payment rules.

7.1 Model

In the combinatorial auction (CA) problem, there is a set N of agents and set G of items,

with |N | = n, |G| = m. Each agent has a private valuation function vi : 2G → R≥0 which

expresses the agent’s value for each possible bundle of items. We adopt the same notation

as Section 2.2.10 A valuation profile (v1, . . . , vn) = v consists of a valuation function for

each agent. It will be useful to write a valuation profile from the perspective of agent i

as v = (vi, v−i), where vi gives agent i’s valuation function and v−i refers to the valuation

function of all other agents.

The combinatorial auction problem is a mechanism design with money problem (Section

2.2), and we make the typical assumption that agent utilities are quasi-linear. The set of

possible outcomes Ω is an assignment of items to each agent such that no item is given to

10The notation in Section 2.2 uses a capital Vi for agent valuations, and this is used in our discussion
of cake cutting as well. In our discussion of CAs and subsequent chapters, we use a lowercase vi for agent
valuations.
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multiple agents. We call elements of Ω allocations. The mechanism design goal is to find

an outcome rule g that maps a valuation profile v to an element of Ω and a payment rule

that maps a valuation profile v to a payment for each agent such that g chooses an element

of Ω that has good properties for each v, and g and p together incentivize agents to report

their valuations truthfully.

7.2 Computational Complexity

Even if we momentarily ignore the incentive problem of designing g and p so that agents

report their valuations truthfully, a fundamental computational problem arises when we

consider CAs and social welfare maximization. Suppose that our objective as a designer is

to find an allocation that maximizes social welfare with respect to the reported valuations.

This problem is known as the winner determination problem. This problem is related to a

weighted set-packing problem and is NP-hard, even if we limit ourselves to fairly restrictive

preferences. [Cramton et al., 2006] contains a full discussion, and we summarize the parts

relevant to this thesis in this section.

Before we discuss computational complexity, we must define precisely the inputs to our

algorithm. One possibility is to say that the inputs are an exhaustive specification of the

agents’ valuation functions. That is, for each agent, the input consists of 2m numbers, with

each number representing the agent’s value for some subset of items. One problem with this

approach is that even communicating these numbers becomes infeasible as m grows large.

Another problem is that if we use this representation, then a polynomial time algorithm

would allow time that scales polynomially with n and 2m rather than polynomially in n

and m. As a result, we need to consider more succinct input representations or bidding

languages.

Two fundamental bidding languages are the OR and XOR bidding languages [Sandholm,

2002, Fujishima et al., 1999]. In both languages, agents submit lists of pairs (Sj , vi(Sj))

where Sj ⊆ G. The OR language interprets the bids as being additive as long as the subsets

listed do not intersect. If an agent submits {(S1, vi(S1)), (S2, vi(S2))} with S1∩S2 = ∅, then

it is assumed that the agent receives value vi(S1) + vi(S2) for the subset S1 ∪ S2.11 On the

other hand, the XOR language assumes that bids are mutually exclusive. That is, at most

one of the bids can be accepted, so in the given example, if the agent were given S1 ∪ S2,

its value would be max(vi(S1), vi(S2)). It is also possible to combine the two languages

11In general if we have overlapping bids then an agent’s value for S is the maximum sum of values for
disjoint bids contained in S.
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by creating dummy items, and this is known as the OR* language [Fujishima et al., 1999].

The properties of these languages is beyond the scope of the thesis, but interested reader is

referred to [Nisan, 2006].

With OR, XOR, or OR* bids, we now have a natural input size for winner determination.

Because agents list specific bundles and values in these bidding languages, we can use the

number of specific bundles listed as the input size. We then seek algorithms that run in time

polynomial in the number of (bundle, value) pairs submitted by the agents as well as n and

m. We now specialize to the XOR bidding language, but similar intractability results hold

for the OR and OR* languages [Sandholm, 2006]. To discuss computational complexity, we

consider the decision version of winner determination, which asks, for a given set of XOR

bids, whether there exists a feasible allocation that has value at most K, where K is any

positive number.

Theorem 7.2.1. [Rothkopf et al., 1998] The decision problem for winner determination

with XOR bids is NP-hard.

The proof shows that winner determination is equivalent to a weighted set packing

problem. This negative result holds even if agents are single-minded and can only submit a

single (bid, value) pair. Additionally, even when agents are single-minded, it is not possible

to approximate the optimal allocation in polynomial time.

Theorem 7.2.2. [Sandholm, 2002, Lehmann et al., 2002] It is not possible for polynomial

time algorithms to guarantee a solution with social welfare at least m−1/2+ε times the optimal

social welfare. The result requires that NP 6= ZPP , where ZPP is the class of problems that

can be solved using randomized algorithms that always return the correct answer (regardless

of the realization of the random coin tosses).

7.3 Computational Mechanism Design

The negative computational complexity results serve as one motivation for the study of

computational mechanism design (CMD). CMD imposes that in addition to g and p satis-

fying incentive constraints, we would like the computation of g and p to be tractable, i.e.

take polynomial time in the natural input parameters to the problem.

If we are looking to maximize social welfare in combinatorial auctions and are not

considering computational limits, then we can apply the VCG mechanism discussed in

Section 2.2.3. However, the VCG mechanism requires us to find the allocation that exactly

118



CHAPTER 7 COMBINATORIAL AUCTIONS

optimizes social welfare, and this problem is NP-hard as discussed in the previous section.

It is tempting to simply replace g with some algorithm g′ that approximately maximizes

social welfare and to use a payment rule that shares the same spirit as the VCG payment

rule in charging agent i the externality it imposes on the agents. Rather than charging

agent i ∑
j 6=i

vj(g(v))−max
ω∈Ω

∑
j 6=i

vj(ω)

 ,

we can charge agent i

∑
j 6=i

vj(g
′(v))−

∑
j 6=i

vj(g
′(v1, . . . , vi−1, vi+1, . . . , vn)).

Here we assume that g′ is well-defined when passed n − 1 agents as the right hand side of

the expression requires us to compute the allocation when agent i is removed. This is a

reasonable assumption for most algorithms that attempt to maximize welfare.

Unfortunately, using g′ along with the VCG-style payment rule is not DSIC. One easy

way to see why this might be true is to observe that g′ might not satisfy the necessary

properties for there to exist a payment rule that makes it incentive compatible. For instance,

if we are in a restricted CA setting that is single-parameter (such as the known single-minded

setting discussed below), our approximation algorithm g′ might not be monotone in this

single-parameter. As discussed in Section 2.2.3, monotonicity is necessary for there to exist

a payment rule that is DSIC when combined with g′. Even if g′ satisfies the necessary

conditions for there to exist a DSIC payment rule, the VCG-style payment rule may not be

the right payment rule.

As a result, it is difficult to rely on classic results like the VCG mechanism if we consider

computational constraints in CAs and welfare maximization. We cannot exactly optimize

social welfare and we cannot use a VCG-style rule for algorithms that approximately op-

timize welfare. The challenge is to simultaneously find (a) approximation algorithms that

do a good job of maximizing welfare and (b) payment rules that work together with the

approximation algorithm to satisfy incentive constraints.

7.4 Single-Minded CAs

There is much recent work in CMD, and it is beyond the scope of this dissertation to broadly

survey the state of the field. Section II of [Nisan et al., 2007] provides a more thorough
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exposition. Here we introduce the special case of single-minded CAs as they will be relevant

for the next two chapters. We also point the reader to Section 1.2.3 and the related work

sections of Chapters 8 and 9 for additional background on related work in CMD.

In single-minded CA, each agent is interested in a single bundle. Therefore, an agent’s

valuation is summarized by its target bundle Si along with its value for this bundle vi(Si).

If the target bundle Si is publicly known, then this becomes a single-parameter setting since

an agent’s valuation is pinned down by its value for the publicly known target bundle.

While restrictive, there are settings where bidders may be known single-minded. Lehmann

et al. [2002] describe a pollution rights auction where companies are bidding for the right to

emit certain chemicals into the air, and the pollution profiles of the companies are known.

They also describe communication network settings where bidders own nodes in the network

and wish to connect their nodes. If there is only a single-path between any pair of nodes,

then bidders are single-minded. If it is also public knowledge which companies own which

pairs of nodes, then this becomes a known single-minded setting.

While the known single-minded setting is easier than the single-minded setting from

an incentives perspective (since an agent can only lie about its value for the target bundle

and not the identity of the bundle), computing the welfare-maximizing allocation is still

NP-hard as discussed in Section 7.2.

Single-minded CA offer an example of a setting where algorithms that approximately

maximize welfare have been used successfully in the context of mechanism design. Lehmann

et al. [2002] provide a greedy algorithm and associated payment rule with a 1/
√
m welfare

guarantee (relative to the optimal welfare), where m is the number of items being allo-

cated, and a matching lower-bound. More recently, Mu’alem and Nisan [2008] provide an

approximation for the special case of known single-minded CAs with guarantee 1/(ε
√
m)

for any fixed ε > 0, with runtime that is exponential in 1/ε2. These advancements both pro-

vide worst-case guarantees in terms of welfare compared with the optimal and polynomial

time computation. The drawback is that in order to obtain these worst-case guarantees and

incentive-compatibility it is necessary to be able to reason analytically about the algorithms.

In the next two chapters, we explore a more computational approach to designing mech-

anisms. In Chapter 8, we consider using branch and bound search as our algorithm for

finding an allocation with good welfare. In Chapter 9, we relax our requirement for exact

incentive-compatibility and provide a general framework that learns payment rules to pair

with any provided outcome rule.
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Chapter 8

Monotone Branch and Bound

Search

In this chapter, we consider the mechanism design problem for known single-minded CAs.

While we focus on this specific setting, our high-level ideas apply to the more general set-

ting of single-parameter downward-closed domains (allocation problems where removing an

agent’s allocation from a feasible allocation remains feasible). As discussed in Section 7.4,

known single-minded CAs are an interesting problem in CMD as the winner determina-

tion problem remains NP-hard, despite the severe restrictions on agent valuations and the

assumption that agents’ target bundles are publicly known. The existing approaches of

Lehmann et al. [2002] and Mu’alem and Nisan [2008] give polynomial time algorithms with

worst-case guarantees on the welfare of the computed allocation along with appropriate

payments that make the resulting mechanism DSIC.

However, if incentives were not a concern, we have more sophisticated algorithms such

as Branch-and-Bound (BnB) search, which can efficiently find optimal solutions to the

winner determination problem on typical instances. Following a research agenda on heuristic

mechanism design [Parkes, 2009], we seek to leverage heuristic algorithms such as BnB

search for the purpose of CMD.

BnB search is a canonical method for solving optimization problems that are formulated

as integer programs (IPs). Search proceeds by branching on decisions in regard to whether

or not an agent is allocated (“branch”), and looking to prune large parts of the search space

through linear program (LP) relaxations (“bound”). In cases where it is too computationally

expensive to compute the optimal solution, an optimality tolerance γ ∈ (0, 1] is adopted, and

search is terminated when a solution is identified that is proven to be within multiplicative
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fraction γ of the optimal solution.

But therein lies the core problem in combining BnB with incentive compatible mecha-

nism design:

(i) a natural adaptation of the payments of the VCG mechanism need not be truthful

when coupled with an approximate solution to a welfare optimization problem (see Section

7.3, and

(ii) the allocation generated by BnB search when used with an optimality tolerance

γ < 1 need not be monotone, in the sense that an agent might go from winning at some

bid value wi to losing at some bid w′i > wi.

BnB search is monotone for γ = 1 because it computes the optimal allocation. But

monotonicity can fail with BnB when γ < 1, because a higher agent value can trigger

a different search decision somewhere in the search tree, eventually leading to the search

terminating with an alternate solution that is within a factor γ of optimal but does not

include the agent.

8.1 Our Results

Correcting this failure of monotonicity, we follow an approach introduced by Parkes and

Duong [2007] in a different context. Given an instance, we check to see whether agent i

allocated at bid wi becomes unallocated for any bid w′i > wi (fixing the other bids.) If this

occurs, then the outcome is “corrected” (or ironed) such that the agent is not allocated at

bid wi. By doing this for all inputs, we achieve monotone BnB search (and thus incentive-

compatibility). Moreover, the approach retains good welfare if the original search algorithm

is monotone for most agents on most inputs.

The technical challenge is to find an efficient method to trace the effect on the outcome

of BnB search as the bid value of an agent is increased, taking each agent in turn. From

the perspective of an IP, we are increasing an objective coefficient and tracing the effect

on decisions made during BnB search (e.g., branch decisions and pruning decisions.) The

technical innovations involved in making this sensitivity analysis of BnB search efficient

include:

• An efficient technique to identify the next highest objective value coefficient at which

a different search decision would be made for a given BnB search state.

• Caching search states to avoid re-running early steps of BnB search that remain the

same when testing higher objective value coefficients.
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• Leveraging structure of BnB search to identify sufficient conditions that ensure that

agent i is allocated in any BnB solution, and terminating sensitivity checks early when this

is the case.

• Caching of LP solutions to avoid expensive re-computations when the solutions would

not have changed.

• Making BnB search more monotone by adopting a bucketing approach to fractional

variables in deciding which variable to branch on, and through a discrete transformation

on the inputs.

We implement our technique and report experimental results based on the well-studied

“legacy” distributions. We did not use the named CATS distributions (matching, paths,

regions, scheduling) as there is no straight-forward way to adapt these to the single-minded

setting. In particular, we focus on the L4 (decay) distribution, which has been shown in

the literature to generate hard winner determination problems Leyton-Brown et al. [2000],

Sandholm [2002], Sandholm et al. [2005]. We find sets of randomly generated instances from

the L4 distribution where the best parameterizations of our monotone BnB algorithm yield

better welfare than the approximation mechanisms of Lehmann et al. [2002] and Mu’alem

and Nisan [2008].

Additionally, the best parameterizations of monotone BnB (and for an optimality toler-

ance γ < 1 at which welfare is better than existing approximation mechanisms) have better

runtime than optimal BnB. Monotone BnB is also fully parallelizable in the number of

allocated agents while the same is not true of optimal BnB. The fully parallelized runtime

cost of monotone BnB is significantly smaller than that of optimal BnB for the best param-

eterizations of monotone BnB and instances we consider. Though our experimental results

depend crucially on these input distributions, we believe they demonstrate the potential of

the general approach and the specific application to BnB search.

In addition, while earlier work has developed techniques for the sensitivity analysis of

optimal solutions to IPs [Marsten and Morin, 1977, Feautrier, 1988], we are not aware of

earlier work on the sensitivity of BnB search when used with an optimality tolerance. For

this reason, we also provide some analysis of the kinds of decisions that tend to change

during search and the kinds of monotonicity failures that we see on our instances. We see

that on our test instances, the most common changes result from a pivot to a new LP

solution, which causes a change in the branch variable selected.
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8.2 Related Work

We follow earlier work of Parkes and Duong [2007] and Constantin and Parkes [2009],

who have applied so-called “computational ironing” to online stochastic combinatorial opti-

mization (OSCO). BnB search is more complex algorithmically than the OSCO algorithms

studied in this earlier work, and requires new technical contributions in finding an efficient

coupling with the approach of computational ironing.

Also thematically related to heuristic mechanism design is the GrowRange method of

Parkes and Schoenebeck [2004], which provides an anytime algorithm for welfare optimiza-

tion in general CAs by expanding the range of a VCG-based algorithm, while allowing for a

time-based interruption by the center (although without providing full strategyproofness.)

As discussed in Section 1.2.3, there are several papers that look at converting algorithms

into incentive compatible algorithms while preserving the welfare performance of the original

algorithm [Briest et al., 2005, Lavi and Swamy, 2011, Dughmi and Roughgarden, 2010,

Hartline and Lucier, 2010, Hartline et al., 2011]. A key difference with most of this work

is that our mechanism is DSIC while most of these previous papers provide randomized

truthful in expectation mechanisms or BIC mechanisms. Of these papers, only Briest et al.

[2005] examine DSIC. They provide a DSIC mechanism whose outcome rule is an FPTAS

for social welfare, assuming the existence of an optimal pseudopolynomial time algorithm

for welfare maximization. Single-minded CAs, which we study, do not have an optimal

pseudopolynomial time algorithm for welfare maximization, so their main result does not

apply to our setting. They do leverage their technical insights to give a new algorithm for

multi-unit CAs where there are at least B copies of each item. However, for the single-

minded CA problem we study B may equal 1 (we may have only one copy of each item),

and their new algorithm does yield optimal worst-case approximation ratios (in contrast to

the algorithms of Lehmann et al. [2002] and Mu’alem and Nisan [2008]). In addition to the

specific differences with respect to the work of Briest et al. [2005], we are not aware of any

computational validation of these other approaches. Indeed, one of our main contributions is

to implement and experimentally test our approach on distributions studied in the literature.

8.3 Preliminaries

In known single-minded CAs each agent has a target bundle Ti, known to the mechanism,

and a value wi > 0 for this bundle. We thus refer to agent reports as being this single

value wi, rather than a report of an agent’s entire valuation function vi. Also, we consider
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deterministic allocation functions, so we can assume that gi(wi, w−i) ∈ {0, 1} corresponding

to whether or not the agent is allocated its target bundle.

Definition 8.3.1. An allocation function g is monotone in a known single minded-domain

if gi(wi, w−i) = 1⇒ gi(w
′
i, w−i) = 1 for all w′i ≥ wi.

As discussed in Section 2.2.3, for deterministic allocation functions g and single-parameter

agent preferences, there exists a payment function p that makes (g, p) truthful iff g is mono-

tone. In fact, once the allocation function is known, the payment function can be computed

by finding the “critical value” at which an agent starts receiving its target bundle. As a

result, for single-dimensional settings such as known single-minded CAs, the problem of

constructing truthful mechanisms can be reduced to that of finding monotone allocation

functions. In the context of the proposed framework, once an allocation has been confirmed

for an agent by performing a check of monotonicity for all higher reports the agent could

have made, then a parallel, downward sensitivity check is performed to find the first smaller

value at which the agent would no longer be allocated.

Known single-minded CAs are a special case of the more general class of downward

closed environments.

Definition 8.3.2. A single-dimensional mechanism design environment is downward closed

if an outcome is described by a set of agents allocated, and for a given outcome, there exists

an outcome that is associated with any subset of the allocated agents.

In the known single-minded setting, wlog, we can specify an outcome by giving the set

of agents that receive their target bundle. Technically there are many feasible allocations

that are affiliated with satisfying a given set of agents, but we can limit consideration to

allocations that do not give agents more than their target bundle since this agents get no

additional value from additional items in the single-minded setting. The downward closed

property holds since if it is possible to give a set of agents each their target bundle, then we

can satisfy any subset of that set as well. While we focus on known single-minded CAs, the

general ironing procedure developed in Section 8.4 applies to single-dimensional, downward

closed environments.

8.4 Ironing, Discretization and a First Approach

We first describe the very basic approach to making heuristic algorithms monotone for

single-parameter, downward closed domains. In the next sections, we propose techniques

to reduce the computational overhead in the particular context of BnB search.
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The basic idea of ironing is straightforward. We first compute the set of allocated agents

using our allocation algorithm at the current values. We then perform sensitivity analysis

on the set of allocated agents. For each allocated agent, we check if the agent would still be

allocated under the allocation algorithm for all higher reported values. If an agent becomes

deallocated for higher reported values, then we must deallocate the agent since this indicates

a non-monotonicity in the provided allocation function. This general procedure is described

as ironed-alloc in Algorithm 7. We focus on the allocation function in the body of the paper,

but the same ideas can be applied to compute payments for allocated agents by performing

downward sensitivity rather than upward sensitivity.

Theorem 8.4.1. The ironed-alloc procedure is monotone and feasible for downward closed

domains.

Proof. An agent is allocated in ironed-alloc only if the agent is allocated at its current value

and all higher reported values. If this is the case, then ironed-alloc would still have allocated

the agent for all higher reports.

Algorithm 7 ironed-alloc(alloc-func, values)

allocated = alloc-func(values)
for agent ∈ allocated do

if is-deallocated-at-higher-values(agent) then
allocated = allocated \ agent

end if
end for
return allocated

Algorithm 8 discretized-ironed-alloc(alloc-func, values, β)

for value ∈ values do
value = bvalue/βcβ

end for
allocated = alloc-func(values)
for agent ∈ allocated do

if is-deallocated-at-higher-values(agent) then
allocated = allocated \ agent

end if
end for
return allocated

If the underlying allocation function is monotone everywhere, then ironed-alloc will be

the same as the underlying algorithm. If it is not, then ironed-alloc may sacrifice welfare

(since it must deallocate some agents) in order to preserve monotonicity.
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As stated, ironed-alloc applies to continuous type domains as long as we have a method

for sensitivity checking; i.e., to determine whether an agent will become deallocated for any

higher reports. However, such a procedure may not always be available, and even when it

is, implementing such procedures in practice may introduce an implicit discretization.12

For this reason, we introduce a discretized version of ironed-alloc that is monotone in

the original domain, even if the original domain is continuous, and still results in payments

that are individually rational. The procedure mimics ironed-alloc, except that agent bids

are rounded down to the nearest grid size β (Figure 7).

Theorem 8.4.2. Procedure discretized-ironed-alloc is monotone and admits individually

rational payments.

Proof. The proof of monotonicity is the same as Theorem 8.4.1. To see that payments are

individually rational, recall that given a monotone allocation function, the payment of an

agent is the lowest value at which the agent would still be allocated. Suppose that an agent

is allocated when bidding wi. This means that the agent would also be allocated with bid

bwi/βcβ ≤ wi, so the agent’s payment is at most wi.

With grid size β, we can obtain a procedure is-deallocated-at-higher-values by testing

all multiples of β that are greater than the agent’s current value, to see whether the agent

would still be allocated. Because discretized-ironed-alloc rounds values down to multiples

of β prior to sending them to the allocation function, this will capture all possible points

where the agent could have become deallocated. We refer to this as the brute force sensitivity

method.

There is an interesting trade-off in using discretization in the context of ironing. On

one hand, the allocation function no longer accesses exact agent values, which can result in

allocations with lower welfare compared to the allocations computed using the true values.

On the other hand, adopting a discretization may actually improve the “ironed” welfare

because there are fewer points where the algorithm is required to still allocate the agent,

and as a result, the underlying algorithm may become more monotone and deallocate fewer

agents.

12Initially, we developed our sensitivity checking procedure for continuous values. We identified sensitivity
points w1 based on whether the search might change for any value strictly greater than w1 (open) or for
any value weakly greater than w1 (closed). To handle open points, we needed to introduce a parameter ε to
jump the agent’s value to w1 + ε when running counter-factuals. This discussion will be clearer after Section
8.6.
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8.5 Branch-and-Bound Search for Single-Minded CAs

An empirically effective way to find an allocation with good welfare for CAs is to formulate

the problem as an integer program (IP) and use BnB search. We describe the essentials of

this approach in this section.

We assume that we are in a known single-minded setting with n agents and m items and

that each agent is interested in a single bundle Ti and reports value wi to the mechanism. We

can write the following winner determination IP (WDIP) to solve for the welfare-maximizing

allocation:

maximize

n∑
i=1

wixi (8.1)

subject to
∑
i:j∈Ti

xi ≤ 1, 1 ≤ j ≤ m (8.2)

xi ∈ {0, 1}, 1 ≤ i ≤ n (8.3)

The linear programming (LP) relaxation of this IP is the same program, except with the

integer constraints (8.3) replaced by inequalities of the form 0 ≤ xi ≤ 1. Given this, Branch-

and-Bound (BnB) is a tree search technique that uses the relationship between an IP and

its LP relaxation to prune parts of the search tree. We will focus on the case where the

variables are binary (0 or 1) since the IPs we consider will have this form.

The basic components of the search are the nodes in the search tree. Each node k stores

an integer partial assignment, i.e. t = {x2 = 0, x4 = 1}, along with a solution {x∗1, . . . , x∗n}

to LPt, where LPt is the LP relaxation of WDIP, with extra constraints added to enforce

t. Let t(k) denote the partial assignment stored in k. With a slight abuse of notation, we

say j ∈ t(k) if xj is set to 0 or 1 in t(k).

Let the value of an LP be
∑n

i=1wix
∗
i , where x∗1, . . . , x

∗
n is the solution to the LP, and

the value of a node k = val(k) be the value of its LP relaxation. Because the value of an

LP relaxation is an upper bound on its associated IP, val(k) is an upper bound on any

integer solution that agrees with t(k). A solution {x∗i } is integral if x∗i ∈ {0, 1} ∀i, and

fractional otherwise. In Figure 8.1(a), node 1 corresponds to an empty partial assignment,

while nodes 2 and 3 correspond to partial assignments {x2 = 0}, {x2 = 1} respectively.

This indicates that x2 is set to 0 in node 2 and all its children, while x2 is set to 1 in node

3 and all its children.

A search tree has a root node with an empty partial assignment, and other nodes are
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Figure 8.1: (a) A simple illustration of a Branch-and-Bound search tree. (b) An illustration
of the augmented search state and get-sens-single-state.

either an internal node with two children or a leaf node. The left child of an internal node k

corresponds to adding xj = 0 to t(k) while the right child corresponds to adding xj = 1 to

t(k), for some j /∈ t(k). An important property of a search tree is that any integer solution

agrees with the partial solution in exactly one leaf of the search tree, i.e. the leaves of any

search tree partition the space of possible integer solutions.

The search state s is a collection of nodes, and corresponds to the leaf nodes in a valid

search tree. I(s) denotes the integral nodes associated with s, F (s) the fractional nodes

associated with s, and K(s) = I(s) ∪ F (s) all nodes associated with s. In Figure 8.1(a),

the search state consists of nodes 2, 4, 5, with node 2 integral and nodes 4 and 5 fractional.

Given a search state s, we define the dec(s) to be the decision associated with s. To specify

the decision, we assume that BnB is being run to an optimality tolerance γ ∈ (0, 1], where

γ = 1 represents full optimality. The search decision consists of:

1. Whether or not to terminate the search because a solution with welfare at least γ

times the optimal has been found.

2. If the search is terminated, a node k ∈ I(s) that has the highest value.

3. If the search is not terminated,

(a) A node k ∈ F (s) to be selected.

(b) A variable xj to be branched.
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The crux of BnB lies in how the decision associated with s is computed. We define:

UB(s) = max
k:k∈F (s)

val(k), LB(s) = max
k:k∈I(s)

val(k)

If γ · UB(s) ≤ LB(s), then terminate, and select a node k ∈ I(s) that has value LB(s).

If γ · UB(s) > LB(s), then select a node k ∈ F (s), γ · val(k) > LB(s) to be explored

(select-node) along with a variable xj to be branched (branch-variable). Altogether, the

BnB procedure proceeds as:

1. Initialize s to be a single node corresponding to the empty partial assignment.

2. Repeat until termination:

• Compute dec(s).

• If terminate, return the integral solution in the node given by dec(s) and termi-

nate.

• If not terminate, update s by replacing the node given by dec(s) with two children

corresponding to branching the variable xj given by dec(s).

There are various choices for how to implement the select-node and branch-variable

functions. For instance, select-node can choose the deepest node, breaking ties by value,

(depth-first) or choose the node with the highest LP solution value (breadth-first) or alternate

between the two. A popular choice for branch-variable is to select the most fractional

variable in the LP solution, but other choices are also possible (see e.g. Chapter II.4 in

[Nemhauser and Wolsey, 1998]). The best choices for these functions are typically domain

specific. In our work, we choose depth-first for select-node until an integral node is found,

after which point we use breadth-first. For branch-variable, we focus on variants of selecting

the most fractional variable.

Upon termination, BnB will return a solution with welfare at least γ times the optimal.

This is true because at each step max(LB(s), UB(s)) is an upper bound on the value of

any integer solution to WDIP because of the admissibility (or optimistic) estimate of value

that comes from the use of LP relaxations and because the nodes in s partition the space

of integer solutions.

130



CHAPTER 8 MONOTONE BRANCH AND BOUND SEARCH

8.6 Optimized Sensitivity Checking for BnB

In this section, we demonstrate an optimized sensitivity checker (i.e. an implementation of

is-deallocated-at-higher-values) that takes advantage of the structure of BnB search. In what

follows, we assume that we are performing sensitivity checking in the context of discrete-

ironed-alloc, and can therefore assume that input values are multiples of β. To avoid LP

degeneracy (which is problematic for sensitivity because we are unsure which solution will

be picked for higher agent values), in our experiments, we add a random value in [0, β) to

the discretized agent values. This perturbation is independent of an agent’s report and thus

does not affect truthfulness. In practice, to maintain individual rationality, one would want

to subtract a random value, but our implementation adds a random value to avoid special

casing perturbations that lead to negative values. This should not have any substantive

effect on our experimental results, as properties of the solution are always computed with

respect to the original values prior to any discretization or perturbation. For the duration

of this section, we assume without loss of generality that we are performing sensitivity

checking for agent 1.

Rather than re-run the search for every higher multiple of β, we would ideally like to skip

multiples of β that provably continue allocating agent 1 in the solution returned by BnB.

The core of such a procedure would consist of a function get-sensitivity that runs BnB with

agent 1’s value set to w1, but in addition to returning an allocation, returns the next value

w′1 > w1 for which we should re-run the search. We could then use the following procedure

(summarized in Algorithm 9) as a replacement for the brute force sensitivity checker. We

first run get-sensitivity with agent 1’s reported value. This returns the allocation BnB would

have returned, along with the next higher value w′1 at which the allocation might change.

We set agent 1’s value to w′1, and re-run get-sensitivity. If the allocation returned continues

to allocate agent 1, then continue the process. Terminate if an allocation returned does not

allocate agent 1 or if the next highest value exceeds the maximum allowed value. If the

possible values are uncapped, we could always set a very high max value, and treat (the

rare case of) any reports greater than this value as being the max value.

The next two sections are devoted to defining get-sensitivity. We first examine how a

change in w1 affects a specific node in the search state, and we then use these observations

to provide an implementation for get-sensitivity.
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Algorithm 9 optimized-is-deallocated-at-higher-values(alloc-func, values, agent, β)

sens-value = values(agent)
while sens-value < max-value do

values(agent) = sens-value
alloc, next value = get-sensitivity(alloc-func,values, agent, β)
if agent /∈ alloc then

return true
end if
sens-value = next-value

end while
return false

8.6.1 Impact of a Change in Value on a Search Node

We first examine how a node in the search state (recall, associated with an LP) changes

when agent 1’s reported value increases. We separate these changes into two types.

Solution value changes

As a agent 1’s reported value increases, the solution to the LP relaxation in a given node

may not change, but the value of the solution will change if x∗1 > 0 in the solution. If we

assume that the solution does not change, then we can easily track how the solution value

changes as the agent’s reported value increases. Let x∗1, . . . , x
∗
n be the fractional solution to

the LP relaxation at a node. The solution value as a function of agent 1’s report w1 is

val(w1) = w1x
∗
1 +

(
n∑
i=2

wix
∗
i

)
,

where the expression within the parenthesis does not depend on w1. We call x∗1 the coefficient

and the term in parenthesis the bias of the node.

LP solution changes

As an agent’s reported value increases, the solution to the LP relaxation at the node can

change. LPs have the property that solutions lie at corners of the polyhedron formed by

the constraints of the LP. The solution stays the same for a range of values, until the

agent’s value reaches a critical point where the LP is degenerate, and two solutions share

the same value. Above this, the new solution becomes the unique optimal solution. The

literature on LPs provides simple computational procedures for computing the sensitivity

of an LP solution to coefficients in the objective function (see e.g. Section 5.1, [Bertsimas
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Figure 8.2: Sensitivity of the LP solution value to changes in agent 1’s value.

and Tsitsiklis, 1997]).

Worked example

Figure 8.2 illustrates these two types of changes by charting how the value of the LP

relaxation changes as the value of agent 1 moves from 0 to 1. The figure on the left

represents the simple case where the LP corresponds to the root node of the following

instance with 3 agents and 5 goods: Agent 1 desires {A,D,E}, agent 2 desires {A,B} at

0.2, and agent 3 desires {B,E} at 0.35. When agent 1’s value is 0, the LP solution sets

x∗2 = 0, x∗3 = 1 and has value 0.35. When agent 1’s value reaches 0.15, the LP solution

changes to x∗1 = 0.5, x∗2 = 0.5, x∗3 = 0.5. At this point, the first and second solutions have

the same value. When agent 1’s value reaches 0.55, agent 1 becomes fully allocated with

x∗1 = 1. In [0, 0.15], the value of the LP solution does not depend on agent 1’s value. In

[0.15, 0.55] the value of the LP solution has slope 0.5, and in [0.55, 0.1], the value of the LP

solution has slope 1.0. The figure on the right depicts a more complicated example for the

root node LP of an instance with 300 agents. Each marked point on the graph depicts a

point where the LP solution changes, and within marked points, the value of the LP solution

is linear in the value of agent 1, with the slope governed by the assignment x∗1 in the LP

solution. This example is representative of how the LP solution can be quite sensitive to

changes in agent 1’s value. As is the case in these examples, the slope increases as agent

1’s value increases.
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8.6.2 Isolating Major Changes and Defining get-sensitivity

Having discussed the two ways in which a change in an agent’s value affects a node in a

search state, we present our implementation of get-sensitivity. The get-sensitivity method

runs the search with agent 1’s value set to w1, but in addition to running the search, returns

a higher value w′1 > w1 at which to re-run the search. The guarantee is that if get-sensitivity

returns w′1, then setting agent 1’s value to any multiple of β in (w1, w
′
1) and running BnB

must still result in an allocation that contains agent 1.

As we run the BnB procedure, we can ask at each search state, what higher value of agent

1’s report might cause a change to occur in the search? Therefore, we reduce get-sensitivity

to the simpler problem of figuring out the value at which the decision at a single state would

change. The minimum of these sensitivity values across all search states processed in BnB

provides the next value to be returned by get-sensitivity. We call this single search state

procedure get-sens-single-state.

A first attempt at get-sens-single-state would consider any higher value at which any

aspect of a search state changes (e.g., the value of solution at any associated node in the

state.) But this would trigger a large number of changes since the number of nodes scales

with the number of steps in the search.

Instead, we focus (for a given state s) on identifying the next higher value at which

the search decision changes (i.e., whether or not we terminate, change the identity of the

integral node in the case of termination, or change the selected node or branch variable if

we do not terminate).

In what follows, we assume that select-node is breadth-first and chooses the fractional

node with highest value, although we can adapt the procedure to other choices of select-

node. To handle other cases (such as depth-first), we have to add to the augmented search

state the current deepest node whose value is not dominated by an integral node, and we

need to add extra events to breakpoint which detect when this deepest node changes. In

general, we need to modify the augmented search state and events detected to maintain the

invariant that breakpoint returns a value w′1 such that values in [w1 temp, w1) all yield the

same decision.

In order to find the lowest point where the decision associated with s changes, we intro-

duce an augmented search state. Let w1 temp be agent 1’s value being currently considered.

We make a distinction versus w1 since w1 temp can be a value higher than w1, the value

that we are currently examining for sensitivity purposes. The augmented search state adds

the following information to a search state:
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1. For each node in the state, compute the coefficient and bias for w1 temp.

2. Compute the best integral node for w1 temp.

3. Compute the best fractional node for w1 temp.

The purpose of this augmented search state is to allow us to understand how the search

state changes as agent 1’s value increases further from w1 temp, and thus when the search

decision changes. As agent 1’s value increases, we know that the values at the various

nodes in the state will each increase linearly based on the coefficient of that node. With the

assumption that select-node is breadth-first, the decision at s depends only on a comparison

between the best integral node and the best fractional node. Figure 8.1(b) gives an example

of the augmented search state.

The method get-sens-single-state for augmented state s′ repeatedly finds the next lowest

value w′1 > w1 temp where one of the following changes occurs:

1. The best fractional node changes identity.

2. The best integral node changes identity.

3. The value of the best integral node crosses the value of the best fractional node

(possibly multiplied by γ if we are not running to optimality).

4. The LP solution of some node changes.

For each such value, the method considers the next higher value on the discrete grid,

and at this value checks to see whether the search decision would actually change at this

state. If it does, then this becomes the relevant sensitivity value for this state— the first

value at which the search decision first changes.

8.6.3 Correctness of get-sens-single-state

Theorem 8.6.1. Method get-sens-single-state correctly computes the lowest point w′1 where

the decision associated with search state s′ would have changed.

Proof. Let w1 temp be as defined in get-sens-single-state and w′1 be the next lowest value

where one of the events 1-4 occurs. We first show that s′ is correct for all values in

[w1 temp, w
′
1). The coefficients and biases in s′ are correct since event 4 has not triggered.

The best integral and best fractional nodes are correct since 1 and 2 have not triggered.

Since s′ is correct for this range of values, the only way the decision could have changed
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in this range of values is if the value of best integral node overtakes the value of the best

fractional node or vice versa. This is caught by event 3, and so must not occur in the range

[w1 temp, w
′
1). Therefore, the decision is guaranteed not to change in [w1 temp, w

′
1). Because

we are discretizing, we can extend this range to [w1 temp, w
′
1β) (the inputs to BnB have

to be multiples of β). get-sens-single-state then recomputes the decision with the updated

s′ at w′1β. If the decision has changed, then this is the lowest value at which a change

occurs. If the decision does not change, then we can apply the same argument to show

that the decision will not change in [w′1β, w
′′
1), where w′′1 is the next value at which an event

triggers.13

get-sens-single-state Example

Figure 8.1(b) shows the augmented search state s′ for different ranges of w1, agent 1’s value.

The LP solutions in nodes 2 and 5 are not dependent on w1 while the solution in node 4 is

dependent on w1. When w1 ≤ 0.5, the LP solution in node 4 assigns x∗1 = 0.5 with a bias

of 2.4. When w1 ≥ 0.5, the LP solution in node 4 assigns x∗1 = 1.0 with a bias of 2.15.

We now analyze get-sens-single-state. Suppose w1 = 0.25, β = 0.01. Node 2 is the best

integral node, while node 5 is the best fractional node. At w′1 = 0.5 , event 4 is triggered as

the LP solution in node 4 changes to a solution with x∗1 = 1.0. Note that at w′1 = w′1β = 0.5,

at node 4, the value of the previous LP solution is equal to the value of the new LP solution

(0.5 ·0.5 + 2.4 = 0.5 + 2.15). No further updates are needed for s′ as node 4’s value (2.65) is

still less than node 5’s. Though the LP solution in node 4 has changed, the decision remains

to select node 5 and continue searching. The same branch variable will be selected because

the LP solution for node 5 has not changed. As a result, get-sens-single-state will continue,

setting w1 temp to 0.5. Assuming that no LP solutions change, the next event triggered will

be event 1 at value w′1 = w′1β = 0.55. At this value, node 4 will overtake node 5 as the

best fractional node (the value of the LP solution in node 4 reaches 2.7 while the value of

the LP solution in node 5 stays at 2.7 and we assume lexicographic tie-breaking by node

index). The decision associated with s′ will now change because node 4 will be selected as

the next node to be explored. get-sens-single-state will return 0.55.

The example demonstrates the key ideas of get-sens-single-state. Not all events will lead

to changes in the decision, but we need to capture all of these events to make sure that s′

13There is a technical detail here due to ties. If w′1 = w′1β , then we have a point where the values of two
nodes cross, and values will be tied at this point. As a result, dec(s′) at w′1 may differ from dec(s′) for w′1 + ε
for a small ε. In these cases, we need to make sure to check the decision at the next multiple of β greater
than w′1 even if events 1-4 do not occur before then.
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reflects the true state if agent 1 were to report these higher values. In particular, event 4 is

very important because it makes sure that the coefficient and bias values are valid for the

range of agent 1’s values being considered.

8.6.4 Implementing get-sens-single-state

The only problem that remains is how to compute the values when events 1-4 occur. For

event 4, we saw in Section 8.6.1 how to detect the next highest value at which the LP

solution changes. Because we detect event 4, we can assume that the coefficients and biases

stored in s′ are correct. For events 1 and 2, we need to make pairwise comparisons between

the current best node and all other fractional and integral nodes respectively. For event 3,

we need to compare the best fractional node against the best integral node. Events 1-3 then

reduce to computing when the values of two nodes cross, given their coefficients and biases.

If c1, b1, c2, b2 give the coefficients and biases of two nodes, we simply solve the following

equation for the crossing value w∗1 : c1w
∗
1 + b1 = c2w

∗
1 + b2 ⇒ w∗1 = (b2 − b1)/(c1 − c2).

8.6.5 Hot Restart and Inference

Hot Restart

With get-sens-single-state, we can now fully instantiate get-sensitivity and optimized-is-

deallocated-at-higher-values. To check whether an agent becomes deallocated, take the min-

imum next value returned by calls to get-sens-single-state from every state in the BnB

search and re-run BnB search with the agent’s value updated to the minimum next value.

This procedure may already outperform brute force sensitivity because we may skip over

many higher multiples of β that would not have changed any search decision.

However, we can further improve performance with the following optimization. Suppose

that the minimal next value w′1 returned by all the calls to get-sens-single-state across

all decisions made in the search occurs at step 1000 in the search. This implies that the

decisions at steps 1 through 999 would not have changed if agent 1’s value is updated to

w′1. As a result, we need not re-run all these steps of the search. We can save the state

after step 999 and rerun the search from this point. This inspires the following modified

procedure for get-sensitivity.

Let w1 min represent the lowest next-highest value returned by any call to get-sens-

single-state thus far in the search. Whenever a search decision is made, get-sens-single-state

is called. If the next value returned is weakly greater than w1 min, then ignore it (the search
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Figure 8.3: Progression of optimized-is-deallocated-at-higher-values.

decision would have changed earlier in the search). If the next value returned is less than

w1 min, then reduce w1 min to this value, and take a snapshot of the search state. Push this

snapshot, along with w1 min, onto a list of search states from which to re-run. We refer to

this as hot restart.

Figure 8.3 gives a way to view how this version of optimized-is-deallocated-at-higher-

values proceeds. Each stack in the diagram represents the search states from which the

search needs to be re-run based on current knowledge about the search, along with their

starting steps and the associated sensitivity value for agent 1 in that state. Below each

stack we give the step of the actual search, along with the current value (w1 temp) for agent

1 and the current minimum next value (w1 min) to which sensitivity checking will jump

once the current search is complete. w1 min will always equal the value stored in the top

search state in the stack. As we proceed from left to right, we see that we might add search

states to the stack. This occurs if get-sens-single-state returns a next value that is lower

than w1 min. Once we have run a search state to completion, we process the next search

state in the stack, running get-sensitivity starting at the indicated step and jumping agent

1’s value w1 temp forward to the stored value. This is possible because we take a snapshot

of the search state whenever we add a search state to the stack. The stack will expand and

shrink, but the current agent value w1 temp will monotonically increase, and eventually, we

will have processed all search states in the stack and completed sensitivity analysis for the

agent.

Inference: Allowing Early-Stopping

Until this point, we are still actually running the search to completion (even though hot

restart lets us start low in the tree) for all higher values that trigger a sensitivity check,
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even though we only use the allocation to check whether the sensitivity agent remains in

the allocation. This is all we care about: we don’t need the full details of the allocation!

Leveraging this insight, we devise early stopping rules in the sensitivity checker. If we

are sure that the search will terminate with a solution that contains agent 1, we do not need

to run the search to completion (this is what we mean by “inference”). The main idea is

to upper-bound the value of any solution where agent 1 is not allocated, and then use this

upper bound to argue that the search will always terminate with a solution that allocates

agent 1. One such upper bound is to take the max over the LP relaxations of all nodes in

the current state, with the extra constraint x1 = 0. This bound can be carried over from

previous search states as well. Indeed, if the current best integral node allocates agent 1

and has value greater than these bounds, search can be terminated early. This is formalized

in the following theorem.

Let s be the current search state. For a node k, let k(x1) indicate the value x∗1 in the

solution stored at k. Let LPxi=0(k) be the value of LP relaxation at a given node, with the

extra constraint that variable xi = 0.

Theorem 8.6.2. Suppose that we are checking sensitivity for agent 1 at value w′1 and in

a search state s. Suppose that the current best integral node in s allocates agent 1 and has

value w.

1. Let

w′ = max
k:k∈F (s)

LPx1=0(k).

If w′ < w, then the search starting from s will result in a solution that allocates agent

1.

2. Let s′ be any search state that has been run to completion (i.e. all fractional nodes

have been pruned by some leaf node). Let

w′ = max
k:k∈F (s′)

LPx1=0(k),

w′′ = max
k:k∈I(s′),k(x1)=0

val(k).

If max(w′, w′′) < w, then the search starting from s will result in a solution that

allocates agent 1.

Proof. The main idea of the proof is to show that w′ in the first case and max(w′, w′′) in

the second case are valid upper bounds on the value of any solution with x1 = 0. Once this
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is shown, we know that the search starting in s will not find any solutions that set agent 1

to 0 and have better solution value than the current best solution, which sets agent 1 to 1.

In the first case, all leaf nodes with x1 = 0 have value less than w and will not be

selected. The children of the fractional nodes may yield a solution with x1 = 0, but the

value of these solutions is upper bounded by the value of the relaxation, LPx1=0(k).

In the second case, the key observation is that the value of a solution with x1 = 0 does

not change as agent 1’s value increases. As a result, we can use upper bounds on solutions

with x1 = 0 from other search states s′ that have already been run to completion. w′ gives

the upper bound across fractional nodes in s′, while w′′ gives the upper bound across leaf

nodes with x1 = 0. Any solution with x1 = 0 is either a leaf node with x1 = 0 or a child of

an fractional node, and therefore max(w′, w′′) is a valid upper bound on the value of any

solution with x1 = 0.

At the cost of some extra computation (computing LP relaxations with the x1 = 0),

this allows us to stop searching once it is clear agent 1 will be allocated in any solution

returned.

8.6.6 Linear Program Caching, Parallelization

Linear Program Caching

The most expensive part of BnB search and sensitivity analysis is solving the LP relaxations

for nodes. However, a key insight is that in the course of sensitivity analysis, we may revisit

nodes with the same integer partial assignment over and over, with the only difference being

that w1 might be set to a higher value. As a result, when running get-sensitivity, we cache

LP solutions, along with the upper bounds for when the LP solutions change (as in Section

8.6.1). When we need to solve an LP in a later BnB search with value w′1, we first make

a lookup in this cache to see if there is an already computed LP solution whose upper

bound is greater than w′1 and reuse the previously computed solution if one is found. LP

solves dominate the runtime for sensitivity analysis, and this greatly decreases the number

of solves needed for sensitivity analysis (see Section 8.8.2).

An optimization related to LP caching is that of using optimal solutions from parent

nodes in the BnB search tree to “hot start” the LP solve process for child nodes during

sensitivity analysis. We did implement this, but we did not see substantial gains so we

abandoned it for simplicity and to keep our memory footprint small. It would be of interest

to pursue this direction further in future work.
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Figure 8.4: The allocation function for different agents on a decay instance with 1000 agents
and 100 items (see Section 9.7). Agents were chosen because of non-monotonicities in the
BnB search for these agents.

Parallelization

While we have to perform sensitivity analysis for every allocated agent, the sensitivity

analysis for each agent is completely independent of the sensitivity analysis for other agents.

As a result, sensitivity checking can be perfectly parallelized. In our experimental results,

we report this parallelized runtime, which is the time required to solve the initial search

plus the maximum runtime for optimized-is-deallocated-at-higher-values across all allocated

agents.

8.7 Making Branch-and-Bound Search more Monotone

In order for the allocation computed by discretized-ironed-alloc to have good welfare prop-

erties, we need the underlying heuristic algorithm to be monotone for many agents on many

instances. If not, then many agents will be deallocated, and even if the original, un-ironed
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solution has high welfare, the ironed solution will not. Recognizing this, we introduce two

methods for making BnB more monotone.

8.7.1 Input Discretization

As discussed in Section 8.4, one way to decrease the number of deallocations is to increase

the grid size β. With discretization, an agent remains allocated as long as the heuristic

allocation function continues to allocate the agent for all higher multiples of β. Figure 8.7

shows the allocation curve for several agents in one of our experimental instances. The

figure is generated using β = 0.01. Many of the non-monotonicities in the curves survive

for a small range of values. Increasing β allows these small ranges to be skipped over and

increases monotonicity. But there is a tradeoff with solution quality because the input is

approximated.

8.7.2 Fractional Bucketing

We also introduce the notion of “bucketing” when selecting which variable to branch at a

node. The classic variable selection algorithm in BnB search is to take the most fractional

variable; i.e., the variable with value closest to 0.5. But this is very sensitive to small changes

in the LP solution, and can result in many search decision changes even if the selected node

remains the same since the branch variable may change. To remedy this, we experiment

with bucketing variables based on their fractionality and choosing the lexicographically

first variable in the smallest bucket. For example, consider an LP solution {x1 = 0.41, x2 =

0.48, x3 = 0.7, x4 = 0.51}. The most fractional variable without any bucketing is x4. But

with a bucket size of 0.2, x1, x2, x4 are all placed in the same bucket (the bucket representing

values in [0.4, 0.6]), and we break ties on x1. In the extreme case of a bucket size of 1.0,

all variables belong to the same bucket, but we make the exception that we don’t select

variables that are already set to 0.0 or 1.0; therefore, a bucket size of 1.0 amounts to selecting

the first variable that is set to a non-integer value. Larger bucket sizes make the underlying

search more monotone since the decisions in the search are less sensitive to small changes

in the LP solutions, and we see this in our experimental results.

8.8 Experimental Results

In this section, we present experimental results based on an implementation of monotone

BnB search for known single-minded CAs. Our experiments are performed using a custom
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Java implementation of BnB search, using CPLEX as our LP solver. The experiments

are run on a machine with two 8 core 2.4GHz Intel Xeon processors. We implement the

optimized version of get-sensitivity, as well as hot restart, inference / early-stopping, and

LP caching.

We generate agent valuations using the decay (L4) distribution with parameter α = 0.75

and a number of agents equal to ten times the number of items as this has been shown to

generate hard winner determination instances [Leyton-Brown et al., 2000, Sandholm et al.,

2005]. In our experiments, we fix node selection to choose the deepest node if no integral

node has been found, and the node with highest value otherwise. For variable selection,

we select the most fractional variable with different bucket sizes, as described in Section

8.7.2. For our discretization procedure, we first normalize values to [0, 1] by dividing by a

maximum value. For the L4 distribution with α = 0.75, 30 is a reasonable maximum value.

Values larger than 30 are normalized to 1.0.

8.8.1 Welfare Analysis

We generate 50 random instances from the decay distribution with 300 agents, 30 items,

and α = 0.75. We vary γ, β, and the variable selection algorithm. For variable selection,

the bucket sizes that we consider are no bucket size, 0.2 and 1.0. For this dataset, running

to full optimality is very fast (on the order of seconds), so these instances do not represent

a domain on which we would want to use our ironing procedure. Rather, they are a way to

examine the impact of search parameterization on the quality of the ironed solution.

Figure 8.5 presents the welfare results. Each graph is for a particular γ ∈ {0.9, 0.95, 0.99}

and plots average welfare of the solution across the 50 instances (relative to the optimal)

as β increases (i.e., more discretization.) greedy-LOS indicates the welfare of the greedy

algorithm from Lehmann et al. [2002], while greedy-5 indicates the welfare of the algorithm

from Mu’alem and Nisan [2008] with a parameter choice of 5. Beyond this value, the run-

time becomes prohibitive without much improvement in welfare (Figure 8.6). The orig line

indicates the original welfare of the solution, i.e. welfare before we check whether agents

need to be deallocated. The iron line indicates the ironed welfare, i.e. welfare after agents

have been deallocated. To make the plots clearer, we plot the original welfare for the most

fractional variable without bucketing. The original welfare is similar for the other bucketing

strategies. Lines with b followed by a floating point number indicate use of bucket sizes.

For instance, b0.2 -iron plots the ironed welfare for bucket size 0.2.
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Figure 8.5: Average welfare (compared to the optimal) for different search parameterizations
on small instances.
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Figure 8.6: Welfare and runtime for different choices of k for MAX(Exhaustive(k), Gk)
algorithm in Mu’alem and Nisan [2008]. Exhaustive(k) is exhaustive search over allocations
of size k, and Gk is a greedy algorithm that ranks using the compact ranking with parameter
k. In the compact ranking with parameter k, a bundle gets a score equal to its value if
its size is at most

√
m/k and 0 otherwise. This algorithm gives an O(ε

√
m) worst-case

approximation to the optimal social welfare, where the choice of k depends on ε.

Grid size (β)

Figure 8.5 illustrates the effect of the grid size, β, on the welfare of the ironing algorithm.

If β is too small, then there are many deallocations, and ironed welfare suffers. If β is

too large, then optimizing against the discretized values gives a poor approximation to the

original problem, and welfare suffers. There is a peak grid size that is optimal.

Most fractional bucket size

Figure 8.5 confirms that fractional-variable bucketing has a positive effect on the monotone

BnB. The curves with the highest ironed welfare are those with bucket size 1.0.

Optimality tolerance (γ)

The original welfare is quite similar across different values of γ. We also see that the welfare

of the ironed solution improves as γ increases. In particular, for γ > 0.95, an optimally

parameterized ironing algorithm does better than the greedy algorithms. (greedy-LOS and

greedy-5 do not have a grid size, so they appear as a constant line.) This occurs with

γ = 0.95 despite monotonicity failure and agent deallocations. The good performance

is not because the underlying “orig” algorithm is identifying optimal solutions (and thus
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Figure 8.8: Histogram of the steps at which search decisions change, for different change
types. γ = 0.95, β = 0.01, averaged over all bucket sizes and datasets. 300 agents, 30 items.

monotone). Averaged across all bucket sizes, for β = 0.01 and γ = 0.9, 34% of the original

solutions are optimal (with respect to the particular grid size). This increases to 45% and

92% for γ = 0.95 and γ = 0.99.

8.8.2 Effectiveness of Optimized Sensitivity

Comparison to brute force

We compare the brute force approach with the optimized sensitivity approach. We label

the sensitivity checking procedure for BnB the “optimized” algorithm. Figure 8.7 plots the

runtime and number of LPs solved across different grid sizes for γ = 0.95 and no bucket

size. The graphs for different bucket sizes look very similar so for clarity, we only display

no bucket size.
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It shows that runtime is highly correlated with the number of LP solves. The optimized

ironing procedure yields the biggest gains when the grid size is small, though for all grid

sizes, the optimized procedure does have better runtime and a smaller number of calls to

the LP solver. Brute force checks every higher multiple of the β and thus performs work

linear in 1 / β. Even for large grid sizes, where the brute force procedure only needs to

make a small number of calls to check sensitivity, the optimized procedure appears to match

or slightly improve on its performance. This is likely due to the fact that the optimized

procedure also leverages larger β in that it rounds to the next highest multiple of β when

checking sensitivity. We did not implement LP caching for the brute force trials, though,

which could potentially decrease runtime and number of LP solves.

LP caching

We define an LP lookup as any time during sensitivity checking when we request the LP

solution at a given value for the sensitivity agent. LP caching allows us to reuse previously

computed solutions. With γ = 0.95, β = 0.01, and grouping all bucket sizes together, the

average cache hit rate for LP lookups is around 30%.

8.8.3 Analysis of Search Changes

We also study the particular types of decision changes that take place during sensitivity

checking. For γ = 0.95, β = 0.01, most decision changes are branch variable changes rather

than select node changes. With no bucket size, there is an average of 27.1 branch variable

changes and 3.8 select node changes. For bucket size 1.0, these numbers decrease to 15.4 and

8.0, indicating that larger bucket sizes do decrease the number of branch variable changes.

Figure 8.8 examines when these changes occur, and we see that branch variable changes

tend to occur in the earlier steps of the search while select node changes are more evenly

distributed.

8.8.4 Hard Instances

In the previous section, the instances we test are easily run to optimality by BnB in a few

seconds. However, they provide useful insights into the parameterizations of our framework

and show that our algorithm can outperform the welfare of greedy algorithms. In this

section, we examine instances where optimal BnB is more computationally intensive and

takes minutes to run to completion. We use decay instances with 1000 agents and 100 items,

α = 0.75. We test different parameters, but in Tables 8.1 and 8.2, we focus on the best
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Table 8.1: Welfare (% of optimal) on hard instances.

greedy (LOS) orig-0.025-98-1.0 iron-0.025-98-1.0

0.94 0.96 0.96 (+0.02)
0.89 0.93 0.93 (+0.04)
0.92 0.93 0.93 (+0.00)
0.94 0.93 0.93 (-0.01)
0.87 0.92 0.92 (+0.05)
0.91 0.93 0.93 (+0.02)
0.89 0.93 0.92 (+0.03)
0.91 0.91 0.91 (+0.00)
0.88 0.93 0.93 (+0.04)
0.92 0.93 0.93 (+0.01)

Table 8.2: Runtime (minutes) on hard instances

optimal 0.025-98-1.0 (t) 0.025-98-1.0 (p)

4.55 0.41 0.03
0.24 0.02 0.00
1.17 0.14 0.01
0.53 0.10 0.01
1.94 0.14 0.01
0.78 0.02 0.00
2.25 0.43 0.03
0.47 0.39 0.02
1.26 2.11 0.14
0.20 0.17 0.01

performing parameters β = 0.025, γ = 0.98 with bucket size 1.0. For welfare, orig indicates

the pre-ironed welfare, while iron indicates the welfare after deallocations. For runtime,

t indicates the total runtime for monotone BnB, while p indicates the fully parallelized

runtime discussed in Section 8.6.6.

From Table 8.1, we see that the welfare produced is better than greedy on these hard

instances, and also that few agents are deallocated as the ironed welfare is close to the

original welfare. We only report greedy-LOS since it outperforms parameterizations of

greedy-k for values of k with runtimes comparable to monotone BnB. Table 8.2 gives the

runtime for optimal BnB and the total and parallelized runtime for monotone BnB. Running

to optimality tends to take more time than monotone BnB, but there are exceptions. In

addition, the fully parallelized runtime (Section 8.6.6) for our algorithm is better than

optimal BnB. We also note that to maintain truthfulness with optimal BnB we must be

able to run every instance to completion, so we care about the long tail of the runtime

distribution. With monotone BnB, the search itself is fast because we run to an optimality
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tolerance, and sensitivity checking for a single agent is not overly expensive. The expense

comes in having to check every allocated agent, and as we have mentioned, this can be

parallelized. In this sense, we can reliably decrease runtime for monotone BnB with more

computational resources, in contrast with the scalability that would be offered by state-of-

the-art parallel Branch-and-Bound solvers.

8.9 Summary and Future Work

We introduce a method for monotone BnB search by performing automated sensitivity

analysis in regard to changes in the outcome of search in response to changes in objective

value coefficients. In application to known single-minded CAs, the experimental results

demonstrate higher decision quality compared with greedy algorithms when coupled with

an optimality tolerance γ < 1, and thus when the algorithm is not simply identifying

the optimal allocation. We believe the results in regard to the scalability of sensitivity

checking of BnB search are promising, and given the generality of the approach, hope

to uncover additional optimizations. Possible areas for further improvement are additional

inferential approaches that allow for short-circuiting, as well as additional ways to encourage

monotonicity. We may also be able to leverage the fact that LP value, as a function of a

specific agent’s value, is convex.

8.9.1 Future work

1. Basic to our approach is the idea of performing sensitivity analysis for a given input

and adjusting the algorithm on that input so that the algorithm is monotone over the

entire input space. Probably the most intriguing, and challenging, direction for future

work is to understand whether this local adjustment is possible in achieving appro-

priate notions of monotonicity in problems of multi-dimensional mechanism design.

2. Extend monotone BnB search to other single-dimensional mechanism design problems,

including non-downward closed environments (e.g., scheduling, where correcting a fail-

ure of monotonicity could involve introducing additional “dummy” jobs for a machine

to process).

3. Explore the idea of sensitivity and computational ironing on other methods of heuristic

search, for example local search.

4. Extend monotone BnB search to handle cut generation, and expose a parameterized
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search framework to the methods of empirical algorithm design, to allow for automated

configuration [Hutter et al., 2010].

5. Consider alternative methods to “correct” an allocation when a failure of monotonicity

is identified, for example introducing randomization to allow for smoother notions of

monotonicity.

6. Related to this, for domains such as scheduling where downward closed does not

hold, consider output ironing by checking the sensitivity of the allocation of jobs to

a machine for higher costs, and if we find more work at a counter-factual, allocating

the present agent more work by using dummy jobs (that is, fix by adding work rather

than removing resources.).
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Chapter 9

Learning Payment Rules

We have thus far limited our discussion of mechanism design to incentive compatible mech-

anisms. That is, the goal is to identify a mechanism that satisfies the incentive constraints

and optimizes a given design objective such as welfare or revenue. Chapter 6 concerns such

a mechanism design problem in the context of cake cutting and Chapter 8 examines this

problem for known single-minded CAs.

There are, however, significant challenges associated with this classical approach. First,

it can be analytically cumbersome to derive well-performing DSIC or BIC mechanisms for

domains that are multi-dimensional, in the sense that each agent’s private information is

described through more than a single number. An example of a multi-dimensional domain

is a multi-minded CA. Multi-minded CAs generalized single-minded CAs in that agents

can have up to k target bundles. Single-minded CAs are also technically multi-dimensional

as agent preferences are described by their target bundle and their value for that bundle,

but multi-minded CAs offer a clearer case and will be studied in this chapter. Though

we can use the VCG mechanism to optimize welfare for multi-minded CAs, there are few

results for working with other objective functions. Additionally, if we impose computational

constraints then we have few positive results. The positive results for single-minded CAs

discussed in Section 7.4 do not naturally extend to multi-minded CAs.

Second, incentive-compatibility can be costly, in that adopting it as a hard constraint

can preclude mechanisms with other desirable properties. For example, imposing DSIC

necessarily leads to poor revenue, vulnerability to collusion, and vulnerability to false-

name bidding in CAs where valuations exhibit complementarities among items [Ausubel and

Milgrom, 2006, Rastegari et al., 2011]. Of course, by the revelation principle (Section 2.2.2)

this weakness should be ascribed to insisting on mechanisms that are analyzed in equilibrium

151



CHAPTER 9 LEARNING PAYMENT RULES

(dominant-strategy or otherwise) and not to the imposition of incentive constraints per se.

9.1 Our Results

In the face of these difficulties, we adopt statistical machine learning to automatically infer

mechanisms with good incentive properties. Rather than imposing incentive-compatibility

as a hard constraint, we start from a given outcome rule, typically expressed as an algorithm,

and then use machine learning techniques to identify a payment rule that minimizes agents’

expected ex post regret. The ex post regret (or just regret where it causes no confusion) of an

agent for truthful reporting in a given instance is the maximum amount by which its utility

could increase through a misreport holding constant the reports of others. The expected ex

post regret is the average ex post regret over all agents and all preference types, calculated

with respect to a distribution on types.

While a mechanism with zero regret for all agents on all inputs is strategyproof, we are

especially interested in settings where the outcome rule does not allow for exact incentive-

compatibility. In this sense, the approach adopted in this paper is not an equilibrium

approach. But, there are two important comments to make in this regard.

First, we insist that an agent’s payment, conditioned on an outcome, is independent

of its report. The only way an agent can improve its utility is by changing its report in

a way that changes the outcome. Generically, this ensures mechanisms that provide zero

marginal benefit to deviation from truthful reports. This property is seen in practice in

the generalized second-price auction (GSP) used for sponsored search. This local stability

property has been emphasized by Erdil and Klemperer [2010] in the context of CA design.

In addition, a bound on expected regret implies a bound of the form “interim regret is

at most ε with probability at least 1-δ,” where interim regret is the ex post regret to an

agent for a particular type, averaged over all types of other agents. Based on this, support

for expected regret can be developed through a simple model of costly manipulation, where

agents face some cost for trying to engage in strategic behavior, and choose not to engage in

manipulation if this cost is greater than the ε-bound on interim regret. In this case, a 1− δ

fraction of the interim agents will have no incentive to manipulate, though there remains a

δ fraction for whom the benefit to manipulation may be greater than ε.

Our approach is applicable to domains that are multi-dimensional, and for domains

for which the computational efficiency of outcome rules is a concern. In particular, we

are interested in domains for which incentive-compatibility is unavailable or undesirable,
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given the implications imposed on outcome rules (e.g., requiring that outcome rules have

undesirable economic or computational properties.) Because the payment rule is learned

on the basis of a given outcome rule, the framework is most meaningful in domains where

revenue considerations are secondary to properties of outcome rules.

The essential insight that underpins our approach is that the payment rule of a strat-

egyproof mechanism can be thought of as a classifier for predicting the outcome. In par-

ticular, the payment rule implies a price to each agent for each outcome, and the selected

outcome in a mechanism must simultaneously maximize the reported value minus price for

every agent. The discriminant function of a classifier provides a score to different outcomes

for a given input, with the outcome with the highest score corresponding to the prediction of

the classifier. By limiting classifiers to discriminant functions with this “value-minus-price”

structure, where the price can be an arbitrary function of the outcome and the reports of

other agents, we obtain a remarkably direct connection between multi-class classification

and mechanism design.

For an appropriate loss function, the discriminant function of a classifier that minimizes

generalization error over a hypothesis class has a corresponding payment rule that minimizes

expected ex post regret among all payment rules corresponding to classifiers in this class.

Conveniently, an appropriate method exists for multi-class classification with large outcome

spaces that supports the specific structure of the discriminant function, namely the method

of structural support vector machines [Tsochantaridis et al., 2005, Joachims et al., 2009].

Just like standard support vector machines, this also allows us to adopt non-linear kernels,

thus enabling discriminant functions and thus price functions that depend in a non-linear

way on the outcome and the reported types of agents.

The computational cost associated with our approach occurs offline during training,

which is the process of learning a payment rule for a given outcome rule. The learned

payment rules are fast to evaluate at run-time, i.e. in the context of a deployed mechanism,

and have a succinct representation through the standard support-vector machine approach.

A challenge in structural support vector machines is to handle the large number of possible

outcomes (i.e., labels in the classification problem) during training.

One way to address this in our context is to work with valuation functions for which

the training problem can be formulated as a succinct, convex optimization problem. In

particular, we adopt k-wise dependent valuations Conitzer et al. [2005] and leverage a

connection with maximum a posteriori (MAP) assignment for Markov networks to scale-up

our framework in application to CAs.
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In illustrating the framework, we focus on three situations where strategyproof payment

rules are not available:

(i) multi-minded combinatorial auctions, in which each agent is interested in a constant

number of bundles, where winner determination is provided through a greedy allocation

rule,

(ii) an assignment problem with multiple distinct items and agents with unit-demand

valuations and an egalitarian outcome rule, i.e., an outcome rule that maximizes the mini-

mum value of any agent, and

(iii) combinatorial auctions with k-wise dependent valuations, in which each agent’s

valuation has a graphical representation and winner determination is provided through a

greedy allocation rule.

The experimental results demonstrate low expected regret even when the 0/1 classifi-

cation accuracy is only moderately good, and better regret properties than those obtained

through the simple VCG-based payment rules that we adopt as a baseline. In addition,

we give special consideration to the failure of ex post individual rationality, and introduce

methods to bias the classifier to avoid these kinds of errors and also post hoc methods to

adjust trained payments, or even allocations, to reduce or eliminate them.

For setting (i), we find that our learned rules perform similarly to VCG-based rules.

In setting (ii), our learned rules perform significantly better than VCG-based rules, which

is understandable given that the egalitarian objective is quite different from the welfare

maximizing objectives to which the VCG idea is designed. In setting (iii), our learned

rules provide better regret properties than VCG-based rules for large numbers of items,

and allow us to trade-off between IR violation and regret more effectively than VCG-based

rules. While our experiments for CAs in setting (i) are limited to only five items, we are able

to scale to instances with tens of items in setting (iii) as our training problem is polynomial

in the number of items even though we are running a combinatorial auction.

9.2 Related Work

Our work is related to computational approaches to mechanism design discussed in Section

1.2.3. The main difference between our approach and the automated mechanism design

(AMD) approach [Conitzer and Sandholm, 2002, Guo and Conitzer, 2010b, Cai et al.,

2012a] is that we assume that we are provided an outcome rule and seek just the payment

rule, whereas AMD approaches optimize over both rules simultaneously. These approaches
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seem limited to domains in which the outcome rule can be succinctly represented, which

likely is not the case for the kinds of combinatorial auction problems that we consider in

this chapter.

Our work is also related to the approaches discussed in Section 1.2.3 that convert ap-

proximation algorithms into truthful mechanisms for different notions of truthfulness. A

key difference between our work and this literature is that we do not enforce conditions

on the provided outcome rule whereas this literature is focused on welfare maximization

settings. Additionally, the target of minimizing expected ex post regret and the imposition

of agent-independent prices make the incentive properties of mechanisms designed through

our approach incomparable to mechanisms that are truthful in expectation or BIC. In com-

parison to mechanisms that are truthful in expectation which are necessarily randomized,

our mechanisms are deterministic.

In comparison to BIC, ex post regret is stronger in that BIC assumes that an agent can

misreport to a single other type for all type reports of other agents while ex post regret looks

at each possible realization of types for other agents and allows the agent to make a different

report for each realization. On the other hand, ε expected ex post regret may not guarantee

ε-BIC since we take the expectation over an agent’s own type, so the interim regret could

be larger than ε for certain realizations of an agent’s type. However, as mentioned earlier,

given the expected ex post regret we can derive a bound of the form “interim regret is at

most ε′ with probability at least 1-δ.”

Finally, in determining the outcome and payments for a given instance, the approach

of Bei and Huang [2011] and Hartline et al. [2011] evaluates the outcome rule on a number

of randomly perturbed replicas of that instance that is polynomial in the number of agents,

the desired approximation ratio, and a notion capturing the complexity of the type spaces.

When type spaces are large, as in the case of CAs, this may become intractable. By

contrast, our approach evaluates the outcome rule and the trained payment rule once for a

given instance and incurs additional computational costs only during training.

The work of Lahaie [2009, 2010] precedes our work in adopting a kernel-based approach

for combinatorial auctions, but focuses not on learning a payment rule for a given outcome

rule but rather on solving the winner determination and pricing problem for a given instance

of a combinatorial auction. Lahaie introduces the use of kernel methods to compactly

represent non-linear price functions, which is also present in our work, but obtains incentive

properties more indirectly through a connection between regularization and price sensitivity.

The main distinction between the two lines of work is that Lahaie focuses on the design of
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scalable methods for clearing and pricing approximately welfare-maximizing combinatorial

auctions, while we advance a framework for the automated design of payment rules that

provide good incentive properties for a given outcome rule, which need not be welfare-

maximizing.

Our discussion of k-wise dependent valuations builds on valuation structure for combina-

torial auctions introduced by Conitzer et al. [2005] and Abraham et al. [2012]. Our tractable

training results rely on connections between k-wise dependent valuations and associative

Markov networks [Taskar et al., 2004].

A discussion of related work on approximate incentive compatibility, or incentive com-

patibility in the large market limit, can for example be found in the recent surveys by

Carroll [2011] and Lubin and Parkes [2012]. A fair amount of attention has been devoted

to regret-based metrics for quantifying the incentive properties of mechanisms [e.g., Parkes

et al., 2001, Day and Milgrom, 2008, Lubin, 2010, Carroll, 2011]. Pathak and Sönmez

[2010] provide a qualitative ranking of different mechanisms without payments in terms

of the number of manipulable instances. Budish [2010] introduces an asymptotic, abso-

lute design criterion regarding incentive properties in a large replica economy limit. Lubin

and Parkes [2009] provide experimental support that relates the divergence between the

payoffs in a mechanism and the payoffs in a strategyproof “reference” mechanism and the

amount by which agents deviate from truthful bidding in the Bayes-Nash equilibrium of a

mechanism.

9.3 Preliminaries

We adopt the same notation as that of Section 2.2. Specifically, we assume a mechanism

design with money setting, and assume that a mechanism is defined by a pair of functions

(g, p), where g : Θ→ Ω and p : Θ→ Rn≥0. Recall that when appropriate, gi(θ) indicates the

part of the outcome that agent i receives (e.g., the items allocated to agent i in a combinato-

rial auction). We will consider settings without externalities and outcome rules that satisfy

consumer sovereignty and reachability of the null outcome (Section 2.2.1). Theorem 2.2.10,

which gives a simple characterization of strategyproofness, is crucial for our approach as it

provides the basic insight into how to utilize the discriminant function of a classifier as a

payment rule.

We quantify the degree of strategyproofness of a mechanism in terms of ex post regret

(see Definition 2.2.2 in Section 2.2) which quantifies the maximum amount an agent can
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gain by misreporting its type.

Analogously, the ex post violation of individual rationality of agent i ∈ N in mechanism

(g, p), given true type θi ∈ Θi and reported types θ′−i ∈ Θ−i of the other agents, is

irv i(θi, θ
′
−i) = |min(ui((θi, θ

′
−i), θi), 0)|.

This quantity is zero when there is no violation of individual rationality (IR) for the

agent at this type profile, but negative when the agent’s utility is negative for the outcome

and payment.

We consider situations where type profiles θ are drawn from a distribution with prob-

ability density function, D : Θ → R, such that D(θ) ≥ 0 and
∫
θ∈ΘD(θ) = 1. Given such

a distribution, and assuming that all agents report their true types, the expected ex post

regret of agent i ∈ N in mechanism (g, p) is Eθ∼D[rgt i(θi, θ−i)].

Outcome rule g is agent symmetric if for every permutation π of agents N , and all types

θ, θ′ ∈ Θ such that θi = θ′π(i) for all i ∈ N , gi(θ) = gπ(i)(θ
′) for all i ∈ N . This specifically

requires that Θi = Θj and Ωi = Ωj for all i, j ∈ N . Similarly, type distribution D is agent

symmetric if D(θ) = D(θ′), for every permutation π of N , and all types θ, θ′ ∈ Θ such that

θi = θ′π(i) for all i ∈ N . Given agent symmetry, a price function t1 : Θ−1 × Ωi → R for

agent 1 can be used to generate the payment rule p for a mechanism (g, p), with

p(θ) =
(
t1(θ−1, g1(θ)), t1(θ−2, g2(θ)), . . . , t1(θ−n, gn(θ))

)
,

so that the expected ex post regret is the same for every agent.

We assume agent symmetry going forward, which precludes outcome rules that break

ties based on agent identity, but obviates the need to train a separate classifier for each

agent while also providing some benefits in terms of simplifying the presentation of our

results. The experimental results are not affected by this assumption because ties occur

only with negligible probability. However, our framework can handle settings where either

the outcome rule is not agent symmetric or the type distribution is not agent symmetric.

In these cases, we would need to solve a separate training problem for each agent and learn

an agent-specific payment rule.
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9.4 Payment Rules from Multi-Class Classifiers

A multi-class classifier is a function h : X → Y , where X is an input domain and Y is a

discrete output domain. One could imagine, for example, a multi-class classifier that labels

a given image as a dog, cat, or some other animal. In the context of mechanism design,

we will be interested in classifiers that take as input a type profile and output an outcome.

What distinguishes this from an outcome rule is that we will impose restrictions on the

form the classifier can take.

Classification typically assumes an underlying target function h∗ : X → Y , and the

goal is to learn a classifier h that minimizes disagreements with h∗ on an input distri-

bution DX on X, based only on a finite set of training data {(x1, y1), . . . , (x`, y`)} =

{(x1, h∗(x1)), . . . , (x`, h∗(x`))} with x1, . . . , x` drawn from DX . This may be challenging

because the amount of training data is limited, or because h is restricted to some hypothe-

sis class H with a certain simple structure, e.g., linear threshold functions. If h(x) = h∗(x)

for all x ∈ X, we say that h is a perfect classifier for h∗.

We consider classifiers that are defined in terms of a discriminant function f : X×Y →

R, such that

h(x) ∈ arg max
y∈Y

f(x, y)

for all x ∈ X. More specifically, we will be concerned with linear discriminant functions of

the form

fw(x, y) = wTψ(x, y)

for a weight vector w ∈ Rb and a feature map ψ : X × Y → Rb, where b ∈ N ∪ {∞}. The

function ψ maps input and output into an b-dimensional space, which allows non-linear

features to be expressed. In general, we allow w to have infinite dimension, while requiring

the inner product between w and ψ(x, y) to remain well-defined. Computationally, the

infinite-dimensional case is handled through kernels, as described in Section 9.5.1.

9.4.1 Mechanism Design as Classification

Given an outcome rule g and access to a distribution D over type profiles, our goal is

to design a payment rule p that gives the mechanism (g, p) the best possible incentive

properties, in the sense of expected regret.

Assuming agent symmetry, we focus on a partial outcome rule g1 : Θ→ Ω1 and train a

classifier to predict the outcome to agent 1. To train a classifier, we generate examples by
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drawing a type profile θ ∈ Θ from distribution D and applying outcome rule g to obtain

the target class g1(θ) ∈ Ω1.

We impose a special structure on the hypothesis class. A classifier hw : Θ → Ω1 is

admissible if it is defined in terms of a discriminant function fw of the form

fw(θ, o1) = w1v1(θ1, o1) + wT−1ψ(θ−1, o1)

for weights w such that w1 ∈ R>0 and w−1 ∈ Rm, and a feature map ψ : Θ−1×Ω1 → Rm for

b ∈ N∪{∞}. The first term of fw(θ, o1) only depends on the type of agent 1, and increases

in its valuation for outcome o1, while the remaining terms ignore θ1 entirely.

This restriction to admissible discriminant functions is crucial because it allows us to

directly infer agent-independent prices from the discriminant function of a trained classifier.

For this, define the associated price function of an admissible classifier hw, as

tw(θ−1, o1) = − 1

w1
wT−1ψ(θ−1, o1),

where we again focus on agent 1 for concreteness. By agent symmetry, we obtain the

mechanism (g, pw) corresponding to classifier hw, by defining payment rule,

pw(θ) =
(
tw(θ−1, g1(θ)), tw(θ−2, g2(θ)), . . . , tw(θ−n, gn(θ))

)
.

Even requiring admissibility, the hope is that appropriate choices for the feature map ψ

can produce rich function spaces, and thus ultimately useful payment rules. Moreover, this

admissibility structure can be adopted in the context of structural support vector machines,

as discussed in Section 9.5.1.

9.4.2 Example: Single-Item Auction

Before proceeding further, we illustrate the ideas developed so far in the context of a single-

item auction. In a single-item auction, the type of each agent is a single number, corre-

sponding to its value for the item, and there are two possible allocations from the point

of view of an agent: one where it receives the item, and one where it does not. Formally,

Θ = Rn and Ω1 = {0, 1} (agent 1 is allocated, or it is not).

Consider a setting with three agents and a training set:

(θ1, o1
1) = ((1, 3, 5), 0), (θ2, o2

1) = ((5, 4, 3), 1), (θ3, o3
1) = ((2, 3, 4), 0),
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and note that this training set is consistent with an optimal outcome rule, i.e., one that

assigns the item to an agent with maximum value.

Our goal is to learn an admissible classifier,

hw(θ) = arg max
o1∈{0,1}

fw(θ, o1) = arg max
o1∈{0,1}

w1v1(θ1, o1) + wT−1ψ(θ−1, o1),

that performs well on the training set. Since there are only two possible outcomes, the

outcome chosen by hw is simply the one with the larger discriminant. A classifier that is

perfect on the training data must therefore satisfy the following constraints:

w1 · 0 + wT−1ψ((3, 5), 0) > w1 · 1 + wT−1ψ((3, 5), 1),

w1 · 5 + wT−1ψ((4, 3), 1) > w1 · 0 + wT−1ψ((4, 3), 0),

w1 · 0 + wT−1ψ((3, 4), 0) > w1 · 2 + wT−1ψ((3, 4), 1).

This can for example be achieved by setting w1 = 1, and

wT−1ψ((θ2, θ3), o1) =

−max(θ2, θ3) if o1 = 1 and

0 if o1 = 0.
(9.1)

Recalling our definition of the price function as tw(θ−1, o1) = −(1/w1)wT−1ψ(θ−1, o1), we

see that this choice of w and ψ corresponds to the second-price payment rule.

In practice, we are limited to hypotheses that are linear in features ψ((θ2, θ3), o1), and

should not expect that the classifier is exact on the training data or generally on the distri-

bution of inputs. Nevertheless, we will see in Section 9.5.1 that through the use of kernels

we can adopt choices of ψ that allow for rich, non-linear discriminant functions.

9.4.3 Perfect Classifiers and Implementable Outcome Rules

We now formally establish a connection between mechanism design and multi-class classi-

fication.

Theorem 9.4.1. Let (g, p) be a strategyproof mechanism with an agent symmetric outcome

rule g, and let t1 be the corresponding price function. Then, a perfect admissible classifier

hw for partial outcome rule g1 exists if arg maxo1∈Ω1 (v1(θ1, o1)− t1(θ−1, o1))) is unique for

every type profile θ.

Proof. By the first characterization of strategyproof mechanisms, g must select an outcome
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that maximizes the utility of agent 1 at the current prices, i.e.,

g1(θ) ∈ arg max
o1∈Ω1

(v1(θi, o1)− t1(θ−1, o1)).

Consider the admissible discriminant f(1,1)(θ, o1) = v1(θ1, o1) − t1(θ−1, o1), which uses the

price function t1 as its feature map. Clearly, the corresponding classifier h(1,1) maximizes

the same quantity as g1, and the two must agree if there is a unique maximizer.

The relationship also works in the opposite direction: a perfect, admissible classifier hw

for outcome rule g can be used to construct a payment rule that turns g into a strategyproof

mechanism.

Theorem 9.4.2. Let g be an agent symmetric outcome rule, hw : Θ → Ω1 an admissible

classifier, and pw the payment rule corresponding to hw. If hw is a perfect classifier for the

partial outcome rule g1, then mechanism (g, pw) is strategyproof.

We prove this result by expressing the regret of an agent in mechanism (g, pw) in terms

of the discriminant function fw. Let Ωi(θ−i) ⊆ Ωi denote the set of partial outcomes for

agent i that can be obtained under g given reported types θ−i from all agents but i, keeping

the dependence on g silent for notational simplicity.

Lemma 9.4.3. Suppose that agent 1 has type θ1 and that the other agents report types θ−1.

Then the regret of agent 1 for bidding truthfully in mechanism (g, pw) is

1

w1

(
max

o1∈Ω(θ−1)
fw(θ, o1)− fw(θ, g1(θ))

)
.

Proof. We have

rgt1(θ) = max
θ′1∈Θ1

(
v1(θ1, g1(θ′1, θ−1))− pw,1(θ′1, θ−1)

)
−
(
v1(θ1, g1(θ))− pw,1(θ)

)
= max

o1∈Ω1(θ−1)

(
v1(θ1, o1)− tw(θ−1, o1)

)
−
(
v1(θ1, g1(θ))− tw(θ−1, g1(θ))

)
= max

o1∈Ω1(θ−1)

(
v1(θ1, o1) +

1

w1
wT−1ψ(θ−1, o1)

)
−
(
v1(θ1, g1(θ)) +

1

w1
wT−1ψ(θ−1, g1(θ))

)
=

1

w1

(
max

o1∈Ω1(θ−1)
fw(θ, o1)− fw(θ, g1(θ))

)
.

Proof of Theorem 9.4.2. If hw is a perfect classifier, then the discriminant function fw sat-

isfies arg maxo1∈Ω1 fw(θ, o1) = g1(θ) for every θ ∈ Θ. Since g1(θ) ∈ Ω1(θ−1), we thus have
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that maxo1∈Ω1(θ−1) fw(θ, o1) = fw(θ, g1(θ)). By Lemma 9.4.3, the regret of agent 1 for bid-

ding truthfully in mechanism (g, pw) is always zero, which means that the mechanism is

strategyproof.

It bears emphasis that classifier hw is only used to derive the payment rule pw, while

the outcome is still selected according to g.

We might ask whether classifier hw could be used to obtain an agent symmetric outcome

rule gw, and, since hw is a perfect classifier for itself, a strategyproof mechanism (gw, pw).

In particular, for each agent i, the outcome rule gw would be defined to select the outcome

o∗i that maximizes, fw(θ, oi) = wivi(θi, oi) + wT−iψ(θ−i, oi). But the problem is that this

need not be feasible: there need not be a set of outcomes, o∗ = (o∗1, . . . , o
∗
n), such that this

outcome is itself feasible. For example, in the context of an auction, the outcome rule gw

implied by the trained classifier might seek to give the same item to the more than one

agent.

The mechanism that we adopt, namely (g, pw), has in some sense the opposite problem—

it is guaranteed to be feasible because outcome rule g is feasible, but is only strategyproof if

hw is a perfect classifier for g. While the learned payment rule, pw, always satisfies the agent-

independent property (2.1), the agent-maximizing property (2.2) (the second requirement

for strategyproofness) is violated when hw(θ) 6= g1(θ).

9.4.4 Approximate Classification and Approximate Strategyproofness

A perfect admissible classifier for outcome rule g provides a payment rule for a strategyproof

mechanism. We now show that this result extends gracefully to situations where no such

payment rule is available, by relating the expected ex post regret of a mechanism (g, p) to

a measure of the generalization error of a classifier for outcome rule g.

Fix a feature map ψ, and denote by Hψ the space of all admissible classifiers with this

feature map. The discriminant loss of a classifier hw ∈ Hψ with respect to a type profile θ

and an outcome o1 ∈ Ω1 is given by,

∆w(o1, θ) =
1

w1

(
fw(θ, hw(θ))− fw(θ, o1)

)
.

Intuitively the discriminant loss measures how far, in terms of the normalized discriminant,

hw is from predicting the correct outcome for type profile θ, assuming the correct outcome

is o1. Note that ∆(o1, θ) ≥ 0 for all o1 ∈ Ω1 and θ ∈ Θ, and ∆(o1, θ) = 0 if o1 = hw(θ). In

addition, hw(θ) = hw′(θ) does not imply that ∆w(o1, θ) = ∆w′(o1, θ) for all o1 ∈ Ω1: even if
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two classifiers predict the same outcome, one of them may still be closer to predicting the

correct outcome o1.

The generalization error of classifier hw ∈ Hψ with respect to a type distribution D and

a partial outcome rule g1 : Θ→ Ω1, is given by

Rw(D, g) =

∫
θ∈Θ

∆w

(
g1(θ), θ

)
D(θ)dθ.

The following result establishes a connection between the generalization error and the ex-

pected ex post regret of the corresponding mechanism.

Theorem 9.4.4. Consider an outcome rule g, a space Hψ of admissible classifiers, and a

type distribution D. Let hw∗ ∈ Hψ be a classifier that minimizes generalization error with

respect to D and g among all classifiers in Hψ. Then the following holds:

1. If g satisfies consumer sovereignty, then (g, pw∗) minimizes expected ex post regret

with respect to D among all mechanisms (g, pw) corresponding to classifiers hw ∈ Hψ.

2. Otherwise, (g, pw∗) minimizes an upper bound on expected ex post regret with respect

to D amongst all mechanisms (g, pw) corresponding to classifiers hw ∈ Hψ.

Proof. For the second property, observe that

∆w(g1(θ), θ) =
1

w1

(
fw(θ, hw(θ))− fw(θ, g1(θ))

)
=

1

w1

(
max
o1∈Ω1

fw(θ, o1)− fw(θ, g1(θ))
)

≥ 1

w1

(
max

o1∈Ω(θ−1)
fw(θ, o1)− fw(θ, g1(θ))

)
= rgt1(θ),

where the last equality holds by Lemma 9.4.3. If g satisfies consumer sovereignty, then the

inequality holds with equality, and the first property follows as well.

Minimization of expected regret itself, rather than an upper bound, can also be achieved

even in the absence of consumer sovereignty (which holds for all the outcome rules studied

in this paper) if the learner has access to the set of available outcomes, Ω1(θ−1), that are

achievable for every θ−1 ∈ Θ−1.

9.5 A Solution using Structural Support Vector Machines

In this section we discuss the method of structural support vector machines (structural

SVMs) [Tsochantaridis et al., 2005, Joachims et al., 2009]. In particular, we show how
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structural SVMs can be adapted for the purpose of learning classifiers with admissible

discriminant functions.

9.5.1 Structural SVMs

Given an input space X, a discrete output space Y , a target function h∗ : X → Y , and a

set of training examples {(x1, h∗(x1)), . . . , (x`, h∗(x`))} = {(x1, y1), . . . , (x`, y`)}, structural

SVMs learn a multi-class classifier h that given input x ∈ X selects an output y ∈ Y to

maximize fw(x, y) = wTψ(x, y). For a given feature map ψ, the training problem is to find

a vector w for which hw has low generalization error.

Given examples {(x1, y1), . . . , (x`, y`)}, training is achieved by solving the following con-

vex optimization problem:

min
w,ξ≥0

1

2
wTw +

C

`

∑̀
k=1

ξk (Training Problem 1)

s.t. wT
(
ψ(xk, yk)− ψ(xk, y)

)
≥ L(yk, y)− ξk for all k = 1, . . . , `, y ∈ Y

ξk ≥ 0 for all k = 1, . . . , `.

The goal is to find a weight vector w and slack variables ξk such that the objective function

is minimized while satisfying the constraints. The learned weight vector w parameterizes the

discriminant function fw, which in turn defines the classifier hw. The kth set of constraints

state that the value of the discriminant function on (xk, yk) should exceed the value of

the discriminant function on (xk, y) by at least L(yk, y), where L is a loss function that

penalizes misclassification, with L(y, y) = 0 and L(y, y′) ≥ 0 for all y, y′ ∈ Y . We generally

use a 0/1 loss function, but consider an alternative in Section 9.5.2 to improve ex post IR

properties. Positive values for the slack variables ξk allow the weight vector to violate some

of the constraints.

The other term in the objective, the squared norm of the weights, penalizes larger weight

vectors. Without this, scaling up the weight vector w can arbitrarily increase the margin

between fw(xk, yk) and fw(xk, y), and make the constraints easier to satisfy. Smaller values

of w, on the other hand, increases the ability of the learned classifier to generalize by

decreasing the propensity to over-fit to the training data.

Parameter C ≥ 0 is a regularization parameter: larger values of C encourage small ξk

and larger w, such that more points are classified correctly, but with a smaller margin (and

thus perhaps with less generalization power).
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The Feature Map and the Kernel Trick

Given a feature map ψ, the feature vector ψ(x, y) for x ∈ X and y ∈ Y provides an alternate

representation of the input-output pair (x, y). It is useful to consider feature maps ψ for

which ψ(x, y) = φ(χ(x, y)), where χ : X × Y → Rs for some s ∈ N is an attribute map

that combines x and y into a single attribute vector, χ(x, y), which compactly represents

the pair. Given this, function φ : Rs → Rk, for b > s, maps the attribute vector to a higher-

dimensional space and can introduce additional non-linear interactions between attributes.

In this way, SVMs can achieve non-linear classification in the attribute space.

What is commonly described as “feature engineering” occurs through a combination of

designing a good attribute map and also defining a good function φ to map the attribute

vector to a higher-dimensional feature vector. We insist that the size of the attribute vector

s is small enough to be manageable. On the other hand, through the use of kernels we can

allow for a large and even unbounded b, because in the dual of Training Problem 1, ψ(x, y)

only appears in an inner product of the form 〈ψ(x, y), ψ(x′, y′)〉, or, for a decomposable fea-

ture map, 〈φ(q), φ(q′)〉 where q = χ(x, y) and q′ = χ(x′, y′). For computational tractability

it suffices that this inner product can be computed efficiently, and the kernel “trick” is to

choose φ such that 〈φ(q), φ(q′)〉 = K(q, q′) for a simple closed-form function K, which is

known as the kernel.

Two common kernels are the polynomial kernel Kpolyd , which is parameterized by degree

d ∈ N+, and the radial basis function (RBF) kernel KRBF , which is parameterized by

γ = 1/(2σ2) for σ ∈ R+:

Kpolyd (q, q′) = (q · q′)d,

KRBF (q, q′) = exp
(
−γ
(
‖q‖2 + ‖q′‖2 − 2q · q′

))
.

Both polynomial and RBF kernels use the standard inner product of their arguments, so

their efficient computation requires only that χ(x, y)·χ(x, y′) can be computed efficiently. A

polynomial kernel of degree 1 is known as a linear kernel and simply scales the components

of the attribute vector. In our experimental results we adopt the RBF kernel for part of

our study on CAs, but develop our other experimental results without making use of the

kernel trick.
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Dealing with an Exponentially Large Output Space

Training Problem 1 has Ω(|Y |`) constraints, where Y is the output space and ` the number

of training instances, and enumerating all of them is computationally prohibitive when Y is

large. Joachims et al. [2009] address this issue for structural SVMs through constraint gener-

ation: starting from an empty set of constraints, this technique iteratively adds a constraint

that is maximally violated by the current solution until that violation is below a desired

threshold ε. Joachims et al. show that this will happen after no more than O(Cε ) iterations,

each of which requires O(`) (resp. O(`2)) time and memory if linear (resp. polynomial or

RBF) kernels are used.

However, this approach assumes the existence of an efficient separation oracle, which

given a weight vector w, an input xk, and a target yk, finds an output y∗ ∈ arg maxy∈Y fw(xk, y)+

L(yk, y). The existence of such an oracle remains an open question in application to multi-

minded CAs; see Section 9.6.1 for additional discussion on this.

Sometimes the subproblem maxy∈Y fw(xk, y)+L(yk, y) can be written as a polynomially

sized linear program of a particular form. We will see this in the context of succinct,

graphical representations of agent valuations in the CA domain. In this case, we can modify

Training Problem 1 so that constraint generation is not needed, even when the output space

is exponential in the problem size Taskar et al. [2004]. Indeed, suppose that we can write

maxy∈Y fw(xk, y) + L(yk, y) as a linear program of the form:

max wBz (9.2)

subject to z ≥ 0, Az ≤ b,

where A,B, b are functions of xk and w is assumed to be given. Assuming that this program

is feasible and bounded, we have a dual linear program that attains the same objective value:

min bT z′ (9.3)

subject to z′ ≥ 0, AT z′ ≥ (wB)T .

In this case, we can rewrite Training Problem 1 by replacing the many constraints for a
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single training example with a single constraint that uses a max function:

min
w,ξ≥0

1

2
wTw +

C

`

∑̀
k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ max
y∈Y

(
wTψ(xk, y) + L(yk, y)

)
for all k = 1, . . . , `

ξk ≥ 0 for all k = 1, . . . , `.

We can now apply the LP formulation for finding the maximal value of fw(xk, y) +

L(x, y).

min
w,ξ≥0

1

2
wTw +

C

`

∑̀
k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ max
z≥0,Akz≤bk

wBkz for all k = 1, . . . , `

ξk ≥ 0 for all k = 1, . . . , `.

By LP duality, we can replace the max linear program with a min linear program.

min
w,ξ≥0

1

2
wTw +

C

`

∑̀
k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ min
z≥0,(Ak)T z≥(wBk)T

(bk)T z for all k = 1, . . . , `

ξk ≥ 0 for all k = 1, . . . , `.

We can now drop the min on the right hand side since for a fixed weight vector w, the

objective tries to minimize ξk, so the right hand side will be minimized even if we do not

explicitly require this. We therefore have a single, succinct primal convex program even

though the number of original constraints was exponentially large:

min
w,ξ≥0

1

2
wTw +

C

`

∑̀
k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ (bk)T zk, zk ≥ 0, (Ak)T zk ≥ (wBk)T for all k = 1, . . . , `

ξk ≥ 0 for all k = 1, . . . , `.

We apply these ideas in Section 9.6.2 to combinatorial auctions where agents have suc-

cinct, graph-based value representations. This allows us to have a scalable training problem
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even though the winner determination problem remains NP-hard. Though we work directly

with the features ψ(xk, yk) in our experiments, it is still possible to use kernels in conjunc-

tion with the succinct formulation of the convex program. This would require working with

the dual of the succinct primal convex program (see Taskar et al. [2004] for more details).

Required Information

In summary, the use of structural SVMs requires specification of the following:

1. The input space X, the discrete output space Y , and examples of input-output pairs.

2. An attribute map χ : X × Y → Rs. This function generates an attribute vector that

combines the input and output data into a single object.

3. A kernel function K(q, q′), typically chosen from a well-known set of candidates, e.g.,

polynomial or RBF. The kernel implicitly calculates the inner product 〈φ(q), φ(q′)〉,

e.g., between a mapping of the inputs into a high dimensional space.

4. If the space Y is prohibitively large, and we wish to scale our training problem to a

large number of training examples, we require either:

(a) a routine that allows for efficient separation, i.e., a polynomial time algorithm

that computes arg maxy∈Y fw(xk, y) +L(yk, y) for a given w, x, to allow for con-

straint generation or,

(b) a polynomially sized LP that solves maxy∈Y fw(xk, y) + L(yk, y), to enable the

formulation of the training problem as a polynomially sized primal convex opti-

mization problem.

In addition, the user needs to stipulate particular training parameters, such as the

regularization parameter C, and the kernel parameter γ if the RBF kernel is being used.

9.5.2 Structural SVMs for Mechanism Design

We now specialize structural SVMs such that the learned discriminant function will provide

a payment rule, for a given symmetric outcome function g and distribution D. In this

application, the input domain X is the space of type profiles Θ, and the output domain Y

is the space Ω1 of outcomes for agent 1.

We construct training data by sampling θ ∼ D and applying g to these inputs:

{(θ1, g1(θ1)), . . . , (θ`, g1(θ`))} = {(θ1, o1
1), . . . , (θ`, o`1)}.
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For admissibility of the learned hypothesis hw(θ) = arg maxo1∈Ω1 w
Tψ(θ, o1), we require

that

ψ(θ, o1) = (v1(θ1, o1), ψ′(θ−1, o1))

For this reason, we must use an attribute map χ′ : Θ−1 × Ω1 → Rs rather than χ :

Θ× Ω1 → Rs, and the kernel φ′ we specify will only be applied to the output of χ′. Given

these mappings, we let ψ′(θ−1, o1) = φ′(χ′(θ−1, o1)). This results in the following more

specialized training problem:

min
w,ξ≥0

1

2
wTw +

C

`

∑̀
k=1

ξk (Training Problem 2)

s.t. (w1v1(θk1 , o
k
1) + wT−1ψ

′(θk−1, o
k
1))− (w1v1(θk1 , o1) + wT−1ψ

′(θk−1, o1)) ≥ L(ok1, o1)− ξk

for all k = 1, . . . , `, o1 ∈ Ω1

ξk ≥ 0 for all k = 1, . . . , `.

If w1 > 0 then the weights w together with the feature map ψ′ define a price func-

tion tw(θ−1, o1) = −(1/w1)wT−1ψ
′(θ−1, o1) that can be used to define payments pw(θ), as

described in Section 9.4.1. In this case, we can also relate the regret in the induced mecha-

nism (g, pw) to the classification error as described in Section 9.4.3.

Theorem 9.5.1. Consider training data {(θ1, o1
1), . . . , (θ`, o`1)}. Let g be an outcome func-

tion such that g1(θk) = ok1 for all k. Let w, ξk be the weight vector and slack variables output

by Training Problem 2, with w1 > 0. Consider corresponding mechanism (g, pw). For each

type profile θk in the training data,

rgt1(θk) ≤ 1

w1
ξk

Proof. Consider input θk. The constraints in the training problem impose that for every

outcome o1 ∈ Ω1,

w1v1(θk1 , o
k
1) + wT−1ψ

′(θk−1, o
k
1)−

(
w1v1(θk1 , o1) + wT−1ψ

′(θk−1, o1)
)
≥ L(ok1, o1)− ξk
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Rearranging,

ξk ≥ L(ok1, o1) +
(
w1v1(θk1 , o1) + wT−1ψ

′(θk−1, o1)
)
−
(
w1v1(θk1 , o

k
1) + wT−1ψ

′(θk−1, o
k
1)
)

⇒ ξk ≥ L(ok1, o1) + fw(θk, o1)− fw(θk, ok1)

This inequality holds for every o1 ∈ Ω1, so

ξk ≥ max
o1∈Ω1

(
L(ok1, o1) + fw(θk, o1)− fw(θk, ok1)

)
≥ max

o1∈Ω1

(
fw(θk, o1)− fw(θk, ok1)

)
≥ w1rgt1(θk),

where the second inequality holds because L(ok1, o1) ≥ 0, and the final inequality follows

from Lemma 9.4.3. This completes the proof.

We choose not to enforce w1 > 0 explicitly in Training Problem 2 as it would require

a custom formulation of the dual problem. Instead, in our experiments we simply discard

hypotheses where the result of training is w1 ≤ 0. This is sensible since the discriminant

function value should increase as an agent’s value increases, and negative values of w1

typically mean that the training parameter C or the kernel parameter γ (if the RBF kernel

is used) are poorly chosen.

Looking forward to our experiments, this requirement of positive w1 did not present a

practical concern. For example, for multi-minded combinatorial auctions, 1049/1080 > 97%

of the trials had positive w1 for the trained classifier, and for the egalitarian assignment

problem all of the trained classifiers had w1 > 0. In the discussion of a tractable training

formulation for positive k-wise dependent valuations, we directly impose the constraint that

w1 = 1 since the tractable training formulation has a succinct primal which can be solved

directly. We believe the constraint can be imposed more generally, but it would require a

custom dual formulation of the structural SVM training, and we leave this to future work.

Payment Normalization

One issue with the framework as stated is that the payments pw computed from the solution

to Training Problem 2 could be negative. We solve this problem by normalizing payments,

using a baseline outcome ob. If there exists a null outcome o′, such that v1(θ1, o
′) = 0 for

every θ1, then this outcome provides the baseline. For example, in CAs, the null outcome
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is the empty bundle. Otherwise, we adopt as the baseline outcome the outcome ob with the

lowest price to agent 1 for a given set of types of other agents. For this, let tw(θ−1, o1) be

the price function corresponding to the solution w to Training Problem 2. Adopting the

baseline outcome ob, the normalized payments t′w(θ−1, o1), are defined as

t′w(θ−1, o1) = max(0, tw(θ−1, o1)− tw(θ−1, ob)).

Even when the baseline outcome is defined as that with the lowest price, it is still only

a function of the types of other agents θ−1, and so the prices t′w remain a function of θ−1

and o1 and are still agent independent.

Individual Rationality Violation

Even after normalization, the learned payment rule pw may not satisfy individual rationality

(IR). Recall that this requires that an agent’s payment is no greater than its reported value

for the outcome. We offer three solutions to this problem, which can also be used in

combination.

Payment offsets One way to reduce IR violations is to make an additional adjustment to

prices, across all type reports, designed to reduce the prices. In particular, for a given offset

off > 0, and given normalized prices t′w, we can then further adjust prices by the offset to

obtain final prices t′′w(θ−1, o1) = max(0, t′w(θ−1, o1) − off ). The effect is to leave the price

on the baseline outcome unchanged (since its price was already normalized to zero), but

to apply the offset where possible to other outcomes. The offset must chosen in an agent

independent way, either as a fixed offset applied to all instances or an offset that depends

only on θ−1. In our experiments we only consider offsets that are uniformly applied to all

instances.

Although the use of a payment offset decreases the IR violation it might increase regret

because of the non-linearity in taking the max with zero. For instance, suppose there are

only two outcomes o11, o12, where o12 is the null outcome. Suppose agent 1 values o11 at

5 and receives the null outcome if he reports truthfully. Suppose further that payments tw

are 7 for o11 and 0 for the null outcome. With no payment offset, the agent experiences

no regret, since he receives utility 0 from the null outcome, but negative utility from o11.

However, if the payment offset is greater than 2, the agent’s regret becomes positive (as-

suming consumer sovereignty), because he could have reported differently and received o11

and received positive utility.
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Adjusting the loss function L We incur an IR violation when there is a null outcome

onull (for example allocating no items to an agent in a combinatorial auction), such that

g1(θ) 6= onull and fw(θ, onull ) > fw(θ, g1(θ)) for some type θ; i.e., the discriminant value

of the null outcome is greater than that for the actual outcome selected by the outcome

rule. This happens because the discriminant fw(θ, o1) is a scaled version of the agent’s

utility for outcome o1 under payments pw. If the utility for the null outcome is greater

than the utility for g1(θ), and the payment on null outcomes is normalized to zero, then the

payment tw(θ−1, g1(θ)) must be greater than v1(θ1, g1(θ)) (so that the discriminant value

fw(θ, g1(θ)) < fw(θ, onull)), causing an IR violation.

Recognizing this, we can discourage these types of errors by modifying the constraints

of Training Problem 2: when ok1 6= onull and o1 = onull , we can increase L(ok1, o1) to heavily

penalize misclassifications of this type. With a larger L(ok1, o1), a larger ξk will be required if

fw(θ, ok1) < fw(θ, onull ). As with payment offsets, this technique will decrease IR violations

but is not guaranteed to eliminate all of them. In our experimental results, we refer to this

as the null loss fix, and the null loss refers to the value we choose for L(ok1, onull ) where

outcome ok1 6= onull .

Deallocation In settings that have a null outcome and are downward closed (i.e., settings

where a feasible outcome o remains feasible if oi is replaced with the null outcome), we can

also choose to modify the function g to allocate the null outcome whenever the price function

tw creates an IR violation. This reduces ex post regret, and in particular ensures ex post

IR for all instances. On the other hand, the total value to the agents necessarily decreases

under the modified allocation, and we begin to deviate from the intended outcome rule. In

our experimental results, we refer to this as the deallocation fix.

9.6 Applying the Framework

In this section, we discuss the application of our framework to three domains: multi-minded

combinatorial auctions, combinatorial auctions with k-wise dependent valuations, and egal-

itarian assignment.

9.6.1 Multi-Minded Combinatorial Auctions

We adopt the same notation introduced in Section 7.1. Recall that we have a set N of

agents and a set G = {1, . . . ,m} of items, with |N | = n, |G| = m.
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The outcome space Ωi for agent i is the set of all subsets of the m items, and in full

generality, the type of agent i can be represented by a vector θi ∈ Θi = R2m that specifies

its value for each possible bundle. The set of possible type profiles is then Θ = R2mn, and

the value vi(θi, oi) of agent i for bundle oi is equal to the entry in θi corresponding to oi.

We require that valuations are monotone, such that vi(θi, oi) ≥ vi(θi, o′i) for all oi, o
′
i ∈ Ωi

with o′i ⊆ oi, and normalized such that vi(θi, ∅) = 0. Assuming agent symmetry and

adopting the view of agent 1, the partial outcome rule g1 : Θ → Ω1 specifies the bundle

g1(θ) allocated to agent 1. We require feasibility of outcome rules, so that no item is

allocated more than once.

In a multi-minded CA, each agent is interested in at most κ bundles for some constant

κ. The special case where κ = 1 is the well studied problem of single-minded CAs discussed

in Section 7.4. If a bundle contains multiple bundles of interest, the agent’s value for that

bundle is the bundle with the highest value among the contained bundles of interest (i.e.,

we adopt XOR semantics). We choose to study multi-minded CAs rather than single-

minded CAs because they provide an example for which truthful, algorithmic mechanism

design is not well understood. Multi-minded CAs are an example of a multi-parameter

mechanism design problem where the valuation profiles and thus the training data can

still be represented in a compact way. In the case of multi-minded CAs, the compact

representation arises by explicitly writing down the identities and values of an agent’s κ

target bundles. In addition, in multi-minded CAs, the inner products between valuation

profiles, which are required to apply the kernel trick, can be computed in polynomial time.

Attribute Maps

To apply structural SVMs to multi-minded CAs, we need to specify an appropriate attribute

map χ. In our experiments we use two attribute maps χ1 : Θ−1 × Ω1 → R2m(2m(n−1)) and

χ2 : Θ−1 × Ω1 → R2m(n−1), which are defined as follows:

χ1(θ−1, o1) =



0

· · ·

0

θ−1

0

· · ·

0



 dec(o1)(2m(n− 1))

 (2m − dec(o1)− 1)(2m(n− 1))

, χ2(θ−1, o1) =


θ2 \ o1

θ3 \ o1

. . .

θn \ o1

 .
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Here, dec(o1) =
∑m

j=1 2j−1Ij∈o1 is a decimal index of bundle o1, where Ij∈o1 = 1 if j ∈ o1

and Ij∈o1 = 0 otherwise. Attribute map χ1 thus stacks the vector θ−1, which represents

the valuations of all agents except agent 1, with zero vectors of the same dimension, where

the position of θ−1 is determined by the index of bundle o1. The resulting attribute vector

is simple but potentially restrictive. For example, it precludes two instances with different

allocated bundles from sharing attributes, which provides an obstacle to generalization of

the discriminant function across bundles.

Attribute map χ2 stacks vectors θi \o1, which are obtained from θi by setting the entries

for all bundles that intersect with o1 to 0. This captures the fact that agent i cannot be

allocated any of the bundles that intersect with o1 if o1 is allocated to agent 1. Both χ1

and χ2 are defined for a particular number of items and agents, and in our experiments we

train a different classifier for each number of agents and items. In practice, one can pad out

items and agents by setting bids to zero and train a single classifier.

Efficient Computation of Inner Products

Efficient computation of inner products is possible for both χ1, χ2. For both χ1 and χ2, com-

puting inner products reduces to the question of whether inner products between valuation

profiles are efficiently computable. For χ1, we have that

〈
χ1(θ−1, o1), χ1(θ′−1, o

′
1)
〉

= Io1=o′1

n∑
i=2

〈
θi, θ

′
i

〉
,

where indicator Io1=o′1
= 1 if o1 = o′1 and Io1=o′1

= 0 otherwise. For χ2,

〈
χ2(θ−1, o1), χ2(θ′−1, o

′
1)
〉

=
n∑
i=2

〈
θi \ o1, θ

′
i \ o1

〉
.

We next develop efficient methods for computing the inner products 〈θi, θ′i〉 on compactly

represented valuation functions. The computation of 〈θi \ o1, θ
′
i \ o1〉 can be done through

similar methods.

In the single-minded setting, let θi correspond to a bundle Si ⊆ {1, . . . , r} of items with

value vi, and θ′i correspond to a set S′i ⊆ {1, . . . , r} of items valued at v′i.

Each set containing both Si and S′i contributes viv
′
i to θTi θ

′
i, while all other sets contribute

0. Since there are exactly 2r−|Si∪S
′
i| sets containing both Si and S′i, we have

θTi θ
′
i = viv

′
i2
r−|Si∪S′i|.
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This is a special case of the formula for the multi-minded case.

Lemma 9.6.1. Consider a multi-minded CA and two bid vectors x1 and x′1 corresponding to

sets S = {S1, . . . , Ss} and S′ = {S′1, . . . , S′t}, with associated values v1, . . . , vs and v′1, . . . , v
′
t.

Then,

xT1 x
′
1 =

∑
T⊆S,T ′⊆S′

(
(−1)|T |+|T

′| · (min
Si∈T

vi) · ( min
S′j∈T ′

v′j) · 2
r−|(

⋃
Si∈T

Si)∪(
⋃
S′
j
∈T ′ S

′
j)|
)
. (9.4)

Proof. The contribution of a particular bundleB′ of items to the inner product is (maxSi∈S,Si⊆B′ vi)·

(maxS′j∈S′,S′j⊆B′ v
′
j), and thus

xT1 x
′
1 =

∑
B′

(
( max
Si∈S
Si⊆B′

vi) · ( max
S′
j
∈S′

S′
j
⊆B′

v′j)
)
.

By the maximum-minimums identity, which asserts that for any set {x1, . . . , xn} of n num-

bers, max{x1, . . . , xn} =
∑

Z⊆X((−1)|Z|+1 · (minxi∈Z xi)),

max
Si∈S
Si⊆B′

vi =
∑
T⊆S⋃

Si∈T Si⊆B
′

(
(−1)|T |+1 · (min

Si∈T
vi)
)

and

max
S′
j
∈S′

S′
j
⊆B′

v′j =
∑
T ′⊆S′⋃

S′
j
∈T ′ S

′
j⊆B

′

(
(−1)|T

′|+1 · ( min
S′j∈T ′

v′j)
)
.

The inner product can thus be written as

θT1 θ
′
1 =

∑
B′

∑
T⊆S,T ′⊆S′⋃
Si∈T Si⊆B

′⋃
S′
j
∈T ′ S

′
j
⊆B′

(
(−1)|T |+|T

′| · (min
Si∈T

vi) · ( min
S′j∈T ′

v′j)
)
.

Finally, for given T ⊆ S and T ′ ⊆ S′, there exist exactly 2
r−|(

⋃
Si∈T

Si)∪(
⋃
S′
j
∈T ′ S

′
j)| bundles

B′ such that
⋃
Si∈T Si ⊆ B

′ and
⋃
S′j∈T ′

S′j ⊆ B′, and we obtain

θT1 θ
′
1 =

∑
T⊆S,T ′⊆S′

(
(−1)|T |+|T

′| · (min
Si∈T

vi) · ( min
S′j∈T ′

v′j) · 2
m−|(

⋃
Si∈T

Si)∪(
⋃
S′
j
∈T ′ S

′
j)|
)
.

If S and S′ have constant size, then the sum on the right hand side of (9.4) ranges over
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a constant number of sets and can be computed efficiently.

Dealing with an Exponentially Large Output Space

Recall that Training Problems 1 and 2 have constraints for every training example (θk, ok1)

and every possible bundle of items o1 ∈ Ω1. For CAs, there will be exponentially many such

bundles. In lieu of an efficient separation oracle, a workaround exists when the discriminant

function ensures that the induced prices weakly increase as items are added to a bundle.

Given this property of item monotonicity, it suffices to include constraints for bundles that

have a strictly larger value to the agent than any of their respective subsets. Coupled with

the assumption that valuations in CAs are monotone, and the admissibility property of the

discriminant function, no other bundles can have a greater discriminant value than these

bundles.

But imposing item monotonicity directly on the training problem requires a number of

constraints that is exponential in the number of items. For polynomial kernels and certain

attribute maps, a possible sufficient condition for item monotonicity is to force the weights

w−1 to be negative. However, as with the discussion of enforcing w1 > 0 directly, these

weight constraints do not dualize conveniently and results in the dual formulation no longer

operate on inner products 〈ψ′(θ−1, o1), ψ′(θ′−1, o
′
1)〉. As a result, we would be forced to work

in the primal, and incur extra computational overhead that increases polynomially with the

kernel degree d. We have performed some preliminary experiments with polynomial kernels,

but we have not looked into reformulating the primal to enforce item monotonicity.

For this reason, the baseline experimental results in Section 9.7 do not assume item

monotonicity, and instead use an inefficient separation oracle, that simply iterates over all

possible bundles o1 ∈ Ω1.

An alternative that we have also studied is to optimistically assume item monotonicity,

and only include the constraints associated with bundles that are explicit in agent valuations.

We also present experimental results that test this optimistic approach, and while there is a

degradation in performance, results are mostly comparable. This provides a useful approach

to scaling up training for representation languages such as the XOR representation adopted

for multi-minded CAs for which it is simple to identify the small set of bundles that are

candidates for maximizing the discriminant function (= agent utility.)
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Figure 9.1: An example of a 2-wise dependent valuation. The values listed in the nodes give
the agent’s weights for the corresponding items. Each item has some small value on its own,
but complementarities exist between pairs of items which give added utility to the agent.
Note that while this graph is complete, this is not necessary. Absent edges are assumed to
have weight 0.

9.6.2 Combinatorial Auctions with Positive k-wise Dependent Valuations

We also study combinatorial auctions where agents have positive k-wise dependent valua-

tions Conitzer et al. [2005]. This setting allows us to apply the ideas discussed in Section

9.5.1 to attain a polynomial time training formulation despite the exponential size of Ω1.

When an agent has a k-wise dependent valuation, the agent’s valuation is described

by a hypergraph G = (V,E) with hyperedges of size at most k. The nodes in the graph

correspond to the items being auctioned, and the hyperedges to groups of these items. These

nodes and hyperedges are each assigned weights g(v) and g(e) respectively. An agent’s value

for a subset of items o1 ∈ Ω1 is the sum of the weights of nodes and hyperedges contained

in o1, i.e.,
∑

v∈V,v∈o1 g(v) +
∑

e∈E,e⊆o1 g(e). Figure 9.1 gives a pictorial view of a simple

2-wise valuation over 3 items.

A positive k-wise dependent valuation adds the restriction that hyperedge weights are

positive. This restriction is required for our results, and is also studied by Abraham et al.

[2012]. This forces agent valuations to be superadditive, i.e. θi(o1) ≥ θi(o2) + θi(o3) for

o1 = o2 ∪ o3, and o2 ∩ o3 = ∅. When we have multiple agents, we use gi(v) and gi(e) to

denote the weights that agent i assigns to nodes v and edges e. For convenience, let gi(e)

for an edge not in the agent’s edge set is defined to be 0. If we are given the agent’s type θi,

then it can be convenient to write g(θi, v) or g(θi, e) to represent the weights in the agent’s

underlying graph when its type is θi.

Though these valuations are very different from the multi-minded valuations we dis-

cussed earlier, the winner determination problem for positive k-wise dependent valuations
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is still NP-hard for any value of k > 1 Abraham et al. [2012]. Because the winner de-

termination problem is NP-hard, we seek to learn a payment rule for a greedy allocation

algorithm.

Going forward, we specialize to the case of k = 2, which represents the case where the

agent’s hypergraph is just a graph. We believe a similar approach can work for any value of

k, but we leave this to future work. The single agent winner determination problem (where

nodes can have negative values but hyperedge weights are non-negative) is tractable for any

k. The only complication is in designing an appropriate attribute map. Interestingly, in

this case the training problem will look like a single agent winner determination problem.

Intuitively, the attribute values on which the discriminant function is evaluated will model

the value to the rest of the agents given that agent 1 receives a particular bundle, and

this ‘two-agent’ view (agent 1 and the rest of the agents) can be encoded with a single

valuation function and thus effectively appears as a single agent problem. This single agent

problem is non-trivial as nodes can have negative values when the impact on other agents

is incorporated, so the bundle of all items is not necessarily the value-maximizing subset.

This single agent winner determination problem where nodes can have negative values

but hyperedges have non-negative weights turns out to be tractable for k-wise dependent

valuations and a suitably defined attribute map.

A Concrete Example

To clarify the construction, we introduce a simple example where agents have 2-wise de-

pendent valuations. We refer back to this example to illustrate our greedy algorithm and

attribute map. Consider a setting where we have 3 agents and 3 items. We denote the

agents and items using indices 1, 2, 3 but the association should be clear from context. The

agents have the following 2-wise dependent valuations:

g1(1) = 1, g1(2) = 4, g1(3) = 2, g1((1, 2)) = 4

g2(1) = 2, g2(2) = 6, g2(3) = 2, g2((2, 3)) = 3, g2((1, 3)) = 6

g3(1) = 5, g3(2) = 3, g3(3) = 1, g3((1, 2)) = 2, g3((1, 3)) = 7

A Greedy Algorithm

Before describing our attribute map, it will be useful to introduce a simple greedy algorithm

GREEDY-KWISE that tries to find an allocation with good welfare. We use GREEDY-KWISE

both in our attribute map and as an outcome rule in our experimental results.
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Let G = {1, . . . ,m} denote the set of all items. Given some subset of items S ⊆ G, the

greedy algorithm orders the items by index and assigns the items incrementally. At each

step, the algorithm computes the gain in welfare of assigning the item to each agent and

chooses the agent that provides the maximal gain in welfare. Note that if an item j has

been assigned to an agent i, then when considering the assignment for item k the gain in

welfare of assigning it to agent i includes agent i’s node weight for item k as well as agent

i’s edge weight for edge (j, k) (if the edge exists in the agent’s valuation graph). We let

GREEDY-KWISEi(S) denote agent i’s allocation when this greedy algorithm is run on S.

Applied to the example from Section 9.6.2, the greedy algorithm first considers the

assignment of item 1. Agent 3 has the highest value, so 1 goes to agent 3. We then consider

item 2. The gain in giving this to agent 1 is 4, the gain to agent 2 is 6, and the gain to

agent 3 is 3 + 2 = 5 (for agent 3, we add in both g3(2) and g3((1, 2)) since 1 was given to

agent 3). As a result, agent 2 has the highest gain and we give the item to agent 2. Then

for item 3, the gains are 2, 2 + 3 = 5, and 1 + 7 = 8 respectively. As a result, item 3 is

assigned to agent 3.

Attribute Map

In order to have a tractable training problem, we want our attribute map χ3(θ−1, o1) to

be decomposable across items and pairs of items. We detail the reasons for this in the

next section, but the intuition is that we want χ3(θ−1, o1) to resemble a 2-wise dependent

valuation so that we can view the separation problem as a single agent winner determination

problem for an agent with 2-wise dependent valuations where nodes can have negative

weight but edges have positive weight. If nodes and edges all have positive weight, then the

single agent problem has a trivial solution: take all the items. However, when nodes can

have negative weight, the problem is non-trivial (even when edges weights remain positive-

restricted).

Our attribute map χ3(θ−1, o1) maps from Θ−1 × Ω1 → R2m+m(m−1). For each possible

item j ∈ {1, . . . ,m}, we have two entries in χ3(θ−1, o1).

Vj(0) · I(j /∈ o1), Vj(1) · I(j ∈ o1),

where I is an indicator variable. Vj(0) approximates the “gain” of not allocating item j to

agent 1; Vj(1) does the opposite, approximating the “cost” of allocating item j to agent 1.

We detail how these are calculated below.
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Additionally, for each possible pair of items j1, j2, we have two entries in χ3(θ−1, o1):

Vj1,j2(0) · I({j1, j2} ∩ o1 = ∅), Vj1,j2(1) · I({j1, j2} ⊆ o1).

where I is an indicator variable, and where the Vj1,j2(·) indicate the value of agent one ob-

taining (or not) both items. To specify Vj(0), Vj(1) and Vj1,j2(0), Vj1,j2(1), we use GREEDY-

KWISE.

We define Vj(0) as the “gain” for item j by the agent who is allocated it under the greedy

algorithm, i.e. gi(j) where j ∈ GREEDY-KWISEi(R). By contrast, we want Vj(1) to be

the“cost” of allocating item j to agent 1; therefore we define it as welfare(GREEDY-KWISE(G))−

welfare(GREEDY-KWISE(G \ {j}))). The values Vj1,j2(0) = Vj1,j2(1) are similar to Vj(0).

These expressions look at the allocation of GREEDY-KWISE on all items, and see if j1, j2

are assigned to the same agent. If they are not, then they are set to zero. Otherwise, they

are set to −g((j1, j2)). The negative sign here is important for tractability and ensures

that edge weights are non-negative for the modified single agent problem (see the next

section). The intuition for why we do not make Vj1,j2(1) equal to the “cost” of allocating

items j1, j2 is that if j1 ∈ o1, j2 ∈ o1 then this cost is already accounted for in Vj1(1) and

Vj2(1). In fact, the cost is double-counted since in both GREEDY-KWISE(R \ {j1}) and

GREEDY-KWISE(R \ {j2}) no agents can derive value from edge (j1, j2) since one of the

items is missing in both cases. We use a particularly simple allocation algorithm here, but

any algorithm as long as its computation time is not prohibitive.

Returning to our example from Section 9.6.2, recall that when run on all agents, the

greedy algorithm gives items 1 and 3 to agent 3 and item 2 to agent 2. The total welfare in

this case is 19. The total value to agents 2 and 3 is also 19 since agent 1 does not receive

any items. In this case, we then have the following values for V .

• V1(0): Agent 3 receives item 1, so this is set to g3(1) = 5.

• V2(0): Agent 2 receives item 2, so this is set to g2(2) = 6.

• V3(0): Agent 3 receives item 3, so this is set to g3(3) = 1.

• V1(1): We consider the greedy allocation where item 1 cannot be allocated. The

greedy algorithm gives item 2 to agent 2, and then item 3 to agent 2 as well (since

the gain will be 5 versus 1). As a result, the total welfare is 11. The welfare difference

for the other agents is 8, so V1(1) = 8.
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v1(θ1, ·) χ(θ−1, ·) v1(θ1, ·)− χ(θ−1, ·)

Item 1
1

Item 2
4

Item 3
2

4

Item 1
8 [5]

Item 2
10 [6]

Item 3
6 [1]

-7 [-7]

Item 1
-7 [-5]

Item 2
-6 [-6]

Item 3
-4 [-1]

4 7 [7]

Figure 9.2: A pictorial representation of the attribute map χ3 for our concrete example. We
make the attribute map χ3 resemble a 2-wise dependent valuation (with values for not being
assigned a node and not being assigned any of the items for an edge shown in brackets)
so that when combined with agent 1’s valuation, we have a modified single agent problem.
We do not show the weight vector w in these panels, but there would be weights wj(1)
multiplying the unbracketed values in each node j, weights wj(0) multiplying the bracketed
values in each node j, as well as weights wj1,j2(0) and wj1,j2(1) multiplying the unbracketed
and bracketed values on the edges.

• V2(1): Without item 2, the greedy algorithm gives item 1 to agent 3 and then item 3

to agent 3 as well (gain of 8 for agent 3 versus gain of 2 for agent 1). The total welfare

is 13, so V2(1) = 19− 13 = 6.

• V3(1): Without item 3, item 1 goes to agent 3 and item 2 goes to agent 2. The total

welfare is 11, so V3(1) = 19− 11 = 8.

• V1,2(0), V1,2(1): The original allocation allocates items 1 and 2 to different agents, so

these values are 0.

• V1,3(0), V1,3(1): Items 1 and 3 are allocated to agent 3, so this is set to −g3((1, 3)) =

−7.

• V2,3(0), V2,3(1): The original allocation allocates items 2 and 3 to different agents, so

these values are 0.

A useful way to think of this attribute map χ3 is that it modifies agent 1’s 2-wise

valuation. Pictorially, we can think of this as combining agent 1’s valuation graph with the

valuation graph induced by the feature map. See Figure 9.2 for an illustration.

A Tractable Training Problem

We are now ready to show that we can use the techniques discussed in Section 9.5.1 to make

training polynomial-time in the number of items despite having an exponentially large space
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of possible labels (bundles in this context).

If we assume that agents have positive 2-wise dependent valuations and we use the

attribute map specified above, then we will be able to compute maxo1∈Ω1 fw(θ, o1)+L(ok1, o1)

using a linear program whose coefficients are linear in w. For this result, we require two

restrictions:

1. We impose constraints (such as positivity) on certain elements of the vector w. This

restriction of the space of possible weights enables us to obtain a polynomial-time

training formulation, at the possible loss of some pricing accuracy. It also prevents us

from using the kernel trick over the positive-restricted weights, although we can still

use kernels on the rest. In the present analysis we choose not to add this complexity

and work with a linear kernel only.

2. The loss function L(ok1, o1) is equal to 0 everywhere. This assumption simplifies our

proofs, but it turns out we only require that the loss function can be expressed as a

sum of products where each product consists of a weight multiplied by a.) an indicator

of whether o1 contains a given subset of items or b.) an indicator of whether o1 does

not intersect a given subset of items. As a result, we can adjust null loss by using an

indicator for o1 not intersecting the entire set of items.

In addition to these restrictions, the tractable training problem for positive k-wise de-

pendent valuations departs from the general framework by fixing the weight w1 to equal

1 (instead of letting it be learned by the framework, checking positivity, and dividing all

terms by w1). We believe it is possible to adopt the same constraint more generally, but

it is easier in the setting for positive k-wise dependent valuations since there is a succinct

primal formulation and it is not necessary to worry about modifications to the dual of the

structural SVM formulation.

The proof of this result relies on a connection between k-wise dependent valuations

and Markov networks, and applying a result from the literature on finding the maximum a

posteriori (MAP) assignment in Markov networks.

Theorem 9.6.2. When agents have positive 2-wise dependent valuations and we use the

attribute map χ3 (described above) without a kernel, then we can solve the structural SVM

training problem (with the modifications discussed above in Assumptions 1 and 2.) in time

polynomial in m, the number of items in the auction and n, the number of agents.

Proof. We observe that χ3(θ−1, o1) is a vector with 2m + m(m − 1) elements. Therefore,

the weight vector w−1 will have the same number of elements. We index elements of these

182



CHAPTER 9 LEARNING PAYMENT RULES

vectors using notation similar to the notation we use for χ3(θ−1, o1). That is, we let wj(p)

correspond to the attribute term that includes Vj(p), where p ∈ {0, 1}. Similarly, we let

wj1,j2(p) correspond to the attribute term that includes Vj1,j2(p), where p ∈ {0, 1}.

In the primal formulation of Training Problem 1, we add the constraints that wj1,j2(p) ≥

0 for p ∈ {0, 1} and all j1, j2. While not strictly necessary, we also impose that w1 = 1 (as we

are working with the primal formulation, the enforcement of such a constraint is available

to us; alternatively, we could forgo this constraint and operate in the dual, enabling the use

of kernels over the unconstrained components of the attribute map).

max
o1∈Ω1

fw(θ, o1) = max
o1∈Ω1

v(θ1, o1)− wT−1χ3(θ−1, o1)

= max
o1∈Ω1

∑
j∈G

g(θ1, j)I(j ∈ o1) +
∑

1≤j1<j2≤r
g(θ1, (j1, j2))I({j1, j2} ⊆ o1)

−
∑
j∈G

(wj(0)Vj(0)I(j /∈ o1) + wj(1)Vj(1)I(j ∈ o1))

−
∑

1≤j1<j2≤r
(wj1,j2(0)Vj1,j2(0)I({j1, j2} ∩ o1 = ∅)

+ wj1,j2(1)Vj1,j2(1)I({j1, j2} ⊆ o1))

= max
o1∈Ω1

∑
j∈G
−wj(0)Vj(0)I(j /∈ o1) +

∑
j∈G

(g(θ1, j)− wj(1)Vj(1)) I(j ∈ o1)

+
∑

1≤j1<j2≤r
(−wj1,j2)Vj1,j2(0)I({j1, j2} ∩ o1 = ∅)

+
∑

1≤j1<j2≤r
(g(θ1, (j1, j2))− wj1,j2Vj1,j2(1))I({j1, j2} ⊆ o1)

An important observation is that the coefficients of the indicator variables I({j1, j2} ⊆

o1) and I({j1, j2) ∩ o1 = ∅) for the edges (j1, j2) will be positive. Indeed, as we de-

fined in Section 9.6.2, Vj1,j2(0) = Vj1,j2(1) ≤ 0. Combining this with the assumption

that g(θ1, (j1, j2)) ≥ 0 and our constraint that wj1,j2 ≥ 0, we see that the coefficients of

I({j1, j2} ⊆ o1) and I({j1, j2) ∩ o1 = ∅) are positive.

Applying the ideas of Taskar et al. [2004], we see that the above maximization problem

can be solved by the following integer program. The integer program has a binary variable

183



CHAPTER 9 LEARNING PAYMENT RULES

corresponding to each of the indicator variables in the above maximization.

max
∑
j∈G
−wj(0)Vj(0)Ij,0 +

∑
j∈G

(g(θ1, j)− wj(1)Vj(1))Ij,1

+
∑

1≤j1<j2≤m
(−wj1,j2(0)Vj1,j2(0))Ij1,j2,0

+
∑

1≤j1<j2≤m
(g(θ1, (j1, j2))− wj1,j2(1))Ij1,j2,1

s.t. Ij,0 + Ij,1 = 1 for all j ∈ G

Ij1,j2,p ≤ Ij1,p, Ij1,j2,p ≤ Ij2,p for all 1 ≤ j1 < j2 ≤ m, p ∈ {0, 1}

Ij,p ∈ {0, 1} for all j ∈ G, p ∈ {0, 1}

Ij1,j2,p ∈ {0, 1} for all 1 ≤ j1 < j2 ≤ m, p ∈ {0, 1}

The first set of constraints ensures that exactly one of Ij,0 and Ij,1 is active. The second

set of constraints ensures that Ij1,j2,p is active if and only if Ij1,p and Ij2,p are active. Note

that the ‘if’ direction follows because the objective coefficients of Ij1,j2,p are non-negative,

so the second set of constraints will be tight if Ij1,p and Ij2,p are both set to 1. Therefore,

the value of the objective corresponds to fw(θ, o), where o consists of the items j for which

Ij,1 is set to one.

To complete the proof, we apply Theorem 3.1 from Taskar et al. [2004] to show that the

LP relaxation of this integer program is integral.

9.6.3 The Assignment Problem

In the assignment problem, we are given a set of n agents and a set {1, . . . , n} of items,

and wish to assign each item to exactly one agent. The outcome space of agent i is thus

Ωi = {1, . . . , n}, and its type can be represented by a vector θi ∈ Θi = Rn. The set of

possible type profiles is then Θ = Rn2
.

We consider an outcome rule that maximizes egalitarian welfare in a lexicographic man-

ner: first, the minimum value of any agent is maximized; if more than one outcome achieves

the minimum, the second lowest value is maximized, and so forth. A simple example shows

that this outcome rule violates weak monotonicity (Section 2.2.1), a necessary condition for

the existence of a strategyproof payment rule.

Proposition 3. The outcome rule that maximizes egalitarian welfare for the assignment

problem is not weakly monotone.
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Proof. Consider a setting with two agents and two items. Denote the items by a and b.

Suppose that v2(θ2, a) = 3, v2(θ2, b) = 4.

Suppose that v1(θ1, a) = 1, v1(θ1, b) = 2. When given θ1, θ2, the assignment that opti-

mizes egalitarian welfare gives b to agent 1 and a to agent 2. The minimum value received

by any agent is 2 (the value agent 1 receives for b).

Now consider θ′1, where v1(θ′1, a) = 4, v1(θ′1, b) = 6. When passed θ′1, θ2, the assignment

that optimizes egalitarian welfare gives a to agent 1 and b to agent 2. The minimum value

received by any agent is 4 (the opposite assignment gives minimum value of 3).

We have that v1(θ′1, a)− v1(θ′1, b) = −2 < −1 = v1(θ1, a)− v1(θ1, b) contradicting weak

monotonicity.

This outcome rule can be computed by solving a sequence of integer programs. As such,

our focus in this application is not on studying our framework for the setting of tractable

outcome rules, but rather for understanding its performance on an objective that is very

different than welfare maximization. We continue to assume agent symmetry, and adopt

the view of agent 1.

To complete our specification of the structural SVM framework for this application, we

need to define an attribute map χ4 : Rn2−n×N→ Rs, where the first argument is the type

profile of all agents but agent 1, the second argument is the item assigned to agent 1, and s

is a dimension of our choosing. A natural choice for χ4 is:

χ4(θ−1, j) = (θ2[−j], θ3[−j], . . . , θn[−j]) ∈ R(n−1)2 ,

where θi[−j] denotes the vector obtained from θi by removing the jth entry. The attribute

map thus reflects the agents’ values for all items except item j, capturing the fact that the

item assigned to agent 1 cannot be assigned to any other agent.

9.7 Experimental Evaluation

We perform a series of experiments to test our theoretical framework. To run our exper-

iments, we use the SVM struct package [Joachims et al., 2009], which allows for the use of

custom kernel functions, attribute maps, and separation oracles.
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9.7.1 Setup

We begin by briefly discussing our experimental methodology, performance metrics, and

optimizations used to speed up the experiments.

Methodology

For each of the settings we consider, we generate three data sets: a training set, a validation

set, and a test set. The training set is used as input to Training Problem 2, which in turn

yields classifiers hw and corresponding payment rules pw. For each choice of the parameter

C of Training Problem 2, and the parameter γ if the RBF kernel is used, a classifier hw is

learned based on the training set and evaluated based on the validation set. The classifier

with the highest accuracy on the validation set is then chosen and evaluated on the test

set. During training, we take the perspective of agent 1, and so a training set size of `

means that we train an SVM on ` examples. Once a partial outcome rule has been learned,

however, it can be used to infer payments for all agents. We exploit this fact during testing,

and report performance metrics across all agents for a given instance in the test set.

Metrics

We employ three metrics to measure the performance of the learned classifiers. These

metrics are computed over the test set {(θk, ok)}`k=1.

Classification Accuracy Classification accuracy measures the accuracy of the trained

classifier in predicting the outcome. Each instance of the ` instances has n agents, so in

total we measure accuracy over n` instances:14

accuracy = 100 ·
∑`

k=1

∑n
i=1 I(hw(θi, θ−i) = oki ))

n`
.

Ex Post Regret We measure ex post regret by summing over the ex post regret experi-

enced by all agents in each of the ` instances in the dataset, i.e.,

regret =

∑`
k=1

∑n
i=1 rgt i(θ

k
i , θ

k
−i)

n`
.

14For a given instance θ, there are actually many ways to choose (θi, θ−i) depending on the ordering of
all agents but agent i. We discuss a technique we refer to as sorting in Section 9.7.1, which will choose a
particular ordering. When this technique is not used, for example in application to the assignment problem,
we fix an ordering of the other agents for each agent i, and use the same ordering across all instances.
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Individual rationality violation This metric measures the fraction of individual ratio-

nality violation across all agents:

ir-violation =

∑`
k=1

∑n
i=1 I(irv i(θi, θ−i) > 0)

n`
.

Optimizations

In the case of multi-minded CAs, we first map the inputs θ−1 into a smaller space, which

allows us to learn more effectively with smaller amounts of data. The barrier to using more

data is not the availability of the data itself, but the time required for training, because

training time scales quadratically in the size of the training set due to the use of non-linear

kernels. For this step, we use instance-based normalization, which normalizes the values in

θ−1 by the highest observed value and then rescales the computed payment appropriately,

and sorting, which orders agents based on bid values.

Before passing examples θ to the learning algorithm or learned classifier, they are nor-

malized by a positive multiplier so that the value of the highest bid by agents other than

agent 1 is exactly 1, before passing it to the learning algorithm or classifier. The values and

the solution are then transformed back to the original scale before computing the payment

rule pw. This technique of instance-based normalization leverages the observation that agent

1’s allocation depends on the relative values of the other agent’s reports, so that scaling

all reports by a factor does not affect the outcome chosen. We apply this to multi-minded

CAs and the assignment problem, but not to our experiments on CAs with positive k-wise

dependent valuations.

In the sorting step, instead of choosing an arbitrary ordering of agents in θ−i, we choose

a specific ordering based on the maximum value the agent reports. For example, in a

single-item setting, this amounts to ordering agents by their value. In the multi-minded

CA setting, agents are ordered by the value they report for their most desired bundle. The

intuition behind sorting is that we can again decrease the space of possible θ−i reports the

learner sees and learn more quickly. In the single-item case, we know that the second-price

payment rule only depends on the maximum value across all other agents, and sorting places

this value in the first coordinate of θ−i. We apply sorting to the assignment problem by

ordering agents by their maximum value for any item. We do not apply sorting to our

experiments with k-wise dependent valuations in CAs.
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9.7.2 Single-Item Auction

As a sanity check, we first perform experiments in application to a single-item auction with

the efficient outcome rule, where the agent with the highest bid receives the item. For the

distribution D on value profiles, we simply draw each agent’s value independently from a

uniform distribution on [0, 1]. The outcome rule g allocates the item to the agent with the

highest value. We use a training set size of 300, and validation and test set sizes of 1000.

We use an RBF kernel and parameters C ∈ {104, 105} and γ ∈ {0.01, 0.1, 1}.

In this case, we know that the associated payment function that makes (g, p) strate-

gyproof is the second-price payment rule.

The results reported in Table 9.1 and Figure 9.3 are for the χ1, χ2 attribute maps,

which can be applied to this setting by observing that single-item auctions are a special

case of multi-minded CAs. In particular, letting 0 be the 0 vector of dimension n − 1,

χ1(θ−1, o1) = (θ−1, 0) if o1 = ∅ and χ1(θ−1, o1) = (0, θ−1) if o1 = {1} and χ2(θ−1, o1) = θ−1

if o1 = ∅ and χ2(θ−1, o1) = 0 if o1 = {1}. For both choices of the attribute map we

obtain excellent accuracy and very close approximation to the second-price payment rule.

This shows that the framework is able to automatically learn the payment rule of Vickrey’s

auction (and despite the non-linearity in learning to price the item at what is effectively a

maximum over the values of other agents.)

Table 9.1: Performance metrics for single-item auction.

n
accuracy regret ir-violation
χ1 χ2 χ1 χ2 χ1 χ2

2 99.7 93.1 0.000 0.003 0.00 0.07
3 98.7 97.6 0.000 0.000 0.01 0.00
4 98.4 99.1 0.000 0.000 0.00 0.01
5 97.3 96.6 0.001 0.001 0.02 0.00
6 97.6 97.4 0.000 0.001 0.00 0.02

9.7.3 Multi-Minded CAs

Type Distribution

Recall that in a multi-minded setting, there are m items, and each agent is interested in

exactly κ > 1 bundles. For each bundle, we use the following procedure to determine

which items are included in the bundle. We first assign an item to the bundle uniformly

at random. Then with probability α, we add another random item (chosen uniformly from

the remaining items), and with probability (1 − α) we stop. We continue this procedure
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Figure 9.3: Learned payment rule vs. second-price payment rule for single-item auction with
2 agents, for χ1 (left) and χ2 (right).

until we stop or have exhausted the items. This procedure is inspired by Sandholm’s decay

distribution for the single-minded setting Sandholm [2002], and we use α = 0.75 to be

consistent with that setting, where this parameter value generated harder instances of the

winner determination problem.

Once the bundle identities have been determined, we sample values for these bundles.

Let c be an m-dimensional vector with entries chosen uniformly from (0, 1]. For each agent i,

let di be an m-dimensional vector with entries chosen uniformly from (0, 1]. Each entry of

c denotes the common value of a specific item, while each entry of di denotes the private

value of a specific item for agent i. The value of bundle Sij is then given by

vij = min
Sij′⊆Sij

(
〈Sij′ , βc+ (1− β)di〉

m

)ζ
for parameters β ∈ [0, 1] and ζ > 1. The inner product in the numerator corresponds to a

sum over values of items, where common and private values for each item are respectively

weighted with β and (1 − β). The denominator normalizes all valuations to the interval

(0, 1]. Parameter ζ controls the degree of complementarity among items: ζ > 1 implies that

goods are complements, whereas ζ < 1 means that goods are substitutes. Choosing the

minimum over bundles Sij′ contained in Sij finally ensures that the resulting valuations are

monotonic.

Outcome Rules

We use two outcome rules in our experiments on multi-minded CAs. For the optimal

outcome rule gopt, the payment rule pvcg makes the mechanism (gopt, pvcg) strategyproof.
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Under this payment rule, agent i pays the externality it imposes on other agents. That is,

pvcg,1(θ) =

max
o∈Ω

∑
i 6=1

vi(θi, oi)

−∑
i 6=1

vi(θi, gopt,i(θ)).

The second outcome rule with which we experiment is a generalization of the greedy

outcome rule for single-minded CA Lehmann et al. [2002]. Our generalization of the greedy

rule is as follows. Let θ be the agent valuations and oi(j) denote the jth bundle desired by

agent i. For each bundle oi(j), assign a score vi(θi, oi(j))/
√
|oi(j)|, where |oi(j)| indicates

the total items in bundle oi(j). The greedy outcome rule orders the desired bundles by

this score, and takes the bundle oi(j) with the next highest score as long as agent i has

not already been allocated a bundle and oi(j) does not contain any items already allocated.

While this greedy outcome rule has an associated payment rule that makes it strategyproof

in the single-minded case, it is not implementable in the multi-minded case, as evidenced

by the example provided in the appendix of this chapter.

Description of Experiments

We experiment with training sets of sizes 100, 300, and 500, and validation and test sets

of size 1000. All experiments we report on are for a setting with 5 agents, 5 items, and

3 bundles per agent, and use β = 0.5 to generate the valuations, the RBF kernel, and

parameters C ∈ {104, 105} and γ ∈ {0.01, 0.1, 1}.

Basic Results

Table 9.2 presents the basic results for multi-minded CAs with optimal and greedy outcome

rules, respectively. For both outcome rules, we present the results for pvcg as a baseline.

Because pvcg is the strategyproof payment rule for the optimal outcome rule, pvcg always

has accuracy 100, regret 0, and IR violation 0 for the optimal outcome rule. The main

findings are that our learned payment rule has low regret for the optimal outcome rule and

regret that is about the same as or better than the regret of pvcg when the outcome rule is

greedy. Given that greedy winner determination is seeking to maximize total welfare it is

natural the VCG-based payments would perform reasonably well in this environment.

Across all instances, as expected, accuracy is negatively correlated with regret and ex

post IR violation. The degree of complementarity between items, ζ, as well as the outcome

rule chosen, has a major effect on the results. Instances with low complementarity (ζ = 0.5)

yield payment rules with higher regret, and χ1 performs better on the greedy outcome
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Table 9.2: Results for multi-minded CA with training set size 500.

Optimal outcome rule Greedy outcome rule
accuracy regret ir-violation accuracy regret ir-violation

n ζ pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2

2 0.5 100 70.7 91.9 0 0.014 0.002 0.0 0.06 0.03 50.9 59.1 40.6 0.079 0.030 0.172 0.22 0.12 0.33
3 0.5 100 54.5 75.4 0 0.037 0.017 0.0 0.19 0.10 55.4 57.9 54.7 0.070 0.030 0.088 0.18 0.21 0.36
4 0.5 100 53.8 67.7 0 0.042 0.031 0.0 0.22 0.18 61.1 58.2 57.9 0.056 0.033 0.056 0.14 0.20 0.31
5 0.5 100 15.8 67.0 0 0.133 0.032 0.0 0.26 0.19 64.9 61.3 63.0 0.048 0.027 0.042 0.13 0.19 0.24
6 0.5 100 61.1 68.2 0 0.037 0.032 0.0 0.22 0.20 66.6 63.8 63.8 0.041 0.034 0.045 0.12 0.20 0.24

2 1.0 100 84.5 93.4 0 0.008 0.001 0.0 0.08 0.02 87.8 86.6 84.0 0.007 0.005 0.008 0.04 0.06 0.09
3 1.0 100 77.1 83.5 0 0.012 0.005 0.0 0.13 0.09 85.3 86.7 85.7 0.006 0.006 0.006 0.04 0.07 0.05
4 1.0 100 74.6 81.1 0 0.014 0.009 0.0 0.16 0.12 82.4 86.5 84.2 0.006 0.006 0.007 0.05 0.08 0.08
5 1.0 100 73.4 77.4 0 0.018 0.011 0.0 0.19 0.12 82.7 85.8 84.9 0.007 0.009 0.009 0.04 0.10 0.10
6 1.0 100 75.0 77.7 0 0.020 0.013 0.0 0.20 0.16 80.0 87.4 88.1 0.006 0.007 0.005 0.04 0.08 0.07

2 1.5 100 91.5 96.9 0 0.004 0.000 0.0 0.06 0.02 94.7 91.1 91.7 0.002 0.002 0.002 0.02 0.04 0.04
3 1.5 100 91.0 93.4 0 0.004 0.001 0.0 0.05 0.03 97.1 92.8 93.2 0.001 0.002 0.001 0.01 0.02 0.04
4 1.5 100 92.5 94.2 0 0.003 0.001 0.0 0.03 0.04 96.4 91.5 92.1 0.001 0.003 0.002 0.02 0.07 0.07
5 1.5 100 91.7 93.9 0 0.004 0.002 0.0 0.06 0.03 97.5 90.5 91.4 0.001 0.004 0.002 0.01 0.06 0.04
6 1.5 100 91.9 93.7 0 0.003 0.001 0.0 0.05 0.04 98.4 92.2 92.8 0.000 0.003 0.002 0.01 0.06 0.06

rule while χ2 performs better on the optimal outcome rule. For high complementarity

between items the greedy outcome tends to allocate all items to a single agent, and the

learned price function sets high prices for small bundles to capture this property. For

low complementarity the allocation tends to be split and less predictable. Still, the best

classifiers achieve average ex post regret of less than 0.032 (for values normalized to [0,1])

even though the corresponding prediction accuracy can be as low as 67%.

For the greedy outcome rule, the performance of pvcg is comparable for ζ ∈ {1.0, 1.5}

but worse than the payment rule learned in our framework in the case of ζ = 0.5, where

the greedy outcome rule becomes less optimal.

Effect of Training Set Size

Table 9.3 charts performance as the training set size is varied for the greedy outcome rule.

While training data is readily available (we can simply sample from D and run the outcome

rule g), training time becomes prohibitive for larger training set sizes. Table 9.3 shows that

regret decreases with larger training sets, and for a training set size of 500, the best of χ1

and χ2 outperforms pvcg for ζ = 0.5 and is comparable to pvcg for ζ ∈ {1.0, 1.5}.
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Table 9.3: Effect of training set size on accuracy of learned classifier. Multi-minded CA,
greedy outcome rule. Training set size is given in the column labels for χ1, χ2. pvcg does
not have a training set size.

n ζ
accuracy 100 300 500 regret 100 300 500
pvcg χ1 χ2 χ1 χ2 χ1 χ2 pvcg χ1 χ2 χ1 χ2 χ1 χ2

2 0.5 50.9 54.3 48.2 57.0 46.9 59.1 40.6 0.079 0.045 0.195 0.032 0.098 0.030 0.172
3 0.5 55.4 50.1 49.8 55.7 54.4 57.9 54.7 0.070 0.054 0.078 0.038 0.082 0.030 0.088
4 0.5 61.1 53.4 56.2 56.4 58.5 58.2 57.9 0.056 0.050 0.059 0.040 0.061 0.033 0.056
5 0.5 64.9 14.2 57.9 61.0 61.8 61.3 63.0 0.048 0.173 0.064 0.038 0.048 0.027 0.042
6 0.5 66.6 58.4 58.8 62.2 63.9 63.8 63.8 0.041 0.039 0.059 0.037 0.049 0.034 0.045

2 1.0 87.8 80.7 80.5 84.4 84.1 86.6 84.0 0.007 0.010 0.010 0.009 0.008 0.005 0.008
3 1.0 85.3 74.9 78.0 83.0 80.6 86.7 85.7 0.006 0.020 0.011 0.009 0.009 0.006 0.006
4 1.0 82.4 78.5 80.1 84.2 83.1 86.5 84.2 0.006 0.015 0.014 0.008 0.009 0.006 0.007
5 1.0 82.7 81.0 81.8 84.3 84.3 85.8 84.9 0.007 0.020 0.014 0.010 0.009 0.009 0.009
6 1.0 80.0 81.8 83.7 87.6 88.3 87.4 88.1 0.006 0.062 0.018 0.008 0.005 0.007 0.005

2 1.5 94.7 83.3 88.1 89.3 89.8 91.1 91.7 0.002 0.008 0.003 0.003 0.002 0.002 0.002
3 1.5 97.1 86.9 87.6 90.3 91.5 92.8 93.2 0.001 0.005 0.004 0.003 0.002 0.002 0.001
4 1.5 96.4 88.4 90.7 89.3 90.8 91.5 92.1 0.001 0.005 0.003 0.004 0.003 0.003 0.002
5 1.5 97.5 87.2 88.5 91.4 90.5 90.5 91.4 0.001 0.006 0.004 0.003 0.003 0.004 0.002
6 1.5 98.4 86.3 86.8 91.4 92.5 92.2 92.8 0.000 0.011 0.007 0.004 0.002 0.003 0.002

Table 9.4: Impact of payment offset and null loss fix for ζ = 0.5 and greedy outcome rule,
training set size 300. All results are for χ2, null loss values appear in the second row.

payment
offset

accuracy regret ir-violation ir-fix-welfare-avg
0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0 59.7 61.8 61.7 0.065 0.048 0.042 0.35 0.26 0.21 0.27 0.43 0.52
0.05 61.7 61.2 60.1 0.054 0.045 0.044 0.29 0.20 0.15 0.37 0.54 0.65
0.10 62.1 59.3 56.7 0.048 0.047 0.051 0.23 0.14 0.10 0.48 0.66 0.75
0.15 60.4 55.1 52.2 0.047 0.055 0.064 0.17 0.10 0.06 0.59 0.75 0.84
0.20 57.8 51.7 48.5 0.052 0.067 0.079 0.12 0.06 0.03 0.70 0.83 0.90
0.25 54.3 47.7 44.3 0.061 0.082 0.096 0.08 0.03 0.02 0.79 0.89 0.93
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Figure 9.4: Impact of payment offset and null loss fix for greedy outcome rule, training set
size 300.
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IR Fixes

Table 9.4 summarizes our results regarding the various fixes to IR violations, for the partic-

ularly challenging case of the greedy outcome rule and ζ = 0.5. The extent of IR violation

decreases with larger payment offset and null loss. Regret tends to move in the opposite di-

rection, but there are cases where IR violation and regret both decrease. The three rightmost

columns of Table 9.4 list the average ratio between welfare after and before the deallocation

fix, across the instances in the test set. With a payment offset of 0, a large welfare hit is

incurred if we deallocate agents with IR violations. However, this penalty decreases with

increasing payment offsets and increasing null loss. At the most extreme payment offset

and null loss adjustment, the IR violation is as low as 2%, and the deallocation fix incurs a

welfare loss of only 7%.

Figure 9.4 shows a graphical representation of the impact of payment offsets and null

losses. Each line in the plot corresponds to a payment rule learned with a different null

loss, and each point on a line corresponds to a different payment offset. The payment

offset is zero for the top-most point on each line, and equal to 0.29 for the lowest point

on each line. Increasing the payment offset always decreases the rate of IR violation, but

may decrease or increase regret. Increasing null loss lowers the top-most point on a given

line, but arbitrarily increasing null loss can be harmful. Indeed, in the figure on the left, a

null loss of 1.5 results in a slightly higher top-most point but significantly lower regret at

this top-most point compared to a null loss of 2.0. It is also interesting to note that these

adjustments have much more impact on the hardest distribution with ζ = 0.5.

Item Monotonicity

Table 9.5 presents a comparison of a payment rule learned with explicit enumeration of all

bundle constraints (the default that we have been using for our other results) and a payment

rule learned by optimistically assuming item monotonicity (see Section 9.6.1). Performance

is affected when we drop constraints and optimistically assume item monotonicity, although

the effects are small for ζ ∈ {1.0, 1.5} and larger for ζ = 0.5. Because item monotonicity

allows for the training problem to be succinctly specified, we may be able to train on more

data, and this seems a very promising avenue for further consideration (perhaps coupled

with heuristic methods to add additional constraints to the training problem).
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Table 9.5: Comparison of performance with and without optimistically assuming item
monotonicity. (i-mon) indicates a payment rule learned by optimistically assuming item
monotonicity. greedy outcome rule. Training set size 300.

n ζ
accuracy regret ir-violation

χ2 χ2 (i-mon) χ2 χ2 (i-mon) χ2 χ2 (i-mon)

2 0.5 46.9 46.3 0.098 0.232 0.28 0.38
3 0.5 54.4 8.6 0.082 0.465 0.33 0.06
4 0.5 58.5 48.2 0.061 0.811 0.31 0.25
5 0.5 61.8 57.0 0.048 0.136 0.26 0.26
6 0.5 63.9 61.3 0.049 0.078 0.25 0.20

2 1.0 84.1 82.2 0.008 0.010 0.06 0.08
3 1.0 80.6 80.1 0.009 0.010 0.10 0.09
4 1.0 83.1 79.7 0.009 0.012 0.11 0.11
5 1.0 84.3 77.2 0.009 0.020 0.10 0.11
6 1.0 88.3 83.9 0.005 0.013 0.08 0.11

2 1.5 89.8 89.1 0.002 0.003 0.03 0.06
3 1.5 91.5 91.3 0.002 0.003 0.04 0.04
4 1.5 90.8 89.7 0.003 0.003 0.06 0.06
5 1.5 90.5 87.3 0.003 0.005 0.04 0.05
6 1.5 92.5 70.8 0.002 0.081 0.06 0.17

9.7.4 Combinatorial Auctions with Positive k-wise Dependent Valuations

We experiment with our framework on combinatorial auctions with positive k-wise de-

pendent valuations. We find that our learned payment rules can outperform VCG-based

payment rules in terms of regret for settings with large numbers of items, and outperform

VCG-based payment rules in terms of the trade-off between IR violation and regret. Be-

cause we have a formulation of the separation problem as a small LP as discussed in Section

9.6.2, we are able to train payment rules and compute regret for larger instances.

In order to experiment with positive k-wise dependent valuations in combinatorial auc-

tions, we need a way to generate such valuations. To construct an agent’s valuation, we

first specify the nodes and edges in a graph (V,E), and then assign weights g(v) and g(e)

over the nodes and edges. For every possible edge (j1, j2), we add the edge to the agents’

graph with probability ρ. g(v) is sampled uniformly at random from [0, 1]; the weight for

each added edge is also sampled uniformly at random from [0, 1]. With this setup, the edge

probability parameter ρ lets us generate test instances of varying edge density. So that our

regret numbers are comparable across different size instances, we normalize each agent’s

weights by the expected value for the set of all items.

The outcome rule we use is GREEDY-KWISE outlined in Section 9.6.2. We use a training

set size of 1000 and validation and test sets of size 500. While in the experiments for multi-
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Table 9.6: Basic results for valuations with ρ = 0.1. Metrics for 10 and 20 items are
computed using an approximation based on the tractable separation oracle for our training
problem. Metrics are not computed for VCG-based rules because computation requires
brute force enumeration over all possible bundles(but can be efficiently computed for the
succinctly represented, trained payment rule).

agents items
accuracy regret ir-violation
χ pvcg χ pvcg χ pvcg

6 2 94.9 97.3 0.006 0.008 0.025 0.008
6 4 70.7 82.7 0.020 0.022 0.146 0.045
6 6 53.1 66.4 0.027 0.031 0.246 0.082
6 10 28.3 – 0.033 – 0.442 –
6 20 – – – – – –

minded CA and egalitarian assignment a sample type profile is converted into a single

training point, in these experiments we convert a single sample type profile into n training

points, one corresponding to each of the n agents serving as agent 1. In running our

experiments, we noticed that training in this way improves testing performance (in the

testing phase, each sample type profile is converted into n different testing points). For

this setting, it appears that training on just a single agent for each sampled type profile

over-emphasizes a single agent and learns a payment rule with worse performance when

applied to all agents. We did not observe this in the other two settings (and it would have

been difficult to do this since the training problem does not scale well), but gaining a better

understanding of this phenomenon is a direction for future work.

We compare against a VCG-based payment rule which runs GREEDY-KWISE on all

agents and GREEDY-KWISE on all agents excluding agent i and charges agent i the difference

in value to agents other that i in the two allocations.

Tables 9.6 and 9.7 and Figure 9.7.4 compare our learned payment rules (with 0 null

loss) to the VCG-based payment rule for ρ = 0.1 and ρ = 0.9. The learned payment rule

has better regret, despite having worse accuracy. However, the learned payment rule incurs

significant IR violation.

We examine the IR violation issue in Figure 9.7.4. Here we implement the two IR fixes of

increasing the null loss value and applying payment offsets. We see that across all instances,

we can find settings of the null loss for which our IR / regret curve lies beneath that of the

VCG-based payment rule, indicating that we have settings which have better regret and

lower IR violation. We also see that despite having significant IR failures when we have no

payment offset, we can significantly decrease IR violation at the cost of a small amount of

regret increase by using a payment offset.
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Table 9.7: Basic results for valuations with ρ = 0.9. Metrics for 10 and 20 items are
computed using an approximation based on the tractable separation oracle for our training
problem. Metrics are not computed for VCG-based rules because computation requires
brute force enumeration over all possible bundles (but can be efficiently computed for the
succinctly represented, trained payment rule).

agents items
accuracy regret ir-violation
χ pvcg χ pvcg χ pvcg

6 2 79.9 82.1 0.024 0.028 0.108 0.048
6 4 64.0 51.8 0.038 0.056 0.227 0.118
6 6 61.6 42.7 0.030 0.062 0.229 0.129
6 10 61.6 – 0.026 – 0.238 –
6 20 – – – – – –

9.7.5 The Egalitarian Assignment Problem

In the assignment problem, agents’ values for the items are sampled uniformly and inde-

pendently from [0, 1]. We use a training set of size 600, validation and test sets of size

1000, and the RBF kernel with parameters C ∈ {10, 1000, 100000} and γ ∈ {0.1, 0.5, 1.0}.

We find that our learned payment rules have significantly better accuracy and regret than

VCG-based payment rules. We explain the improvement over VCG-based payments by

observing that the egalitarian rule is not maximizing total welfare, and thus not compatible

in this sense with VCG-based ideas.

The performance of the learned payment rules is compared to that of three VCG-based

payment rules. For this, let W be the total welfare of all agents other than i under the

outcome chosen by g, and Weg be the minimum value any agent other than i receives under

this outcome. We consider the following payment rules:

(1) the vcg payment rule, where agent i pays the difference between the maximum total

welfare of the other agents under any allocation and W ;

(2) the tot-vcg payment rule, where agent i pays the difference between the total welfare

of the other agents under the allocation maximizing egalitarian welfare and W ; and

(3) the eg-vcg payment rule, where agent i pays the difference between the minimum

value of any agent under the allocation maximizing egalitarian welfare and Weg.

The results for attribute map χ4 are shown in Table 9.8. We see that the learned

payment rule pw yields significantly lower regret than any of the VCG-based payment rules,

and average ex post regret less than 0.074 for values normalized to [0, 1]. Since we are

not maximizing the sum of values of the agents, it is not very surprising that VCG-based

payment rules perform rather poorly. The learned payment rule pw can adjust to the
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Figure 9.5: Regret v. Number of Items for learned payment rule and VCG-based payment
rules. For 10 and 15 items, we do not have regret number for the VCG-based rules because
computing regret requires enumeration over all possible bundles. In this case, the regret for
learned payment rules and 10 and 15 items is an upper bound on the true regret obtained
by applying our tractable separation oracle.

outcome rule, and also achieves a low fraction of ex post IR violation of at most 3%.

9.8 Summary and Future Work

Whereas in Chapter 8 we give a computational procedure that makes BnB search monotone

and therefore truthful for known single-minded CAs, in this chapter we relax away from

exact incentive compatibility and propose a framework that applies to general mechanism

design settings. We introduce a new paradigm for computational mechanism design, in

which statistical machine learning is adopted to design payment rules for outcome rules,

and show encouraging experimental results. The mechanism design domain can be multi-
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Table 9.8: Results for assignment problem with egalitarian outcome rule

n
accuracy regret ir-violation

vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw
2 64.3 67.5 67.5 89.0 0.018 0.015 0.015 0.023 0.03 0.01 0.01 0.03
3 48.0 52.1 42.5 77.9 0.070 0.077 0.127 0.041 0.06 0.07 0.03 0.04
4 40.6 43.1 30.8 71.0 0.111 0.123 0.199 0.054 0.07 0.09 0.03 0.02
5 32.4 35.3 24.5 63.9 0.157 0.169 0.254 0.071 0.10 0.12 0.03 0.01
6 27.1 29.9 20.0 59.0 0.189 0.208 0.290 0.074 0.10 0.13 0.03 0.01

parameter, and the outcome rules can be specified algorithmically and need not be designed

for objectives that are separable across agents. Central to our approach is to relax incentive

compatibility as a hard constraint on mechanism design, adopting in its place the goal of

minimizing expected regret while requiring agent-independent prices.

Future Work

Future directions of interest include:

1. Considering alternative learning paradigms, including formulations of the problem as

a regression rather than classification problem.

2. Gaining a better understanding of our results for single-minded CA in relation to

Lahaie [2011]. Lahaie [2011] shows that only quadratic prices are needed to find

market clearing prices for single-minded CAs. In light of these results, it would be

interesting to do a more thorough examination of the trade-off between polynomial and

RBF kernels when learning payment rules for single-minded CA. Though the market

clearing problem differs from the problem of learning admissible, agent-independent

payment rules, it does suggest that polynomial kernels are quite powerful and it may

not be necessary to go all the way to RBF kernels.

3. Developing formulations that can impose constraints on properties of the learned pay-

ment rule, concerning for example the core, budgets, or individual-rationality proper-

ties.

4. Developing methods that learn classifiers more likely to induce feasible outcome rules,

so that these learned outcome rules can be used directly.

5. Extending the approach to domains without money by developing a structure on

discriminant functions appropriate to the incentive considerations facing rational self-

interested agents in such domains.
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6. Investigating the extent to which alternative goals such as regret percentiles or interim

regret can be achieved through machine learning.

7. Continuing to explore succinct valuation representations in our method, perhaps by

supporting the use of concise approximate valuations with additional kernel operators.

Appendix: Greedy Allocation Rule is not Weakly Monotone

Consider a setting with a single agent and four items.

If the valuations θ1 of the agent are

v1(θ1, o1) =


20 if o1 = {1, 2, 3, 4}

12 if 1 ∈ o1 and j /∈ o1 for some j ∈ {2, 3, 4}, and

0 else

then the allocation is {1}.

If the valuations are θ′1 such that

v1(θ′1, o1) =


12 if o1 = {1, 2, 3, 4}

5 if 1 ∈ o1 and j /∈ o1 for some j ∈ {2, 3, 4}, and

0 else

then the allocation is {1, 2, 3, 4}.

We have v1(θ′1, {1, 2, 3, 4}) − v1(θ′1, {1}) < v1(θ1, {1, 2, 3, 4}) − v1(θ1, {1}) contradicting

weak monotonicity.
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Figure 9.6: Regret v. IR Violation trade-off for learned payment rule and VCG-based
payment rule for k-wise dependent valuations. We do not have regret numbers for the VCG-
based rule and 10 and 20 items because computing regret requires brute force enumeration
over all possible bundles. In this case, the regret numbers for the learned payment rule are
an upper bound on regret obtained by using our tractable separation oracle.
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Conclusions

Resource allocation problems are abundant in modern day life. In this dissertation, we

undertake the study of resource allocation procedures that satisfied the properties of fairness,

truthfulness, or both. For fairness, we focus on the cake cutting problem of dividing a

heterogeneous, divisible good. For truthfulness, we study both the cake cutting problem

as well as combinatorial auctions (CAs). The approaches are inspired by thinking about

computational aspects of resource allocation problems. For cake cutting, we consider issues

of communication complexity and depart from the classic cake cutting setting where agent

valuations cannot be succinctly communicated. Instead, we consider a direct revelation

model under restricted valuations where valuations can be succinctly communicated to a

decision maker. This minor change in perspective opens a large number of interesting

questions, some of which we tackle in this dissertation. On the mechanism design side, we

take computational approaches to mechanism design whereby our mechanisms cannot be

specified by hand but rather are the result of some computational procedure. This helps

us leverage effective heuristic methods for the purposes of mechanism and circumvent the

analytical difficulties associated with complex mechanism design settings.

The computer science approaches outlined above are important to bridging the gap

between theory and practice. The assumptions on cake cutting, while restrictive, allow for

stronger results and also have the potential to create algorithms that have more natural

interactions with agents. The contributions to computational approaches to mechanism

design give us approaches for dealing with complex settings while keeping in mind the

importance of computational tractability. We believe the lens of computation can facilitate

the adoption and use of research on resource allocation in practice.
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10.1 Brief Review

10.1.1 Cake Cutting with Restricted Valuations

The first part of this dissertation examines the cake cutting problem of fairly dividing a

heterogeneous, divisible good. In Chapter 3, we introduce the cake cutting problem and

discuss classic results from the literature. We then describe the focus of the cake cutting

work in this dissertation, introducing a direct revelation model and restricted families of

valuations. The most restrictive family of valuations, piecewise uniform valuations, capture

the situation where intervals of cake are either desired or undesired, with the marginal value

being the same across all desired intervals. We also introduce the more general classes of

piecewise constant and piecewise linear valuations. Though these are restrictive, they are

significantly more general than piecewise uniform valuations and can be used to attain close

approximations of general valuations. Though they are less expressive, the key advantage

to these valuations is that they can be succinctly communicated. In the most general case of

piecewise linear valuations, an agent can specify the intervals on which its density function is

linear and provide the slope and intercept of the density function on each of these intervals.

Succinct representation allows for a new paradigm akin to the direct revelation model in

mechanism where cake cutting algorithms operate directly on agents’ exact valuations. The

contributions in this section of the dissertation assume these restricted families of valuations

and a direct revelation model. Specifically, the main contributions are:

• Algorithms for welfare maximization. In Section 4.2 we design algorithms that

find maxsum fair allocations, i.e. allocations that have the best social welfare among

a set of fair allocations. We provide a linear programming approach for the case of

piecewise constant valuations. For piecewise linear valuations, we prove that exactly

computing a maxsum EF allocation is impossible since there are cases where all max-

sum EF allocations require cuts at irrational endpoints, even if the agents’ valuations

are specified by rational numbers. Circumventing this, we provide an algorithm for

two agents and piecewise linear valuations that finds an allocation with envy at most

ε and welfare at least as great as any maxsum EF allocation. This algorithm runs in

time polynomial in log(1/ε). We also provide an algorithm for more general valua-

tions that finds an allocation with envy at most ε and welfare at most ε less than any

maxsum EF allocation in time polynomial in 1/ε.

• Analysis of maxsum fair allocations. In Section 4.3 we analyze the properties

of maxsum fair allocations. The main findings are that maxsum EF allocations may
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not be Pareto-efficient and that the welfare of maxsum EF allocations are at least

as great as the welfare of maxsum EQ allocations when agents have piecewise linear

valuations. These findings shed light on the question on the quality of maxsum fair

allocations and how maxsum fair allocations differ for various notions of fairness.

• More expressive cake cutting. One potential barrier to the application of cake

cutting algorithms is the assumption that agent valuations are completely additive.

That is, agents receive positive value even if they are given a set of very small, disjoint

intervals. In Chapter 5, we study the special case of piecewise uniform valuations, but

allow agents to have a minimum length parameter λ that specifies that intervals less

than a certain length yield no value. Exact proportionality is not possible in this set-

ting, and we give approximately proportional algorithms that are essentially optimal

for this setting. We also investigate approximate proportionality and envy-freeness

together and give an intricate algorithm that finds an approximately proportional and

EF allocation for two agents.

• Truthful cake cutting. The previous results assume that agents truthfully report

their valuations, or alternatively, that valuations are publicly known to the cake cut-

ting algorithm. In Chapter 6, we investigate cake cutting under the assumption that

agents are strategic and may misreport their preferences if it is beneficial. The main

result is a DSIC, proportional, EF, Pareto-efficient, and polynomial time deterministic

mechanism for any number of agents with piecewise uniform valuations. The result

depends on a particular network flow graph and application of the max-flow min-cut

theorem for polynomial time computation and to prove incentive compatibility. The

mechanism resembles the probabilistic serial and simultaneous eating mechanisms for

the random assignment problem. We also give randomized mechanisms. These mech-

anisms handle piecewise linear valuations, but are only truthful in expectation (over

the randomness of the mechanism).

10.1.2 Computational Approaches to Mechanism Design

The second part of this dissertation takes two different computational approaches to mech-

anism design. While classical mechanism design in economics typically seeks an analytic

description of mechanisms, we adopt approaches that produce mechanisms as the result of a

computational process. This allows us to leverage sophisticated, heuristic algorithms for the

purposes of mechanism design and also design mechanisms for complex, multi-parameter
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settings that are difficult to analyze or reason about theoretically. We have two specific

contributions:

• Monotone branch and bound (BnB) search. In Chapter 8, we take the ap-

proach of heuristic mechanism design [Parkes, 2009], using BnB search as the heuris-

tic algorithm in application to known single-minded CAs. We design a procedure

that performs sensitivity analysis on the BnB search tree, deallocating items when

we find failures of monotonicity. This yields a modified BnB search procedure that

is monotone in the agents’ reported values for their publicly known target bundle.

We implement and test monotone BnB search on distributions from the literature

and find settings where monotone BnB search produces welfare better than existing

monotone approximation algorithms while exhibiting better runtime (including the

overhead introduced by sensitivity checking) than running BnB search to optimality.

• Learning payment rules. While our work on BnB search treats incentive compat-

ibility as a hard constraint and therefore modifies the outcome rule to attain exact

incentive compatibility, in Chapter 9 we examine a dual approach where we take the

outcome rule as fixed and seek a payment rule that minimizes agent incentives to

misreport. We draw a novel connection between incentive compatible mechanisms

and a particular type of multi-class classifier. The specific classification problem we

solve is to predict the outcome rule given an agent’s reported valuations. A payment

rule can be derived from the form of the learned classifier. An exact classifier gives

an incentive compatible payment rule, while a classifier that minimizes a carefully

defined error function produces a payment rule that minimizes expected ex-post re-

gret, where the expectation is take over valuations drawn from a commonly known

distribution. We implement the techniques using structural support vector machines

and apply the framework to multi-minded CAs, positive k-wise dependent valuations,

and the assignment problem where the outcome rule maximizes egalitarian welfare.

In each of these settings we find that the learned payment rules have expected regret

better than the VCG-inspired baselines we compare against.

10.2 Future Directions

In this section I outline some possible future directions related to the topics discussed in

this dissertation. While each chapter contains specific areas for future work, I view the

issues listed below as more high-level directions and agendas to be pursued.
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Restricted valuations in the classic model of cake cutting. Our work on cake

cutting focuses on a direct revelation model where agents have restricted families of val-

uations. It is interesting to think about whether we can obtain stronger results in the

classic model of cake cutting while assuming restricted families of valuations. Recent work

by Kurokawa et al. [2013] takes a step in this direction by showing that a bounded EF

algorithm for piecewise uniform valuations in the classic cake cutting model would imply a

bounded EF algorithm for general valuations.

Truthfulness, fairness, and efficiency. The main open question from Chapter 6 is

whether we can obtain truthful, proportional, and EF mechanisms when agent valuations are

piecewise constant (rather than piecewise uniform). As discussed in that chapter, previous

results show that truthfulness and Pareto-efficiency are not possible [Schummer, 1997], but

truthfulness and fairness may still be possible.

We can also consider truthful and fair (EF) CAs. Several papers consider whether

truthful, EF, and welfare-maximizing mechanisms exist for different classes of valuations

[Pápai, 2003, Cohen et al., 2011, Feldman and Lai, 2012]. In particular, Feldman and Lai

[2012] show that such mechanisms do not exist for a subclass of sub-additive valuations.

Given this impossibility, a natural question is to consider mechanisms that relax exact

truthfulness, fairness, or welfare-maximization.

Approximate incentive compatibility. Can we extend the framework for learning

payment rules to other notions of approximate incentive compatibility? The current frame-

work learns a rule that minimizes expected ex-post regret, averaged across all agents given

a random draw from the distribution of types. A different measure to minimize would be

interim regret. Fixing an agent’s type, interim regret compares an agent’s expected utility

under truthful reports to the agent’s expected utility under the best possible report, where

the expectation is taken over other agent’s types conditional on drawing the agent’s type.

We could minimize expected interim regret where this regret is averaged over a draw of the

agent’s type from the distribution (this is a weaker notion than expected ex post regret),

or we could try to minimize a threshold γ that guarantees that interim regret is at most γ.

These alternate measures of approximate incentive compatibility do not map nicely to ex-

isting machine learning approaches, but it would be interesting to try and develop methods

to learn payment rules that minimize these measures.

Along these same lines, it would be interesting to do some empirical work on appoximate

incentive compatibility. Specifically, in Chapter 9 the payment rules we learn have an agent

independence property. Is agent independence enough to ensure truthful reports in practice?
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How do agents behave when participating in mechanisms with payment rules that satisfy

agent independence but are not fully incentive compatible? Is there some way to quantify

how incentive compatible such mechanisms are? For instance, if deviations are possible

but require large changes in reports, intuitively these mechanisms will be less vulnerable

to manipulation. Similarly, though Chapter 9 focuses on finding payment rules with small

regret, it might be the case that even small amounts of regret cause agents to deviate,

thereby changing the distribution that other agents face, thereby causing the mechanism

to unravel. It would be nice to quantify the robustness of the learned payment rules. In

other words, if agents best respond to the learned payment rules, do their strategies end up

deviating greatly from truthful reporting?

It is also interesting to think about combining heuristic mechanism design with approx-

imate incentive compatibility. In the work in Chapter 8 we perform sensitivity analysis and

make BnB search fully monotone. This can be costly due to deallocations that occur when

violations of monotonicity are discovered. We can imagine performing sensitivity analysis

that decreases the number of monotonicity violations without making the outcome rule ex-

actly monotone. There is a trade-off here between exact incentive compatibility and better

welfare due to fewer deallocations.

Learning and mechanism design without money. Guo and Conitzer [2010a] in-

vestigate a mechanism design without money setting where artificial payments are used to

construct a truthful in expectation mechanism for divisible items. The main idea is the

following. Given a subset of items, design instantaneous pricing functions for each item

(that do not depend on the agents’ reports), and grant each agent a budget. To allocate

the items, randomly order the agents and let agents spend their budget on the remaining

items. Agents have no incentive to misreport since their reports do not affect the prices

or budgets, and the agents will purchase the combination of items that maximizes their

value. Guo and Conitzer [2010a] show how certain families of pricing functions can yield

good worst case guarantees on social welfare (compared to the optimal social welfare).

An interesting direction for future work is to try and extend the learning framework from

Chapter 9 to a mechanism design without money setting. Assuming the existence of a prior

on agent types, perhaps machine learning methods can be used to learn pricing functions

that have good expected social welfare (in contrast to the focus on worst-case analysis

of Guo and Conitzer [2010a]). While the pricing functions studied by Guo and Conitzer

[2010a] cannot depend on the agents’ reports (otherwise an agent might misreport so that

the other agents get higher or lower prices and purchase items that are more advantageous
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to the agent), in a Bayesian setting it may be useful to split the agents and items into

separate groups and use the reports of agents in other groups to price and allocate items

among a group of agents. This brings the problem closer to the framework of Chapter 9

where payment rules can be functions of other agents’ reports.

Selecting outcome rules based on regret. Adopting the results of Chapter 9 as a

module, we can think about parameterizing a family of outcome rules and trying to find

the parameterization that minimizes regret. It would be interesting to come up with some

domains where we have natural parameterizations of outcome rules and adopt this extra

layer on top of the framework for learning payment rules.
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Sébastien Lahaie. A kernel-based iterative combinatorial auction. In Proceedings of the 25th

AAAI Conference, pages 695–700, 2011.

John K. Lai and David C. Parkes. Monotone branch-and-bound search for restricted com-

binatorial auctions. In Proceedings of the 12th EC, pages 705–722, 2012.

Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear

programming. J. ACM, 58(6):25, 2011.

Ron Lavi, Ahuva Mu’alem, and Noam Nisan. Towards a characterization of truthful com-

binatorial auctions. In Proceedings of the 44th FOCS Symposium, pages 574–583, 2003.

Daniel Lehmann, Liadan I. O’Callaghan, and Yoav Shoham. Truth revelation in rapid,

approximately efficient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for

combinatorial auction algorithms. In Proceedings of the 2nd ACM-EC Conference, pages

66–76, 2000.

Anton Likhodedov and Tuomas Sandholm. Approximating revenue-maximizing combina-

torial auctions. In Proceedings of the 20th AAAI Conference, pages 267–274, 2005.

Richard Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately

fair allocations of indivisible goods. In Proceedings of the 6th EC, pages 125–131, 2004.

Benjamin Lubin. Combinatorial Markets in Theory and Practice: Mitigating Incentives and

Facilitating Elicitation. PhD thesis, School of Engineering and Applied Sciences, Harvard

University, 2010.

215



CHAPTER 10 BIBLIOGRAPHY

Benjamin Lubin and David C. Parkes. Quantifying the strategyproofness of mechanisms

via metrics on payoff distributions. In Proceedings of the 25th UAI Conference, pages

349–358, 2009.

Benjamin Lubin and David C. Parkes. Approximate strategyproofness. Current Science,

103(9):1021–1032, 2012.

Roy E. Marsten and Thomas Morin. Parametric integer programming: The Right-Hand

side case. Annals of Discrete Mathematics, 1:375–390, 1977.

Andreau Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic Theory.

Oxford University Press, 1995.

Avishay Maya and Noam Nisan. Incentive compatible two player cake cutting. In Proceed-

ings of the 8th WINE, pages 170–183, 2012.

Nimrod Megiddo. A good algorithm for lexicographically optimal flows in multi-terminal

networks. Bulletin of the American Mathematical Society, 83:407–409, 1979.

Elchanan Mossel and Omer Tamuz. Truthful fair division. In Proceedings of the 3rd SAGT,

2010. To appear.

Ahuva Mu’alem and Noam Nisan. Truthful approximation mechanisms for restricted com-

binatorial auctions. Games and Economics Behavior, 64:612–631, 2008.

Roger B. Myerson. Incentive-compatibility and the bargaining problem. Econometrica, 47

(1):61–73, 1979.

Roger B. Myerson. Optimal auction design. Mathematics of Operations Research, 1:58–73,

1981.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization.

J. Wiley and Sons, Inc., 1998.

Jerzy Neyman. Un théorèm d’existence. C. R. Acad. Sci. Paris, 222:843–845, 1946.

Noam Nisan. Bidding languages for combinatorial auctions. In P. Cramton, Y. Shoham,

and P. Steinberg, editors, Combinatorial Auctions, chapter 9, pages 215–232. MIT Press,

2006.

216



CHAPTER 10 BIBLIOGRAPHY

Noam Nisan. Introduction to mechanism design (for computer scientists). In Noam Nisan,
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