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Abstract
Variable selection methods play important roles in modeling high-dimensional data and

are key to data-driven scientific discoveries. In this thesis, we consider the problem of variable

selection with interaction detection. Instead of building a predictive model of the response

given combinations of predictors, we start by modeling the conditional distribution of pre-

dictors given partitions based on responses. We use this inverse modeling perspective as

motivation to propose a stepwise procedure for e↵ectively detecting interaction with few

assumptions on parametric form. The proposed procedure is able to detect pairwise interac-

tions among p predictors with a computational time of O(p) instead of O(p2) under moderate

conditions. We establish consistency of the proposed procedure in variable selection under

a diverging number of predictors and sample size. We demonstrate its excellent empirical

performance in comparison with some existing methods through simulation studies as well

as real data examples.

Next, we combine the forward and inverse modeling perspectives under the Bayesian

framework to detect pleiotropic and epistatic e↵ects in e↵ects in expression quantitative loci

(eQTLs) studies. We augment the Bayesian partition model proposed by Zhang et al. (2010)

to capture complex dependence structure among gene expression and genetic markers. In

particular, we propose a sequential partition prior to model the asymmetric roles played

by the response and the predictors, and we develop an e�cient dynamic programming algo-
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rithm for sampling latent individual partitions. The augmented partition model significantly

improves the power in detecting eQTLs compared to previous methods in both simulations

and real data examples pertaining to yeast.

Finally, we study the application of Bayesian partition models in the unsupervised learn-

ing of transcription factor (TF) families based on protein binding microarray (PBM). The

problem of TF subclass identification can be viewed as the clustering of TFs with variable

selection on their binding DNA sequences. Our model provides simultaneous identification

of TF families and their shared sequence preferences, as well as DNA sequences bound pref-

erentially by individual members of TF families. Our analysis may aid in deciphering cis

regulatory codes and determinants of protein-DNA binding specificity.
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Chapter 1

Introduction

Recently there has been a significant surge of interest in analytically accurate, numerically

robust, and algorithmically e�cient variable selection methods, largely due to the tremen-

dous advance in data collection techniques such as those in genetics, internet, and marketing.

The importance of discovering truly influential factors from a large pool of possibilities is now

widely recognized by both general scientists and quantitative modelers. Motivated by di↵er-

ent scientific applications, developments of variable selection techniques encompass various

dimensions of statistical modeling including:

• Parametric versus nonparametric models. When a specific form can be derived from

solid scientific arguments, parametric models are more accurate in making predic-

tions. In other cases, nonparametric models are more flexible and robust to model

mis-specifications, especially in the stage of variable screening and data exploratory

analysis. In practice, nonparametric procedures usually involve choosing a discretiza-

tion (or partition) scheme of continuous data, reflecting a bias-variance trade-o↵ on

the resolution of our model assumptions.
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• Univariate versus multivariate responses. While it is straightforward to regress each

univariate component onto predictors separately, a joint model of multiple responses

can reveal relationships among responses and aggregate information from correlated

responses to improve the signal strength in selecting important predictor variables.

• Supervised versus unsupervised learning problems. In supervised learning problems,

such as classification and regression, the inclusion of redundant variables in the learning

procedure may degrade the results. Similarly, in clustering, or unsupervised learning

problems, the structure of interest may be best represented using only a few of the

feature variables and some form of variable selection prior to, or incorporated into the

fitting procedure is advisable.

• Frequentist versus Bayesian approaches. Frequentist methods usually enjoy computa-

tional simplicity and asymptotic properties such as consistency. On the other hand,

Bayesian framework provides a coherent way to take into account prior knowledge and

uncertainties in model selection. Variable selection strategies have benefited from both

Frequentist and Bayesian ideas and the interplay of the two standpoints continues to

inspire the development of new methods.

In this thesis, we will explore an additional dimension in statistical modeling for variable

selection, the forward versus inverse modeling perspective, which leads to the development

of partition models for several applications.
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1.1 An Overview of Variable Selection Methods

Under linear regression models, various regularization methods have been proposed for

simultaneously estimating regression coe�cients and selecting predictors. Many promising

algorithms, such as Lasso (Tibshirani, 1996; Zou, 2006; Friedman et al., 2007), LARS (Efron

et al., 2004) and smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), have

been invented. When the number of predictors is extremely large, Fan and Lv (2008) have

proposed a sure independence screening (SIS) framework that first independently selects

variables based on their correlations with the response and then applies variable selection

methods in the second step.

When the relationship between the response Y and predictors X = (X
1

, X
2

, . . . , Xp)T is

beyond linear, the performance of the variable selection methods based on the linear model

assumption can be severely compromised. In his seminal paper on dimension reduction, Li

(1991) proposed a semi-parametric index model of the form

Y = f(�T
1

X,�T
2

X, . . . ,�T
q X, ✏), (1.1)

where f is an unknown link function and ✏ is a stochastic error independent ofX. A sliced in-

verse regression (SIR) method was developed by Li (1991) to estimate the so-called su�cient

dimension reduction (SDR) directions �
1

, . . . ,�q. Since the estimation of SDR directions

does not automatically lead to variable selection, various methods have been developed to

perform dimension reduction and variable selection simultaneously in the nonlinear setting.

For example, Li (2007) developed sparse SIR (SSIR) algorithm to obtain shrinkage estimates

of the SDR directions under L
1

norm. Zhong et al. (2012) proposed a stepwise procedure

called correlation pursuit (COP) for index models under the SIR framework.
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The number of variables to be considered can be even larger with the inclusion of inter-

action terms between predictors. Consider the following simple example with a regression

model for a univariate response variable Y and p independent normally distributed predictor

variables X = (X
1

, X
2

, . . . , Xp)T ,

Y = X
1

X
2

+ 0.1✏, (1.2)

where X ⇠ MVNp(0, Ip) and ✏ ⇠ N(0, 1). For illustrative purpose, we add a relatively small

noise term 0.1✏ here. Since there are
�

p
2

�

pairwise interactions, fitting regression models

with 2-way interactions using variable selection methods, or even the sure independence

screening procedure, is challenging when one has a moderate number of predictor variables,

say p = 1000. Recently, there has been considerable e↵ort in fitting interaction models in

the statistical literatures. For example, Bien et al. (2012) developed hierNet, an extension of

Lasso to consider interactions in a model if one or both variables are marginally important

(referred to as hierarchical interactions by the authors). Li et al. (2012) proposed a sure

independence screening procedure based on distance correlation (DC-SIS) that is shown to

be capable of detecting important variables when interactions are presented.

1.2 Forward versus Inverse Modeling Perspectives

Most of the aforementioned methods are derived from a forward modeling perspective,

that is, a model for the conditional distribution of Y given X. When predictor variables

X can be treated as random, we obtain a di↵erent modeling perspective by “flipping” the

roles of X and Y and putting the response Y behind the (conditioning) bar, which we

call an inverse model. Indeed, this inverse modeling perspective has been taken by several
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researchers and has led to new developments in dimension reduction and variable selection

methods. Cook (2007) proposed inverse regression models for dimension reduction, which

have deep connections with the SIR method. Simon and Tibshirani (2012) proposed a

permutation-based method for testing interactions by exploring the connection between the

forward logistic model and the inverse normal mixture model when the response Y is binary.

Another classical method derived from the inverse modeling perspective is the Näıve Bayes

classifier for classifications with high-dimensional features. Although Näıve Bayes classifier

is limited by its strong independence assumption, it can be generalized by modeling the

joint distribution of features. Murphy et al. (2010) proposed a variable selection method

using Bayesian information criterion (BIC) for model-based discriminant analysis. Zhang

and Liu (2007) proposed a Bayesian method called BEAM to detect epistatic interactions in

genome-wide case-control studies, where Y is binary and X are discrete.

The inverse modeling perspective can also shed lights on interaction detections. Figure 1.1

shows the contour plot for the joint distribution of Y and X
1

from the example in (1.2). If

we divide the response into five slices and calculate the mean and variance of X
1

within each

slice (as shown in Figure 1.1), we can see that although X
1

is marginally uncorrelated with

Y and the conditional means of X
1

are the same, the conditional variances of X
1

across slices

are very di↵erent. Instead of screening all the
�

p
2

�

= O(p2) pairwise interaction terms, we can

discover the importance of X
1

and X
2

by examining the conditional variances of p individual

predictors given the sliced response, which only requires a computational complexity of O(p).

Motivated by this observation, in this thesis we investigate an inverse modeling approach to

attack the problem of interaction detection without imposing model-specific assumptions on

the relationship between the response and predictors.
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Figure 1.1: Left panel: contour plot for the joint density of Y and X
1

in the example (1.2).
Right panel: conditional means and variances of X

1

given slices of Y . Slices are indicated by
di↵erent colors and round dots mark the conditional means of X

1

across slices. The sample
conditional variances of X

1

within di↵erent slices (from top to bottom) are: 2.29, 0.92, 0.41,
0.98 and 2.33.

1.3 Integrating Two Perspectives with Partition Model

In Chapter 2, we propose a statistical model for variable selection with interaction detec-

tion under the sliced inverse regression framework. A stepwise procedure based on likelihood-

ratio test, which we refer to as SIRI, is developed to select relevant predictors from a inverse

modeling perspective. Frequentist properties of the proposed variable selection procedure

are established and, in particular, its asymptotic behavior under a diverging number of pre-

dictors and sample size is investigated. Although the proposed procedure shows promising

performance in comparison with existing methods in both simulation studies and real data

examples, there are several limitations: (1) the choice of fixed slicing scheme is rather ad

hoc; (2) stepwise variable selection methods tend to miss important predictor with weak

marginal but strong joint e↵ects; (3) there is no straightforward generalization to model
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multiple responses and their correlations. These limitations motive us to seek a Bayesian

analogue of the slice inverse regression framework.

Under a Bayesian framework, we generalize the concept of slice by introducing a latent

variable T that we call individual type. Conditioning on individual type T , we first decouple

the forward and inverse perspectives by temporarily releasing both X and Y out of the

(conditioning) bar and modeling them separately. Then, we combine both models to draw

posterior inferences on T given its prior distribution. The question that remains is how

best to model hidden individual type T . The Dirichlet process prior, a common choice in

unsupervised Bayesian clustering, is flexible but not suitable for modeling individual types

in regression problems. Since our objective here is to extract information from predictors X

that can be used to explain variation in the response Y , the Dirichlet process prior gives X

and Y too much “freedom” and does not respect the asymmetric roles played by X and Y .

To accommodate the objective of supervised learning, in Chapter 3, we propose a sequential

partition prior for modeling individual type T and an e�cient sampling algorithm based on

dynamic programming.

1.4 Applications in Genetics and Gene Transcriptional

Regulations

Developments of statistical models and variable selection methods in this thesis are moti-

vated by genetic studies in expression quantitative trait loci (eQTL) and biological research

in gene transcriptional regulation.

Expression quantitative trait loci (eQTLs) are genomic loci that regulate expression levels

of genes. By assaying gene expression and genetic variation simultaneously on a genome-
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wide basis, scientists wish to discover groups of genomic loci (among millions) that can a↵ect

the expression of a subset of genes (among thousands). The problem can be viewed as a

multivariate regression with variable selection on both responses (gene expression) and pre-

dictors (genetic markers), including also multi-way interactions among correlated predictors

(called epistatic e↵ects of genetic markers). Motivated by BEAM model (Zhang and Liu,

2007) for genome-wide case-control studies, Zhang et al. (2010) proposed a Bayesian par-

tition model for eQTL studies with continuous responses (expression levels of genes) and

discrete predictors (genotypes of genetic markers).

Transcription factors (TFs) regulate the expression of their target genes through interac-

tions with specific DNA binding sites in the genome. In our e↵ort to generalize the partition

model to identify key regulatory TFs in embryonic stem cells, when both the response (gene

expression) and predictors (TF binding specificities) are continuous, we found interesting

links with sliced inverse regression (SIR) and correlation pursuit (COP) that finally lead

to the development of a procedure for detecting interactions from an inverse modeling per-

spective, which we named SIRI in Chapter 2. The proposed procedure can be viewed as

a Frequentist analogue of the Bayesian partition model (Zhang et al., 2010) for continuous

response and predictor variables.

TFs with similar structures can be divided into subclasses, with more closely related pro-

teins exhibiting more similar DNA binding preferences. Numerous studies have employed

universal protein binding microarray (PBM) (Berger et al., 2006) technology to determine

the in vitro binding specificities of hundreds of TFs for all possible 8-bp DNA sequences

(8-mers). Identification of TF subclasses based on PBM 8-mer data can be viewed as an

unsupervised learning (clustering) problem with variable selections. In Chapter 4, we gen-

eralize the Bayesian partition model to provide simultaneous identification of TF subclasses
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and their shared sequence preferences, and also of 8-mers bound preferentially by individual

members of TF subclasses. Such results may aid in deciphering cis regulatory codes and

determinants of protein-DNA binding specificity.

The development of SIRI and its application in transcriptional regulation also provide

new research ideas on improving the partition model for eQTL studies. Inspired by a dynamic

slicing scheme designed for SIRI, we propose a sequential partition prior, which accounts for

the asymmetric roles played by response and predictors in eQTL problems, and develop an

e�cient dynamic programming algorithm for sampling latent individual partitions in Chap-

ter 3. We further augment the Bayesian partition model to capture complex dependence

structure among gene expression and genetic markers, especially negative co-expression be-

tween genes and linkage disequilibrium (LD) between genetic markers. Through simulation

studies and a real data example in yeast, we demonstrate how the augmented Bayesian

partition model achieved significantly improved power in detecting eQTLs compared to the

original model proposed by Zhang et al. (2010) and other traditional methods.

1.5 Outline

An outline for the remainder of this dissertation is as follows. Chapter 2 gives a detailed

account of the SIRI method for variable selection and interaction detection with comparisons

and connections to previous methods. Chapter 3 elaborates the Bayesian partition model

and its extension for identifying pleiotropic and epistasis eQTLs. Chaper 4 studies the

application of partition model in unsupervised learning of TF subclasses based on PBM

k-mer data. Chapter 5 summarizes, pointing out some directions for future research.
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Chapter 2

Sliced Inverse Regression with

Interaction Detection

Let Y 2 R be a univariate response variable and X = (X
1

, X
2

, . . . , Xp)T 2 Rp be a vector

of p continuous predictor variables with covariance matrix ⌃p = Cov (X). {(xi, yi)}ni=1

are

independent observations of (X, Y ). For discrete response, we can naturally group {yi}ni=1

into a finite number of classes. For continuous response, the range of {yi}ni=1

can be divided

into H disjoint intervals, referred to as slices, which are denoted as S
1

, S
2

, . . . , SH . We define

a random variable S(Y ) as the slice membership of response Y , that is, S(Y ) = h if Y 2 Sh.

For a fixed slicing scheme, we denote nh = |Sh| = shn where
PH

h=1

sh = 1.

The working model of the sliced inverse regression (SIR) method is given by (1.1). After

standardization, Z = ⌃
� 1

2

p [X� E (X)], we can rewrite model (1.1) as

Y = f
�

⌘T
1

Z,⌘T
2

Z, . . . ,⌘T
q Z, ✏

�

with ⌘i = ⌃
1

2

p�i. (2.1)

where f is an unknown link function and ✏ is a stochastic error independent ofX. The SIR al-
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gorithm was motivated by the following observation: under model (2.1), if E
�

bTZ|⌘T
1

Z, . . . ,⌘T
q Z

�

is linear in ⌘T
1

Z, . . . ,⌘T
q Z for any vector b 2 Rp, then E (Z|Y ) is contained in the linear sub-

space spanned by ⌘
1

, . . . ,⌘q (Li, 1991). So if the first q largest eigenvalues of Cov (E (Z|Y ))

are all positive, SDR directions can be obtained by the corresponding eigenvectors.

Eigenvalues of Cov (E (Z|Y )) also connect SIR with multiple linear regression (MLR). In

MLR, the correlation squared, R2, can be defined as

R2 = max
b2Rp

⇥

Corr
�

Y,bTZ
�⇤

2

,

while in SIR, the largest eigenvalue of Cov (E (Z|Y )), called the first profile-R2, can be defined

as

�
1

(Cov (E (Z|Y ))) = max
b2Rp

max
T

⇥

Corr
�

T (Y ),bTZ
�⇤

2

,

where the maximum is taken over all bounded transformations T (·) and vectors b 2 Rp (Chen

and Li, 1998). We can further define the kth profile-R2, �k (2  k  q), as the kth largest

eigenvalue of Cov (E (Z|Y )) by restricting the vector b to be orthogonal to eigenvectors of

the first (k � 1) profile-R2. Building upon this connection with MLR, Zhong et al. (2012)

proposed the correlation pursuit (COP) method for variable selection motivated by the F-test

in stepwise regression. The COP statistic is defined as

COPd+1

k = n
b�d+1

k � b�d
k

1� b�d+1

k

, k = 1, 2, . . . , q, and COPd+1

1:q =
q
X

k=1

COPd+1

k ,

where b�d
k and b�

d+1

k are the kth profile-R2 estimated from the current set of selected predictors

of dimension d and current selected predictors plus an additional predictor to be considered,

respectively. A stepwise procedure based on the COP statistic was developed in Zhong et al.
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(2012) for simultaneous dimension reduction and variable selection.

2.1 From SIR to SIRI: An Inverse Model for Variable

Selection and Interaction Detection

To take an inverse perspective on SIR, we start with a seemingly di↵erent model. We

assume that the distribution of predictors given the sliced response is multivariate normal:

X|Y 2 Sh ⇠ MVN(µh,⌃) , 1  h  H, (2.2)

where µh � µ 2 Vq belongs to a q-dimensional a�ne space, Vq is a q-dimensional subspace

(q < p) and µ 2 Rp. Alternatively, we can write µh = µ + ��h, where �h 2 Rq and � is a p

by q matrix whose columns form a basis of the subspace Vq. Although this representation is

only unique up to a orthonormal transformation on the bases �, the subspace Vq is unique

and identifiable. The following proposition proved by Szretter and Yohai (2009) links the

inverse model (2.2) with SIR.

Proposition 1. The maximum likelihood estimate (MLE) of the bases of subspace Vq in

model (2.2) coincides with the SDR directions estimated from the SIR algorithm up to a

orthonormal transformation.

According to Proposition 1, we could have derived the SIR algorithm from an inverse model.

Next, we propose to select variables via a hypothesis testing framework based on this model.

12



2.1.1 Likelihood-Ratio Tests for Selecting Variables with Marginal

E↵ects

Here we provide a view of the COP method for selecting variables with marginal e↵ects

from an inverse modeling perspective. This will lay the ground work for the augmented

model to select variables with interaction e↵ects in the next section.

For the purpose of variable selection, we partition predictors into two subsets: a set

of relevant predictors indexed by A and a set of redundant predictors indexed by Ac, and

assume the following model:

XA|Y 2 Sh ⇠ MVN(µh 2 µ+ Vq,⌃) , (2.3)

XAc |XA, Y 2 Sh ⇠ MVN
�

↵ + �TXA,⌃0

�

.

That is, we assume that the conditional distribution of relevant predictors follows the inverse

model (2.2) of SIR and has a common covariance matrix in di↵erent slices. Given the current

set of selected predictors indexed by C with dimension d and another predictor indexed by

j /2 C, we propose the following hypotheses:

H
0

: A = C v.s. H
1

: A = C [ {j}.

Let ⇥
0

and ⇥
1

denote the parameter space under H
0

and H
1

, respectively. The likelihood-

ratio test statistic can be written as

Lj|C =
max✓

1

2⇥
1

(P✓
1

(X|Y ))

max✓
0

2⇥
0

(P✓
0

(X|Y ))
=

Pb✓
1

�

X
[C[{j}]c |Xj,XC, Y

�

Pb✓
1

(Xj|XC, Y )

Pb✓
0

�

X
[C[{j}]c |Xj,XC, Y

�

Pb✓
0

(Xj|XC, Y )
=

Pb✓
0

(Xj|XC, Y )

Pb✓
0

(Xj|XC, Y )
,

13



where b✓
0

= argmax✓
0

2⇥
0

(P✓
0

(X|Y )), b✓
1

= argmax✓
1

2⇥
1

(P✓
1

(X|Y )), and the last equality

follows from Pb✓
1

�

X
[C[{j}]c |Xj,XC, Y

�

= Pb✓
0

�

X
[C[{j}]c |Xj,XC, Y

�

according to model (2.3).

The scaled log-likelihood-ratio test statistic is given by

bDj|C =
2

n
log

�

Lj|C
�

=
q
X

k=1

log

 

1 +
b�d+1

k � b�d
k

1� b�d+1

k

!

, (2.4)

where b�d
k and b�d+1

k are estimates of the kth profile-R2 based on xC and xC[{j}, respectively.

Under the null hypothesis,
b�d+1

k �b�d
k

1�b�d+1

k

P�! 0. Since log(1 + t) ⇡ t when t is small, we have

⇣

n bDj|C

⌘

P�! COPd+1

1:q =
q
X

k=1

COPd+1

k

D�! �2

q,

as n ! 1. Coincidentally, we re-discovered the COP statistic of Zhong et al. (2012) from an

inverse model. For all the predictors indexed by j 2 Cc, we can also obtain the asymptotic

joint distribution of
⇣

n bDj|C

⌘

under the null hypothesis:

⇣

n bDj|C

⌘

j2Cc

D�!
 

K
X

k=1

z2kj

!

j2Cc

(2.5)

where zk = (zkj)j2Cc ⇠ MVN
⇣

0, [Corr (Xi, Xj|XC)]i,j2Cc

⌘

and zk’s are independent.

Furthermore, as n ! 1,

bDj|C
a.s.��! Dj|C = log

 

1 +
Var(Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

Vj

!

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )) and S(Y ) = h when Y 2 Sh (1 

h  H). Note that Vj does not depend on Y under the assumption in model (2.3). By the

14



Cauchy-Schwarz inequality and normality assumption,

Dj|C = 0 i↵ E (Xj|XC, Y 2 Sh) = E (Xj|XC) , 1  h  H.

That is, the test statistic bDj|C almost surely converges to zero if the conditional mean of Xj

is independent of slice membership S(Y ). Detailed proofs on properties of likelihood-ratio

test statistic are delegated to Appendix A.1.

Given thresholds ⌫a > ⌫d and the current set of selected predictors indexed by C, we can

select relevant variables by iterating the following steps until no new addition or deletion

occurs:

• Addition step: find ja such that bDja|C = maxj2Cc bDj|C; if bDja|C > ⌫a, let C = C + {ja}.

• Deletion step: find jd such that bDjd|C�{jd} = minj2C bDj|C�{j}; if bDjd|C�{jd} < ⌫d, let

C = C � {jd}.

Under model (2.3), for relevant predictors indexed by j 2 A, we have

Xj|XA�{j}, Y 2 Sh ⇠ N
⇣

↵(h)
j + �T

j XA�{j}, �
2

j

⌘

, 1  h  H. (2.6)

Let ↵j(Y ) =
PH

h=1

↵(h)
j I (Y 2 Sh). We introduce the following concept to study the marginal

e↵ect of relevant predictors.

Definition 1 (Marginally Detectable). We say a predictor indexed by j is marginally de-

tectable if there exist constants  � 0 and ⇠ > 0 such that

Var (↵j(Y )) � ⇠n�, (2.7)
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for all n.

Under the following conditions, the stepwise procedure proposed above is consistent by

choosing the thresholds appropriately.

Condition 1. There exist 0 < ⌧
min

< ⌧
max

< 1 such that

⌧
min

 �
min

(Cov (X|Y 2 Sh)) < �
max

(Cov (X|Y 2 Sh))  ⌧
max

,

and

�
max

(Cov (X))  ⌧
max

,

where �
min

(·) and �
max

(·) denote the smallest and largest eigenvalue of a positive definite

matrix.

Condition 2. p = O(n⇢) as n ! 1 with ⇢ > 0 and 2⇢ + 2 < 1, where  is the same

constant as in (2.7).

The following theorem is proved in Appendix A.2.

Theorem 1. Under Condition 1 and Condition 2, if all the relevant predictors indexed by

A in model (2.3) are marginally detectable with constant , then there exists constant c > 0

such that

Pr

✓

min
C:Cc\A 6=;

max
j2Cc

bDj|C � cn�

◆

! 1, and Pr

✓

max
C:Cc\A=;

max
j2Cc

bDj|C <
c

2
n�

◆

! 1,

as n ! 1.

Thus, if we choose the threshold ⌫a = cn� and ⌫d = (c/2)n� with c and  defined above,

then the addition step will not stop selecting variables until all the relevant predictors have
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been included, and once all the relevant predictors have been included, all the redundant

variables will be removed from the selected variables.

2.1.2 An Augmented Model with Interaction Detection

Let us revisit the simple example in (1.2) with the stepwise procedure based on the

likelihood-ratio test statistic proposed in the previous section. In this example, E (X
1

|Y 2 Sh) =

E (X
2

|Y 2 Sh) = 0 for 1  h  H. In the first addition step with C = ;, the stepwise proce-

dure fails to capture either X
1

or X
2

since D
1|C=; = D

2|C=; = 0. In order to detect predictors

with interactions, such as X
1

and X
2

in this example, we augment model (2.3) to a more

general form:

XA|Y 2 Sh ⇠ MVN(µh,⌃h) , (2.8)

XAc |XA, Y 2 Sh ⇠ MVN
�

↵ + �TXA,⌃0

�

,

which di↵ers from model (2.3) in its allowing for slice-dependent means and covariance

matrices for relevant predictors.

Under model (2.8), a predictor indexed by j 2 A is conditionally irrelevant if the con-

ditional distribution of Xj given XA�{j} and S(Y ) does not depend on slice S(Y ). If there

exists a conditionally irrelevant predictor indexed by j 2 A, then we can always redefine the

index set of relevant predictors to be A � {j} in model (2.8). To guarantee identifiability,

variables indexed by A in model (2.8) have to be minimally relevant, that is, A does not con-

tain any conditionally irrelevant predictor. For example, if the joint distribution of (X
1

, X
2

)

depends on S(Y ) and all the other variables are conditionally independent of S(Y ) given X
1

,

then X
3

is conditionally irrelevant given (X
1

, X
2

) and so {X
1

, X
2

, X
3

} is relevant but not

17



minimally relevant. In this example, {X
1

, X
2

} is minimally relevant if both the conditional

distribution of X
1

given X
2

and the conditional distribution of X
2

given X
1

depend on S(Y ).

In Appendix A.3, we prove the following proposition:

Proposition 2. The set of minimally relevant predictors indexed by A under model (2.8) is

unique given Condition 1.

By following the same hypothesis testing framework for variable selection in the previous

section, we can derive the scaled log-likelihood-ratio test statistic under the augmented model

(2.8):

bD⇤
j|C = log b�2

j �
H
X

h=1

nh

n
log

h

b�(h)
j

i

2

, (2.9)

where C indexes currently selected predictors and j 2 Cc,
h

b�(h)
j

i

2

is the estimated variance

by regressing Xj on XC in slice Sh, and b�2

j is the estimated variance by regressing Xj on XC

using all the observations. Under the assumption that A ⇢ C with |C| = d, we can derive

the exact and asymptotic distribution of
⇣

n bD⇤
j|C

⌘

:

n bD⇤
j|C ⇠ n log

 

1 +
Q

0

PH
h=1

Qh

!

�
H
X

h=1

nh

n
log

 

Qh/nh
PH

h=1

Qh/n

!

D�! �2

(H�1)(d+2)

,

whereQ
0

⇠ �2

(H�1)(d+1)

andQh ⇠ �2

nh�(d+1)

(1  h  H) are mutually independent according

to Cochran’s theorem. For all the predictors indexed by j 2 Cc given predictors indexed by

C, we can also obtain the asymptotic joint distribution of
⇣

n bD⇤
j|C

⌘

under the assumption

that A ⇢ C:
⇣

n bD⇤
j|C

⌘

j2Cc

D�!

0

@

(H�1)(d+1)

X

i=1

z2ij +
H�1

X

i=1

ez2ij

1

A

j2Cc

, (2.10)
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where zi’s and ezi’s are mutually independent with

zi = (zij)j2Cc ⇠ MVN
⇣

0, [Corr (Xj, Xk|XC)]j,k2Cc

⌘

,

and

ezi = (ezij)j2Cc ⇠ MVN
⇣

0,
⇥

Corr2 (Xj, Xk|XC)
⇤

j,k2Cc

⌘

.

We have, as n ! 1,

bD⇤
j|C

a.s.��! D⇤
j|C

= log

 

1 +
Var(Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

E (Vj)

!

+ logE (Vj)� E log (Vj) ,

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )) and S(Y ) = h when Y 2 Sh (1 

h  H). According to the Cauchy-Schwarz inequality and Jensen’s inequality,

D⇤
j|C = 0 i↵ E (Xj|XC, Y 2 Sh) = E (Xj|XC) , and Var (Xj|XC, Y 2 Sh) = Var (Xj|XC) ,

for 1  h  H. That is, the augmented test statistic bD⇤
j|C almost surely converges to

zero if both the conditional mean and the conditional variance of Xj is independent of slice

membership S(Y ). Proofs on properties of the augmented likelihood-ratio test statistic are

delegated to Appendix A.4.

A forward-addition backward-deletion algorithm similar to the stepwise procedure pro-

posed in Section 2.1.1 can be used with the augmented likelihood-ratio test statistic bD⇤
j|C.

To investigate the power of the augmented likelihood-ratio test, we introduce the following
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concepts.

Definition 2 (Conditionally Detectable). We say a collection of predictors indexed by C
2

is conditionally detectable given predictors indexed by C
1

if C
2

\ C
1

= ;, and for any set C

satisfying C
1

⇢ C and C
2

6⇢ C, there exist constants  � 0, ⇠
1

, ⇠
2

> 0 such that either

max
j2Cc\C

1

"

Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

E (Vj)

#

� ⇠
1

n�, (2.11)

or

max
j2Cc\C

1

[log (EVj)� E log (Vj)] � ⇠
2

n�

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )).

In other words, if the current selection C contains C
1

, then there always exist detectable

predictors conditioning on currently selected variables until we include all the predictors

indexed by C
2

. A relevant predictor Xj indexed by j /2 C
2

is not conditionally detectable

given C
1

either because it is highly correlated with some other predictors, or its e↵ect can

only be detected when conditioning on predictors that have not been included in C
1

. Based

on Definition 2, we define stepwise detectable recursively as following.

Definition 3 (Stepwise Detectable). A collection of predictors indexed by T
0

is said to be

0-level detectable if XT
0

is conditionally detectable given an empty set, and a collection of

predictors indexed by Tm is said to be m-level detectable (m � 1) if XTm is conditionally

detectable given predictors indexed by [m�1

i=1

Ti. Finally, a predictor indexed by j is said to be

stepwise detectable if j 2 [1
i=1

Ti.

According to Lemma 1 in Appendix A.2, given the same constant , there exists ⇠
1

such

that the set of marginally detectable predictors defined in Definition 1 is contained in T
0

, the

20



set of 0-level detectable predictors. As a result, the definition of stepwise detectable expand

the concept of marginally detectable. In Appendix A.5, we will show that by appropriately

choosing thresholds, the stepwise procedure will keep adding predictors until all the stepwise

detectable predictors have been included.

Theorem 2. Under Condition 1 and Condition 2, if all the relevant predictors indexed by

A in model (2.3) are stepwise detectable with constant , then there exists constant c⇤ > 0

such that as n ! 1,

Pr

✓

min
C:Cc\A 6=;

max
j2Cc

bD⇤
j|C � c⇤n�

◆

! 1, and Pr

✓

max
C:Cc\A=;

max
j2Cc

bD⇤
j|C <

c⇤

2
n�

◆

! 1.

Thus, by appropriately choosing the thresholds, the stepwise procedure based on bD⇤
j|C is

consistent in identifying stepwise detectable predictors.

2.1.3 A Sure Independence Screening Strategy

When the dimensionality p is extremely large (e.g., exceeding n2), the performance of the

stepwise procedure can be compromised. Therefore, we recommend adding an independence

screening step to first reduce the dimensionality from ultra-high to moderately high. A

natural choice of test statistic for the independence screening procedure is bD⇤
j = bD⇤

j|C with

C = ;, that is, the augmented likelihood-ratio test statistic used in the first addition step

of the stepwise procedure. If we rank predictors according to { bD⇤
j , 1  j  p}, then a sure

independence screening (SIS) procedure that takes the first n � 1 or n/ log(n) predictors

has a high probability (almost surely) of including the independently detectable predictors

defined below.
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Definition 4 (Independently Detectable). We say a predictor Xj is independently detectable

if there exist constants  � 0 and ⇠
1

, ⇠
2

such that either

Var (E (Xj|S(Y )))

E (Var (Xj|S(Y )))
� ⇠

1

n�, (2.12)

or

logE (Var (Xj|S(Y )))� E log [Var (Xj|S(Y ))] � ⇠
2

n�.

Simply put, independently detectable predictors have either di↵erent means or di↵erent

variances across slices. Therefore, in the example (1.2), both X
1

and X
2

are independently

detectable because Var(X
1

|Y 2 Sh) and Var(X
2

|Y 2 Sh) (1  h  H) are di↵erent across

slices.

In Theorem 3, we proved that the SIS procedure based on { bD⇤
j , 1  j  p} almost

surely includes the independently detectable predictors under the following condition with

ultra-high dimensionality of predictors.

Condition 3. log(p) = O(n�) as n ! 1 with 0 < �+2 < 1, where  is the same constant

as in (2.12). Furthermore, the number of the relevant predictors |A|  ⇠
0

n⌘ with ⌘ +  < 1

and constant ⇠
0

> 0.

We prove the following theorem in Appendix A.6.

Theorem 3. Under Condition 1 and Condition 3, if all the relevant predictors indexed by

A are independently detectable, then there exist c > 0 and C > 0 such that

Pr

✓

min
j2A

bD⇤
j � cn�

◆

! 1,
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and

Pr
⇣

�

�

�

{j : bD⇤
j � cn�, 1  j  p}

�

�

�

 Cn+⌘
⌘

! 1.

According to Theorem 3, we can first use the SIS procedure to reduce the dimensionality from

p to a scale below sample size, say n/ log(n), and then apply the stepwise procedure proposed

in the previous sections. Note that predictors that are marginally or stepwise detectable

according to Definition 1 and Definition 3 are not necessarily independently detectable.

Fan and Lv (2008) advocated an iterative procedure that alternates between a large-scale

screening and a moderate-scale variable selection to enhance the performance, which will be

discussed in the next section.

2.2 Cross-Stitching and Cross-Validation

The simple model (2.3) and the augmented model (2.8) compensate each other in terms

of the bias-variance trade-o↵. Given finite observations, model (2.3) is simpler and more

powerful when the response is driven by some linear combinations of predictors, while model

(2.8) is useful in detecting more complex relationships such as heteroscedastic or interactive

e↵ects. Similarly, the SIS procedure introduced in the previous section can be used with

a large number of predictors, but cannot pick up stepwise detectable predictors that have

the same marginal distributions across slices. To find a balance between simplicity and

detectability, we propose the following cross-stitching strategy:

• Step 0: start with the SIS procedure with currently selected predictors C = ;;

• Step 1: select predictors by using the stepwise procedure with addition and deletion

steps based on bDj|C in (2.4) and add the selected predictors into C;
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• Step 2: select predictors by using the stepwise procedure with addition and deletion

steps based on bD⇤
j|C in (2.9) and add the selected predictors into C;

• Step 3: run the SIS procedure on the remaining predictors conditioning on the current

selection C, and iterate Step 1-3 until no more predictors are selected.

We name the proposed procedure Sliced Inverse Regression for Interaction Detection, or

SIRI for short. A flowchart of the SIRI procedure is illustrated in Figure 2.1.

stepwise selection

under simple

model (2.3)

stepwise selection

under augmented

model (2.8)

sure inde-

pendence

screening

start

new

predictors

selected?

stop
yes

no

Figure 2.1: Flowchart of SIRI

In the addition step of the stepwise procedure, instead of selecting the variable from

j 2 Cc with the maximum value of bDj|C (or bD⇤
j|C), we may also sequentially add variables

with bDj|C > ⌫a (or bD⇤
j|C > ⌫⇤

a). Specifically, given thresholds ⌫a > ⌫d and the current set

of selected predictors indexed by C, we can modify each iteration of the original stepwise

procedure as follows:

• Modified addition step: for each variable j 2 {1, . . . , p}, let C = C + {j} if j /2 C and

bDj|C > ⌫a.
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• Deletion step: find jd such that bDjd|C�{jd} = minj2C bDj|C�{j}; let C = C � {jd} if

bDjd|C�{jd} < ⌫d.

The stepwise procedure with the modified addition step may use fewer iterations to find all

the relevant predictors and will not stop until all the relevant predictors have been included

if we choose ⌫a = cn� in Theorem 1. However, in practice, the performance of the modi-

fied procedure depends on the ordering of the variables and is less stable than the original

procedure. Since we are less concerned about the computational cost of SIRI, we implement

the original addition step in the following study.

There are some implementation issues that we have not discussed so far. First, we need

to choose a slicing scheme. If we assume there is a true slicing scheme from which data

are generated, we showed in Appendix A.7 that the power of the stepwise procedure tends

to increase with a larger number of slices, but there is no gain by further increasing the

number of slices once the slicing is already more refined than the true slicing scheme. In

practice, the true slicing scheme is usually unknown (except maybe in the case when the

response is discrete). When a slicing scheme uses a larger number of slices, the number of

observations in each slice decreases, which makes the estimation of parameters in the model

less accurate and less stable. We observed from intensive simulation studies that, with a

reasonable number of observations in each slice (say 40 or more), a larger number of slices

is preferred.

Second, we need to choose the number of e↵ective directions q in model (2.3) and the

thresholds in adding and deleting variables. Section 2.1.1 and 2.1.2 characterize the asymp-

totic distributions and behaviors of stepwise procedures, and provide some theoretical guide-

lines for choosing the thresholds. However, these theoretical results are not directly usable

because: (1) the asymptotic distributions that we derived in (2.5) and (2.10) are for a single
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addition or deletion step; (2) the consistency results are valid in asymptotic sense and the

rate of increase in dimension relative to sample size is usually unknown. In practice, we

propose to use a K-fold cross-validation (CV) procedure for selecting thresholds and the

number of e↵ective directions q.

We will consider two performance measures for K-fold cross-validation: classification

error (CE) and mean absolute error (AE). Suppose there are n training samples and m

testing samples. The jth observation (j = 1, 2, . . . ,m) in the testing set has response yj

and slice membership Syj (the slicing scheme is fixed based on training samples). Let p(h)j =

Prb✓ (S(yj) = h|X = xj) be the estimated probability that the observation j is from slice Sh,

where b✓ denotes the maximum likelihood estimate of model parameters. The classification

error is defined as

CE =
1

m

m
X

j=1

I


S(yj) 6= argmax
h

⇣

p(h)j

⌘

�

.

We denote the average response of training samples in slice Sh as

ȳ(h) =

Pn
i=1

I [S(yi) = h] yi
Pn

i=1

I [S(yi) = h]
, h = 1, 2, . . . , H,

The absolute error is defined as

AE =
1

m

m
X

j=1

�

�

�

�

�

yj �
H
X

h=1

p(h)j ȳ(h)

�

�

�

�

�

.

CE is a more relevant performance measure when the response is categorical or there is a non-

smooth functional relationship (e.g., rational functions) between the response and predictors,

and AE is a better measure when there is a monotonic and smooth functional relationship

between the response and predictors. There are other measures that have compromise fea-
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tures between these two measures, such as median absolute deviation, which will not be

explored here. We will use CE and AE as performance measures throughout simulation

studies, and name the corresponding methods SIRI-AE and SIRI-CE, respectively.

2.3 Simulation Studies

In this section, we study the performance of SIRI and other existing methods by simula-

tions. In order to facilitate fair comparisons with other existing methods that are motivated

from the forward model perspective, the examples presented here are all generated under

forward models, which di↵ers from the inverse model assumptions of SIRI. The setting of

the simulation also demonstrates the robustness of SIRI when some of its model assumptions

are violated, especially the normal distribution assumption on relevant predictor variables

within each slice.

We start with the comparison of independence screening methods in reducing the ultra-

high dimensionality while retaining the relevant predictors. Then, we evaluate di↵erent

variable selection methods under a variety of forward models including linear model, single-

and multi-index models and models with di↵erent types of interactions.

2.3.1 Independence Screening Performance

We first compare the variable screening performance of SIRI with iterative sure indepen-

dence screening (ISIS) based on correlation learning proposed by Fan and Lv (2008) and

sure independence screening based on distance correlation (DC-SIS) proposed by Li et al.

(2012). We evaluate the performance using the proportion that relevant predictors are placed

among the top [n/ log(n)] predictors ranked by the corresponding method, with larger values
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indicating better performance in variable screening.

In the simulation, the predictor variables X = (X
1

, X
2

, . . . , Xp)T were generated from

a p-variate normal distribution with mean 0 and covariances Cov (Xi, Xj) = ⇢|i�j| for 1 

i, j  p. We generate the response variable from the following three scenarios:

Scenario 0.1 : Y = X
2

� ⇢X
1

+ 0.2X
100

+ �✏,

Scenario 0.2 : Y = X
1

X
2

+ �e2|X100

|✏,

Scenario 0.3 : Y =
X

100

X
1

+X
2

+ �✏,

where sample size n = 200, � = 0.2 and ✏ is N(0, 1) and independent of X. For each scenario,

we consider four di↵erent settings with dimension p = 2000 or 5000 and correlation ⇢ = 0.0

or 0.5. Scenario 0.1 is a linear model with three additive e↵ects. The way X
1

is introduced

is to make it marginally uncorrelated with the response Y (note that when ⇢ = 0.0, X
1

is

not a relevant predictor). We added another variable X
100

that has negligible correlation

with X
1

and X
2

and a very small correlation with the response Y . Scenario 0.2 contains an

interaction term X
1

X
2

and a heteroscedatic noise term determined by X
100

. Scenario 0.3 is

an example of a rational model with interactions.

Proportions that relevant predictors are predictors are placed among the top [n/ log(n)]

by di↵erent screening methods are shown in Table 2.1. Under Scenario 0.1 with linear

models, we can see that ISIS and DC-SIS had better power than SIRI in detecting variables

that are weakly correlated wth the response (X
100

in this example). When the correlation

between predictors ⇢ = 0.5 (Setting 2 and 4), iterative procedures, ISIS and SIRI, were more

e↵ective in detecting predictors that are marginally uncorrelated with the response (X
1

in this example) compared with DC-SIS. Under Scenario 0.2, ISIS based on linear models
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Table 2.1: The proportions that relevant predictors are placed among the top [n/ log(n)] by
di↵erent screening methods under Scenarios 0.1-0.3 in Section 2.3.1.

Method Scenario 0.1 Scenario 0.2 Scenario 0.3

X
1

X
2

X
100

X
1

X
2

X
100

X
1

X
2

X
100

Setting 1: p = 2000, ⇢ = 0.0
ISIS - 1.00 1.00 0.02 0.01 0.46 0.00 0.00 0.09

DC-SIS - 1.00 0.55 0.07 0.09 1.00 0.00 0.00 0.60

SIRI - 1.00 0.30 0.32 0.25 0.97 1.00 0.99 1.00

Setting 2: p = 2000, ⇢ = 0.5
ISIS 1.00 1.00 1.00 0.04 0.02 0.54 0.00 0.00 0.15

DC-SIS 0.02 1.00 0.71 0.55 0.53 1.00 0.03 0.00 0.59

SIRI 1.00 1.00 0.45 0.92 0.87 0.92 1.00 1.00 1.00

Setting 3: p = 5000, ⇢ = 0.0
ISIS - 1.00 1.00 0.02 0.00 0.43 0.00 0.00 0.06

DC-SIS - 1.00 0.39 0.03 0.05 1.00 0.00 0.00 0.44

SIRI - 1.00 0.14 0.15 0.16 0.99 0.99 1.00 1.00

Setting 4: p = 5000, ⇢ = 0.5
ISIS 1.00 1.00 1.00 0.03 0.02 0.60 0.00 0.00 0.07

DC-SIS 0.05 1.00 0.71 0.41 0.44 1.00 0.00 0.02 0.61

SIRI 1.00 1.00 0.39 0.88 0.86 0.94 0.98 1.00 0.99

failed to detect the interaction term and often misses the predictor in the heteroscedastic

noise term. When there are moderate correlations between two predictors X
1

and X
2

in

the interaction term (Setting 2 and 4), DC-SIS picked up X
1

and X
2

about half of the

time. However, when the two predictors are uncorrelated (Setting 1 and 3), DC-SIS failed to

detect them most of the time. SIRI outperformed DC-SIS in detecting interactions for both

settings with ⇢ = 0.0 and ⇢ = 0.5. Under Scenario 0.3, when there is a rational relationship

between the response and the relevant predictors, SIRI significantly outperformed the other

two methods in detecting the relevant predictors. Performances of di↵erent methods are

only slightly a↵ected as we increase the dimension from p = 2000 to p = 5000.

29



2.3.2 Variable Selection Performance

We further study the variable selection accuracy of SIRI and other existing methods

with simulations in identifying relevant predictors and excluding irrelevant predictors. In

the following examples, for both SIRI and COP, we implemented a fixed slicing scheme

with 5 slices of equal size (i.e., H = 5) and used a 10-fold CV procedure to determine

the stepwise variable selection thresholds and the number of e↵ective directions q in model

(2.3) of Section 2.1.1. Specifically, the number of e↵ective directions q was chosen from

{0, 1, 2, 3, 4}, where q = 0 means that we skipped the variable selection step under simple

model (2.3) in the iterative procedure described by Figure 2.1. The thresholds in addition and

deletion steps were selected from the grid {(⌫i,a = �2

↵i,q
, ⌫i,d = �2

↵i�0.05,q)} for simple model

(2.3) and from the grid {(⌫⇤
i,a = n

n�H(d+2)

�2

↵i,(H�1)(d+2)

, ⌫⇤
i,d = n

n�H(d+2)

�2

↵i�0.05,(H�1)(d+2)

)}

for augmented model (2.8), where �2

↵,d.f. is the 100↵th quantile of �2

d.f.

and d = |C| is the

number of previously selected predictors. For a given p, the dimension of predictors, we

chose {↵i} = {1� p�1, 1� 0.5p�1, 1� 0.1p�1, 1� 0.05p�1, 1� 0.01p�1}.

The other variable selection methods to be compared with SIRI and COP include Lasso,

ISIS-SCAD (SCAD with iterative sure independence screening), and hierNet (Bien et al.,

2012), which is a Lasso-like procedure to detect multiplicative interactions between predictors

under hierarchical constraints. The R packages glmnet, SIS, COP and hierNet are used to

run Lasso, ISIS-SCAD, COP and hierNet, respectively. For Lasso and hierNet, we select the

largest regularization parameter with estimated CV error less than or equal to the minimum

estimated CV error plus one standard deviation of the estimate. The tuning parameters in

SCAD are also selected by CV.

For variable selections under index models, we generated the predictor variables X =

(X
1

, X
2

, . . . , Xp)T from a multivariate normal distribution with mean 0 and covariances
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Cov (Xi, Xj) = ⇢|i�j| for 1  i, j  p , and simulated the response variable according to the

following models:

Scenario 1.1 : Y = �TX+ �✏, n = 200, � = 1.0, ⇢ = 0.5,

� = (3, 1.5, 2, 2, 2, 2, 2, 2, 0, . . . , 0),

Scenario 1.2 : Y =

P

3

j=1

Xj

0.5 + (1.5 +
P

4

j=2

Xj)2
+ �✏, n = 200, � = 0.2, ⇢ = 0.0,

Scenario 1.3 : Y =
�✏

1.5 +
P

8

j=1

Xj

, n = 1000, � = 0.2, ⇢ = 0.0,

where n is the number of observations, p is the number of predictors and is set as 1000

here, and the noise ✏ is independent of X and follows N(0, 1). Scenario 1.1 is a linear model

which involves 8 true predictors and 992 irrelevant predictors. Scenario 1.2, a multi-index

model with 4 true predictors, was studied in Li (1991) and Zhong et al. (2012), and there is

a non-linear relationship between the response Y and two linear combinations of predictors

X
1

+X
2

+X
3

and X
2

+X
3

+X
4

. Scenario 1.3 is a single-index model with 8 true predictors

and heteroscedastic noise.

For each simulation setting, we randomly generated 100 data sets each with n observations

and applied variable selection methods to each data set. Two quantities, the average number

of irrelevant predictors falsely selected as true predictors (which is referred to as FP) and

the average number of true predictors falsely excluded as irrelevant predictors (which is

referred to as FN), were used to measure the variable selection performance of each method.

For example, under Scenario 1.1, the FPs and FNs range from 0 to 992 and from 0 to 8,

respectively, with smaller values indicating better accuracies in variable selection. The FP-

and FN-values of di↵erent methods together with their corresponding standard errors (in

brackets) are reported in Table 2.2.
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Table 2.2: False positive (FP) and false negative (FN) values of di↵erent variable selection
methods under Scenario 1.1-1.3.

Method Scenario 1.1 Scenario 1.2 Scenario 1.3

FP (0, 992) FN (0, 8) FP (0, 996) FN (0, 4) FP (0, 992) FN (0, 8)
Lasso 0.59 (0.10) 0.00 (0.00) 0.08 (0.03) 1.07 (0.03) 0.00 (0.00) 8.00 (0.00)
ISIS-SCAD 0.35 (0.07) 0.00 (0.00) 0.60 (0.08) 1.02 (0.01) 5.08 (0.65) 7.97 (0.02)
hierNet 0.59 (0.10) 0.00 (0.00) 8.65 (0.36) 0.93 (0.03) 7.66 (0.48) 7.94 (0.02)
COP 0.69 (0.12) 0.06 (0.03) 1.84 (0.16) 0.98 (0.01) 1.26 (0.13) 3.32 (0.19)
SIRI-AE 0.01 (0.01) 0.09 (0.04) 0.13 (0.04) 0.07 (0.03) 0.43 (0.08) 4.82 (0.27)
SIRI-CE 0.26 (0.05) 0.08 (0.03) 0.55 (0.08) 0.09 (0.03) 2.02 (0.17) 0.51 (0.16)

Under Scenario 1.1, variable selection methods derived from linear models (Lasso, SCAD

and hierNet) were able to detect all the relevant predictors (FN=0) with few false positives.

On the other hand, COP, SIRI-AE and SIRI-CE missed some (about 10%) relevant pre-

dictors while excluded most irrelevant ones (lower FP vaues). The relatively high accuracy

of methods developed for linear models is expected under this scenario, because the obser-

vations were simulated from a linear relationship. Under Scenario 1.2, Lasso achieved the

lowest false positives, but it almost always missed one of the relevant predictor, X
4

, because

of its non-linear relationship with the response. The other methods developed under the

linear model assumption su↵ered from the issue. However, SIRI-AE and SIRI-CE was able

to detect most of the four relevant predictors (FN=0.09 and 0.07) with a comparable number

of false positives. Under the heteroscedastic model in Scenario 1.3, the methods based on

linear models failed to detect relevant predictors most of the time. Among other methods,

SIRI-AE achieved the lowest number of false positives (FP=0.43) but missed about half of

the relevant predictors (FN=4.82), while SIRI-CE selected most of the relevant predictors

(FN=0.51) with a reasonably low false positives (FP=2.02). The performance of COP was

in-between SIRI-AE and SIRI-CE with FN=3.32 and FP=1.26. A possible explanation for

32



the superior performance of SIRI-CE relative to SIRI-AE in this setting is because the gen-

erative model under Scenario 1.3 contains a singular point at
P

8

j=1

Xj = �1.5. Since the

absolute error is less robust to outliers than the classification error, SIRI-AE is more sensitive

to the inclusion of irrelevant predictors and more conservative in selecting predictors.

Next, we consider forward models containing di↵erent types of interactions. Predictor

variables X
1

, X
2

, . . . , Xp were independent and identically distributed N(0, 1) random vari-

ables, and the response was generated under the following models given the predictors:

Scenario 2.1 : Y = X
1

X
2

+ �✏, n = 200,

Scenario 2.2 : Y = X
1

+X
1

X
2

+X
1

X
3

+ �✏, n = 200,

Scenario 2.3 : Y = X
1

X
2

+X
1

X
3

+ �✏, n = 200,

Scenario 2.4 : Y = X
1

X
2

X
3

+ �✏, n = 200, 500 and 1000,

Scenario 2.5 : Y = X2

1

X
2

+ �✏, n = 200,

Scenario 2.6 : Y =
X

1

X
2

+X
3

+ �✏, n = 200,

where n is the number of observations, p is the number of predictors and is set as 1000 here,

� = 0.2 and ✏ is independent of X and follows N(0, 1). Scenario 2.1 and Scenario 2.3 contain

predictors with pairwise multiplicative interactions and without main e↵ects. The model

under Scenario 2.2 has hierarchical interaction terms (X
1

has main e↵ect). The three-way

interaction model in Scenario 2.4 was simulated under three settings with di↵erent sample

sizes: n = 200, n = 500 and n = 1000. Scenario 2.5 contains a quadratic interaction term

and Scenario 2.6 has a rational relationship.

Because methods such as Lasso, SCAD and COP are not specifically designed for detect-

ing interactions and are clearly at a disadvantage, we did not directly compare them with
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SIRI and hierNet. For the purpose of comparison, we created a benchmark method based

on ISIS-SCAD by applying ISIS-SCAD to an expanded set of predictors that includes all the

terms up to k-way multiplicative interactions. The corresponding method, which we referred

to as ISIS-SCAD-k, is an oracle benchmark under Scenario 2.1-2.4 when responses were gen-

erated according to 2-way or 3-way multiplicative interactions. Since DC-SIS as a screening

tool has the ability to detect individual predictors under the presence of interactive e↵ects,

we also augmented ISIS-SCAD with DC-ISIS and denoted the method as DC-SIS-SCAD-k.

In DC-SIS-SCAD-k, we first used DC-SIS to reduce the number of predictors from p to

[n/ log(n)]. Then, we expanded the selected predictors to include up to k-way multiplicative

interactions among them and applied ISIS-SCAD. Because DC-SIS-SCAD-k does not need

to consider all the interaction terms among p predictors, it has a huge speed advantage over

ISIS-SCAD-k but it may fail to detect all the predictors if the DC-SIS step does not retain

all the relevant predictors. The FP- and FN-values (and their standard errors) of di↵erent

methods including ISIS-SCAD-k and DC-SIS-SCAD-k under various scenarios are shown in

Table 2.3, Table 2.4 and Table 2.5, respectively. Note that FP- and FN-values are calcu-

lated based on the number of predictors selected by a method, not based on the number of

parameters used in building the model. For example, if X
3

, X
4

and X
3

X
4

all have non-zero

coe�cients from hierNet under Scenario 2.1, we count the number of false positives as 2, not

3.

Under Scenarios 2.1-2.3 of Table 2.3, the oracle benchmark, ISIS-SCAD-2, correctly dis-

covered most of the relevant predictors in the two-way interactions and did not pick up any

irrelevant predictor. It is encouraging to see that the performance of the proposed method

SIRI-AE was comparable with ISIS-SCAD-2 (in terms of both false positives and false nega-

tives), although SIRI-AE did not assume the knowledge on the generative model. Moreover,
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Table 2.3: False positive (FP) and false negative (FN) values of di↵erent variable selection
methods under Scenario 2.1-2.3.

Method Scenario 2.1 Scenario 2.2 Scenario 2.3

FP (0, 998) FN (0, 2) FP (0, 997) FN (0, 3) FP (0, 997) FN (0, 3)
ISIS-SCAD-2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.06 (0.04) 0.00 (0.00) 0.03 (0.03)
DC-SIS-SCAD-2 0.00 (0.00) 0.00 (0.00) 0.25 (0.09) 0.11 (0.03) 1.56 (0.19) 1.81 (0.11)
hierNet 2.38 (0.33) 0.00 (0.00) 6.93 (0.56) 0.14 (0.05) 6.98 (0.57) 0.12 (0.05)
SIRI-AE 0.01 (0.01) 0.00 (0.00) 0.02 (0.01) 0.04 (0.02) 0.10 (0.04) 0.11 (0.05)
SIRI-CE 0.76 (0.13) 0.00 (0.00) 0.29 (0.06) 0.10 (0.04) 0.86 (0.12) 0.11 (0.05)

since both ISIS-SCAD-2 and hierNet considered all the pairwise interactions between p pre-

dictor variables, they have computational complexity O(np2) with p = 1000 and need much

more computational resources compared with SIRI. On average ISIS-SCAD-2 and hierNet

are more than 100 times slower than SIRI (see Table 2.6 for running time comparison of

di↵erent methods). While we can dramatically increase the computational speed by using

DC-SIS to screen variables before applying more refined variable selection methods, relevant

predictors may be incorrectly filtered by the DC-SIS procedure as shown by DC-SIS-SCAD’s

higher false negatives under Scenario 2.3 of Table 2.3.

Table 2.4: False positive (FP) and false negative (FN) values of di↵erent variable selection
methods under Scenario 2.4 with di↵erent sample sizes.

Method Scenario 2.4 (n = 200) Scenario 2.4 (n = 500) Scenario 2.4 (n = 1000)

FP (0, 997) FN (0, 3) FP (0, 997) FN (0, 3) FP (0, 997) FN (0, 3)
DC-SIS-SCAD-3 0.45 (0.12) 0.85 (0.12) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
hierNet 7.22 (0.64) 2.41 (0.08) 7.73 (1.17) 2.38 (0.08) 4.25 (1.17) 2.62 (0.06)
SIRI-AE 0.98 (0.12) 2.27 (0.06) 0.36 (0.09) 0.70 (0.07) 0.21 (0.06) 0.00 (0.00)
SIRI-CE 1.98 (0.16) 2.27 (0.07) 1.96 (0.17) 0.46 (0.05) 2.03 (0.19) 0.00 (0.00)

Under Scenario 2.4 with three-way interactions, the computational cost prevents us from

directly applying ISIS-SCAD-3 to consider all the three-way interaction terms. So we com-

pared the performance of ISIS-SCAD-3 after variable screening using DC-SIS, that is, DC-
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SIS-SCAD-3 in Table 2.4. DC-SIS-SCAD-3 performed best under di↵erent sample sizes as

it assumed the form of the underlying generative model. Among other methods, the perfor-

mance of SIRI-AE improved relatively to DC-SIS-hierNet as sample size increased. When

sample size n = 1000, SIRI-AE was able to select all the relevant predictors with very low

false positives.

Table 2.5: False positive (FP) and false negative (FN) values of di↵erent variable selection
methods Scenario 2.5 and 2.6.

Method Scenario 2.5 Scenario 2.6

FP (0, 998) FN (0, 2) FP (0, 997) FN (0, 3)
ISIS-SCAD-2 0.04 (0.02) 1.09 (0.04) 0.00 (0.00) 3.00 (0.00)

DC-SIS-SCAD-2 2.38 (0.18) 0.51 (0.05) 0.81 (0.16) 2.96 (0.02)

hierNet 2.42 (0.44) 0.88 (0.05) 5.71 (0.59) 2.91 (0.03)

SIRI-AE 0.08 (0.03) 0.00 (0.00) 0.51 (0.11) 0.00 (0.00)

SIRI-CE 0.88 (0.11) 0.01 (0.01) 0.56 (0.11) 0.00 (0.00)

Table 2.6: Average running time (in seconds) of di↵erent variable selection methods under
Scenarios 2.1-2.3, 2.5 and 2.6

Method Scenario 2.1 Scenario 2.2 Scenario 2.3 Scenario 2.5 Scenario 2.6

ISIS-SCAD-2 13890.86 9406.27 11581.55 10232.31 4220.24

DC-SIS-SCAD-2 29.24 25.77 31.90 37.03 25.68

hierNet 15213.01 26171.28 34733.13 37312.59 27255.16

SIRI 27.96 44.85 20.01 44.36 35.26

Simulations in Scenarios 2.1-2.4 were generated under the same model assumption as

ISIS-SCAD-k and DC-SIS-SCAD-k, which gives them advantage in the comparisons. Under

Scenarios 2.5 and 2.6 of Table 2.5, when the generative model goes beyond multiplicative

interactions, we can see that SIRI-AE and SIRI-CE significantly outperformed other methods

in detecting relevant predictors with low false positives.
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2.4 Real Data Examples

We applied SIRI to two real data examples. The first example studies the problem of

leukemia subtype classification with ultra-high dimensional features. In the second example,

we treat gene expression level in embryonic stem cells as a continuous response variables,

and are interested in selecting regulatory factors that interact with DNA and other factors

to determine expression patterns of genes.

2.4.1 Leukemia Subtypes Classification

For the first example, we applied SIRI-CE to select features for the classification of a

leukemia data set from high density A↵ymetrix oligonucleotide arrays (Golub et al., 1999)

that have been previously analyzed by Tibshirani et al. (2002) using a nearest shrunken

centroid method and by Fan and Lv (2008) using a SIS-SCAD based linear discrimination

method (SIS-SCAD-LD). The data set consists of 7129 genes and 72 samples from two

classes: ALL (acute lymphocytic leukemia) with 47 samples and AML (acute mylogenous

leukemia) with 25 samples. The data set was divided into a training set of 38 samples (27

in class ALL and 11 in class AML) and a test set of 34 samples (20 in class ALL and 14 in

class AML).

Table 2.7: Leukemia classification results
Method Training error Test error Number of genes
SIRI-CE 0/38 1/34 8
SIS-SCAD-LD 0/38 1/34 16
Nearest Shrunken Centroid 1/38 2/34 21

The classification results of SIRI-CE, SIS-SCAD-LD and nearest shrunken centroids

method are shown in Table 2.7. The results of SIS-SCAD-LD and the nearest shrunken
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centroids method were extracted from Fan and Lv (2008) and Tibshirani et al. (2002), re-

spectively. SIRI-CE and SIS-SCAD-LD both made no training error and one test error,

whereas the nearest shrunken centroids method made one training error and two test errors.

Comparing with SIS-SCAD-LD, SIRI used a smaller number of genes (8 genes) to achieve

the same classification accuracy.

2.4.2 Identifying Regulating Factors in Embryonic Stem Cells

The mouse embryonic stem cells (ESCs) data set has previously been analyzed by Zhong

et al. (2012) to identify important transcription factors (TFs) for regulating the expression of

genes. The response variable, expression levels of 12408 genes, was quantified using RNA-seq

technology in mouse ESCs (Cloonan et al., 2008). To understand the ESC development, it is

important to identify key regulating TFs, whose binding profiles on cis-regulatory regions are

associated with corresponding gene expression levels. To extract features that are associated

with potential gene regulating TFs, Chen et al. (2008a) performed ChIP-seq experiments on

12 TFs that are known to play di↵erent roles in ES-cell biology as components of the impor-

tant signaling pathways, self-renewal regulators, and key reprogramming factors. For each

pair of gene and one of these 12 TFs, a score named transcription factor association strength

(TFAS), which was defined by summing the binding peaks weighted by their intensities and

the distances to transcription start sites Ouyang et al. (2009), was calculated. In addition,

Zhong et al. (2012) supplemented the data set with motif matching scores of 300 putative

mouse TFs compiled from the TRANSFAC database. The TF motif matching scores were

calculated based on the occurrences of TF binding motifs on gene promoter regions that are

defined as 1kb upstream regions of the transcritipion start sites(Zhong et al., 2005). The

data consists of a 12408 ⇥ 312 matrix with (i, j)th entry representing the score of the jth
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TF on the ith gene’s promoter region.

Table 2.8: The ranks of 12 known ES-cell TFs (among 312 predictors) using SIRI-AE and
COP

TF names Ranks
SIRI-AE COP

E2F1 1 1
ZFX 3 3
MYCN 4 10
KLF4 5 19
MYC 6 -
ESRRB 8 -
OCT4 9 11
TCFCP2L1 10 36
NANOG 14 -
STAT3 17 20
SOX2 18 -
SMAD1 32 13

In Zhong et al. (2012), the method COP selected a total of 42 predictors, which include

8 out of 12 TFASs and 34 out of 300 TF motif scores. Here, we used SIRI-AE to re-analyze

the mouse ESCs data set and selected 34 predictors, which include all the 12 TFASs and

22 TF motif matching scores. The relative ranks of 12 TFASs from SIRI-AE and COP are

shown in Table 2.8. Among the top-10 TFs ranked by SIRI-AE, 8 of them are known ES-cell

TFs. SIRI-AE is also able to identify NANOG and SOX that are generally believed to be

the master ESC regulators but were missed in the results of COP. A further study of the

top-ranked TFs whose roles in ES cells have not been studied, such as AP2ALPHA and

AP2GAMMA (ranked 11 and 12 by SIRI), PAX4 (ranked 19 by SIRI) and SP1 (ranked 22

by SIRI), could help us better understand transcriptional regulatory networks in embryonic

stem cells.
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2.5 Discussion

We studied the problem of variable selection in high dimensions from an inverse modeling

perspective. The contributions of the proposed procedure that we named SIRI is twofold.

First, it is e↵ective and computationally e�cient in detecting interactions. Combined with

independence screening, SIRI can be used to attack the problem of ultra-high dimensionality

when the number of predictors in the model is much larger than the number of observations.

Second, SIRI does not impose any specific assumption on the relationship between the re-

sponse and predictors, and is a powerful tool for variable selections beyond linear models and

detecting predictors with unknown form of interaction e↵ects. As a trade-o↵, SIRI imposes

a few assumptions on the distribution of predictors. As demonstrated in our simulation

studies, SIRI has competitive performance when the generative model is di↵erent from the

inverse model assumption. However, we found that SIRI is not very robust against extreme

outliers on values of predictors. Data preprocessing, such as quantile normalization, may be

helpful when extreme outliers are presented from exploratory analysis.

Like other stepwise procedures such as linear stepwise regression, SIRI may encounter

issues that are typical to stepwise variable selection methods as discussed in Miller (1984).

Imagine a simple classification example with two relevant predictors having the same mean

and variance, but di↵erent correlations in two classes. Then, the predictors are undetectable

to any stepwise procedure that selects one variable at a time. In less extreme scenarios, when

relevant predictors have weak marginal e↵ects but strong joint e↵ects, iterative sampling

procedures such as Gibbs sampling could be more powerful than stepwise procedures like

SIRI. This motivates us to further study the problem of variable selection from a Bayesian

perspective.
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Finally, inverse models are not substitutes but complements to forward models. When a

specific form is derived from solid scientific arguments, a forward perspective that treats the

distribution of predictors as a nuisance can be more powerful in building predictive models.

Depending on one’s research questions and objectives, it may be helpful to alternate between

the two perspectives in analyzing and interpreting data.
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Chapter 3

Detecting Pleiotropic and Epistatic

E↵ects in eQTL Study

Expression quantitative trait loci (eQTLs) are genomic loci that regulate expression levels

of genes. By assaying gene expression and genetic variation, e.g., single nucleotide polymor-

phisms (SNPs) or copy number variations (CNVs), simultaneously in segregating popula-

tions, scientists wish to correlate variation in the gene expression with genomic sequence

variation. In such cases we say that the expression of the query gene(s) is linked to or maps

to the corresponding DNA region. One justification for studying genetics of gene expres-

sion is that transcript abundance may act as an intermediate phenotype between genomic

sequence variation and more complex whole-body phenotypes. Results from eQTL studies

have been used for identifying hot spots (Brem et al., 2002; Schadt et al., 2003; Morley et al.,

2004; Bystrykh et al., 2005; Chesler et al., 2005; Hubner et al., 2005; Lan et al., 2006), con-

structing causal networks (Zhu et al., 2004; Bing and Hoeschele, 2005; Chesler et al., 2005;

Li et al., 2005; Schadt et al., 2005; Zhu et al., 2008), prioritizing lists of candidate genes for
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clinical traits (Bystrykh et al., 2005; Hubner et al., 2005; Schadt et al., 2005) and elucidating

subclasses of clinical phenotypes (Schadt et al., 2003; Bystrykh et al., 2005).

3.1 Traditional eQTL Mapping and Bayesian Partition

Method

Traditional eQTL studies are based on linear regression models (Lander and Botstein,

1989) in which each trait variable is regressed against each marker variable. The p-value

of the regression slope is reported as a measure of significance for the association. In the

context of multiple traits and markers, procedures such as false discovery rate (FDR) controls

(Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003) can be used to control family-

wise error rates. Despite the success of regression approaches in detecting a single eQTL,

a number of challenging problems remain. First, these methods can not easily discover

epistatic e↵ects, the joint e↵ect of multiple markers. Storey et al. (2005) developed a step-

wise regression method to search for pairs of markers. This procedure, however, tends to

miss eQTL pairs with small marginal e↵ects but a strong interaction e↵ect. Second, there are

often strong correlations among expression levels for groups of genes (called gene modules),

partially reflecting co-regulation of genes in biological pathways that may respond to common

genetic loci and environmental perturbations (Schadt et al., 2003; Yvert et al., 2003; Chen

et al., 2008b; Schadt et al., 2008; Zhu et al., 2008). Previous findings of eQTL hot spots,

i.e., loci a↵ecting a larger number of expression traits than expected by chance, and their

biological implications further enhance this notion and highlight the biological importance of

finding such pleiotropic e↵ects. Mapping genetic loci for multiple traits simultaneously has

also been shown to be more powerful than mapping single traits at a time (Jiang and Zeng,
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1995). Although for a known small set of correlated traits, one can conduct QTL mapping

for the principal components (Mangin et al., 1998), this type of method becomes ine↵ective

when the set size is moderately large or one has to enumerate all possible subsets. An

alternative approach is to identify subsets of genes by a clustering method in the first stage,

and then fit mixture models to clusters of genes (Kendziorski et al., 2006) or linear regression

by treating genes as multivariate responses (Chun and Keleş, 2009). The eQTL mapping

then depends on whether the clustering method can find the right number of clusters and

the right gene partitions.

The problem of searching for eQTLs can be viewed as a variable selection problem,

selecting on both the predictors (genotypes of genetic markers) and the responses (gene

expression), including also multi-way interactions among the predictors. Variable selection

in regression modeling is a long-standing problem in statistics, especially in analyzing high-

dimensional and high-throughput data. Traditional variable selection methods, from which

most of the aforementioned methods are derived, focus on the forward modeling perspective,

i.e., predictive modeling for the conditional distribution of response(s) Y given predictors

X. Our goal here is to detect nontrivial joint e↵ects of subsets of predictors on the response

vector. The traditional approaches are therefore rather cumbersome to use since it needs

to (a) specify how multiple predictors interact (e.g., a multiplicative e↵ect), and (b) include

all possible interaction terms as candidates. Taking a di↵erent modeling angle from the

regression formulation, Zhang and Liu (2007) introduced the Bayesian epistasis association

mapping (BEAM) model to detect epistatic interactions in genome-wide case-control studies,

where response Y is a binary variable indicating disease status. The BEAM model can be

viewed as a generalization of the näıve Bayes (NB) model, which models Pr(X|Y ) instead of

Pr(Y |X). Motivated by a näıve Bayes modeling perspective, Zhang et al. (2010) developed
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a Bayesian partition (BP) model for eQTL studies based on a joint model of gene expression

and genetic markers. More specifically, correlated expression traitsY and their associated set

of markers X are treated as a module in the BP model and a latent individual type variable T

is introduced to decouple X and Y by modeling Pr(X|T ) and Pr(Y|T ) separately. A Markov

Chain Monte Carlo (MCMC) algorithm (Metropolis et al., 1953) was used to search for the

module genes and their linked markers. The BP model has been shown to be consistently

more powerful than other methods, such as the two-step regression method (Storey et al.,

2005), for detecting epistatic interactions and pleiotropic e↵ects in both simulation and large

genetics-genomics studies.

However, the original BP model has several limitations on its flexibility and and scal-

ability due to restrictive model assumptions and computational costs. First, the original

BP model only allows positively correlated genes to be selected into the same module and

cannot capture complex gene expression patterns in a module. Second, the joint distribution

of all the associated markers in a module is described by a saturated model with exponen-

tially growing complexity, which decreases the power of the original BP model in detecting

multi-SNP associations especially for markers that are only marginally associated with a

module. Moreover, to account for linkage disequilibrium (LD) among adjacent markers, the

original BP model imposed a mutually exclusive condition on marker pairs with correla-

tions exceeding a certain threshold, without explicitly modeling the block-wise dependence

structure of markers along the genome. Third, the original BP model su↵ers from the slow

convergence of the MCMC algorithm due to a large number of intermediate parameters that

are di�cult to be analytically marginalized over (summed or integrated out). Although a

parallel tempering scheme had been used to help with the mixing of the MCMC chains, it

still requires intensive computational resources. Last but not least, the original BP model
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assigns a uniform prior on latent individual type T . Although uniform clustering priors or

Dirichlet process priors are flexible and common choices in Bayesian unsupervised clustering,

they may not be suitable for regression-type problems. Our objective is to extract informa-

tion from genetic markers X that can be used to explain variation in the gene expression Y.

By modeling Pr(X|T ) and Pr(Y|T ) separately and assigning a uniform clustering prior on

individual type T , the original BP model does not take the asymmetric roles played by X

and Y into account

In this chapter, we address these issues and augment the Bayesian partition model.

Under the Bayesian framework with latent individual types, we introduce additional latent

variables that partition genes into positively correlated gene clusters and assign multiple gene

clusters into a module. This allows us to capture complex dependence structure among gene

expression such as negative co-expression. We also divide genetic markers in a module into

independent marker groups modeled separately by saturated multinomial models, which

increases our ability to detect weak marginal e↵ects. We further improve the Bayesian

partition model by simultaneously modeling the block structure of linkage disequilibrium

(LD) and selecting SNPs within blocks that are associated with gene expression, either

individually or interactively with other SNPs. By collapsing (integrating out) intermediate

parameters in the hierarchical model and using dynamic programming to marginalize over LD

block partitions, we greatly improve the computational e�ciency and the convergence of the

MCMC chains. Moreover, by introducing a prior that assigns individual type partitions based

on a sorted list (e.g., ranks of gene expression), we ensure that the partition of individuals

is primarily determined by variation in gene expression. An e�cient dynamic programming

algorithm is developed to sample individual types under the proposed prior.

This chapter is organized as following: we start Section 3.2 with a simplified Bayesian
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partition model to detect epistatic e↵ects with a single quantitative trait, and introduce the

sequential partition prior. In Section 3.3, we describe the full Bayesian partition model of

gene modules with pleiotropic e↵ects, which extends the simple model and improves the

original BP model. We further discuss the initialization and implementation of the MCMC

algorithm designed to obtain posterior samples on parameters of interest in Section 3.4.

Simulation studies that compare the augmented BP model with the original BP model and

regression-based methods are presented in Section 3.5. In Section 3.6, we illustrate our

method on a yeast eQTL data set. We conclude this chapter with a few discussions.

3.2 Simple Partition Model with QTL

Suppose Yi is a quantitative trait, such as the standardized expression level of a single

gene, Xi,k is the genotype of genetic marker (SNP) k 2 {1, 2, . . . , p}, and Ti is the unobserved

individual type for individual i 2 {1, 2, . . . , N}. The observed values of Yi and Xi,k are

denoted as yi and xi,k. A genetic marker indexed by k is a quantitative trait locus (QTL)

that is linked to the trait if indicator Ik = 1 and otherwise Ik = 0. We denote Y = {Yi}1iN ,

X = {Xi,k : 1  i  N, 1  k  p} and XM = {Xi,k : 1  i  N, k 2 M} given a marker

index set M. Let A = {k : Ik = 1} be the index set of relevant markers. The distribution of

gene expression and genotypes of relevant genetic markers are independent conditioning on

individual types T = {Ti}1iN , denoted as Pr(Y |T ) and Pr(XA|T ), respectively, and the

conditional distribution of genotypes of irrelevant markers given relevant ones is independent

of T , denoted as Pr
0

(XAc |XA). Given independent prior distributions on individual types T
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and indicators I = {Ik}1kp, ⇡(T ) and ⇡(I), we can write down their posterior distributions:

Pr (T, I|Y,X) / ⇡(T )⇡(I)Pr(Y |T )Pr(XA|T )Pr0(XAc |XA) (3.1)

/ ⇡(T )⇡(I)Pr(Y |T )Pr(XA|T )
Pr

0

(X)

Pr
0

(XA)

/ ⇡(T )⇡(I)Pr(Y |T )Pr(XA|T )
Pr

0

(XA)
,

where Pr
0

(XA) is the background probability of observing the genotypes of markers in A

and is independent of individual type T , and Pr
0

(X) is a constant that does not depend on

individual types T or indicators of relevant predictors I.

Two issues arise if we chose ⇡(T ) to be a uniform prior or a Dirichlet process prior. First,

the MCMC sampling chain often converges very slowly because of the label switching issue,

i.e., it moves too infrequently between the symmetric modes corresponding to permutations

of individual type labels. Second, because the data consists of a single gene and an over-

whelming number of genetic markers, if we allow for all possible partitions of individuals a

priori, the inference of individual types is more likely to be driven by patterns in genotypes

of genetic markers, instead of variation in gene expression. Without taking into account the

asymmetrical roles of gene expression and genetic markers, we will not achieve our goal of

using genetic information to explain variation in gene expression.

To motivate our choice of the prior for T , we first start with a simple case without

considering genotypes of genetic markers. In particular, we assume a mixture Gaussian

model:

Yi|Ti = t ⇠ N(µt, �
2), and µt ⇠ N(0, �2/),

given variance parameter �2 and hyper-parameter . Our goal is to infer unobserved indi-
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vidual types based on observations {yi}1iN . Given �2,  and a prior probability ⇡T for

adding an individual type, the maximum a posteriori (MAP) estimate of individual types

can be obtained by the following dynamic slicing procedure:

• Rank individuals according to {yi}1iN (for simplicity, we assume yi’s have already

been sorted such that y
1

< y
2

< . . . < yN).

• Fill in entries of two tables [Mj]
0jN (M

0

⌘ 1) and [Nj]
1jN recursively by increasing

order j = 1, 2, . . . , N ,

Mj = max
i2{0,1,2,...,j�1}

✓

⇡T

1� ⇡T

MiUi+1,j

◆

, and (3.2)

Nj = argmax
i2{0,1,2,...,j�1}

✓

⇡T

1� ⇡T

MiUi+1,j

◆

,

where

Ui+1,j =

r



j � i+ 
exp

0

B

@


⇣

Pj
k=i+1

yk
⌘

2

2 (j � i+ ) �2

1

C

A

.

• Divide the sorted list of individuals into disjointed slices (individual types) by tracing

back the table [Nj]
1jN and choosing the corresponding individual as the end of each

slice.

The above procedure is a variant of the Viterbi algorithm (Viterbi, 1967). By restricting

individual type partitions along the sorted list, we can obtain posterior samples of individ-

ual types or equivalently, slice boundaries, by substituting “max” with “⌃” in the recursive

formula and using the forward summation-backward sampling algorithm. When �2 is un-

known, we can iteratively update individual type T conditioning on �2 and vice versa. The

above dynamic slicing procedure provides the intuition and motivation for introducing the
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following sequential partition prior.

3.2.1 Sequential Partition Prior

Let R = {Ri, i = 1, 2, . . . , N} be a list of individuals sorted according to the quantitative

trait (for the ease of description, we assume Ri = i below). Given the list of individual ranks

R and a prior probability of ⇡T for adding a new individual type, sequential partition prior

assigns probability (⇡T )
NT�1 (1� ⇡T )

N�NT to an individual partition with sequential blocks

on the sorted list R (1  NT  N) , and zero probability otherwise. We define Si to be a

slicing indicator, which equals 1 if there is a new partition starting from individual i and 0

otherwise (S
1

⌘ 1). Then, the sequential partition prior on S has the following form

⇡(S) = ⇡({Si}2iN) = (⇡T )
PN

i=2

Si (1� ⇡T )
N�1�

PN
i=2

Si .

Under the sequential partition prior, there is a one to one correspondence between slicing

indicators S = {Si}1iN and individual type partition T = {Ti}1iN .

By simultaneously modeling gene expression and genotypes of relevant genetic markers,

we can use the forward-summation backward-sampling algorithm analogous to (3.2) to di-

rectly sample from the posterior of S (and hence T ). To be more specific, we can sum over

all possible individual partitions under the sequential partition prior by filling entries of the

table [Wj]
0jN (W

0

⌘ 1) recursively,

Wj =
j�1

X

i=0

✓

⇡T

1� ⇡T

WiUi+1,jVi+1,j

◆

, (3.3)
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where Ui+1,j is given in (3.2) and

Vi+1,j = Pr
1

({xs,k : i+ 1  s  j, k 2 A})

is the probability of observing the genotypes of individuals {i + 1, i + 2, . . . , j}, assuming

that individuals {i+1, i+2, . . . , j} are from the same individual type and markers in A are

relevant (the explicit formula is given by (3.5) in the next section).

By marginalizing over individual types T and conditioning on individual ranks R and

variance parameter �2, the joint probability of gene expression Y and genotypes of relevant

genetic markers XA can be obtained from the last entry of the table [Wj]
0jN :

Pr
�

Y,XA|R, �2

c

�

= WN(1� ⇡T )
N
�

2⇡�2

�

N
2 exp

 

�
PN

i=1

y2i
2�2

!

. (3.4)

Then, to sample individual type partition T = {Ti}1iN , or equivalently S = {Si}1iN ,

we can use backward sampling based on the table [Wj]
0jN .

An appropriate choice of sequential partition prior depends on the sorted list of indi-

viduals. In the following sections, we will discuss the issue of choosing individual ranks

R = {Ri}1iN when we need to model multiple genes with high correlations.

3.2.2 Multinomial Model for Genetic Markers

We use the multinomial model from Zhang and Liu (2007) to model genotypes of genetic

markers. In order to make this thesis self-su�cient, we include a detailed description of the

model here.
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We denote Xi,A = {Xi,k : k 2 A}. Given the individual type Ti = t, we assume:

Xi,A|Ti = t ⇠ Multinomial (1, ✓t) , and ✓t ⇠ Dirichlet

✓

�

2|A| , . . . ,
�

2|A|

◆

,

where � is a hyper-parameter. For the purpose of this study, we assume there are two possible

genotypes, i.e., individuals are haplotypes. For diploids, the total number of categories is 3|A|

instead of 2|A|. After integrating out intermediate parameter ✓t, we can derive the probability

of observing {xi,k : Ti = t, k 2 A} for individuals from the same individual type t:

Pr
1

({xi,k : Ti = t, k 2 A}) = �(�)

� (�+ nt)

2

|A|
Y

h=1

�
⇣

n(h)
t + �

2

|A|

⌘

�
�

�
2

|A|

� , (3.5)

where nt = |{Ti = t}| =
P

2

|A|

h=1

n(h)
t is the number of individuals with type t, and n(h)

t is

the number of individuals with type t and the hth genotype among 2|A| possible genotype

combinations from |A| markers. Then, the probability of observing {xi,k : 1  i  N, k 2 A}

conditioning on individual types T = {Ti}1iN is given by

Pr (XA|T ) =
NT
Y

t=1

Pr
1

({xi,k : Ti = t, k 2 A}) , (3.6)

where NT is the total number of distinct individual types.

3.2.3 Block Model of Linkage Disequilibrium

Let A be an arbitrary set of s markers. We use lk to denote the genomic coordinate of

the kth marker in A. Without loss of generality, we assume in this section A = {1, 2, . . . , s}

and lk < lj when k < j.
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To account for linkage disequilibrium (LD) between adjacent markers, we use a block

structure model to calculate Pr
0

(XA), the background probability of observing XA assuming

markers in A are not associated with gene expression. We define a block boundary indicator

Bk for the kth marker, which equals 1 if there is a new LD block starting at a genomic locus

between lk�1

and lk, and 0 otherwise (B
1

⌘ 1). Given B = {Bk}1km, markers in A can be

partitioned into consecutive blocks. For a block of (j � k) markers {k + 1, k + 2, . . . , j}, we

assume

Ok+1,j = Pr
0

({xi,m : 1  i  N, k + 1  m  j}) = �(�)

� (�+N)

2

j�k
Y

h=1

�
�

n(h) + �
2

j�k

�

�
�

�
2

j�k

� ,

where � is a hyper-parameter, n(h) is the number of individuals with the hth genotype among

2j�k possible genotype combinations from (j � i) markers and
P

2

j�k

h=1

n(h) = N .

Then, we can use the same forward-summation technique similar to (3.3) to sum over all

possible block partitions of markers in A. Given ⇡B, the prior probability of introducing a

new LD block at a genomic locus, we fill in the table [Qj]
0js (Q0

⌘ 1) recursively,

Qj =
j�1

X

k=0

1� (1� ⇡B)
lk+1

�lk

(1� ⇡B)
lk+1

�lk
QkOk+1,j,

where l
0

⌘ l
1

. The background probability of XA is given by

Pr
0

(XA) = (1� ⇡B)
ls�l

1 Qs. (3.7)
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Figure 3.1: An illustration of a module with a single gene cluster denoted as Y and a
single marker group denoted as X. T is the hidden individual type, ✓T is the parameter
for multinomial model of genetic markers described in Section 3.2.2, and µT and ⌧i are
parameters for hierarchical model of genes described in Section 3.3.1.

3.3 Augmented Partition Model with Gene Modules

We define a module as a set of gene expression traits and a set of genetic markers such

that the variation of the gene expression traits is associated with the genotypes of genetic

markers. This association between multiple genes and markers is characterized by a latent

variable T of individual types. Gene expression traits and genetic markers are conditionally

independent given the individual type partition, as illustrated in Figure 3.1. The latent

individual type can be viewed as representing a certain combination of markers that induces

changes in expression of a certain set of genes. The goal of the Bayesian partition method

is to simultaneously partition gene expression traits and genetic markers into modules.
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3.3.1 Hierarchical Model of Gene Clusters

Here we extend the model of a single gene in Section 3.2 to multiple gene expression traits.

Let Yi,j be the quantile normalized and standardized expression level of gene j 2 {1, 2, . . . , q}

for individual i 2 {1, 2, . . . , N} with individual type Ti = t. The observed value of Yi,j is

denoted as yi,j. We further divide genes into clusters such that genes within the same cluster

are co-expressed with positive correlations. Give Cj, the cluster membership of gene j, we

assume the following hierarchical model:

Yi,j|Cj = c ⇠ N(⌧i,c, �
2

c ), and ⌧i,c|Ti = t ⇠ N
�

µt,c, �
2

c/1

�

, (3.8)

where µt,c ⇠ N (0, �2

c/2

), �2

c ⇠ Inv-�2 (⌫
0

, �2

0

) and 
1

, 
2

, ⌫
0

and �
0

are hyper-parameters.

We denote the set of co-expressed genes in cluster c as Kc = {Cj = c} and their expression

YKc = {Yi,j : Cj = c, 1  i  N}. After integrating out intermediate parameters, we can

derive the conditional distribution of YKc given an individual type partition T = {Ti}1iN ,

Pr
�

YKc |T, �2

c

�

=
�

2⇡�2

c

�

Nnc
2 Zc exp

✓

� S2

c

2�2

c

◆

, (3.9)

with

Zc =

✓

r


1

nc + 
1

◆N
 

NT
Y

t=1

s

(nc + 
1

)
2

(nc + 
1

)
2

+ ncnt1

!

,

and

S2

c =
N
X

i=1

2

6

4

X

Cj=c

y2i,j �

⇣

P

Cj=c yi,j
⌘

2

nc + 
1

3

7

5

�
NT
X

t=1

2

1

⇣

P

Ti=t

P

Cj=c yi,j
⌘

2

(nc + 
1

) [(nc + 
1

)
2

+ ncnt1

]
,
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where nc = |Kc| is the number of genes in cluster c, nt = |{Ti = t}| is the number of

individuals with type t and NT is the number of distinct individual types in T . We can

further integrate out �2

c given its conjugate prior Inv-�2 (⌫
0

, �2

0

):

Pr (YKc |T ) = Zc

�
�

Nnc+⌫
0

2

�

(⌫
0

�2

0

)
⌫
0

2

[�(1/2)]Nnc � (⌫
0

/2) (S2

c + ⌫
0

�2

0

)
Nnc+⌫

0

2

. (3.10)

We denote the number of distinct gene clusters as K, which is assumed to be fixed. For genes

not belonging to any cluster, that is, {j : Cj = 0}, we assume their standardized expression

levels follow independent standard normal distributions, denoted as Pr
0

�

Y{j:Cj=0}
�

.

3.3.2 Partition Model with Single Module

To assign gene clusters into modules, for each gene cluster Kc (1  c  K), we denote its

module membership as Jc, which equals d if the gene cluster belongs to the eQTL module

indexed by d and 0 if the gene cluster does not belong to any module. In addition, we

redefine the association indicator for the kth genetic marker (1  k  p), and Ik,d = 1 if

the marker is associated with the module indexed by d and Ik,d = 0 otherwise. An eQTL

module indexed by d consists of a family of gene clusters {Kc : Jc = d} and a set of genetic

markers Ad = {k : Ik,d = 1, 1  k  p}. The association between gene clusters and genetic

markers is characterized by the common latent individual type partition Td.

The set of markers associated with module d, Ad, is further divided into non-overlapping

marker groups {Ad,1, . . . ,Ad,Md
}, where [Md

m=1

Ad,m = Ad and the number of distinct marker

groups Md in module d is treated as random. We assume that genotypes of di↵erent markers
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groups are conditionally independent given individual type partition Td, that is,

Pr (XAd
|Td) =

Md
Y

m=1

Pr
�

XAd,m
|Td

�

(3.11)

where Pr
�

XAd,m
|Td

�

is given by (3.6) in Section 3.2.2.

For the module indexed by d, the sequential partition prior on individual type partition

Td is specified with respect to a sorted list of individuals Rd = {Rd,i}1iN , and denoted as

⇡ (Td|Rd). For a module with one gene cluster, Rd can be obtained by sorting individuals

according to the average expression levels of genes in the cluster. The choice ofRd for multiple

gene clusters in a module will be discussed in Section 3.4.2. For the current discussion, we

assume Rd has been chosen. The joint probability of gene expression {YKc : Jc = d},

genotypes XAd
, and individual type partition Td can be written as

Pr (XAd
, {YKc : Jc = d}, Td|Rd) / ⇡(Td|Rd)Pr (XAd

|Td)
Y

c:Jc=d

Pr (YKc |Td) , (3.12)

where Pr (XAd
|Td) is given by (3.11) and Pr (YKc |Td) is given by (3.10). In practice, to ob-

tain posterior samples of individual type partition Td, we can couple the forward-summation

backward-sampling technique introduced in Section 3.2.1 and data augmentation by condi-

tioning on variance parameters {�2

c : Jc = d}. The details of the forward-summation step is

given in Appendix B.1.

3.3.3 Partition Model with Multiple Modules

The full model includes D modules, with each module’s probability distribution given

by (3.12), and background models of gene expression and genotypes of genetic markers. We
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assume D is fixed here. For gene clusters that are not associated with any module, i.e.,

{Kc : Jc = 0}, since we are not interested in their individual type partitions, we simply

assume

Pr ({YKc : Jc = 0}) =
Y

c:Jc=0

Pr (YKc |T0

) , (3.13)

where Pr (YKc |T0

) is given by (3.10) with T
0

= {T
0,i ⌘ 1}

1iN , that is, all the individuals

are from the same individual type.

Besides individual partitions {Td}1dD, parameters of interest include gene clusters

{Kc}1cK and their module memberships {Jc}1cK , as well as genetic markers associated

with each module {Ad}1dD and their partitions into conditionally independent groups

{Ad,m}1mMd,1dD. Let ⇡C , ⇡J and ⇡I be the prior probabilities for adding a gene into a

cluster, adding a cluster to a module and adding a genetic marker to a module, respectively.

Given observed data and ranks of individuals in each module, {Rd}1dN , the posterior

probability of parameters of interest under the full model can be formally written as

Pr ({Kc}1cK , {Jc}1cK , {Ad,m}1mMd,1dD, {Td}1dD|X,Y, {Rd}1dN)

/ Pr ({YKc : Jc = 0})
D
Y

d=1

Pr (XAd
, {YKc : Jc = d}, Td|Rd)

Pr
0

(XAd
)

⇥ (3.14)

✓

⇡C

1� ⇡C

◆

PK
c=1

|Kc|✓ ⇡J

1� ⇡J

◆

PK
c=1

|{c:Jc>0}|✓ ⇡I

1� ⇡I

◆

PD
d=1

|Ad|

,

where Pr ({YKc : Jc = 0}) is given by (3.13), Pr (XAd
, {YKc : Jc = d}, Td|Rd) is given by

(3.12) and Pr
0

(XAd
) is given by (3.7)

Until now, we have an implicit assumption that relevant markers in di↵erent modules Ad

(1  d  D) are mutually exclusive, that is,
PD

d=1

Ik,d  1 for 1  k  p. This constraint,

which was adopted by Zhang et al. (2010), favors modules with a large number of genes

58



and genetic markers, but the complexity of the module structure also reduces the detection

power given moderate sample size in most eQTL studies. For example, if two genetic marker

indexed by k
1

and k
2

are jointly associated with gene cluster c
1

, and at the same time,

the marker indexed by k
1

is marginally associated with gene cluster c
2

. In order to detect

both sets of eQTLs, we have to capture gene clusters c
1

and c
2

in the same module. If the

correlations between two gene clusters are weak, then it is likely that we will miss at least

one of the eQTLs. In the following studies, we fix the number of modules D and allow a

marker indexed by k to be associated with more than one modules without imposing any

constraint on {Ik,d}1dD.

3.4 MCMC Algorithm and Implementation

3.4.1 Choice of Hyper-Parameters

There are several hyper-parameters that need to be specified, including the number of

gene clusters K, the number of modules D, the prior probabilities (⇡T , ⇡B, ⇡C , ⇡J , ⇡I), and

hyper-parameters (
1

,
2

, ⌫
0

, �2

0

) in the hierarchical model and � in the multinomial model.

In practice, we recommend choosing the number of gene clusters K to be moderately large

(say 200 to 400) so that we can capture the correlation structure among genes’ expression

patterns. Given the number of clusters, we use the initialization strategy introduced in the

next section to group gene clusters into super-clusters, and then the number of modules D

can be chosen based on the number of super-clusters. Priors (⇡I , ⇡B, ⇡T ) should be chosen

based on prior knowledge. In the yeast data set (Brem and Kruglyak, 2005; Zhang et al.,

2010), we assume there are 6 SNPs associated with each module a priori, and set ⇡I =

6/3000 = 0.002. We choose ⇡B = 0.02 corresponding to about 5 blocks per chromosome,
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and ⇡T = 0.05 corresponding to about 20 observations in each individual type. We use

� = 1, the Je↵reys’ prior when there are two possible genotypes. Finally, we found that our

results are not sensitive to the choice of other hyper-parameters and set ⇡C = ⇡G = 0.05 and


1

= 
2

= ⌫
0

= �2

0

= 1.

3.4.2 Initialization of Clusters and Ranks

To specify the sequential partition prior, we need to have a sorted list of individuals Rd

for each module. First, we initialize K gene clusters based on a hierarchical model of gene

expression without considering genotypes or individual type partitions (gene expression levels

are positively correlated in each cluster). Within each initialized cluster, we rank individuals

by their average expression levels and denote the ranks of individuals in cluster c as R⇤
c

(1  c  K). We define a super-cluster to be a collection of correlated gene clusters, assign

K gene clusters into super-clusters using hierarchical clustering based on absolute values of

Spearman’s correlations between {R⇤
c}1cK . We link gene clusters in a super-cluster to a

module d by letting Jc = d. Finally, the ranks of individuals in module d, Rd, is randomly

chosen from {R⇤
c : Jc = d}. In practice, we fix the reservoir of possible ranks {Rc : Jc = d}

after initialization, and sample Rd from {R⇤
c : Jc = d} by conditioning on other parameters

using a MCMC sampling algorithm.

3.4.3 MCMC Algorithm

After initialization, we iteratively update parameters of interest according to their pos-

terior distributions through the following steps:

1. Sample indicators assigning genes to clusters, {Cj}1jq. For gene j = 1, 2, . . . , q,
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conditioning on {Ci : i 6= j} and other parameters, sample Cj according to (3.14).

2. Sample indicators assigning gene clusters to modules, {Jc}1cK . For gene cluster

c = 1, 2, . . . , K, conditioning on {Ji : i 6= c} and other parameters, sample Jc according

to (3.14).

3. For module d = 1, 2, . . . , D, sample indicators for assigning genetic markers to module

d, {Ik,d}1kp. Given module d and genetic marker k = 1, 2, . . . , p, conditioning on

{Ii,d : i 6= k} and other parameters, sample Ik,d according to (3.14).

4. For gene clusters c with Jc = d (0  d  D), sample the variance parameter �2

c

from Inv-�2

⇣

Nnc + ⌫
0

, S
2

c+⌫
0

�2

0

Nnc+⌫
0

⌘

conditioning on other parameters, where S2

c is given

by (3.9), nc is the number of genes in cluster c.

5. For module d = 1, , . . . , D, sample individual ranks Rd from {R⇤
c : Jc = d}, i.e.,

reservoir of possible ranks for module d, according to (3.12). Then, use the forward-

summation backward-sampling algorithm introduced in Section 3.2.1 to sample indi-

vidual type partition Td conditioning on Rd and {�2

c : Jc = d}.

3.5 Simulation Studies

In this section, we compare the performance of the augmented Bayesian partition model

with the original Bayesian partition model and other eQTL methods. The design of the first

simulation study is the same as the design in Zhang et al. (2010), where genes in the same

module are positively correlated. To mimic more complex gene expression patterns in real

data, in the second simulation study, we modify the original design to allow genes in the

same module to be either positively or negatively correlated.
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We analyze the simulated data sets using four methods: (1) the original Bayesian parti-

tion (BP) model proposed by Zhang et al. (2010), referred to as BPM1; (2) the augmented

Bayesian partition model developed in this thesis, referred to as BPM2; (3) a two-stage

stepwise regression method applied to individual gene expression proposed by Storey et al.

(2005), referred to as SR; (4) a two-stage stepwise regression method applied to the first

principle component (PC) of expression levels of known genes in each module, referred to

as PCA. The SR method has two stages: in the first stage, it identifies the most significant

marker for each gene expression trait based on the one-gene-one-marker regression model. It

then proceeds to find the next most significant marker conditional on the previous detected

marker for each gene. Permutation tests over all genes are carried out in each stage to con-

trol the overall false discovery rate (FDR). The PCA method assumes that the true genes

in each module are known, and serves as an oracle benchmark for the SR method.

3.5.1 Simulation with Positively Correlated Genes

According to the simulation design in Zhang et al. (2010), we simulated 120 individuals

with 500 binary markers and 1000 expression traits in the context of inbred cross of haploid

strains. Given the haploid nature of the segregants, 500 binary markers are equally spaced

on 20 chromosomes, each of length 100cM, using the qtl package in R. There are 8 modules

(denoted as A,B,. . .,H), each consisting of 40 genes and 2 associated markers, simulated from

di↵erent epistasis models based on the linear regression framework. The associated markers

in each module are randomly selected and do not overlap. Note that the generative models

in our simulation studies are di↵erent from the posited Bayesian partition model.

To mimic the inter-correlation of the genes in real gene expression data, we first generated

a core gene in each module according to the corresponding models depicted in Table 3.1. In
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Table 3.1: Simulation design and genetic variance decomposition

Module Model1 % of Var.2 Locus 13 Locus 24 Epistasis5

A Y = �Ix
1

=1 or x
2

=1

+ ✏ 0.166 0.345 0.342 0.313
B Y = �Ix

1

=x
2

+ ✏ 0.166 0.058 0.054 0.888
C Y = 2�Ix

1

=1 or x
2

=1

+ �x
1

x
2

+ ✏ 0.166 0.461 0.445 0.094
D Y = �I

01

+ 2�I
10

+ ✏ 0.166 0.119 0.116 0.765
E Y = �x

1

+ �x
1

x
2

+ ✏ 0.171 0.749 0.138 0.113
F Y = 2�x

1

+ �x
2

+ ✏ 0.168 0.736 0.216 0.048
G Y = 2�x

1

+ �Ix
1

=x
2

+ ✏ 0.170 0.743 0.058 0.199
H Y = 2�I

01

+ 1.5�I
10

+ 0.5�I
11

+ ✏ 0.165 0.135 0.053 0.812

1

Regression models that were used to generate the core gene in each module.

2

Average percentage of variation of genes in the module explained by the true model.

3

Average percentage of genetic variance explained by the first locus.

4

Average percentage of genetic variance explained by the second locus.

5

Average percentage of genetic variance explained by epistasis.

each model, ✏ ⇠ N(0, �2

e) represents the environmental noise. The regression coe�cient � in

each model is determined by the corresponding heritability which is defined as h2 =
�2

s��2

p

�2

p
,

where �2

s and �2

p are the variance among phenotype values in the segregants and the pooled

variance among parental measurements, respectively. Because the variance in the parental

measurements reflect only measurement error, we set �2

e = �2

p = 1 in the simulation. For

example, in module B, �2

s = �2

4

+ 1, h2 = 0.6, thus we are able to solve for the value of

� =
p
6. After generating the core gene, we simulated the gene expression traits in each

module independently from a Gaussian model conditional on the core gene so that they have

a given average correlation to the core gene. In this simulation study, we fixed heritability

at 0.6 for the core gene and the average inter-correlation for genes in the module with the

core gene at 0.5 across all eight modules. Finally, we calculated the percentage of variation

explained by the true model averaged over all genes in a module as listed in the third column

of Table 3.1. For example, for each gene in module B we calculated the sum of squares of the
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gene expression for all 120 samples (SS
total

) and the residual sum of squares (SS
res

) within the

two sample groups: those with x
1

= x
2

and those with x
1

6= x
2

. As a result, the percentage

of variation explained by the true model for this gene is 1� SS

res

SS

total

.

Table 3.2: Genotype means and frequencies for a two-locus model

Locus 2
Mean

B b

Locus 1
A

µAB µAb µA(pAB) (pAb)

a
µaB µab µa(paB) (pab)

Mean µB µb

To get a better understanding of the signal strength in each module, we divided the total

genetic variance for a two-locus model into three components: the genetic variance at locus

1, the genetic variance at locus 2, and the epistatic (interaction) variance using the classical

analysis of variance (Fisher, 1919; Cockerham, 1954; Tiwari and Elston, 1997). In Table 3.2,

each row displays the genotype at the first locus, and each column indexes the genotype

at the second locus. Each cell contains a genotypic mean and its respective frequency in

parentheses. Given the genotypic means and frequencies at both loci, one can calculate the

total genetic variance (�2):

�2 = pAB(µAB � µ)2 + pAb(µAb � µ)2 + paB(µaB � µ)2 + pab(µab � µ)2,

where µ = pABµAB + pAbµAb + paBµaB + pabµab. The amounts of genetic variance at locus 1
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and locus 2 are:

�2

1

= pA(µA � µ)2 + pa(µa � µ)2,

�2

2

= pB(µB � µ)2 + pb(µb � µ)2,

where µA = pABµAB+pAbµAb

pAB+pAb
, µa = paBµaB+pabµab

paB+pab
, µB = pABµAB+paBµaB

pAB+paB
and µb =

pAbµAb+pabµab

pAb+pab
.

The epistatic variance is defined as the amount of genetic variance not accounted for by the

single-locus components. We performed this decomposition for each gene in a module and

calculated the average percentage of the single-locus variances and the epistatic variance for

each module. These values are listed in the last three columns of Table 3.1.

Figure 3.2: Boxplot of log-likelihoods from 10 independent MCMC runs of BPM2 on the
same simulated data set. The Gelman and Rubin’s potential scale reduction factor (Gelman
and Rubin, 1992) on posterior draws of log-likelihood is 1.015.

We apply four methods, BPM1, BPM2, SR and PCA, to 100 simulated data sets. To

run BPM1, we need to specify the number of modules and we give BPM1 some advantage
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Figure 3.3: The aggregated ROC curves that compare true positives, the total number of
the true gene-marker pairs detected, and false positives, the total number of unrelated gene-
marker pairs falsely selected, of di↵erent methods under simulation in Section 3.5.1. BPM1:
the original Bayesian partition model (Zhang et al., 2010); BPM2: the augmented Bayesian
partition model proposed in this thesis; SR: a two-stage stepwise method on the one-gene-
one-marker regression model (Storey et al., 2005); PCA: a two-stage stepwise method based
on the principle component analysis of true genes in each module (oracle benchmark for SR).

by using the true number, D = 8. For the augmented BP model, BPM2, we assume that

we do not know the true number of gene clusters or modules and use a larger number of

gene clusters, K = 20. The number of modules is determined by the procedure described

in Section 3.4. Figure 3.2 shows the log-likelihoods from 10 independent MCMC runs of

BPM2 on the same simulated data set, which demonstrates that the Markov chain used in

our method attained a stationary distribution after the burn-in period. The Gelman and
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Figure 3.4: The aggregated ROC curves that compare true positives and false positives of
di↵erent methods in each module under simulation in Section 3.5.1. The average percentage
of genetic variance explained by epistasis in a module is shown on top of each figure.
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Rubin’s potential scale reduction factor (Gelman and Rubin, 1992) based on posterior draws

of log-likelihood is 1.015.

The receiver operating characteristic (ROC) curves in Figure 3.3 compare true positives,

the total number of the true gene-marker pairs detected, and false positives, the total number

of unrelated gene-marker pairs falsely selected, at varying thresholds. Figure 3.4 further

compares true positives and false positives of di↵erent methods in each module. As shown

from the ROC curves in Figure 3.3 and Figure 3.4, in modules that have strong marginal

but weak interactive e↵ects, the BPM2 performs almost as well as the PCA method based

on the stepwise regression, even though the latter has already been given the set of genes

in each module to start with. In modules that have weak marginal but strong interactive

e↵ects (module B, D and H), the BPM2 is more powerful than the PCA method in detecting

epistatic e↵ects. When the true genes in modules are not given, the stepwise method SR

based on the one-gene-one-marker regression model has the lowest detection rate, especially

when there are strong epistatic e↵ects. Moreover, the augmented model, BPM2 achieves

consistently higher power in detecting eQTLs (gene-marker pairs) compared to the original

model, BPM1. There are several reasons for the excellent performance of BPM2. First,

BPM2 uses a more e�cient algorithm to partition individuals, and a more flexible model of

the dependence structure between gene expression and genetic marker. Second, we aggregate

information from all the co-regulated genes in a module and improve the signal strength of

eQTLs. Third, by using a joint model of interactive markers and a iteratively sampling

approach, we significantly increase the power in detecting markers with weak marginal but

strong interactive e↵ects compared to the stepwise methods that select one marker at a time.
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Figure 3.5: The aggregated ROC curves that compare true positives, the total number of
the true gene-marker pairs detected, and false positives, the total number of unrelated gene-
marker pairs falsely selected, of di↵erent methods under simulation in Section 3.5.2.

3.5.2 Simulation with Mixed Correlations

The second simulation studies the performance of di↵erent methods when there are both

positively and negatively correlated genes in the same module. The data generation process

is the same as the previous simulation except that a random sign is multiplied to the sim-

ulated expression of each gene. Since the original Bayesian partition model cannot capture

negatively correlated genes in the same module, we use 16 instead of 8 as the number of

modules in BPM1. For the augmented Bayesian partition model, BPM2, we again specify

the number of gene clusters as 20 and the number of modules is determined as described in
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Figure 3.6: The aggregated ROC curves that compare true positives and false positives of
di↵erent methods in each module under simulation in Section 3.5.2. The average percentage
of genetic variance explained by epistasis in a module is shown on top of each figure.
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Section 3.4. The aggregated ROC curves of di↵erent methods are shown in Figure 3.5 and

the ROC curves in each module are shown in Figure 3.6.

As expected, the original Bayesian partition model, BPM1, has a lower power in the

second simulation compared to its performance in the first simulation. Although we increased

the number of modules in BPM1 from 8 to 16 in order to capture all the relevant genes,

the separation of negatively correlated genes into di↵erent modules (a module only contains

positively correlated genes in BPM1) weakened the signal strength of gene expression in

determining individual type partitions. The lower detection rate of BPM1 is more evident

in Module B, D and H, when an informative partition of individuals becomes critical in

detecting genetic markers with weak marginal but strong interactive e↵ects. To the contrary,

the augmented Bayesian partition model, BPM2, is able to combine negatively correlated

genes in the same module and shows consistently excellent performances in both simulations.

In modules E, F, and G where the major marker explains more than 70% of the genetic

variation, the PCA method, which starts with the true gene-module assignments and uses

stepwise regression to detect markers, outperforms the BPM2. In Module A and C where the

marginal e↵ects of the two marker are almost the same, the BPM2 and the PCA method have

comparable performances. In Module B, D and H where no or very weak marginal e↵ect

is present and genetic variation is mainly explained by the epistasis, the BPM2 achieved

significantly better power than the PCA method, even though the latter has a full knowledge

of genes in each module. When the gene-module assignments are not given, the stepwise

regression method SR failed to detect most of gene-marker pairs.
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3.6 Yeast Data Analysis

In this section, we present an application of the augmented Bayesian partition model

to a yeast data set with 2957 markers and 3662 gene expression profiles from 112 yeast (S.

cerevisiae) segregants (Brem and Kruglyak, 2005; Zhang et al., 2010). We set the number of

gene clustersK = 200 and the number of modules D = 100 in this study. Because markers in

the yeast data set are very densely distributed, adjacent markers are highly correlated. After

MCMC sampling, markers adjacent to the truly linked marker often diluted the posterior

probability for the true marker-module linkage. To counter this problem, we first specified

a window centered at each marker so that markers inside the window are in high LD with

the marker in the center. The posterior probabilities of all markers in the window were

summed up and regarded as the modified posterior probability of the central marker. The

markers with peak probabilities exceeding the given threshold were selected and all other

markers in the corresponding windows were masked out. We chose the window size to

contain 5 markers and 0.8 as the threshold for modified posterior probabilities to determine

the module membership of a marker. Among 100 modules, we found 40 modules are not

associated with any marker above the threshold, 49 modules are associated with a single

markers, 10 modules are associated with two markers and 1 module is associated with three

markers.

Figure 3.7 shows an example of a module linked to a single marker on Chromosome

XII. The genes in the module are grouped into two positively correlated gene clusters with

negative correlations between two clusters. The functional annotation of each gene cluster

is shown on top of the figure. Out of the 14 genes in the module, nine of them are physically

located adjacent to the genetic marker and are cis-acting eQTLs. The other five genes are
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Figure 3.7: Heatmap for gene expression in a module linked to a single marker (NLR058C)
on Chromosome XII. Individuals are divided into two groups according to the genotype (0
or 1) of the genetic marker. Each column represents the expression level of a gene across
individuals. High- and low-expression levels are represented by red and blue, respectively.

located on di↵erent chromosomes and are trans-acting eQTLs.

Figure 3.8 shows a module that are linked to two genetic markers. There are two gene

clusters in the module with a total of 27 genes, most of which are related to the sexual

reproduction process in yeast. Nine out of 27 genes are located near the marker YCR041W

on Chromosome III. The other 18 genes are not located in adjacent to either marker. Box-

plots of average gene expression in two gene clusters under di↵erent genotype combinations

are shown in Figure 3.9. From Figure 3.8 and Figure 3.9, we can see that the marker

YCR041W has a primary regulatory e↵ect and divides individuals into two separate groups

in both gene clusters. The secondary marker YHL007C further divides the low-expression
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Figure 3.8: Heatmap for gene expression in a module linked to two markers on Chromosome
III and VIII. Individuals are divided into four groups according to the genotype combinations
of the two markers. Each column represents the expression level of a gene across individuals.
High- and low-expression levels are represented by red and blue, respectively.

Figure 3.9: Box-plots of average gene expression under di↵erent genotype combinations from
two gene clusters in Figure 3.8.
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Figure 3.10: Heatmap for gene expression in a module linked to two markers. Individuals are
divided into eight groups according to the genotype combinations of the two markers. Each
column represents the expression level of a gene across individuals. High- and low-expression
levels are represented by red and blue, respectively.

individuals into two subgroups.

Figure 3.10 shows another example of a module that is linked to two genetic markers.

The three gene clusters in the module exhibit more complicated gene expression patterns and

all of them are involved in organic acid biosynthetic process. Both genetic markers are trans-

eQTLs. Individuals with genotype combination (1, 0) from two markers have low expression

in the first gene cluster and high expression in the second gene cluster, and individuals with

genotype combination (1, 1) have relatively high expression in the third gene cluster.

In the example shown in Figure 3.11, we identified a module linked to three genetic

markers. The module consists of four genes with functions related to oxidation-reduction and

dehydrogenase. The three genetic markers in the module are trans-eQTLs co-localized with

other genes involved in oxidation-reduction, dehydrogenase and ATP-binding respectively.
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Figure 3.11: Heatmap for gene expression in a module linked to three markers. Individuals
are divided into eight groups according to the genotype combinations of the two markers.
Each column represents the expression level of a gene across individuals. High- and low-
expression levels are represented by red and blue, respectively.

From the heatmap in Figure 3.11, we can see that when the three genetic markers have

genotype combination (1, 1, 1), the four trans-acting genes in the module will have relatively

higher expression compared with individuals with other genotype combinations.

3.7 Discussion

This chapter studied the problem of identifying pleiotropic and epistatic e↵ects in eQTL

studies. The contributions of the augmented Bayesian partition model are threefold. First,

it improves signal strength by aggregating information from correlated gene clusters and

allowing negatively correlated genes to be included in the same module. Second, it directly

accounts for dependence structure of genetic markers by modeling them as linkage disequilib-

rium (LD) blocks. Third, the sequential partition prior incorporates scientifically motivated
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assumptions and the corresponding dynamic programming algorithm allows for more e�cient

computations. Simulation studies have demonstrated that the augmented model achieved

significantly improved power in detecting eQTLs compared to the original BP model and

traditional regression-based methods. We applied the augmented Bayesian partition model

to analyze yeast eQTL data. A particular strength of our method is its ability to detect

epistatic e↵ects with high power when the marginal e↵ects are weak, addressing a key weak-

ness of other eQTL mapping methods.

Further improvements of the model are being investigated. First, Zhang (2012) proposed

a refined model of the interactions between genetic markers using Bayes networks, which can

be incorporated into our Bayesian partition model. Second, using gene expression data from

multiple tissues, the Bayesian partition model can be extended to study tissue common and

tissue specific eQTLs. We are currently collaborating with scientists in the Genotype-Tissue

Expression (GTEx) project, which aims to comprehensively survey genetic regulation of gene

expression in multiple human tissues.
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Chapter 4

Identifying TF Subclasses on Protein

Binding Microarray

Transcription factors (TFs) play a key role in the regulation of gene expression by ac-

tivating or repressing transcription of their target genes. Regulatory specificity is achieved

primarily by the recognition of specific DNA binding sites in the genome by sequence-specific

TFs. Data on TF DNA binding specificity are important for understanding how transcrip-

tional regulation is encoded in cis regulatory sequences in the genome.

TFs can be classified according to the structural class of their DNA binding domains

(Luscombe et al., 2000). TFs of the same structural class adopt the same fold in their DNA

binding domain and dock with their DNA binding sites in a similar manner. Because of

these structural similarities, combined with sequence similarities due to the origin of TF

families from ancient gene duplications and subsequent mutations, members of the same

DBD class often, but not always, have similar DNA binding sequence preferences (Badis

et al., 2009). A DBD class can be further divided into subclasses, with more closely related
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proteins exhibiting more similar DNA binding preferences. Understanding how highly similar

members of a TF family attain both redundant and divergent regulatory functions remains

a significant challenge (Grove et al., 2009).

4.1 Background on Protein Binding Microarray

Accurate and comprehensive data on DNA binding sequence specificities are essential for

investigations of regulatory targeting by TFs, including the identification of the molecular

determinants of TF DNA binding specificity. A variety of high-throughput technologies have

been developed for determining TF DNA binding specificity. Methods that provide data on

in vivo TF occupancies in the genome, such as chromatin immunoprecipitation coupled with

DNA microarrays (ChIP-chip) or high-throughput sequencing (ChIP-Seq), provide data on

both direct and indirect DNA binding by TFs, which can vary across cellular or environmen-

tal conditions (Harbison et al., 2004). In contrast, approaches that determine DNA binding

specificities in vitro provide data on direct TF-DNA interactions, without the confounding

e↵ects of in vivo protein cofactors (Gordân et al., 2009).

Protein binding microarray (PBM) technology is an in vitro approach for characterizing

the DNA binding specificities of proteins, by assaying the binding of a protein to a library

of double-stranded DNA sequences immobilized on a DNA microarray (Bulyk et al., 2001).

Universal PBMs contain synthetic DNA sequences designed to represent all possible k-mers,

with commonly used array designs encompassing all possible 10-bp DNA sequence (k =

10) (Berger et al., 2006). Universal PBMs have been used in numerous recent studies to

determine the DNA binding specificities of hundreds of TFs from a wide range of organisms

(Grove et al., 2009; Campbell et al., 2010; Busser et al., 2012), with major e↵orts on TFs
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encoded in the genomes of the yeast S. cerevisiae (Badis et al., 2008; Zhu et al., 2009; Gordân

et al., 2011) and mouse (Berger et al., 2008; Badis et al., 2009; Wei et al., 2010).

Universal PBMs contain 60-bp DNA probes, each of which contains multiple 10-mers

embedded within variable flanking sequence. For statistical robustness, binding preference

scores are calculated for all 8-mers, each of which is represented on at least 16 or 32 spots,

for palindromic and non-palindromic 8-mers, respectively, on the array. Analysis of uni-

versal PBM data using the Universal PBM Analysis Suite including the Seed-and-Wobble

algorithm (Berger et al., 2006; Berger and Bulyk, 2009), which were developed together with

the universal PBM technology, involves background subtraction, various normalizations of

the data, and calculation of various binding scores for each 8-mer, including the median

fluorescence signal intensity over all probes that contain a particular 8-mer and a rank-based

PBM enrichment (E)score, ranging from �0.5 (worst) to +0.5 (best). The 8-mer data can

be used to derive a DNA binding specificity motif, or position weight matrix (PWM) (Berger

et al., 2006; Berger and Bulyk, 2009).

Analyses of large collections of universal PBM data have identified previously unknown

diversity in the DNA binding sequences recognized by TFs (Berger et al., 2008; Badis et al.,

2009; Gordân et al., 2011). Hierarchical clustering of TFs according to their similarity in

8-mer E-scores has permitted more precise identification of TF subclasses according to their

DNA binding specificities (Berger et al., 2008; Wei et al., 2010; Gordân et al., 2011). In

addition, examination of k-mer binding preferences within a TF family (here, defined as a

group of closely related TFs belong to the same DBD structural class or the same subclass

within a DBD class) has revealed sets of k-mers bound in common across the family (TF-

common k-mers) and also sets of k-mers preferred by an individual member(s) of a TF

family. To date, identification of such TF-preferred k-mers has been performed in an ad
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hoc fashion, in manual investigations of individual sets of TFs that employed various semi-

arbitrary thresholds (Busser et al., 2012) combined with visual inspection (Berger et al.,

2008). Such TF-preferred k-mers may contribute to the distinct regulatory functions that

distinguish members of a TF family.

In the remaining part of this section, we will describe the PBM and ChIP-chip data

sets used in our analysis. In Section 4.2, we present a Bayesian hierarchical analysis of

variance (ANOVA) approach for modeling PBM k-mer data (here, 8-mers) given TF family

classifications. Our method identifies 8-mers that score artifactually highly (‘sticky’ 8-mers)

for unknown reasons. Our approach for subsequently adjusting for these systematic biases

improves overall PBM data quality and improves concordance with ChIP-chip data. The

Bayesian ANOVA model assumes that TFs have been classified into families. In practice,

DBD structural class can be used to define TF family memberships. However, members of

the same DBD class do not always exhibit similar DNA binding preferences. In Section 4.3,

we present a Bayesian partition model for systematically identifying TF subclasses, simul-

taneously with their shared DNA binding preferences as well as the sequence preferences

that distinguish them. Our TF subclassification results are consistent with classifications

based on TF DBD sequence similarity. Our method also permits automated identification of

TF-preferred k-mers within TF subclasses. Improved identification of TF-preferred k-mers

will aid in studies of potential di↵erences in the targeting of di↵erent genomic sites by par-

alogous TFs, and thus potentially how they may exert di↵erent regulatory functions. We

anticipate that such modeling will aid in identification of genomic cis regulatory codes (i.e.,

cis regulatory sequence features that confer particular gene expression patterns) and will

improve the quality of datasets for identification of the molecular determinants of TF-DNA

sequence specificity.
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4.1.1 PBM Data Sets

We downloaded universal PBM k-mer data and DBD structural class data from the

UniPROBE database (Robasky and Bulyk, 2011), which hosts data generated by universal

PBM technology on the in vitro DNA-binding specificities of proteins. The relative binding

preference of a TF for each k-mer (here, k = 8) in universal PBMs is quantified by the

PBM enrichment score (E-score), which is a modified form of the Wilcoxon-Mann Whitney

statistic (Berger et al., 2006). We refer to this as the observed E-score. We consider observed

E-scores above 0.35 as corresponding, in general, to sequence-specific DNA binding of the

TF. In this study, we included 349 TFs from 19 DBD structural classes (e.g., homeodomain),

with the criterion that there are at least three TFs per DBD class. Two of the downloaded

PBM data sets are of particular interest in this study. One is a mouse TF data set with

87 TFs from 12 DBD classes (filtered according to the above criterion from a total of 104

TFs from 22 structural classes) previously described by Badis et al. (2009), in which PBM

experiments were performed for each TF on two di↵erent versions of “all 10-mer” universal

arrays, referred to as “version 1” and “version 2” (Agilent Technologies, Inc.; AMADID

#015681 (Berger et al., 2008) and #016060 (Zhu et al., 2009), respectively), which were

based on two di↵erent “all 10-mer” de Bruijn sequences. The other is a yeast TF data set

with 79 TFs from 10 DBD classes (filtered according to the above criterion from a total of

89 TFs from 18 structural classes) in Zhu et al. (2009) for which ChIP-chip data (see Section

4.1.2) are publicly available in Harbison et al. (2004) for 57 of these 79 TFs. We also included

eight negative control experiments, corresponding to duplicate PBM experiments on each of

array design versions 1 and 2, for GST in binding bu↵er and, separately, for a mock in vitro

transcription and translation reaction (Badis et al., 2009).

82



4.1.2 ChIP-chip Data Sets

We downloaded yeast ChIP-chip data from Harbison et al. (2004) for 352 ChIP-chip

experiments for 207 TFs under various culture conditions. We use the notation TF condition

to refer to the ChIP-chip experiment for a transcription factor TF under an environmental

condition. For each ChIP-chip data set, we defined the ‘bound’ intergenic regions to be

those with ChIP-chip P -value < 0.001 and the ‘unbound’ intergenic regions to be those with

ChIP-chip P -value > 0.5, as reported by Harbison et al. For 57 of these 207 TFs, PBM

data are available in UniPROBE. We further restricted our analysis to ChIP experiments

for which the ChIP ‘bound’ regions have been explained as being due to direct DNA binding

by the profiled TF (Gordân et al., 2009); this requirement resulted in a final collection of 75

ChIP-chip data sets for 46 TFs.

4.2 Bayesian ANOVA Model of PBM k-mer data

Given family membership (e.g., DBD structural class or subclass of a DBD class) of

TFs, the DNA binding specificity scores from PBM experiments can be decomposed into

components attributable to at least three sources of variation: systematic biases across

all PBM experiments, family-wise binding preferences shared by members of the same TF

family (i.e., TF-common k-mers) (Berger et al., 2008; Busser et al., 2012), and k-mer binding

preferences specific to individual member(s) of a given TF family (i.e., TF-preferred k-mers)

(Berger et al., 2008; Busser et al., 2012). For PBM data sets from several diverse DBD classes,

we used a Bayesian ANOVA model with hidden indicators to decompose PBM E-scores into

di↵erent components and to infer the corresponding TF-common and TF-preferred k-mers

systematically.
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4.2.1 Bayesian ANOVA model for identifying TF-common and

TF-preferred k-mers

For a TF family f and a k-mer j, we use Pf,j = 1 (Pf,j = �1) to indicate that the

k-mer is preferred (disfavored) by members of that TF family, and Pf,j = 0 if members of

the family show no consistent preferred or disfavored binding for the k-mer. For a TF i and

a k-mer j, we use Qi,j = 1 (Qi,j = �1) to indicate that the k-mer is preferred (disfavored)

by the TF, and Qi,j = 0 otherwise. Given family membership Fi = f and the standardized

E-score (standardized to have mean 0 and variance 1) Yi,j of TF i and k-mer j, we assume

the following ANOVA decomposition:

Yi,j = ⌧j + !f,j + �i,j + ✏i,j, (4.1)

where idiosyncratic noise ✏i,j ⇠ N(0, �2), systematic background noise ⌧j ⇠ N (0, �2/�
1

),
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We assign inverse chi-square priors on �2, �
1

and �
2

, truncated normal priors on !±
f and

�±i (to guarantee model identifiability) and independent multinomial priors on indicators

P ’s and Q’s. A graphical representation of the dependence relationship between variables
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in Bayesian ANOVA model is given in Figure 4.1. We used a Markov Chain Monte Carlo

(MCMC) algorithm (Geman and Geman, 1984; Metropolis et al., 1953) to obtain posterior

distribution of parameters and hidden indicators according to the ANOVA model in (4.1) (see

Appendix B.2 for detailed description and convergence diagnostics of the MCMC algorithm).

In the following study, we are especially interested in the posterior distribution of background

noise ⌧j, and indicators of family-wise and TF-specific e↵ects.

Figure 4.1: A graphical representation of the dependence relationship between the variables
in the Bayesian ANOVA model presented in Section 4.2.1.

4.2.2 Correcting k-mer data for systematic biases

Let E (⌧j|Y = {yi,j}) be the posterior mean of ⌧j calculated from (4.1) given the observed

E-scores {yi,j}, and let yj be the standardized E-score of k-mer j from a PBM experiment.

To remove the systematic biases, we subtract the posterior mean of the background noise

from the corresponding standardized E-score, i.e., y⇤j = yj � E (⌧j|Y = {yi,j}). Then, an E-
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score corrected for systematic biases can be obtained by transforming y⇤j back to the original

scale. We refer to this as the corrected E-score.

4.2.3 Evaluating the statistical significance of TF-preferred k-mers

For a pair of TFs and a given k-mer, we evaluate the statistical significance of its being

TF-preferred by the intersection-union test (Berger and Hsu, 1996) with the null hypothesis

that either none of the TFs exhibits preferred binding to the k-mer, or the pair have no

di↵erence in their binding preferences for the k-mer. Specifically, let µi,k be the mean E-

score of TF i (i = 1, 2) and 6-mer k (there are either 16 or 32 8-mer E-scores corresponding

to each 6-mer). For example, the null hypothesis to test if a 6-mer k is preferred by TF 1 is

H
0

: µ
1,k  0 or µ

1,k  µ
2,k and the alternative hypothesis is H

1

: µ
1,k > 0 and µ

1,k > µ
2,k

(similarly, switch µ
1,k and µ

2,k for testing 6-mers preferred by TF 2). To test H
0

, we first

perform two separate one-side t-tests on the averages of y
1,j and dj = y

1,j � y
2,j for all

the 8-mer j that contains the corresponding 6-mer k. Then, we can take the maximum of

the two P -values obtained from t-tests as the intersection-union test P -value evaluating the

significance of TF 1-preferred binding for 6-mer. Finally, we report all TF-preferred k-mers

at an adjusted P -value < 0.05 by Benjamini-Hochberg correction (Benjamini and Hochberg,

1995).

4.3 Bayesian partition model for identifying TF sub-

classes

A collection of PBM data sets for TFs from the same DBD class provides a unique

perspective to refine the classification of TFs into subclasses according to their DNA bind-
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ing sequence preferences. Although hierarchical clustering has been used successfully for

functional classification of gene expression profiling microarray experiments (Eisen et al.,

1998) and for identification of TF subclasses based on PBM experiments (Berger et al.,

2008; Wei et al., 2010; Gordân et al., 2011), the inclusion of unnecessary features that are

irrelevant to cluster determination may degrade the results. This is especially the case for

PBM experiments, where only a small fraction of k-mers measured by experiments are bound

specifically by the profiled TF. Biclustering is a simultaneous similarity-based clustering ap-

proach that is able to detect subsets of features that exhibit consistent patterns over subsets

of experiments (Cheng and Church, 2000; Gusenleitner et al., 2012); however, it does not

directly provide a systematic classification of TF subclasses. Model-based methods for iden-

tifying and removing batch e↵ects and other sources of variation have been developed for

meta-analysis of high-throughput data, including microarray-based gene expression profiling

experiments (Johnson et al., 2007; Leek and Storey, 2007, 2008; Leek et al., 2010, 2012).

Direct applications of such methods potentially could separate systematic background noise

from identification of k-mers preferred by di↵erent TFs from PBM data.

Here, we present a Bayesian partition model that simultaneously partitions TFs into

subclasses that have similar DNA binding profiles, and clusters k-mer DNA sequences into

groups that are preferred by one or more TF subclasses.

4.3.1 Bayesian partition model of k-mers preferred by TF sub-

classes

The partition model of E-scores for k-mers preferred by TF subclasses is very similar

to the hierarchical model of expression levels for gene clusters given individual types in

87



Section 3.3.1. Specifically, let Yi,j be the standardized E-score of TF i 2 {1, 2, . . . , NT} and

k-mer j 2 {1, 2, . . . , NK}, where NT is the number of PBM data sets for TFs from the same

DBD structural class and NK is the total number of k-mers after collapsing forward and

reverse complements (NK = 32896 for k = 8). Suppose Ci is the unknown subclass of TF

i and Gj is the unknown group membership of k-mer j. For each group g of the k-mers (

g = 1, 2, . . . , NG), Ig = 1 if the group is preferred by one or more TF subclasses, and Ig = 0

otherwise. Given Ci = c and Gj = g, we assume:

Yi,j|Gj = g ⇠ N(µi,g, �
2), and µi,g|Ci = c ⇠ N

�

✓c,g, �
2/

1

�

, (4.2)

where ✓c,g follows N (0, �2/
2

) if Ig = 1 and ✓c,g = 0 if Ig = 0. A graphical representation

of the dependence relationship between variables in the Bayesian partition model is given in

Figure 4.2. We further assume that �2 follows an inverse chi-square prior Inv-�2 (⌫
0

, �2

0

). We

found that the results are not sensitive to the choices of hyper-parameters (see Appendix B.3),

and we set 
1

= 
2

= ⌫
0

= �2

0

= 1. Since the total number of subclasses is unknown, we

assume subclass assignments C = {Ci : 1  i  NT} follows a Dirichlet process prior with

concentration parameter ↵ = 0.01. The prior probability of group assignment G = {Gj :

1  j  NK} is given by ⇡(Gj = g) = 1/NG for 1  g  NG and NG = 100, and the prior

probability of subclass-preferred indicators I = {Ig : 1  g  NG} is ⇡(Ig = 1) = 0.01 for

1  g  NG. Sensitivity analysis on choices of hyper-parameters and priors is discussed in

Appendix B.3.

For each group g of the k-mers, given C and Ig, we can integrate out (i.e., marginalize

over) intermediate parameters in the hierarchical model (4.2) to get an explicit expression

of the probability P (Yg|Ig,C), where Yg = {Yi,j : Gj = g, 1  i  NT} is the collection of
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Figure 4.2: A graphical representation of the dependence relationship between the variables
in the Bayesian partition model presented in Section 4.3.1.

E-scores for k-mers in the group g. Let NC be the number of distinct subclasses, nc be the

number of TFs in subclass c and ng be the number of k-mers in group g. After integrating

out µi,g and ✓c,g, we have

Pr
�
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=
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We can further integrate out �2 given its inverse chi-square prior Inv-�2 (⌫
0

, �2

0

),

Pr (Yg|Ig = 1,C) = Z
1

�
⇣

NTng+⌫
0

2

⌘

(⌫
0

�2

0

)
⌫
0

2

[�(1/2)]NTng � (⌫
0

/2) (S2

1

+ ⌫
0

�2

0

)
NT ng+⌫

0

2

.

Similarly, when Ig = 0 (i.e., Yg have the same distribution across di↵erent subclasses), we

have

Pr (Yg|Ig = 0,C) = Z
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Combining with prior distributions of ⇡(C), ⇡(G) and ⇡(I), we obtain the posterior distri-

bution of C, G and I given observed E-scores Y,

Pr (C,G, I|Y) / ⇡(C)⇡(G)⇡(I)
NG
Y

g=1

Pr (Yg|Ig,C) . (4.3)

We can draw from the above posterior distribution (4.3) iteratively using a collapsed Gibbs

sampler (Liu, 1994) (see Appendix B.3 for detailed description and convergence diagnostics

of the Gibbs sampling algorithm).

4.3.2 Motif model for aligning k-mer DNA sequences

We build a position weight matrix (PWM) to characterize the DNA binding specificity

of a group of k-mers (e.g., TF-common k-mers for a TF family). An element of PWM
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Q = (qm,n) is defined as the probability of observing a nucleotid n 2 {A,C,G,T} at position

m 2 {1, 2, . . . ,W}, where W is the pre-determined length of the PWM (here, W = 10

for 8-mer PBM data). Let Sj = {sj,l, l = 1, 2, . . . , k} be the DNA sequence of k-mer j 2

{1, 2, . . . , ng} in group g, where ng is the number of k-mers in group g , and aj is the

alignment position of k-mer j within the PWM, where aj 2 {�4,�3, . . . ,W � k + 4} .

Here, we allow the k-mer sequence not to be fully “contained” within a PWM but instead

require that the alignment have an overlap of at least 4 nucleotides. For example, aj = �2

means that the third position of k-mer j is aligned with the start (i.e., 5’ end) of the PWM.

The background probability of nucleotide n 2 {A,C,G,T}, rn, is assumed to be 0.25. The

probability of sequence being generated by the motif model is then given by:

P (Sj|aj, Q) =
k
Y

l=1

�

rsj,lI{aj+l0} + qaj+l,sj,lI{1aj+lW} + rsj,lI{aj+l>W}
�

, (4.4)

where IA is an indicator function of event A. We assign a uniform prior over possible align-

ment positions {�4,�3, . . . ,W �k+4} for aj (1  j  ng) and a Dirichlet distribution prior

Dirichlet(0.1, 0.1, 0.1, 0.1) for each column (qm,n)n2{A,C,G,T} of PWM Q. Then, we can use the

same Gibbs sampling strategy as described in (Lawrence et al., 1993) to iteratively update

{aj}1jng and Q according to (4.4). Finally, we construct a PWM based on the posterior

modes of and generate a corresponding motif sequence logo (Schneider and Stephens, 1990).

4.4 Results

We have developed a Bayesian ANOVA model to decompose 8-mer PBM E-scores into

background noise (i.e., artifactually high-scoring background k-mers), family-wise e↵ects and

experiment-specific e↵ects, given a collection of PBM experiments and TF family classifica-
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tion based on DBD structural class. Below we start with the identification of artifactually

high-scoring background k-mers, then describe the identification of TF subclasses based on

the k-mer data, and conclude with identification of experiment-specific e↵ects in analyses

aimed at improved identification of sets of k-mers bound preferentially by one TF as com-

pared to a closely related TF (i.e., TF-preferred k-mers).

4.4.1 Identification of artifactually high-scoring (‘sticky’) k-mers

From the ANOVA model (4.1) described in Section 4.2.1, we can infer k-mer background

noise based on their posterior means. Background noise constitutes a non-negligible compo-

nent of E-scores with a standard deviation of 0.063, as compared to a standard deviation of

0.148 for E-scores (Figure 4.3a). The posterior means of the variance and scale parameters

�2, �
1

and �
2

are 0.647, 1.985 and 1.505, respectively. Examination of the sequences of the

top 50 artifactually high-scoring k-mers, ranked according to their background noise and

their E-scores across 357 experiments in our PBM data sets, indicates that AT-rich k-mers

have artifactually high E-scores in nearly all PBM data sets for a diverse range of TF DBD

classes (Figure 4.3c); the most ‘sticky’ k-mer across a wide range of TF DBD classes is

AAAAAAAA (Figure 4.3b).

To compare the background noise of k-mers on di↵erent array designs, we calculated the

k-mer background noise from the mouse TF PBM data from Badis et al. (2009), in which

2 di↵erent de Bruijn sequence array designs were used in PBM experiments for each TF;

these are designated as array design versions 1 and 2 (AMADID #015681 (Berger et al.,

2008) and #016060 (Zhu et al., 2009), respectively). Comparison of the ‘sticky’ k-mers (i.e.,

those with background noise larger than one standard deviation, which is 0.148 for version

1 and 0.153 for version 2) from this dataset indicates that (Figure 4.3d) the two di↵erent
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Figure 4.3: Artifactually high-scoring background k-mers. (a) Comparison of the distribution
of k-mer background noise and the original (observed) E-scores. (b) Box plot of E-scores
for the most ‘sticky’ k-mer (AAAAAAAA, collapsed with reverse complement TTTTTTTT)
across all the available PBM data sets, including a set of negative control PBM experiments .
(c) Sequence motif logo generated from the top 50 artifactually high-scoring k-mers and their
E-scores across our PBM data sets. The multi-colored strip above the heatmap indicates each
TF’s DBD class (from left to right): AP-2, AP2, ETS, Fork head, GATA, HLH, HMG box,
HSF DNA-bind, HTH, Homeodomain, IRF, MADS, Myb, RFX, SAND, ZnF C4, bHLH,
bZIP, Zf-C2H2 and negative control experiments. (d) (Top) Venn diagram comparing the
number of ‘sticky’ k-mers with background noise larger than one standard deviation from two
di↵erent “all 10-mer” de Bruijn sequence array designs; (Bottom) Venn diagram comparing
‘sticky’ k-mers identified from and , both of which used array design version 1.
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array versions exhibit di↵erent numbers of ‘sticky’ k-mers, and that array design version 2

is noisier (i.e., has a larger number of ‘sticky’ k-mers) than version 1. The two di↵erent

array designs exhibited some di↵erences in k-mer background noise (Pearson correlation

coe�cient r = 0.65; Figure 4.5a), as compared with independent experiments using the

same array design (Pearson correlation coe�cient r = 0.88; Figure 4.5b); for example,

although AAAAAAAA is artifactually high scoring in both version 1 and version 2 data

sets, CCCCGCCC is found to be ‘sticky’ only in version 1 data sets (Figure 4.4). To further

investigate this e↵ect, we compared the results from the Badis et al. mouse TF PBM data

against the set of ‘sticky’ k-mers that we identified in analysis of a separate yeast TF PBM

data set (Zhu et al., 2009), both of which used version 1 arrays. We observed significant

overlap in the ‘sticky’ k-mers identified in these di↵erent datasets (Figure 4.3d); di↵erences

in these sets of ‘sticky’ k-mers could be due to di↵erences in protein sample preparation,

experimental variation, and di↵erences in the representation of di↵erent DBD classes among

the TFs that were tested in PBMs in the Badis et al. (2009) versus Zhu et al. (2009) studies.

4.4.2 Correction for artifactually high-scoring background for ‘sticky’

k-mers

As described in Section 4.2.2, we correct the E-score of each k-mer by subtracting its

background noise from the original (observed) E-score. For example, for PBM data for the

yeast TF Rpn4 published in Zhu et al. (2009), the observed E-scores and their corresponding

background noise are highly correlated (Pearson correlation coe�cient r = 0.71; Figure

4.6a); subtracting the background noise from the E-scores reduced this correlation to 0.26.

Comparison of the motif logo generated from the 68 k-mers with observed E-scores greater
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Figure 4.4: Box-plots of observed E-scores for two ‘sticky’ 8-mers AAAAAAAA and CCC-
CGCCC in version 1 and their E-scores in version 2.

95



Figure 4.5: (a) Comparison of 8-mer background noise between array design version 1 and
version 2 from Badis et al. (2009). (b) Comparison of 8-mer background noise between
Badis et al. (2009) and Zhu et al. (2009) both using version 1. (c) Comparison between
8-mer background noise estimated from PBM experiments on 349 TFs and 8-mer E-scores
from a mock in vitro transcription and translation reaction (IVT) experiment using version 1.
(d) Comparison between 8-mer estimated background noise and 8-mers from an experiment
for GST in binding bu↵er (GST) both using version 1.
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than 0.35 versus the logo generated from the same number of top scoring k-mers after

correction for background noise shows that the quality of the motif greatly improves by

correcting the E-scores for systematic biases (Figure 4.6b).

Figure 4.6: Correction for artifactually high-scoring background k-mers. (a) Scatter plot
of k-mer observed E-scores and background noise for yeast TF Rpn4. The blue dotted line
indicates the original threshold of E-score � 0.35. Red points indicate specifically bound
8-mers after background correction. The correlation between E-scores and background noise
diminishes from 0.71 to 0.26 after correction. (b) Improvement in motif quality for Rpn4
after correction for k-mer background noise.
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4.4.3 Evaluation of corrected k-mer E-scores as compared to ChIP-

chip data

We used in vivo ChIP-chip binding data to further evaluate the e↵ect of background

noise correction of PBM E-scores. Specifically, we first applied background noise correction

to the yeast PBM data from Zhu et al. (2009), and then assessed whether this resulted in

an improvement in scoring of regions called as ‘bound’ in the Harbison et al. ChIP-chip

data (Harbison et al., 2004) for the same TF. Briefly, for a given TF and a given intergenic

sequence, we first calculated an occupancy score by summing PBM median signal intensities

for each k-mer with an observed E-score above 0.35. We used these PBM-based occupancy

scores to rank the intergenic sequences within the ChIP-chip ‘bound’ and ‘unbound’ regions

for each ChIP-chip data set, and then calculated the corresponding area under the receiver

operating characteristic (ROC) curve (AUC statistic). We repeated this same AUC cal-

culation using the corrected E-scores. For comparison, we rank k-mers by their corrected

E-scores and score the intergenic sequences using the same number of top-ranked k-mers as

in the calculation with the original (observed) E-scores. In practice, the background correc-

tion of a new PBM experiment is based on the estimation from previous experiments; to

accurately evaluate this process, we used an independent mouse TF PBM data set (with the

same array design) from Badis et al. (2009) to calculate k-mer background noise.

Overall, use of the corrected E-scores resulted in a statistically significant increase (P -

value = 2.8⇥ 10�4 by Student’s t-test) in AUC statistics (Figure 4.7). Some ChIP-chip data

sets exhibited a sharp increase in AUC by using the corrected E-scores; for example, the AUC

for Rpn4 increased from 0.573 to 0.749 for ChIP-chip data for a highly hyperoxic condition

(RPN4 H2O2Hi) and from 0.680 to 0.910 for ChIP-chip data for a mildly hyperoxic condition
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Figure 4.7: Comparison of corrected PBM k-mer data to ChIP-chip experiments. The
relative change in AUC values by using corrected E-scores is plotted against the original
AUC values before background noise correction. ChIP-chip data sets for which the use of
corrected E-scores resulted in at least 10.0% change in AUC value are indicated in red with
TF condition names.

(RPN4 H2O2Lo). Moreover, PBM data sets with relatively few high-scoring k-mers and low

AUC values in such ChIP-chip analysis showed a uniform increase in AUC with the use

of corrected E-scores; this observation is consistent with the hypothesis that the e↵ect of

k-mer background noise is more prominent in PBM data sets for TFs with relatively weaker

binding signal. Any decreases in AUC value from using corrected E-scores were minor (less

than 6.0%), and in one extreme case — Yap6, for which use of corrected E-scores resulted

in a decrease of 6.0% from the original AUC value — the di↵erence appears to be due to

AT-rich ‘sticky’ k-mers that are bound sequence-specifically by certain TFs, such as Sum1,
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Figure 4.8: Characterization of TF-common k-mers for the GATA DBD class and their
corresponding E-scores across our PBM data sets. The multi-colored strip above the heatmap
is as in Figure 4.3

which appears to provide for indirect binding of the ChIP-profiled TF (i.e., Yap6) to DNA

(Gordân et al., 2009).

4.4.4 Identification of TF-common k-mers

By using the ANOVA decomposition model, we are able to identify groups of k-mers

bound in common across the family (‘TF- common’ k-mers). For example, k-mers with high

posterior probabilities for being TF-common have uniformly high E-scores for TFs in the

ETS DBD class and relatively low E-scores for TFs in all the other DBD classes (Figure

4.12a). The PWM constructed from these k-mers indicates a shared binding specificity for

the ETS DBD class (Figure 4.12a, upper panel). Characterization of TF-common k-mers

for other DBD classes (GATA, HLH and HMG-box) are given in Figure 4.8, 4.9 and 4.10.
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Figure 4.9: Characterization of TF-common k-mers for the HLH DBD class and their cor-
responding E-scores across our PBM data sets. The multi-colored strip above the heatmap
is as in Figure 4.3

Figure 4.10: Characterization of TF-common k-mers for the HMG-box DBD class and their
corresponding E-scores across our PBM data sets. The multi-colored strip above the heatmap
is as in Figure 4.3
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Posterior distribution of family-wise e↵ects and numbers of TF-common k-mers for all the

DBD classes are given in Figure 4.11.

4.4.5 Identification of TF subclasses based on similarity of PBM

k-mer data

Our Bayesian hierarchical partition model allows for categorization of TF subclasses

based on DNA binding preferences, which can simultaneously determine common binding

sequences for each subclass. Previously, Berger et al. discovered separate DNA-binding

specificity subgroups by considering the overlap among top 100 highest-a�nity 8-mers for

homeodomains (Berger et al., 2008). Distinct binding patterns were also identified by manu-

ally examining 8-mers with E-scores greater than a threshold score of 0.45. Our model-based

analysis of homeodomains not only shows subclassification that is consistent with the results

of Berger et al. (2008), but also systematically characterizes the common binding sequences

for di↵erent subclasses of homeodomains (see Figure 4.13).

We further applied our model to determine subclasses and their DNA binding specifici-

ties in the ETS DBD class. Classification of 22 mouse ETS factors by hierarchical clustering

(Figure 4.12c) over two groups of 8-mers identified in our analysis as being preferred by ETS

subclasses is in general consistent with the classification obtained by aligning ETS-domain

peptide sequences using the ClustalW algorithm (Figure 4.12d), and is broadly similar to

the results obtained in (Wei et al., 2010), in which the similarity between DNA binding

specificity motifs was obtained using the minimum Kullback-Leibler divergence between the

multinomial distributions defined by the motifs. Notably, motifs generated according to

subclass-preferred 8-mers (Figure 4.12c) are di↵erent from the motif generated from the TF-
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Figure 4.11: (a) Boxplots for posteriors of family-wise e↵ects from di↵erent DBD classes.
(b) Number of TF-common k-mers with posterior probability larger than 0.5 for di↵erent
DBD classes. Five DBD classes (HTH, MADS, Myb, bHLH and Zf-C2H2) and the negative
control group (NegControl) do not have any TF-common k-mer and their family-wise e↵ects
are zero.
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Figure 4.12: Categorization of TF subclasses for the ETS DBD class. (a) TF-common k-mers
for the ETS DBD class and their corresponding E-scores across our PBM data sets. The
multi-colored strip above the heatmap is as in Figure 4.3 (b) Pairwise posterior probabilities
for clustering 22 mouse ETS factors based on the partition model described in Section 4.3.1.
(c) Hierarchical clustering of 22 mouse ETS factors based on two groups of 8-mers identified
as subclass-preferred. (d) Classification of members of the ETS DBD class by aligning ETS-
domain peptide sequences using the ClustalW algorithm. TFs marked with red boxes in (b),
(c) and (d) show a strong preference for the core sequence GGAT relative to other members
of the ETS DBD class.
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common k-mers (Figure 4.12a). A subclass of the ETS factors with similar ETS-domain

peptide sequences according to ClustalW shows a specific binding preference to a consen-

sus sequence ACCGGAT (marked by a red box in Figure 4.12c and 4.12d). Interestingly,

members of this subclass can be distinguished further according to their binding preferences

for the consensus sequence CCGGT. Di↵erential binding preference by ETS factors for the

core sequence GGAT has been observed previously (Wei et al., 2010), where its molecular

basis was explored. By automatically identifying 8-mers that have the most distinct binding

patterns, our model is able to characterize the binding specificities among members of the

ETS DBD class in more detail.

4.4.6 Identification of TF-preferred k-mers

Highly similar members of a TF family can show di↵erent DNA sequence binding prefer-

ences. For example, the homeodomains Lhx4 and Lhx2 both bind most preferentially to the

canonical sequence TAATTA, but di↵er in their preferences for other k-mers (Berger et al.,

2008). In Figure 4.14a, we show the DNA binding specificity motifs for 8-mers that are

identified as TF-preferred by Lhx2 but not Lhx4, and for those identified as TF-preferred by

Lhx4 but not Lhx2, according to the ANOVA model described in Section 4.2.3. At the same

time, we also applied the procedure described in Section 4.2.2 to search for TF-preferred k-

mers based on their statistical significance calculated by an intersection-union test. In order

to have a su�ciently large sample size, we focused on TF-preferred 6-mers in this study, and

our tests are based on observed E-scores of 8-mers containing a given 6-mer. Analyses based

on observed E-scores yielded nearly identical results as those based on corrected E-scores

since the di↵erences between E-scores on a pair experiments for the same k-mer are invariant

to correction. The top three TF-preferred 6-mers (each at P -value < 1.0 ⇥ 10�7) found by
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Figure 4.13: Subclassification of the homeodomain DBD class according to subclass-common
8-mers. 173 homeodomain TFs are classified into 7 subclasses (indicated by multi-colored
strip on top of the heatmap), which are consistent with sub-groups identified in Berger
et al. (2008) (denoted as Group A-R). Motif logos are generated according to the algorithm
described in Section 4.3.2 by using subclass-common 8-mers (with equal weights).
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this analysis in a pairwise comparison of Lhx2 and Lhx4 are apparent as o↵-diagonal points

in a scatter-plot of 8-mer E-scores (Figure 4.14b). Of note, the TF-preferred 6-mers identi-

fied by our model-based approach are consistent with TF-preferred 6-mers identified by the

intersection-union test. All four 6-mers (TAATGA and TAACGA for Lhx2, and TAATCA

and TAATCT for Lhx4) identified in Berger, et al., 2008 by a primarily manual approach

are also significant in our new, automated analysis (Figure 4.15). In addition, our auto-

mated analysis finds additional TF-preferred k-mers; for example, it finds TAATGG as a

statistically significant TF-preferred 6-mer (P -value = 6.9⇥ 10�17) for Lhx2, and CAATCA

as statistically significant 6-mer (P -value = 1.2 ⇥ 10�23) for Lhx4, in a pairwise compari-

son of those two TFs. Note that our analysis identifies CAATCA as preferred by Lhx4 in

comparison with both Lhx2 and also with Lhx3 (Figure 4.16).

4.5 Discussion

Accurate, high-resolution datasets on the binding preferences of TFs for comprehensive

collections of DNA sequences are essential for understanding the nature of protein-DNA

binding specificity and how those specificities are used in transcriptional regulatory codes

encoded in genomes. In this study, we developed a Bayesian model-based approach for

analyzing k-mer TF DNA binding specificity data obtained from universal PBM experiments

(Berger et al., 2006). Our model decomposes k-mer data (here, 8-mers) into artifactually

high-scoring 8-mers, 8-mers bound in common by a TF family, and those bound preferentially

by a particular member(s) of a TF family (TF-preferred k-mers). Adjusting PBM 8-mer E-

scores for the identified systematic biases improved overall PBM data quality and correlations

with in vivo TF binding data obtained by ChIP-chip (Harbison et al., 2004). The TF
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Figure 4.14: Model-based identification of TF-preferred k-mers. (a) Scatter plot of 8-mer
E-scores comparing Lhx2 and Lhx4. 8-mers containing each of top three most significantly
TF-preferred 6-mers from a direct comparison of Lhx2 and Lhx4 are highlighted in colors,
revealing clear systematic di↵erences in the binding by Lhx2 or Lhx4 to these sequences.
(b) Sequence motif logos of TF-preferred 8-mers for Lhx2 (left) and Lhx4 (right). Sequence
motifs were generated as described in Section 4.2.3 using 8-mers (with equal weights) that
are identified by the ANOVA model as TF-preferred by one TF but not the other.

108



Figure 4.15: TF-preferred analysis for Lhx2 versus Lhx4. (a) Original results in Berger et al.
(2008). (b) Results based on TF-preferred analysis from the ANOVA model described in
this Jiang et al. paper. Note that we identified additional 6-mer ‘CAATCA’ to be preferred
by Lhx4 and 6-mer ‘TAATGG’ to be preferred by Lhx2.
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Figure 4.16: TF-preferred analysis for Lhx3 vs Lhx4. (a) Original results in Berger et al.
(2008). (b) Results based on TF-preferred analysis from the ANOVA model described in
this Jiang et al. paper. Note that we identified additional 6-mers ‘TAATCA’ and ‘CTAATC’
to be preferred preferred by Lhx4 and 6-mers ‘ATTAAA’ and ‘AATAAT’ to be preferred by
Lhx3.
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subclasses identified by our modeling approach are consistent with TF sub- classes based on

TF DBD protein sequence similarity. TF-preferred k-mers are identified in an automated and

systematic fashion by our model, without relying on visual inspection, manual curation, or

arbitrary thresholds; our model captures TF-preferred k-mers previously identified through

a combination of such other methods (Berger et al., 2008; Busser et al., 2012), while being

more comprehensive in identifying statistically significantly TF-preferred k-mers. Systematic

identification of TF-preferred k-mers should help to reduce investigator bias in searching for

TF-preferred k-mers, and should aid in studies aimed at investigating the potential regulatory

significance of TF-preferred versus TF- common k-mers (Gordân et al., 2011; Busser et al.,

2012).

While our analysis identified 8-mers that tend to score artifactually highly in the universal

PBM data sets that we examined, on its own it does not provide an explanation for these

observations. We investigated the various data normalizations that are performed on the

universal PBM data, but did not find any of them to contribute to artifactually high scores

for these 8-mers. We cannot exclude the possibility that these ‘sticky’ 8-mers constitute a

distinct set of nonspecific sequences that are bound by numerous TFs more preferentially

than truly nonspecific or even disfavored sequences. Determining the underlying cause of

these ‘sticky’ 8-mers will require additional experimental studies in the future.

In order to distinguish family-wise binding e↵ects from systematic biases, our ANOVA

model (4.1) requires a collection of TFs from diverse DBD classes and a su�cient number

of TFs from each DBD class (at least three in this study). Estimation of k-mer background

noise given a limited number of experiments (e.g., when adopting a new array design or

platform) can be challenging. In this study, we focused our analysis on the observed E-

scores due to the robustness of the E-score to experimental variation (Berger et al., 2006).
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Future development of non-rank-based approaches might allow for improved classification of

TFs and k-mers.

In this study, we analyzed data from two specific universal array designs, synthesized

based on two di↵erent de Bruijn sequences, each of which covers all 10-mers. Our model

could be applied to k-mer data generated using other universal array designs, including

those based on higher-order de Bruijn sequences that comprehen- sively cover longer k-mers

(Philippakis et al., 2008). Moreover, our approach is not limited to array designs based on

de Bruijn sequences, but rather can be applied to any data sets using PBMs or other assays

for which binding scores for k-mers are generated.

Numerous studies have focused on di↵erent TF structural classes, with the goal of iden-

tifying recognition rules underlying protein-DNA binding specificity (Suzuki and Yagi, 1994;

Benos et al., 2002; Noyes et al., 2008; De Masi et al., 2011). Precise classification of TFs

according to their DNA binding sequence preferences together with identification of those

sets of preferred sequences, as provided by our modeling approach, will permit more detailed

studies of the molecular determinants of TF-DNA binding specificity. Improved identification

of k-mers bound preferentially by di↵erent TF family members will aid in investigations of

what amino acid residues in the proteins correlate with di↵erences in preferences for binding

di↵erent k-mers.

Many studies of DNA regulatory elements have searched for combinations of motifs en-

riched within known or putative cis regulatory elements (Warner et al., 2008), including

investigations of whether there are preferential spacings or orientations of how the TF bind-

ing sites are arranged within promoters (Beer and Tavazoie, 2004; Senger et al., 2004) or

transcriptional enhancers (Fakhouri et al., 2010). Moreover, how di↵erent TF family mem-

bers achieve their distinct regulatory e↵ects is still not well understood; TF-preferred k-mers
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constitute one mechanism by which paralogous TFs can attain distinct regulatory roles (Hol-

lenhorst et al., 2009; Busser et al., 2012; Fong et al., 2012). More accurate, precise data on

the DNA binding sequence preferences of di↵erent TFs, in particular paralogous TFs, will

be important for more detailed investigations of cis regulatory codes.

The Bayesian modeling approach we present in this study is general and could be applied

to other data types, beyond DNA-binding specificity data. Our modeling approach could be

adapted to other sequence or experimental data sets in order to identify data features that

are common to classes of proteins, defined according to either DBD structural class as we did

in this study for sequence-specific TFs or to other annotations which may be more relevant

for other types of proteins, versus features that are specific to individual proteins or subsets

of proteins. Results from such studies might contribute to an improved understanding of

di↵erent families of proteins, including the redundant versus divergent functions of individual

members of protein families that arose from ancient gene duplications.
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Chapter 5

Conclusion

This thesis has presented three new research contributions for variable selection methods

and their applications.

First, we developed an e↵ective and computationally e�cient procedure for detecting

interactions from an inverse modeling perspective. We found interesting links with sliced

inverse regression (Li, 1991) and correlation pursuit (Zhong et al., 2012). The proposed

method can also be viewed as a Frequentist analogue of the Bayesian partition model (Zhang

et al., 2010) for continuous response and predictor variables. Frequentist properties of the

proposed procedure are established and, in particular, its variable selection performance

under a diverging number of predictors and sample size is investigated.

Second, we proposed a sequential partition prior and a dynamic slicing scheme for building

a Bayesian partition model (Zhang et al., 2010) in eQTL studies. We augmented the partition

to capture complex dependence structure among gene expression and linkage disequilibrium

between genetic markers. Compared with the original model proposed by Zhang et al. (2010),

the augmented model achieved significantly higher power in detecting genetic markers that
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have epistatic interaction e↵ects on multiple sets of co-regulated genes.

Third, we generalized the partition model to variable selection in the context of unsuper-

vised learning. We were particularly motivated by its application in identifying transcription

factor (TF) families based on DNA binding preferences determined by protein binding mi-

croarray (PBM) experiments. By introducing latent clusters (partitions), a Bayesian model

was used to simultaneously identify TF families and short DNA sequences that are bound by

most of the TFs in a family. We further developed a Bayesian analysis of variance (ANOVA)

model that decomposes PBM binding scores into background noise, TF family-wise e↵ects,

and e↵ects due to the particular TF. We showed that adjusting for background noise im-

proved PBM data quality and concordance with in vivo TF binding data.

As data collection technology and data storage devices become more powerful, high-

dimensional data are becoming increasingly common in many scientific fields. Variable se-

lection methods play important roles in statistical modeling of high-dimensional data and

are keys to data-driven discoveries in health, physical, and social sciences. The Näıve Bayes

modeling approach and the partition model that combines forward and inverse perspectives

are useful analysis tools for revealing and extracting relevant information from big data.

While Frequentist methods such as SIRI usually enjoy theoretical guarantees and computa-

tional simplicity, the study of partition models under the Bayesian framework is particularly

attractive because of its flexibility in dealing with latent (missing) variables and ability to

incorporate prior knowledge.

The well known statistician George Box put it well when he said “all models are wrong

but some models are useful”. Although development of ‘generic’ variable selection methods

provide convenient o↵-the-shelf tools for practitioners, continued research on partition models

for variable selection can be most useful by solving real-world problems. Here are some
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examples of possible directions for further research on partition models:

1. Bayesian partition model for continuous response and predictor variables. This can be

viewed as a Bayesian analogue of the SIRI procedure. Other than computational costs,

it requires problem-specific knowledge to choose background distributions of irrelevant

predictors and their priors. For example, the success of the Bayesian partition model

in eQTL studies partly relies on our knowledge of linkage disequilibrium and the block

structure of correlations among genetic markers.

2. Independent screening procedure in eQTL studies. The inverse modeling perspective

can be used to obtain simple screening statistics for filtering important genetic markers

with either marginal or interaction e↵ects. For example, under the multinomial model

of genotypes, we can use the dynamic slicing scheme to find the maximized likelihood-

ratio test statistic, which is equivalent to a maximized mutual information metric. We

can also introduce priors for multinomial parameters and the maximum a posteriori

(MAP) statistics may be less sensitive to markers with small minor allele frequencies.

The theoretical properties and empirical performances of the proposed statistics are

under study.

3. Bayesian partition model for studying treatment and covariate interactions under the

potential outcome framework (Rubin, 1978, 2005). To develop strategies for personal-

ized medicine, it is important to identify the treatment and covariate interactions in

the setting of randomized clinical trial (Royston and Sauerbrei, 2008). Coupled with

the missing data mechanism under the potential outcome framework, the Bayesian par-

tition model can be useful for selecting important covariates associated with varying

responses under di↵erent treatments.
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Appendix A

Detailed Proofs

A.1 Proof of Properties of Likelihood-Ratio Test Statis-

tic in Section 2.1.1

Given the set of relevant predictors indexed by A with size |A| in model (2.3), let xA

denote a n ⇥ |A| matrix of observed variables in index set A, and xhj
A (1  j  nh) denote

a |A|-dimensional column vector of variables in index set A for jth observation in slice

Sh (1  h  H). We denote BA = Cov (E(XA|S(Y ))), WA = E (Cov(XA|S(Y ))) and

⌦A = BA +WA. The corresponding sample estimates are given by

bBA =
1

n

H
X

h=1

nh

�

x̄h.
A � x̄..

A
� �

x̄h.
A � x̄..

A
�T

, (A.1)

cWA =
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and b⌦A = bBA +cWA, where x̄..
A = 1

n

PH
h=1
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j=1
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A and x̄h.

A = 1

nh

Pnh
j=1

xhj
A .

Szretter and Yohai (2009) proved the following proposition:
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Proposition 3. Let C be the orthogonal matrix [c
1

, . . . , cp], where cj is an eigenvector of

bB�1/2
A

cWA bB
�1/2
A = C⇥CT corresponding to the eigenvalue ✓j, where ✓

1

� ✓
2

� . . . � ✓p. ⇥

is the diagonal matrix with ✓
1

, ✓
2

, . . . , ✓p in the diagonal. Cr is the matrix with the first r

columns of C.

(a) The maximum likelihood estimate of ⌃ = ⌃A = Cov (XA|S(Y )) in model (2.3) is

b⌃A = cWA + bB1/2
A Cp�qC

T
p�q

bB1/2
A . (A.2)

(b) Let ui, 1  i  p, be orthogonal eigenvectors of norm one of b⌃�1/2
A

bBAb⌃
�1/2
A corresponding

to the eigenvalues !
1

� !
2

� . . . � !p. The maximum likelihood estimate of µh = µ(h)
A =

E (XA|Y 2 Sh) in model (2.3) is
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2

, . . . ,uq]. Then, bµ(h)
A is the orthogonal projection, using the norm associ-

ated to b⌃A, of
�
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A
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on the q-dimensional a�ne subspace x̄..
A+Vq, where Vq is spanned

by
⇣

b⌃1/2
A u

1

, b⌃1/2
A u

2

, . . . , b⌃1/2
A uq

⌘

.

(c) b⌃A can also be written as

b⌃A =
1

n

H
X

h=1

nh
X

j=1

⇣

xhj
A � bµ(h)

A

⌘⇣

xhj
A � bµ(h)

A

⌘T

.

b⌃1/2
A uj is an eigenvector of bBAcW

�1

A corresponding to eigenvalue 1/✓p�i+1

, 1  i  p.

Properties of the likelihood-ratio test statistic proposed in Section 2.1.1 are summarized

in the following proposition:
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Proposition 4. Given the current set of selected predictors indexed by C with dimension

|C| = d and another predictor indexed by j /2 C, the scaled log-likelihood-ratio test statistic

for testing

H
0

: A = C v.s. H
1

: A = C [ {j},

can be written as

bDj|C =
2

n
log

�

Lj|C
�

=
q
X

k=1

log

 

1 +
b�d+1

k � b�d
k

1� b�d+1

k

!

, (A.3)

where q is the dimension of subspace Vq defined in model (2.3), �d
k and �d+1

k are the kth

largest eigenvalues of ⌦�1

C BC and ⌦�1

[C[{j}]B[C[{j}], respectively, and b�d
k and b�d+1

k are their

estimates. For any fixed slicing scheme and the true relevant predictors indexed by A, let �k

be the kth largest eigenvalue of ⌦�1

A BA. We further assume that �
1

> �
2

> . . . > �q > 0.

(a) Under the assumption that A ⇢ C,

n bDj|C '
q
X

i=1

n
⇣

b�d+1

i � b�d
i

⌘

1� b�d+1

i

, (A.4)

which is asymptotically equivalent to the correlation pursuit (COP) test statistic defined in

Zhong et al. (2012) and has an asymptotic distribution of �2

q.

(b) Under the same conditions as in (a),

⇣

n bDj|C

⌘

j2Cc

D�!
 

K
X

k=1

z2kj

!

j2Cc

, and max
j2Cc

⇣

n bDj|C

⌘

D�! max
j2Cc

 

q
X

i=1

z2ij

!

,

where zk = (zkj)j2Cc ⇠ MVN
⇣

0, [Corr (Xi, Xj|XC)]i,j2Cc

⌘

and zk’s are independent.

119



(c) As n ! 1,

bDj|C
a.s.��! Dj|C = log

 

1 +
Var(Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

Vj

!

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )) and S(Y ) = h when Y 2 Sh (1 

h  H). Vj does not depend on Y under the assumption in model (2.3). Furthermore,

Dj|C = 0 i↵ E (Xj|XC, Y 2 Sh) = E (Xj|XC) , 1  h  H.

Proof of Proposition 4. One can show that

bDj|C =
2

n
log

�

Lj|C
�

= �
⇣

log
h

det
⇣

b⌦�1

[C[{j}]
b⌃
[C[{j}]

⌘i

� log
h

det
⇣

b⌦�1

C
b⌃C

⌘i⌘

.

To prove (A.3), we just need to show that

log
h

det
⇣

b⌦�1

C
b⌃C

⌘i

=
q
X

i=1

log
⇣

1� b�d
i

⌘

,

where d = |C| and b�d
i is the ith largest eigenvalue of b⌦�1

C
bBC corresponding to eigenvector ⌘i,

1  i  d. Since bBC⌘i = b�d
i
b⌦C⌘i and b⌦C = cWC + bBC,

b⌦C⌘i =
1
b�d
i

bBC⌘i =
1

1� b�d
i

cWC⌘i.

Then,

cWC bB
�1

C
b⌦C⌘i =

1� b�d
i

b�d
i

b⌦C⌘i,
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and
⇣

bB�1/2
C

cWC bB
�1/2
C

⌘

bB�1/2
C

b⌦C⌘i =
1� b�d

i

b�d
i

bB�1/2
C

b⌦C⌘i.

Thus, the eigenvalues of bB�1/2
C

cWC bB
�1/2
C are given by ✓d�i+1

= 1�b�d
i

b�d
i

, 1  i  d. Let ci be an

eigenvector of bB�1/2
C

cWC bB
�1/2
C = C⇥CT corresponding to the eigenvalue ✓i. We will prove

that the eigenvalues of b⌃�1

C
bBC are

!i =

8

>

<

>

:

1

✓d�i+1

=
b�d
i

1�b�d
i

if 1  i  q,

1

1+✓d�i+1

= b�d
i if q + 1  i  d,

with corresponding eigenvectors given by bi = bB�1/2
C cd�i+1

. According to (A.2) in Proposi-

tion 3,

bB�1/2
C

b⌃C bB
�1/2
C cd�i+1

= bB�1/2
C

⇣

cWC + bB1/2
C C|A|�qC

T
d�qB

1/2
C

⌘

bB�1/2
C cd�i+1

=
⇣

bB�1/2
C

cWC bB
�1/2
C + Cd�kC

T
d�q

⌘

cd�i+1

,

where bB�1/2
C

cWC bB
�1/2
C cd�i+1

= ✓d�i+1

, Cd�qCT
d�qcd�i+1

is 0 for 1  i  q and 1 for q + 1 

i  d. Thus,

bB�1/2
C

b⌃C bB
�1/2
C cd�i+1

=
1

!i

cd�i+1

,

and

b⌃�1

C
bBCbi = !ibi, 1  i  d.

Therefore,

log
h

det
⇣

b⌦�1

C
b⌃C

⌘i

= log
h

det
⇣

b⌦�1

C
bBC

⌘i

� log
h

det
⇣

b⌃�1

C
bBC

⌘i

=
q
X

i=1

log
⇣

1� b�d
i

⌘

.
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To prove (a) and (b), note that

n bDj|C = �n

 

q
X

i=1

log
⇣

1� b�d+1

i

⌘

�
q
X

i=1

log
⇣

1� b�d
i

⌘

!

= n
q
X

i=1

log

 

1 +
b�d+1

i � b�d
i

1� b�d+1

i

!

.

Given that A ⇢ C, Zhong et al. (2012) showed that

n
⇣

b�d+1

i � b�d
i

⌘

1� b�d+1

i

, i = 1, 2, . . . , q,

are asymptotically independent and identically distributed as �2

1

. Thus,

b�d+1

i � b�d
i

1� b�d+1

i

P�! 0, i = 1, 2, . . . , q,

and

n bDj|C = n
q
X

i=1

log

 

1 +
b�d+1

i � b�d
i

1� b�d+1

i

!

'
q
X

i=1

n
⇣

b�d+1

i � b�d
i

⌘

1� b�d+1

i

.

Conditioning on variables in C, variables in Cc follows a multivariate normal distribution

with the same mean and variance across slices. Then, the proofs of (a) and (b) directly

follow from the Theorem 1 and Theorem 2 in Zhong et al. (2012).

122



For (c), since b�d
i

P�! �d
i , for i = 1, 2, . . . , d,

bDj|C
P�! �

q
X

i=1

log
�

1� �d+1

i

�

+
q
X

i=1

log
�

1� �d
i

�

= � log
h

det
⇣

⌦�1

[C[{j}]W[C[{j}]

⌘i

+ log
⇥

det
�

⌦�1

C WC
�⇤

= log

"

det
�

⌦
[C[{j}]

�

det (⌦C)

#

� log

"

det
�

W
[C[{j}]

�

det (WC)

#

= log
h

Var (Xj)� Cov (Xj,XC) [Cov (XC)]
�1 Cov (Xj,XC)

T
i

� log (Vj)

= log

 

1 +
Var (Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

Vj

!

.

The last equality follows from Var (Xj) = Var (Mj)+E(Vj) = Var (Mj)+Vj and Cov (Xj,XC) =

Cov (Mj,XC), where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )) and Vj is a constant

that does not depend on XC or S(Y ). Note that

Var (Mj) � Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

where equality holds if and only if Mj = E (Xj|XC, S(Y )) is a linear combination of XC that

does not depend on S(Y ), that is, E (Xj|XC, Y 2 Sh) = E (Xj|XC) for 1  h  H under the

normality assumption.

A.2 Proof of Theorem 1 in Section 2.1.1

To prove Theorem 1, we will need the following two lemmas.

Lemma 1. Under the same conditions as in Theorem 1, there exist 
1

> 0 and ⇠
1

> 0 such
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that for any set of predictors indexed by C and Cc \A 6= ;,

max
j2Cc\A

"

Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

Vj

#

� ⇠
1

n�,

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )) and Vj is a constant that does not

depend on XC or S(Y ).

Lemma 2. Under the same conditions as in Theorem 1, for any set of predictors indexed

by C, let b�C
i be the ith largest eigenvalue of b⌦�1

C
bBC and let �C

i be the ith largest eigenvalue of

⌦�1

C BC. Then, for 0 < ✏ < 1 and i = 1, 2, . . . , q, there exists positive constants C
1

and C
2

such that

Pr

✓

max
C⇢{1,2,...,p}

�

�

�

log
⇣

1� b�C
i

⌘

� log
�

1� �C
i

�

�

�

�

> ✏

◆

 2p(p+ 1)C
1

exp

✓

�C
2

n
⌧ 4
min

✏2

64⌧ 2
max

p2

◆

We will start with the proofs of two lemmas.

Proof of Lemma 1. Let B = C \A, E = C \Ac, and D = Cc \A 6= ;. Under model (2.3),

XD|XB, Y 2 Sh ⇠ N
⇣

↵(h)
D|B + �T

D|BXB,⌃1

= ⌃D|B

⌘

.

Let ↵(h)
D =

⇣

↵(h)
j2D

⌘T

, where ↵(h)
j is defined in (2.6). Then, ↵(h)

D =  ↵(h)
D|B, where  is a |D| by

|D| matrix that satisfies  T = ⌃�1

1

�2

D⌃
�1

1

, �D = diag
�

�2

j2D
�

and �2

j is defined in (2.6).

Under Condition 1, �2

j  ⌧
max

and �
max

�

⌃�1

1

�

 1

⌧
min

, and �
max

�

 T 
�


⇣

⌧
max

⌧
min

⌘

2

. Thus,

trace (Var (↵D(Y ))) = trace
�

 Var
�

↵D|B(Y )
�

 T
�


✓

⌧
max

⌧
min

◆

2

trace
�

Var
�

↵D|B(Y )
��

,
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where ↵D(Y ) = ↵(h)
D and ↵D|B(Y ) = ↵(h)

D|B when Y 2 Sh. Furthermore,

trace
�

Var
�

↵D|B(Y )
��

� |D|
✓

⌧
min

⌧
max

◆

2

⇠n�.

Assume

Cov (XE[D|XB) =

0

B

@

⌃
0

⌃
01

⌃
10

⌃
1

1

C

A

,

Under model (2.3), conditioning on XA = XB[D, the distribution of XE does not depend on

the slice. Therefore, the conditional distribution of XD given XC = XB[E can be written as

XD|XC, Y 2 Sh ⇠ N
⇣

↵(h)
D|C + �T

D|CXC,⌃D|C

⌘

,

where ↵(h)
D|C = ↵

0

+M↵(h)
D|B, M = ⌃

1

2

1

⇣

I|D| �NT
�

I|E| +NNT
��1

N
⌘

⌃
� 1

2

1

, N = ⌃
� 1

2

0

⌃
01

⌃
� 1

2

1

and ↵
0

is a constant that does not depend on the slice. Since �
max

�

NNT
�

 �
max

(⌃

0

)

�
min

(⌃

0

)

 ⌧
max

⌧
min

,

�
min

(⌃
1

) � ⌧
min

and �
min

�

⌃�1

1

�

� 1

⌧
max

, we have

�
min

⇣

I|D| �NT
�

I|E| +NNT
��1

N
⌘

� 1

1 + ⌧
max

⌧
min

=
⌧
min

⌧
max

+ ⌧
min

,

trace
�

Var
�

↵D|C(Y )
��

= trace
�

MVar
�

↵D|B(Y )
�

MT
�

� �
min

�

⌃�1

1

�

�
min

(⌃
1

)�2

min

⇣

I|D| �NT
�

I|E| +NNT
��1

N
⌘

trace
�

Var
�

↵D|B(Y )
��

�
✓

⌧
min

⌧
max

+ ⌧
min

◆

2

✓

⌧
min

⌧
max

◆

�

Var
�

↵D|B(Y )
��

� |D|
✓

⌧
min

⌧
max

+ ⌧
min

◆

2

✓

⌧
min

⌧
max

◆

3

⇠n�
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Thus, there exists j 2 D = Cc \A such that

Var
�

↵j|C(Y )
�

�
✓

⌧
min

⌧
max

+ ⌧
min

◆

2

✓

⌧
min

⌧
max

◆

3

⇠n�.

For such j, we have Mj = ↵j|C(Y ) + �T
j|CXC, Vj = ⌃j|C  ⌧

max

, and

Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

= Var
�

↵j|C(Y )
�

� Cov
�

↵j|C(Y ),E (XC|S(Y ))
�

[Cov (XC)]
�1 Cov

�

↵j|C(Y ),E (XC|S(Y ))
�T

.

LetT
1

= Cov (E (XC|S(Y ))) andT
2

= E (Cov (XC|S(Y ))) = Cov (XC|S(Y )). Since �
min

(T
2

) �

⌧
min

and �
max

(T
1

)  �
max

(Cov (XC))  ⌧
max

, �
min

⇣

T
� 1

2

1

T
2

T
� 1

2

1

⌘

� ⌧
min

⌧
max

and

Cov
�

↵j|C(Y ),E (XC|S(Y ))
�

[Cov (XC)]
�1 Cov

�

↵j|C(Y ),E (XC|S(Y ))
�T

= Cov
�

↵j|C(Y ),E (XC|S(Y ))
�

(T
1

+T
2

)�1 Cov
�

↵j|C(Y ),E (XC|S(Y ))
�T

 1

1 + �
min

⇣

T
� 1

2

1

T
2

T
� 1

2

1

⌘Cov
�

↵j|C(Y ),E (XC|S(Y ))
�

T�1

1

Cov
�

↵j|C(Y ),E (XC|S(Y ))
�T

 ⌧
max

⌧
min

+ ⌧
max

Cov
�

↵j|C(Y ),E (XC|S(Y ))
�

[Cov (E (XC|S(Y )))]�1 Cov
�

↵j|C(Y ),E (XC|S(Y ))
�T

 ⌧
max

⌧
min

+ ⌧
max

Var
�

↵j|C(Y )
�

.

Therefore,

Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

Vj

� 1

⌧
max

⌧
min

⌧
min

+ ⌧
max

Var
�

↵j|C(Y )
�

� 1

⌧
max

✓

⌧
min

⌧
max

+ ⌧
min

◆

3

✓

⌧
min

⌧
max

◆

3

⇠n�,
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where ⇠
1

= 1

⌧
max

⇣

⌧
min

⌧
max

+⌧
min

⌘

3

⇣

⌧
min

⌧
max

⌘

3

⇠.

Proof of Lemma 2. Since XC follows either a multivariate normal distribution or a finite

mixture of multivariate normal distributions, under Condition 1, one can show that for

i = 1, 2, . . . , q and any ✏ > 0 there exists constant C
1

and C
2

such that

Pr

✓

max
C⇢{1,2,...,p}

�

�

�

b�C
i � �C

i

�

�

�

> ✏

◆

 2p(p+ 1)C
1

exp

✓

�C
2

n
⌧ 2
min

✏2

16p2

◆

following similar arguments in the proof of Lemma 2 in Zhong et al. (2012). Since ⌦C =

WC+BC, where ⌦C = Cov (XC) andWC = E (Cov (XC|S(Y ))) = Cov (XC|S(Y )) under model

(2.3), �
max

(⌦C)  ⌧
max

and �
min

(WC) � ⌧
min

Thus,

�C
1

= max
||⌘||=1

⌘TBC⌘

⌘T⌦C⌘
= 1� min

||⌘||=1

⌘TWC⌘

⌘T⌦C⌘
 1�

min||⌘||=1

⌘TWC⌘

max||⌘||=1

⌘T⌦C⌘
 1� ⌧

min

⌧
max

,

and

1� �C
i � 1� �

1

� ⌧
min

⌧
max

, for i = 1, 2, . . . , q.

Therefore, for i = 1, 2, . . . , q and 0 < ✏ < 1, there exists constant C
1

and C
2

such that
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.

as n ! 1.

Proof of Theorem 1. Let RC =
Pq

i=1

log
⇣

1� b�C
i

⌘

�
Pq

i=1

log
�

1� �C
i

�

. Then, according to
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Lemma 2, for 0 < ✏ < 1, there exists constant C
1

and C
2

such that

Pr

✓

max
C⇢{1,2,...,p}
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64⌧ 2
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.

Under Condition 2, p = o (n⇢) with 2⇢+ 2 < 1, and for any positive constant C,

Pr

✓

max
C⇢{1,2,...,p}

|RC| > Cn�

◆

 2p(p+ 1)qC
1

exp

✓

�C
2

n1�2�2⇢ ⌧ 4
min

C2

64⌧ 2
max

q2

◆

! 0

as n ! 1. For j /2 C and d = |C|,

bDj|C = �
q
X

i=1

log
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1� b�d+1

i

⌘

+
q
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log
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q
X

i=1

log
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+
q
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log
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�R
[C[{j}] +RC

= log

 

1 +
Var (Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

Vj

!

�R
[C[{j}] +RC,

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )), and Vj is a constant that does not

depend on XC or S(Y ) under model (2.3).

When Cc \A 6= ;, according to Lemma 1, there exist  > 0 and ⇠
1

> 0 such that

max
j2Cc\A

"

Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

Vj

#
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1

n�,

Then, for su�ciently large n, there exists j 2 Cc \A such that

log

 

1 +
Var (Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

Vj

!

� ⇠
1

2
n�,
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and

bDj|C � ⇠
1

2
n� �

�

�

�R
[C[{j}]

�

�+ |RC|
�

.

Let c = ⇠
1

4

. Since

Pr

✓

max
C⇢{1,2,...,p}

|RC| >
c

2
n�

◆

! 0,

we have

Pr

✓

min
C:Cc\A 6=;

max
j2Cc\A

bDj|C � cn�

◆

! 1,

as n ! 1.

When variable Cc \ A = ;, for j 2 Cc ⇢ Ac, Mj = E (Xj|XC, S(Y )) = E (Xj|XC) is a

linear combination of XC under model (2.3), and

Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

Vj

= 0.

Thus,

bDj|C 
�

�

�R
[C[{j}]

�

�+ |RC|
�

,

and

Pr

✓

max
C:Cc\A=;

max
j2Cc

bDj|C � Cn�

◆

 Pr

✓

max
C⇢{1,2,...,p}

|RC| �
C

2
n�

◆

! 0

for any positive constant C as n ! 1.

A.3 Proof of Proposition 2 in Section 2.1.2

We start with a simple case to get some intuitions behind the proof. Suppose there

are two di↵erent sets of minimally relevant predictors {X
1

} and {X
2

}. Under model (2.8)
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and Condition 1, the support for the joint distribution of two predictors X
1

and X
2

is

the entire 2-dimensional space R2. If X
1

?? S(Y )|X
2

and X
2

?? S(Y )|X
1

, then we have

Pr(S(Y )|X
1

= x,X
2

= x
2

) = Pr(S(Y )|X
2

= x
2

) = Pr(S(Y )|X
1

= x
1

) for any x
1

, x
2

2 R.

Thus, both Pr(S(Y )|X
2

) and Pr(S(Y )|X
1

) are constants, and X
1

?? S(Y ) and X
2

?? S(Y ),

which is contradictory to the assumption that {X
1

} and {X
2

} are minimally relevant.

Proof of Proposition 2. Suppose there are two di↵erent sets of minimally relevant predictors

indexed by B and C, respectively. Define A
1

= B \ C, A
2

= B \ Cc and A
3

= Bc \ C. Then,

we must have A
2

6= ; and A
3

6= ;. The conditional distribution of XA
2

given XA
1

and slice

Sh can be written as

XA
2

|XA
1

, Y 2 Sh ⇠ N
⇣

↵(h)
A

2

|A
1

+B(h)
A

2

|A
1

XA
1

,⌃(h)
2

= ⌃(h)
A

2

|A
1

⌘

.

Let ↵(h) = ↵(h)
A

2

|A
1

and B(h) = B(h)
A

2

|A
1

=
⇣

B(h)
j

⌘

j2A
1

. Since B is minimally relevant, at

least one of ↵(h), B(h)
j (j 2 A

1

) and ⌃(h)
2

has to be di↵erent across slices. The conditional

distribution of XA
3

given XA
1

[A
2

= XB is the same across slices,

XA
3

|XB, Y 2 Sh ⇠ N (a+ bXA
1

+ cXA
2

,⌃
3

= ⌃B) .

The conditional distribution of XA
3

given XA
1

and slice Sh is

XA
3

|XA
1

, Y 2 Sh ⇠ N
⇣

a+ c↵(h) +
�

b+ cB(h)
�

XA
1

,⌃
3

+ c⌃(h)
2

cT
⌘

,

Since A
3

2 C and C is minimally relevant, at least one of c↵(h), cB(h)
j (j 2 A

1

) and M(h) =

c⌃(h)
2

cT has to be di↵erent across slices. Given XA
1

[A
3

= XC and slice Sh, the conditional
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distribution of cXA
2

is

cXA
2

|XC, Y 2 Sh ⇠ N
�

�(h) +D(h)XA
1

+C(h)XA
3

,⌃(h)
�

,

where C(h) = M(h)
�

⌃
3

+M(h)
��1

, �(h) = �C(h)a +
�

I|A
3

| �C(h)
�

c↵(h), D(h) = �C(h)b +

�

I|A
3

| �C(h)
�

cB(h), and ⌃(h) = M(h) �M(h)
�

⌃
3

+M(h)
��1

M(h).

First, if M(h) (h = 1, 2, . . . , H) are di↵erent across slices. Then N(h) = ⌃
� 1

2

3

M(h)⌃
� 1

2

3

=

�(h)⇤(h)
⇥

�h
⇤�1

are di↵erent across slices (note that under Condition 1, ⌃
1

2

3

is invertible). We

have

⌃
� 1

2

3

⌃(h)⌃
� 1

2

3

= N(h) �N(h)
�

I|A
3

| +N(h)
��1

N(h) = �(h)⇤(h)
�

I|A
3

| + ⇤
(h)
��1

⇥

�h
⇤�1

.

Thus, ⌃
� 1

2

3

⌃(h)⌃
� 1

2

3

and ⌃(h) are di↵erent across slices.

Second, if M(h) = M (h = 1, 2, . . . , H) are the same across slices. Then at least one of

c↵(h) and cB(h)
j (j 2 A

1

) has to be di↵erent across slices. Without loss of generality, assume

c↵(h) are di↵erent across slices, that is, trace (Var (c↵(Y ))) > 0, where ↵(Y ) = ↵(h) when

Y 2 Sh. Under Condition 1, �
max

(N)  ⌧
max

⌧
min

, �
min

(⌃
3

) � ⌧
min

and �
min

�

⌃�1

3

�

� 1

⌧
max

. Then,

C(h) = C = IA
3

�M (⌃
3

+M)�1 = ⌃
1

2

3

�

IA
3

�N (IA
3

+N)�1

�

⌃
� 1

2

3

,

and

trace (Var (�(Y ))) = trace
�

CVar (c↵(Y ))CT
�

� �
min

�

⌃�1

3

�

�
min

(⌃
3

)�2

min

�

IA
3

�N (IA
3

+N)�1

�

trace (Var (c↵(Y )))

�
✓

⌧
max

⌧
max

+ ⌧
min

◆

2

✓

⌧
max

⌧
min

◆

trace (Var (c↵(Y ))) > 0,
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where �(Y ) = �(h) when Y 2 Sh. Thus, �(h) are di↵erent across slices.

Therefore, given XC and slice Sh, the conditional distribution of cXA
2

depends on slice

Sh, which is contradictory with the previous assumption that A
2

2 Cc and the conditional

distribution of XA
2

given XC is the same across slices. So we must have B = C.

A.4 Proof of Properties of Augmented Test Statistic

in Section 2.1.2

Properties of the likelihood-ratio test statistic proposed in Section 2.1.2 are summarized

in the following proposition:

Proposition 5. Given the current set of selected predictors indexed by C with dimension

|C| = d and another predictor indexed by j /2 C, the scaled log-likelihood-ratio test statistic

for testing

H
0

: A = C v.s. H
1

: A = C [ {j},

under the augmented model (2.8) can be written as

bD⇤
j|C = log b�2

j �
H
X

h=1

nh

n
log

h

b�(h)
j

i

2

, (A.5)

where
h

b�(h)
j

i

2

is the estimated variance by regressing Xj on XC in slice Sh, and b�2

j is the

estimated variance by regressing Xj on XC using all the observations.

(a) For any fixed slicing scheme and A ⇢ C,

bD⇤
j|C ⇠ log

 

1 +
Q

0

PH
h=1

Qh

!

�
H
X

h=1

nh

n
log

 

Qh/nh
PH

h=1

Qh/n

!

D�! �2

(H�1)(d+2)

,
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where Q
0

⇠ �2

(H�1)(d+1)

and Qh ⇠ �2

nh�(d+1)

(1  h  H) are mutually independent.

(b) Under the same condition as in (a),

⇣

n bD⇤
j|C

⌘

j2Cc

D�!

0

@

(H�1)(d+1)

X

i=1

z2ij +
H�1

X

i=1

ez2ij

1

A

j2Cc

,

where zi’s and ezi’s are mutually independent with

zi = (zij)j2Cc ⇠ MVN
⇣

0, [Corr (Xj, Xk|XC)]j,k2Cc

⌘

,

and

ezi = (ezij)j2Cc ⇠ MVN
⇣

0,
⇥

Corr2 (Xj, Xk|XC)
⇤

j,k2Cc

⌘

.

(c) For any fixed slicing scheme, as n ! 1,

bD⇤
j|C

a.s.��! D⇤
j|C

= log

 

1 +
Var(Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

E (Vj)

!

+ logE (Vj)� E log (Vj)

where Mj = E (Xj|XC, S(Y )), Vj = Var (Xj|XC, S(Y )) and S(Y ) = h when Y 2 Sh (1 

h  H). Furthermore,

D⇤
j|C = 0 i↵ E (Xj|XC, Y 2 Sh) = E (Xj|XC) , and Var (Xj|XC, Y 2 Sh) = Var (Xj|XC) ,

for 1  h  H.

Proof of Proposition 5. (a) Let exC = [1n,xC], where 1n is a n-dimensional column vector of
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1 and In is a n by n identity matrix. We denote P
0

= exC
�

exT
C exC

��1

exT
C ,

Ph = diag

✓

0, . . . , ex(h)
C

⇣

ex(h)T
C ex(h)

C

⌘�1

ex(h)T
C , . . . , 0

◆

,

Rh = diag(0, . . . , Inh
, . . . , 0)� Ph and R

0

= In � P
0

. Then,

h

b�(h)
j

i

2

=
1

nh

xT
j Rhxj =

1

nh

�2

jQh =
1

n

�2

jQh

sh
, for h = 1, 2, . . . , H

and

b�2

j =
1

n
xT
j R0

xj =
1

n
xT
j

 

H
X

h=1

Rh

!

xj +
1

n
xT
j

 

H
X

h=1

Ph � P
0

!

xj

=
1

n

H
X

h=1

�2

jQh +
1

n
�2

jQ0

,

where �2

j is the conditional variance of Xj given XC for j 2 Cc and A ⇢ C.

The augmented likelihood-ratio test statistic in (A.5) can be written as

bD⇤
j|C = �

 

H
X

h=1

sh log
h

b�(h)
j

i

2

� log b�2

j

!

=

 

log

 

1

n

H
X

h=1

�2

jQh +
1

n
�2

jQ0

!

�
H
X

h=1

sh log

✓

1

n

�2

jQh

sh

◆

!

=

 

log

 

1 +
Q

0

PH
h=1

Qh

!

�
H
X

h=1

sh log

 

Qh/sh
PH

h=1

Qh

!!

.

Note that both
⇣

PH
h=1

Ph � P
0

⌘

and Rh’s are orthogonal to exC. Given that j 2 Cc, ac-

cording to Cochran’s theorem, Q
0

= xT
j

⇣

PH
h=1

Ph � P
0

⌘

xj/�2

j and Qh = xT
j Rhxj/�2

j are
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independent, and

Q
0

⇠ �2

(H�1)(d+1)

, and Qh ⇠ �2

nh�(d+1)

, for h = 1, 2, . . . , H, and d = |C|.

Let n0
h = nh � (d + 1) and n0 = n�H(d + 1). For any fixed slicing scheme, as n ! 1,

n0
h ! 1, n0 ! 1 and n0

h/nh ! 1, n0/n ! 1 given that d/n ! 0. Since

Q
0

n0
P�! 0,

PH
h=1

Qh

n0
P�! 1, and

Q
0

PH
h=1

Qh

=
Q

0

/n0
PH

h=1

Qh/n0
P�! 0,

we have

Uj ⌘ n log

 

1 +
Q

0

PH
h=1

Qh

!

P�! n

n0
Q

0

PH
h=1

Qh/n0
P�! Q

0

⇠ �2

(H�1)(d+1)

.

Since

Qh/sh
PH

h=1

Qh

=
n0
h/nh

n0/n

Qh/n0
h

PH
h=1

Qh/n0
P�! 1, for h = 1, 2, . . . , H,

and
PH

h=1

Qh

n
=

n0

n

PH
h=1

Qh

n0
P�! 1,
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we have

eUj ⌘ �n
H
X

h=1

sh log

 

Qh/sh
PH

h=1

Qh

!

= �n
H
X

h=1

sh log

 

1 +
Qh/sh

PH
h=1

Qh

� 1

!

' �n
H
X

h=1

sh

 

Qh/sh
PH

h=1

Qh

� 1

!

+
1

2

H
X

h=1

nh

 

Qh/sh
PH

h=1

Qh

� 1

!

2

=
1

2

H
X

h=1

nh

 

Qh/nh
PH

h=1

Qh/n
� 1

!

2

=
1

2

PH
h=1

nh

⇣

Qh/nh �
PH

h=1

Qh/n
⌘

2

⇣

PH
h=1

Qh/n
⌘

2

' 1

2

H
X

h=1

nh

 

Qh/nh �
H
X

h=1

Qh/n

!

2

=
H
X

h=1

✓

Qhp
2nh

◆

2

�
 

H
X

h=1

r

nh

n

Qhp
2nh

!

2

.

Let qh = Qhp
2nh

, for h = 1, 2, . . . , H. Then

qh =

s

n0
h

nh

Pn0
h

i=1

h

z(h)ij

i

2

p

2n0
h

,

where z(h)ij ⇠ N(0, 1) independently for i = 1, 2, . . . , n0
h and h = 1, 2, . . . , H. Thus, according

to central limit theorem, qh
D�! N(0, 1), for h = 1, 2, . . . , H, and let q = (q

1

, . . . , qH)
T . Then,

eUj '
H
X

h=1

q2h �
 

H
X

h=1

r

nh

n
qh

!

2

= qT
�

IH � JJT
�

q

where J =
⇣

p

n
1

/n, . . . ,
p

nH/n
⌘T

and JTJ = 1. According to Cochran’s theorem, eUj is

asymptotically �2

H�1

. Since Q
0

is independent of Qh (h = 1, 2, . . . , H), Uj is asymptotically

independent of eUj and

n bD⇤
j|C = Uj + eUj

D�! �2

(H�1)(d+2)

.
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To prove (b), for any j 2 Cc, we denote

Uj ' Q(0)

j =
xT
j

⇣

PH
h=1

Ph � P
0

⌘

xj

�2

j

=
(H�1)(d+1)

X

i=1

z2ij,

where zij ⇠ N(0, 1) independently for the same j and i = 1, 2, . . . , (H � 1)(d + 1), and

Cov(zij, zij0) = Corr (Xj, Xj0 |XC) for j0 6= j. For any j and h 2 {1, 2, . . . , H}, we denote

Q(h)
j =

xT
j Rhxj

�2

j

=

n0
h

X

i=1

h

z(h)ij

i

2

, and q(h)j =
Q(h)

jp
2nh

,

where z(h)ij ⇠ N(0, 1) independently for the same j and i = 1, 2, . . . , n0
h, and Cov(z(h)ij , z(h)ij0 ) =

Corr (Xj, Xj0 |XC) for j0 6= j. Since Cov

✓

h

z(h)ij

i

2

,
h

z(h)ij0

i

2

◆

= 2Corr2 (Xj, Xj0 |XC), for h =

1, 2, . . . .H and j 6= j0, we have

Cov
⇣

q(h)j , q(h)j0

⌘

=
1

2nh

Cov
⇣

Q(h)
j , Q(h)

j0

⌘

=
n0
h

nh

Corr2 (Xj, Xj0 |XC) ! Corr2 (Xj, Xj0 |XC) .

Hence

eUj '
H
X

h=1

h

q(h)j

i

2

�
 

H
X

h=1

r

nh

n

h

q(h)j

i

!

2

'
(H�1)

X

i=1

z̃2ij,

where z̃ij ⇠ N(0, 1) independent for the same j and i = 1, 2, . . . , (H � 1), and for j0 6= j,

Cov(z̃ij, z̃ij0) = Corr2 (Xj, Xj0 |XC). Therefore,

⇣

n bD⇤
j|C

⌘

j2Cc
=
⇣

Uj + eUj

⌘

j2Cc

D�!

0

@

(H�1)(d+1)

X

i=1

z2ij +
(H�1)

X

i=1

z̃2ij

1

A

j2Cc

.

(c) For any fixed slicing scheme, as n ! 1, nh ! 1 for h = 1, 2, . . . , H. Under the
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normality assumption, as nh ! 1,

h

b�(h)
j

i

2 P�!
h

�(h)
j

i

2

= Var (Xj|Y 2 Sh)� Cov (Xj,XC|Y 2 Sh) [Cov (XC|Y 2 Sh)]
�1 Cov (Xj,XC|Y 2 Sh)

T

= Var (Xj|XC, Y 2 Sh) ,

and as n ! 1,

b�2

j
P�! �2

j

= Var (Xj)� Cov (Xj,XC) [Cov (XC)]
�1 Cov (Xj,XC)

T

= Var (Xj)� Cov (E (Xj|XC, S(Y )) ,XC) [Cov (XC)]
�1 Cov (E (Xj|XC, S(Y )) ,XC)

T .

LetMj = E (Xj|XC, S(Y )) and Vj = Var (Xj|XC, S(Y )). Then, Var (Xj) = Var (Mj)+E (Vj),

and

bD⇤
j|C = log b�2

j �
H
X

h=1

sh log
h

b�(h)
j

i

2

P�! log �2

j �
H
X

h=1

sh log
h

�(h)
j

i

2

= log
⇣

E (Vj) + Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T
⌘

�
H
X

h=1

sh log (Var (Xj|XC, Y 2 Sh)) .

Since Var (Xj|XC, Y 2 Sh) is a constant that does not depend on XC under the normality

assumption,

E log(Vj) =
H
X

h=1

sh log (Var (Xj|XC, Y 2 Sh)) ,
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and thus

bD⇤
j|C

P�! log
⇣

E (Vj) + Var (Mj)� Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T
⌘

�E log(Vj)

= log

 

1 +
Var (Mj)� Cov (Mj,XC) [Cov (XC)]

�1 Cov (Mj,XC)
T

E (Vj)

!

+ log (EVj)� E log (Vj) .

Note that

Var (Mj) � Cov (Mj,XC) [Cov (XC)]
�1 Cov (Mj,XC)

T

where equality holds if and only if Mj = E (Xj|XC, S(Y )) is a linear combination of XC that

does not depend on S(Y ), that is, Mj = E (Xj|XC, S(Y )) = E (Xj|XC) under the normality

assumption. Furthermore, according to Jensen’s inequality

log (EVj) � E log (Vj) ,

where equality holds if and only if Vj = EVj, or equivalently, Var (Xj|XC, Y 2 Sh) is a

constant for h = 1, 2, . . . , H. Combined with Mj = E (Xj|XC), Var (Xj|XC) = E (Vj|XC) +

Var (Mj|XC) = Vj = Var (Xj|XC, S(Y )).

A.5 Proof of Theorem 2 in Section 2.1.2

To prove Theorem 2, we will need the following lemma.

Lemma 3. Under the same condition as in Theorem 2, for 0 < ✏ < 1, there exists positive
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constants C
1

and C
2

such that

Pr

✓

max
C⇢{1,2,...,p}

max
j2Cc

�

�log b�2

j � log �2

j

�

� > ✏

◆

 p(p+ 1)

2
C

1

exp

✓

�C
2

n
✏2

p2L2

◆

,

and

Pr

 

max
C⇢{1,2,...,p}

max
j2Cc

�

�

�

�

�

H
X

h=1

sh log
h

b�(h)
j

i

2

�
H
X

h=1

sh log
h

�(h)
j

i

2

�

�

�

�

�

> ✏

!

 Hp(p+ 1)

2
C

1

exp

✓

�C
2

n
✏2

H2p2L2

◆

,

where L = 4

⌧
min

✓

3
⇣

⌧
max

⌧
min

⌘

3/2

+ 1

◆

.

Proof of Lemma 3. We denote VC = Cov (XC) = (vj
1

,j
2

)j
1

,j
2
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where the last inequality follows from Bernstein inequality since predictors X follows either

a multivariate normal distribution or a finite mixture of multivariate normal distributions.
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for any constant C > 0 as n ! 1. Thus,
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1

⌧
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�
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⌧
min

�
max

�
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X
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X
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Therefore,

p
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⌧
min

✓
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⌧
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◆

X

j2A

E [Var (Xj|S(Y ))] .

Moreover,
P

j2A Var (Xj|S(Y ))  |A|⌧
max

 ⌧
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⇠
0

n⌘, and

p
X

j=1

D⇤
j

=
p
X

j=1

✓

log



1 +
Var (E(Xj|S(Y )))

E (Var(Xj|S(Y )))

�

+ log [E (Var(Xj|S(Y )))]� E [log (Var(Xj|S(Y )))]

◆
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⌧
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✓

1 +
⌧
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◆

X

j2A

Var (Xj|S(Y ))  ⌧
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⌧
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✓

1 +
⌧
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⌧
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◆

⇠
0

n⌘.

Thus, there exists C > 0 such that

�

�M c
2

�

�  2

c
n

p
X

j=1

D⇤
j 

⌧
max

⌧
min

✓

1 +
⌧
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⌧
min

◆

2⇠
0

c
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Then,

P
⇣

�

�

�

cMc

�

�

�

> Cn+⌘
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�

�

�

cMc

�

�

�
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�M c
2

�

�

⌘

,

and the event
n

�

�

�

cMc

�

�

�

>
�

�M c
2

�

�

o

⇢
n

there exists j such that D⇤
j <

c
2

n� and bD⇤
j � cn�

o

⇢
n

maxj2{1,2,...,p}
�

�

�

bD⇤
j �D⇤

j

�

�

�

> c
2

n�
o

. Thus, according to the results in (a),

P
⇣

�

�

�

cMc

�

�

�

> Cn+⌘
⌘

 P

✓

max
j2{1,2,...,p}

�

�

�

bD⇤
j �D⇤

j

�

�

�

>
c

2
n�

◆

! 0,

as n ! 1.

A.7 Proof of Choices of Slicing Schemes in Section 2.2

Suppose (S
1

, S
2

, . . . , SH) is the true slicing scheme under model (2.3) or (2.8), and S(Y )

denotes the slice membership of the slicing scheme, i.e., S(Y ) = h if Y 2 Sh. We say that

a slicing scheme eS(Y ) is a refinement of S(Y ), which is denoted by eS(Y ) � S(Y ), if there

exists a function g such that S(Y ) = g(eS(Y )).

For any slicing scheme eS(Y ), as n ! 1, the limit of the likelihood-ratio test statistic

under model (2.3) is given by

Dj| C,eS(Y )

= lim
n!1

bDj| C,eS(Y )

= log
h

Var (Xj)� Cov (Xj,XC) [Var (XC)]
�1 Cov (Xj,XC)

T
i

�

log
h

E
⇣

Var
⇣

Xj | eS(Y )
⌘⌘

�

E
⇣

Cov
⇣

Xj,XC | eS(Y )
⌘⌘ h

E
⇣

Cov
⇣

XC | eS(Y )
⌘⌘i�1

E
⇣

Cov
⇣

Xj,XC | eS(Y )
⌘⌘T

�

,
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and the limit of the augmented likelihood-ratio test statistic under model (2.8) is given by

D⇤
j| C,eS(Y )

= lim
n!1

bD⇤
j| C,eS(Y )

= log
h

Var (Xj)� Cov (Xj,XC) [Var (XC)]
�1 Cov (Xj,XC)

T
i

�

E
⇣

log
h

Var
⇣

Xj | eS(Y )
⌘

�

Cov
⇣

Xj,XC | eS(Y )
⌘ h

Cov
⇣

XC | eS(Y )
⌘i�1

Cov
⇣

Xj,XC | eS(Y )
⌘T
�◆

For the true slicing scheme S(Y ) or a slicing scheme eS(Y ) that is a refinement of S(Y ),

i.e., eS(Y ) � S, under model (2.3), we have

Dj| C,eS(Y )

= Dj| C,S(Y )

= log
h

Var (Xj)� Cov (Xj,XC) [Cov (XC)]
�1 Cov (Xj,XC)

T
i

� log (Var(Xj | XC, S(Y ))) ,

where Var(Xj | XC, S(Y )) is a constant that does not depend on XC or S(Y ). Similary, under

the augmented model (2.8),

D⇤
j| C,eS(Y )

= D⇤
j| C,S(Y )

= log
h

Var (Xj)� Cov (Xj,XC) [Cov (XC)]
�1 Cov (Xj,XC)

T
i

�E (log (Var(Xj | XC, S(Y )))) .

For a slicing scheme eS(Y ) that is “coarser” than the true slicing scheme S(Y ), i.e.,

S(Y ) � eS(Y ), we have the following theorem.

Proposition 6. Suppose eS(Y ) is a slicing scheme such that S(Y ) � eS(Y ), where S(Y ) is
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the true slicing scheme.

(a) Under model (2.3),

Dj| C,S(Y )

� Dj| C,eS(Y )

,

where equality holds if A ⇢ C, where A is the index set of relevant predictors.

(b) Under model (2.8),

D⇤
j| C,S(Y )

� D⇤
j| C,eS(Y )

,

where equality holds if A ⇢ C, where A is the index set of relevant predictors.

Proof of Proposition 6. (a) Since

Var
⇣

Xj | eS(Y )
⌘

= E
⇣

Var
⇣

Xj | XC, eS(Y )
⌘

| eS(Y )
⌘

+Var
⇣
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⇣
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⌘
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⌘

,

we have

E
⇣
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E
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E
⇣
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E
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⌘
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⌘iT

� E
⇣

Var
⇣

Xj | XC, eS(Y )
⌘⌘

,

where equality holds if E
⇣

Xj | XC, eS(Y )
⌘

is a linear combination of XC that does not depend
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on eS(Y ). Since S(Y ) � eS(Y ), the �-algebra �(eS(Y )) ⇢ �(S(Y )). Thus,

Var
⇣

Xj | XC, eS(Y )
⌘

= E
⇣

Var (Xj | XC, S(Y ))
�

�

�

XC, eS(Y )
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�
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�

�
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,

and

E
⇣

Var
⇣

Xj | XC, eS(Y )
⌘⌘

� E (Var (Xj | XC, S(Y ))) ,

where equality holds if E (Xj | XC, S(Y )) is a linear combination of XC that does not depend

on S(Y ). Because S(Y ) is the true slicing scheme, under model (2.3), Var (Xj | XC, S(Y )) is

a constant that does not depend on XC or S(Y ), that is,

E (Var (Xj | XC, S(Y ))) = Var (Xj | XC, S(Y )) .

Therefore,

E
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Dj| C,S(Y )

= log
h

Var (Xj)� Cov (Xj,XC) [Cov (XC)]
�1 Cov (Xj,XC)

T
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.

When A ⇢ C, under model (2.3), the predictor indexed by j 2 Cc has the same conditional

distribution across di↵erence slices given XC. So E (Xj | XC, S(Y )) and E
⇣

Xj | XC, eS(Y )
⌘

are linear combinations of XC that do not depend on S(Y ) or eS(Y ). Thus, the equalities

hold in this case.

To prove (b), note that
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where equality holds if E
⇣

Xj | XC, eS(Y )
⌘

is a linear combination of XC that does not depend
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on eS(Y ). Since S(Y ) � eS(Y ), the �-algebra �(eS(Y )) ⇢ �(S(Y )). Thus,
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where the equalities hold if E (Xj | XC, S(Y )) and E
⇣

Xj | XC, eS(Y )
⌘

are linear combinations

of XC that do not depend on S(Y ) or eS(Y ). According to Jensen’s inequality,
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where equality holds if Var (Xj | XC, S(Y )) is a constant that does not depend on XC or

S(Y ).
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Therefore,
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.

When A ⇢ C under the augmented model (2.8), the predictor indexed by j 2 Cc has the

same conditional distribution across di↵erence slices given XC. So E (Xj | XC, S(Y )) and

E
⇣

Xj | XC, eS(Y )
⌘

are linear combinations of XC that do not depend on S(Y ) or eS(Y ), and

Var (Xj | XC, S(Y )) is a constant that does not depend on XC or S(Y ). Thus, the equalities

hold in this case.
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Appendix B

Miscellaneous

B.1 Forward-Summation Algorithm in Section 3.3.2

Without loss of generality, assume individuals are sorted with Rd = {1, 2, . . . , N}. Given

individual ranks Rd and variances {�2

c : Jc = d}, we can sum over all possible individual

partitions under the sequential partition prior by filling entries of the table
⇥

W ⇤
j

⇤

0jN

(W ⇤
0

⌘ 1) recursively,

W ⇤
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, (B.1)
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2
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,
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Y
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�(�)
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2
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Y
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�
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�
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|Ad,m|

⌘

�
⇣

�
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where ⇡T
1�⇡T

is the prior odds for adding a new individual type and nh,d is the number of

individuals from {i + 1, . . . , j} who have the hth genotype among 2|Ad,m| possible genotype

combinations from markers in Ad,m.

The joint probability of observing gene expression {YKc : Jc = d} and genotypes of

genetic markers XAd
marginalizing over individual type partition Td can be obtained from

the last entry of the table
⇥

W ⇤
j

⇤

0jN
:

Pr
�

XAd
, {YKc : Jc = d}|Rd, {�2

c : Jc = d}
�

= W ⇤
N(1� ⇡T )
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⌘
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#

2�2

c

1

C

C

C

C

A

.

To sample individual type partitions Td, or equivalently the slice boundaries, we can use

backward sampling based on the table
⇥

W ⇤
j

⇤

0jN
.

B.2 MCMC Algorithm and Convergence Diagnostics

in Section 4.2.1

To obtain posterior distribution of parameters and hidden indicators according to the

ANOVA model (4.1, we can iterate the following Markov Chain Monte Carlo (MCMC)

sampling algorithm:

1. Given ⌧j, !
±
f , �

±
i , �

2 and �
2

, iteratively sample Qi,j (with Fi = f) by first marginalizing

over !f,j (integrating out !f,j given Pf,j) and then summing over Pf,j 2 {0, 1, 2};
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2. Given ⌧j, !
±
f , �

±
i , �

2 and �
2

, iteratively sample Pf,j by marginalizing over !f,j and

conditioning on Qi,j (with Fi = f), and then sample !f,j conditioning on Pf,j;

3. Given ⌧j, !f,j and �2, sample �±i conditioning on Qi,j (with Fi = f) and obtain �i,j

directly;

4. Given !f,j, �2 and �
2

, sample !±
f conditioning on Pf,j;

5. Given !±
f , �

±
i , �1 and �

2

, sample �2 by integrating out ⌧j and !f,j and conditioning on

Pf,j and Qi,j (the marginal posterior of �2 is similar to the form given in Section 4.3.1);

6. Given !f,j, �i,j, �2 and �
1

, sample ⌧j;

7. Given ⌧j and �2, sample �
1

;

8. Given !f,j, !
±
f and �2, sample �

2

conditioning on Pf,j.

The convergence diagnostics of the MCMC algorithm are given in Figure B.1. The

Gelman and Rubin’s potential scale reduction factors (Gelman and Rubin, 1992) for posterior

draws based on five independent MCMC runs (after independent burn-in periods) are 1.007

for log-likelihood, 1.007 for the variance parameter �2, 1.003 for the background noise scale

parameter �
1

and 1.026 for the family-wise e↵ect scale parameter �
2

.

B.3 MCMC Algorithm, Convergence Diagnostics and

Sensitivity Analysis in Section 4.3.1

We can draw subclass assignments C = {Ci : 1  i  NT}, group assignment G = {Gj :

1  j  NK} and indicators of preferred groups I = {Ig : 1  g  NG} from the posterior

distribution Pr (C,G, I|Y) by iterating the following Gibbs sampler steps:
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Figure B.1: MCMC diagnostics for ANOVA model. Posterior draws based on five indepen-
dent runs showing boxplots of (a) log-likelihood (with a Gelman and Rubin’s potential scale
reduction factor 1.007); (b) variance parameter �2 (with a Gelman and Rubin’s potential
scale reduction factor 1.007); (c) background noise scale parameter �

1

(with a Gelman and
Rubin’s potential scale reduction factor 1.003); (d) family-wise e↵ect scale parameter �

2

(with a Gelman and Rubin’s potential scale reduction factor 1.026); and trace plots of (e)
log-likelihood and (f) variance �2 from five MCMC runs.
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1. Sample group assignment G = {Gj : 1  j  NK} conditioning on C and I;

2. Sample indicators of preferred groups I = {Ig : 1  g  NG} conditioning on C and

G;

3. Iteratively sample subclass assignment of the ith TF, Ci, conditioning I, G and C
[�i] =

{Ck : k 6= i}, according to the Chinese Restaurant Process (CRP) representation of

the Dirichlet process.

The convergence diagnostics of the MCMC algorithm are given in Figure B.2. The

Gelman and Rubin’s potential scale reduction factor (Gelman and Rubin, 1992) for posterior

draws of log-likelihood based on five independent MCMC runs (after the burn-in period) is

1.008.

To assess the influence of choices of hyper-parameters on the inferences drawn, we con-

ducted sensitivity analysis on the total number of groups NG, variance and scale parameters

�2

0

, 
1

and 
2

. The inference procedure based on Bayesian partition model was repeated

under the following 11 combinations of hyper-parameter settings:

1. NG = 100, 
1

= 1.0, 
2

= 1.0 and �2

0

= 1.0 (priors used in obtaining the results in

Section 4.4);

2. NG = 100, 
1

= 1.0, 
2

= 1.0 and �2

0

= 0.5;

3. NG = 100, 
1

= 1.0, 
2

= 0.5 and �2

0

= 1.0;

4. NG = 100, 
1

= 0.5, 
2

= 1.0 and �2

0

= 1.0;

5. NG = 100, 
1

= 1.0, 
2

= 1.0 and �2

0

= 2.0;

6. NG = 100, 
1

= 1.0, 
2

= 2.0 and �2

0

= 1.0;
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7. NG = 100, 
1

= 2.0, 
2

= 1.0 and �2

0

= 1.0;

8. NG = 100, 
1

= 0.5, 
2

= 0.5 and �2

0

= 0.5;

9. NG = 100, 
1

= 2.0, 
2

= 2.0 and �2

0

= 2.0;

10. NG = 50, 
1

= 1.0, 
2

= 1.0 and �2

0

= 1.0;

11. NG = 200, 
1

= 1.0, 
2

= 1.0 and �2

0

= 1.0;

The primary quantities of interest, posterior probabilities on subclass preferred binding for

k-mers, were calculated under each of the above hyper-parameter combination. Figure B.3

shows the pair-wise correlations of posterior probabilities on subclass preferred binding for

each pair of hyper-parameter settings. Given a fixed number of groups, the inferences on

posterior probabilities on subclass preferred binding are highly correlated (with correlations

above 0.9) under di↵erent hyper-parameters. When we compare two very di↵erent specifi-

cations on the number of groups, NG = 50 versus NG = 200, the correlation is 0.65. When

we compare NG = 100 (which is used in obtaining the results in Section 4.4) with NG = 50

or NG = 200, all the correlations are above 0.8 even under di↵erent combinations of other

hyper-parameters.
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Figure B.2: MCMC convergence diagnostics and prior sensitivity analysis of Bayesian par-
tition model in Section 2.3.1. using ETS DBD class data. Posterior draws based on five
independent runs showing (a) boxplots and (b) trace plots of log-likelihood. The Gelman
and Rubin’s potential scale reduction factor is 1.008.

Figure B.3: Correlations of posterior probabilities on subclass preferred binding for k-mers
under di↵erent priors. See Appendix B.3 for prior settings 1-11.
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