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Political Economy of Committee Voting and its Application

ABSTRACT

This dissertation consists of three essays on information aggregation in committees and

its application.

The first essay analyzes how the distribution of votes a↵ects the accuracy of group deci-

sions. In a weighted voting system, votes are typically assigned based on the criteria that

are unrelated to the voters’ ability to make a correct judgment. I introduce an information

aggregation model in which voters are identical except for voting shares. If the information

is free, the optimal weight distribution is equal weighting. When acquiring information

is costly, by contrast, I show that the accuracy of group decisions may be higher under

some weighted majority rules than under unweighted majority rule. I characterize the

equilibrium and find the optimal weight distribution to maximize the accuracy of group

decisions. Asymmetric weight distributions may be optimal when the cost of improving

signal is moderately high.

The second essay analyzes how intergenerational family transfers can be sustained. Why

are generous transfers from the younger to the older generations made in some families and

not in others? My paper argues that di↵erences in intergenerational dependence are due

to variation in community networks. My analysis of the sustainability of intergenerational

transfers posits game theoretical models of overlapping generations in which breadwinners

make transfers to their parents and children. A novel feature of my models is that there

is a local community that may supply information about its members past behaviors.

I demonstrate that an e�cient level of intergenerational transfers can be sustained if

neighbors gossip about each other.
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The third essay, co-authored with Fuhito Kojima, investigates a jury decision when

hung juries and retrials are possible. When jurors in subsequent trials know that previous

trials resulted in hung juries, informative voting can be an equilibrium if and only if

the accuracy of signals for innocence and guilt are exactly identical. Moreover, if jurors

are informed of numerical split of votes in previous trials, informative voting is not an

equilibrium regardless of signal accuracy.
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1. WEIGHTED VOTING AND INFORMATION ACQUISITION

IN COMMITTEES

1.1 Introduction

Collective decision-making frequently involves situations in which actors have di↵erent

numbers of votes. Some institutions assign unequal voting weights explicitly. Examples

include the Council of the European Union, the U.S. Electoral College, shareholder meet-

ings, the International Monetary Fund and the World Bank, and the International Energy

Agency. In addition to the cases in which weighted voting is used as a formal rule, there

are also cases that can be interpreted as weighted voting. For example, parties in par-

liamentary systems and factions within the party are generally characterized as highly

unified. Thus, each party and faction can be seen as a weighted voter. Also, seniority

arrangements may be seen as a weighted voting rule. In a legislative party, senior group

members often have greater influence over the group decisions, which can be interpreted

as weighted voting rule where senior members have higher weight than junior members.1

How does the distribution of votes a↵ect the accuracy of group decisions? Several scholars

have considered a setting in which voters have common interests and the only purpose

of voting is information aggregation. ? and ? show that the optimal collective decision

rule assigns greater weights to the voters with higher ability to make a correct decision.2

1 In addition to those examples, decision making in regulatory organizations can be weighted voting.
Bureaucratic and regulatory organizations make numerous errors. For example, the FDA may approve
a faulty drug or reject a good drug. How do the errors of regulators depend upon the administrative
structures? More specifically, those organizations may be hierarchical in the sense that some agents’
opinions are more respected than others. For example, in Japanese bureaucracy, o�cials have a significantly
greater say than the younger o�cials. Also, it has been reported that opinion of the chairman of the Federal
Reserve Board is more influential than other members of the board.

2 If pj is the probability that voter j is correct in any given judgment, and if the judgments are inde-
pendent, then the maximum likelihood rule for two alternatives is to use weighted majority rule, where
the weight on individual j’s vote is log

pj
1�pj

(?, ?).
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Their main result implies that equally weighted majority rule is optimal when voters are

identical.

However, in the real world, the criteria for the weight distribution vary and are typically

unrelated to the voters’ ability to make a correct judgement, i.e., voters with greater

weights are not necessarily a priori more likely than others to make correct judgements.

For example, votes are assigned based on population of each member country at the E.U.

Council, the number of shares that each shareholder owns at shareholder meetings, and

financial contribution of each member county at the IMF and the World Bank.3 These

systems may be fair, but do they sacrifice the accuracy of group decision? The aim of this

paper is to analyze the influence of heterogeneous voting shares on the accuracy of group

decisions.

To this e↵ect, I set up a model with the following features: Voters are identical except

for voting shares4; Voters have common interests and the only purpose of the voting is

information aggregation; Information is a public good in the sense that the social benefits

of one voter acquiring information exceed the private benefits. The designer chooses the

distribution of weights so that the mechanism not only aggregates information e�ciently,

but also induces the voters to acquire information.

My main result is that the group decisions may be more likely to be correct under

heterogeneous voting shares compared to the case in which every voter has one vote. This

is because of the improvement of information possessed by the group: When information

acquisition is costly, the voters with greater weights have higher incentives to invest in

information than they would have under equal voting shares, and more investment means

that more accurate information is aggregated, which makes the group decision more ac-

curate.

To put it another way, an unequal distribution of voting power can sometimes be a

solution to the problem of under-provision of a public good, i.e., the information. This

3 One exception may be the plural voting system that John Stuart Mill proposed. Mill argued that
more educated citizens should be given more votes than uneducated citizens (?).

4 Since the weight distribution is a parameter chosen by the designer, by voters being identical I mean
that voters are identical except for weight shares in the this paper.
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may give a justification to delegating authority to someone even if she is no more capable

than others when information acquisition is costly. More generally, I characterize the

equilibrium and find the optimal weight distribution to maximize the accuracy of group

decisions. Asymmetric weight distributions may be optimal when the cost of improving

signal is moderately high.

1.2 Related Literature

Weighted Voting

The literature of the weighted voting can be classified into two categories: the studies

that assume common interest among agents and those that assume conflicting interests.

First, consider a setting in which voters have common interests and the only purpose of

the voting is information aggregation, which is perhaps best known as the setting of the

Condorcet Jury Theorem model. In research on weighted voting in this common-interest

framework, ? and ?, assuming heterogeneous abilities to make a correct judgement, show

that the optimal collective decision rule assigns greater weights to the voters with higher

ability to make a correct decision.5 Their main result implies that equally weighted ma-

jority rule is optimal when voters are identical.

Those results are based on the assumption that voters are non-strategic and little is

known about the strategic behavior in this setting. The current paper, to my knowledge, is

the first study to analyze the strategic aspect of weighted voting in the common-interests

setting. In contrast to the previous work, this paper shows that heterogeneous voting

shares may be optimal even when voters are identical.

The reason why my result is di↵erent from those of the previous literature is as follows.

The previous literature is only concerned with the negative e↵ect of heterogeneous voting

shares: Heterogeneity causes ine�ciency in aggregating the information. By introducing

the strategic behavior and costly information, the current paper is concerned with both

5 If pj is the probability that voter j is correct in any given judgment, and if the judgments are inde-
pendent, then the maximum likelihood rule for two alternatives is to use weighted majority rule, where
the weight on individual j’s vote is ln

pj
1�pj

(?, ?).

3



negative and positive e↵ects: Heterogeneity causes ine�ciency in information aggrega-

tion but it also gives highly weighted voters incentives to acquire information. I show

that sometimes the loss in e�ciency is more than compensated by the greater amount of

information acquired in equilibrium, relative to the case of equal distribution of voting

shares.

The other category in weighted voting is the studies that assume conflicting interests

among voters. As in the first category, some studies assume non-strategic voters and

others assume strategic voters. The former’s central question has been how to measure

the power distribution among voters. A voter’s ability to a↵ect the group decision is not

always proportional to her weight. To measure the power, scholars employ power indices

such as the Shapley-Shubik index and the Banzhaf index (?, ?, ?).67 As applications,

there is a large amount of literature employing power indices to study the voting weights

in the Council of the European Union, the IMF and the World Bank.8

The latter, the studies that assume strategic voters, typically analyze legislative bar-

gaining as a game of weighted voting. Most of them employs proposal-based bargaining

models, developed by ?.9 ? provide an existence result for a generalized Baron and

Ferejohn model that encompasses weighted voting. ? and ? study variants of the Baron-

Ferejohn model with veto players. ? characterize the generalized Baron and Ferejohn

model under weighted voting. Others employ demand-based bargaining models (?) and

two-stage proposal-based bargaining models (?). By focusing on the aspect of conflicting

6 For a review, see Roth (1988) and Felsenthal and Machover (1998).

7 Other cooperative solution concepts applied to weighted voting games include bargaining sets, bar-
gaining aspirations, the kernel, and the competitive solution. See Schofield ?, ?, ?, McKelvey et al. (1978),
Bennett (1983), Holler (1987), and Morelli and Montero (2003).

8 For the Council of the European Union, see ?, ?, ?, BramsandA↵uso(1985),Bergetal.(1993),Kaisa
Herne and Hannu Nurmi (1993), ?, ?. Mika Widgren (1994, 2000), R. J. Johnston(1995), Jan-Erik, Lane-
and, Reinert, Maeland (1995, 1996), Laneet al. (1995, 1996), Matthias Bruckner and Torsten Peters
(1996), Anthony L. Teasdale (1996), George Tsebelis and Geo↵rey Garrett(1996), Ulrich Bindseil and
Cordula Hantke(1997), Dan S. Felsenthal and Moshe Machover (1997, 2000, 2001), Annick Laruelle and
Widgren (1998), Konig and Brauninger (1998), Garrett and Tsebelis (1999a,1999b,2001), Holler and Wid-
gren (1999). For the IMF, see Dreyer and Schotter (1980), (?), Alonso-Meijide and Bowles (2005), and
Strand and Rapkin (2006), ?, ?.

9 Power indices are based on the idea that all coalitions are equally likely to form, regardless of how
expensive they are. Under the competitive bargaining, cheap coalitions will form more often than expensive
ones.
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interests among voters, those studies of conflicting interests analyze distributional politics,

i.e., how the distribution of votes a↵ects who gets what. In contrast, the current paper, by

focusing on the aspect of the common-interest among voters, studies the likelihood that

the group make a correct decision, i.e., how the distribution of votes a↵ects the accuracy

of group decisions.

Condorcet Jury Theorem

In addition to the literature of weighted voting, this paper contributes to the literature

of Condorcet Jury Theorem. The framework within which this paper addresses the collec-

tive choice problems is a variant of the Condorcet Jury Theorem model, in which voters

have common interests and the only purpose of the voting is information aggregation (?).10

The Condorcet Jury Theorem model with strategic voting is pioneered by ?. They

question Condorcet’s assumption of sincere voting by showing that sincere voting do not

constitute a Nash equilibrium in general. In response, ? and ? demonstrate that allowing

mixed strategies sustains Condorcet’s argument that groups are more likely to make correct

decisions than individuals. ? support Condorce’s argument on the group size. They show

that the accuracy of a group decision becomes higher as the group grows larger under non-

unanimity rules while not under unanimity rule. Under unanimity rule, the probabilities

that a group makes a wrong decision stay bounded away from zero regardless of the size of

jury. Moreover, increasing the size of the group does not help and actually may increase the

probability of convicting an innocent defendant. On the other hand, under nonunanimous

rule, both types of mistakes converge to zero as the jury grows large.

The current paper falls into the Condorcet Jury models with costly information ac-

10
? claims that majority rule is superior to dictatorship for a society even when the dictator has common

interests with others. He considers the situation in which there are two alternatives on an epistemic issue
and a society is deciding which one to select. Key feature are (1) that all individuals have common interests
to the extent that all agree on the alternative when the true state of the world is revealed and (2) that
each individual receives a signal about true state of the world. The resulting claim that a group of voters
using majority is more likely to choose the right action than an arbitrary single voter is known as the
Condorcet Jury Theorem. Condorcet also argues that the decisions by majorities get better as the size of
the groups becomes larger, which some scholars consider part of the Condorcet Jury Theorem.
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quisition, in which agents privately gather costly information, and then aggregate it to

produce a collective decision. Because information is a public good and it causes the

collective action problem among agents, the information will be under-provided relative

to the social optimum.11 ? shows that a larger committee may actually make poorer de-

cisions because of the collective action problem. He assumes majority rule and focuses on

symmetric mixed strategy equilibria. ? studies a case in which agents acquire their policy

preferences and information structures, which are captured by normal random variables.

He shows that when information cost is high, preference heterogeneity can provide agents

additional incentives to gather information.

In research on the jury model with costly information, a few papers analyze a problem

similar to the current paper. ? focuses on the rules that are symmetric, i.e., voters are

treated equally in aggregating information, while the current paper allows for asymmetric

rules.12 In his set up, the ex ante optimal threshold rule is ex post e�cient, i.e., it is

e�cient at aggregating information reported from a statistical point of view. In stark

contrast, in my setup the ex ante optimal rule may be ex post ine�cient. ? allow for

a broader class of voting rules than ? but their analysis is also restricted to symmetric

rules.13 Gerardi and Yariv yield the same insight as the current paper that the optimal

rule may be ex post ine�cient. They characterize the equilibrium only for extreme values

of a parameter while the current paper does so for more general range of parameters.

11
? considers a similar setting to Condorcet Jury model. He analyses a setting in which a fixed number

of jurors each purchase the precision of a noisy signal, which is public information. It is shown that there
is an incentive to distort the rule away from the rule that would be optimal if information was exogenously
given.

12 Also, Persico focuses on general threshold rules by which one of the alternatives is selected if and only
if a certain number of voters support that alternative while the current paper focuses on simple majority
rule by which one of the alternatives is selected if and only if more than half of the total votes are cast for
that alternative.

13 More specifically, ? allow for other rules than threshold rules but focus on symmetric rules. In contrast,
the current paper focuses on simple majority rule by which one of the alternatives is selected if and only
if more than half of the total votes are cast for that alternative but allows for asymmetric rules.
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Hegemonic Stability Theory

This paper is related to the literature on the hegemonic stability theory. The cen-

tral idea behind hegemonic stability theory is that the world needs a single dominant

state, a hegemonic state, to create and enforce the rules of fee trade among the most

important members of the system (See Gilpin 1981, 1994; Grunberg 1990; Kennedy 1987,

Keohane1984; kindleberger 1973; Krasner 1976; Strange 1987). That is, a hegemon pro-

vides to the international economy in the form of public goods and other states free ride on

the benefits. In international economic a↵airs, for example, an open trading system, well-

defined property rights, common standards of measures including international money,

consistent macroeconomic policies, proper action in case of economic crisis, and stable

exchange rates, are said to be public goods. The problem is an under-provision of those

public goods in the absence of external enforcement. The hegemonic stability theory is

based on the basic idea that this collective action problem is solved by the unequal dis-

tribution of benefits. Whereas the hegemonic stability theory explains that a hegemon

has an incentive to provide public goods because it is the largest beneficiary, this paper

explains that highly weighted voters have an incentive to do so because they have greater

influence in collective decisions.

1.3 Basic Model: Costless Information

Following the convention, I use a jury analogy to explain the model. In the political

context, deciding whether to convict the defendant would be choosing between two candi-

date for o�ce, whether to build a nuclear power plant, whether to launch a space shuttle,

whether to approve the drug, deciding whether to send troops to Iraq, and so on.

A finite set of jurors N = {1, 2, . . . , n} (n odd) is to make a collective decision

d 2 {A,C} where A and C correspond to acquittal or conviction, respectively. The

unknown state is ! 2 {G, I}: the defendant is either guilty (G) or innocent (I), with prior

distribution Pr(G) = Pr(I) = 1
2 .

All the jurors and the designer have identical preferences over the choice d 2 {A,C}

7



and state !.14 The common utility is given by

u(d,!) =

8

>

>

>

>

<

>

>

>

>

:

�1
2 if (d,!) = (C, I)

�1
2 if (d,!) = (A,G)

0 otherwise

where q 2 (0, 1). Both jurors and the designer maximize expected utility.15

Given the state of the world ! 2 {G, I}, each juror j simultaneously receives a private

signal sj 2 {g, i}. Conditional on the state, signals are independent across jurors. Let p

2 (1/2, 1) represent the probability that each juror observes the correct signal.16

Once jurors receive the signals, the group decision is made as follows. Let w =

(w1, . . . , wn) be a vector of non-negative weights with wj � 1. Throughout the paper,

I focus on the simple majority rule with weight w such that w1 = . . . = wm = w and

wm+1 = . . . = wn = 1. That is, jurors 1, . . . ,m are weighted by w � 1 and jurorsm+1 . . . n

are not weighted.17 Formally, the group decision rule is defined as fw : {g, i}n ! {A,C}

such that

fw(s1, . . . , sn) =

8

>

<

>

:

C if
Pn

j=1wjIsj=g �
P

wj+1
2 = n+m(w�1)+1

2

A otherwise.18

I define a mechanism as the following game:

Stage 1 The mechanism designer chooses the weight distribution w, i.e., the number of

weighted jurors m and their weight w, which becomes common knowledge among

14 I assume jurors are all identical except for their weights in order to see if weighted rule can be better
than unweighted rule for some parameters even if jurors are all identical.

15 Juror j prefers conviction to acquittal if and only if she places at least probability q that the defendant
is guilty. We say that the outcome of the trial is correct if either the defendant is guilty and convicted or
he is innocent and acquitted.

16 For the sake of simplicity, I assume that the probability that each juror observes the correct signal
when the true state is G is equal to the one when the true state is I.

17 Note that (m,w) is well-defined so that n+m(w � 1) is odd.

18 For the sake of simplicity, I exclude the possibility
Pn

j=1 wjvj = n+m(w�1)
2 .

8



the jurors.

Stage 2 Each juror independently receives signal.

Stage 3 If n+m(w�1)+1
2 or more weighted average of the jurors receive guilty signal, the

defendant is convicted. Otherwise, acquitted.

As a corollary of ?’s result, the aggregation rule that maximizes the probabilities of

convicting a guilty defendant and acquitting an innocent defendant is to distribute the

weights equally.19

In Section 1.3, it is assumed that jurors receive information for free. In Section 1.4, I

incorporate the stage in which jurors decides whether to purchase highly accurate infor-

mation or receive less accurate information for free. The goal of the both sections is to

find the optimal weight distribution w, i.e., (m,w), to maximize the designer’s expected

utility of the collective decision.

1.4 Costly Information

The model with costless information illustrates that the weighted rule is ine�cient at

aggregating reported information compared to unweighted rule. In this section, I incor-

porate the stage where the jurors decide whether or not to invest in information before

voting. Because information is a public good, information is under provided relative to

the social optimum. When the information is costless, the mechanism designer needs to

care only about the e�ciency of aggregating information. By contrast, when the infor-

mation is costly, he needs to care about whether a rule gives jurors incentives to acquire

information, as well as whether it aggregates information e�ciently.

At Stage 2, each juror j simultaneously and independently makes a decision tj 2 {0, 1}

about signal acquisition where 1 and 0 correspond to invest and not invest, respectively:

She chooses whether to purchase a highly accurate signal at a cost c (> 0) or receive a

19 This corollary is based on the assumption that signal accuracies are identical for all jurors. Otherwise,
the optimal allocation of weights is proportional to each juror’s log-likelihood ratio.
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low-quality signal for free. 20 The conditional probabilities of high-quality signals and

low-quality signals are P (sj = i|I, tj = 1) = P (sj = g|G, tj = 1) = pH and P (sj =

i|I, tj = 0) = P (sj = g|G, tj = 0) = pL, respectively, where pH > pL � 1
2 .

21 Denote the

weighted juror’s signal accuracy by p 2 {pH , pL} and unweighted jurors’ signal accuracy

by p0 2 {pH , pL}. The mechanism designer does not take into account the cost c incurred

by a juror who purchases a high-quality signal.

Denote the probability that the jury makes a correct decision by

V (w, t) := Pr(G) Pr(C|G) + Pr(I) Pr(A|I).

Since Pr(G) = Pr(I) = 1
2 and Pr(C|G) = Pr(A|I), V (w, t) = Pr(C|G).22 Also, since the

cost of convicting an innocent defendant and the one of acquitting a guilty defendant are

both 1
2 , the designer’s expected utility is �1

2 +
1
2 Pr(C|G). Therefore, in order to maximize

the expected utility, the designer maximizes the probability of making a correct decision

V (w, t).

In the following, I restrict attention to the symmetric equilibria: Jurors of the same

weight play the same strategy. Because all jurors with the same weight face a similar

decision problem, it is natural to assume that jurors with the same weight use the same

decision rule in equilibrium. We restrict the analysis to this kind of equilibrium, which I

refer to as a symmetric equilibrium.

The purpose of this section is to (1) characterize the symmetric equilibria given the

weight and (2) find the optimal weight for the designer. For now, I consider the case in

which there is at most one weighted juror, m = 1. For the future research, I intend to ex-

tend the analysis to the case in which more than one jurors may be weighted, 1 < m < n+1
w+1

(See Appendix A.4).

20 Information acquisition could be reinterpreted as information processing. In that case, the cost c

captures the e↵ort that each decision maker puts into updating his beliefs given the available information.

21 For the sake of simplicity, I assume that the probability that each juror observes the correct signal
when the true state is G is equal to the one when the true state is I.

22 Since the signal accuracy is symmetric, i.e., Pr(sj = g|! = G) = Pr(sj = i|! = I), and I focus on the
simple majority rule, Pr(C|G) = Pr(A|I).
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Note that w is well-defined. Since n is odd and m = 1, w needs to be odd in this case.

We start with a simple example which suggests that weighting may improve the quality

of the group decision and jurors’ payo↵s.

Let N = {1, 2, 3, 4, 5}, Pr(G) = 0.5, q = 0.5, c = 0.05, pH = 0.8, and pL = 0.6.

First, consider the unweighted simple majority rule. Suppose that no jurors acquire

high-quality signal. Since

EUj [tj = 1]� EUj [tj = 0] = �0.01544,

no jurors have an incentive to deviate. In this situation, the designer’s expected utility

is �0.31744.

Second, consider the weighted simple majority rule where juror 1 has three votes while

each of the others has one vote. Suppose that only juror 1 acquires high-quality signal.

Since

EU1[t1 = 1]� EU1[t1 = 0] = 0.03448 > 0

EUj [tj = 1]� EUj [tj = 0] = �0.04056 < 0 for j 6= 1,

no jurors have an incentive to deviate. In this situation, the designer’s expected utility

is �0.19456.

In this example, no jurors have incentives to invest without weighting while juror 1

does so with weight w = 3. As a consequence, the designer’s expected utility is higher

under the weighted rule.

This example demonstrates that the probability of making a correct decision (therefore

the designer’s expected utility) is higher under weighted aggregation rule than unweighted

aggregation rule.

To see how individual weights a↵ect the jury’s decision, I first examine how individual
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weights a↵ect the probability of each juror’s being pivotal. Let Pr(pivj |!, w, t�j) be the

probability that juror j becomes pivotal given !. Then, juror j invests in information if

and only if Pr(G) Pr(pivj |G,w, t�j)(pH � pL) � c. 23

Lemma 1.1. Consider w � n. the weighted juror is decisive and unweighted jurors never

becomes pivotal for any w. Consider w  n� 2. As w becomes larger, the weighted juror

is more likely to become pivotal. As w increases, the unweighted jurors are

(1) less likely to be pivotal if (1) p <

⇣
p0

1�p0

⌘w+1

1+
⇣

p0
1�p0

⌘w+1 and n < N(p, p0, w) or (2) p �
⇣

p0
1�p0

⌘w+1

1+
⇣

p0
1�p0

⌘w+1 .

(2) independent of w if p <

⇣
p0

1�p0

⌘w+1

1+
⇣

p0
1�p0

⌘w+1 and n = N(p, p0, w)

(3) more likely to be pivotal if p <

⇣
p0

1�p0

⌘w+1

1+
⇣

p0
1�p0

⌘w+1 and n > N(p, p0, w)

for p, p0 2 {pL, pH} where

N(p, p0, w) := w ·

⇣

1 + 1�p0

p0

⌘

✓

⇣

p0

1�p0

⌘w+1
+ p

1�p

◆

⇣

1� 1�p0

p0

⌘

✓

⇣

p0

1�p0

⌘w+1
� p

1�p

◆ + 2 ·
p

1�p · 1�p0

p0 +
⇣

p0

1�p0

⌘w+1

⇣

1� 1�p0

p0

⌘

✓

⇣

p0

1�p0

⌘w+1
� p

1�p

◆ .

Proof. See Appendix A.1

It is surprising that, as well as the weighted juror, even unweighted jurors may be more

likely to be pivotal as the weight increases. To understand this phenomenon, it is crutial

23 A juror j has an incentive to pay for the highly accurate information if and only if
Pr(G, pivj |w, t�j)(pH � pL) � c because

EUj [tj = 1]� EUj [tj = 0]

= Pr(G, pivj |w, t){0 · pH � (1� q)(1� pH)}+ Pr(I, pivj |w, t){0 · pH � q(1� pH)}� c

� Pr(G, pivj |w, t){0 · pL � (1� q)(1� pL)}� Pr(I, pivj |w, t){0 · pL � q(1� pL)}
= (1� q)(pH � pL) · Pr(G, pivj |w, t) + q(pH � pL) · Pr(I, pivj |w, t)� c

= (pH � pL) · Pr(G, pivj |w, t)� c.

The last equality holds because Pr(G, pivj |w, t) = Pr(I, pivj |w, t). Note that the probability of juror j’s
being pivotal is independent of of his investment.
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to remark that unweighted jurors are more likely to be pivotal as the expected weight of

correct signals becomes closer to the simple majority of the total weight.

Consider the event that the weighted juror receives a wrong signal. As w becomes

larger, the expected weight of correct signals conditional on this event decreases, i.e.,

becomes closer to the simple majority of the total weight. This increases the chances that

unweighted jurors are pivotal. On the other hand, consider the event that the weighted

juror receives a correct signal. As w becomes larger, the expected weight of correct signals

conditional on this event increases, i.e., becomes farther away from the simple majority

of the total weight. This decreases the chances that unweighted jurors are pivotal. When

the weighted and unweighted jurors receive the same quality signals and n is large, for

example, the former e↵ect is greater than the latter, which means that unweighted jurors

are more likely to be pivotal as w increases.

As a corollary of Lemma 1.1, I have su�cient conditions of (pH , pL, w, n) for unweighted

jurors being less likely to be pivotal as w increases for all p, p0 2 {pH , pL} as follows.

Corollary 1.1. If pH <

⇣
pL

1�pL

⌘w+1

1+
⇣

pL
1�pL

⌘w+1 and n < N(p = pL, p
0 = pH , w), unweighted jurors

are less likely to be pivotal as w increases for all (p, p0) 2 {pH , pL}⇥ {pH , pL}.

Proof. Suppose pH <

⇣
pL

1�pL

⌘w+1

1+
⇣

pL
1�pL

⌘w+1 . Then, it follows that N(p = pH , p0 = pH , w) >

N(pL, pL, w) > N(p = pL, p
0 = pH > N(p = pL, p

0 = pH , w) > 0. Thus, if pH <⇣
pL

1�pL

⌘w+1

1+
⇣

pL
1�pL

⌘w+1 and n < N(p = pL, p
0 = pH , w), then n < N(p, p0, w) for all (p, p0) 2

{pH , pL}⇥ {pH , pL}. By Lemma 1.1, it follows that Pr(pivj |G,w, t�j) is decreasing in w

for j 6= 1 for all (p, p0) 2 {pH , pL}⇥ {pH , pL} .

By Corollary 1.1, Lemma 1.2 shows the existence and su�cient conditions of (pH , pL)

for unweighted jurors being less likely to be pivotal as w increases for all w = 1, 3, . . . , n�2,

regardless of jurors’ investment behavior, i.e., for all p, p0 2 {pH , pL}.

Lemma 1.2. Suppose pH <

⇣
pL

1�pL

⌘w+1

1+
⇣

pL
1�pL

⌘w+1 . For every n, there exists (p⇤H , p⇤L) such that, if

pH  p⇤H and pL  p⇤L, unweighted jurors are less likely to be pivotal as w increases for

all w = 1, 3, . . . , w � 2 and for all (p, p0) 2 {pH , pL}⇥ {pH , pL}.
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Proof. Suppose pH <

⇣
pL

1�pL

⌘w+1

1+
⇣

pL
1�pL

⌘w+1 . For all w = 1, . . . , w � 2,

lim
pH! 1

2

lim
pL! 1

2

N(p = pL, p
0 = pH , w) = 1. (1.1)

By (1.1), it follows that for given n there exists p⇤H such that

lim
pL! 1

2

N(p = pL, p
0 = pH , w) > n+ 1 (1.2)

for every pH  p⇤H . (1.2) implies that there exists p⇤L such that

N(p = pL, p
0 = pH , w) > n (1.3)

for every pL  p⇤L. By Corollary 1.1, (1.3) implies that unweighted jurors are less likely

to be pivotal as w increases, regardless of jurors’ investment behavior, i.e., for all (p, p0) 2

{pH , pL}⇥ {pH , pL}.

Lemma 1.2 shows that unweighted jurors are less likely to be pivotal as w( n � 2)

increases if pH and pL are su�ciently small. In the following, I focus on the cases of

su�ciently small pH and pL, where unweighted jurors are less likely to be pivotal as

w( n� 2) increases.

Assumption 1. The accuracy of high-quality signal pH and the one of low-quality signal

pL are su�ciently low so that unweighted jurors are less likely to be pivotal as w( n� 2)

increases.

Proposition 1.1 describes the equilibria given c and w. It shows that for su�ciently

high but not too high cost c increasing the weighted juror’s weight w may improve the

jury decision.
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Define (c1, c2, c3, c4, c5, c6) as follows:

c1 := f�1(n� 2, (1, 1, . . . , 1))

c2 := fj(1, (1, 1, . . . , 1)) for any j 2 N

c3 := f�1(n� 2, (1, 0, . . . , 0))

c4 := f�1(1, (1, 0, . . . , 0))

c5 := f1(1, (1, 0, . . . , 0)) = f1(1, (0, 0, . . . , 0))

c6 := f1(n� 2, (1, 0, . . . , 0)) = f1(n� 2, (0, 0, . . . , 0))

where fj(w, t�j) := (pH � pL) · Pr(G, pivj |w, t�j) for j 2 N .24

Proposition 1.1. Consider su�ciently small pH and pL such that unweighted jurors are

less likely to be pivotal as w( n� 2) increases. Then, Figure 1.1 illustrates the equilibria

Figure 1.1: {(c, w)|w1(c, t)  w  w�1(c, t)} for t = (1, 1, . . . , 1)

where t = (1, 1, . . . , 1), (1, 0, . . . , 0), (0, 0, . . . , 0).25 The area A represents (c, w) for which

t = (1, 1, . . . , 1) is an equilibrium; the area B represents (c, w) for which t = (1, 0, . . . , 0)

is an equilibrium; the area C represents (c, w) for which t = (0, 0, . . . , 0) is an equilibrium.

Proof. See Appendix A.2.

24
f�1 := fj for j 6= 1.

25
w�1 := wj for j 6= 1
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Proposition 1.1 illustrates the equilibrium behavior, i.e, who invests in information

in equilibrium, given the weight (w) and the cost of improving signal (c). Based on

Proposition 1.1, we find the optimal weight for the designer given the cost of improving

signal (c).

Proposition 1.2. The optimal weight ŵ for the designer is

ŵ =

8

>

>

>

>

<

>

>

>

>

:

1 if c 2 [0, c2] [ [c4, c5] [ [c7,1)

w⇤⇤(c, t) if c 2 (c2, c4)

w⇤(c, t) if c 2 (c5, c7]

if pH
�

1� (1� pL)n�1
�

+(1� pH)pn�1
L �

P

x�n+1
2

�

n
x

�

pxL(1� pL)n�x < 0 (Figure 1.2), and

ŵ =

8

>

>

>

>

<

>

>

>

>

:

1 if c 2 [0, c2] [ [c4, c5] [ [c6,1)

w⇤⇤(c, t) if c 2 (c2, c4)

w⇤(c, t) if c 2 (c5, c6)

if pH
�

1� (1� pL)n�1
�

+ (1� pH)pn�1
L �

P

x�n+1
2

�

n
x

�

pxL(1� pL)n�x � 0 (Figure 1.3).
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Figure 1.2: Optimal Weights

Figure 1.3: Optimal Weights

Proof. See Appendix A.3.

Proposition 1.2 shows that if the cost of improving the signal is moderately high,

the designer may maximize the probability of the jury’s making a correct decision by

distributing weights unequally.

1.5 Discussions

In this section, I describe the possible implications to political theory and possible

future research.
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1.5.1 Implications

Equal Su↵rage and Weighted Voting

This paper may shed light on political philosophies. light Equal su↵rage has been one

of the most important concepts for political theorists. It has been commonly accepted

that political equality is a central feature of a democratic system (See Barry Holden, The

Nature o↵ Democracy, 1974, p.19; Giovanni Sartori, Democratic Theory, 1965, ch 14; Ivor

BVrown, The Meaning of Democracy, 1926, p.44, George Edwards III, Why the Electoral

College is Bad for America, 2004, ch 2, James S. Fishkin, Democracy and Deliberation,

p.29). Robert Dahl, for example, argues that equality in voting is a crucial part of a

democratic system: “every member must have an equal and e↵ective opportunity to vote,

and all voters must be counted as equal.” A constitution for democratic government,

he adds, “must be in conformity with one elementary principle: that all members are to

be treated (under the constitution) as if they were equally qualified to participate in the

process of making decisions about the policies the association will pursue. Whatever may

be the case on other matters, then, in governing this association all members are to be

considered as politically equal.” (On Democracy, Robert A. Dahl (2000) p.37).

On the other hand, John Stuart Mill advocated the weighted voting system whereby

educated and more responsible persons would be given more votes than the uneducated.

As much as this weighted system may be unfair to uneducated citizens, there is no guar-

antee that the educated have better sense about what is good for the society than the

uneducated. This paper shows that Mill’s argument may hold even if the educated are

not more likely to make a correct judgement than the uneducated. Moreover, it suggests

that the quality of society’s decisions may be higher under the concentration of power

compared to the one in democratic societies.

Correspondence with the argument of John Stuart Mill

Both the current paper and ? consider the same environment. In particular, both

assume the common-interest. For Mill it is vital that voters should vote in accordance

with their ideas of the general interest; that is they should vote for whichever candidates

18



they feel most likely to improve the citizens and e�ciently manage the a↵airs of the country

in the interests of all. In fact, Mill uses an analogy with jury service:

“[The citizen’s] vote is not a

thing in which he has an

option; it has no more to do

with his personal wishes than

the verdict of a juryman. It is

strictly a matter of duty; he is

bound to give it according to

his best and most

conscientious opinion of the

public good.”

—John Stuart Mill,

Representative Government,

299

Both the current paper and Mill address weighted voting systems but the arguments

di↵er in the weight assignment. Mill argues that the particularly intelligent or well edu-

cated should be given two or more votes. Mill’s concern is that the uneducated poor–the

numerical majority–will make a terrible mistake. Mill wants to ensure that representative

democracy contains certain safeguards to prevent it from being dictated to by stupidity

and class interest. (Representative Government, 284). The current paper also supports

weighted voting by demonstrating that the group may be more likely to make a correct

judgement under a weighted voting system than under an equal representation. The dif-

ference in those studies is that, while Mill argued that weights should be distributed based

on the education level, the current paper argues that weighted voting systems may work

even if voters are all equally capable of making a judgement.

Thus, by considering the same situation as Mill’s, the current paper supports the

unequal representation advocated by Mill. Moreover, this paper uses the same setting

whereby Condorcet supported democracy.
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1.5.2 Future Research

There are many directions this framework suggests pursuing. One example is to ana-

lyze the optimal size of the committee. In the current model, the size of the committee

is exogenously given and the designer cannot choose. Another possibility is adding het-

erogeneity amongst agents, in the form of di↵erential preferences, may a↵ect the optimal

design. Indeed, in our model, both the designer and all of the players share the same

utility parameter q.

The Size of Nations

The current model may contribute to the literature on the size of nations and the

regime type. A large body of literature deals with the size of nations, the regime type,

and the relationship linking these two variables (See Alesina and Spolaore (1997), Alesina

et al. (1997), Alesina and Wacziarg 1998). Political theorists have argued that democracy

cannot survive in a large state. In particular, Plato, Aristotle and Montesquieu worried

about the political costs of large states: Plato wrote that “the number of citizens should

be su�cient to defend themselves agains the injustice of their neighbors,” (Laws, Book

V); Aristotle argued that a polity should be no larger than a size in which everybody

knows personally everybody else because “experience has shown that it is di�cult, if not

impossible, for a populous state to be run by good laws” (The Politics); Montesquieu wrote

that “In a large republic, the common good is sacrificed to a thousand considerations. It

is subordinated to various exceptions. It depends on accidents. In a small republic, the

public good is more strongly felt, better known, and closer to each citizen.” (The Sprit of

the Laws).

On the other hand, Madison objected that a large size, far from being a problem, was

actually an advantage for a democracy. His point was that ht enlarger territory becomes

in size, the greater will be its variety of parties and interests, and hence the smaller will

be the chance that “a majority of the whole will have a common motive to invade the

rights of other citizens; or if such a common motive exists, it will be more di�cult for all

who feel it to discover their own strength, and to act in unison with each other.” In other
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words, according to Madison, in larger states rent-seeking groups who want to “invade the

rights of other citizens” will have a harder time to overcome problems of collective action.

Moreover, according to Madison, “ the influence of factious leaders may kindle a flame

within their particular States, but will be unable to spread a general conflagration through

the other States.”

The current model may support the former thinkers, the advocates for small nations.

The current model may demonstrate that weighted voting becomes superior to equal

su↵rage as the group size becomes larger: Because incentives to free-ride becomes stronger

as the group size become larger, the designer may want to giver higher weight to some

voters to improve their incentives to acquire accurate information at the cost of e�ciency in

information aggregation. More generally, the current model gives the optimal distribution

of weights for a given size of the group. That is, on the assumption that the distribution

of weights can be interpreted as the distribution of the power, the model suggests the

optimal regime design for a given size of the country.

Heterogeneous Signal Accuracy

The next step is to incorporate the heterogeneity of signal accuracy to the current

model. The model with heterogeneous signal accuracy may have several important impli-

cations. Firstly, if one accepts the interpretation that the distribution of weights represents

the distribution of the power, a variant of my model may shed new lights on one of the

most important topics in political science: By incorporating the heterogeneity of signal

accuracy to the current model, one may be able to find the optimal distribution of the

power, i.e., the optimal regime design.

Examples of classic arguments over regime design are those by Plato, Mill, and Rousseau.

Mill’s aristocratic liberalism falls between Plato’s guardianship and Rousseau’s democratic

principle: Plato asserted that only a few selected experts should rule; Mill asserted that

even uneducated citizens should be enfranchised but educated citizens should be given

more votes than the uneducated; Rousseau supported democratic principle that all citi-

zens have an equal say (except for female citizens). My model may explain when Plato’s
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guardianship works, when Mill’s aristocratic liberalism works, and when Rousseau’s demo-

cratic principle works.

One way to generalize those three types of systems is to consider them to be a variant

of weighted rule: In Plato’s benevolent dictatorship, a few selected experts, guardians,

have votes while others’ weight is zero; In Rousseau’s democratic system, everyone has an

equal weight; In Mill’s system, everyone has positive weight but their weights are allocated

based on their education level. The question is what the optimal weighting is.26

Suppose that some voters inherently receive low-quality signal whose accuracy is 1
2

whereas the others inherently receive high-quality signal whose accuracy is higher than 1
2 .

Consider (1) a group of voters all of whom receive high-quality signal and (2) a group of

voters some of whom receive low-quality signal and the others receive high-quality signal.

Suppose that the voters with high-quality signal have more than one vote while the voters

with low-quality signal have only one vote each. Under a certain range of parameters, the

former group may be more likely to make a correct decision than the latter group. If that

26 The following problem about Mill’s system may help us understand the question. Mill’s critics to
his proposal about plural voting argue that, if uneducated revere the educated then I need not give the
latter extra votes, for the uneducated can simply seek out their opinions. But if they do not respect such
opinions then they would not accept plural voting. Plural voting is either unnecessary or unjustified. In
fact, Mill himself recognized this point and made the following remark.

“I may remark, that if the
voter acquiesces in this
estimate of his capabilities,
and really wishes to have the
choice made for him by a
person in whom he places
reliance, there is no need of
any constitutional provision
for the purpose; he has only to
ask the confidential person
privately what candidate he
had better vote for.”

—John Stuart Mill,

Representative Government,
294

The question is whether and when the power should be concentrated on a few selected people as Plato
suggested, and whether and when everyone should be enfranchised whereas the distribution of the votes are
not equal as Mill suggested, and whether and when all citizens should be equally enfranchised as Rousseau
suggested.
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is the case, it implies that Mill’s partial democracy works better than Plato’s guardianship

or Rousseau’s democracy under such parameters. More generally, this variant of my model

may provide the conditions for each of the thee regime types to be optimal.

Secondly, the model with heterogeneous signal accuracy may also examine Mill’s pro-

posal about plural voting from another perspective. According to Mill, plural voting has

two benefits: By giving higher weight to highly educated people, it is e�cient at aggre-

gating information; By enfranchising uneducated citizens, it also helps poorly educated

citizens educate themselves through participation. My model may demonstrate that those

two benefits may contradict each other and, if so, provide conditions for plural voting to

have those benefits all together.

Recall that my model has shown that there may be a trade-o↵ between the e�ciency

of information aggregation and the incentives to acquire information under a certain range

of parameters. Because “costly information acquisition” can be interpreted as the process

for citizens to learn about the policy, it implies that there may a trade-o↵ between the

e�ciency of information aggregation and the citizens’ incentives to educate themselves.

Before getting to the model, note that weighted voting may reduce the performance

of the group decision for two possible reasons: The ine�ciency of information aggregation

caused by weighting disproportionate to the voters’ signal accuracy and the decrease in

investment in information (education). We pay close attention to the second aspect. If

some voters have higher weight than others, it may discourage other voters to acquire

more accurate signal even though they would be willing to invest if all voters had an equal

say.

Suppose that there are voters who inherently receive more accurate signal than the

other voters. Consider (1) a group of voters all of whom are unweighted regardless of their

signal accuracy and (2) a group of voters whose weight are determined based on their

signal accuracy: voters who receive highly accurate signal have more than one vote while

the others have only one vote each. There may be a range of parameters under which all

voters in the former group invest in information while none of the unweighted voters do so
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in the latter group. In this case, the quality of information possessed by the latter group

is lower than the the one possessed by the former. Thus, the latter group is more likely

to make a wrong decision than the former even if the ine�ciency caused by the weighting

is adjusted.

Therefore, under some weighted rule, the accuracy of group decision becomes lower

because the weighted rule discourages unweighted voters to invest in signal (educate them-

selves), which decreases the quality of information possessed by the group. This implies

that making good use of highly educated people’s opinions (e�cient information aggre-

gation) and the positive e↵ect of the franchise on uneducated people’s learning, both of

which are supported by Mill, may contradict each other.
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2. LOCAL GOSSIP AND INTERGENERATIONAL FAMILY TRANSFERS:

COMPARATIVE POLITICAL ECONOMY OF WELFARE PROVISION

2.1 Introduction

The level and means of welfare provision vary across societies and countries. Why are

transfers within the family generous in some societies and not in others? Why does the

family play a central role in care for the elderly and childcare in some countries while the

government does so in others? For example, in southern European societies, the family

functions as a welfare provider in terms of care for the elderly, childcare, and helping the

unemployed (?, ?, ?); In Scandinavian countries, the government plays a central role in

welfare provision.

Furthermore, East Asian welfare regimes are often characterized by their low level of

state-based transfers to the elderly and high levels of family-based transfers. To explain

this East Asian variant of the welfare state, scholars of the region argue that Confucian

ideology plays an important role (?, ?). According to Confucian ethics, the family is an

important source of welfare provision, with aged parents being cared for by children.

The Hong Kong special administrative region government, for example, has adopted

Confucian ethics of filial piety to control social welfare costs (?). In fact, care for the

elderly is primarily a family responsibility and the government is considered to be the last

resort in Hong Kong. The family rather than the government has been regarded as the

main source of welfare provision in Japan as well (Harada 1988). Thus, public welfare

services play only a secondary role in the private welfare practice within the family (?).

For example, public home care services are designated merely to support family care on

the basis that the care for the elderly is their children’s responsibility (?).

The reliance on the welfare role of the family in East Asian countries contrasts sharply

25



with the Western welfare system in which states play a central role. In addition to the

cross-national di↵erences, the level of family-based welfare provision varies even within

the same country. For example, people in northeast Japan tend to provide better nursing

care to their aged parents and invest more in their children’s education than those in the

southwest.

Although it has been recognized that the family plays an important role in welfare

provision, scholars of the field have focused on understanding the role of the state and

market. As a result, little is known about the role and mechanisms of other institutions

such as civic associations and the family. In this paper, I present a theoretical framework to

analyze how family-based welfare provision is achieved and the role of the local community

in the familial provision.This theoretical framework may give a microfoundation to the

“familialism” argument in the southern European welfare states and the “Confucian”

argument in the East Asian welfare states.

In this paper, I argue that di↵erences in the level of transfers within the family are

due to demographic variation in community networks. To analyze the sustainability of

intergenerational transfers, I propose game theoretical models of overlapping generations

in which breadwinners make transfers to their parents and children. A novel feature of the

models is that there is a local community that can supply information about its members’

past behavior. I demonstrate that intergenerational transfers can be sustained if neighbors

gossip about each others’ reputations. My theory suggests that individuals in a close-knit

community prefer lower levels of social protection.

This paper is organized as follows. In Section 2.2, I discuss the previous literature

and the current paper’s contribution to the literature. In Section 2.3, I present formal

models and demonstrate that intergenerational transfers can be supported if neighbors

gossip about each other. In Section 2.4, I discuss this paper’s implications and future

extension.
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2.2 Related Literature

2.2.1 Literature on the Welfare State

Scholars on the welfare state have placed emphasis on the state and the market, but

the family has been largely discussed in the context of gender (?, ?, ?, ?)). However,

little is known about how inter -generational rather than intra-generational redistribution

works within the family. By analyzing the inter -generational family transfers, this paper

sheds new light on the role of the family in welfare provision.

Understanding the role of the family also helps us understand the East Asian variant

of the welfare state, which is marked by a low level of social spending. Two approaches are

used in the literature to explain the small welfare state in the region. The first approach

explains the incentives of the governments. (?) ascribes the small social spending in East

Asia to the absence of strong leftist parties and unions while ? argues that social spending

in the region was minimized to promote economic growth. However, those authors fail

to explain why the family works as a provider of welfare. They do not o↵er compelling

accounts of the incentives to the family, such as why breadwinners are willing to provide

care for their aged parents, for example.

The second approach, on the other hand, explains the incentives of family members.

This group of scholars argues that heavy reliance on the family is possible because of

Confucian values in East Asia (?, ?). Their findings suggest the family is responsible for

social protection rather than the state because of their values. This paper can be seen

as falling within this second approach. While the previous literature simply assumes that

people in the region have “Confucian” values and considers the values to be exogenous,

this paper explains why the “Confucian” way of family transfers prevails in some regions

and not in others. In this sense the present paper gives a microfoundation to the Confucian

theory.
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2.2.2 Theoretical Contributions

This work is part of the literature on overlapping generations models (OLG models).

Pioneered by ?, OLG models have been widely studied by game theorists (?, ?, ?, ?, ?).

?, for example, studies the ability of non-market institutions, such as the government

and the family, to invest optimally in forward intergenerational goods (FIGs), such as

education and environment, and backward intergenerational goods (BIGs), such as social

security. BIGs transfer income from one generation to earlier generations; FIGs transfer

income forward to younger generations. Most of the game theoretic OLG studies cited

above assume that the entire history of the play of a game is common knowledge. That is,

players are assumed to be informed of past events. In the context of families, it is assumed

that each generation knows even its great-great-great-grandparent’s past behavior, for

example. Considering that the history may include actions taken by preceding generations

before the current generations are born, this assumption of perfect information becomes

questionable.

Very few attempts at relaxing this assumption have been made. ?, however, does so

and demonstrates that no intergenerational cooperation can be supported in pure-strategy

equilibrium if information about the history of play is limited. The intuition is as follows:

The limited information makes it impossible for each generation to condition its actions

on the observed history in equilibrium, a condition crucial to support intergenerational

cooperation in equilibrium. If older generations have better knowledge about past events

than younger generations, the older generations can manipulate the information, an act

that will be interpreted and acted on by younger generations by behaving as though

di↵erent past events happened.

In response to ?, ? incorporate institutional features of overlapping generations orga-

nizations into Bhaskar’s model to solve his impossibility theorem. Considering legislative

bodies such as the U.S. Senate to be overlapping generations organizations, they show

that the principals (the founding fathers) will agree to institute a mechanism that provides

imperfectly informed legislators with the information about the history in the legislature,

enabling intergenerational cooperation. Similarly to ?, the present paper provides another

28



solution to Bhaskar’s impossibility theorem in the setting of families. This paper demon-

strates that intergenerational cooperation can be supported if neighbors gossip about each

other. There are two key institutional di↵erences between ? and the current paper: First,

this paper assumes that the local community stores the information as a summary statis-

tic of information of unboundedly high order, while ? assume that the institutionalized

mechanism stores the information as the entire history of play in the legislature. Second,

? endogenize the institutionalized mechanism, whereas the local community is exogenous

in the current paper.

In addition to the literature on OLG models, this work can be viewed as part of the

literature on community enforcement, which is usually modeled as repeated games with

random matching. The literature on community enforcement can be divided into two

strands based on the assumptions about players’ knowledge. The first strand assumes

that players know the past plays to some extent: ? assumes that all players know the

history of all matches in the population; ?, ?, and ? assume that players’ knowledge is

limited to the matches in which they have been directly involved; ?, ?, ?, ?, ?, ?, and

? assume that players only have first-order information; that is, they have information

about their partners’ past play but do not know their partners’ past partner’s past play.

The present work falls into the second strand, which assumes that each player is

labeled with a status that is observable to his partner, and that a player can condition his

action on the partner’s status (?, ?). A player’s status is updated based on the realized

action profile of the stage game and the player’s and the partner’s status in the previous

period. Because a player’s status at the next period depends on his current partner’s

status, which, in turn, depends on the partner’s previous partner’s status, and so on, a

status is a summary statistic of information of unboundedly high order. The equilibrium

in this setting is called a norm equilibrium. This paper introduces the concept of norm

equilibrium to overlapping generations models.

In terms of the role of the third party in sustaining cooperation, this paper is related

to ?, who investigate how a judge (a law merchant) serves to facilitate cooperation, while

the current paper explores how a local community does so. Both this paper and that of
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Milgrom et al. may be viewed as attempts to investigate the role of the third party as an

information device in sustaining cooperation.

2.3 Formal Models

2.3.1 Basic Three-generations Model

This paper investigates (1) whether intergenerational transfers can be sustained when

individuals are imperfectly informed about past events in their families and (2) whether

and how a local community and its social norm contribute to the intergenerational fam-

ily transfers. Throughout this paper, I assume all generations are selfish and are not

altruistic.1.

I propose an overlapping three-generations model to analyze both backward and for-

ward intergenerational transfers: Examples of the former include nursing care and financial

support from individuals to their aged parents, and examples of the latter include school

expenses and nutrition from individuals to their children.2 I consider a situation in which

a breadwinner in a family takes care of his older dependent and younger dependent. A

breadwinner decides how much to invest in backward intergenerational goods (BIGs) that

benefits only the older dependent and forward intergenerational goods (FIGs) that benefits

only the younger dependent.

The key assumption is that information is limited in the sense that individuals observe

the behavior of several preceding generations but not the one of their distant ancestors.

For example, individuals may know how their parents treated their grandparents, but

may not know how their great-grandparents treated their great-great-grandparents. I first

demonstrate that neither BIGs nor FIGs can be sustained under limited information, and

then show that a close-knit community serves to facilitate cooperation between genera-

1 I do not argue that individuals are completely selfish and no transfers within families derives from
altruism. Individuals may make transfers simply because they care about family members. The amount
of transfers which they make only with altruistic motives alone may not, however, be as high as the one
they would make with both altruistic and selfish motives in cooperative equilibrium. In this paper, I focus
on the transfers made out of selfish motives and do not address those made for altruistic reasons.

2 As a variant of this three-generations model, analogous results for the two-generations model can be
obtained by essentially identical logic. See Appendix B.1 for formal analysis.
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tions.

Consider an infinitely-lived family with three generations alive in each period t (t =

1, 2, 3 . . .). Generation t is born to the family at period t � 1 and lives for three periods:

He is called a (dependent) child at period t � 1, a breadwinner at t, and a (dependent)

parent at t+1. At period 1 there are generation 2 that lives for three periods, generation

1 that lives for only two periods, as well as generation 0 that lives for only that period.

The breadwinner has positive endowment, and the dependents have endowment that

is normalized to zero. At every period t, generation t decides how much to transfer to

his dependents, generations t+ 1 and t� 1. Let bt 2 Bt and ft 2 Ft denote the amounts

transferred at period t from generation t to generations t� 1 and t+ 1, respectively, and

0 means that there is no transfer.3 Action spaces are common across generations, i.e.,

Bt = B and Ft = F for all t. The dependents have no choices to make.

Generation t’s utility function, ut : Ft�1 ⇥Ft ⇥Bt ⇥Bt+1 ! R, is decreasing in bt and

ft (the amount he transfers at period t), and increasing in bt+1 and ft�1 (the amount he

receives at period t+1 and t�1), respectively. Utility function u(·) satisfies the condition:

Assumption 2. 8(ft�1, ft), (f 0
t�1, f

0
t) 2 F 2, 8(bt, bt+1), (b0t, b

0
t+1) 2 B2,

u((ft�1, ft), (bt, bt+1)) = u((f 0
t�1, f

0
t), (b

0
t, b

0
t+1))

) ((ft�1, ft), (bt, bt+1)) = ((f 0
t�1, f

0
t), (b

0
t, b

0
t+1)).

This condition ensures that argmax(ft,bt)2F⇥B u(ft�1, ft, bt, bt+1) is unique. Note that

this overlapping generations game has a unique Markov equilibrium, in which every gen-

eration makes no transfer.

Let ht = ((f1, b1), . . . , (ft�1, bt�1)) denote the history of preceding actions taken up to

period t and Ht(= F t�1 ⇥ Bt�1) denote the set of all possible histories at t. I define the

default informational environment as follows:

Definition 2.1. For any t = 1, 2, . . ., generation t has m-th order information if he

3 The commodity is assumed to be infinitely divisible.
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knows the actions of the last m generations, ((ft�m, bt�m), . . . , (ft�1, bt�1)), but not any

action taken prior to t�m, ((f1, b1), . . . , (ft�m�1, bt�m�1)).

Assumption 3. For every t, generation t has m-th order information.

If (ht, h0t) is any pair of histories which di↵er only in the actions taken by some of

players i  t�m� 1, then the histories observed by generation t are identical for ht and

h0t. For example, the first-order information is a record of the preceding generation’s past

play. That is, the information is limited in the sense that each generation does not know

the actions taken by the generations prior to his parents.

A pure strategy for generation t is a mapping st : Ft�m ⇥Bt�m ⇥ · · ·⇥Ft�1 ⇥Bt�1 !

Ft ⇥Bt for t > m and st : Ht ! Ft ⇥Bt for t  m. Thus, st(ft�m, bt�m, . . . , ft�1, bt�1) 2

Ft ⇥Bt is the pair of transfers by generation t induced by the observed history

(ft�m, bt�m, . . . , ft�1, bt�1) when st is played. Let St be the set of generation t’s pure

strategies. A strategy profile is an infinite sequence (st)1t=1 where st 2 St for every t.

I define our equilibrium concept as follows.

Definition 2.2. A strategy profile (st)1t=1 is a sequentially rational equilibrium if

8t, 8(ft�m, bt�m, . . . , ft�1, bt�1) 2 Ft�m ⇥Bt�m ⇥ · · ·⇥ Ft�1 ⇥Bt�1, 8ft 2 Ft, 8bt 2 Bt,

u(st, st+1|ft�m, bt�m, . . . , ft�1, bt�1) � u(ft, bt, st+1|ft�m, bt�m, . . . , ft�1, bt�1)

where

u(ft, bt, st+1|ft�m, bt�m, . . . , ft�1, bt�1) = u[ft, bt, st+1(ft�m+1, bt�m+1, . . . , ft, bt)]

and

u(st, st+1|ft�m, bt�m, . . . , ft�1, bt�1)

= u[st(ft�m, bt�m, . . . , ft�1, bt�1), st+1(ft�m+1, bt�m+1, . . . , ft, bt)].

The following theorem is a variant of Theorem 1 in ?.
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Theorem 2.1. Under Assumption 3, the overlapping generations game with m-th order

information has a unique pure strategy equilibrium. In that equilibrium, no intergenera-

tional transfer is made.

Proof. Suppose that generation t’s equilibrium strategy st is conditioned on action taken

by generation t�m. Then, there exist ft�m, bt�m, f 0
t�m, b0t�m such that

ut(st, st+1|ft�m, bt�m, . . . , ft�1, bt�1) > ut(st, st+1|f 0
t�m, b0t�m, . . . , ft�1, bt�1). Because st+1

is conditioned only on actions taken by generations t�m+1, . . . , t and is independent of

generation t�m’s action, generation t can improve his payo↵ by choosing

st(ft�m, bt�m, . . . , ft�1, bt�1) instead of st(a0t�m, . . . , at�1) when he observes

st(f 0
t�m, b0t�m, . . . , ft�1, bt�1). Hence, generation t’s equilibrium strategy does not condi-

tion on t �m’s actions. Similarly, generation t’s equilibrium strategy is not conditioned

on k’s action for any k < t. Thus, generation t’s equilibrium strategy is not conditioned

on history. Therefore generation t’s best response is ft = bt = 0, which forms a unique

pure strategy equilibrium where no intergenerational transfer is made.

Theorem 2.1 indicates that when individuals have limited information about past

events, no strategy profile (that does not have to be Markov) in which players condition

their behavior on the observed history, which is payo↵-irrelevant, constitutes an equilib-

rium. Thus, again, intergenerational cooperation cannot be supported in pure-strategy

equilibrium when information about past events is limited.

Intuitively, the limited information makes it impossible for each generation to condi-

tion its actions on the observed history, which is crucial to intergenerational cooperation.

When the information is limited, individuals have better knowledge about the past events

than their children. Thus, by behaving as though di↵erent past events happened, they

can manipulate the information that will be interpreted by their children. For instance,

suppose that m = 2 and each generation t plays the following strategy: Make no transfer if

generation t� 1 transferred (bt�1, ft�1) such that bt�1 < b or ft�1 < f and the generation

t�2 transferred (bt�2, ft�2) such that bt�2 � b and ft�2 � f as a breadwinner; Otherwise,

make transfers (ft, bt) = (f, b). Suppose also that an individual knows that neither his

parent nor grandparent made transfers. The above strategy tells him to take good care
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of his parent. However, knowing that his child will follow the above strategy, he can de-

viate from the strategy profile without being punished by his child. More generally, any

strategy profile that is conditioned on history fails to be an equilibrium, which prevents

intergenerational cooperation.

2.3.2 Three-generations Model with a Local Community

In the basic model, it is shown that positive amount of intergenerational transfers

cannot be supported by pure-strategy equilibria when information is limited. In reality,

however, we do observe intergenerational family transfers. The question is whether they

are all based on altruistic motives.

As a solution to this limited information problem, I modify the basic model by adding a

local community that provides information about the history of play in each family through

gossiping. In a close-knit community, it is natural to assume that intergenerational family

transfers are observed by neighbors. For example, how an individual treats his parent may

be revealed to their neighbors from the way his parent looks or because his parent grumbles

about it. As a result, neighbors’ gossip may provide the breadwinner with information

necessary to see whether the parent’s past behavior can be justified.

I consider a situation in which the family in the basic model resides in a close-knit

community. In a close-knit community, the breadwinner receives a reputation based on

how he treated his parent and his child, and the reputation will become known to his

child through his neighbors’ gossip. The transfers the breadwinner will receive from his

child in old age may depend on his reputation, which subsequently determines the child’s

reputation. In this setting, positive amount of BIGs and FIGs can be transferred by pure-

strategy equilibria. Formally, this situation is modeled as follows.

Before introducing a local community to the basic model, I define the “e�cient” level

of transfers. Let argmaxf2F b2B u((f, b), (f, b)) ⌘ (1, 1) be the e�cient transfers, which I

assume to be di↵erent from (0, 0), the individually optimal action. Otherwise, it is trivial

that no transfer is sustained in equilibrium. From Assumption 2,
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Lemma 2.1. u((0, 0), (1, 1)) > u((1, 1), (1, 1)) > u((0, 0), (0, 0)) > u((1, 1), (0, 0))

Next, I introduce a local community that labels individuals based on its social norm.

At the end of each period t, the breadwinner t is assigned an element xt of a finite

set Xt = {“good”, “bad”}, which I refer to as the breadwinner’s status or status label. A

generation’s status label xt 2 Xt is determined through a function ⌧ : Xt�1⇥Ft⇥Bt ! Xt.

⌧ specifies the status label of generation t in the next period, ⌧(xt�1, ft, bt) 2 Xt, when

the previous generation’s status label is xt�1 2 Xt�1 and his current actions are ft 2 Ft

and bt 2 Bt. Because a generation’s status depends on its parent’s status, which in

turn depends on the grandparent’s status and so on, a status is a summary statistics

of information of unboundedly high order. I call ⌧ a social norm and a social norm is

common knowledge.

A social norm ⌧ is family reciprocity if

xt = ⌧(xt�1, ft, bt) =

8
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“bad” if

8

>

>

>

>

<

>

>

>

>

:

xt�1 = “good” and bt < 1

or

ft < 1

“good” if

8

>

>

>

>

<

>

>

>

>

:

xt�1 = “bad” or bt � 1

and

ft � 1

and x0 = “good”. Individuals are considered “bad” only when they did not take good

care of their parents whose label is “good” or their children.

Generation t is labeled by a social norm ⌧ and the community informs the succeeding

generation t+ 1 of t’s status label xt; that is, the status label of the elderly dependent is

known to the breadwinner at period t+ 1. In particular, the breadwinner’s action choice

is a function of the previous generation’s status label.

The history of intergenerational transfers may not be known; it becomes known to

each generation only to the extent that it is reflected in the status labels of the elderly
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dependent.4 A pure (Markov) strategy for a generation t is a function st : Xt�1 ! Ft⇥Bt

specifying a choice of action st(xt�1) when the previous generation’s status label is xt�1 2

Xt�1.5

To examine if the e�cient amount of transfers, (b, f) = (1, 1), can be sustained with a

social norm, I first define equilibrium. My equilibrium definition here slightly di↵ers from

the last one in the information possessed by the decision makers. Because past actions do

not directly a↵ect current or future utility, I do not have to deal with any beliefs regarding

the histories.

Definition 2.3. A strategy profile (st)1t=1 is a sequentially rational equilibrium if

8t, 8xt�1 2 Xt�1, 8ft 2 F, 8bt 2 B, u(st, st+1|xt�1) � u(ft, bt, st+1|xt�1)

where

u(ft, bt, st+1|xt�1) = u[ft, bt, st+1(⌧(ft, bt, xt�1))]

and

u(st, st+1|xt�1) = u[st(xt�1), st+1(⌧(st(xt�1), xt�1))].

Next, I show that the e�cient amount of transfers, (f, b) = (1, 1), can be sustained in

a sequentially rational equilibrium if a social norm is family reciprocity and individuals

play a tit-for-tat strategy. I say that a strategy profile (st)1t=1 is a tit-for-tat strategy if

st(xt�1) =

8

>

<

>

:

(1, 1) if xt�1 = “good”

(0, 0) if xt�1 = “bad”.

Theorem 2.2. In a community whose social norm is family reciprocity, an e�cient level

of intergenerational transfers can be sustained as a sequentially rational equilibrium by a

tit-for-tat strategy.

Proof. Each generation is labeled by a social norm ⌧ , i.e., xt = ⌧(xt�1, ft, bt) for all t.

4 Individuals may not know labels of their grandparents or more distant ancestors.

5 It is assumed that individuals cannot observe the amount of FIGs they receive.
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Consider a community whose social norm is family reciprocity; that is, the breadwinner

has to take care of both his parent and child to be labeled “good” if his parent is “good”.

Suppose that each generation plays a tit-for-tat strategy. Take an arbitrary period t.

When xt�1 = “good”, generation t’s utility is

u(st, st+1|xt�1) = u(1, 1)

u(ft, bt, st+1|xt�1) = u(ft, bt, 0) if ft 6= 1 or bt 6= 1

where u((1, 1), (1, 1)) > u((ft, bt), (0, 0)) for all (ft, bt) 6= (1, 1). When xt�1 = “bad”,

generation t’s utility is

u(st, st+1|xt�1) = u(0, 1)

u(ft, bt, st+1|xt�1) = u(ft, bt, 1) for all (ft, bt) 6= (1, 1)

where u((0, 0), (1, 1)) � u((ft, bt), (1, 1)). Hence,

8t, 8xt�1 2 Xt�1, 8(ft, bt) 6= (1, 1), u(st, st+1|xt�1) � u(f, b, st+1|xt�1).

Theorem 2.2 establishes that in a community whose social norm is family reciprocity,

an e�cient level of intergenerational transfers can be sustained as a sequentially rational

equilibrium by a tit-for-tat strategy. This result contrasts sharply with the case without a

local community (Theorem 2.1) in which positive amount of transfers cannot be supported

by pure-strategy equilibrium.

The intuition is as follows. In the basic model, intergenerational cooperation is not sus-

tainable because of the informational advantage of the older generation over the younger

generation (Theorem 2.1). A close-knit community enables intergenerational cooperation

because it nullifies the informational advantage of the older generation. Because a sta-

tus label is a summary statistic of information of unboundedly high orders, it fills the

information gap between the older generation and the younger generation so that the

older generation cannot manipulate. Thus, by incorporating a local community, this work
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demonstrates that the conclusion of the impossibility of intergenerational cooperation un-

der limited information does not persist.

By Theorems 2.1 and 2.2, intergenerational cooperation is sustained in a close-knit

community. Depending on social norms, there are three types of equilibria: one type is

that no intergenerational transfers are made; another is that only BIGs are made; the

other is that both BIGs and FIGs are made. For FIGs to be sustainable, BIGs are needed

because they give a breadwinner incentives to make transfers. Local gossip by neighbors

(or extended families) serve to facilitate cooperation between generations.

2.3.3 Erroneous Labeling

Subsections 2.3.1 and 2.3.2 assume that the reputation in a local community is always

correct. That is, it is assumed that neighbors (1) can see how another neighbor treats

his parent and (2) truthfully report what they observed. However, in reality, one may

get a good or bad reputation that he does not deserve. In this subsection, I consider the

consequences of relaxing those assumptions.

Reputations can be incorrect for di↵erent reasons. One is due to errors in neighbors’

observations. For example, an individual may die early despite all his child’s e↵ort. In this

case, their neighbors may think his child neglected him. Or, an individual may want his

neighbors to think that he has a happy life and thus pretend as if his son is dutiful. In this

case, their neighbors may believe that his son is a good son. The other type of erroneous

reputation is a result of misreport by neighbors. Even if neighbors observe family a↵airs

correctly, they may not truthfully report their observation.

Consider the same community described in Subsection 2.3.2. For simplicity, I focus

on BIGs and do not consider FIGs in this section. I define the social norm with noisy

reputations as follows. A social norm ⌫ is family reciprocity with noisy reputations
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if

⌫(xt�1, bt) ⌘ (Pr(xt = “good”|xt�1, bt),Pr(xt = “bad”|xt�1, bt))

=

8

>

<

>

:

(p, 1� p) if xt�1 = “bad” or bt � 1

(1� q, q) if xt�1 = “good” and bt < 1.

and x0 = “good”.

Next, I examine whether intergenerational transfers can be sustained if reputations

are noisy and the social norm is family reciprocity. Suppose that each generation plays a

tit-for-tat strategy (st)1t=1 . At period t, if xt�1 = “good”, generation t’s utility is

u(bt = 1, st+1|xt�1) = pu(bt = 1, bt+1 = 1) + (1� p)u(bt = 1, bt+1 = 0)

u(bt = 0, st+1|xt�1) = (1� q)u(bt = 0, bt+1 = 1) + qu(bt = 0, bt+1 = 0).

If xt�1 = “bad”, generation t is labeled as “good” regardless of how he treats his parent.

Thus, it is optimal for him to take bt = 0. Therefore, a tit-for-tat strategy is a Nash

equilibrium if and only if

u(bt = 1, st+1|xt�1 = “good”) � u(bt = 0, st+1|xt�1 = “good”)

, p[u(bt = 1, bt+1 = 1)� u(bt = 1, bt+1 = 0)] + q[u(bt = 0, bt+1 = 1)� u(bt = 0, bt+1 = 0)]

� u(bt = 0, bt+1 = 1)� u(bt = 1, bt+1 = 0).

In other words, the intergenerational cooperation is sustainable in pure strategy Nash

equilibrium if reputations are su�ciently accurate, i.e., p and q are su�ciently high.

The results above have several implications. First, the intergenerational cooperation is

sustainable in a pure strategy Nash equilibrium when reputations are su�ciently accurate.

If the reputation accuracy p is low, one may think that it is not likely to be recognized

if he takes good care of his parent. Thus, he decides not to take care of the parent

in equilibrium. Second and more importantly, with some modification of social norms,

the maximum amount of sustainable transfers increases with the reputation accuracy

because the noise makes intergenerational cooperation a risky investment. This argument

is demonstrated in the following case.

Define payo↵ functions of the breadwinner and his parent of the stage game as v : B !
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R and w : B ! R, respectively. Functions v and w are strictly concave and continuously

di↵erentiable. Function v is decreasing in b while function w is increasing in b. Let �

denote a discount rate, which is common to all generations. Then, generation t’s utility

function is denoted as u(bt, bt+1) ⌘ v(bt) + �w(bt+1). Consider another variant of family

reciprocity. A social norm ⌫b⇤ is family reciprocity with b⇤ if

⌫b⇤(xt�1, bt) ⌘ (Pr(xt = “good”|xt�1, bt),Pr(xt = “bad”|xt�1, bt))

=

8

>

<

>

:

(p, 1� p) if xt�1 = “bad” or bt � b⇤

(1� q, q) if xt�1 = “good” and bt < b⇤.

and x0 = “good” where b⇤ represents the amount of transfers which is considered to be

appropriate from a commonsense perspective. For the convenience, consider the case of

b⇤ > 0.

For simplicity, suppose that the probabilities of mislabeling are identical, i.e., p = q.

Then, from (1), intergenerational cooperation is sustainable under family reciprocity with

b⇤ if and only if

p � u(0,b⇤)�u(b⇤,0)
[u(b⇤,b⇤)�u(b⇤,0)]+[u(0,b⇤)�u(0,0)] .

Lemma 2.2. f(b⇤) ⌘ u(0,b⇤)�u(b⇤,0)
[u(b⇤,b⇤)�u(b⇤,0)]+[u(0,b⇤)�u(0,0)] is continuous and strictly increasing

in b⇤.

Proof. f 0(b⇤) > 0 is equivalent to v0m(b⇤)
vm(b⇤)�vm(0) > v0o(b

⇤)
vo(b⇤)�vo(0)

. Since vm is strictly concave

and decreasing, the lefthand side is greater than 1. Similarly, because vo is strictly concave

and increasing, the righthand side is less than 1. Hence, f 0(b⇤) > 0 holds for all b⇤ > 0.

Lemma 2.3. If intergenerational cooperation is sustainable under family reciprocity with

b⇤, it is sustainable under any family reciprocity with b  b⇤.

Proof. Take arbitrary p. Because intergenerational cooperation is sustainable under family

reciprocity with b⇤, p � f(b⇤). Because f() is strictly increasing (Lemma 2.2), f(b⇤) > f(b)

for all b < b⇤. Hence, p � f(a) for all b < b⇤.

Theorem 2.3. The maximum amount of sustainable transfers b̂⇤ (> 0) is increasing in p
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Proof. Take arbitrary p > f(0). Because f is strictly increasing and continuous (Lemma

2.2), there exists a unique b̂⇤ > 0 such that p = f(b̂⇤). Because of Lemma 2.3, it implies

that b̂⇤ ⌘ argmaxb⇤{f(b⇤)|f(b⇤)  p}. Because f is strictly increasing and continuous

(Lemma 2.2), its inverse function f�1 is also strictly increasing and continuous. Hence,

the maximum amount of sustainable transfers b̂⇤ = f�1(p) is increasing in p.

Thus, Theorem 2.3 shows that the maximum amount of sustainable transfers b̂⇤ (> 0)

is increasing in the accuracy of reputations.

Lastly, with su�ciently high p and q, the probability of erroneous labeling decreases

with the reputation accuracy p on the equilibrium path while not with q. This result

indicates that the societies in which people tend to speak well of others support higher

welfare than those in which people tend to speak ill of others because a “good” person

may be labeled “bad” in the latter societies but not in the former societies in equilibrium.

2.3.4 Di↵erent Social Norms

When the treatment of a “bad” parent is controversial

In some societies, children are encouraged to take care of their parents even if their parents

are not good people. Suppose that the treatment of the “bad” parent is controversial and,

thus, the label can be “good” or “bad” when one neglects a “bad” parent. This situation is

in sharp contrast with the previous setting in which uncertainty in labeling exists regardless

of the parent’s label.

This community appears to encourage people to be nice to their parents so that they

will surely be regarded as “good.” Consider a community whose social norm is a variant

of family reciprocity. Suppose that one is sometimes given a wrong label in such a way

that he may be labeled “bad” when he does not treat his “bad” parents well. This is an

erroneous labeling because, according to family reciprocity, one is supposed to be labeled

“good” regardless of one’s behavior if the parent is “bad”. This community appears to

encourage people to be nice to their parents so that they will surely be regarded as good.
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A variant of family reciprocity in this setting is described as follows.

⌫(xt�1, bt) ⌘ (Prob(xt = “good”|xt�1, bt),Prob(xt = “bad”|xt�1, bt))

=

8

>

>

>

>

<

>

>

>

>

:

(1, 0) if bt � 1

(p, 1� p) if xt�1 = “bad” & bt < 1

(0, 1) if xt�1 = “good” & bt < 1.

According to the social norm ⌫, one is considered “good” with probability 1 when he takes

care of his parents regardless of the parents’ label, “good” with probability p when he does

not take care of the “bad” parents, and “bad” with probability 1 when he does not take

care of the “good” parents. That is, the community mistakenly regards one as “bad” with

probability 1� p when he does not take care of the “bad” parents.

Next, I examine whether intergenerational transfers can be sustained in a pure Nash

equilibrium in this community. Suppose that each generation plays a tit-for-tat strategy.

(st)1t=1. Take an arbitrary period t. If xt�1 = “good”, no uncertainty exists and it is

optimal for generation t to take bt = 1. If xt�1 = “bad”, generation t’s utility is

u(bt = 0, st+1|xt�1) = pu(bt = 0, bt+1 = 1) + (1� p)u(bt = 0, bt+1 = 0)

u(bt = 1, st+1|xt�1) = u(bt = 1, bt+1 = 1).

Hence, if and only if p � u(1,1)�u(0,0)
u(0,1)�u(0,0) , a tit-for-tat strategy is an equilibrium. intergenera-

tional cooperation is sustainable if and only if uncertainty 1� p is su�ciently small. This

setting appears to encourage individuals to take good care of their parents because they

will surely be labeled “good” as long as they take good care of their parents but they may

be mistakenly labeled “bad” if they do not. However, it also discourages individuals from

doing so because they expect that their children will be also encouraged to take care of

them anyway. This result suggests that the social norms that stress that one should take

care of his parent may actually discourage individuals from doing so.

Norms of Punishment

So far, I assumed a community whose social norm is family reciprocity. According to
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family reciprocity, an individual does not have to punish his “bad” parents to be labeled

“good”. When their parents are “bad,” an individual will be labeled “good” regardless of

his behavior. Norms of family reciprocity require only that one should make appropriate

amount of transfers when his parent is “good”. By contrast, some social norms may

encourage punishment but not reward. I consider the social norm that requires only that

one should NOT make transfers when one’s parent is “bad”. That is, one does not have to

make transfers to the “good” parent to be labeled “good”. This social norm is described

as follows.

⌫(xt�1, bt) ⌘ (Prob(xt = “good”),Prob(xt = “bad”))

=

8

>

<

>

:

(0, 1) if xt�1 = “bad” and bt > 0

(1, 0) otherwise

With the norm of punishment, the only pure Nash equilibrium is such that no generation

makes any intergenerational transfers. Combined with the case of family reciprocity, it

suggests that the norm of rewarding is necessary while the norm of punishment is not.

As a natural extension, social norms that combine family reciprocity and punishment

also support intergenerational transfers in pure strategy Nash equilibrium by a tit-for-tat

strategy.6

2.4 Conclusion

This paper investigated how the family works as a provider of social protection. More

specifically, it argues that di↵erences in the level of transfers within the family are due to

demographic variation in community networks. To analyze the sustainability of intergen-

erational transfers, I propose game theoretical models of overlapping generations in which

the breadwinner makes transfers to the parent and child. A novel feature of the models

6 The combination of family reciprocity and punishment indicates that one should take care of the
“good” parent and punish the “bad” parent:

�t = (Prob(xt = G|xt�1, at),Prob(xt = B|xt�1, at))
= ⌧(xt�1, at)

=

⇢
(1, 0) if (xt�1, at) = (G, 1), (B, 0)
(0, 1) if (xt�1, at) = (G, at)8at 6= 1, (B, at) for all at 6= 0 .
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is that there is a local community that may supply information about its members’ past

behavior. I demonstrate that intergenerational transfers can be sustained if neighbors

gossip about each other. Furthermore, I also demonstrate that the maximum amount of

sustainable transfers decreases as labeling becomes noisier. As an implication, my theory

suggests that individuals in a close-knit community prefer lower levels of social protection.

As a theoretical extension, it is interesting to introduce negative economic shocks and

analyze its e↵ects on robustness of equilibrium. Suppose that negative economic shocks

may occur and reduce the breadwinners ability of making transfers. The e↵ects of shocks

may be di↵erent, depending on the class of strategy profiles.

First, consider the strategy profiles in which a breadwinner will not be punished if

he fails to make enough transfers because of a negative economic shock. In this type

of strategy profiles, the models without a local community have a problem of imperfect

monitoring whereas those with a local community don’t if economic shocks are correlated.

Suppose that a negative economic shock occurs and a breadwinner cannot make enough

transfers to his parent or child. In the OLG model without a local community, his o↵spring

does not know why his father does not make transfers, i.e., whether there is a negative

economic shock or his father is cheating. Therefore, even if every generation knows the

entire family history (how much transfers the preceding generations made), this imperfect

monitoring makes it di�cult for the o↵spring to distinguish economic shocks and cheating.

On the other hand, in OLG models with a local community, the local community may

solve the issue of imperfect monitoring. Consider a local community in which multiple

families reside. First, suppose that economic shocks are uncorrelated among families. In

this case, the local community does not play a role for the o↵spring. The equilibrium

with positive transfers becomes less sustainable when there are economic shocks. Second,

suppose that economic shocks are correlated among families. The breadwinners in the

community work in the same industry, for example. In this case, an o↵spring may notice

if many people of his fathers generation did not pay make transfers. Hence, the e↵ect of

economic shocks may be mitigated when the shocks are correlated in the community.

Second, consider the strategy profiles in which a breadwinner’s not making enough
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transfers is equally punished as cheating. In this case, there is no di↵erence between OLG

models without a local community and those with a local community. In both models,

the robustness depends on the strategy profiles, whether economic shocks are correlated

or uncorrelated.

Suppose that a breadwinner deviates, whether due to economic shocks or cheating.

In a variation of tit-for-tat strategy, the next generation can bring his family back to the

equilibrium path by punishing his father. However, in a variation of grim-trigger strategy,

all the following generations will punish their parent generations once someone deviates

and the family cannot go back to the coordination path.

Therefore, the e↵ects of economic shocks may be mitigated only in the former strategy

profiles:In the former strategy profiles, having a local community can solve the problem

of imperfect monitoring if economic shocks are correlated among families; In the latter

strategy profiles, the e↵ects of economic shocks do not depend on a local community.
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3. A THEORY OF HUNG JURIES AND INFORMATIVE VOTING

3.1 Introduction

In many jurisdictions in the United States and elsewhere, unanimity among jurors

is required for jury verdict. The unanimity rule is commonly believed to minimize the

possibility of convicting an innocent defendant. This view is challenged by ? in light of

game-theoretic analysis of voting behavior. They show that, if jurors vote strategically,

the unanimity rule may convict the innocent and acquit the guilty more often than most

rules, including the simple majority rule.

? provides a counterargument to their claim in his study of jury decision with mistrials.

He points out that unanimity is required for either conviction or acquittal in many juris-

dictions. Otherwise a hung jury occurs and the case faces a new trial in the future with

a new group of jurors.1 In his model jurors in a subsequent trial possess the same prior

belief on the defendant’s guilt as those in previous trials, and he argues that informative

voting is an equilibrium for a nontrivial range of parameters.

The above model, however, does not explicitly allow information transmission between

trials. By contrast, information is often disclosed between trials in reality. For example,

news media regularly covers trials and information about mistrials is frequently reported.

To capture this feature, this paper allows jurors to know that previous trials (if any)

resulted in hung juries and use this fact to infer the likelihood of guilt or innocence of

the defendant. For any voting rule, we show that informative voting is an equilibrium

only in knife-edge cases where the probability that a juror receives the correct signal when

the defendant is guilty is exactly the same as the one when the defendant is innocent.

1 A mistrial may be declared for a number of other reasons, such as juror misconduct. However we focus
on a mistrial that occurs because of a hung jury and use these terms interchangeably.
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Although previous literature such as ? has argued that mistrials facilitate informative

voting, our result demonstrates that such an argument has only limited applicability.

In addition to mistrials, ? presents another model to justfy unanimity rule. He in-

troduces a model with deliberation and shows that informative voting is an equilibrium

for a nontrivial range of parameters. ? further assume uncertainty about juror prefer-

ences. They show that informative voting is not an equilibrium under the unanimity rule

if jurors have minimal heterogeneity in preferences, while it may be an equilibrium under

nonunanimous rules. Both their paper and ours question the e�cacy of the unanimity

rule in realistic models: deliberation in their paper and hung juries in ours.

The current work is part of the literature on jury design under strategic voting pio-

neered by ?. They study the strategic aspect of jury decision and show that informative

voting often fails to be an equilibrium. ? and (?) show that there exists an equilibrium,

which may not be informative, that aggregates jurors’ information in an adequate manner.

? and ? consider continuous signals. ? find experimental evidence of strategic voting in

jury setting. Study of Condorcet Jury theorems has a long tradition in a more statistically

oriented literature (?, ?, ?).

3.2 Model and Result

A defendant is under a jury trial on a criminal charge. There are two states of the

world ! 2 {G, I}: the defendant is either guilty (denoted G) or innocent (I). The prior

probabilities that the state is G and I are r 2 (0, 1) and 1� r, respectively.

At each period t = 0, 1, 2, . . ., a jury composed of n jurors is formed. The jury at t

makes a decision dt 2 {A,C,M} following a voting rule specified by an integer k̂ 2 (n/2, n].

At each period t, each juror j casts a vote vj 2 {a, c}, where a is a vote for acquittal and

c is a vote for conviction. If at least k̂ jurors vote for conviction, then the defendant is

convicted (dt = C); if at least k̂ jurors vote for acquittal, then the defendant is acquitted

(dt = A); if neither of these happens, then a mistrial is declared (dt = M). When a

mistrial is declared, a new jury (with new members) is formed at period t + 1 and the

same procedure is repeated. Once the jury reaches a verdict (dt 2 {A,C}) at any t, it
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becomes the final decision d1 = dt 2 {A,C}. We denote the jury at period t by N t. For

example, the first jury is denoted by N0, the jury after one mistrial by N1, and so on.

Each juror j receives private signal sj 2 {g, i} correlated with the state of the world

! 2 {G, I}. Given !, sj follows an i.i.d. distribution. Let pg (respectively pi) represent

the probability that each juror observes the “correct signal” g (respectively i) when the

true state is G (respectively I). We assume pg, pi 2 (1/2, 1).

The utility of juror j when the state is ! and a final decision d1 2 {C,A} is made is

denoted by uj(d1,!), and defined as uj(C,G) = uj(A, I) = 0, uj(C, I) = �qj , uj(A,G) =

�(1 � qj), where qj 2 (0, 1). When an infinite sequence of mistrials occurs, each juror

receives some fixed utility.2 Juror j prefers conviction to acquittal if and only if she places

at least probability qj that the defendant is guilty. We assume that q̄ ⌘ supj2
S1

t=0 N
t qj < 1

and q ⌘ infj2
S1

t=0 N
t qj > 0. In words, while we allow for an infinite number of potential

jurors, levels of “reasonable doubt” for the population is bounded away from the extreme

values, 0 and 1.3

All jurors in the tth trial know there were t � 1 trials before and all of them resulted

in mistrials, but they do not know any further information from previous trials. We

assume that there is at least one numerical split under which a mistrial is declared. This

assumption holds except for simple majority rule with n odd.

A strategy of each juror j is a function which assigns a vote vj for each private signal

sj . We say that a strategy profile is an informative voting if each juror j chooses c if

sj = g and a if sj = i.

When the signals for guilt and innocence are equally accurate, that is, pg = pi = p for

some p 2 (1/2, 1), a straightforward adaptation of ? shows that informative voting forms

2 Since our analysis focuses on informative voting, infinite mistrials occur with probability zero. Hence
no specific assumption on the utility for infinite mistrials is important for the analysis. Also we note
that retrials may be costly and prosecutors may decide not to seek a retrial after a mistrial with some
probability in reality, but our result carries over when we introduce these additional complications.

3 This assumption is satisfied quite broadly. One example is a model in which the parameter qj is chosen
from a finite set of possible values in (0, 1). A stationary case in which the utility characteristic of each
jury is the same for every period is a particular case of such a specification. Even if the population of
potential jurors does not satisfy the bound, jury selection procedures (often called voir dire) may render
the bound plausible, since the processes prevent highly biased individuals from serving in juries.
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a sequential equilibrium if and only if, for each juror j,

r

1� r
· 1� p

p
 qj

1� qj
 r

1� r
· p

1� p
.

Next, consider the case with pg 6= pi.

Theorem 3.1. Suppose pg 6= pi. Then informative voting never forms a sequential equi-

librium.

We defer the proof to the Appendix and o↵er an intuition here. Suppose, for instance,

that the signal of guilt is more accurate than that of innocence (pg > pi). Then the jurors

are more likely to receive mistaken signals and, as a result, fail to agree on a verdict when

the defendant is innocent than when he is guilty (Lemma 1 in the Appendix). Hence,

if a juror knows that there was a hung jury before the current trial, she infers that the

defendant is more likely to be innocent by Bayes’ law. If hung juries occur repeatedly,

information from previous trials will become so strong that a juror is willing to vote for

acquittal even if she observes a guilty signal. Thus informative voting fails to be an

equilibrium.

Theorem 3.1 suggests that informative voting is rarely an equilibrium. Note that

pg 6= pi holds generically. Moreover, the Theorem applies to any voting rule which allows

for a hung jury (i.e., the only exception is simple majority rule with n odd). Thus the

defense of unanimity rule by Coughlan is inapplicable to most cases.

The conclusion of Theorem 3.1 can be strengthened if additional information is avail-

able to jurors. For example, it can be shown that informative voting is not an equilibrium

regardless of probabilities of the correct signal if jurors are informed of numerical splits of

votes in previous trials.4

4 The proof is omitted, but is available from the authors upon request.
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A. PROOFS FOR CHAPTER 1

A.1 Proof of Lemma 1.1

Consider w  n� 2.

Part 1

We first examine the weighted juror’s incentive. Let p0 denote the accuracy of unweighted

jurors’ signals where p0 2 {pH , pL}. Then, the probability that the weighted juror becomes

pivotal when the defendant is guilty is

Pr(piv1|G,w, t�1) =

n+w
2 �1
X

⌫=n�w
2

✓

n� 1

⌫

◆

p0⌫(1� p0)n�1�⌫ ,

which is increasing in w 2 {1, 3, 5, 7, . . . , n�2}.12 Note that this probability is independent

of the weighted juror’s signal accuracy. Thus, regardless of her and unweighted jurors’

investment behavior, the weighted juror is more likely to be pivotal as w increases.

Part 2

Second, I examine an unweighted juror’s incentive. Take an arbitrary unweighted juror

j. The probability that an unweighted juror becomes pivotal decreases as w increases if

and only if Pr(pivj |G,w + 2) < Pr(pivj |G,w). Suppose that the weighted juror’s signal

1 Pn+w
2 �1

⌫=n�w
2

�
n�1
⌫

�
p

0⌫(1 � p

0)n�1�⌫ is increasing in w because n�w
2 is decreasing in w and n+w

2 � 1 is

increasing in w.

2
t�1 := tj for j 6= 1



accuracy is p 2 {pH , pL} and unweighted jurors’ signal accuracy is p0 2 {pH , pL}.

Pr(pivj |G,w + 2) < Pr(pivj |G,w)

, p

✓

n� 2
n�w
2 � 2

◆

p0
n�w

2 �2(1� p0)
n+w

2 + (1� p)

✓

n� 2
n+w
2

◆

p0
n+w

2 (1� p0)
n�w

2 �2

< p

✓

n� 2
n�w
2 � 1

◆

p0
n�w

2 �1(1� p0)
n+w

2 �1 + (1� p)

✓

n� 2
n+w
2 � 1

◆

p0
n+w

2 �1(1� p0)
n�w

2 �1

,
✓

n� 2
n+w
2

◆

n

pp0
n�w

2 �2(1� p0)
n+w

2 + (1� p)p0
n+w

2 (1� p0)
n�w

2 �2
o

<

✓

n� 2
n+w
2 � 1

◆

n

pp0
n�w

2 �1(1� p0)
n+w

2 �1 + (1� p)p0
n+w

2 �1(1� p0)
n�w

2 �1
o

Multiply by (1� p)�1p0
�n+w

2 +1(1� p0)�
n+w

2 +1,

, (n� w � 2) ·
(

p

1� p
· 1� p0

p0
+

✓

p0

1� p0

◆w+1
)

< (n+ w) ·
⇢

p

1� p
+

✓

p0

1� p0

◆w�

Let P := p
1�p , P

0 := p0

1�p0 ,

, (n� w � 2) ·
�

P · P 0�1 + P 0w+1
�

< (n+ w) ·
�

P + P 0w�

, n
�

P · P 0�1 + P 0w+1 � P � P 0w� < w
�

P + P 0w�+ (w + 2)
�

P · P 0�1 + P 0w+1
�

, n(1� P 0�1)(P 0w+1 � P ) < w(1 + P 0�1)(P 0w+1 + P ) + 2
�

P · P 0�1 + P 0w+1
�

,

8

>

<

>

:

n < w · (1+P 0�1)(P 0w+1+P )
(1�P 0�1)(P 0w+1�P ) + 2 · P ·P 0�1+P 0w+1

(1�P 0�1)(P 0w+1�P ) if P 0w+1 > P

holds for any n, w if P 0w+1  P

By N(P, P 0, w) := w · (1+P 0�1)(P 0w+1+P )
(1�P 0�1)(P 0w+1�P ) + 2 · P ·P 0�1+P 0w+1

(1�P 0�1)(P 0w+1�P ) ,

,

8

>

<

>

:

n < N(P, P 0, w) if P 0w+1 > P

holds for any n, w if P 0w+1  P

Thus, the probabilities that unweighted jurors become pivotal are:

(1) if P 0w+1 > P ,

(a) decreasing in w for n < N(P, P 0, w)

(b) independent of w for n = N(P, P 0, w)

(c) increasing in w for n > N(P, P 0, w)

(2) if P 0w+1  P , decreasing in w for all n

52



A.2 Proof of Proposition 1.1

Recall that a juror j has an incentive to invest in her information if and only if c 

fj(w, t�j). Define wj(c, t) as a function wj : C ⇥T ! W [ {�1,1} as follows.

w1(c, t) :=

8

>

>

>

>

<

>

>

>

>

:

�1 if c < f1(1, t)

w⇤(c, t) if c 2 [f1(1, t), f1(n� 2, t)]

1 if c > f1(n� 2, t)

where w⇤(c, t) is an integer such that f1(w⇤ � 2, t) < c  f1(w⇤, t). 3

wj(c, t) :=

8

>

>

>

>

<

>

>

>

>

:

1 if c < fj(n� 2, t)

w⇤(c, t) if c 2 [fj(n� 2, t), fj(1, t)]

�1 if c > fj(1, t)

for j 6= 1 where w⇤⇤(c, t) is an integer such that fj(w⇤⇤ + 2, t) < c  fj(w⇤⇤, t). 4

The function w1(c, t) describes the minimum weight for the weighted juror 1 to have

an incentive to invest when the cost is c and the strategy profile is t.5 Thus, the weighted

juror 1 has an incentive to invest upon(w, c, t) if and only if w � w1(c, t). On the other

hand, wj(c, t) describes the maximum weight for the unweighted juror j 6= 1 to have an

incentive to invest when the cost is c and the strategy profile is t. Thus, the unweighted

juror j has an incentive to invest upon(w, c, t) if and only if w  wj(c, t).6 The function

3 If c 2 [f1(1, t), f1(n� 2, t)], there is always an unique integer w⇤ that satisfies

f1(w
⇤ � 2, t) < c  f1(w

⇤
, t).

4 If c 2 [fj(n� 2, t), fj(1, t)], there is always an unique integer w⇤⇤ that satisfies

fj(w
⇤ + 2, t) < c  fj(w

⇤⇤
, t).

5 Note that w 2 {1, 3, . . . , n� 2}.

6 For simplicity, I assume that jurors invest if they are indi↵erent between investing and not investing.
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w⇤(c, t) is increasing in c and w⇤⇤(c, t) is decreasing in c.78

There are four possible strategy profiles, t = (1, 1, . . . , 1), (1, 0, . . . , 0), (0, 1, . . . , 1),

(0, 0, . . . , 0). In the following, I find (c, w) for which each strategy profile forms equilibrium.

For convenience, I assume j 6= 1, i.e., juror j is an unweighted juror in the following part

of this proof.

A) A strategy profile t = (1, 1, . . . , 1) is an equilibrium if

(c, w) 2 {(c, w)|w1(c, t)  w  wj(c, t)}

where

w1(c, t) =

8

>

>

>

>

<

>

>

>

>

:

�1 if c < c2

w⇤(c, t) if c 2 [c2, c3]

1 if c > c3

wj(c, t) =

8

>

>

>

>

<

>

>

>

>

:

1 if c < c1

w⇤⇤(c, t) if c 2 [c1, c2]

�1 if c > c2

for j 6= 1 and t = (1, 1, . . . , 1).

In Figure A.1 (resp. Figure A.2), the red area represents (w, c) for which the weighted

(resp. unweighted) juror has an incentive to invest in her information while the blue

area represents those for which she has no incentive to do so. As a result, the black

trapezoid in Figure A.3 describes {c, w} for which t = (1, 1, . . . , 1) is an equilibrium.

7 The function w

⇤⇤(c, t) is decreasing in c because I focus on the cases where unweighted jurors are less
likely to be pivotal with w.

8 Note that w⇤⇤(c, t)  w

⇤(c, t)
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Figure A.1: w1(c, t) for t = (1, 1, . . . , 1)

Figure A.2: wj(c, t) for t = (1, 1, . . . , 1)

Figure A.3: {(c, w)|w1(c, t)  w  wj(c, t)} for t = (1, 1, . . . , 1)
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B) A strategy profile t = (1, 0, . . . , 0) is an equilibrium if

(c, w) 2 {(c, w)|w � w1(c, t) & w > wj(c, t)}

where

w1(c, t) =

8

>

>

>

>

<

>

>

>

>

:

�1 if c < c5

w⇤(c, t) if c 2 [c5, c6]

1 if c > c6

wj(c, t) =

8

>

>

>

>

<

>

>

>

>

:

1 if c < c3

w⇤⇤(c, t) if c 2 [c3, c4]

�1 if c > c4

for j 6= 1 and t = (1, 0, . . . , 0).

In Figure A.4 (resp. Figure A.5), the red area represents (w, c) for which the weighted

(resp. unweighted) juror has an incentive to invest in her information while the blue

area represents those for which she has no incentive to do so and the green line

represents those for which she is indi↵erent. As a result, the black trapezoid in

Figure A.6 describes {c, w} for which t = (1, 0, . . . , 0) is an equilibrium.
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Figure A.4: w1(c, t) for t = (1, 0, . . . , 0)

Figure A.5: w�1(c, t) for t = (1, 0, . . . , 0)

Figure A.6: {(c, w)|w � w1(c, t) & w � wj(c, t)} for t = (1, 0, . . . , 0)
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C) A strategy profile t = (0, 0 . . . , 0) is an equilibrium if and only if

(c, w) 2 {(c, w)|wj(c, t) < w < w1(c, t)} .

Similarly, the black trapezoid in Figure A.7 describes {c, w} for which t = (0, 0, . . . , 0)

is an equilibrium.

Figure A.7: {(c, w)|wj(c, t)  w  w1(c, t)} for t = (0, 0, . . . , 0)

D) A strategy profile t = (0, 1, . . . , 1) is an equilibrium if and only if

(c, w) 2 {(c, w)|w < w1(c, t) & w  wj(c, t)} ,

which is an empty set.

Therefore, Figure A.8 represents the equilibria where t = (1, 1, . . . , 1), (1, 0, . . . , 0),

(0, 0, . . . , 0).

A.3 Proof of Proposition 1.2

In Step 1, I show that the probability of making a correct decision is decreasing in w

and compute the optimal weight for c 2 [0, c5] [ (c6,1). Next, I compute the optimal

weight for c 2 (c5, c6] in Step 2.
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Figure A.8: {(c, w)|w1(c, t)  w  wj(c, t)} for t = (1, 1, . . . , 1)

Step 1: V(w + 2, t)�V(w, t) < 0

First, I show that the probability of making a correct decision is decreasing in w given

any investment behavior.

V (w + 2, t)� V (w, t)

= p
X

x�n�w
2 �1

✓

n� 1

x

◆

p0x(1� p0)n�1�x + (1� p)
X

x�n+w
2 +1

✓

n� 1

x

◆

p0x(1� p0)n�1�x

�

0

B

@

p
X

x�n�w
2

✓

n� 1

x

◆

p0x(1� p0)n�1�x + (1� p)
X

x�n+w
2

✓

n� 1

x

◆

p0x(1� p0)n�1�x

1

C

A

=

✓

n� 1
n+w
2

◆

p0
n�w

2 �1(1� p0)
n�w

2 �1
�

p(1� p0)w+1 � (1� p)p0w+1
 

,

which is less than 0 for all (p, p0) 2 {pH , pL} ⇥ {pH , pL} because pH <

✓
pL

1�pw+1
L

◆w+1

1+

✓
pL

1�pw+1
L

◆w+1 .

Thus,

V (w + 2, t)� V (w, t) < 0 (A.1)

for all t 2 {(1, . . . , 1), (1, 0, . . . , 0), (0, . . . , 0), (0, 1 . . . , 1)}. It follows that regardless of

the qualities of signals that jurors receive, the probability of making a correct decision is

decreasing in w.
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Therefore, the optimal weight is w = 1 for c 2 [0, c2] [ [c4, c5] [ (c6,1) and w =

w⇤⇤(c, (1, 0, . . . , 0)) for c 2 (c2, c4). For c 2 (c5, c6], the optimal weight is either

w⇤(c, (1, 0, . . . , 0)) where the equilibrium is t = (1, . . . , 0) or 1 where the equilibrium is

t = (0, 0, . . . , 0).

Step 2: The optimal weight for c 2 (c5, c6]

Step 1 shows the optimal weight for c 2 [0, c5] [ (c6,1). Next, I compute the op-

timal weight for c 2 (c5, c6], which is either w⇤(c, (1, 0, . . . , 0) where the equilibrium is

t = (1, . . . , 0) or 1 where the equilibrium is t = (0, 0, . . . , 0). The optimal weight is

w⇤(c, (1, 0, . . . , 0) if U(c) > 0 and 1 if U(c) < 0 where

U(c) := V (w⇤(c, (1, 0, . . . , 0)), (1, . . . , 0))� V (1, (0, . . . , 0)).

1) U(c5) > 0

Since w⇤(c5, (1, 0, . . . , 0) = 1 by construction,

U(c5)

= V (1, (1, . . . , 0))� V (1, (0, . . . , 0))

= (pH � pL)
X

x�n�1
2

✓

n� 1

x

◆

pxL(1� pL)
n�1�x + (pL � pH)

X

x�n+1
2

✓

n� 1

x

◆

pxL(1� pL)
n�1�x

= (pH � pL)

✓

n� 1
n�1
2

◆

p
n�1
2

L (1� pL)
n�1
2 > 0.

2) U(c) is decreasing in c

By (A.1), V (w, (1, . . . , 0)) is decreasing in w. Since w⇤(c, (1, 0, . . . , 0)) is decreasing in

c, U(c) is also decreasing in c.
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3) Optimal weight for c 2 (c5, c6]

Since w⇤(c6, (1, 0, . . . , 0)) = n� 2 by construction,

U(c6) = V (n� 2, (1, . . . , 0))� V (1, (0, . . . , 0)),

which may take positive or negative values, depending on the parameters, pH , pL, and

n.9 If U(c6) < 0, there exists c7 2 (c5, c6) such that U(c) = 0. In this case, ŵ =

w⇤(c, (1, 0, . . . , 0)) for c 2 (c5, c7] and ŵ = 1 for c 2 [c7, c6). If U(c6) � 0, ŵ = 1 for

c 2 [c5, c6).10

A.4 Future extension: more than one weighted jurors

For now, I analyzed the case in which there is at most one weighted juror, m = 1. For

the future research, I intend to analyze the case of m > 1 and describe the direction here.

The purpose of this future section is to characterizes the equilibria in which weighted jurors

invest in information and unweighted jurors do not, and compute the optimal number of

weighted jurors and their weights. Those equilibria are denoted by (m,w) and I develop

the “(m,w) equilibria” where 1 < m < n+1
w+1 . Since I restrict our attention to symmetric

equilibria and assume sincere voting, the (m,w) equilibrium is simply a pair of critical

points (c⇤1, c
⇤
2) such that any weighted jurors invest if and only if c < c⇤1 and any unweighted

jurors invest if and only if c < c⇤2.

9 For example,

V (n� 2, (1, . . . , 0))� V (1, (0, . . . , 0) = 0.3 > 0

for (pH , pL) = (0.8, 0.5) and n = 1001 while

V (n� 2, (1, . . . , 0))� V (1, (0, . . . , 0) = �0.2 < 0

for (pH , pL) = (0.8, 0.7) and n = 1001.

10

U(c6) = V (n� 2, (1, . . . , 0))� V (1, (0, . . . , 0)

= pH

�
1� (1� pL)

n�1�+ (1� pH)pn�1
L �

X

x�n+1
2

 
n

x

!
p

x
L(1� pL)

n�x
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Consider the case where jurors 1, . . . ,m are weighted and jurors m + 1, . . . , n are

unweighted. A weighted juror j 2 {1, . . . ,m} has an incentive to invest conditional on the

other weighted jurors investing and all the unweighted jurors not investing if and only if

EUj [tj = 1|m,w]� EUj [tj = 0|m,w] � 0

, Pr(G, pivj |m,w)(pH � pL)� c � 0

, gw(m,w) � c

where

gw(m,w) := Pr(G, pivj |m,w)(pH � pL) =

1
2

(
Pm�1

⌫=0 (m�1
⌫ )p⌫H(1�pH)m�1�⌫

Pn+m(w�1)+1
2 �⌫w�1

⌧=
n+m(w�1)+1

2 �⌫w�w
(n�m

⌧ )p⌧L(1�pL)n�m�⌧

)
(pH�pL)

for j 2 {1, . . . ,m} and EUj [sj |m,w] is juror j’s expected utility of sj .

Similarly, an unweighted juror j 2 {m+1, . . . , n} has an incentive not to invest if and

only if

EUj [sj = 1|m,w]� EUj [sj = 0|m,w] < 0

, Pr(G, pivj |m,w)(pH � pL) < c

, guw(m,w) < c

where

guw(m,w) := Pr(G, pivj |m,w)(pH � pL)

= 1
2

(
Pm

⌫=0 (
m
⌫ )p

⌫
H(1�pH)m�⌫(

n�m�1
n+m(w�1)+1

2 �⌫w�1
)p

n+m(w�1)+1
2 �⌫w�1

L (1�pL)
n�m(w+1)�1

2 +⌫w

)
(pH�pL)

for j 2 {m+ 1, . . . , n}.

We define c(m,w) by the equality gw(m,w) = c(m,w) for j 2 {1, . . . ,m} and c(m,w)

by the equality guw(m,w) = c(m,w) for j 2 {m+ 1, . . . , n}. An equilibrium in our model

is a set of juror decision rules, (c, c) such that weighted jurors invest in information if
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c  c(m,w) and unweighted jurors invest if c < c(m,w). Thus, the (m,w) equilibrium

exists if and only if c(m,w)  c  c(m,w). Propositions A.1 and A.2 show that jurors are

less likely to be pivotal as the number of weighted jurors increases.

Proposition A.1. Suppose that n is su�ciently large, pH � 2m�1
2m+1 and pL = 1

2 . The

probability that a weighted juror j becomes pivotal, Pr(G, pivj |m,w), is decreasing in the

number of weighted jurors, m.

Proof. See Appendix A.5.

Proposition A.1 gives su�cient conditions for which a weighted juror is less willing to

invest in information as the number of weighted jurors increases. Similarly, Proposition

A.2 is intended to give su�cient conditions for which an unweighted juror is less willing

to invest in information as the number of weighted jurors increases.

Proposition A.2. The probability that an unweighted juror j becomes pivotal, i.e.,

Pr(G, pivj |m,w), is decreasing in the number of weighted jurors, m.

Proof. The complete proof is yet to be done. Note that the following Corollary A.1 and

Proposition A.3 are based on this unproven Proposition.

As a corollary, Propositions A.1 and A.2 will give the shape of c(m,w) and c(m,w) as

a function of m.

Corollary A.1. Suppose that n is su�ciently large, pH � 2m�1
2m+1 and pL = 1

2 . c(m,w)

and c(m,w) are decreasing in m.

Corollary A.1 will imply the range of cost c within which m investments can be made

in equilibrium. The expected explanation is as follows. Weighted jurors have incentives

to invest if and only if m is small enough to satisfy c(m,w) � c. Denote the largest such

m by m(c, w), i.e., m(c, w) := max{m|c(m,w)  c}. Unweighted jurors have incentives

not to invest if and only if m is large enough to satisfy c(m,w)  c. Denote the smallest

such m by m(c, w), i.e., m(c, w) := min{m|c(m,w)  c}. These observations will lead to

the following Proposition.
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Proposition A.3. Suppose that n is su�ciently large, pH � 2m�1
2m+1 and pL = 1

2 . Given c

and w, the (m,w) equilibrium exists if and only if m 2 {m, . . . ,m}.11

Proof. Take arbitrary c and w. Suppose that all of m weighted jurors invest in information

and all of (n�m) jurors do not invest.

The weighted jurors have incentives to invest if and only if c  c(m,w). Since c(m,w)

is decreasing in m (Corollary A.1), c(m,w)  c(m,w) for all m  m. Hence, for given c

and w, the weighted jurors have incentives to invest if and only if m  m.

Similarly, the unweighted jurors have incentives not to invest if and only if c � c(m,w).

Since c(m,w) is decreasing in m (Corollary A.1), c(m,w) � c(m,w) for all m � m.

Hence, for given c and w, the unweighted jurors have incentives not to invest if and only

if m � m.

In particular, if c(1, w)  c  c(m⇤, w), the (m,w) equilibrium exists for every m 2

[1,m⇤], i.e., up to m⇤ investments can be made in equilibrium for given c and w.

A.5 Proof of Proposition A.1

We show that the probability that a weighted voter becomes pivotal is decreasing in m

in the following. Suppose that w � 2, and let pL = 1/2 for simplicity. Subsequent argu-

ments should carry over to the other cases with pL 6= 1/2 by some suitable modifications.

We derive (su�cient) conditions under which it holds that

Pr
�

pivj |m+ 1, w
�

< Pr
�

pivj |m,w
�

,

where

Pr
�

pivj |m,w
�

:=

✓

1

2

◆n�m

(1� pH)m�1
m�1
X

⌫=0

0

B

@

m� 1

⌫

1

C

A

✓

pH
1� pH

◆⌫

� (⌫,m)

11 (1) c(m,w)  c(m,w) for any (m,w) and (2) m(c, w)  m(c, w) for any (c, w).
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and

� (⌫,m) = �n,w (⌫,m) :=

n+m(w�1)+1
2 �⌫w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

0

B

@

n�m

⌧

1

C

A

. (A.2)

The domain of (⌫,m) should be suitably defined, which may depend on (n,w), so that the

right-hand side of (A.2) is well-defined.

Step 1: �(⌫,m) is strictly decreasing in m for each ⌫

For our purpose, I first show that � (⌫,m) is strictly decreasing in m for each ⌫.

Consider the following decomposition:

� (⌫,m+ 1) =

n+(m+1)(w�1)+1
2 �⌫w�1
X

⌧=n+(m+1)(w�1)+1
2 �⌫w�w

0

B

@

n�m� 1

⌧

1

C

A

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

n+(m+1)(w�1)+1
2 �⌫w�1
X

⌧=n+m(w�1)+1
2 �⌫w

| {z }

(⇤1)

+

n+m(w�1)+1
2 �⌫w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

| {z }

(⇤2)

�

n+(m+1)(w�1)+1
2 �⌫w�w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

| {z }

(⇤3)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(A.3)

⇥

0

B

@

n�m� 1

⌧

1

C

A

. (A.4)

Note that the number of summands is
1

2
(w � 1) (each) in (⇤1) and (⇤3), while that in

(⇤2) is w. Note also that the sum in (⇤2) is computed over the same values of ⌧ as those

in the sum in � (⌫,m).

65



Since
�

n�m�1
⌧

�

=
(n�m� ⌧)

(n�m)
| {z }

<1

�

n�m
⌧

�

, I can write (A.4) as

� (⌫,m+ 1) = � (⌫,m) +

n+m(w�1)+1
2 �⌫w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w



n�m� ⌧

n�m
� 1

�✓

n�m

⌧

◆

+

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

n+(m+1)(w�1)+1
2 �⌫w�1
X

⌧=n+m(w�1)+1
2 �⌫w

| {z }

(⇤1)

�

n+(m+1)(w�1)+1
2 �⌫w�w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

| {z }

(⇤3)

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

✓

n�m� 1

⌧

◆

= � (⌫,m) +

n+m(w�1)+1
2 �⌫w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

�⌧

n�m

✓

n�m

⌧

◆

+

n+(m+1)(w�1)+1
2 �⌫w�w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

⇢✓

n�m� 1

⌧ + w

◆

�
✓

n�m� 1

⌧

◆�

= � (⌫,m) +

n+m(w�1)+1
2 �⌫w�1
X

⌧=n+(m+1)(w�1)+1
2 �⌫w�w

�⌧

n�m

✓

n�m

⌧

◆

| {z }

<0

+

n+(m+1)(w�1)+1
2 �⌫w�w�1
X

⌧=n+m(w�1)+1
2 �⌫w�w

⇢✓

n�m� 1

⌧ + w

◆

�
✓

n�m� 1

⌧

◆

+
�⌧

n�m

✓

n�m

⌧

◆�

| {z }

(##)

.

To determine the sign of the last term on the right-hand side, look at

✓

n�m

⌧

◆

=

✓

n�m� 1

⌧

◆

n�m

n�m� ⌧
✓

n�m� 1

⌧ + w

◆

=
(n�m� 1� ⌧)

(⌧ + w)
⇥ · · ·⇥ (n�m� 1� ⌧ � w + 1)

(⌧ + 1)

✓

n�m� 1

⌧

◆

.

Therefore,

(##) =

⇢

(n�m� 1� ⌧)

(⌧ + w)
⇥ · · ·⇥ (n�m� 1� ⌧ � w + 1)

(⌧ + 1)
� n�m

n�m� ⌧

�✓

n�m� 1

⌧

◆

.

The inside of the curly bracket in the last line is negative for large n. To see this, for
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example, note that it holds that for large n,

(n�m� 1� ⌧)

(⌧ + w)



n�m

(n�m� ⌧)

�1/w

()


(n�m� ⌧ � 1)

(⌧ + w)

�w

(n�m� ⌧)  (n�m)

where the inequalities hold since ⌧ takes some value between
⇣

n+m(w�1)+1
2 � ⌫w � w

⌘

and
⇣

n+(m+1)(w�1)+1
2 � ⌫w � w � 1

⌘

. Suppose m and w are small relatively to n. Then, for

n large enough,



(n�m� ⌧ � 1)

(⌧ + w)

�w

⇠


n� ⌧

⌧

�w

⇠


n/2

n/2

�w

⇠ 1.12

From these arguments, I can write

� (⌫,m+ 1) = � (⌫,m) +R (v,m)
| {z }

<0

,

i.e, � (⌫,m) is strictly decreasing in m (again, it needs to be confirmed that � (a, b) is

well-defined at (a, b) = (m,m).

Step 2: Pr
�

pivj |m+ 1, w
�

� Pr (piv) < 0

Thanks to Step 1, I know that � (⌫,m) is strictly decreasing in m. By using this, I

have

Pr
�

pivj |m+ 1, w
�

� Pr
�

pivj |m,w
�

=

✓

1

2

◆n�m

(1� pH)m�1
m
X

⌫=0

✓

1

2

◆�1

(1� pH)

✓

m

⌫

◆✓

pH
1� pH

◆⌫

� (⌫,m+ 1)

�
✓

1

2

◆n�m

(1� pH)m�1
m�1
X

⌫=0

✓

m� 1

⌫

◆✓

pH
1� pH
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�(⌫,m)
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8
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>

>

<

>
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>

>

:

m
X

⌫=0

✓

1

2

◆�1
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⌫

◆✓

pH
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◆⌫

R (⌫,m)
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+
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1

2
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(1� pH)

✓

m

m

◆✓

pH
1� pH

◆m

� (m,m)
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=I

+
m�1
X
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"

✓

1

2

◆�1

(1� pH)

✓

m

⌫

◆✓

m� 1

⌫

◆

#

✓

pH
1� pH

◆⌫

�(⌫,m)

| {z }

=J(⌫)

9

>

>

>

>

=

>

>

>

>

;

. (A.5)

The first term inside the curly bracket is strictly negative since R (⌫,m) < 0 (Step 1).

We now consider a condition under which the sum of the 2nd and 3rd terms inside the

curly bracket, I +
Pm�1

⌫=0 J(⌫), is negative. To this end, I use the following result:

�(m,m) < �(m� 1,m), 13 (A.6)

i.e., �(a,m) is strictly decreasing in a, whose proof is provided below. Then, noting
�

m
m

�

= 1,

I<

✓

1

2

◆�1

(1� pH)

✓

m

m� 1

◆✓

1

m

pH
1� pH

◆✓

pH
1� pH

◆m�1

� (m� 1,m) .

13
Proof of (A.6): �(m,m) < �(m� 1,m)

By the definition of � in (A.2), I can see that

� (⌫ � 1,m) :=

n+m(w�1)+1
2 �(⌫�1)w�1X

⌧=
n+m(w�1)+1

2 �(⌫�1)w�w

 
n�m

⌧

!
=

n+m(w�1)+1
2 �⌫w�1X

⌧=
n+m(w�1)+1

2 �⌫w�w

 
n�m

⌧ + w

!
,

Therefore,

� (m,m)� � (m� 1,m) =

n+m(w�1)+1
2 �mw�1X

⌧=
n+m(w�1)+1

2 �mw�w

" 
n�m

⌧

!
�
 
n�m

⌧ + w

!#

=

n+m(w�1)+1
2 �⌫w�1X

⌧=
n+m(w�1)+1

2 �⌫w�w


(n�m)!

⌧ ! (n�m� ⌧)!
� (n�m)!

(⌧ + w)! (n�m� ⌧ � w)!

�

=

n+m(w�1)+1
2 �mw�1X

⌧=
n+m(w�1)+1

2 �mw�w

(n�m)!
⌧ ! (n�m� ⌧)!


1� (n�m� ⌧)

(⌧ + w)
⇥ · · ·⇥ (n�m� ⌧ � w + 1)

(⌧ + 1)

�
< 0,
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Therefore,

I +
m�1
X

⌫=0
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m�2
X
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pH
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◆⌫
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where I below derive the conditions under which (@) and (@@) are negative. As for (@),

look at

(@)  0 () 2m� 1  (2m+ 1) pH () 2m� 1

2m+ 1
 pH (A.7)

For the component of (@@), I only need to consider the case where 0  ⌫  m� 2. Since
�

m�1
⌫

�

=
�

m
⌫

�m� ⌫

m
,

(@@) =

✓

m

⌫

◆

"

✓
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(1� pH)� m� ⌫

m

#

<

✓

m

⌫

◆

2 (1� pH)� 2

m

�

which is negative when

1� 1

m
 pH . (A.8)

Since (A.7) implies (A.8), the condition (A.7) implies that the sum of the 2nd and

where the last inequality holds by noting that

(⌧ + w) < (n�m� ⌧)

() 2⌧ + w +m < n

(= 2

✓
n+m (w � 1) + 1

2
�mw � 1

◆
+ w +m < n

() �mw � 1 + w < 0.
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3rd terms inside the curly brackets, I +
Pm�1

⌫=0 J (⌫), is negative. Therefore, 2m�1
2m+1  pH

implies that the probability that a weighted juror j becomes pivotal is decreasing in m,

i.e., Pr
�

pivj |m+ 1, w
�

< Pr
�

pivj |m,w
�

.

Notes for Computation 2:

In Step 2, I have derived the condition of (A.7) by showing that I+
Pm�1

⌫=0 J (⌫) is negative.

Recalling (A.5), I may utilize
Pm

⌫=0

�

1
2

��1
(1�pH)

�

m
⌫

�

⇣

pH
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⌘⌫
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I can work with the following decomposition:
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where Int (x) stands for the integer part of x, and may derive the conditions under which

I +
Pm�1

⌫=Int(
p
m) J (⌫) and

Pm�Int(
p
m)�1

⌫=0 J (⌫) are negative. We consider the decomposi-

tion (A.9) in Step 2’.

Step 2’: Another approach to show Pr
�
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�

� Pr (piv) < 0?

We here derive conditions under which Pr
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�
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�

, based on

the decomposition (A.9).

To work with (A.9), look at
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Then, I can write
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By (A.10),
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where the last inequality holds when
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A.6 Notes for Computation (##) in Step 1 of Appendix A.5

In this section, I examine weaker conditions for (##) to be negative than n being

large.
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⌧ + w

�w

(n�m� ⌧)  n�m
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1.

⌧ takes some value in the following range:

⌧ 2


n+m (w � 1) + 1

2
� ⌫w � w,

n+ (m+ 1) (w � 1) + 1

2
� ⌫w � w � 1

�

.

2.

Since ⌫ 2 [0,m� 1], ⌧ takes some value in the following range:

⌧ 2


n�m(w + 1) + 1

2
,
n+ (m+ 1) (w � 1) + 1

2
� w � 1

�

.

3.

⇣

n�m�⌧�1
⌧+w

⌘w
(n�m� ⌧) is decreasing in ⌧

4.

At ⌧ = n�m(w+1)+1
2 (when ⌫ = m� 1),



n�m� ⌧ � 1

⌧ + w

�w

(n�m� ⌧)  n�m

, n+m(w � 1)� 3

n�m(w + 1) + 1 + 2w
· n+m(w � 1)� 1

2
 n�m

, n2 + (�4mw + 6 + 4w � 2m)n�m2w2 � 6m� 3 + 4m2w +m2 � 0 (⇤)

5.

Define f(n) as

f(n) := n2 + (�4mw + 6 + 4w � 2m)n�m2w2 � 6m� 3 + 4m2w +m2.

73



Then,

(⇤) ,
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>

>
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>

>

>
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:

f(n⇤) � 0

or

n2  3

or

n1  3 < n2 and n � n2

or

n1 > 3 and n 2 (�1, n1] [ [n2,1)

where n⇤ is s.t. f 0(n⇤) = 0 and (n1, n2) are s.t. f(n1) = f(n2) = 0 and n1  n2.
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B. ADDITIONAL RESULTS FOR CHAPTER 2

B.1 Two-generations Model: Backward Intergenerational Transfers from Children

to Parents

B.1.1 Basic Two-generations Model

In this subsection, I propose an overlapping generations model, using two generations

to analyze backward intergenerational transfers, such as nursing care and financial support

provided by individuals to their parents. I consider a situation in which a breadwinner

decides how much to invest in a backward intergenerational good (BIG) that benefits only

an elderly dependent. The key informational feature is that it is assumed that children can

observe several preceding generations’ behavior, such as how their parents treated their

grandparents, but information about their distant ancestors’ behavior, such as how their

great-grandparents treated their great-great-grandparent, is unavailable. I first demon-

strate that intergenerational transfers cannot be sustained under limited information and

then show that close-knit communities serve to facilitate cooperation between generations.

Consider an infinitely-lived family with two generations alive in each period t (t =

1, 2, . . .). At every period t, a single player, called generation t, is born to the family and

lives for two periods: t and t+ 1. I call generation t the breadwinner in period t and the

elderly dependent in period t + 1. In period 1 there are a breadwinner 1 who stays in

periods 1 and 2, and an elderly dependent 0 who stays only for that period.

The breadwinner has positive endowment, and the elderly dependent has endowment

that is normalized to zero. Every period t, the breadwinner t decides how much to transfer

to the elderly dependent t� 1. Let at 2 At denote the amount transferred to the current

elderly dependent, t� 1, where action spaces are common across generations, At = A for



all t. The commodity is assumed to be infinitely divisible. The elderly dependent has no

choices to make.

Generation t’s utility function, u : At ⇥ At+1 ! R, is decreasing in the transfer made

in his middle-age and increasing in the transfer he receives in his old age. That is, a

generation’s lifetime utility depends only on the action taken while a breadwinner and

the action that the breadwinner takes when he is old. Utility function u(·) satisfies the

condition:

Assumption 4. 8a,a0 2 A2, u(a) = u(a0) ) a = a

0.

This condition ensures that argmaxat2At
u(at, at+1) is unique. Assuming that

argmaxat2At
u(at, at+1) is independent of at+1, I label it at = 0, which can be inter-

preted as no transfers. Note that this overlapping generation game has a unique Markov

equilibrium, in which every player chooses 0.

Let ht = (a1, . . . , at�1) denote the history of preceding actions taken until period t and

Ht(= At�1) denote the set of all possible histories at t. I define the default informational

environment as follows:

Definition B.1. For any t = 1, 2, . . ., generation t has m-th order information if he

knows the actions of the last m generations, (at�1, . . . , at�m), but not any action taken

prior to t�m, (at�m�1, . . . , a1).

Assumption 5. There exists a natural number m such that generation t has m-th order

information for all t = 1, 2, . . ..

If (ht, h0t) is any pair of histories that di↵er only in the actions taken by some of players

i ( t�m�1), then the histories observed by generation t are identical for ht and h0t. For

example, the first-order information is a record of the preceding generation’s past play.

That is, the information is limited in the sense that a generation does not know the actions

taken in the family prior to its parents.

A pure strategy for generation t is a function st : At�m ⇥ · · · ⇥ At�1 ! At. Let St

be the set of t’s pure strategies. A strategy profile is an infinite sequence (st)1t=1 where
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st 2 St for all t. Thus, st(at�m, . . . , at�1) is the element of At which is induced by the

observed history (at�m, . . . , at�1) when st is played.

An action by generation t, at, when he observes (at�m, . . . , at�1), induces an observed

history for t + 1, (at�m+1, . . . , at). Di↵erent actions by generation t generate di↵erent

information for t + 1, and generation t + 1 varies her actions with her observed history,

(at�m+1, . . . , at).

Adopting the terminology of ?, I define our equilibrium definition as follows. Because

past actions do not directly a↵ect current or future utility, I do not have to deal with any

beliefs regarding the histories.

Definition B.2. A strategy profile (st)1t=1 is a sequentially rational equilibrium if

8t, 8(at�m, . . . , at�1) 2 At�m ⇥ · · ·⇥At�1, 8at 2 At,

u(st, st+1|at�m, . . . , at�1) � u(at, st+1|at�m, . . . , at�1)

where

u(at, st+1|at�m, . . . , at�1) = u[at, st+1(at�m+1, . . . , at)]

and

u(st, st+1|at�m, . . . , at�1) = u[st(at�m, . . . , at�1), st+1(at�m+1, . . . , at)].

The following theorem is a variant of Theorem 1 in ?.

Theorem B.1. Under Assumption 1, the overlapping generations game with m-th order

information has a unique pure strategy equilibrium where no intergenerational transfer is

made.

Proof. Suppose that generation t’s equilibrium strategy st is based on action taken by

generation t�m. Then, there exist at�m, a0t�m(at�m 6= a0t�m) such that

ut(st, st+1|at�m, . . . , at�1) > ut(st, st+1|a0t�m, . . . , at�1). Since st+1 conditions only on ac-

tions taken by generations t � m + 1, . . . , t and is independent of generation t � m’s

action, generation t can improve his payo↵ by choosing st(at�m, . . . , at�1) instead of

st(a0t�m, . . . , at�1) when he observes (a0t�m, . . . , at�1). Hence, generation t’s equilibrium

77



strategy is not conditioned on t�m’s actions. Similarly, generation t’s equilibrium strategy

does not condition on k’s action for any k < t. Thus, generation t’s equilibrium strategy

is not based on history. Therefore generation t’s best response is at = 0, which forms a

unique pure strategy equilibrium where no intergenerational transfer is made.

Theorem B.1 indicates that when individuals have limited information about past

events, no strategy profile (which does not have to be Markov) in which players con-

dition their behavior on the observed history, which is payo↵-irrelevant, constitutes an

equilibrium. Thus, intergenerational cooperation cannot be supported in pure-strategy

equilibrium when information about past events is limited.

B.1.2 Two-generations Model with a Local Community

As in the three-generations model, I modify the basic two-generations model by adding

a local community that provides information about the history of play in each family

through gossiping. I consider a situation in which families in the previous basic two-

generations model reside in a close-knit community. In a close-knit community, the bread-

winner receives a reputation based on how he treated his parent and child, and that

reputation will become known to his child through neighbors’ gossip. The transfers a

breadwinner will receive from his child may depend on that reputation, which subse-

quently determines his child’s reputation. In this setting, positive amount of BIGs can be

transferred by pure-strategy equilibria. Formally, this situation is modeled as follows.

Before introducing a local community to the basic model, I define the e�cient level

of transfers. Let argmaxa2A u(a, a) = 1 be the e�cient transfer, which I assume to be

di↵erent from 0, the individually optimal action. Otherwise, it is trivial that no transfer

is sustained in equilibrium. From Assumption 1,

Lemma B.1. u(0, 1) > u(1, 1) > u(0, 0) > u(1, 0)

In each period t, the breadwinner t is assigned a status label xt of a finite set Xt =

{“good”, “bad”}. A generation’s status label xt 2 Xt is determined through ⌧ : Xt�1 ⇥
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At ! Xt. ⌧ specifies the status label of generation t in the next period, ⌧(xt�1, at) 2 Xt,

when his previous generation’s status label is xt�1 2 Xt�1 and his current action is at 2 At.

A social norm, ⌧ , is common knowledge.

A social norm ⌧ is family reciprocity if

xt = ⌧(xt�1, at) =

8

>

<

>

:

“bad” if xt�1 = “good” & at < 1

“good” otherwise

and x0 = “good”. Individuals are considered “bad” only when they do not take care of

their parents whose status label is “good”.

Generation t is labeled by a social norm ⌧ and the community informs the succeeding

generation t+ 1 of t’s status label xt; that is, the status label of the elderly dependent is

known to the breadwinner at period t+ 1. In particular, the breadwinner’s action choice

is typically a function of the previous generation’s status label.

The history of intergenerational transfers may not be known; it becomes known to

each generation only to the extent that it is reflected in the status labels of the elderly

dependent. A pure (Markov) strategy for a generation t is a mapping st : Xt�1 ! At

specifying a choice of action st(xt�1) when the previous generation’s status label is xt�1 2

Xt�1.

Our equilibrium definition here slightly di↵ers from the last one in the information

possessed by the decision makers. Because past actions do not directly a↵ect current or

future utility, I do not have to deal with any beliefs regarding the histories.

Definition B.3. A strategy profile (st)1t=1 is a sequentially rational equilibrium if

8t, 8xt�1 2 Xt�1, 8a 2 A, u(st, st+1|xt�1) � u(a, st+1|xt�1)

where

u(at, st+1|xt�1) = u[at, st+1(⌧(at, xt�1))]

and

u(st, st+1|xt�1) = u[st(xt�1), st+1(⌧(st(xt�1), xt�1))].
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I say that a strategy profile (st)1t=1 is a tit-for-tat strategy if

st(xt�1) =

8

>

<

>

:

1 if xt�1 = “good”

0 if xt�1 = “bad”.

Theorem B.2. In a close-knit community whose social norm is family reciprocity, an

e�cient level of intergenerational transfers can be sustained as a sequentially rational

equilibrium by a tit-for-tat strategy.

Proof. Each generation is labeled by a social norm ⌧ , i.e., xt = ⌧(xt�1, at) for all t.

Consider a community whose social norm is family reciprocity, that is, the breadwinner

has to take care of his parent to be labeled “good” the his parent is “good”.

Suppose that each generation plays a tit-for-tat strategy. Take an arbitrary period t.

When xt�1 = “good”, generation t’s utility is

u(st, st+1|xt�1) = u(1, 1)

u(at, st+1|xt�1) = u(at, 0) if at 6= 1

where u(1, 1) > u(at, 0) for all at 6= 1. When xt�1 = “bad”, generation t’s utility is

u(st, st+1|xt�1) = u(0, 1)

u(at, st+1|xt�1) = u(at, 1) for all at

where u(0, 1) � u(at, 1). Hence,

8t, 8xt�1 2 Xt�1, 8a 2 A u(st, st+1|xt�1) � u(a, st+1|xt�1).

Theorem B.2 establishes that in a community whose social norm is family reciprocity,

an e�cient level of intergenerational transfers can be sustained as a sequentially rational

equilibrium by a tit-for-tat strategy. This result is in a sharp contrast with the case

without a local community (Theorem 1) where BIGs cannot be supported by pure-strategy
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equilibrium.

By Theorems B.1 and B.2 , the intergenerational cooperation is sustained in a close-knit

community. Local gossip by neighbors (or extended families) serve to facilitate cooperation

between generations.
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C. PROOFS FOR CHAPTER 3

C.1 Proof of Theorem 3.1

For any p 2 [0, 1], let

⇡M (p) =
k̂�1
X

k=n�k̂+1

✓

n

k

◆

pk(1� p)n�k,

⇡C(p) =
n
X

k=k̂

✓

n

k

◆

pk(1� p)n�k,

and ⇡A(p) = 1 � ⇡M (p) � ⇡C(p). For d 2 {M,C,A}, ⇡d(p) is the probability that a

single jury composed of n jurors makes a decision d if each juror independently votes for

conviction with probability p. It is clear by definition that ⇡M (p) = ⇡M (1� p) for any p.

The following lemma is key for our analysis.

Lemma C.1. ⇡M (p) is strictly decreasing in p 2 (1/2, 1].



Proof. By di↵erentiation,

d⇡M (p)

dp

=
k̂�1
X

k=n�k̂+1

✓

n

k

◆

kpk�1(1� p)n�k �
k̂�1
X

k=n�k̂+1

✓

n

k

◆

(n� k)pk(1� p)n�k�1

=
k̂�2
X

k=n�k̂

✓

n

k + 1

◆

(k + 1)pk(1� p)n�k�1 �
k̂�1
X

k=n�k̂+1

✓

n

k

◆

(n� k)pk(1� p)n�k�1

=
k̂�2
X

k=n�k̂+1

✓✓

n

k + 1

◆

(k + 1)�
✓

n

k

◆

(n� k)

◆

pk(1� p)n�k�1

+

✓

n

n� k̂ + 1

◆

(n� k̂ + 1)pn�k̂(1� p)k̂�1

�
✓

n

k̂ � 1

◆

(n� k̂ + 1)pk̂�1(1� p)n�k̂. (C.1)

By a well-known identity
�

n
k+1

�

(k + 1) =
�

n
k

�

(n� k), the terms in summation in equation

(C.1) cancel each other out. By this and the fact
� n
n�k̂+1

�

=
� n
k̂�1

�

,

d⇡M (p)

dp

=

✓

n

k̂ � 1

◆

(n� k̂ + 1)pn�k̂(1� p)k̂�1 �
✓

n

k̂ � 1

◆

(n� k̂ + 1)pk̂�1(1� p)n�k̂

=

✓

n

k̂ � 1

◆

(n� k̂ + 1)[pn�k̂(1� p)k̂�1 � pk̂�1(1� p)n�k̂]. (C.2)

The assumption that there is at least one numerical split under which a mistrial is declared

implies k̂ > (n+ 1)/2 and hence k̂ � 1 > n� k̂. Also, the assumption p 2 (1/2, 1] implies

p > 1�p. Thus expression (C.2) is always negative. Therefore ⇡M (p) is strictly decreasing

in p 2 (1/2, 1].

Proof of Theorem 1. First consider the case with pg > pi. Let m!
j be the expected disutil-

ity of juror j when the jury which contains j is hung, while each juror follows an informative

voting and the true state is !.1

For an arbitrary j, let Prob(! = !̄, |s|n�1 = k̂ � 1|sj , t) be the probability that the

1
m

!
j can be calculated by m

G
j = (1� qj)⇡A(pg) +m

G
j ⇡M (pg) and m

I
j = qj⇡C(1� pi) +m

I
j⇡M (1� pi).
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state is !̄ and, of n�1 jurors other than j, k̂�1 jurors observe signal s, conditional on the

event that juror j 2 N t observes signal sj and the existence of all the previous mistrials.

Since jurors in N t observe t hung juries at periods 0, . . . , t� 1, we obtain, for example,

Prob(! = G, |g|n�1 = k̂ � 1|g, t) =
r
�n�1
k̂�1

�

[⇡M (pg)]tpk̂g(1� pg)n�k̂

r[⇡M (pg)]tpg + (1� r)[⇡M (1� pi)]t(1� pi)
.

Define EUj(vj |sj) to be the expected utility for juror j of casting a vote vj , conditional

on j getting to vote and observing signal sj . Juror j 2 N t who observes sj = g has

incentives to vote for conviction if and only if EUj(c|g)�EUj(a|g) � 0. The expression is

EUj(c|g)� EUj(a|g) = [�qj � (�mI
j )]Prob(! = I, |g|n�1 = k̂ � 1|g, t)

+ [�mG
j � (�(1� qj))]Prob(! = G, |i|n�1 = k̂ � 1|g, t)

+ [�mI
j � 0]Prob(! = I, |i|n�1 = k̂ � 1|g, t)

+ [0� (�mG
j )]Prob(! = G, |g|n�1 = k̂ � 1|g, t)

 [�q� (�mI
j )]Prob(! = I, |g|n�1 = k̂ � 1|g, t)

� [mG
j � (1� qj)]Prob(! = G, |i|n�1 = k̂ � 1|g, t)

�mI
jProb(! = I, |i|n�1 = k̂ � 1|g, t)

+mG
j Prob(! = G, |g|n�1 = k̂ � 1|g, t).

By Lemma C.1, pg > pi implies ⇡M (pg) < ⇡M (pi) = ⇡M (1�pi). Therefore limt!1 Prob(! =

G, |g|n�1 = k̂ � 1|g, t) = limt!1 Prob(! = G, |i|n�1 = k̂ � 1|g, t) = 0. Moreover

limt!1 Prob(! = I, |g|n�1 = k̂� 1|g, t) =
�n�1
k̂�1

�

(1� pi)k̂�1pn�k̂
i <

�n�1
k̂�1

�

pk̂�1
i (1� pi)n�k̂ =

limt!1 Prob(! = I, |i|n�1 = k̂ � 1|g, t) by pi > 1/2. Thus we obtain limt!1EUj(c|g) �

EUj(a|g)  �q
�n�1
k̂�1

�

(1 � pi)k̂�1pn�k̂
i < 0. Thus for any su�ciently large t, EUj(c|g) �

EUj(a|g) < 0 for any juror j 2 N t. In other words, all jurors in N t have strict incen-

tives to vote for acquittal even if they observe private signal g, which establishes that

informative voting is not an equilibrium.

In the case with pg < pi, an argument analogous to the above one establishes that, for

any su�ciently large t, all jurors in N t who observe private signal i have strict incentives
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to vote for conviction. Hence informative voting does not form an equilibrium in this case

either.
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