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Abstract

Much health related research depends heavily on the analysis of a rapidly expanding universe of

observational data. A challenge in analysis of such data is the lack of sound statistical methods

and tools that can address multiple facets of estimating treatment or exposure effects in obser-

vational studies with a large number of covariates. We sought to advance methods to improve

analysis of large observational datasets with an end goal of understanding the effect of treatments

or exposures on health. First we compared existing methods for propensity score (PS) adjustment,

specifically Bayesian propensity scores. This concept had previously been introduced (McCandless

et al., 2009) but no rigorous evaluation had been done to evaluate the impact of feedback when

fitting the joint likelihood for both the PS and outcome models. We determined that unless spe-

cific steps were taken to mitigate the impact of feedback, it has the potential to distort estimates

of the treatment effect. Next, we developed a method for accounting for uncertainty in confound-

ing adjustment in the context of multiple exposures. Our method allows us to select confounders

based on their association with the joint exposure and the outcome while also accounting for the

uncertainty in the confounding adjustment. Finally, we developed two methods to combine het-

erogenous sources of data for effect estimation, specifically information coming from a primary

data source that provides information for treatments, outcomes, and a limited set of measured

confounders on a large number of people and smaller supplementary data sources containing a

much richer set of covariates. Our methods avoid the need to specify the full joint distribution of

all covariates.
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Preface

Increasingly, health effects research relies on large, observational datasets. Compared to clinical

trials, the analyses of these databases allow us to study a much larger population and to investi-

gate additional questions of interest. However, analysis of these large and complex administrative

databases raises several methodological challenges and requires the development of new statisti-

cal methods. Comparing the effectiveness of treatment strategies or the health effect of exposure

to harmful agents in observational data is challenging in part because people are not randomly

assigned to treatment strategies or exposures, which introduces the likely possibility that outcome

comparisons are confounded by factors that simultaneously relate to exposure status, treatment

choices, and health outcomes.

Here, we attempt to advance existing research by evaluating existing methods and developing

new methods for confounding adjustment in large observational datasets. First, in Chapter 1,

we look at Bayesian propensity score methods, formally introduced by McCandless et al. (2009).

Bayesian methods have natural appeal because separate likelihoods for what is normally a two

stage procedure can be combined into a single joint likelihood, with estimation of the two stages

carried out simultaneously. In theory, this makes more complete use of the data than traditional

frequentist propensity score methods. One key feature of joint estimation in this context is “feed-

back” between the outcome stage and the propensity score stage, meaning that health outcome

data contributes to the estimation of the posterior distributions of the propensity score. This has

been criticized as violating the principles of objective experimental design (Rubin, 2007, 2008). If

propensity scores are meant to approximate the design stage of a randomized study, any access

to outcome when calculating the propensity score fails to ensure that objective design decisions

are completely separate from analysis decisions. However, methods that incorporate outcome

information have also been advocated (Schneeweiss et al., 2009, McCandless et al., 2009) We found

that a rigorous investigation of exactly how feedback can impact estimation of causal effects was

lacking. We provide this rigorous assessment of Bayesian propensity score estimation and demon-

strate that model feedback can bias estimates of the causal effect absent strategies to ensure that

the propensity score maintains its properties as a balancing score. Much of this was joint work

with Corwin Zigler and large portions of the first chapter have been published in the paper titled

xii



Model Feedback in Bayesian Propensity Score Estimation (Zigler et al., 2013). In Chapter 1, we also add

the following contributions:

• An analysis of an approximately Bayesian method that “cuts the feedback” from the out-

come model to the propensity score model. Zigler et al. (2013) compare the joint Bayesian

method to an traditional sequential approach; here we add in a comparison to a sequential

Bayesian approach as well. This method is originally described by McCandless et al. (2010).

Here we redefine the method, evaluate it in our simulation study and apply it to a com-

parative effectiveness analysis of carotid artery stenting versus the more traditional carotid

endarterectomy.

• Comparison of the methods’ performances in the situation where either the propensity score

or outcome model is misspecified. Zigler et al. (2013) note that augmenting the propensity

score adjustment in the outcome model with adjustment for every covariate that appears in

the propensity score model is “akin to those previously developed to yield “doubly robust”

estimators” (Bang and Robins, 2005, Little, 2011) but do not explore whether this model shares

the desirable features of a doubly robust estimator. Here we conduct a simulation study to

evaluate the performance of the joint Bayesian, sequential Bayesian and traditional sequen-

tial approaches in these settings.

In Chapter 2 we develop a method for confounding adjustment in the setting of multiple ex-

posures or treatments. This method is developed in the context of air pollution epidemiology.

Currently, most epidemiological studies examine health effects associated with exposure to a sin-

gle environmental contaminant at a time. However, humans are exposed to many environmental

agents at once and therefore epidemiological studies need to change focus to this more realistic

setting. One challenge with the transition from a single exposure to multiple exposures is the lack

of a formal approach to select which measured confounders should be included in the outcome

model. Standard approaches for selecting confounders in the context of a single exposure are not

adequate in the context of multiple exposures; the set of confounders of an outcome associated

with simultaneous exposure to more than one exposure or treatment cannot be fully characterized
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by the confounders of the effect of each individual exposure separately. The key task is to identify

confounders that are jointly associated with multiple exposures and the outcome. In this chapter,

we will make two contributions. First, we will clarify the difference as to what constitutes a true

confounder in multiple exposure settings versus single exposure settings. A true confounder in

the multiple exposure setting is any covariate that confounds the relationship between simultane-

ous exposure to multiple pollutants and the outcome of interest. This could be a covariate that is

marginally associated with one or more exposures - and, hence, would also be a confounder in the

single exposure setting - or one that is jointly associated with multiple exposures (and might not

be a confounder in the single exposure setting). Second, we will develop a statistical framework

to adjust for confounding in the presence of multiple exposures while accounting for uncertainty

in the confounding adjustment. Recently (Wang et al., 2012) introduced Bayesian Adjustment for

Confounding (BAC) as a method to select confounders in the single exposure setting. BAC uses a

Bayesian approach to model averaging to estimate the health effect associated with exposure to a

single pollutant while acknowledging the uncertainty in the confounder selection. We introduce

BAC for multiple exposures (BAC-ME) to extend this framework where selection of confounders

is based on simultaneous exposure to multiple pollutants. Our method allows us to select a subset

of covariates to include to control for confounding in a linear regression model while protecting

against the possibility of eliminating a true confounder. This also helps identify true confounders

for future research efforts. We show through simulation studies that it is of paramount importance

to include all confounders in the outcome model and that excluding only one true confounder

could lead to substantial bias in estimation of the multi pollutant adverse health effect. We also

apply our method to a retrospective epidemiological study aimed at estimating the multi pollutant

adverse effect on cardiovascular hospitalization associated with a simultaneous change in ozone

and PM2.5, controlling for weather data and population level characteristics. This work has been

submitted for publication (Bayesian Adjustment for Confounding in the Presence of Multiple Exposures,

Krista Watts, Corwin M. Zigler and Francesca Dominici)

In Chapter 3 we develop two methods to combine data from heterogeneous data sources when

the goal is to compare the effect of two treatments or exposures. We look specifically at the set-

ting where we have information coming from a primary data source that provides information for

treatments, outcomes, and a limited set of measured confounders on a large number of people and
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smaller supplementary data sources containing a much richer set of covariates. Often, important

confounders are not measured in the primary data. However, the supplemental data source may

contain information on important confounders in a subset of the population. Current methods

for combining such data sources for analysis require specifying the joint distribution of all data

(Little and Rubin, 2002). When the missing covariates are high dimensional, correlated, or contain

both continuous and dichotomous or categorical variables, correctly specifying this distribution is

nearly impossible. Recently, McCandless et al. (2012) suggest a method to use ‘conditional propen-

sity scores’ to adjust for confounders available only in a supplementary dataset. We propose two

methods that build on their work. We conduct a simulation study to show settings when our

methods can substantially reduce bias over complete case analysis or ‘naive’ analysis that adjusts

for only the fully measured covariates. We expect to submit this work for publication in the next

few weeks (Propensity Score Methods for Combining Data Sources, Krista Watts, Corwin M. Zigler,

Yun Wang and Francesca Dominici)
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Model Feedback in Bayesian Propensity Score Estimation



1.1 Abstract

Methods based on the propensity score comprise one set of valuable tools for comparative effec-

tiveness research and for estimating causal effects more generally. These methods typically consist

of two distinct stages: 1) a propensity score stage where a model is fit to predict the propensity to

receive treatment (the propensity score), and 2) an outcome stage where responses are compared

in treated and untreated units having similar values of the estimated propensity score. Traditional

techniques conduct estimation in these two stages separately; estimates from the first stage are

treated as fixed and known for use in the second stage. Bayesian methods have natural appeal in

these settings because separate likelihoods for the two stages can be combined into a single joint

likelihood, with estimation of the two stages carried out simultaneously. One key feature of joint

estimation in this context is ‘feedback’ between the outcome stage and the propensity score stage,

meaning that quantities in a model for the outcome contribute information to posterior distribu-

tions of quantities in the model for the propensity score. We provide a rigorous assessment of joint

Bayesian propensity score estimation to show that model feedback can produce poor estimates of

causal effects absent strategies that augment propensity score adjustment with adjustment for in-

dividual covariates. We also explore an approximately Bayesian sequential method and show that

adjustment for individual covariates is not required to obtain an unbiased estimate of the causal

effect. We illustrate this phenomenon with a simulation study and with a comparative effective-

ness investigation of carotid artery stenting vs. carotid endarterectomy among 123,286 Medicare

beneficiaries hospitalized for stroke in 2006 and 2007.

1.2 Introduction

Propensity scores (PS) are an often used tool for comparing the effectiveness of clinical treatments

as they are applied in routine practice (Rosenbaum and Rubin, 1983). PS methods are used

to estimate causal effects that are not confounded by observed characteristics. Traditionally,

estimating causal effects with PS methods is achieved in two stages: 1) a ‘PS stage’ where a

model is fit to predict the receipt of treatment from available covariates, with the predicted values
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from this model representing the estimated PS, and 2) an ‘outcome stage’ whereby outcomes of

treated and untreated units are compared among units with similar values of the PS. Typically,

the two-stage nature of the problem is accommodated by separate and sequential estimation; a

model is fit in the PS stage, then the estimated PS from this model are treated as fixed and known

to conduct adjusted comparisons in the outcome stage. In this paper, we are considering a model

base approach for both stages and will refer to the PS and outcome models from here forward.

Recently McCandless et al. (2009) proposed Bayesian estimation as a means to jointly estimate

quantities in the PS and outcome models. One major motivation for Bayesian PS estimation

is that jointly estimating quantities in the two models propagates uncertainty in estimation of

the PS into estimation of the treatment effect, whereas one conceivable limitation of traditional

sequential methods is that they potentially misstate the uncertainty in causal estimates by treating

the estimated PS as a known quantity in the outcome stage (Gelman and Hill, 2007). The key

idea with joint Bayesian PS estimation is that the PS is acknowledged as an unknown quantity,

uncertainty about which is integrated out of posterior distributions of quantities in the outcome

stage. Aside from providing a more comprehensive account of uncertainty, clear potential lies in

incorporating PS methods into the broader literature on Bayesian methodology.

One important feature of joint modeling with Bayesian estimation is that doing so allows ‘feed-

back’ between the models. In the PS context, this means that posterior samples of parameters

in the PS stage are informed in part by information from the outcome stage, rendering the

problem of Bayesian PS estimation substantially more complex than a simple Bayesian analog to

well-established procedures. In fact, the notion of estimation and use of the PS in a joint likelihood

has generated some controversy. One view is that the PS is meant to approximate the design stage

of a randomized study, and that this should be done without any access to the outcome in order

to ensure objective design decisions that are completely separate from analysis decisions (Rubin,

2007, 2008). Nonetheless, methods that incorporate outcome information have been advocated

(Schneeweiss et al., 2009, McCandless et al., 2009). In principle, incorporating feedback in joint
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Bayesian estimation entails estimates of the PS themselves that make more complete use of the

data, which could improve estimation of causal effects. However, a rigorous investigation of

exactly how feedback can impact estimation of causal effects is lacking.

In what follows we illustrate that, in general, model feedback in joint Bayesian estimation

can result in biased estimates of the treatment effect. Unlike traditional sequential procedures

that estimate the PS based solely on information on how covariates relate to the treatment, we

show that joint Bayesian estimation with feedback uses information from the outcome model to

construct the PS, and that feedback from this model can distort the nature of the PS and impair

its ability to adjust for confounding. We also demonstrate two techniques that can recover the

causal effects: changing the nature of the feedback by using outcome models that augment PS

adjustment with adjustment for individual covariates, and ‘cutting’ the feedback by using an

approximately Bayesian sequential approach.

Using nationwide data on 123,286 Medicare beneficiaries, we illustrate joint Bayesain PS esti-

mation in a comparative effectiveness investigation regarding the recent increase in the use of

carotid artery stenting (CAS) for treatment of carotid artery disease (a primary cause of stroke),

as compared to the more established carotid endarterectomy (CEA) procedure. Because these

therapies are not randomly applied in clinical practice, we use several clinical characteristics to

adjust for confounding when estimating a causal treatment effect. We compare the results of

the joint Bayesian analysis and sequential Bayesian analysis both with and without individual

covariate adjustment with a traditional sequential approach.

1.3 Propensity Score Estimation

For a binary treatment, X = 0, 1, an outcome, Y , and a vector of p covariates (C1, C2, . . . , Cp),

Rosenbaum and Rubin (1983) defined the PS as the conditional probability of assignment to
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treatment X = 1, given the covariates. Causal inference with the PS relies on two important

features. First, treatment assignment must be assumed strongly ignorable; that is, there must

be no unmeasured confounders. Second, by virtue of the fact that the PS reflects the treatment

assignment mechanism, the PS enjoys the property of a balancing score, resulting in conditional

independence between the treatment and the individual covariates, conditional on the score:

X ⊥⊥ C1, . . . , Cp|PS. This balancing score property combined with the assumption of strongly

ignorable treatment assignment allows average comparisons between treated and untreated

outcomes at a given value of the PS to serve as an unbiased estimate of the average treatment

effect at that value of the PS.

1.3.1 PS and outcome models

PS methods consist of two distinct parts: the estimation of the PS and estimation of the causal

effect conditional on the PS. The PS model models the probability that X = 1 (given covariates):

gx(E[X|C]) = Cγ, where gx(·) is a link function, and C is the collection of pretreatment covari-

ates plus an intercept, C = (1, C1, C2, . . . , Cp). Thus, the PS model can be represented with the

following likelihood:

L(X|γ,C) =
n∏
i=1

[g−1x (Ciγ)]Xi [1− g−1x (Ciγ)]1−Xi , (1.1)

where here and throughout, boldface is used for vectors and matrices representing the values for

the entire sample, and i = 1, . . . , n indexes observational units. With this formulation, the values

of γ and Ci determine the PS for the ith unit.

Consider a binary outcome, Y = 0, 1, but note that results in the following hold for other out-

comes. We define a model for the outcome, conditional on the PS: gy(E[Y |X,C]) = ξ0 + βX +

ξh(γ,C) + C+δ, where gy(·) is another link function, the deterministic function h(γ,C) specifies

how the PS enters the outcome model, and the term C+δ denotes possible residual adjustment for

some subset C+ ∈ C in addition to the PS. For example, h(γ,C) = Cγ would specify linear adjust-
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ment for the linear predictor term from model (1.1), and δ = 0 would indicate adjustment for the

PS only. Alternatively, h(γ,C) could specify dummy variables for membership in subclasses de-

fined by q quantiles of the PS, and δ 6= 0 would augment PS adjustment with individual covariate

adjustment within subclass. We express the outcome stage likelihood as:

L(Y|β, ξ,X,C, γ, δ) =
n∏
i=1

[g−1y (ξ0+βXi+ξh(γ,Ci)+δC
+
i )]Yi [1−g−1y (ξ0+βXi+ξh(γ,Ci)+δC

+
i )]1−Yi .

(1.2)

The primary objective is to estimate the causal effect of X = 1 vs. X = 0 on Y . Towards this

end, the conditional parameter β may be of primary interest as this quantity represents the

conditional (on the PS) causal effect. If the marginal effect is of primary interest, it can be obtained

by marginalizing with respect to the empirical distribution of the covariates. Issues such as non

collapsibility may prevent estimation of the marginal causal effect regardless of method used, but

any effort to obtain the marginal effect requires estimation of β as a precursor step. Therefore,

what follows equates estimation of causal effects to estimation of β for ease of illustration.

1.3.2 Traditional sequential estimation

Traditional PS procedures conduct estimation in the PS and outcome models completely sepa-

rately. Estimates of γ are obtained from (1.1) to construct the estimated PS. Then, the estimated

PS are treated as known quantities in the outcome model. That is, with estimated γ̂, estimation of

the treatment effect follows from L(Y|β, ξ,X,C, γ̂, δ) specified in (1.2).

An important feature of this approach is that it makes no attempt to recover the entire covariate-

outcome relationship. Rather than specify a model for the relationship between each covariate

and the outcome, the outcome model conditions on a one-dimensional summary of multivariate

covariate information (the PS), with the dimension reduction specifically determined by fitting

the PS model in (1.1). Of key importance is that this dimension reduction reflects the treatment
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assignment mechanism to ensure the balancing score property. Other dimension reductions of C,

e.g. with different values of γ, may fail to reflect p(X = 1|C), and are not guaranteed to possess

the balancing score property at the heart of PS methods.

With sequential estimation, estimates of γ from (1.1) are obtained in a manner that completely

ignores quantities in the outcome model such as β, ξ, and Y . As we elaborate in the following

sections, the primary difference with joint Bayesian estimation is the presence of feedback, which

means that specification of the outcome model affects estimates of γ. The sequential Bayesian

estimation ignores quantities in the outcome model when estimating γ but rather than treating

the estimate of the PS as fixed quants, it considers their entire posterior distribution.

1.4 Bayesian Estimation and Model Feedback

In this section we formalize Bayesian PS estimation and illuminate in detail the role of model

feedback. In contrast to the sequential procedure described in Section 1.3.2, Bayesian PS estimation

combines the models in (1.1) and (1.2) into a single joint likelihood:

L(Y,X|C, γ, β, ξ, δ) =
n∏
i=1

[g−1x (Ciγ)]Xi [1− g−1x (Ciγ)]1−Xi× (1.3)

[g−1y (ξ0 + βXi + ξh(γ,Ci) + δC+
i )]Yi [1− g−1y (ξ0 + βXi + ξh(γ,Ci) + δC+

i )]1−Yi . (1.4)

The likelihood in (1.3)-(1.4), together with the prior distribution for (γ, β, ξ, δ) serves as the basis

for posterior inference. Recall that h(γ,C) is a deterministic function of γ, which means that the

PS themselves are treated as unknown quantities that are updated with every posterior update

of γ. Model feedback in this case arises because both terms of the likelihood contribute to the

posterior distribution of γ.

7



Throughout, we use a Metropolis-Hastings MCMC algorithm to sample from posterior distribu-

tions. We conduct the MCMC using two sampling blocks: one updating γ from its conditional

posterior distribution, which corresponds to an update of the PS as well, and another block

updating all parameters in the outcome model. Note from the likelihood in (1.3)-(1.4) that

although updating γ conditional on (β, ξ, δ) -which corresponds to an update of the PS -will

involve both terms of the likelihood, only term (1.4) - the likelihood for the outcome model -

contributes to updating (β, ξ, δ) conditional on γ.

To illustrate the fundamental features of feedback implied by joint estimation of (1.3)-(1.4), the

remainder of this section considers the simplified setting where the PS is included in the outcome

model as a linear predictor; that is, we assume that h(γ,C) = Cγ and that ξ = ξ1.

1.4.1 Algebraic Illustration of Feedback

Purely for illustration, take g−1x (·) and g−1y (·) as the Normal CDF, Φ(·), representing Probit regres-

sion in the PS and outcome stages, and take all prior distributions ∝ 1. Following Albert and Chib

(1993), the Probit link allows Bayesian estimation with a data-augmentation procedure that iter-

atively samples latent continuous data from a truncated normal distribution with unit variance

such that the latent X∗(Y ∗) are > 0 when X = 1(Y = 1), and < 0 otherwise. Conditional on

(X∗,Y∗),

p(γ, β, ξ, δ|X∗,Y∗,X,C) ∝ exp{−1

2
[(X∗ −Cγ)T(X∗ −Cγ)

+ (Y∗ − ξ01n − βX− ξ1Cγ −C+δ)T(Y∗ − ξ01n − βX− ξ1Cγ −C+δ)]},

C is the n × (p + 1) design matrix, and 1n is a n−dimensional vector with every entry equal to

one. Thus, the conditional posterior distribution of γ can be written as:

p(γ|X∗,Y∗,X,C, β, ξ, δ) ∝ exp{γT (CTC(1 + ξ21))γ − 2γT [CT(X∗ + ξ1(Y
∗ − ξ01n − βX−C+δ))]}
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which corresponds to the kernel of a Normal distribution with covariance matrix (CTC(1+ξ21))−1

and mean (CTC(1 + ξ21))−1(CT(X∗ + ξ1(Y
∗ − ξ01n − βX − C+δ))). Immediately we see that

when ξ1 6= 0, quantities from the outcome model contribute to the posterior distribution of γ and,

by extension, the PS. This is the nature of model feedback.

1.4.2 Implied parameterization of the covariate-outcome response surface

Until otherwise noted, asssume an outcome model that only adjusts for the PS; that is, assume

δ = 0. Considering the joint likelihood in (1.3)-(1.4) implies a parameterization of the covariate-

outcome response surface conditional on X . We re-express ξ0 + βX + ξh(γ,C) from term (1.4)

as:

ξ0 + βX + ξ1(γ0 + γ1C1 + . . .+ γpCp) = (ξ0 + ξ1γ0) + βX + ξ1γ1C1 + . . .+ ξ1γpCp. (1.5)

This parameterization implies that the covariate-outcome relationship for the kth covariate is

described by ξ1γk, that is, that every covariate-outcome relationship is a rescaled version of

the covariate-treatment relationship, with the same re-scaling factor (ξ1) for every covariate.

The key feature of model feedback is that posterior estimates of γ are informed in part by

this parameterization of the outcome model, which may imply information about γ that is

not consistent with the treatment assignment mechanism. In particular, this will occur if the

underlying covariate-outcome relationship cannot be expressed as a simple rescaling of the

covariate-treatment relationship.

To further illustrate, consider a simple setting where the true underlying relationships between p

covariates, treatment, and outcome can be described as follows:

gx(P (Xi = 1|Ci)) = γ0 + γ1Ci1 + . . .+ γpCip and (1.6)
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gy(P (Yi = 1|Xi, Ci)) = α0 + βXi + α1Ci1 + . . .+ αpCip. (1.7)

With the above data-generating mechanism, the joint likelihood in (1.3)-(1.4) with δ = 0 correctly

models (1.6), but entails linear adjustment for gx(PS), rather than a model for the complete

covariate-outcome relationship in (1.7). Combining the above data-generating mechanism with

the systematic component of the outcome model paramaterized as in the right hand side of

(1.5) corresponds to γ0 = α0−ξ0
ξ1

and γ1 =
α1

ξ1
, γ2 =

α2

ξ1
, . . . , γp =

αp
ξ1

, meaning that the only

way that the PS and outcome modeling stages can imply the same values of γ is if αk = ξ1γk

for all k. If this relationship does not hold, then feedback from the outcome model will yield

posterior estimates of γ that do not reflect the true treatment-assignment mechanism in (1.6),

meaning that h(γ,C) is not technically a function of the PS and may not be a balancing score.

Thus, Bayesian estimation with (1.3)-(1.4) and δ = 0 is not guaranteed to yield estimates

of β that reflect the causal treatment effect. In contrast, the sequential strategy in Section

1.3.2 estimates γ without regard to the outcome model, thus ensuring that h(γ,C) maintains

the balancing score property. We illustrate this phenomenon in the simulation study of Section 1.5.

1.4.3 Augmenting PS adjustment with individual covariates

The above feature of joint Bayesian PS estimation is not a feature of model feedback in general, but

rather a byproduct of the dimension reduction implied by using the PS as a univariate summary of

covariate information. Consider instead a model with δ 6= 0 that adjusts for covariates in addition

to the PS. With h(γ,C) = Cγ, C+ can include at most (p − 1) covariates to prevent perfect linear

dependence in the design matrix for the outcome model. In this case, setting C+ = (C2, . . . , Cp),

the right hand side of expression (1.5) becomes:

(ξ0 + ξ1γ0) + βX + ξ1γ1C1 + (ξ1γ2 + δ1)C2 + . . .+ (ξ1γp + δp−1)Cp.
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While setting δ 6= 0 still implies feedback, the feedback does not impose the same restriction

on the relationship between the covariate-treatment and covariate-outcome relationships which

allows estimation of γ in accordance with the treatment assignment mechanism, thus maintaining

the balancing score property. In other words, setting δ 6= 0 allows the additional flexibility of

modeling the covariate-outcome relationship without assuming that this relationship is a scalar

multiple of the covariate-treatment relationship. The simulation study in Section 1.5 illustrates

this phenomenon, and examines its benefits it situations where either the PS model or the

covariate adjustment in the outcome model is misspecified.

1.4.4 Cutting the feedback

McCandless et al. (2010) present the idea of an approximately Bayesian method that ‘cuts the

feedback’ from the outcome model to the PS model as an alternative to the fully Bayesian

approach. We still use a Metropolis-Hastings MCMC algorithm but we do not sample from the

joint posterior distribution. We cut the feedback from the outcome model to the PS model by first

updating γ from the distribution defined by (1.3) and the prior distribution of γ. This posterior

distribution ignores the likelihood contribution from (1.4). We then update (β, ξ, δ) given γ̂

from the posterior defined by defined by (1.4) and the prior distribution of (β, ξ, δ). Cutting

the feedback from the outcome model to the PS model eliminates any restrictions between the

covariate-treatment/covariate-outcome relationship as they are modeled separately. Of note, the

sequential Bayesian method primarily differs from the traditional sequential approach in that

it does not treat the estimated PS as a fixed quantity. Rather, it makes use of the full posterior

distribution of the PS by updating the estimated PS in the outcome model at every iteration of

the MCMC. Residual confounding adjustment by allowing δ 6= 0 is still possible but is no longer

necessary to ensure h(γ,C) maintains the balancing score property.
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1.5 Simulation Study

In this section we present a simulation study to illustrate that the features described in the

simplified setting of Section 1.4 persist in settings with more flexible specification of h(γ,C).

All simulated datasets contain n = 1000 observations and p = 6 covariates, simulated from the

following data-generating scheme. First, C1, . . . , C6 are simulated from a multivariate normal

distribution with mean (0, 0, 0, 0, 0, 0) and the identity covariance matrix. For all i, Xi is simulated

from a Bernoulli distribution with:

P (Xi = 1|Ci) =
exp(γ0 + γ1Ci1 + . . .+ γ6Ci6)

1 + exp(γ0 + γ1Ci1 + . . .+ γ6Ci6)
. (1.8)

All Yi are similarly generated from Bernoulli distributions with:

P (Yi = 1|Xi, Ci) =
exp(α0 + βXi + α1Ci1 + . . .+ α6Ci6)

1 + exp(α0 + βXi + α1Ci1 + . . .+ α6Ci6)
. (1.9)

The values of γ specify the true treatment assignment mechanism, those of α specify the true

covariate-outcome relationship, and β is the conditional treatment effect. For all simulations, we

set β = 0.0.

We simulated 1000 data sets under each scenario described below, and analyzed the simulated

data with the joint Bayesian method described in Section 1.4, both with and without residual

confounding adjustment, and with the sequential Bayesian method described in Section 1.4.4.

For comparison, we obtain maximum likelihood estimates of β using the traditional sequential

procedure of Section 1.3.2 and from fitting model (1.9) directly, referring to the latter as the ‘Gold

Standard’ since we know that this is the true data-generating mechanism.
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Throughout analysis of the simulated data, we specify both g−1x (·) and g−1y (·) as exp(·)
1+exp(·) , indicating

logistic regression in both model stages. Unlike the simple illustrations provided in Section 1.4,

we take a more flexible modeling approach that stratifies units on quintiles of the logit(PS) and

estimates the same β across PS strata. Adjustment for PS subclass is augmented with additional

covariate adjustment (δ 6= 0) when noted. For the Bayesian analyses, every posterior update of

γ implies an update of the PS, so the quintiles of logit(PS) are recalculated and the PS subclasses

redefined at every MCMC iteration. We specify diffuse prior distributions for all parameters as

Normal with mean 0 and variance 1010. In addition to comparing estimates of β, we also compare

methods on the basis of estimates of γ, which determine the estimated PS. For point estimation,

we use posterior mean estimates for the Bayesian methods, obtained from three MCMC chains,

each run for 10,000 iterations, with the first 5,000 discarded as burn in and every 10th sample

saved for posterior inference. Note here that application of PS methods in practice should involve

an investigation of whether covariates are balanced within PS subclass, which we forego in the

simulation study. Balance checks are addressed in detail for the data analysis in Section 1.7.

1.5.1 Scenario where the covariate-outcome relationship is a simple rescaling of the
covariate-treatment relationship

Scenario 1 generates data with parameters in (1.8) and (1.9) set to (γ0, γ1, γ2, γ3, γ4, γ5, γ6) =

(0.0, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3) and (α0, α1, α2, α3, α4, α5, α6) = (0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5). This

scenario represents a unique special case where γ = α
ξ1

and where the joint bayesian method

should be capable of recovering the treatment effect without augmenting the outcome model

with additional covariate adjustment.

We analyze the data with δ = 0. Figure 1.1 depicts boxplots of the resulting posterior estimates

of γ and β for both the joint Bayesian sequential Bayesian methods, along with estimates from

the traditional sequential approach. We see that, on average, all three methods produce point

estimates of γ that are similar and agree with the true parameter values from (1.8). For γ1, . . . , γ6,
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point estimates are less variable with the joint Bayesian method, which is to be expected because

posterior distributions of these quantities involve additional information via feedback from the

outcome model. Estimates of β are also similar between the methods. Again, this simulation

illustrates the special case where the PS and outcome models imply the same values of γ, so

posterior estimates of h(γ,C) reflect the treatment assignment mechanism and the joint Bayesian

method estimates the causal effect.
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Figure 1.1: Scenario 1 with (γ0, γ1, γ2, γ3, γ4, γ5, γ6) = (0.0, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3), and (α0, α1,
α2, α3, α4, α5, α6) = (0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5): boxplots of estimates of γ and β from the traditional
sequential, joint Bayesian and sequential Bayesian analyses of 1000 replicated data sets. Horizontal dotted
lines are at the true parameter values.

1.5.2 Scenario where one covariate exhibits a different covariate-treatment/ covariate-
outcome relationship

Appealing to the discussion in Section 1.4, we simulate Scenario 2 with 5 covariates having the

same covariate-treatment/covariate-outcome relationship, with the sixth covariate exhibiting a

different relationship. This setting illustrates the effect that model feedback can have on joint

Bayesian estimation when the covariate-outcome response surface cannot be expressed as a

simple rescaling of the covariate-treatment surface. Towards this end, we simulate data as in

14



Scenario 1, except we change γ6 to -0.3 so that γ 6= α
ξ1

.

We first analyze the data with δ = 0. Figure 1.2a depicts boxplots of estimates of γ and β from

all three estimation methods. Unlike in Scenario 1, we see that, on average, the joint Bayesian

method produces different estimates of γ1, . . . , γ6 than either the sequential Bayesian method

or traditional sequential method, whereas the latter two estimates agree. While both sequential

approaches estimate γ in accordance with the treatment assignment mechanism in (1.8), the

joint Bayesian method estimates different values of γ, with the most pronounced difference for

γ6. In the joint Bayesian method, the quantity h(γ,C) does not reflect the treatment assignment

mechanism, and is not guaranteed to serve as a balancing score. The result is posterior estimates

of β with poor performance relative to estimates from the sequential procedures. This illustrates

how feedback can distort the balancing score property of the PS and yield estimates of β that do

not reflect a causal effect.

We argued in Section 1.4.3 that augmenting PS adjustment with individual covariates can prevent

feedback from distorting estimates of γ in the joint Bayesian approach. Because we know in this

simulated example that one covariate exhibits a different relationship with the treatment, we re-

analyze these simulated data sets with an outcome model that adjusts for C6 within PS subclass.

That is, we let δ 6= 0 and C+ = C6 in (1.2), referring to this analysis as Scenario 2+. Point estimates

from this analysis are compared in Figure 1.2b. We include the sequential Bayesian method for

comparison purposes, although as noted in section 1.4.4 and shown in Figure 1.2a, this adjustment

is not necessary for this method to maintain the balancing property. Compared to the analysis that

adjusts only for the PS, the model that augments PS estimation with additional adjustment of C6

produces estimates of γ1, . . . , γ6 that are much more similar between the three estimation methods,

implying that the joint Bayesian method with δ 6= 0 comes closer to capturing the true treatment

assignment mechanism. As a result, estimates of β are similar in the joint Bayesian and sequential

estimation approaches, although the methods do not produce the exact same estimates.
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(a) Scenario 2, δ = 0
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(b) Scenario 2+, δ 6= 0

Figure 1.2: Scenarios 2 and 2+ with (γ0, γ1, γ2, γ3, γ4, γ5, γ6) = (0.0, 0.3, 0.3, 0.3, 0.3, 0.3,−0.3), and
(α0, α1, α2, α3, α4, α5, α6) = (0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5): boxplots of estimates of γ and β from the sequen-
tial frequentist, joint Bayesian and sequential Bayesian analysis of 1000 replicated data sets. Horizontal
dotted lines are at the true parameter values.

1.5.3 Scenario where every covariate exhibits different covariate-treatment/ covariate-
outcome relationship

Finally, we simulate Scenario 3 so that the covariate-treatment/covariate-outcome relation-

ship is different for every covariate. For the PS model (1.8) we set (γ0, γ1, γ2, γ3, γ4, γ5, γ6) =

(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6). For the outcome model (1.9) we set (α0, α1, α2, α3, α4, α5, α6) =

(0.0, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1).

We first analyze the data with δ = 0. From Figure 1.3a, we see that the joint Bayesian method

provides estimates of γ1, . . . , γ6 that are all shrunken towards 0.35 (the average value of γ1, . . . , γ6),

which is a consequence of estimating these quantities with feedback from an outcome model that

imposes restrictions on the covariate-treatment and covariate-outcome relationships. This is in

stark contrast to the estimates from the sequential methods that are not informed by the outcome

and accurately reflect a different γk for k = 1, 2, . . . , 6. We also see that these vast discrepancies
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between estimates of γ lead to estimates of β that are very different, with the joint Bayesian

estimates performing very poorly. In a setting where the covariate-treatment/covariate-outcome

relationship is different for every covariate, joint Bayesian estimation with δ = 0 cannot ade-

quately recover the treatment effect, even though sequential methods perform well.

We reanalyze the data simulated in Scenario 3 with δ 6= 0 and C+ = (C1, . . . , C6), referring to this

analysis as Scenario 3+. Results for these analyses are summarized in Figure 1.3b, which shows

that the additional covariate adjustment in the outcome model prevents feedback from distorting

estimates of γ, leading to estimates of γ from the joint Bayesian method that agree, on average,

with those from the sequential procedures and the true treatment assignment mechanism. As a

consequence, h(γ,C) maintains the balancing score property, and Bayesian estimates of β agree

very closely with estimates from the sequential procedure and with the true parameter value.
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(a) Scenario 3, δ = 0
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Figure 1.3: Scenarios 3 and 3+ with (γ0, γ1, γ2, γ3, γ4, γ5, γ6) = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), and
(α0, α1, α2, α3, α4, α5, α6) = (0.0, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1): boxplots of estimates of γ and β from the sequen-
tial frequentist, joint Bayesian and sequential Bayesian analyses of 1000 replicated data sets. Horizontal
dotted lines are at the true parameter values.
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Table 1.1 numerically summarizes the performance of each method in terms of estimates of β. This

table also summarizes bias from an unadjusted analysis, which is high in all scenarios. The joint

Bayesian analyses of scenarios containing different covariate-outcome and covariate-treatment

relationships that do not augment PS adjustment (Scenarios 2 and 3) produce estimates of β with

substantial bias, as compared to the sequential approaches and to the Gold Standard analysis.

Joint Bayesian estimates for these scenarios also exhibit low coverage probabilities.

For Scenarios 1, 2+, and 3+ all methods performed comparably. It is interesting to note that, for

the scenarios where one covariate exhibits a different covariate-treatment relationship (2 and 2+),

augmenting with the additional covariate actually resulted in slightly more bias for the sequential

Bayesian method. The sequential Bayesian method also has conservative confidence interval

coverage, with coverage at least 98% in all scenarios. The interval widths are nearly twice as wide

as those from either the traditional sequential or joint Bayesian methods as the posterior standard

deviation seems to overestimate the standard deviation of the posterior mean. (results not shown).

It is also important to note that the detrimental effects of feedback on causal estimates when δ = 0

(as displayed in Scenarios 2 and 3) is a feature of the dimension-reduced feedback explicated in

Section 1.4.2 and that this phenomenon cannot be remedied by increasingly flexible choices for

h(γ,C). To illustrate this point, Appendix A.1.1 conducts a simulation study paralleling that in

Scenarios 3 and 3+, but specifying a flexible spline basis for h(γ,C). The results of this simulation

are the same as those presented here; estimates of β are biased when δ = 0, but not when δ 6= 0, the

latter case being analogous to the penalized spline of propensity prediction method of Little (2011).

1.6 Model Misspecification

We have shown that model feedback has the potential to distort effect estimates when doing joint

Bayesian PS estimation. One recommendation to overcome this is when conducting joint Bayesian
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estimation with models for the PS and outcome stage augment the PS adjustment with adjustment

for every covariate that appears in the PS model, a strategy akin to those previously developed

to yield ‘doubly robust’ estimators that will estimate causal effects when either the PS model or

the model for additional adjustment is correctly specified (Bang and Robins, 2005, Little, 2011). In

this section, we use simulations to demonstrate that if we correctly specify the functional form

of the covariate adjustment in the outcome model, we will get unbiased effect estimates, even if

we misspecify the PS model. Likewise, if we misspecify the covariate adjustment in the outcome

model but have the PS model correctly specified, we also get unbiased effect estimates. This is

true, regardless of the method used (joint Bayesian, sequential frequentist or sequential Bayesian)

but only if we include all C for residual confounding adjustment.

1.6.1 Misspecification of the Outcome Model

First, let’s consider the case where the PS model is correctly specified but the residual covariate

adjustment in the outcome model does not reflect the true data generating mechanism. We gener-

ate data from the situation where the covariate-treatment/covariate-outcome relationship are not

simple rescalings - in other words, the residual confounding is necessary for the PS to maintain

the balancing score property when using the joint Bayesian method. Specifically, after generating

C as described in section 1.5, we generate X and Y from Bernoulli distributions with probabilities

as follows

P (Xi = 1|Ci) =
exp(γ0 + γ1Ci1 + . . .+ γ6Ci6)

1 + exp(γ0 + γ1Ci1 + . . .+ γ6Ci6)

P (Yi = 1|Xi, Ci) =
exp(α0 + βXi + α1 log |Ci1|+ . . .+ α6 log |Ci6|)

1 + exp(α0 + βXi + α1 log |Ci1|+ . . .+ α6 log |Ci6|)

where (γ0, γ1, γ2, γ3, γ4, γ5, γ6) = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), (α0, α1, α2, α3, α4, α5, α6) =

(0.0, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) and β = 0.
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We analyzed the simulated data with δ 6= 0 and C+ = (C1, . . . , C6) using the joint Bayesian,

sequential Bayesian and sequential frequentist approaches. Results for these analyses are summa-

rized in Figure 1.4. We see that even though misspecified, the additional covariate adjustment in

the outcome model still changes the nature of the feedback such that it does not distort estimates

of γ, leading to joint Bayesian estimates of γ that agree, on average, with those from the sequential

procedures and the true treatment assignment mechanism. As a consequence, h(γ,C) maintains

the balancing score property, and joint Bayesian estimates of β agree very closely with estimates

from the sequential procedures and with the true parameter value. With a correctly specified PS

model, we expect X ⊥⊥ C1, . . . , Cp|PS. It was the restriction on the covariate-treatment/covariate-

outcome relationship imposed by fitting the joint likelihood that distorted estimates of γ, the PS

and ultimately β. Adjusting for these covariates, even if the functional form of the adjustment

does not reflect the true data generating mechanism, still allows estimation of γ in accordance

with the treatment assignment mechanism, thus maintaining the balancing score property.
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Figure 1.4: Misspecified outcome model: boxplots of estimates of γ and β from the sequential frequentist,
joint Bayesian and sequential Bayesian analysis of 1000 replicated data sets. The dashed line represents the
true parameter values.
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1.6.2 Misspecification of the Propensity Score Model

Now, let’s consider the case where the additional covariate adjustment in the outcome model

reflects the true data generating mechanism but the PS model is incorrectly specified. In addition

to the PS model misspecification, γ 6= α
ξ1

; in other words, even if the functional form was correctly

specified, we would still need additional covariate adjustment in the outcome model for h(γ,C) to

maintain the balancing score property in the joint Bayesian method. Specifically, after generating

C as described in section 1.5, we generate X and Y from Bernoulli distributions with probabilities

as follows

P (Xi = 1|Ci) =
exp(γ0 + γ1 log |Ci1|+ . . .+ γ6 log |Ci6|)

1 + exp(γ0 + γ1 log |Ci1|+ . . .+ γ6 log |Ci6|)

P (Yi = 1|Xi, Ci) =
exp(α0 + βXi + α1Ci1 + . . .+ α6Ci6)

1 + exp(α0 + βXi + α1Ci1 + . . .+ α6Ci6)

where (γ0, γ1, γ2, γ3, γ4, γ5, γ6) = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), (α0, α1, α2, α3, α4, α5, α6) =

(0.0, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1) and β = 0.

We analyzed the simulated data with δ 6= 0 and C+ = (C1, . . . , C6) using the joint Bayesian,

sequential Bayesian and sequential frequentist approaches. Results for these analyses are sum-

marized in Figure 1.5. We see that all three methods closely agree as to their estimates of β. In

this case, the outcome model, minus h(γ,C), is the true, ‘gold standard’ model. Adding in the

misstated PS is essentially just adding in random noise and does not bias our estimates of β.

1.7 Comparing the Effectiveness of Cardiovascular Treatments

Carotid artery stenting (CAS) has recently emerged as a promising non-inferior alternative to

carotid endarterectomy (CEA) for treatment of carotid artery disease, which is a primary cause
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Figure 1.5: Misspecified PS model: boxplots of estimates of γ and β from the sequential frequentist, joint
Bayesian and sequential Bayesian analysis of 1000 replicated data sets. The dashed line represents the true
value of β. While the estimates of γ have no real meaning in this setting, we see that, on average, we
estimate β without bias.

of stroke. To compare CEA (X = 1) vs. CAS (X = 0) for preventing death within one year of

hospital admission (Y = 1 for death, 0 otherwise), we use hospital impatient data from 123,286

Medicare beneficiaries admitted to the hospital with a primary diagnosis of stroke during 2006

or 2007, as determined by the diagnosis codes found in Lichtman et al. (2009). An unadjusted

comparison between 1-year mortality in CEA vs. CAS patients yields an odds ratio for death

of 0.59 indicating worse outcomes with CAS, but this comparison is thought to be confounded

by patient characteristics that help determine treatment choice. In particular, CAS patients

generally have a higher baseline risk profile, as evident from Table 1.2, which summarizes patient

characteristics in the CEA and CAS treatment groups. In pursuit of a causal effect estimate, we

conduct a PS analysis that adjusts for the 25 variables in Table 1.2, including patient ethnicity, age,

and gender, as well as baseline risk factors consisting of the Hierarchical Condition Categories

(HCC) (Pope et al., 2004) for current or previous presence of comorbidities.

23



We conduct the analysis using logistic regression in both the PS and the outcome stages, with

h(γ,C) specifying PS subclasses based on quintiles of the logit(PS). We checked that the entire

range of PS values was represented in both treatment groups (i.e., that there was sufficient

overlap) using maximum likelihood estimates of γ. For the Bayesian methods, the quintiles for

defining PS subclasses were recalculated for every update of the PS. In light of the discussion

in Sections 1.4 and 1.5, we consider an outcome model with δ 6= 0 and C+ ≡ C, implying

residual adjustment for every covariate within PS subclass. We estimate the treatment effect

using the joint Bayesian analysis of Section 1.4, the sequential Bayesian analysis of Section

1.4.4 as well as with a standard sequential analysis. Prior distributions for all parameters were

considered Normal with mean 0 and variance 1010. Three MCMC chains were run for 100,000 it-

erations, discarding the first 25,000 as burn in and saving every 20th sample for posterior inference.

1.7.1 Results

From the joint Bayesian analysis, the posterior mean of the conditional causal odds ratio (OR),

eβ , was 0.68, with a 95% posterior probability interval (0.61, 0.77), indicating a decreased odds

of death within 1 year of hospital admission for CEA patients as compared to CAS patients. The

analogous traditional sequential analysis produced the same point estimate and 95% confidence

interval while the sequential Bayesian analysis produced the same point estimate but the wider

interval (0.58, 0.80). Thus, our analysis fails to provide evidence that CAS is a non-inferior

alternative to CEA for treating carotid artery disease in stroke patients, with increased conditional

odds of death within 1-year of hospital admission among patients treated with CAS. As in our

simulation study, all three analyses yield virtually identical results when δ 6= 0.

We also note that for the Bayesian analyses MCMC performance was suspect for many parameters

in the PS model, although performance was adequate for all parameters in the outcome model,

including β. We revisit this point in the discussion.
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Table 1.2: Baseline characteristics (% experiencing unless noted) and 1-year mortality rate for CAS and CEA
patients.

CAS (n=4038) CEA (n=119248)
Age (mean) 75.3 75.1
White 92.3 93.8
Male 62.1 57.3
Prior Myocardial Infarction 5.1 2.1
Unstable Angina 5.2 2.5
Chronic Atherosclerosis 64.3 48.6
Respiratory Failure 3.3 1.9
Hypertension 75.3 78.8
Prior Stroke 7.5 6.7
Cerebrovascular Disease (non stroke) 26.7 17.1
Renal Failure 10.5 6
COPD 26.1 22.4
Pneumonia 5.4 3.6
Diabetes 35.3 32.3
Malnutrition 1.1 0.7
Dementia 3.6 3.1
Functional Disability 5.1 3.8
Peripheral Vascular Disease 15.2 9
Trauma in the Past Year 4 3.4
Major Psychiatric Disorder 1 1
Anemia 15.5 12.3
Depression 3.9 4.7
Parkinsons/Huntingtons 1.1 0.8
Asthma 1.7 2.6
Cancer 4.7 4.2
Death within 1 year of Admission 9.3 5.6

25



1.8 Discussion

Through a detailed assessment of model feedback, we have advanced existing research on

Bayesian PS estimation. Using a simple example and simulated illustrations, we have shown

that a joint likelihood for a PS model and an outcome model that adjusts for only the PS cannot

uncover treatment effects in general settings. The key concept is that outcome models that adjust

for the PS imply a characterization of the covariate-outcome response surface (conditional on X),

and feedback from this outcome model can distort estimates from the PS model and compromise

the desirable features of PS adjustment. This casts substantial doubt on the validity of using joint

Bayesian PS estimation for an outcome model that adjusts for only the PS, and represents a vital

feature that has been previously overlooked in the literature on Bayesian PS estimation.

One constructive approach that we explore here augments PS adjustment with additional covari-

ate adjustment, which has been previously recommended in the PS literature (Rubin, 1985, Stuart,

2010). We have shown that joint Bayesian estimation using this strategy can accurately estimate

the treatment effect in settings where adjustment for only the PS fails. Our recommendation is

that, when conducting joint Bayesian estimation with models for the PS and outcome stage, PS

adjustment should be augmented with adjustment for every covariate that appears in the PS

model. Although this strategy could still provide substantial benefit over methods for direct

covariate adjustment that do not use the PS (Rubin, 1985), adjusting for each individual covariate

within PS subclass may be unappealing to researchers drawn to PS methods precisely because of

their ability to provide reliable causal estimates without specifying every covariate in an outcome

model. If, when specifying a model for the PS and a model for the outcome, researchers wish

not to augment PS adjustment with adjustment for every covariate, then we recommend against

using the type of joint Bayesian estimation presented here.

In that situation a researcher may use an approximately Bayesian approach that ‘cuts the

feedback’ from the outcome model to the PS model. This method has an advantage in that it
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treats the PS as the unknown quantity that it is and propagates uncertainty from its estimation

into the outcome model. Additionally, this method fits into the broader literature on Bayesian

methodology and may be incorporated into other methods that seek to use Bayesian approach

to propensity scores, for example, methods to adjust for missing confounders using propensity

scores (McCandless et al., 2012).

In comparison with traditional sequential procedures, Bayesian PS estimation implies a signif-

icant computational burden. In the analysis of the Medicare data, achieving adequate MCMC

performance and chain mixing was challenging for parameters in the PS model - which can be

considered nuisance parameters in a PS analysis - particularly for the joint Bayesian method.

Our goal for this work is to shed light on the subtlety of model feedback when conducting joint

Bayesian PS estimation when a model is used to conduct outcome comparisons adjusted for the

PS. To achieve this goal, we made several simplifying assumptions. In particular, we specified an

outcome model that stratified on PS quintiles, but assumed the same treatment effect across all

PS subclasses. In analyzing the Medicare stroke data, we investigated the use of additional PS

subclasses and the inclusion of PS-by-treatment interaction terms in (1.2) to estimate a different

treatment effect in each subclass, but this did not qualitatively alter our results. Other interactions

or more complicated modeling strategies could be implemented in either the PS stage or the

outcome stage, but the salient features of model feedback would persist, as shown by Zigler et al.

(2013). We also note that the entire joint Bayesian estimation paradigm relies on a likelihood

based approach to both a PS model and an outcome model, and the issues addressed in this

article have no clear analog to PS methods that exchange likelihood-based inference for matching

or weighting in the outcome stage. Furthermore, the entirety of this article is predicated on the

assumption of ignorable treatment assignment. While this assumption held by design in our

simulation study, our results regarding the comparative effectiveness of CEA vs. CAS should

be viewed in light of the prospect of unmeasured confounding, which may be present in our
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example as the Medicare data lacks specific information on condition severity.

Better understanding of model feedback is essential to advance research on Bayesian methodology

for use in problems involving the PS. For example, there has been recent interest in PS estimation

when the set of necessary confounders is an unknown subset of those available for analysis (Wang

et al., 2012, McCandless, 2012, Vansteelandt, 2012). In principle, conducting Bayesian variable se-

lection jointly on the PS and outcome models could ensure that important outcome predictors

are included in the PS model, but our results here show that using model feedback to estimate

coefficients in the PS model could prove detrimental. The sequential Bayesian method explored

here would sacrifice the ability of the outcome to inform which variables to include in the PS. In

another example of joint Bayesian PS estimation, McCandless et al. (2012) use PS ideas to adjust

for confounding using external validation data within a joint Bayesian model, but do not directly

address the role of feedback. Chapter 4 builds on this work by suggesting two approximately

Bayesian approaches that do not allow feedback from the outcome model to the PS model. Inves-

tigation of feedback in these and other settings is an important avenue for future research, and

provides sound motivation for further pursuit of Bayesian PS methods.
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Bayesian Adjustment for Confounding in the Presence of Multiple
Exposures



Abstract

Modern air pollution epidemiology demands a shift to considering the health effects of expo-

sure to multiple pollutants but most epidemiological studies examine health effects associated

with exposure to a single environmental contaminant at a time. For example, let’s assume we

are interested in estimating the effect of simultaneous exposure to ozone and PM2.5 on cardio-

vascular (CVD) hospitalization in an observational study of 413 U.S. counties. We have data on

over 50 measured confounders. There is limited literature that provides clear guidance on how

to select confounders to include in the health effects model when the goal is multiple pollutant

risk estimation. We propose a method to estimate the adverse health effect associated with a si-

multanous change in more than one exposure while addressing uncertainty in the selection of

the confounders. We introduce Bayesian Adjustment for Confounding for Multiple Exposures

(BAC-ME). For the situation with J exposure variables, our approach is based on specifying J + 1

regression models, one for each of the exposure variables and one for the health effects model.

The J regression models have each of the exposure variables as response variables and the set

of measured confounders as predictor variables. We perform Bayesian variable selection on all

models and link them through our specification of prior odds of including a predictor in the out-

come model, given its inclusion in the exposure models. In simulation studies we show that our

method estimates the multi pollutant adverse effect with smaller bias and mean squared error

than traditional Bayesian Model Averaging (BMA) or adaptive LASSO and with improved cover-

age. We then apply BAC-ME, BMA and adaptive LASSO to an epidemiological study of over 14

million medicare enrollees for the study period 2008 to 2010. Using each approach, we estimate

the change in emergency hospital admissions associated with a simultaneous change in long term

exposure to both ozone and PM2.5 adjusted for confounding.

2.1 Introduction

Most epidemiological studies examine health effects associated with exposure to a single envi-

ronmental contaminant at a time. However, humans are exposed to many environmental agents
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at once and therefore epidemiological studies need to change focus to this more realistic setting.

For instance, suppose we are interested in estimating the adverse health effect associated with

the simultaneous exposure to more than one pollutant, say ozone and PM2.5. There may be any

number of confounding factors we would like to account for. For example, in a retrospective

epidemiological study of chronic health effects associated with long term exposure to both ozone

and PM2.5 potential confounders include weather variables, other pollutants (e.g. nitrogen

dioxide, carbon monoxide and sulfur dioxide), geographic region and population characteristics.

It may be impractical, impossible or undesirable to adjust for all possible confounders and yet we

are not certain which are truly important. As the number of exposures included in the analysis for

the estimation of a multi pollutant adverse health effect increases, so does the chance of excluding

an important confounder from a large set of measured covariates.

One challenge with the transition from a single exposure to multiple exposures is the lack of a

formal approach to select which measured confounders should be included in the health effects

model. Standard approaches for selecting confounders in the context of a single exposure will

not be adequate in this context; the set of confounders of an adverse health effect associated

with simultaneous exposure to more than one pollutant cannot be fully characterized by the

confounders of the effect of each individual pollutant separately. The key task is to identify

confounders that are jointly associated with multiple exposures and the outcome.

Confounding adjustment in the epidemiological literature frequently relies on regression adjust-

ment, and many air pollution studies have used a regression framework to identify the most

toxic of a large set of exposures after adjustment for a pre-specified set of measured confounders

(Robins et al., 1992, Greenland, 1993, Vedal and Kaufman, 2011, Dominici et al., 2010). In this paper

we consider a different problem. Researchers are often confronted with choices regarding which

of the available covariates should be included for confounding adjustment, especially when the

number of variables is large relative to the sample size. In practice, they select a subset a priori

based on some selection criteria: ‘subject matter expert’ knowledge, availability of data, etc.
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Whatever method is used, there is always uncertainty surrounding that choice. Here we consider

the question of which confounders to include in the health effects model (also called outcome

model) when interest lies in multi pollutant risk estimation. In the single exposure setting, BAC

(Wang et al., 2012) has been recently introduced as a method to select confounders. BAC uses

a Bayesian approach to model averaging to estimate the health effect associated with exposure

to a single pollutant while acknowledging the uncertainty in the confounder selection. To our

knowledge, the literature is lacking with respect to methods for confounding adjustment for the

situation with multiple exposures.

In this paper, we will make two contributions. First, we will clarify the difference as to what

constitutes a true confounder in multiple exposure settings versus single exposure settings. A true

confounder in the multiple exposure (ME) setting is any covariate that confounds the relationship

between simultaneous exposure to multiple pollutants and the outcome of interest. This could be

a covariate that is marginally associated with one or more exposures - and, hence, would also be

a confounder in the single exposure (SE) setting - or one that is jointly associated with multiple

exposures (and might not be a confounder in the SE setting). Throughout this paper, when we

refer to a true confounder we are referring to a true confounder in the ME setting unless otherwise

specified. Second, we will develop a statistical framework to adjust for confounding in the

presence of multiple exposures while accounting for uncertainty in the confounding adjustment.

We introduce BAC for multiple exposures (BAC-ME) to extend this framework where selection

of confounders is based on simultaneous exposure to multiple pollutants. Our method will allow

us to select a subset of covariates to include to control for confounding in a linear regression

model while protecting against the possibility of eliminating a true confounder. This will also

help identify true confounders for future research efforts. We will show through simulation

studies that it is of paramount importance to include all confounders in the outcome model

and that excluding only one true confounder could lead to substantial bias in estimation of the

multi pollutant adverse health effect. In section 2.2 we describe our method and present a simple

illustrative example; in section 2.3 we present a simulation study that shows the advantage of
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BAC-ME over traditional methods such as BMA and LASSO; in section 2.4 we apply our method

to a retrospective epidemiological study aimed at estimating the multi pollutant adverse effect

on cardiovascular (CVD) hospitalization associated with a simultaneous change in ozone and

PM2.5, controlling for weather data and population level characteristics; finally, in section 3.4 we

conclude with a discussion.

2.2 Methods

2.2.1 Concept

Suppose we have multiple exposures, X1, . . . , XJ , a continuous outcome, Y , and M potential

measured confounders (categorical and/or continuous), C = C1, ...CM , and we want to estimate

the effect of a simultaneous change in more than one exposure on the outcome. We will specifically

examine the case with two exposures (J = 2) although the proposed framework can be easily

generalized to more than two exposures. Our quantity of scientific interest is multi pollutant risk,

defined here as the effect on cardiovascular outcome (Y ) associated with the simultaneous change

in exposure to two air pollutants (X1 and X2), adjusted for measured confounding. For J=2, we

define the parameter of interest as:

∆x(δ) = ∆(x1,x2)(δ1, δ2) = E[Y |X1 = x1 + δ1, X2 = x2 + δ2]− E[Y |X1 = x1, X2 = x2] (2.1)

where δ1 and δ2 are simultaneous changes in exposure 1 and exposure 2, respectively and x1

and x2 are the current values of these exposures. For example, x1 and x2 could be the three year

nationwide average level of PM2.5 and ozone and δ1 and δ2 a 10 µg/m3 increase in PM2.5 and 10

ppm increase in ozone simultaneously.
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2.2.2 Models

We specify three equations simultaneously: one for each exposure variable and one for the out-

come.

X1i = ηX1
0 +

M∑
m=1

αX1
m ηX1

m Cmi + εX1
i (2.2)

X2i = ηX2
0 + γX1,i +

M∑
m=1

αX2
m ηX2

m Cmi + εX2
i (2.3)

Yi = ηY0 + β1X1i + β2X2i + β3X1iX2i +

M∑
m=1

αYmη
Y
mCmi + εYi (2.4)

where:

i = 1,...,N

εX1 , εX2 , εY
iid∼ N(0, σ2X1

), N(0, σ2X2
), N(0, σ2Y ) respectively

The parameters αX1 ∈ {0, 1}M ,αX2 ∈ {0, 1}M ,αY ∈ {0, 1}M are unknown vectors of

indicator variables denoting whether or not a potential confounder is included in the re-

gression model; αX1
m = 1 if Cm is included in (2.2), αX2

m = 1 if Cm is included in (2.3)

and αYm = 1 if Cm is included in (2.4). In this setting, our scientific quantity of interest is

∆(x1,x2)(δ1, δ2) = δ1β1 + δ2β2 + (δ1x2 + δ2x1 + δ1δ2)β3. Under the model formulation represented

by (2.2) - (2.4), we assume that Cm is a true confounder if it is jointly associated with (X1, X2), and

also associated with Y . This type of association can be manifested many different ways. The most

obvious way is if Cm is associated with X1 and Y and/or associated with X2 and Y . However,

these associations do not exhaust the possible confounding relationships in the multiple exposure

setting. To conceptualize it is helpful to think of a binary covariate and exposures summarized

in contingency tables, for example where the 2x2 contingency table for (X1, Cm) is such that

p(C|X1) = p(C) and likewise the contingency table for (X2, Cm) is such that p(C|X2) = p(C)

but the 4x2 contingency table for ({X1, X2}, Cm) is such that p(C|X1, X2) 6= p(C). For a specific

example, see Appendix A.2.1. Such a situation is evident in the data analysis of Section 2.4 where
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there exists covariates that are jointly associated with multiple exposures but not marginally

associated with any single exposure. Throughout we assume that Cm is a pre-exposure variable;

that is, we make the strong assumption that none of the Cm are intermediate variables that could

be affected by any of the exposure variables.

We are interested in identifying the minimal outcome model; that is, the smallest outcome

model that includes all true confounders and therefore will provide an unbiased estimate of

∆x(δ). Adding Cm that are not true confounders into the health effects model will not bias

estimation of ∆x(δ). However, excluding even one of the true confounders yields a biased

estimate. We will denote the minimal model as αY0 . Our goal is to estimate ∆x(δ) when αY0 is

unknown. Any model, αY , that contains the minimal model, i.e. αY ⊇ αY0 , will yield a posterior

distribution whose mean is an unbiased estimate of ∆x(δ). The true model will always include

the minimal model, αYTRUE ⊇ αY0 , but may also include variables associated with only the

outcome. Our method selects models that contain αY0 by introducing prior dependence between

αX1 ,αX2 andαY , ensuring that variables are selected based on joint associations with (X1, X2, Y ).

2.2.3 Illustrative example

We will introduce our approach with an example to illustrate the danger of excluding even one

of the true confounders when estimating ∆x(δ). Consider the relationship in Figure 2.1. We

have four true confounders (C1, C2, C3, C4) and one extraneous covariate C5. The variable C1 is

strongly correlated with X1, X2 and Y ; C2 is strongly correlated with X1 and Y ; C3 is strongly

correlated with X2 and weakly correlated with Y ; C4 is weakly correlated with X2 and strongly

correlated with Y and C5 is uncorrelated with both exposures and the outcome. In addition,

the two exposures are moderately correlated with each other. The minimal model guaranteed

to provide an unbiased estimate of ∆x(δ) is αY0 = (1, 1, 1, 1, 0). This is also the true model. The

full model, αY = (1, 1, 1, 1, 1), includes αY0 , is fully adjusted for confounding and will yield an

unbiased estimate as well. Any model that does not include αY0 is not guaranteed to yield a
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posterior mean that is an unbiased estimate ∆x(δ).

Figure 2.1: Illustrative Example

To illustrate we generated 1000 data sets from the following models which reflect the situation

depicted in Figure 2.1:

X1i = C1i + C2i + εX1
i

X2i = 0.3X1i + C1i + C3i + 0.1C4i + εX2
i

Yi = X1i +X2i − 0.5X1iX2i + C1i + C2i + 0.1C3i + C4i + εYi

Throughout the remaining simulations, unless otherwise noted, i = 1,...,1000, εX1 , εX2 , εY
iid∼

N(0, 1), Cm,i
iid∼ N(0, 1)

We estimated ∆0,0(1, 1) = β1 + β2 + β3 from the ordinary least squares estimates of β under

different confounding adjustments. Table 2.1 column 2 shows the average bias in ∆̂0,0(1, 1). We see

that excluding C1 which is strongly associated with both exposures and the outcome, introduces

the most bias. Even the estimate from the model without C3, which is only weakly correlated with

the outcome, is biased. In fact, only αY0 = αYTRUE = (1, 1, 1, 1, 0) and αY = (1, 1, 1, 1, 1) yield

posterior mean estimates which are unbiased for ∆x(δ).

36



Table 2.1: Bias, MSE and CI coverage in ∆̂0,0(1, 1)by model. The bias is the average bias arising from the
ordinary least squares fit across simulations.

Model Bias MSE CI Coverage
(1,1,1,1,0; True Model) 0.0003 0.0016 0.9520
(1,1,1,1,1) 0.0003 0.0016 0.9540
(0,1,1,1,0) 0.5661 0.3213 0.0000
(1,0,1,1,0) 0.4989 0.2505 0.0000
(1,1,0,1,0) 0.0352 0.0026 0.8440
(1,1,1,0,0) 0.0715 0.0082 0.7500

2.2.4 Prior specification for Bayesian model-averaged estimates.

When the goal is effect estimation accounting for model uncertainty, it is common to calculate the

posterior distribution of the effect by taking a weighted average over models (Hoeting et al., 1999,

Raftery, 1995):

∑
αY

P (∆αY

x (δ)|αY , D)P (αY |D) (2.5)

Where ∆αY
x (δ) is the model specific effect from the modelαY , P (αY |D) is the posterior probability

of (or weight assigned to)αY , and D=(X, Y,C). Equation (2.5) can be decomposed into two parts:

the sum over models which include αY0 and the sum over the remaining models. i.e.,

∑
αY ⊇αY0

P (∆αY

x (δ)|αY , D)P (αY |D) +
∑

αY 6⊇αY0

P (∆αY

x (δ)|αY , D)P (αY |D) (2.6)

When αY contains αY0 , the posterior mean of P (∆αY
x (δ)|αY , D) is an unbiased estimate of ∆x(δ).

If we have a method that assigns posterior weights only to the models in the first term of (2.6), we

are averaging across models that yield unbiased estimates of ∆x(δ). By contrast, any method that

assigns high weights to the models in the second term of (2.6) is averaging across models that are

unlikely to yield an unbiased estimate of ∆x(δ). Note that this quantity is defined based solely

on quantities in (2.4) but (2.2) and (2.3) inform estimation of αY in (2.4). Our goal is to specify a

prior distribution on αY |αX1 ,αX2 that assigns the posterior mass mostly to models that contain
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αY0 . This will ensure averaging across unbiased estimates of ∆x(δ).

BAC-ME jointly considers both exposure models, (2.2) and (2.3), and the outcome model, (2.4). To

assign more posterior mass to the health effects models that contain αY0 , we assign prior probabil-

ities that ensure variables related to either exposure variable are included in the outcome model.

Specifically, first we specify a prior distribution onαY |αX1 ,αX2 by defining a dependence param-

eter, ω, that represents the prior odds of including a covariate in the outcome model when it is in

either (or both) exposure models. These priors can be extremely general – for instance different

dependence parameters for each exposure and even each confounder (see Appendix A.2.2 for a

more general formulation) – but for simplicity we will investigate the case where:

P (αYm = 1|αX1
m = 1, αX2

m = 1)

P (αYm = 0|αX1
m = 1, αX2

m = 1)
=
P (αYm = 1|αX1

m = 1, αX2
m = 0)

P (αYm = 0|αX1
m = 1, αX2

m = 0)
=
P (αYm = 1|αX1

m = 0, αX2
m = 1)

P (αYm = 0|αX1
m = 0, αX2

m = 1)
= ω

(2.7)

P (αYm = 1|αX1
m = 0, αX2

m = 0)

P (αYm = 0|αX1
m = 0, αX2

m = 0)
= 1 (2.8)

In the case of a single exposure, Wang et al. (2012) note that ω = ∞ is usually conservative and

provides unbiased results. Setting ω = ∞ makes the default formulation that if Cm is associated

with (X1, X2) then Cm is forced into the outcome model. If Cm is also associated with Y , then Cm

is a confounder and must be in the outcome model to guarantee an unbiased estimate of ∆x(δ).

If Cm is not associated with Y , we may loose efficiency in our estimation but we still obtain an

unbiased estimate of ∆x(δ). While this method is flexible enough to alter ω to any value, setting

ω = ∞ maximizes our chance of selecting any variable associated with exposure(s) into the

outcome model. For all results presented here, we set ω = ∞. See Appendix A.2.2 for the prior

distribution of αX1 |αY , αX2 |αY and the joint, marginal and conditional probabilities implied by

the odds ratios in (2.7) and (2.8).
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Our goal is to estimate the posterior distribution of (αY ,αX1 ,αX2 ,∆(x1,x2)(δ1, δ2)). We assume

the following priors for other model parameters:

(γ,ηXj )|(αXj , σ2Xj ) ∼ N(µ
0αXj

, σ2Xjφ
2Σ

0αXj
), j = 1, 2

(β1, β2, β3,η
Y )|(αY , σ2Y ) ∼ N(µ0αY , σ

2
Y φ

2Σ0αY )

1

σ2X1

,
1

σ2X2

,
1

σ2Y
∼ Gamma(ν/2, νλ/2)

where (νλ/2) is the rate parameter of the Gamma distribution (i.e. E[ 1
σ2
X1

] = 1/λ) and

ν, λ, φ,µ
0αXj

,µ0αY ,Σ0αXj
, and Σ0αY are hyperparameters that are specified as recommended by

Raftery et al. (1997)

We used an MCMC algorithm to draw posterior samples of (αX1 ,αX2 ,αY , γ,β). We used the

MC3 method (Madigan et al., 1995) to sample from the first three full conditionals. Derivation of

the posterior distributions for all parameters may be found in Appendix A.2.3.

2.3 Simulations Studies

In section 2.3.1, in the simple setting of three true confounders, ten variables associated with

outcome only and 30 extraneous covariates, we will show the reduction in bias in estimation

of ∆x(δ) that BAC-ME provides over methods that select variables based solely on their ability

to predict Y ; in section 2.3.2 we will simulate data sets from a more complex scenario: 20

confounders, 10 variables associated with outcome only and 30 extraneous variables.

Table 2.2: Comparative Methods
Method Description
BAC-ME Bayesian Adjustment for Confounding - Multiple Exposures
FBMA Forced Bayesian Model Averaging - Exposures are forced into the model
NLASSO Not-forced Adaptive Least Absolute Shrinkage and Selection Operator - Ex-

posures are allowed to enter or leave the model just as confounders
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With a lack of methods designed specifically for confounding adjustment in the presence of

multiple exposures, much less that account for uncertainty in that confounding adjustment,

we chose methods that have traditionally been used for model selection. LASSO and adaptive

LASSO are common methods for simultaneous estimation and variable selection (Zou, 2006).

BMA is a standard Bayesian method for model selection. BMA also goes a step further and has

been proposed as a method to account for uncertainty in confounding adjustment (Hoeting et al.,

1999, Raftery, 1995). The specific methods we explored are detailed in Table 2.2. Both BMA and

adaptive LASSO perform variable selection on only the health effects model (equation (2.4)).

These methods all choose a model based on its ability to predict Y and not on its ability to estimate

the multi pollutant adverse health effect of a change in X1 and X2 on Y properly adjusted for

confounding. Note that the last two columns of Table 2.3 list model weights for FBMA and

NLASSO for the datasets in section 2.2.3. Both FBMA and NLASSO assign the most weight to

model (1,1,0,1,0), which does not include αY0 . FBMA only selected a model which contained αY0

30.3% of the time and NLASSO only 0.1% of the time. These methods tended to select outcome

models that do not include C3 because this variable is only weakly associated with Y but strongly

associated with an exposure. In contrast, BAC-ME, which simultaneously fits both exposure

models and the outcome model, always selected a model containing αY0 .

Table 2.3: Bias by model and proportion of time that model is selected by method. The bias is the average
bias arising from the ordinary least squares fit across simulations.The weight for BAC-ME and FBMA is the
posterior probability ofαY . The weight for NLASSO is the proportion of time that that model was selected.
FBMA used a uniform prior on αY . BAC-ME used the priors defined by (2.7) - (2.8) with ω =∞.

BAC-ME FBMA NLASSO
Model Bias(∆̂0,0(1, 1)) weight weight weight
(1,1,1,1,0; True Model) 0.0003 0.975 0.296 0.001
(1,1,1,1,1) 0.0003 0.025 0.007 0.000
(0,1,1,1,0) 0.5661 0.000 0.000 0.000
(1,0,1,1,0) 0.4989 0.000 0.000 0.000
(1,1,0,1,0) 0.0352 0.000 0.681 0.999
(1,1,1,0,0) 0.0715 0.000 0.000 0.000
Includes αY0 1 0.303 0.001
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2.3.1 Bias by degree of confounding

This set of simulations will explore bias as a function of the degree of confounding across methods.

This will demonstrate the settings in which BAC-ME has the largest advantage over BMA and

adaptive LASSO. For these simulations we have one confounder associated with both exposures

(C1), one confounder of X1 only (C2), one confounder of X2 only (C3), ten variables associated

with outcome (Y) only and 30 extraneous covariates – variables not associated with either of the

exposures nor the outcome – as noted below.

E[X1] = C1 + C2

E[X2] = 0.3X1 + C1 + ηX2
3 C3

E[Y ] = 0.2X1 + 0.2X2 + 0.1X1X2 + C1 + C2 + ηY3 C3 +
13∑
i=4

Ci

We vary the true coefficients, ηX2
3 and ηY3 , on a grid from 0.1 to 1 to assess the bias we see in

different methods under different strengths of confounding for the relationship between X2 and

Y. For each combination of ηX2
3 and ηY3 we generated 100 data sets with a sample size of 500 each.

The heat maps below demonstrate that BAC-ME provides unbiased estimates for a much larger

range of true coefficients. Figure 2.2 shows the bias of BAC-ME and FBMA. Darker colors indicate

more bias. If both coefficients are relatively small, little bias results from excluding them in the

outcome model. If ηY3 is large, both methods will tend to select C3 into the outcome model and

will yield an unbiased estimate. However, when ηX2
3 is large and ηY3 is small, FBMA yields biased

estimates.

A figure of the comparative bias of BAC-ME and NLASSO would show that regardless of the

values of ηX2
3 and ηY3 , NLASSO is more biased than BAC-ME. Comparisons as a function of CI

coverage rather than bias are nearly identical.
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Figure 2.2: Heat maps of bias by strength of confounding. Darker shades indicate more bias.

2.3.2 More complex simulations

For the final set of simulations we will present a more complex scenario with 20 confounders –

(C1, ..., C5) associated with both X1 and X2, (C6, ..., C10) associated with X1 only and (C11, ..., C20)

associated with X2 only – 10 variables associated with outcome only and 30 extraneous variables.

We will show that BAC-ME results in significantly less bias than FBMA or NLASSO. We generated

data from the following models:

E[X1] =

5∑
i=1

Ci +

10∑
i=6

Ci

E[X2] = 0.3X1 +
5∑
i=1

Ci +
15∑
i=11

Ci +
20∑
i=16

0.1Ci

E[Y ] = 0.2X1 + 0.2X2 + 0.1X1X2 +
5∑
i=1

Ci +
10∑
i=6

Ci +
15∑
i=11

0.1Ci +

20∑
i=16

Ci +
30∑
i=21

Ci

Table 2.4 summarizes results from these simulations with respect to ∆0,0(1, 1). We see that BAC-

ME outperforms FBMA and NLASSO with respect to bias, MSE and CI coverage with FBMA and
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NLASSO having more than ten times the bias of BAC-ME. We can see the reason from columns

two and three. The second column is the percent of time the method chose a model that included

the minimal model; the third column shows the percent of time the method chose the true model.

Only our method picks models which include the minimal model 100% of the time. FBMA never

selects models which include the minimal model and NLASSO does so only 2% of the time. This

is not surprising. Exposure 2 (X2) had confounders that were only weakly associated with the

outcome but strongly associated with the exposure. FBMA and NLASSO have no mechanism

by which to identify these confounders, they are typically not selected into the model, and bias

results.

Table 2.4: Results for ∆̂0,0(1, 1) for the simulation in Section 2.3.2. Incl. Min is the proportion of time the
method selected a model that contained the minimal model. True is the proportion of time the method
selected the true model. Bias is the difference in the true value of ∆0,0(1, 1) and ∆̂0,0(1, 1) where ∆̂0,0(1, 1)
is the average posterior mean for BAC-ME and FBMA and the average estimate for NLASSO.

Method Incl. Min True Bias SE MSE CI Coverage
BAC-ME 1.00 0.43 0.0034 0.0351 0.0012 0.9800

FBMA 0.00 0.00 0.0574 0.0306 0.0042 0.6400
NLASSO 0.02 0.02 -0.0615 0.0566 0.0070 0.9100

2.4 Data Analysis

In this section, we apply BAC-ME to a retrospective epidemiological study of over 14 million

medicare enrollees, weather, pollution and demographic data. The data includes county level

characteristics for 413 counties throughout the US for the period 2008-2010. These include rate of

cardiovascular (CVD) hospital admissions, county level traits, and temperature and dew point

averages and standard deviations, for a total of 57 potential confounders. Specific details on

the data set may be found in Appendix A.2.4. The goal is to estimate the change in the rate of

emergency hospitalizations for CVD associated with a simultaneous increase of one interquartile

range in both ozone and PM2.5 while accounting for weather, demographics (age, race and

gender) and population level characteristics (e.g. proportion who are overweight) from the U.S.

Census and the CDC’s Behavioral Risk Factor Surveillance System. The hospitalization rate is
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recorded separately for each group (gender and race).

We conducted all analyses described both with and without an interaction term between ozone

and PM2.5 in the outcome model. No analysis provided evidence of a nonzero interaction between

exposures, so we present results for the models without the interaction. To start we considered a

full model with all available covariates.

O3i = ηX1
0 +

M∑
m=1

αX1
m ηX1

m Cmi + εX1
i

PM2.5i = ηX2
0 + γO3i + +

M∑
m=1

αX2
m ηX2

m Cmi + εX2
i

Yi = ηY0 + β1O3i + β2PM2.5i +
M∑
m=1

αYmη
Y
mCmi + εYi (2.9)

Yi =
CV D

Ni
where CVD is total number of cardiovascular admissions, defined as Heart Failure,

Heart Rhythm Disturbances, Ischemic Heart Disease or Peripheral Vascular Disease and Ni is the

total person-years at risk in county i from 2008-2010. Based on preliminary analysis, the use of a

linear model for the outcome Yi is reasonable. Figures 2.3c and 2.3d show the average levels of

ozone and PM2.5 by county for the 413 counties in our data; Figure 2.3e shows the rate of CVD

admissions for the same 413 counties. The vector Ci denotes the set of potential confounders de-

scribed above and given in detail in Appendix A.2.4. We eliminated 10 potential confounders due

to missing data or high correlation (> 0.8) with other confounders; the eliminated confounders

are listed in Appendix A.2.4, Table A.2.

To control for weather, we include seventh degree polynomial terms for temperature and dew

point. For these polynomial terms, a term could not exit the model unless there were no higher

order terms currently in the model. Likewise, a term could not enter the model unless all lower

order terms were already in the model. We assume the residuals are independent and identically

distributed N(0, σ2) random variables. We considered five approaches, BAC-ME, BMA forcing
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Figure 2.3: (a) shows the average ozone levels by county (ppm) (b) the average PM2.5 levels (µg/m3) (c) the
rate of CVD admissions (admissions per person-year). Levels shown for Hawaii are for Honolulu county.
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exposures into the model, adaptive LASSO not forcing exposures into the model, ordinary least

squares (OLS) and BAC (single exposure). OLS is the least squares estimate from equation (2.9)

with αYm = 1 for m = 1, . . . ,M . For BAC (single exposure) we fit two models to the data. The

first is a model with ozone as the exposure and treating PM2.5 as one of the potential measured

confounders. This model is defined by (2.10) - (2.11) and with prior odds ratios given in (2.12)

with ω =∞.

O3i =

M∑
m=1

αXmη
X
mCmi + αXM+1η

X
M+1PM2.5i + εXi (2.10)

Yi = βO3i +

M∑
m=1

αYmη
Y
mCmi + αYM+1η

Y
M+1PM2.5i + εYi (2.11)

P (αYm = 1|αXm = 1)

P (αYm = 0|αXm = 1)
= ω,

P (αYm = 1|αXm = 0)

P (αYm = 0|αXm = 0)
= 1 (2.12)

Similarly, the second BAC (single exposure) model treats PM2.5 as the exposure and ozone as a

potential measured confounder. As in the simulation studies, results from NLASSO were vastly

different than from the other approaches and we will only show results for the other four methods

here.

Table 2.5 shows the estimated regression coefficients for one inter-quartile range (IQR) increase

in both ozone and PM2.5 per 10,000 person-years at risk. With BAC-ME we estimate coefficients

for each pollution variable that are not statistically significant individually. More specifically, we

found that a simultaneous change in ozone from its 25th to 75th percentile and PM2.5 from its 25th

to 75th percentile is associated with an increase in CVD hospital emergency admissions of 25.6 per

10,000 person years at risk. Notably, the 95% credible interval for ∆̂(x1,x2)(δ1, δ2) does not contain

zero. FBMA provides point estimates for β1 and β2 that are substantially different than those
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provided by BAC-ME and an estimate for β1 that is statistically significant. For this particular

change, ∆̂(x1,x2)(δ1, δ2) is very similar for both methods. However, this would not necessarily be

the case if we investigated a different change (i.e. other than one IQR for both pollutants). OLS

provides point estimates that are smaller than the estimates provided by BAC-ME and an estimate

of the multi pollutant effect that is not statistically significant.

Table 2.5: Effect estimates for one IQR increase in ozone (β1) and PM2.5 (β2) per 10,000 person-years at risk.
∆ is the expected change in the rate of CVD admissions per 10,000 person years at risk for a change in both
pollutants from their 25th percentiles to their 75th percentiles.

Method Parameter Estimate SE 95% Interval
BAC-ME β1 (Ozone) 13.2 7.3 (-1.0, 27.4)

β2 (PM2.5) 12.5 8.5 (-4.2, 29.0)
∆ 25.6 11.2 (3.5, 47.4)

BAC (Ozone) β 10.4 7.4 (-3.9, 24.8)
BAC (PM2.5) β 14.5 8.4 (-1.8, 30.7)
FBMA β1 17.0 7.0 (2.9, 30.7)

β2 8.6 7.9 (-7.0, 23.9)
∆ 25.6 10.7 (4.8, 46.2)

OLS β1 9.4 7.7 (-5.7, 24.4)
β2 8.5 8.5 (-8.1, 25.2)
∆ 17.9 11.4 (-4.4, 40.3)

This data analysis highlights the importance of conducting multi pollutant analysis differently

than single pollutant analysis. Consider the BAC (single exposure) models. The estimates for the

individual effects of a change in ozone or PM2.5 vary somewhat between BAC (single exposure)

models and that defined by (2.9). Figure 2.4 shows the posterior inclusion probability (P (αY |D))

of each of the 47 potential confounders from the multiple exposure model compared to the the

two single exposure models. Notice that the posterior probabilities of αY differ greatly across

models for some covariates and inclusion in model (2.9) is not simply the union of those included

in the two single exposure models. Under the single exposure models we are estimating different

parameters than under the multiple exposure model. In the single exposure models, e.g. (2.11),

we are searching for the covariates that are associated with Y and ozone (or PM2.5) but never

for covariates that are associated with Y and with (ozone, PM2.5) jointly. For instance, consider

that the posterior probability of including mean age in outcome model (2.9) is 0.46 whereas the

posterior probabilities of including it in either of the single exposure models are 0. This difference
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is because mean age is not marginally associated with either ozone or PM2.5 but it is associated

with them jointly. To better illustrate the differences it is helpful to think of the exposures as binary

variables. The variable mean age is not associated with ozone marginally. That is, counties with

high ozone have a similar age distribution to that of counties with low ozone. Similarly, mean

age is not associated with PM2.5 marginally. However, counties with both high ozone and low

PM2.5 tend to have a younger medicare population than the rest of the country. That is, mean

age is jointly associated with (ozone, PM2.5) even though it is marginally associated with neither.

The example in Appendix A.2.1 illustrates a similar situation. But just as important, with the BAC

(single exposure) models, there is no clear way to obtain an estimate of the posterior distribution of

the multi pollutant effect, and hence no way to capture the uncertainty surrounding any estimate

of this effect.

2.5 Discussion

A formal method to estimate a multi pollutant adverse health effect fully adjusted for confounding

is currently lacking. BAC-ME gives a means to identify true confounders in a multiple exposure

setting while guarding against the possibility of ignoring variables only weakly associated with

outcome but strongly associated with one or more exposure variables. Importantly, BAC-ME is

designed to detect true confounders on the basis of joint association with multiple exposures,

rather than restrict attention to the subset of confounders that are marginally associated with

at least one exposure. Further, BAC-ME is designed to acknowledge the uncertainty in the

confounder selection, an issue that is exacerbated when there are multiple exposures and when

the vector of available covariates in high-dimensional. Our simulation studies show that in a

variety of settings our method outperforms methods that include potential confounders into the

health effects model based solely on their ability to predict the outcome and ignoring completely

their association with exposures.
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Figure 2.4: Posterior probabilities of including each of the potential confounders in the multiple exposure
health effects model (Equation (2.9)) and in the single exposure models (e.g. Equation (2.11))
.
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One might be tempted to use existing methods to estimate effects of ozone and PM2.5 separately

but this can only approximate the targeted effect of a simultaneous exposure. An approach that

treats the exposures separately would ignore the potential interaction between the two compo-

nents. Only in the most simple case is the multi pollutant adverse health effect simply the sum

of the individual effects. Additionally, this approach does not control for confounding properly.

Even absent an interaction term, the coefficients from the models E[Y ] = β1X1 + η1C and

E[Y ] = β2X2 +η2C are not generally the same as those from the modelE[Y ] = β1X1 +β2X2 +ηC

and cannot be interpreted as the adverse health effect of a simultaneous change in both exposures.

For all simulations presented, we also compared the performance of BMA when exposures were

not forced into the model, adaptive LASSO when they were forced into the model and a two stage

LASSO / OLS procedure. We found that BAC-ME outperformed all other methods examined. We

ran additional simulations varying the covariance structure and sample and effect sizes; results

were consistent with those presented here.

Identifying the set of true confounders may be a goal in and of itself. In large studies, collecting

data on unnecessary confounders wastes time and resources at best and could even be medically

invasive. By identifying the set of true confounders, future studies may be designed more

efficiently: data need not be collected on unnecessary covariates and extra care can be taken to

collect information for a known confounder.

This method may be easily extended to accommodate any order interaction between any terms,

including exposure – confounder interactions. In practice, one must carefully consider which

terms should be included as ‘exposures’ (and, hence, forced into the model) and which should be

treated as ‘confounders’ (and be allowed to enter and leave the model.) This method may also be

easily extended to include any number of exposures, although the number it is wise to include

may be limited by the situation and available data. Additionally, the method may be extended
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to include more complex model formulations such as GLMs, though this would require more

advanced computational techniques.
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Propensity Score Methods for Combining Data Sources



Abstract

Comparative effectiveness research increasingly relies on observational studies based on large ad-

ministrative databases, analysis of which raises several methodological challenges. Additionally,

it is often desirable to combine heterogenous sources of information to estimate effects in an over-

all population while making using of confounders available only for a small subset of the popula-

tion. When these additional, partially measured confounders are high dimensional, correlated or

contain both continuous and categorical variables, traditional approaches such as Bayesian data

augmentation are very challenging. We propose two methods that build on work by McCandless

et al. (2012). Our methods use ‘conditional propensity scores’ to reduce the partially measured

covariates to a scalar quantity, which may then be imputed in the main data. We conduct a sim-

ulation study which shows that in a variety of settings our methods reduce bias over the more

common approaches of adjusting for only the fully measured covariates or complete case analy-

sis.

3.1 Introduction

Comparative effectiveness research (CER) increasingly relies on observational studies based on

large administrative databases. Compared to clinical trials, the analyses of these databases allow

us to study a much larger population and investigate additional questions of interest. However,

analysis of these large and complex administrative databases raises several methodological chal-

lenges and requires the development of new statistical methods. Comparing the effectiveness of

treatment strategies in observational data is challenging both because patients are not randomly

assigned to treatment strategies and because medical providers are not randomly assigned to

quality of care interventions, which introduces the likely possibility that outcome comparisons

are confounded by factors that simultaneously relate to treatment choices, providers, and health

outcomes.
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In addition, it is often desirable to combine heterogeneous sources of information, specifically

information coming from a primary data source (e.g. Medicare) that provides information for

treatments, outcomes, and a limited set of measured confounders on a large number of people

and smaller supplementary data sources (e.g. SEER-Medicare) containing a much richer set

of covariates. These additional covariates may be high dimensional, frequently exceeding the

number of covariates available in the primary data. Additionally, these covariates often contain

important confounders not measured in the primary data.

For example, glioblastoma multiforme (GBM), the most prevalent of the primary brain tumors,

is a devastating disease with high mortality and high medical costs. Our goal is to estimate

the average causal effect in the elderly of a treatment, e.g. major craniotomy, on an outcome of

interest, e.g. 1-year mortality, adjusting for both fully and partially observed covariates. Elderly

GBM patients (65 or older) are characterized by a high rate of associated comorbidities and

are often excluded from clinical trials. GBM is a relatively rare disease and many questions

regarding patient level outcomes can only be addressed with the linkage and analysis of very

large administrative databases. Because a diagnosis of GBM is most commonly made during a

hospitalization, Medicare Part A inpatient claims data captures almost entirely the population of

elderly GBM patients. Medicare Part A contains patient demographic data (age, sex, etc.) and

comorbidity information. The SEER-Medicare (Surveillance, Epidemiology and End Results)

linked database can be used to identify the Medicare enrollees with GBM that are in SEER.

SEER-Medicare provides a wealth of information about important confounders such as cancer

site, stage, and histology for approximately 9.5% of the Part A study population. However,

SEER-Medicare is not a representative sample of the Medicare population; it is taken from 20

regional registries representing only a small part of the Medicare population. Combining the two

data sources would allow us estimate effects in the entire Medicare population with GBM while

making use of the important confounders available only in SEER.
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There are currently a number of challenges to combining such data sources for analysis.

Traditional Bayesian data augmentation methods require specifying the joint distribution of

outcome, treatment and covariates (Little and Rubin, 2002). Often the missing covariates are high

dimensional, correlated, or contain both continuous and dichotomous or categorical variables.

For instance, SEER-Medicare data has nearly 100 potential confounders, including dichotomous,

categorical and continuous variables, many of which are correlated. Correctly specifying the joint

distribution in this setting is nearly impossible. Recently McCandless et al. (2012) suggest a method

to use ‘conditional propensity scores’ to adjust for confounders available only in a supplementary

dataset; this reduces the q dimensional partially measured covariates to a scalar quantity. We

propose two methods that build on their work.

In section 3.2 we will present two approximately Bayesian methods to adjust for missing con-

founders using supplemental data. We assume that the supplemental data is drawn from the

same underlying population but may not be a random sample of the entire population. In section

3.3 we present simulation results that compare our methods to complete case analysis using only

the supplemental data and a ‘naive’ analysis that uses only the fully measured covariates. Finally,

in section 3.4 we conclude with a discussion.

3.2 Methods

Suppose we have X , a dichotomous treatment, Y , a dichotomous outcome, C, a set of fully mea-

sured covariates and U , a set of partially measured covariates. We will develop our methods

in the context of Medicare part A (which we will simply called Medicare) and SEER-Medicare

for illustrative purposes although they can clearly be applied to any sources of data meeting our

assumptions. We will denote the primary data as {Yi, Xi,Ci,Ui} for i = 1, . . . , n and the supple-

mental data as {Yi, Xi,Ci,Ui} for j = n+ 1, . . . , n+m. The quantityUi is completely unobserved

in the primary data. Our goal is to estimate the marginal average causal effect (ACE) of a binary

treatment, X , on outcome, Y , in the Medicare population. For comparison purposes, we will de-
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fine our effect of interest as the risk difference, although we could easily define it as the risk ratio

or odds ratio. More generally, we define the parameter of interest as

∆ = P (Y = 1|X = 1)− P (Y = 1|X = 0)

Throughout, we let the subscript sup indicate observations from the supplemental data set

and and the subscript prim denote observations from the primary data set. Variables with-

out either subscript include the full data. In addition to assuming that the supplemental

data is from the same underlying population as the primary data (the population of inter-

est), we further assume that the missingness depends only on observed data. Specifically,

f(Uprim|Xprim, Yprim,Cprim) = f(Usup|Xsup, Ysup,Csup). For instance, our primary data might be

Medicare while our supplemental data could be linked SEER-Medicare, which is taken from the

Medicare population but is not a nationwide sample (NCI, 2013). But, we assume that, conditional

on observed characteristics (i.e. X,Y,C), the SEER-Medicare data is a random sample of the

Medicare population.

We will build on the concept of conditional propensity scores presented by McCandless et al.

(2012). We present two approximately Bayesian methods to adjust for missing confounders using

supplemental data.

3.2.1 Models

Define treatment and outcome models as follows:

g(P (Xi = 1|Ci,Ui)) = Ciγ +Uiγ̃ i = 1, . . . , n+m (3.1)

g(P (Yi = 1|Xi,Ci, Zi)) = βXi +Ciξ + h{Zi}ξ̃ i = 1, . . . , n+m (3.2)
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The parameter β represents the effect of X on Y conditional on C and U , g(·) is a link function

and Zi = Uiγ̃ is the propensity score conditional on C (McCandless et al., 2012). The deterministic

function h{Zi} specifies how Zi enters the outcome model, for instance as a linear predictor

or natural cubic spline basis. While not a true propensity score, Z is a balancing quantity

in that it balances the distribution of the missing covariates (U), conditional on the observed

covariates (C), between treated (X = 1) and untreated (X = 0). McCandless et al. (2012) prove

that if there is no unmeasured confounding conditional on (C,U) then there is no unmea-

sured confounding conditional on (C, Z). Therefore, we can estimate the treatment effect by

modeling the conditional distribution of Y given (X,C, Z). Note that we will always adjust for

C by includingC as a linear term in the regression model although further extensions are possible.

The corresponding complete data likelihood for (3.1) - (3.2) is then:

P (Y,X|C,U ,γ, γ̃, β, ξ, ξ̃) =
n+m∏
i=1

P (Yi, Xi|Ci,Ui,γ, γ̃, β, ξ, ξ̃) (3.3)

Complicating matters is the concept of ‘feedback’. In a fully Bayesian model, we would sample

from the joint posterior distribution which can be obtained by combining the complete data like-

lihood in (3.3) with the prior distributions on our model parameters. But note that this likelihood

can be broken into the components corresponding to treatment assignment (e.g. the propensity

score model) and outcome model as follows

P (Y,X|C,U ,γ, γ̃, β, ξ, ξ̃) = P (X|C,U ,γ, γ̃)︸ ︷︷ ︸
PS Model

P (Y |X,C,U , γ̃, β, ξ, ξ̃)︸ ︷︷ ︸
Outcome Model
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Notice that the parameter γ̃ appears in both terms in the likelihood. That is, quantities in the

outcome model, specifically Y , influence estimation of γ̃ and hence, Z. This is the nature of

feedback. Zigler et al. (2013) examine this concept in detail. They found that, in general, this

feedback distorts estimates of the parameters in the treatment (or propensity score) model and

that this distortion adversely impacts the balancing score property of the PS. As a result, Bayesian

propensity score models that use a joint likelihood for a PS model and an outcome model are

not guaranteed to uncover treatment effects. Zigler et al. (2013) show that an outcome model that

adjusts for the PS and also for every covariate included in the PS model can accurately estimate

the treatment effect. However, this additional covariate adjustment is not available in our setting

due to the nature of the missing data. We will instead take the sequential approach examined in

Chapter 1 and develop an approximately Bayesian procedure.

The likelihood in (3.3) can be decomposed into the portion corresponding to the primary data and

the portion corresponding to the supplemental data as follows:

P (Y,X|C,U ,γ, γ̃, β, ξ, ξ̃) = P (Yprim, Xprim|Cprim, Zprim,γ, β, ξ, ξ̃)

× P (Ysup, Xsup|Csup,Usup,γ, γ̃, β, ξ, ξ̃)

=
n∏
i=1

P (Yi, Xi|Ci, Zi,γ, β, ξ, ξ̃)
n+m∏
i=n+1

P (Yi, Xi|Ci,Ui,γ, γ̃, β, ξ, ξ̃)

Similarly, we can decompose (3.1) into (3.4) and (3.6) and (3.2) into (3.5) and (3.7):

g(P (Xi = 1|Ci, Zi)) = Ciγ + Zi i = 1, . . . , n (3.4)

g(P (Yi = 1|Xi,Ci, Zi)) = βXi +Ciξ + h{Zi}ξ̃ i = 1, . . . , n (3.5)

g(P (Xi = 1|Ci,Ui)) = Ciγ +Uiγ̃ i = n+ 1, . . . , n+m (3.6)

g(P (Yi = 1|Xi,Ci, Zi)) = βXi +Ciξ + h{Uiγ̃}ξ̃ i = n+ 1, . . . , n+m (3.7)
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where the Zi in (3.4) and (3.5) is a missing variable. Notice that we could define Uiγ̃ in (3.6)

and (3.7) as Zi; we choose to leave it as Uiγ̃ to highlight the fact that γ̃ appears in these models.

We then take a Bayesian data augmentation approach to calculate the posterior distribution of

P (Zprim,γ, γ̃, β, ξ, ξ̃|Y,X,C,Usup). We must first specify a model for the distribution of Z. We

assume that Z andC are not independent - an assumption we feel is reasonable in most settings -

and specify f(Z|C,θ), where θ is a parameter vector; i.e. E[Zi|Ci] = s(Ci,θ).

Both of our proposed methods use Bayesian data augmentation to impute Z in the primary data

but they differ in how they make use of the available data. First, in section 3.2.2 we propose

a sequential Bayesian model (SB) that cuts the feedback between the PSand outcome models.

This method simultaneously imputes the missing Zi in the primary data and estimates the

coefficients in the PS model (3.1). Then, given (Zi) we estimate the coefficients in the outcome

model (3.2). Next, in section 3.2.3 we propose a two-stage approach (TSB). In stage one, Zi is

estimated from (3.1) for all subjects in the supplemental data. In stage two, Zi is imputed for

subjects in the primary data while simultaneously estimating the regression coefficients from (3.2).

The quantity ∆ in the Medicare part A population is fully defined by the regression parameters

in (3.2) and the distributions of C and Z. Specifically,

∆ = P (Y = 1|X = 1)− P (Y = 1|X = 0) =

∫ ∫
P (Y = 1|X = 1,C, Z)P (C, Z)dCdZ

−
∫ ∫

P (Y = 1|X = 0,C, Z)P (C, Z)dCdZ
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It is important to note that this quantity is not even estimable using the SEER-Medicare data alone

because it is not a random sample from the Medicare population.

3.2.2 Sequential Bayesian

Here we propose an approximately Bayesian method (SB) that ‘cuts the feedback’ (McCandless

et al., 2010) from the outcome model to the PS model.

1. First we estimate the posterior distribution of (Zprim,γ, γ̃) given the both the primary and

supplemental data, P (Zprim,γ, γ̃|X,C,Usup).

2. Next we estimate the posterior distribution of (β, ξ, ξ̃) again given both the primary and

supplemental data and (γ̃, Zprim). That is, for every (Zprim,γ, γ̃) sampled from the posterior

distribution in step 1, we sample (β, ξ, ξ̃) from P (β, ξ, ξ̃|Y,X,C,Usup, Zprim, γ̃).

This ‘cuts the feedback’ from the outcome model to the treatment model in the sense that

information from the outcome model is not used to estimate quantities in the treatment model.

Posterior simulation is accomplished using MCMC. Details may be found in appendix A.3.1.

Given posterior samples of Zprim and all unknown parameters, it is straightforward to estimate

the posterior distribution of ∆ in the Medicare population from the empirical distribution of C.

3.2.3 Two-Stage Approach

Next we take a two-stage approach (TSB).

1. In stage one, we estimate the posterior distribution of the parameters in the PS model (3.1)

using only the supplemental data, P (γ, γ̃|Xsup,Csup,Usup). Given a posterior distribution

of γ̃ and Usup, we also have a posterior distribution of Zsup.
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2. In stage two, we estimate the posterior distribution of (Zprim, β, ξ, ξ̃) given Ẑsup, which is de-

fined as the mean of the posterior distribution of Zsup, that is P (Zprim, β, ξ, ξ̃|Y,X,C, Ẑsup).

This method is similar to the SB method but differs primarily in two ways. In TSB all parameters

from (3.1) are estimated using the supplemental data only, whereas in SB, the primary data

contributed to estimation of γ. Additionally, in TSB the parameters in the outcome model are

estimated using only a point estimate for Zsup, rather than the entire posterior distribution. TSB is

similar to a traditional PS approach where, once calculated, the estimated PS are treated as a fixed

quantity. TSB does not use the data as fully as SB but retains desirable properties when extended

to other settings, a point we will come back to in section 3.4.

Posterior simulation is again accomplished using MCMC. Details may be found in appendix A.3.2.

Given P (Zprim, β, ξ, ξ̃|Y,X,C, Ẑsup) and Ẑsup, it is again straightforward to estimate ∆ from the

empirical distribution of C.

3.3 Simulation Study

We conducted a simulation study to compare our methods to two commonly used methods:

complete case analysis - that is, analysis in the supplemental data only - and analysis using

only the fully measured covariates, C, which we will call ‘naive’. As previously noted, the

regression coefficient β is the effect of treatment, X (e.g. major craniotomy), on outcome, Y (e.g.

1-year risk of death), conditional on C and Z. While complete case analysis analysis allows

us to estimate this effect, we cannot consistently estimate ∆ in the population of interest (e.g.

Medicare enrollees). The ACE in this analysis is instead the effect of X on Y in the population

from which the supplemental data was drawn (e.g. the SEER-Medicare population), which is not

our population of interest. Not surprisingly, if we attempt to estimate the ACE, ∆, in the entire

population using only the supplemental data we found large bias in most scenarios. Here we will

present results for our methods and the naive analysis.
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3.3.1 Design

We generated 500 datasets from 18 scenarios: where the supplemental data = 10, 50 and 70% of

the total data, whereC and U are weakly and moderately correlated, and whereC and U are ap-

proximately equally important in terms of confounding, whereC contains ‘stronger’ confounders

than U and where U contains stronger confounders than C. All scenarios had six fully measured

confounders and 10 partially measured confounders. For simplicity, the first column of C is the

intercept. Total sample size for all scenarios was 2000. These scenarios are laid out in Table 3.1. We

assumed a probit link function for both (3.1) and (3.2). The specific data generating mechanism is

described in Appendix A.3.3. We fix β = 0.5 for all scenarios and adjust for Z in the outcome as a

linear covariate. i.e. h{Z} = Z.

Table 3.1: Simulation Scenarios. Breakdown of 18 simulation scenarios. m is the supplemental data sample
size, Confounding represents the relative importance of confounders inC and U and ρC,U is the correlation
between C and U .

m Confounding ρC,U
1 200 = low
2 200 = mod
3 200 U stronger low
4 200 U stronger mod
5 200 C stronger low
6 200 C stronger mod
7 1000 = low
8 1000 = mod
9 1000 U stronger low

10 1000 U stronger mod
11 1000 C stronger low
12 1000 C stronger mod
13 1400 = low
14 1400 = mod
15 1400 U stronger low
16 1400 U stronger mod
17 1400 C stronger low
18 1400 C stronger mod
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Figure 3.1: Boxplots of ∆̂ from the sequential Bayesian, two-stage Bayesian and naive analysis of 500 data
sets for all 18 scenarios. The darkest boxes are from the SB analysis, the medium boxes from the TSB analysis
and the light boxes from the naive analysis. Dashed lines indicate the true value of ∆ for each scenario. The
first row of plots are from the scenarios with m=200, the second row m=1000 and the third row m=1400. The
left column of plots are from scenarios whereC andU are weakly correlated, the right columns where they
are moderately correlated. Within each plot, the leftmost three boxes are scenarios where C and U contain
approximately equally important confounders, the center three boxes are scenarios where U contains the
most important confounders and the right three boxes are scenarios where C contains the most important
confounders.
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3.3.2 Results

We found that across scenarios our methods never do worse than the naive analysis and in many

cases perform much better. Figure 3.1 shows boxplots of the results of our simulations. Each box

represents the distribution of effect estimates across data sets. Our estimate, ∆̂, is the mean of the

posterior distribution of ∆.

When m=200, or 10% of the sample size (the first row of figure 3.1), we found that there is not

much gain in bias or mean squared error (MSE) by using our methods over simply fitting the

fully measured covariates. All methods performed comparably so there is little to motivate the

extra effort required to use our methods. When m=1000, or 50% of the sample size (the second

row of figure 3.1), we see a significant reduction in both bias and MSE with both of our methods

over adjusting for only the fully measured covariates except when C contains the important

confounders. When m=1400, or 70% of the overall sample (the third row of figure 3.1), we again

see a significant reduction in both bias and MSE with both of our methods over adjusting for only

the fully measured covariates in most scenarios. Table 3.2 shows the % bias and MSE reduction

by scenario for both the SB and TSB methods over the naive analysis.

It is worth noting that, even if our interest were in estimating the conditional effect, β, complete

case analysis fails to converge in many data sets when m=200 and even when m=1000 or 1400,

the MSE is significantly greater than either of our methods in most scenarios. (results not shown)

Ultimately, both the SB analysis and the TSB analysis performed comparably across scenarios.

They never performed worse than the naive analysis and in situations with a reasonably sized

supplemental data set, they tended to perform significantly better, in some cases eliminating bias

altogether.
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Table 3.2: Bias and MSE Reduction. Same 18 simulation scenarios as depicted in Table 3.1. % Reduction is
the reduction using SB and TSB, respectively, compared to the naive analysis.

m Confounding ρC,U % Bias (SB) %Bias (TSB) % MSE (SB) %MSE (TSB)
Reduction Reduction Reduction Reduction

1 200 = low 5.7 4.7 10.4 8.9
2 200 = mod 6.1 4.9 11.2 9.2
3 200 U stronger low 6.6 6.6 12.4 12.5
4 200 U stronger mod 6.4 5.8 12.1 11.1
5 200 C stronger low 5.5 4.4 8.9 7.7
6 200 C stronger mod 5.0 4.1 8.4 7.2
7 1000 = low 28.6 28.7 44.2 44.3
8 1000 = mod 33.2 30.0 51.6 48.0
9 1000 U stronger low 34.2 37.0 55.5 58.9

10 1000 U stronger mod 35.0 32.7 56.5 53.6
11 1000 C stronger low 25.6 23.7 36.9 35.9
12 1000 C stronger mod 32.4 28.1 44.4 41.3
13 1400 = low 51.3 51.9 69.0 69.3
14 1400 = mod 54.6 50.9 74.4 71.8
15 1400 U stronger low 54.7 57.7 77.0 79.3
16 1400 U stronger mod 55.6 52.3 78.2 75.5
17 1400 C stronger low 54.2 52.5 59.9 59.4
18 1400 C stronger mod 55.9 51.9 67.1 65.4

3.3.3 Sensitivity Analysis

More flexible adjustment for Z in the outcome model could, in theory, yield better results for both

of our methods. For instance, for the SB method, we also let h{·} be a natural cubic spline basis

function. Our results for this adjustment were nearly identical to our results where h{·} is the

identity function and we present the results for the more simple adjustment here.

Throughout our simulations we assume a linear regression model for f(Z|C,θ). In our data sets

this was a reasonable assumption, but in other data sets, any model should be evaluated for feasi-

bility.
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3.4 Discussion

Combining heterogeneous sources of information has the potential to allow us to make use of

very large data sets that are perhaps missing key confounders and smaller supplemental data

with rich covariate information on only a subset of the population in order to estimate treatment

effects in the larger population. Existing methods are difficult to implement in the situation

where the partially measured covariates are high dimensional or contain both continuous and

categorical covariates.

Sturmer et al. (2005) previously proposed propensity score calibration as a method to combine

heterogenous data sources. Their method treats a propensity score calculated using only the fully

measured covariates as measured with error. They then use validation data and a measurement

error model to account for covariates present only in the validation data. However, their method

relies on the assumption that the propensity score measured with error is a surrogate for the ‘gold

standard’ propensity score available in the validation data - a condition that would be violated

any time the direction of confounding from the partially observed covariates differs from that

of the fully observed covariates (Sturmer et al., 2007). Further, they show that violations of this

assumption can actually lead to an increase in bias. McCandless et al. (2012) suggest another

propensity score method that does not rely on the surrogacy assumption. Their method uses

‘conditional propensity scores’ to adjust for confounders available only in a supplementary

dataset and reduces the q dimensional partially measured covariates to a scalar quantity. Our two

proposed methods build on their work but address an important limitation with their methods.

We do not fit the PS and outcome models using the joint likelihood, as this is shown by Zigler

et al. (2013) to give biased estimates of the desired causal effect in most settings. We instead use

approximately Bayesian methods that cut the feedback from the outcome model to the PS model.

Our second method, TSB, has the distinguishing feature that the conditional propensity score

is estimated using only the supplemental data. Although this method doesn’t use the data as
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fully as the SB method, it provides the building block for more complex extensions. Zigler and

Dominici (2013) recently propose methods of Bayesian variable selection in PS models. The TSB

method can easily be extended to accommodate variable selection of the potential confounders

based on their joint association with exposure and outcome. While variable selection can also be

accomplished in the SB method, we would sacrifice the ability of the outcome to inform which

variables to include in the PS model.

Throughout we assume a linear regression model for f(Z|C,θ) – a reasonable assumption in our

simulated data. However, more complex models might be necessary in other settings. Strategies

to marginalize over the distribution of Z, rather than imputing the missing Z, could also be

implemented. We expect that they would perform similarly to the methods presented but do not

investigate this here. Additionally, if we were uncertain of our choice of model for f(Z|C,θ), a

multiple imputation approach might be advisable over a full Bayesian data augmentation. We

evaluated this approach in our simulations using the TSB method and found the results were

nearly identical to the full Bayesian data augmentation in our scenarios. Throughout we assume

no interactions between the fully measured covariates C and the partially measured covariates

U . While presented in the context of a dichotomous outcome, extending these methods to a

continuous or categorical outcome is straightforward.

Although in many of the settings we investigated, our estimates are still biased, the bias is sig-

nificantly reduced over fitting only the fully measured covariates, a common approach. Further

extensions, such as a model averaging approach, could improve the performance of our methods

in many settings.
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Appendices



A.1 Model Feedback in Bayesian Propensity Score Estimation - Ap-
pendix

A.1.1 Simulation study with very flexible specification of h(γ, C)

To further demonstrate the behavior of feedback in the joint Bayesian method, we conduct a

simulation study paralleling that of Scenarios 3 and 3+ of the main text where every covari-

ate exits a unique treatment-covariate/outcome-covariate relationship, but we analyze the data

with a more flexibly specified outcome model. We refer to this simulation as Scenario 4. We

simulate data from expressions (1.8) and (1.9) of the main text, with (γ0, γ1, γ2, γ3, γ4, γ5, γ6) =

(0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) and (α0, α1, α2, α3, α4, α5, α6) = (0.0, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1). Rather

than adjusting for subclasses based on PS quintiles, we specify h(γ,C) as a natural cubic spline ba-

sis with 10 knots, placed at the deciles of logit (PS). Figure A.1a depicts boxplots of posterior mean

estimates of γ and β for an analysis with δ = 0 for the sequential frequentist and joint Bayesian and

methods. Figure A.1b depicts the same for an analysis with δ 6= 0 and C+ ≡ C, labeled Scenario

4+. Note that the latter analysis with δ 6= 0 is analogous to the penalized spline of propensity pre-

diction method of Little (2011). The results of this simulation closely parallel those in the main text;

even when the PS enters the outcome in a highly flexible manner, failure to adjust for additional

covariates leads feedback to distort the estimates of γ and, ultimately the causal effect.

A.1.2 Acknowledgements

This work was funded by NCI P01CA134294, USEPA RD83479801, and HEI 4909. The contents of

this work are solely the responsibility of the grantee and do not necessarily represent the official

views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products

or services mentioned in the publication. The authors thank Giovanni Parmigiani, Sebastien Ha-

neuse, and Matt Cefalu for helpful discussion.
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(a) Scenario 2, δ = 0 (b) Scenario 2+, δ 6= 0

Figure A.1: Scenarios 4 and 4+ with (γ0, γ1, γ2, γ3, γ4, γ5, γ6) = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), and
(α0, α1, α2, α3, α4, α5, α6) = (0.0, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1): boxplots of estimates of γ and β from the se-
quential frequentist and joint Bayesian analysis of 1000 replicated data sets. Horizontal dotted lines are at
the true parameter values.

A.2 Bayesian Adjustment for Confounding in the Presence of Multiple
Exposures - Appendices

A.2.1 Example with Marginal but not Joint Independence

The following is an example of where we have marginal independence between a covariate and

two exposures separately but not between the covariate and the exposures jointly. To illustrate

we use dichotomous exposures and covariates, which can easily be summarized in contingency

tables. For instance, C could be an indicator variable such that C = 1 if a county has a medicare

population that is younger than average and 0 otherwise. Also, imagine that X1 = 1 if a county

had “high” ozone and 0 otherwise and X2 = 1 if a county had “high” PM2.5 and 0 otherwise.

Further, suppose that our data can be summarized as follows:

Then, P (C = 1|X1 = 1) = 4
44 = .0909, P (C = 1|X1 = 0) = 8

88 = .0909 and

P (C = 1) = 12
132 = .0909⇒ C ⊥⊥ X1
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C
1 0

X1
1 4 40
0 8 80

C
1 0

X2
1 10 100
0 2 20

C
1 0

X1, X2

1,1 4 36
1,0 0 4
0,1 6 64
0,0 2 16

Also, P (C = 1|X2 = 1) = 10
110 = .0909, P (C = 1|X2 = 0) = 2

22 = .0909 and

P (C = 1) = 12
132 = .0909⇒ C ⊥⊥ X2

BUT, P (C = 1|X1 = 1, X2 = 1) = 4
40 = .100 6= P (C = 1) and P (C = 1|X1 = 1, X2 = 0) = 0

4 =

0, P (C = 1|X1 = 0, X2 = 1) = 6
70 = .085, P (C = 1|X1 = 1, X2 = 1) = 2

18 = .111⇒ C ⊥6⊥ {X1, X2}

A.2.2 Prior Distributions

A.2.2.1 Complete distributions for prior odds ratios given in section 2.2.4

Consider the most simple formulation of prior odds ratios given in section 2.2.4

P (αYm = 1|αX1
m = 1, αX2

m = 1)

P (αYm = 0|αX1
m = 1, αX2

m = 1)
=
P (αYm = 1|αX1

m = 1, αX2
m = 0)

P (αYm = 0|αX1
m = 1, αX2

m = 0)
=
P (αYm = 1|αX1

m = 0, αX2
m = 1)

P (αYm = 0|αX1
m = 0, αX2

m = 1)
= ω

P (αYm = 1|αX1
m = 0, αX2

m = 0)

P (αYm = 0|αX1
m = 0, αX2

m = 0)
= 1

Additionally, in order to ensure a marginal probability P (αX1
m = 1) = P (αX2

m = 1) = 1
2 , we specify

the following prior odds ratios:

P (αX1
m = 1|αYm = 1)

P (αX1
m = 0|αYm = 1)

=
P (αX2

m = 1|αYm = 1)

P (αX2
m = 0|αYm = 1)

=
4ω

3ω + 1
(1)
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P (αX1
m = 1|αYm = 0)

P (αX1
m = 0|αYm = 0)

=
P (αX2

m = 1|αYm = 0)

P (αX2
m = 0|αYm = 0)

=
4

ω + 3

ω→∞−→ 0 (2)

The prior odds in (2) assign a very low probability (0 for ω = ∞) of being included in either of

the two exposure models if that potential confounder is not included into the outcome model. A

marginal probability of 1
2 implies a priori naiveté as to which covariates are associated with the

exposures; (1) and (2) could be adjusted for a different prior belief. These odds ratios also assume

a priori that the two exposure models are independent.

The above prior odds ratios imply the following joint, conditional and marginal probabilities:

Joint Probabilities:

P (αYm = 1, αX1
m = 1, αX2

m = 1) = P (αYm = 1, αX1
m = 1, αX2

m = 0)

= P (αYm = 1, αX1
m = 0, αX2

m = 1) =
1

4

ω

ω + 1

P (αYm = 0, αX1
m = 1, αX2

m = 1) = P (αYm = 0, αX1
m = 1, αX2

m = 0)

= P (αYm = 0, αX1
m = 0, αX2

m = 1) =
1

4

1

ω + 1

P (αYm = 1, αX1
m = 0, αX2

m = 0) = P (αYm = 0, αX1
m = 0, αX2

m = 0) =
1

8

Conditional Probabilities:

P (αYm = 1|αX1
m = 1, αX2

m = 1) = P (αYm = 1|αX1
m = 1, αX2

m = 0)

= P (αYm = 1|αX1
m = 0, αX2

m = 1) =
ω

ω + 1

P (αYm = 1|αX1
m = 0, αX2

m = 0) =
1

2
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P (αX1
m = 1|αYm = 1) = P (αX2

m = 1|αYm = 1) =
4ω

7ω + 1

P (αX1
m = 1|αYm = 0) = P (αX2

m = 1|αYm = 0) =
4

ω + 7

Marginal Probabilities:

P (αX1
m = 1) = P (αX2

m = 1) = 1/2

P (αYm = 1) =
3

4

ω

ω + 1
+

1

8

As previously mentioned, the above priors are unnecessarily restrictive. A more general formu-

lation follows. This formulations allows us to treat the two exposure models differently or give

higher probability to those covariates associated with both treatments.

Conditional Odds Ratios

P (αYm = 1|αX1
m = 1, αX2

m = 1)

P (αYm = 0|αX1
m = 1, αX2

m = 1)
= ω3

P (αYm = 1|αX1
m = 1, αX2 = 0)

P (αYm = 0|αX1
m = 1, αX2 = 0)

= ω1

P (αYm = 1|αX1 = 0, αX2
m = 1)

P (αYm = 0|αX1 = 0, αX2
m = 1)

= ω2

P (αYm = 1|αX1
m = 0, αX2

m = 0)

P (αYm = 0|αX1
m = 0, αX2

m = 0)
= 1

P (αX1
m = 1|αYm = 1)

P (αX1
m = 0|αYm = 1)

=
2(ω2 + 1)(ω1 + ω3 + 2ω1ω3)

(1 + ω1)(1 + 3ω2)(1 + ω3)

P (αX2
m = 1|αYm = 1)

P (αX2
m = 0|αYm = 1)

=
2(ω1 + 1)(ω2 + ω3 + 2ω2ω3)

(1 + ω2)(1 + 3ω1)(1 + ω3)

P (αX1
m = 1|αYm = 0)

P (αX1
m = 0|αYm = 0)

=
2(1 + ω2)(2 + ω1 + ω3)

(1 + ω1)(2 + ω2)(1 + ω3)

P (αX2
m = 1|αYm = 0)

P (αX2
m = 0|αYm = 0)

=
2(1 + ω1)(2 + ω2 + ω3)

(1 + ω2)(2 + ω1)(1 + ω3)
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Joint Probabilities:

P (αYm = 1, αX1
m = 1, αX2

m = 1) =
1

4

ω3

ω3 + 1

P (αYm = 1, αX1
m = 1, αX2

m = 0) =
1

4

ω1

ω1 + 1

P (αYm = 1, αX1
m = 0, αX2

m = 1) =
1

4

ω2

ω2 + 1

P (αYm = 0, αX1
m = 1, αX2

m = 1) =
1

4

1

ω3 + 1

P (αYm = 0, αX1
m = 1, αX2

m = 0) =
1

4

1

ω1 + 1

P (αYm = 0, αX1
m = 0, αX2

m = 1) =
1

4

1

ω2 + 1

P (αYm = 1, αX1
m = 0, αX2

m = 0) = P (αYm = 0, αX1
m = 0, αX2

m = 0) =
1

8

Conditional Probabilities:

P (αYm = 1|αX1
m = 1, αX2

m = 1) =
ω3

ω3 + 1

P (αYm = 1|αX1
m = 1, αX2

m = 0) =
ω1

ω1 + 1

P (αYm = 1|αX1
m = 0, αX2

m = 1) =
ω2

ω2 + 1

P (αYm = 1|αX1
m = 0, αX2

m = 0) =
1

2

P (αX1
m = 1|αYm = 1) =

ω3
ω3+1 + ω1

ω1+1
ω3
ω3+1 + ω2

ω2+1 + ω1
ω1+1 + 1

2

P (αX2
m = 1|αYm = 1) =

ω3
ω3+1 + ω2

ω2+1
ω3
ω3+1 + ω2

ω2+1 + ω1
ω1+1 + 1

2

P (αX1
m = 1|αYm = 0) =

1
ω3+1 + 1

ω1+1
1

ω3+1 + 1
ω2+1 + 1

ω1+1 + 1
2

P (αX2
m = 1|αYm = 0) =

1
ω3+1 + 1

ω2+1
1

ω3+1 + 1
ω2+1 + 1

ω1+1 + 1
2

Marginal Probabilities:

P (αX1
m = 1) = P (αX2

m = 1) = 1/2
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P (αYm = 1) =
1

8
(1 +

2ω1

ω1 + 1
+

2ω2

ω2 + 1
+

2ω3

ω3 + 1
)

Priors on all other parameters are as recommended by Raftery et al. (1997) and are given below:

Priors:

• ηαX1 |(αX1 , σ2X1
) ∼ N(µ0αX1 , σ

2
X1
φ2Σ0αX1 )

• ηαX2 |(αX2 , σ2X2
) ∼ N(µ0αX2 , σ

2
X2
φ2Σ0αX2 )

• (β1, β2, η
αY )|(αY , σ2Y ) ∼ N(µ0αY , σ

2
Y φ

2Σ0αY )

• σ2X1
, σ2X2

, σ2Y ∼ Gamma(ν/2, νλ/2), where (νλ/2) is the inverse-scale parameter of the

Gamma distribution (i.e. E[σ2X1
] = 1/λ)

Hyperparameters:

• µ0αX1 = µ0αX2 = µ0αY = 0

• Σ0αX1 ,Σ0αX2 ,Σ0αY are diagonal matrices with elements equal to s2m

• φ = 2.85

• ν = 2.58

• λ = 0.28

A.2.3 Posterior Distributions

A.2.3.1 Assumptions

In order to derive the full conditionals and simplify the MCMC, several reasonable assumptions

are necessary. Roughly speaking, we can think of these in terms of five basic assumptions. First,
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given a fixed outcome model and the exposure, selecting that exposure model does not depend

on the other exposure model, model coefficients, or data not in that exposure model. Second,

given an exposure model, selection of the outcome model is independent of that exposure. Third,

given fixed exposure models and the outcome, selection of the outcome model does not depend

on the exposures or model coefficients. Fourth, given an outcome model, selection of the exposure

models does not depend on the outcome itself. Finally, given a model and data, estimation of the

coefficient(s) from that model does not depend on the other models or their coefficients. These

assumptions are given explicitly below. We believe that these are reasonable assumptions.

(A1) αX1 ⊥ (X2, Y,β, γ,α
X2)| (αY , X1,C)

(A2) X1 ⊥ αY | (αX1 ,C)

(A3) αX2 ⊥ (X1, Y,β, γ,α
X1)| (αY , X̃2,C)

(A4) X̃2 ⊥ αY | (αX2 ,C)

(A5) αY ⊥ (X1, X2,β, γ)| (αX1 , αX2 , Ỹ ,C)

(A6) Ỹ ⊥ (αX1 , αX2)| (αY ,C)

(A7) γ ⊥ (αX1 ,αY ,β)| (αX2 , D)

(A8) β ⊥ (αX1 , αX2 , γ)| (αY , D)

where X̃2 = X2 − γX1 and Ỹ = Y − (β1X1 + β2X2 + β3X1X2).

A.2.3.2 Full Conditionals.

Our goal is to estimate the posterior distribution of (αY ,αX1 ,αX2 ,∆(x1,x2)(δ1, δ2)). We accom-

plish this by iteratively sampling from P (αX1 |αX2 ,αY ,β, γ,D)), P (αX2 |αX1 ,αY ,β, γ,D)),

P (αY |αX1, αX2 ,β, γ,D)), P (γ|αX1 ,αX2 ,αY ,β, D)), and P (β|αX1 ,αX2 ,αY , γ,D)). Recall that
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D=(X, Y,C). Derivations of these follow:

1. P (αX1 |αX2 ,αY ,β, γ,D)
A1
= P (αX1 |αY , X1,C)

BayesThm
=

P (X1|αX1 ,αY ,C)P (C)P (αX1 |αY )

P (X1,C|αY )

A2
=
P (X1|αX1 ,C)P (C)P (αX1 |αY )

P (X1,C|αY )
∝

P (X1|αX1 ,C)P (αX1 |αY ),

where P (X1|αX1 ,C) =

Γ(ν+n2 )(νλ)ν/2

πn/2Γ(ν/2)|In + φ2WαX1Σ0αX1W
′
αX1
|1/2

×{λν + (X1 −WαX1µ0αX1 )′(In + φ2WαX1Σ0αX1W
′
αX1

)−1(X1 −WαX1µ0αX1 )}−
ν+n
2

2. P (αX2 |αX1 ,αY ,β, γ,D)
A3
= P (αX2 |αY , X̃2,C)

BayesThm
=

P (X̃2|αX2 ,αY ,C)P (C)P (αX2 |αY )

P (X̃2,C|αY )

A4
=
P (X̃2|αX2 ,C)P (C)P (αX2 |αY )

P (X̃2,C|αY )
∝

P (X̃2|αX2 ,C)P (αX2 |αY ),

where P (X̃2|αX2) =

Γ(ν+n2 )(νλ)ν/2

πn/2Γ(ν/2)|In + φ2WαX2Σ0αX2W
′
αX2
|1/2

× {λν + (X̃2 −WαX2µ0αX2 )′(In + φ2WαX2Σ0αX2W
′
αX2

)−1(X̃2 −WαX2µ0αX2 )}−
ν+n
2

WhereW
αXj

is the design matrix for exposure regression j

3. P (αY |αX1 ,αX2 ,β, D)
A5
= P (αY |αX1 ,αX2 , Ỹ ,C)

BayesThm
=

P (Ỹ |αX1 ,αX2 ,αY ,C)P (C)P (αY |αX1 ,αX2)

P (Ỹ ,C|αX1 ,αX2)

A6
=
P (Ỹ |αY ,C)P (C)P (αY |αX1 ,αX2)

P (Ỹ ,C|αX1 ,αX2)
∝

P (Ỹ |αY ,C)P (αY |αX1 ,αX2),
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where P (Ỹ |αY ) =

Γ(ν+n2 )(νλ)ν/2

πn/2Γ(ν/2)|In + φ2WαY Σ0αYW
′
αY
|1/2

× {λν + (Ỹ −WαY µ0αY )′(In + φ2WαY Σ0αYW
′
αY

)−1(Ỹ −WαY µ0αY )}−
ν+n
2

WhereWαY is the design matrix for the outcome regression

4. Finally, P (β|αX1 ,αX2 ,αY , γ,D)
A8
= P (β|αY , D)

βj |αY , D ∼ tn+v(βj,nαY , σ2j,nαY ) for j = 1, 2, 3

Where βj,nαY is the jth element of θnαY , σ2
j,nαY

is the (j, j) element of SnαY :

θnαY = (W ′αYWαY + Σ−1
0αY

/φ2)−1(Σ−1
0αY

µ0,αY /φ
2 +W ′αY Y )

SnαY = (n + ν)−1{νλ + (Y − WαY θnαY )′Y + (µ0αY − θnαY )′Σ−1
0αY

µ0αY /φ
2}{(W ′

αY
WαY +

Σ−1
0αY

/φ2)−1}

Similarly, P (γ|αX1 ,αX2 ,αY ,β, D)
A7
= P (γ|αX2 , D)

γ|αX2 , D ∼ tn+v(γj,nαX2 , σ
2
j,nαX2

)

A.2.4 Data Analysis

In this appendix we describe the variables and data sources used in section 2.4. Table A.1 lists

all available covariates (C) and their data sources. All variables were averaged over the period

2008-2010. Table A.2 shows the variables that were dropped before beginning our analysis and

the reason (missing data or highly correlated (> 0.8) with other covariates). Figure A.2 shows

the distribution of covariates included in the analysis. Note that the plots are scaled by covariate.

Finally, Table A.3 shows the posterior probability of inclusion in (2.9) for each covariate for BAC-

ME and FBMA and whether or not it was included for NLASSO.
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Figure A.2: Distribution of each covariate included in the analysis, by county. Each box plot is on its own
scale.
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Table A.1: All variables were averaged over the period 2008-2010.
Potential Confounders

Variable Source
Median Income

County Level Census Data

HS grad rate
Urban rate
5 year migration rate
White rate
Black rate
Hispanic rate
Total Population
Smoking rate

County level data from the CDC’s Be-
havioral Risk Factor Surveillance Sys-
tem

Mean # of adults in house
Proportion in general good health
Prop. who did not see dr due to cost
Prop exercise in past 30 days
Prop with AMI
Prop with CHD
Prop stroke
Prop with asthma
Prop alcohol past 30 days
Prop with Hypertension
Prop who had a fall past 3 mo
Prop satisfied with life
Prop prior diabetes
Prop with good BMI
Prop with overweight BMI
Prop with obese BMI
Prop who don’t drink daily
Prop with Flu shot 12 mo
Prop with Pneumonia shot 12 mo
Prop Pre DM
Prop Own Home
Mean age

Medicare Beneficiary Enrollment Data
(Medicare recipients 65 and older)

Female rate
White rate
Black rate
temp,. . ., temp7

County level weather data
(www.ncdc.noaa.gov, 2012)

temp stand dev
dew point,. . .,dew point7

dew point stand dev
Mean NO2 Pollution Data from the EPA’s Air

Quality System Database (US EPA,
2012)

Mean SO2

Mean CO
Mean Lead
South Geographic Regions as defined by the

Census Bureau (www.census.gov, 2012)Midwest
Northeast
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Table A.2: These variables were eliminated from the data before beginning our analysis.
Variable Reason
NO2, CO and SO2 and Lead Not enough data points
Black rate and White rate from the
medicare data

Highly correlated with race proportions
from Census Data

Prop with pneumonia shot 12 mo Highly correlated with flu shot
Prop alcohol past 30 days Highly correlated with Prop who don’t

drink daily
Pre DM & Own Home Too many missing values
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Table A.3: Posterior Support by Method. Posterior inclusion probabilities (P (αY |D)) of each of the 47
potential confounders where the αY

m are defined in (2.9) for BAC-ME and FBMA and whether or not a
variable was included in (2.9) for NLASSO.

Variable BAC-ME FBMA NLASSO
1 temp 1 1 1
2 temp.2 1 1 0
3 temp.3 1 1 0
4 temp.4 1 1 0
5 temp.5 1 1 0
6 temp.6 1 1 0
7 temp.7 0.15 0 0
8 dp 1 1 1
9 dp.2 1 1 0

10 dp.3 1 1 0
11 dp.4 1 1 0
12 dp.5 1 1 0
13 dp.6 1 1 0
14 dp.7 0.24 0.74 0
15 temperature annual STD 1 1 0
16 Dew point annual STD 1 0 0
17 Median income 0 0.75 0
18 HS rate 1 1 0
19 Urban rate 1 1 0
20 Migration 5 year rate 0.13 0 0
21 Hispanic rate 0.75 1 0
22 white rate 1 1 0
23 black rate 0.26 0 0
24 Tot pop 1 1 0
25 smoking 0 0.93 0
26 Mean adult in house 0.06 0.22 0
27 General Health good 0 1 0
28 Not See Dr BC Cost 0 0 0
29 Exercise Past 30D 0.28 1 0
30 HX AMI 0.82 0 0
31 Hx CHD 1 0 1
32 Hx stroke 0 0.09 0
33 Asthma 0.23 1 0
34 HTN 1 0.21 0
35 Fall Past 3m 0.11 1 0
36 Satisfaction with life Yes 0.38 0.76 0
37 DM 0.89 0.24 1
38 BMI good 1 0.94 0
39 BMI overweight 0 0.94 0
40 BMI OB 0.19 0.86 0
41 No Drink daily 1 0.38 0
42 flu shot past 12m 1 1 0
43 mean age D 1 0.59 0
44 Female rate D 1 1 1
45 Northeast 0.29 0 0
46 Midwest 0.78 0.04 0
47 South 1 0.97 0
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A.3 Propensity Score Methods for Combining Data Sources - Appen-
dices

A.3.1 MCMC Details for Sequential Bayesian Approach

We develop the MCMC algorithm for binary treatment and outcomes, assuming a probit link

function and using a latent variable approach (Albert and Chib, 1993). Further, we adjust for Z in

the outcome model as a linear covariate. That is h{Z} = Z. We specify a linear regression model

for E[Z|C]. In other words, Zi|Ci ∼ N(Ciη, σ
2) for i = 1, . . . , n.

A.3.1.1 Models

g(P (Xi = 1|Ci, Zi)) = Cjγ + Zi i = 1, . . . , n

g(P (Xi = 1|Ci,Ui)) = Ciγ +Uiγ̃ i = n+ 1, . . . , n+m

E[Zi|Ci] = Ciη i = 1, . . . , n

g(P (Yi = 1|Xi,Ci, Zi)) = βXi +Ciξ + h{Zi}ξ̃ i = 1, . . . , n

g(P (Yi = 1|Xi,Ci, Zi)) = βXi +Ciξ + h{Uiγ̃}ξ̃ i = n+ 1, . . . , n+m
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A.3.1.2 Prior Distributions

Let θ = (β, ξ, ξ̃), q be the number of fully measured confounders plus 1 and p be the number of

partially measured confounders (recall that the first column of C is the intercept). We factorize

the prior distribution P (γ, γ̃,θ,η, σ2) as P (γ)P (γ̃)P (θ)P (η|σ2)P (σ2).

We assume the following prior distributions:

• γ̃ ∼ Np(0, λγ̃I)

• γ ∼ Nq(0, λγIq)

• θ ∼ Nq+2(0, λθIq+2)

• σ2 ∼ IG(a0, b0)

• η|σ2 ∼ Nq(0, σ
2kIq)

and let λγ = λγ̃ = λθ = 1000, k = 10, 000, a0 = 20.1 and b0 = 2.

A.3.1.3 Posterior Simulation

We iteratively sample from P (Zprim,γ, γ̃|X∗,C,Usup) then

P (θ|Y ∗, X,C,Usup, γ̃, Zprim). Note that Y ∗, X∗ are the underlying latent variables from the probit

regression models. From the priors specified above and (3.1) we have
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P (Zprim,γ,γ̃,η, σ
2|X∗,C,Usup)

∝P (X∗sup|Csup,Usup,γ, γ̃)P (X∗prim|Cprim, Zprim,γ)P (Zprim|Cprim,η, σ2)

×P (γ, γ̃,η, σ2)

∝exp{−1

2
(X∗sup − (Csupγ +Usupγ̃))′(X∗sup − (Csupγ +Usupγ̃))}

×exp{−1

2
(X∗prim − (Cprimγ + Zprim))′(X∗prim − (Cprimγ + Zprim))}

×exp{−1

2
(Zprim −Cprimη)′(σ2In)−1(Zprim −Cprimη))}exp{−1

2
(γ ′(λγIq)

−1γ}

×exp{−1

2
(γ̃ ′(λγ̃Iq)

−1γ̃}(σ2)−q/2exp{−1

2
η′(σ2kIq)

−1η}(σ2)−(a0+1)

×exp{−b0
σ2
}

and

P (θ|Y ∗, X,C,Usup, Zprim, γ̃)

∝P (Y ∗sup|Xsup,Csup,Usup, γ̃,θ)P (Y ∗prim|Xprim,Cprim, Zprim,θ)P (θ)

∝exp{−1

2
(Y ∗sup − (βXsup +Csupξ + (Usupγ̃)ξ̃))′(Y ∗sup − (βXsup +Csupξ + (Usupγ̃)ξ̃))}

×exp{−1

2
(Y ∗prim − (βXprim +Cprimξ + Zprimξ̃))′(Y ∗prim − (βXprim +Cprimξ + Zprimξ̃)))}

×exp{−1

2
θ′(λθIq+2)

−1θ}

A.3.1.4 MCMC Algorithm

Let Z(t) =

(
Usupγ̃

(t)

Z
(t)
prim

)
and W (t) = (X,C, Z(t)). Define Vγ̃ = Usup(U

′
supUsup + 1

λγ̃
Ip)
−1U ′sup and

Vγsup = Csup(C
′
supCsup +

1

λγ
Iq)
−1C ′sup.

From the posterior distributions in A.3.1.3, it is relatively straightforward to calculate the marginal

and conditional distributions that follow. The MCMC algorithm for iteration (t+1):
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1. Draw X
∗(t+1)
sup from a truncated normal distribution with meanCsupγ(t) +Usupγ̃

(t) and vari-

ance 1 as described in Albert and Chib (1993).

2. Draw X
∗(t+1)
prim from a truncated normal distribution with mean Cprimγ(t) + Z

(t)
prim and vari-

ance 1.

3. Draw Z
(t+1)
prim from N

(
σ2(t)

1+σ2(t) (X
∗(t+1)
prim −Cprimγ(t) + 1

σ2(t)Cprimη
(t)), σ2(t)

1+σ2(t)

)
4. Draw σ2(t+1) from IG(a0 + m+n

2 , b0 + 1/2(Z(t+1)′Z(t+1) − Z(t+1)′C(C ′C + 1
kIq)

−1C ′Z(t+1)))

5. Draw η(t+1) from Nq((C
′C + 1

kIq)
−1C ′Z(t+1), σ2(t+1)(C ′C + 1

kIq)
−1)

6. Draw γ(t+1) fromNq((C
′
primCprim+C ′sup(Im−Vγ̃)Csup+ 1

λγ
Iq)
−1(C ′prim(X

∗(t+1)
prim −Z(t+1)

prim )+

C ′sup(Im − Vγ̃)X
∗(t+1)
sup ), (C ′primCprim +C ′sup(Im − Vγ̃)Csup + 1

λγ
Iq)
−1)

7. Draw γ̃(t+1) from Np((U
′
sup(Im − VγJ)Usup + 1

λγ̃
Ip)
−1(U ′sup(Im − VγJ)X

∗(t+1)
sup ), (U ′sup(Im −

VγJ)Usup + 1
λγ̃
Ip)
−1)

8. Draw Y ∗(t+1) from a truncated normal distribution with meanW (t)θ(t+1) and variance 1.

9. Draw θ(t+1) from Nq+2((W
(t+1)′W (t+1) + 1

λθ
Iq+2)

−1W (t+1)′Y ∗(t+1), (W (t+1)′W (t+1) +

1
λθ
Iq+2)

−1)

A.3.2 MCMC Details for Two-Stage Approach

We again develop the MCMC algorithm for binary treatment and outcomes, assuming a probit

link function and using a latent variable approach (Albert and Chib, 1993). Further, we adjust for

Z in the outcome model as a linear covariate. That is h{Z} = Z. We specify a linear regression

model for E[Z|C]. In other words, Zi|Ci ∼ N(Ciη, σ
2) for i = 1, . . . , n. Let θX = (γ, γ̃), θY =

(β, ξ, ξ̃),WX = (C,U),WY = (C, Z) and Z =

(
Ẑsup
Zprim

)
.

A.3.2.1 Models

1. Stage 1

g(P (Xi = 1|Ci,Ui)) = Ciγ + Uiγ̃ i = n+ 1, . . . , n+m
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2. Stage 2

E[Zi] = Ciη i = 1, . . . , n

g(P (Yi = 1|Xi,Ci, Zi)) = βXi +Ciξ + h{Zi}ξ̃ i = 1, . . . , n+m

A.3.2.2 Prior Distributions

We factorize the prior distribution P (θX ,θY ,η, σ
2) as P (θX)P (θY )P (η|σ2) P (σ2).

We assume the following prior distributions:

• θX ∼ Np(0, λXW
′
XWX)

• θY ∼ Nq+2(0, λY Iq+2)

• σ2 ∼ IG(a0, b0)

• η|σ2 ∼ Nq(0, σ
2kIq)

and let λX = λY = 1000, k = 10, 000, a0 = 20.1 and b0 = 2.

A.3.2.3 Posterior Simulation

A.3.2.3.1 Stage 1 In stage 1, we sample from P (θX |X∗sup,WX,sup). From the priors specified

above and (3.1) we have

P (θX |X∗sup,WX,sup) ∝P (X∗sup|WX,sup,θX)P (θX)

∝exp{−1

2
(X∗sup −WX,supθX)′(X∗sup −WX,supθX)}

exp{−1

2
(θ′X

1

λX
W ′

X,supWX,supθX)}
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A.3.2.3.2 Stage 2 In stage 2, we sample from P (Zprim,θY ,η, σ
2|Y ∗, X,WY ). From the priors

specified above and (3.1) we have

P (Zprim,θY ,η, σ
2|Y ∗, X,C, Ẑsup) ∝ P (Y ∗|X,C, Z,θY )P (Zprim|Cprim,η, σ2)P (θY )P (η|σ2)P (σ2)

∝ exp{−1

2
(Y ∗ −WY θY )′(Y ∗ −WY θY )}

× exp{−1

2
(Zprim −Cprimη)′(σ2Im+n)−1(Zprim −Cprimη)}

× exp{−1

2
θ′(λY Iq+2)

−1θ}(σ2)−q/2exp{−1

2
η′(σ2kIq)

−1η}(σ2)−(a0+1)exp{− b0
σ2
}

where Ẑsup = E[Usupγ̃], the posterior mean of Ujγ̃ from stage 1.

A.3.2.4 MCMC Algorithm

A.3.2.4.1 Stage 1

1. Draw θ
(t+1)
X fromNq+p(((1+ 1

λX
)W ′

X,supWX,sup)
−1W ′

X,supX
∗(t), ((1+ 1

λX
)W ′

X,supWX,sup)
−1)

2. Draw X
∗(t+1)
sup from a truncated normal distribution with mean WX,supθ

(t+1)
X and variance 1

as described in Albert and Chib (1993).

A.3.2.4.2 Stage 2

1. Draw Y ∗(t+1) from a truncated normal distribution with meanW (t)
Y θ

(t)
Y and variance 1

2. DrawZ
(t+1)
prim fromN(

(
1

σ2(t) + ξ̃(t)2
)−1 (

(Y
∗(t+1)
prim − β(t)Xprim −Cprimξ(t))ξ̃(t)2 + 1

σ2(t)Cprimη
(t)
)
,(

1
σ2(t) + ξ̃(t)2

)−1
)

3. Draw σ2(t+1) from IG(a0 + m+n
2 , b0 + 1/2(Z(t+1)′Z(t+1) − Z(t+1)′C(C ′C + 1

kIq)
−1C ′Z(t+1)))

4. Draw η(t+1) from Nq((C
′C + 1

kIq)
−1C ′Z(t+1), σ2(t+1)(C ′C + 1

kIq)
−1)

5. Draw θ
(t+1)
Y from Nq+2((W

(t+1)′W (t+1) + 1
λY
Iq+2)

−1W (t+1)′Y ∗(t+1), (W (t+1)′W (t+1) +

1
λY
Iq+2)

−1)
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A.3.3 Data Generating Mechanism for Simulations

The specific data generating mechanism for the simulation scenarios is outlined below.

1. Generate Cprim,−1 from Nq(µprim,ΣC) and Csup,−1 from Nq(µsup,ΣC)

2. Generate U1|C from Np1(Cζl, τlIp1)

3. Generate U2 from Np2(0,ΣU )

4. Generate X from Bin(n + m, px) where px = Φ((C,U)

(
γk
γ̃k

)
) and Φ is the cumulative dis-

tribution function of the standard normal distribution.

5. Generate Y from Bin(n + m, py) where py = Φ((X,C,U)

βkξk
ξ̃k

) and Φ is the cumulative

distribution function of the standard normal distribution.

Recall that the first column of C is the intercept. µsup = 0 and µprim = 1. ΣC and ΣU have

auto-regressive correlation structures (AR1) with ρ = 0.3. l corresponds to the correlation between

C and U – low (l = 1) or moderate(l = 2) – and k corresponds to the relative ‘importance’ of C

and U as confounders of the effect of X on Y – C = U (k = 1), C < U (k = 2) or C > U (k = 3).

p1 = 4 for all scenarios. Specific values of τ, ζ,γ, γ̃, β, ξ and ξ̃ are as follows.

τ1 = 1

τ2 = 3

ζ1 =


0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03



ζ2 =


0.3 0.3 0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2 0.2 0.2
0.1 0.1 0.1 0.1 0.1 0.1
0.4 0.4 0.4 0.4 0.4 0.4


γ1 =

(
−1 0.2 0.2 0.1 0.1 0.05 0.05

)
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γ2 =
(
−1 0.1 0.1 0.1 0.1 0.05 0.05

)
γ3 =

(
−1 0.4 0.4 0.1 0.1 0.05 0.05

)
γ̃1 =

(
0.2 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.2

)
γ̃2 =

(
0.4 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.4

)
γ̃3 =

(
0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1

)
ξ1 =

(
−2 0.2 0.05 0.1 0.1 0.2 0.05

)
ξ2 =

(
−2 0.1 0.05 0.1 0.05 0.1 0.05

)
ξ3 =

(
−2 0.4 0.05 0.1 0.1 0.4 0.05

)
ξ̃1 =

(
0.05 0.1 0.05 0.05 0.05 0.05 0.05 0.05 0.2 0.2

)
ξ̃2 =

(
0.05 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.4 0.4

)
ξ̃3 =

(
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1

)
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