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Abstract

Much health related research depends heavily on the analysis of a rapidly expanding universe of
observational data. A challenge in analysis of such data is the lack of sound statistical methods
and tools that can address multiple facets of estimating treatment or exposure effects in obser-
vational studies with a large number of covariates. We sought to advance methods to improve
analysis of large observational datasets with an end goal of understanding the effect of treatments
or exposures on health. First we compared existing methods for propensity score (PS) adjustment,
specifically Bayesian propensity scores. This concept had previously been introduced (McCandless
et al., 2009) but no rigorous evaluation had been done to evaluate the impact of feedback when
fitting the joint likelihood for both the PS and outcome models. We determined that unless spe-
cific steps were taken to mitigate the impact of feedback, it has the potential to distort estimates
of the treatment effect. Next, we developed a method for accounting for uncertainty in confound-
ing adjustment in the context of multiple exposures. Our method allows us to select confounders
based on their association with the joint exposure and the outcome while also accounting for the
uncertainty in the confounding adjustment. Finally, we developed two methods to combine het-
erogenous sources of data for effect estimation, specifically information coming from a primary
data source that provides information for treatments, outcomes, and a limited set of measured
confounders on a large number of people and smaller supplementary data sources containing a
much richer set of covariates. Our methods avoid the need to specify the full joint distribution of

all covariates.
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Preface

Increasingly, health effects research relies on large, observational datasets. Compared to clinical
trials, the analyses of these databases allow us to study a much larger population and to investi-
gate additional questions of interest. However, analysis of these large and complex administrative
databases raises several methodological challenges and requires the development of new statisti-
cal methods. Comparing the effectiveness of treatment strategies or the health effect of exposure
to harmful agents in observational data is challenging in part because people are not randomly
assigned to treatment strategies or exposures, which introduces the likely possibility that outcome
comparisons are confounded by factors that simultaneously relate to exposure status, treatment

choices, and health outcomes.

Here, we attempt to advance existing research by evaluating existing methods and developing
new methods for confounding adjustment in large observational datasets. First, in Chapter 1,
we look at Bayesian propensity score methods, formally introduced by McCandless et al. (2009).
Bayesian methods have natural appeal because separate likelihoods for what is normally a two
stage procedure can be combined into a single joint likelihood, with estimation of the two stages
carried out simultaneously. In theory, this makes more complete use of the data than traditional
frequentist propensity score methods. One key feature of joint estimation in this context is “feed-
back” between the outcome stage and the propensity score stage, meaning that health outcome
data contributes to the estimation of the posterior distributions of the propensity score. This has
been criticized as violating the principles of objective experimental design (Rubin, 2007, 2008). If
propensity scores are meant to approximate the design stage of a randomized study, any access
to outcome when calculating the propensity score fails to ensure that objective design decisions
are completely separate from analysis decisions. However, methods that incorporate outcome
information have also been advocated (Schneeweiss et al., 2009, McCandless et al., 2009) We found
that a rigorous investigation of exactly how feedback can impact estimation of causal effects was
lacking. We provide this rigorous assessment of Bayesian propensity score estimation and demon-
strate that model feedback can bias estimates of the causal effect absent strategies to ensure that
the propensity score maintains its properties as a balancing score. Much of this was joint work

with Corwin Zigler and large portions of the first chapter have been published in the paper titled
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Model Feedback in Bayesian Propensity Score Estimation (Zigler et al., 2013). In Chapter 1, we also add

the following contributions:

e An analysis of an approximately Bayesian method that “cuts the feedback” from the out-
come model to the propensity score model. Zigler et al. (2013) compare the joint Bayesian
method to an traditional sequential approach; here we add in a comparison to a sequential
Bayesian approach as well. This method is originally described by McCandless et al. (2010).
Here we redefine the method, evaluate it in our simulation study and apply it to a com-
parative effectiveness analysis of carotid artery stenting versus the more traditional carotid

endarterectomy.

e Comparison of the methods” performances in the situation where either the propensity score
or outcome model is misspecified. Zigler et al. (2013) note that augmenting the propensity
score adjustment in the outcome model with adjustment for every covariate that appears in
the propensity score model is “akin to those previously developed to yield “doubly robust”
estimators” (Bang and Robins, 2005, Little, 2011) but do not explore whether this model shares
the desirable features of a doubly robust estimator. Here we conduct a simulation study to
evaluate the performance of the joint Bayesian, sequential Bayesian and traditional sequen-

tial approaches in these settings.

In Chapter 2 we develop a method for confounding adjustment in the setting of multiple ex-
posures or treatments. This method is developed in the context of air pollution epidemiology.
Currently, most epidemiological studies examine health effects associated with exposure to a sin-
gle environmental contaminant at a time. However, humans are exposed to many environmental
agents at once and therefore epidemiological studies need to change focus to this more realistic
setting. One challenge with the transition from a single exposure to multiple exposures is the lack
of a formal approach to select which measured confounders should be included in the outcome
model. Standard approaches for selecting confounders in the context of a single exposure are not
adequate in the context of multiple exposures; the set of confounders of an outcome associated

with simultaneous exposure to more than one exposure or treatment cannot be fully characterized
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by the confounders of the effect of each individual exposure separately. The key task is to identify
confounders that are jointly associated with multiple exposures and the outcome. In this chapter,
we will make two contributions. First, we will clarify the difference as to what constitutes a true
confounder in multiple exposure settings versus single exposure settings. A true confounder in
the multiple exposure setting is any covariate that confounds the relationship between simultane-
ous exposure to multiple pollutants and the outcome of interest. This could be a covariate that is
marginally associated with one or more exposures - and, hence, would also be a confounder in the
single exposure setting - or one that is jointly associated with multiple exposures (and might not
be a confounder in the single exposure setting). Second, we will develop a statistical framework
to adjust for confounding in the presence of multiple exposures while accounting for uncertainty
in the confounding adjustment. Recently (Wang et al., 2012) introduced Bayesian Adjustment for
Confounding (BAC) as a method to select confounders in the single exposure setting. BAC uses a
Bayesian approach to model averaging to estimate the health effect associated with exposure to a
single pollutant while acknowledging the uncertainty in the confounder selection. We introduce
BAC for multiple exposures (BAC-ME) to extend this framework where selection of confounders
is based on simultaneous exposure to multiple pollutants. Our method allows us to select a subset
of covariates to include to control for confounding in a linear regression model while protecting
against the possibility of eliminating a true confounder. This also helps identify true confounders
for future research efforts. We show through simulation studies that it is of paramount importance
to include all confounders in the outcome model and that excluding only one true confounder
could lead to substantial bias in estimation of the multi pollutant adverse health effect. We also
apply our method to a retrospective epidemiological study aimed at estimating the multi pollutant
adverse effect on cardiovascular hospitalization associated with a simultaneous change in ozone
and PM3y 5, controlling for weather data and population level characteristics. This work has been
submitted for publication (Bayesian Adjustment for Confounding in the Presence of Multiple Exposures,

Krista Watts, Corwin M. Zigler and Francesca Dominici)

In Chapter 3 we develop two methods to combine data from heterogeneous data sources when
the goal is to compare the effect of two treatments or exposures. We look specifically at the set-
ting where we have information coming from a primary data source that provides information for

treatments, outcomes, and a limited set of measured confounders on a large number of people and

Xiv



smaller supplementary data sources containing a much richer set of covariates. Often, important
confounders are not measured in the primary data. However, the supplemental data source may
contain information on important confounders in a subset of the population. Current methods
for combining such data sources for analysis require specifying the joint distribution of all data
(Little and Rubin, 2002). When the missing covariates are high dimensional, correlated, or contain
both continuous and dichotomous or categorical variables, correctly specifying this distribution is
nearly impossible. Recently, McCandless et al. (2012) suggest a method to use ‘conditional propen-
sity scores’ to adjust for confounders available only in a supplementary dataset. We propose two
methods that build on their work. We conduct a simulation study to show settings when our
methods can substantially reduce bias over complete case analysis or ‘naive’ analysis that adjusts
for only the fully measured covariates. We expect to submit this work for publication in the next
tew weeks (Propensity Score Methods for Combining Data Sources, Krista Watts, Corwin M. Zigler,

Yun Wang and Francesca Dominici)
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1.1 Abstract

Methods based on the propensity score comprise one set of valuable tools for comparative effec-
tiveness research and for estimating causal effects more generally. These methods typically consist
of two distinct stages: 1) a propensity score stage where a model is fit to predict the propensity to
receive treatment (the propensity score), and 2) an outcome stage where responses are compared
in treated and untreated units having similar values of the estimated propensity score. Traditional
techniques conduct estimation in these two stages separately; estimates from the first stage are
treated as fixed and known for use in the second stage. Bayesian methods have natural appeal in
these settings because separate likelihoods for the two stages can be combined into a single joint
likelihood, with estimation of the two stages carried out simultaneously. One key feature of joint
estimation in this context is ‘feedback’ between the outcome stage and the propensity score stage,
meaning that quantities in a model for the outcome contribute information to posterior distribu-
tions of quantities in the model for the propensity score. We provide a rigorous assessment of joint
Bayesian propensity score estimation to show that model feedback can produce poor estimates of
causal effects absent strategies that augment propensity score adjustment with adjustment for in-
dividual covariates. We also explore an approximately Bayesian sequential method and show that
adjustment for individual covariates is not required to obtain an unbiased estimate of the causal
effect. We illustrate this phenomenon with a simulation study and with a comparative effective-
ness investigation of carotid artery stenting vs. carotid endarterectomy among 123,286 Medicare

beneficiaries hospitalized for stroke in 2006 and 2007.

1.2 Introduction

Propensity scores (PS) are an often used tool for comparing the effectiveness of clinical treatments
as they are applied in routine practice (Rosenbaum and Rubin, 1983). PS methods are used
to estimate causal effects that are not confounded by observed characteristics. Traditionally,
estimating causal effects with PS methods is achieved in two stages: 1) a ‘PS stage’ where a

model is fit to predict the receipt of treatment from available covariates, with the predicted values



from this model representing the estimated PS, and 2) an ‘outcome stage” whereby outcomes of
treated and untreated units are compared among units with similar values of the PS. Typically,
the two-stage nature of the problem is accommodated by separate and sequential estimation; a
model is fit in the PS stage, then the estimated PS from this model are treated as fixed and known
to conduct adjusted comparisons in the outcome stage. In this paper, we are considering a model

base approach for both stages and will refer to the PS and outcome models from here forward.

Recently McCandless et al. (2009) proposed Bayesian estimation as a means to jointly estimate
quantities in the PS and outcome models. One major motivation for Bayesian PS estimation
is that jointly estimating quantities in the two models propagates uncertainty in estimation of
the PS into estimation of the treatment effect, whereas one conceivable limitation of traditional
sequential methods is that they potentially misstate the uncertainty in causal estimates by treating
the estimated PS as a known quantity in the outcome stage (Gelman and Hill, 2007). The key
idea with joint Bayesian PS estimation is that the PS is acknowledged as an unknown quantity,
uncertainty about which is integrated out of posterior distributions of quantities in the outcome
stage. Aside from providing a more comprehensive account of uncertainty, clear potential lies in

incorporating PS methods into the broader literature on Bayesian methodology.

One important feature of joint modeling with Bayesian estimation is that doing so allows ‘feed-
back’” between the models. In the PS context, this means that posterior samples of parameters
in the PS stage are informed in part by information from the outcome stage, rendering the
problem of Bayesian PS estimation substantially more complex than a simple Bayesian analog to
well-established procedures. In fact, the notion of estimation and use of the PS in a joint likelihood
has generated some controversy. One view is that the PS is meant to approximate the design stage
of a randomized study, and that this should be done without any access to the outcome in order
to ensure objective design decisions that are completely separate from analysis decisions (Rubin,
2007, 2008). Nonetheless, methods that incorporate outcome information have been advocated

(Schneeweiss et al., 2009, McCandless et al., 2009). In principle, incorporating feedback in joint



Bayesian estimation entails estimates of the PS themselves that make more complete use of the
data, which could improve estimation of causal effects. However, a rigorous investigation of

exactly how feedback can impact estimation of causal effects is lacking.

In what follows we illustrate that, in general, model feedback in joint Bayesian estimation
can result in biased estimates of the treatment effect. Unlike traditional sequential procedures
that estimate the PS based solely on information on how covariates relate to the treatment, we
show that joint Bayesian estimation with feedback uses information from the outcome model to
construct the PS, and that feedback from this model can distort the nature of the PS and impair
its ability to adjust for confounding. We also demonstrate two techniques that can recover the
causal effects: changing the nature of the feedback by using outcome models that augment PS
adjustment with adjustment for individual covariates, and ‘cutting’ the feedback by using an

approximately Bayesian sequential approach.

Using nationwide data on 123,286 Medicare beneficiaries, we illustrate joint Bayesain PS esti-
mation in a comparative effectiveness investigation regarding the recent increase in the use of
carotid artery stenting (CAS) for treatment of carotid artery disease (a primary cause of stroke),
as compared to the more established carotid endarterectomy (CEA) procedure. Because these
therapies are not randomly applied in clinical practice, we use several clinical characteristics to
adjust for confounding when estimating a causal treatment effect. We compare the results of
the joint Bayesian analysis and sequential Bayesian analysis both with and without individual

covariate adjustment with a traditional sequential approach.

1.3 Propensity Score Estimation

For a binary treatment, X = 0,1, an outcome, Y, and a vector of p covariates (C1,Cs,...,C,),

Rosenbaum and Rubin (1983) defined the PS as the conditional probability of assignment to



treatment X = 1, given the covariates. Causal inference with the PS relies on two important
features. First, treatment assignment must be assumed strongly ignorable; that is, there must
be no unmeasured confounders. Second, by virtue of the fact that the PS reflects the treatment
assignment mechanism, the PS enjoys the property of a balancing score, resulting in conditional
independence between the treatment and the individual covariates, conditional on the score:
X L Cy,...,Cy|PS. This balancing score property combined with the assumption of strongly
ignorable treatment assignment allows average comparisons between treated and untreated
outcomes at a given value of the PS to serve as an unbiased estimate of the average treatment

effect at that value of the PS.

1.3.1 PS and outcome models

PS methods consist of two distinct parts: the estimation of the PS and estimation of the causal
effect conditional on the PS. The PS model models the probability that X = 1 (given covariates):
92(E[X|C]) = Cv, where g,(-) is a link function, and C is the collection of pretreatment covari-
ates plus an intercept, C = (1,C1,Cs,...,C,). Thus, the PS model can be represented with the

following likelihood:

n

L(X[y,C) = []lgz (€[ — gz (Con)] 5, (1.1)
=1

where here and throughout, boldface is used for vectors and matrices representing the values for
the entire sample, and ¢ = 1,...,n indexes observational units. With this formulation, the values

of v and C; determine the PS for the ' unit.

Consider a binary outcome, Y = 0, 1, but note that results in the following hold for other out-
comes. We define a model for the outcome, conditional on the PS: g,(E[Y|X,C]) = & + X +
¢h(v,C) + CT4, where g, (-) is another link function, the deterministic function h(y, C') specifies
how the PS enters the outcome model, and the term C*§ denotes possible residual adjustment for

some subset C* € C in addition to the PS. For example, h(~y,C') = Cy would specify linear adjust-



ment for the linear predictor term from model (1.1), and § = 0 would indicate adjustment for the
PS only. Alternatively, h(v, C) could specify dummy variables for membership in subclasses de-
fined by ¢ quantiles of the PPS, and § # 0 would augment PS adjustment with individual covariate

adjustment within subclass. We express the outcome stage likelihood as:

n

L(Y|8,¢,X,C,7,6) = [ [lg, ' (€o+BXi+En(v, Ci)+6CH)Y [1—g, (Co+BXi+ER(y, Ci)+0C;H)]F
=1

(1.2)

The primary objective is to estimate the causal effect of X = 1vs. X = 0 on Y. Towards this
end, the conditional parameter 8 may be of primary interest as this quantity represents the
conditional (on the PS) causal effect. If the marginal effect is of primary interest, it can be obtained
by marginalizing with respect to the empirical distribution of the covariates. Issues such as non
collapsibility may prevent estimation of the marginal causal effect regardless of method used, but
any effort to obtain the marginal effect requires estimation of 3 as a precursor step. Therefore,

what follows equates estimation of causal effects to estimation of 3 for ease of illustration.

1.3.2 Traditional sequential estimation

Traditional PS procedures conduct estimation in the PS and outcome models completely sepa-
rately. Estimates of v are obtained from (1.1) to construct the estimated PS. Then, the estimated
PS are treated as known quantities in the outcome model. That is, with estimated 4, estimation of

the treatment effect follows from L(Y |3, ¢, X, C, 7, d) specified in (1.2).

An important feature of this approach is that it makes no attempt to recover the entire covariate-
outcome relationship. Rather than specify a model for the relationship between each covariate
and the outcome, the outcome model conditions on a one-dimensional summary of multivariate
covariate information (the PS), with the dimension reduction specifically determined by fitting

the PS model in (1.1). Of key importance is that this dimension reduction reflects the treatment



assignment mechanism to ensure the balancing score property. Other dimension reductions of C,
e.g. with different values of v, may fail to reflect p(X = 1|C), and are not guaranteed to possess

the balancing score property at the heart of PS methods.

With sequential estimation, estimates of v from (1.1) are obtained in a manner that completely
ignores quantities in the outcome model such as 3, ¢, and Y. As we elaborate in the following
sections, the primary difference with joint Bayesian estimation is the presence of feedback, which
means that specification of the outcome model affects estimates of v. The sequential Bayesian
estimation ignores quantities in the outcome model when estimating ~ but rather than treating

the estimate of the PS as fixed quants, it considers their entire posterior distribution.

1.4 Bayesian Estimation and Model Feedback

In this section we formalize Bayesian PS estimation and illuminate in detail the role of model
teedback. In contrast to the sequential procedure described in Section 1.3.2, Bayesian PS estimation

combines the models in (1.1) and (1.2) into a single joint likelihood:

n

L(Y,X|C,7,8,¢,6) = [ [lg. "(CinI X1 — g, (Cim)]' ¥ (1.3)
=1

9, " (&0 + BXi + ER(7, Ci) + 6CHM 1 — g, (o + BXi + Eh(y,Co) + SCH' Y. (1.4)

The likelihood in (1.3)-(1.4), together with the prior distribution for (v, 3, &, 0) serves as the basis
for posterior inference. Recall that h(v, () is a deterministic function of v, which means that the
PS themselves are treated as unknown quantities that are updated with every posterior update
of v. Model feedback in this case arises because both terms of the likelihood contribute to the

posterior distribution of .



Throughout, we use a Metropolis-Hastings MCMC algorithm to sample from posterior distribu-
tions. We conduct the MCMC using two sampling blocks: one updating v from its conditional
posterior distribution, which corresponds to an update of the PS as well, and another block
updating all parameters in the outcome model. Note from the likelihood in (1.3)-(1.4) that
although updating v conditional on (3,&,§) -which corresponds to an update of the PS -will
involve both terms of the likelihood, only term (1.4) - the likelihood for the outcome model -

contributes to updating (3, &, ) conditional on .

To illustrate the fundamental features of feedback implied by joint estimation of (1.3)-(1.4), the
remainder of this section considers the simplified setting where the PS is included in the outcome

model as a linear predictor; that is, we assume that i(y, (') = Cy and that £ = &;.

1.4.1 Algebraic Illustration of Feedback

Purely for illustration, take g, *(-) and 9y 1(.) as the Normal CDF, ®(-), representing Probit regres-
sion in the PS and outcome stages, and take all prior distributions o< 1. Following Albert and Chib
(1993), the Probit link allows Bayesian estimation with a data-augmentation procedure that iter-
atively samples latent continuous data from a truncated normal distribution with unit variance
such that the latent X*(Y™*) are > 0 when X = 1(Y = 1), and < 0 otherwise. Conditional on

(X*,Y™),

* * 1 * *
p(7767§75|X 7Y 7X70) X exp{_i[(x - CW)T(X - Cf)/)

+(Y* = &oln — BX — &Cy — CTO)T(Y* — &ola — BX — &Cy — CTo)]},

C is the n x (p + 1) design matrix, and 1, is a n—dimensional vector with every entry equal to

one. Thus, the conditional posterior distribution of v can be written as:

p(YIX*, Y*, X, C, B,£,6) o exp{y" (CTC(1 + &)y — 29" [CT(X* + &(Y* — &1n — BX — CT6))]}



which corresponds to the kernel of a Normal distribution with covariance matrix (CTC(1+¢2))!
and mean (CTC(1 + &))" 1(CT(X* + &(Y* — &1n — X — C16))). Immediately we see that
when &; # 0, quantities from the outcome model contribute to the posterior distribution of v and,

by extension, the PS. This is the nature of model feedback.

1.4.2 Implied parameterization of the covariate-outcome response surface

Until otherwise noted, asssume an outcome model that only adjusts for the PS; that is, assume
0 = 0. Considering the joint likelihood in (1.3)-(1.4) implies a parameterization of the covariate-
outcome response surface conditional on X. We re-express { + X + &h(y, C) from term (1.4)

as:

§o+BX + & (o +mC1+ ... +1Cp) = (&0 +&170) + BX +EmCr + ...+ &7 (1.5)

This parameterization implies that the covariate-outcome relationship for the k' covariate is
described by &1, that is, that every covariate-outcome relationship is a rescaled version of
the covariate-treatment relationship, with the same re-scaling factor (1) for every covariate.
The key feature of model feedback is that posterior estimates of v are informed in part by
this parameterization of the outcome model, which may imply information about v that is
not consistent with the treatment assighment mechanism. In particular, this will occur if the
underlying covariate-outcome relationship cannot be expressed as a simple rescaling of the

covariate-treatment relationship.

To further illustrate, consider a simple setting where the true underlying relationships between p

covariates, treatment, and outcome can be described as follows:

92 (P(X; =1|C3)) = v +1Cit + ... +%Cip and (1.6)



gy(P(Y,‘ =11X;,C)) =ap+ X+ a1Cin + ... + apCip. (1.7)

With the above data-generating mechanism, the joint likelihood in (1.3)-(1.4) with § = 0 correctly
models (1.6), but entails linear adjustment for g,(PS), rather than a model for the complete
covariate-outcome relationship in (1.7). Combining the above data-generating mechanism with
the systematic component of the outcome model paramaterized as in the right hand side of
(1.5) corresponds to vy = QOT;&’ and y; = %,72 = %, Y = %, meaning that the only
way that the PS and outcome modeling stages can imply the same values of v is if o = &1k
for all k. If this relationship does not hold, then feedback from the outcome model will yield
posterior estimates of v that do not reflect the true treatment-assignment mechanism in (1.6),
meaning that (v, C) is not technically a function of the PS and may not be a balancing score.
Thus, Bayesian estimation with (1.3)-(1.4) and 6 = 0 is not guaranteed to yield estimates
of § that reflect the causal treatment effect. In contrast, the sequential strategy in Section

1.3.2 estimates v without regard to the outcome model, thus ensuring that h(y,C') maintains

the balancing score property. We illustrate this phenomenon in the simulation study of Section 1.5.

1.4.3 Augmenting PS adjustment with individual covariates

The above feature of joint Bayesian PS estimation is not a feature of model feedback in general, but
rather a byproduct of the dimension reduction implied by using the PS as a univariate summary of
covariate information. Consider instead a model with § # 0 that adjusts for covariates in addition
to the PS. With h(y,C) = Cv, C™ can include at most (p — 1) covariates to prevent perfect linear
dependence in the design matrix for the outcome model. In this case, setting C™ = (Cs,...,C}),

the right hand side of expression (1.5) becomes:

(S0 +&170) + BX + 6701 + (§172 +61)Ca + ... + (§17p + p—1)Cp.

10



While setting § # 0 still implies feedback, the feedback does not impose the same restriction
on the relationship between the covariate-treatment and covariate-outcome relationships which
allows estimation of - in accordance with the treatment assignment mechanism, thus maintaining
the balancing score property. In other words, setting § # 0 allows the additional flexibility of
modeling the covariate-outcome relationship without assuming that this relationship is a scalar
multiple of the covariate-treatment relationship. The simulation study in Section 1.5 illustrates
this phenomenon, and examines its benefits it situations where either the PS model or the

covariate adjustment in the outcome model is misspecified.

1.4.4 Cutting the feedback

McCandless et al. (2010) present the idea of an approximately Bayesian method that ‘cuts the
feedback’ from the outcome model to the PS model as an alternative to the fully Bayesian
approach. We still use a Metropolis-Hastings MCMC algorithm but we do not sample from the
joint posterior distribution. We cut the feedback from the outcome model to the PS model by first
updating v from the distribution defined by (1.3) and the prior distribution of . This posterior
distribution ignores the likelihood contribution from (1.4). We then update (5,&,9) given ¥
from the posterior defined by defined by (1.4) and the prior distribution of (3,£,6). Cutting
the feedback from the outcome model to the PS model eliminates any restrictions between the
covariate-treatment/covariate-outcome relationship as they are modeled separately. Of note, the
sequential Bayesian method primarily differs from the traditional sequential approach in that
it does not treat the estimated PS as a fixed quantity. Rather, it makes use of the full posterior
distribution of the PS by updating the estimated PS in the outcome model at every iteration of
the MCMC. Residual confounding adjustment by allowing § # 0 is still possible but is no longer

necessary to ensure h(y, C') maintains the balancing score property.
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1.5 Simulation Study

In this section we present a simulation study to illustrate that the features described in the
simplified setting of Section 1.4 persist in settings with more flexible specification of h(vy,C).
All simulated datasets contain n = 1000 observations and p = 6 covariates, simulated from the
following data-generating scheme. First, C'1,...,Cs are simulated from a multivariate normal
distribution with mean (0, 0,0, 0, 0, 0) and the identity covariance matrix. For all i, X is simulated
from a Bernoulli distribution with:

exp(vo +71Ci1 + ... +76Cis)

P(X; = 1|C;) = : 1.8
( Ci) 1+exp(y0 +71Cin + .- +7Cis) (18)

All'Y; are similarly generated from Bernoulli distributions with:

exp(ao + 68X +a1Cin + ...+ 05601'6)
PY,=1\X,;,C;) = . 1.9
( ‘ ) 1+ eXp(ao + 68X +a1Cin 4+ ...+ 04601‘6) (19)

The values of v specify the true treatment assignment mechanism, those of « specify the true
covariate-outcome relationship, and /5 is the conditional treatment effect. For all simulations, we

set 5 = 0.0.

We simulated 1000 data sets under each scenario described below, and analyzed the simulated
data with the joint Bayesian method described in Section 1.4, both with and without residual
confounding adjustment, and with the sequential Bayesian method described in Section 1.4.4.
For comparison, we obtain maximum likelihood estimates of 5 using the traditional sequential
procedure of Section 1.3.2 and from fitting model (1.9) directly, referring to the latter as the ‘Gold

Standard’ since we know that this is the true data-generating mechanism.
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exp(-)
1+exp(-)

Throughout analysis of the simulated data, we specify both g; () and 9y 1(.)as , indicating
logistic regression in both model stages. Unlike the simple illustrations provided in Section 1.4,
we take a more flexible modeling approach that stratifies units on quintiles of the logit(PS) and
estimates the same 3 across PS strata. Adjustment for PS subclass is augmented with additional
covariate adjustment (0 # 0) when noted. For the Bayesian analyses, every posterior update of
v implies an update of the PS, so the quintiles of logit(PS) are recalculated and the PS subclasses
redefined at every MCMC iteration. We specify diffuse prior distributions for all parameters as
Normal with mean 0 and variance 10'°. In addition to comparing estimates of 3, we also compare
methods on the basis of estimates of «, which determine the estimated PS. For point estimation,
we use posterior mean estimates for the Bayesian methods, obtained from three MCMC chains,
each run for 10,000 iterations, with the first 5,000 discarded as burn in and every 10th sample
saved for posterior inference. Note here that application of PS methods in practice should involve

an investigation of whether covariates are balanced within PS subclass, which we forego in the

simulation study. Balance checks are addressed in detail for the data analysis in Section 1.7.

1.5.1 Scenario where the covariate-outcome relationship is a simple rescaling of the
covariate-treatment relationship

Scenario 1 generates data with parameters in (1.8) and (1.9) set to (y0,71,72,73, V4, V5, V6) =
(0.0,0.3,0.3,0.3,0.3,0.3,0.3) and («vg, a1, @z, az, ag, as,a6) = (0.0,0.5,0.5,0.5,0.5,0.5,0.5). This
scenario represents a unique special case where 7 = £ and where the joint bayesian method

should be capable of recovering the treatment effect without augmenting the outcome model

with additional covariate adjustment.

We analyze the data with 6 = 0. Figure 1.1 depicts boxplots of the resulting posterior estimates
of v and 3 for both the joint Bayesian sequential Bayesian methods, 