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A Cognitive Neuroscience of Social Groups

ABSTRACT

We used functional magnetic resonance imaging to investigate how the human brain
processes information about social groups in three domains. Study 1: Semantic knowledge.
Participants were scanned while they answered questions about their knowledge of both social
categories and non-social categories like object groups and species of nonhuman animals. Brain
regions previously identified in processing semantic information are more robustly engaged by
nonsocial semantics than stereotypes. In contrast, stereotypes elicit greater activity in brain
regions implicated in social cognition. These results suggest that stereotypes should be
considered distinct from other forms of semantic knowledge. Study 2: Theory of mind.
Participants were scanned while they answered questions about the mental states and physical
attributes of individual people and groups. Regions previously associated with mentalizing
about individuals were also robustly responsive to judgments of groups. However, multivariate
searchlight analysis revealed that several of these regions showed distinct multivoxel patterns of
response to groups and individual people. These findings suggest that perceivers mentalize
about groups in a manner qualitatively similar to mentalizing about individual people, but that
the brain nevertheless maintains important distinctions between the representations of such
entities. Study 3: Social categorization. Participants were scanned while they categorized the

sex and race of unfamiliar Black men, Black women, White men, and White women.



Multivariate pattern analysis revealed that multivoxel patterns in FFA—Dbut not other face-
selective brain regions, other category-selective brain regions, or early visual
cortex—differentiated faces by sex and race. Specifically, patterns of voxel-based responses
were more similar between individuals of the same sex than between men and women, and
between individuals of the same race than between Black and White individuals. These results
suggest that FFA represents the sex and race of faces. Together, these three studies contribute to

a growing cognitive neuroscience of social groups.
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INTRODUCTION



Human beings are intensely social animals. Every one of us is member of a myriad of
social groups that shape most, if not all, aspects of our lives. From how we surf the web (men
and women differ in amount and kind of internet use; e.g., Joiner et al., 2012) to the political
beliefs that we hold (parents transmit political preferences to their children via genes; e.g.,
Kandler, Bleidorn, & Riemann, 2012), social groups shape the way we act and think. But
biological groups like sex and family are not the only groups to which we belong. We join
groups to support the same sports team, root for the same political candidate, worship the same
deity, and listen to the same type of music. The formation of social groups on non-biological
bases is a universal of human nature (Wilson, 2012). As a result, we readily organize and thrive
in groups that are orders of magnitude more complex than those of other social primates (Hill &
Dunbar, 2003).

Given the importance of social groups to humans, social psychologists have investigated
the relationship between an individual’s psychology and group dynamics extensively—how we
think about groups, how being in a group influences our behavior, how we interact with
members of other groups, how intergroup conflict arises, etc. (for reviews, see Dovidio &
Gaertner, 2010; Hackman & Katz, 2010; Yzerbyt & Demoulin, 2010). Recently, social
psychologists extended their study of the social nature of humans to its neural basis (for reviews,
see Decety & Cacioppo, 2011; Todorov, Fiske, & Prentice, 2011). Using neuroimaging
techniques like functional magnetic resonance imaging (fMRI), social psychologists and, now,
cognitive neuroscientists, study the role that different regions of the human brain play in
sustaining the complex social cognition that enables us to be functional social beings.

Increasingly, these scientists have brought the methods of cognitive neuroscience to bear

on questions about the psychology of how we think about other individuals as members of other



groups (for reviews, see Cunningham & Van Bavel, 2009; Ito & Bartholow, 2009; Kubota,
Banaji, & Phelps, 2012; Van Bavel & Cunningham, 2009). This research has started to shed
light on how we perceive other people as members of social groups (e.g., as African Americans).
In doing so, these studies have started to demonstrate that neuroimaging can furnish insights into
intergroup cognition.

For example, many experiments have reported robust amygdala activity to the perception
of the faces of racial outgroups (Amodio, Harmon-Jones, & Devine, 2003; Cunningham, Raye,
& Johnson, 2004; Lieberman, Hariri, Jarcho, Eisenberger, & Bookheimer, 2005; Phelps et al.,
2000; Richeson et al., 2003; Ronquillo et al., 2007; Wheeler & Fiske, 2005). This finding has
been interpreted as increased vigilance of members of other races, presumably because people
can dislike and, in turn, distrust members of other races. Indeed, the degree of amygdala activity
that White participants show when they view Black faces is positively correlated with the
amount of implicit anti-Black prejudice that they have (Beer et al., 2008; Cunningham, et al.,
2004; Phelps, et al., 2000; Platek & Krill, 2009).

As another example, other experiments find robust ventral striatum activity to the
perception of individuals who are high in social status, whether this status is obtained in a
contrived economic game or from their actual socioeconomic background (Ly, Haynes, Barter,
Weinberger, & Zink, 2011; Zink et al., 2008). Given the role of the ventral striatum in stimulus
valuation (for review, see Ikemoto & Panksepp, 1999), this finding has been interpreted as a
possible neural marker of the high value that we attribute to people with significant social status.

However, current studies on the cognitive neuroscience of social groups have three
important limitations. First, they have not examined the functional neuroanatomy of perceiving

and thinking about groups qua groups. That is, these studies have placed exclusive focus on how



we think about individuals as members of other groups, but they have not investigated how we
think about the groups themselves. So, for example, though we know that the perception of
faces from individuals of other races influences amygdala response, we do not know how the
retrieval of knowledge about African Americans as a whole differs from the retrieval of similar
knowledge about nonsocial categories like object groups.

Second, current research has not addressed many important domains of intergroup
cognition. For example, we often attribute mental states to groups of people (Jones, 2010)
despite the fact that, though members of groups may have minds, groups themselves do not.
Nonetheless, these attributions are real and they influence how we evaluate group groups as well
as their members (e.g., Waytz & Young, 2012). Though cognitive neuroscientists have
identified a set of brain regions that are reliably engaged during inferences about mental states
(for reviews, see Frith & Frith, 2006; Mitchell, 2009a, 2009b; Saxe, 2006), we do not know if
these brain regions also play a role in attributions of mind to groups and, if so, whether they
differentiate between inferences about the mental states of groups and individuals.

Finally, current studies have focused almost exclusively on identifying which brain
regions are involved in different aspects of intergroup cognition, but they have not attempted to
identify brain regions that contain distinct representations of groups and individuals or distinct
representations of different social groups. For example, though previous research has shown that
fusiform face area (FFA), a face-selective portion of the fusiform gyrus (for review, see
Kanwisher & Yovel, 2006), has a stronger response to same- than other-race faces (Golby,
Gabrieli, Chiao, & Eberhardt, 2001; Lieberman, et al., 2005), it is not yet clear whether this brain
region represents the race of faces.

The studies that comprise this dissertation start addressing the three limitations of current



research on the cognitive neuroscience of social groups. All studies explore three domains of
intergroup cognition that have not yet received significant attention by social neuroscientists:
Semantic knowledge, theory of mind, and social categorization. Additionally, studies 1 and 2
investigate the functional neuroanatomy of thinking about groups rather than thinking about
individuals as group members. Finally, studies 2 and 3 include experiments that use multivoxel
pattern analysis (MVPA) to begin to understand the neural representations that distinguish
individuals from groups and different types of social groups from each other.

Study 1 presents an fMRI experiment that suggests that semantic knowledge about
groups of people, or stereotypes, and semantic knowledge about object categories have
dissociable neural correlates. Brain regions previously identified in processing semantic
information are more robustly engaged by nonsocial semantics than stereotypes. In contrast,
stereotypes elicit greater activity in brain regions implicated in social cognition. Study 2
presents two fMRI experiments that suggest that theory of mind about individuals and theory of
mind about groups have a similar neural basis. Also, this study finds evidence that these brain
regions have distinct representations of groups and individuals during inferences about mental
states. Finally, Study 3 presents an fMRI experiment that suggests that FFA represents the sex
and race of faces, differentiating faces by sex and race at the level of multivoxel patterns.

Together, these three studies contribute to a growing cognitive neuroscience of social
groups. This dissertation closes with a discussion of future research on how the brain processes

information about social groups.



STUDY 1
DISSOCIABLE NEURAL CORRELATES OF STEREOTYPES AND

OTHER FORMS OF SEMANTIC KNOWLEDGE

Contreras, J. M., Banaji, M. R., & Mitchell, J. P. (2012). Dissociable neural correlates of stereotypes and other

forms of semantic knowledge. Social Cognitive and Affective Neuroscience, 7(7), 764-770.



INTRODUCTION

Over the course of a day, we encounter a large number of objects. Even before we leave our
homes in the morning, we have already interacted with dozens of objects, from alarm clocks to
armoires, beds to belts, and cups to chairs. These interactions require the capacity to distinguish
these objects from each other by recognizing their unique physical features, understanding the
discrete functions they serve, and recalling the correct procedure for their use (how to set the
alarm clock to snooze, the order in which to put on one’s socks and shoes, etc.).

Philosophers and psychologists have long posited that such knowledge is necessarily
organized around categories that distinguish among different sets of entities (Aristotle, 1975;
Kant, 1781/2003; Medin & Smith, 1984; Murphy, 2002; Smith & Medin, 1981). Categories
obviate the need to repeatedly work out what to expect from each object, by allowing perceivers
to instead make use of generalized knowledge about a whole class of entities. For example, by
recognizing a particular object as an instance of the category “microwave ovens,” one gains
immediate access to a wealth of additional information about it—such as that it can be used to
heat food, cannot accommodate metal pots, and will probably have a button marked
“defrost”—without the need to discover each of these features anew.

Psychologists have held that categories not only organize our understanding of inanimate
objects, but likewise guide interactions with the myriad individuals with whom we come into
daily contact (Allport, 1954). We readily categorize other individuals into a wide range of social
groups, such as those based on gender, race and ethnicity, age, occupation, place of origin,
socioeconomic class, and so on. Much as recognizing a particular object as a member of a
general category provides useful information about that object “for free,” categorizing a

particular individual as a member of a social category (e.g., “men”; “New Yorkers”) gives us



ready access to the likely characteristics of this person (e.g., “he will probably be an aggressive
driver”). Typically, the information that derives from social categorization is referred to as a
stereotype—the inferences and assumptions made about a particular person as a consequence of
categorizing him into one or another social group.

Given that stereotypes serve much the same function as other forms of category-based
knowledge, many researchers have naturally assumed that stereotypes merely reflect ordinary
semantic knowledge about a particular class of entities—other people. For example, stereotypes
have been described as the “perception of social objects (e.g., groups) that is in principle little
different to categorization and perception of other ‘physical’ objects” (Spears, Oakes, Ellemers,
& Haslam, 1997, p. 3); “not essentially different from other cognitive structures or processes”
(Hamilton, 1981, p. 28); and “rooted in the ordinary mechanisms of perception and
categorization” (Banaji & Bhaskar, 1999, p. 144). At the same time, a number of researchers
have argued that stereotypes may instead be a unique form of semantic knowledge (e.g., Ostrom,
1984). Social groups are generally more complex than categories of nonsocial objects (Cantor &
Mischel, 1979; Wattenmaker, 1995), individuals typically belong to several social categories
simultaneously (Lingle, Altom, & Medin, 1984; Schneider, 2004), and stereotypes often evoke
more emotion than other forms of semantic knowledge (Norris, Chen, Zhu, Small, & Cacioppo,
2004). Given these distinct aspects of social knowledge, some researchers have suggested that
social knowledge may require specialized forms of cognitive processes that distinguish it from
other forms of semantics.

Are stereotypes a typical form of semantic knowledge or do they represent a unique form
of knowledge about the (social) world? Historically, it has been difficult to adjudicate between

these competing accounts of stereotyping. However, recent findings regarding the neural basis



of semantics offer a novel strategy for addressing this question. Over the past decade,
researchers have consistently demonstrated that a small number of left-lateralized brain regions
subserve the retrieval, selection, and integration of information from semantic memory;
specifically, inferior frontal gyrus and inferotemporal cortex (for reviews, see Bookheimer, 2002;
Joseph, 2001; Martin, 2001). For example, participants show greater hemodynamic activity in
left inferior frontal gyrus when thinking about the meaning of a word than when they consider its
perceptual characteristics (such as whether the word is written in uppercase letters; e.g., Poldrack
et al., 1999), and regions of left inferotemporal cortex have routinely been observed when
participants name or simply view categories of objects (Martin & Chao, 2001). Moreover,
people with damage to these regions often demonstrate selective impairments in semantic
memory, such as an inability to name common objects or define familiar words (Baldo &
Shimamura, 1998; Caramazza & Shelton, 1998; Hodges, Patterson, Oxbury, & Funnell, 1992).
Moreover, people with damage to anterior temporal lobes can show similar semantic deficits
(Patterson, Nestor, & Rogers, 2007).

To the extent that stereotypes are part of general semantics, these same regions should
contribute to the retrieval of knowledge about the attributes of social groups. That is, if
knowledge about social groups (i.e., stereotypes) does not differ significantly from knowledge
about groups of objects, inferior frontal gyrus and inferotemporal cortex should be engaged when
perceivers consider the typical features of social categories, such as those based on race, national
origin, or occupation. From the point of view of the neural processes involved, thinking about
Dutch ovens, Swedish meatballs, or Great Danes should be not be significantly different than
thinking about the typical residents of Amsterdam, Stockholm, or Copenhagen.

On the other hand, if stereotypes are a distinct form of general semantics, these brain



regions should not participate in the retrieval of social knowledge. Functional neuroimaging
studies have routinely demonstrated that many social-cognitive tasks recruit a network of brain
regions—including the medial prefrontal cortex (MPFC), posterior cingulate, bilateral
temporoparietal junction, and anterior temporal cortex—that distinguish them from closely-
matched tasks that require participants to engage in nonsocial processing (Mitchell, 2009b). To
the extent that stereotypes are indeed a unique form of knowledge, their retrieval may likewise
rely on this network. In the current study, we used functional magnetic resonance imaging
(FMRI) to arbitrate between these predictions by scanning participants while they alternately

answered questions on the basis of their knowledge of social and nonsocial categories.

METHOD

Participants

Nineteen right-handed college undergraduates and community members from the Boston suburbs
(9 female, age range 19-28, mean age 22.2 years) with no history of neurological problems
participated in exchange for monetary payment. All participants provided informed consent in a
manner approved by the Committee on the Use of Human Subjects in Research at Harvard

University.

Stimuli and behavioral procedure

During fMRI scanning, participants completed two semantic knowledge tasks. During the
categorical knowledge task, participants answered a series of questions that required semantic
knowledge about categories of people or categories of nonsocial stimuli such as objects. Each

trial began with the appearance of two category labels (e.g., men, women; guitars, violins).
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After 750 ms, a category feature appeared below the labels (e.g., watch romantic comedies; have
six strings) for an additional 3000 ms. Participants indicated which of the two categories was
more likely to have that particular feature by pressing one of two buttons under their left hand.
Category labels and features varied between conditions to avoid a reliance on the few trivial
features (e.g., size) that can appropriately describe social groups and object categories. Trials
were segregated into four functional runs of 40 trials each (20 social and 20 nonsocial).
Importantly, social stimuli were rated to be less emotionally evocative than nonsocial
stimuli—Ms (SDs) = 4.51 (0.38) vs. 4.65 (0.51)—by a separate group of 57 participants,
precluding the possibility that any additional activation associated with social judgments might
be due to greater affective processing of social stimuli.

Following the categorical knowledge task, participants also completed one run of a
feature verification task used to identify the neural regions typically associated with the retrieval
of semantic knowledge (Mitchell, Heatherton, & Macrae, 2002). On each of 40 nonsocial trials,
participants read the name of a fruit (banana, mango) or item of clothing (glove, shirt) and were
asked to verify whether an adjective (ripe, threadbare, curious) could be appropriately used to
describe the item. On each of 40 social trials, participants read the name of a person (John,
Mary) and were asked to verify whether the adjective could be used appropriately to describe a
person. Adjectives were appropriate and inappropriate descriptors on an equal number of trials,
and each trial lasted 4000 ms. To optimize estimation of the event-related fMRI response during
both tasks, trials were intermixed in a pseudorandom order and separated by a variable stimulus

interval (0 to 10 s; Dale, 1999) during which participants passively viewed a fixation crosshair.
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Functional imaging procedure

The experiment was conducted using a 3.0-Tesla Trio scanner with a standard head coil.
Functional runs used a gradient-echo, echo-planar pulse sequence (TR = 2000 ms; TE = 35 ms;
3.75 x 3.75 in-plane resolution; 31 axial slices, 5 mm thick; 1 mm skip). Coverage extended to a
ventralmost coordinate of z = -22. Stimuli were projected onto a screen that participants viewed
by way of a mirror mounted on the head coil. A high-resolution T1-weighted structural scan
(MEMPRAGE) was conducted following four runs of the categorical knowledge task (107
volume acquisitions each) and one run of the feature verification task (210 acquisitions).

FMRI data were preprocessed and analyzed using SPM2 (Wellcome Department of
Cognitive Neurology, London, UK). First, functional data were time-corrected for differences in
acquisition time among slices and realigned to correct for head movement. Functional data were
then transformed into a standard anatomical space (3-mm isotropic voxels) based on the ICBM
152 brain template (Montreal Neurological Institute). Normalized data were then spatially
smoothed using an 8-mm full-width-at-half-maximum Gaussian kernel. Preprocessed images
were analyzed using the general linear model, in which trials were modeled using a canonical
hemodynamic response function, its temporal derivative, and additional covariates of no interest
(a session mean and a linear trend). Comparisons of interest were implemented as linear
contrasts using a random-effects model. A Monte Carlo simulation of our whole-brain volume
was used to specify the minimum cluster extent necessary to obtain an experiment-wide
statistical criterion of p < .05, corrected for multiple comparisons. Additional statistical
comparisons between conditions were conducted using ANOVA procedures on the parameter

estimates associated with each trial type.
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RESULTS

Behavioral data

During the categorical knowledge task, participants responded significantly faster during social
(M = 1467 ms, SD = 165 ms) than nonsocial trials (M = 1564 ms, SD = 181 ms), t(18) =4.27,p <
.001, Cohen’s d = 1.01, making it unlikely that any additional activation associated with social
judgments is a result of the greater complexity or difficulty of social stimuli. Item analyses
demonstrated that participants converged on the same response equally often for social (M =
92%) and nonsocial stimuli (M = 89%), t(158) = 1.22, p = .23, d = 0.10. During the feature
verification task, participants responded faster during person (M = 1063 ms, SD = 137) than

object trials (M = 1133 ms, SD = 129), t(18) = 3.54, p <.002, d = 0.83.

Functional imaging data
For the categorical knowledge task, we first used a whole-brain, random-effects analysis to
identify cortical regions that were more active during judgment of nonsocial than social
categories. Inconsistent with the claim that social knowledge draws on similar processing as
other forms of semantic memory, the contrast of nonsocial > social identified a set of brain
regions regularly associated with semantic processing, including left-lateralized inferior frontal
gyrus and inferotemporal cortex (Figure 1.1 and Table 1.1). Importantly, social categories
elicited no additional response over baseline in both inferior frontal and inferotemporal regions
(both ps > .14).

These results were confirmed in region-of-interest analyses from the feature verification
task. Replicating earlier work (Mitchell, et al., 2002), the comparison of object > person also

identified left-lateralized regions in inferior frontal gyrus and inferotemporal cortex typically
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Figure 1.1 Brain regions identified from the contrast of nonsocial > social for the categorical
knowledge task. Whole-brain, random-effects analyses (p < .05, corrected) revealed left-
lateralized regions of inferior frontal gyrus (IFG) and inferotemporal (IT) cortex that responded
robustly during judgments of nonsocial categories, but did not respond differently from baseline
during judgments of social categories. Regions are displayed on sagittal images of participants’
mean normalized brain (x = -50 and -58, respectively). Bar graphs display the mean parameter
estimates from these regions for nonsocial (red) and social (blue) trials.
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Table 1.1 Peak voxel and number of voxels for brain regions obtained from the random-effects
contrasts of nonsocial > social trials on the categorical knowledge task and object > person trials
on the feature verification task, p < .05, corrected.

Region X y z Voxels t

Categorical Knowledge (Nonsocial > Social)

Inferior parietal lobule -46 -36 44 154 4.49
Inferotemporal cortex -58 -60 -4 130 4.43
Corpus callosum 6 12 22 129 5.50
Inferior frontal gyrus -48 6 18 95 4.79
Superior frontal gyrus 14 -18 68 95 4.08
Subcentral gyrus 42 -10 24 86 4.79
Middle frontal gyrus -44 38 12 83 4.36
Superior frontal sulcus -24 10 56 67 4.81

Feature Verification (Object > Person)
Inferotemporal cortex -48 -52 -12 88 4.05
Inferior frontal gyrus -40 32 14 80 4.66

Note: T-tests reflect the statistical difference between the two conditions, as computed by SPM2.
Coordinates refer to the stereotaxic space of the Montreal Neurological Institute (MNI).
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associated with semantic processing (Table 1.1).

These regions were subsequently interrogated for differences between social and
nonsocial trials during the categorical knowledge task. Consistent with the whole-brain analysis,
inferior frontal gyrus displayed greater response to nonsocial than social categories, t(18) = 3.07,
p <.007,d=0.72. A marginally significant difference was also observed in inferotemporal
cortex, t(18) =1.91, p =.07,d = 0.45.

These results were confirmed in region-of-interest analyses from the feature verification
task. Replicating earlier work (Mitchell, et al., 2002), the comparison of object > person also
identified left-lateralized regions in inferior frontal gyrus and inferotemporal cortex typically
associated with semantic processing (Table 1.1). These regions were subsequently interrogated
for differences between social and nonsocial trials during the categorical knowledge task.
Consistent with the whole-brain analysis, inferior frontal gyrus displayed greater response to
nonsocial than social categories, t(18) = 3.07, p <.007, d = 0.72. A marginally significant
difference was also observed in inferotemporal cortex, t(18) = 1.91, p = .07, d = 0.45.

We next identified regions in which neural responses were greater for social than
nonsocial categorical knowledge with the use of a whole-brain, random-effects analysis of trials
on the categorical knowledge task. The contrast of social > nonsocial identified the network of
brain regions previously associated with inferences about mental states: Dorsal and ventral
aspects of the MPFC, posterior cingulate, and bilateral temporoparietal junction (see Figure 1.2
and Table 1.2). These results were confirmed by analyses of data from the feature verification
task. Replicating earlier work (Mitchell, et al., 2002), the comparison of person > object also
identified MPFC and a left-lateralized region of temporoparietal junction (Table 1.2). These

regions were subsequently interrogated for differences between social and nonsocial trials during
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Figure 1.2 Brain regions identified from the contrast of social > nonsocial for the categorical
knowledge task. Whole-brain, random-effects analyses (p < .05, corrected) revealed dorsal and
ventral aspects of the MPFC, posterior cingulate cortex (PCC), and left and right temporoparietal
junction (TPJ). Regions are displayed on both sagittal (x = -4) and axial (z = 26) images of
participants’ mean normalized brain. Bar graphs display the mean parameter estimates from
these regions for nonsocial (red) and social (blue) trials.
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Table 1.2 Peak voxel and number of voxels for brain regions obtained from the random-effects
contrasts of social > nonsocial trials on the categorical knowledge task and person > object trials
on the feature verification task, p < .05, corrected.

Region X y z Voxels t

Categorical Knowledge (Social > Nonsocial)

Posterior cingulate -4 -58 28 1826 8.34
Medial prefrontal cortex -8 56 34 1525 10.86

-4 48 -8 356 6.47
Middle temporal gyrus -50 -10 -22 1183 10.66

60 -2 -22 104 5.39
Temporoparietal junction -56 -60 24 572 7.57

56 -56 18 78 5.92
Lingual gyrus -12 -96 -4 548 8.36
Fusiform gyrus -26 -74 -16 77 5.78
Superior frontal gyrus -10 38 50 44 5.67

Feature Verification (Person > Object)

Medial prefrontal cortex -2 58 22 1121 5.12
Middle temporal gyrus -56 -4 -24 621 7.32
Lateral orbital gyrus 38 22 -22 272 4.25
Temporoparietal junction -56 -64 26 197 4.00
Inferior temporal sulcus 54 -12 -32 170 4.23
Posterior orbital gyrus -40 20 -16 151 4.38
Anterior thalamic nucleus -4 0 6 135 4.02
Inferior frontal gyrus 44 30 -8 113 4.22
Precentral gyrus 62 18 16 79 3.80

Note: T-tests reflect the statistical difference between the two conditions, as computed by SPM2.
Coordinates refer to the stereotaxic space of the Montreal Neurological Institute (MNI).
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the categorical knowledge task. Consistent with the whole-brain analysis, greater response to
social than nonsocial categories was observed in both MPFC (t[18] = 6.91, p < 10”, d = 1.63)
and temporoparietal junction (t[18] = 7.66, p < 10°®, d = 1.81). To confirm that task difficulty did
not partially account for these results, we reconditionalized trials based on a median split of each
participant’s reaction times, resulting in four trial types: Nonsocial-fast, nonsocial-slow, social-
fast, and social-slow. We then interrogated the regions observed in the primary analyses to
ascertain whether any demonstrated differences between “fast” and “slow” trials. None of these
regions significantly differed by reaction time: Although the PCC demonstrated a non-significant
trend toward greater activity during fast than slow trials (p = .07), reaction time did not covary
with the response in any other reported region (all ps > .30).

Finally, the stimulus set included two types of features (actions and physical attributes)
used to assess knowledge of each category. For example, in the case of nonsocial categories,
“destroy buildings in Kansas” was a possible action associated with tornados and “be blue” was
a physical attribute associated with jeans. Likewise, in the case of social categories, “play video
games” was an action associated with geeks and “have wide hips” was a physical attribute that
describes women more than men. Intriguingly, both ventral MPFC and PCC demonstrated non-
significant trends towards greater response for actions than physical attributes for social trials
(both ps < .07); no other region differentiated significantly between the two types of features (all

ps > .15).
DISCUSSION

These findings suggest knowledge about the characteristics of social groups bears little

resemblance to knowledge about other (nonsocial) categories. When participants made semantic

19



judgments about a variety of nonsocial objects, brain regions traditionally associated with
general semantics were engaged, including left inferior frontal gyrus and inferotemporal cortex.
In contrast, making similar semantic judgments about groups of people—such as those based on
gender, ethnicity, or occupation—failed to engage these regions. Indeed, the response of left
inferior frontal gyrus and inferotemporal cortex during social judgments did not differ from
baseline: These regions were no more engaged when participants considered the characteristics
of social groups than when participants stared at a fixation cross during periods of baseline.

Instead, stereotypes activated a network of brain regions that have been linked regularly
to tasks that involve social cognition, including extensive areas of the MPFC, posterior cingulate,
bilateral temporoparietal junction, and anterior temporal cortex. For example, these regions have
been observed when perceivers infer the beliefs, feelings, or opinions of others (for reviews, see
Frith & Frith, 2006; Mitchell, 2009a, 2009b; Saxe, 2006); view objects moving in a way that
implies agency (Castelli, Happe, Frith, & Frith, 2000; Wheatley, Milleville, & Martin, 2007);
form impressions of people (Mitchell, Cloutier, Banaji, & Macrae, 2006; Mitchell, Macrae, &
Banaji, 2004, 2005; Schiller, Freeman, Mitchell, Uleman, & Phelps, 2009); and even when they
think about the global characteristics of people as a class (Mitchell, et al., 2002).

Taken together, the current findings suggest a novel way to think about stereotypes, one
in which an understanding of social groups may derive less from general semantic knowledge
than from our ability to represent the mental states of the members of a group. Many stereotypes
about social groups involve inferences about the predilections and dispositions of their members,
such as whether men or women prefer watching basketball, Asian-Americans or African-
Americans are more likely to play basketball, or middle class or working class individuals are

more likely to attend professional basketball games. The regions identified here in the
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comparison of social > nonsocial have also been observed when participants make comparable
types of inferences about individuals, such as how much a specific person might enjoy watching
or playing sports (Jenkins, Macrae, & Mitchell, 2008; Mitchell, Macrae, & Banaji, 2006).
Perhaps we deploy a similar set of processes when attributing mental states to social groups as
we do to individuals; that is, perhaps we view such groups as mental agents with distinct likes,
desires, and proclivities (Brewer & Harasty, 1996; Hamilton & Sherman, 1996).

In this way, the current findings suggest that stereotyping shares more in common with
representing mental states than with semantic knowledge of nonsocial categories. In turn, they
demonstrate an important facet of the category-specific nature of semantic memory (Caramazza
& Shelton, 1998): Namely, knowledge about social categories is not like other forms of semantic
knowledge. As such, the present results challenge longstanding claims that stereotypes may be
one of many instances of general semantic knowledge.

The present experiment also builds on previous work that observed preferential
engagement of the MPFC when participants consider gender stereotypes (Quadflieg et al., 2009).
Because participants in this earlier study were explicitly asked to think about what most other
people believe about gender roles, it has previously been unclear whether this MPFC activation
might be driven by participants’ attempts to think about other minds—that is, to mentalize about
how another person would answer these questions—rather than stereotyping per se. Here,
participants were asked simply to judge social and nonsocial attributes on the basis of their own
personal semantic knowledge, thus minimizing any explicit demand to consider how other
people might answer the same questions.

Previous research has also identified anterior temporal cortex as a region important for

representing social knowledge (for reviews, see Olson, Plotzker, & Ezzyat, 2007; Simmons &
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Martin, 2009). For example, the anterior temporal cortex has been observed when participants
judge words that describe the personality of individual people (Ross & Olson, 2010; Zahn et al.,
2009; Zahn et al., 2007b) or encode biographical details about fictional persons (Simmons,
Reddish, Bellgowan, & Martin, 2010). Here, we extend this work by demonstrating that the
anterior temporal lobe is likewise engaged when drawing on knowledge about social groups:
Stereotyping trials were associated with sizeable activations in bilateral portions of middle
temporal gyrus that extended rostrally into anterior temporal cortex.

Throughout its history, social psychologists have given a considerable amount of
empirical attention to social group dynamics—how we think about groups, how being in a group
influences the behavior of individuals, how groups interact with each other, how intergroup
conflict and hegemony arise, etc. (for reviews, see Dovidio & Gaertner, 2010; Hackman & Katz,
2010; Yzerbyt & Demoulin, 2010). Although researchers have increasingly brought the methods
of cognitive neuroscience to bear on questions of social psychological interest, few such social
neuroscience studies have examined how we think about and are influenced by groups. Here, we
demonstrate that such emerging methodologies can furnish new insights into the nature of human
intergroup cognition, including the current demonstration that knowledge about social categories

shares little in common with other forms of semantic knowledge.
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STUDY 2
COMMON BRAIN REGIONS WITH DISTINCT PATTERNS OF NEURAL RESPONSES

DURING MENTALIZING ABOUT GROUPS AND INDIVIDUALS

Contreras, J. M., Schirmer, J., Banaji, M. R., & Mitchell, J. P. (2013). Common brain regions with distinct patterns

of neural responses during mentalizing about groups and individuals. In press at Journal of Cognitive Neuroscience.



INTRODUCTION

One of the cognitive abilities that best separates humans from other animals is the capacity to
form complex representations of the mental states of others. Humans see a person cry and
assume he is sad. They see a person extend her hand toward an object and infer she intends to
reach for it. Spontaneously and without difficulty, humans adopt a theory of mind or intentional
stance towards other people (Dennett, 1987; Premack & Woodruff, 1978).

Surprisingly, humans attribute similar mental states to groups of people (Jones, 2010). In
ordinary speech, they make statements like “Christians believe Adam and Eve were real people,”
“scientists hope to understand every aspect of nature,” or “companies think solely about
increasing profits.” These expressions cannot refer to the mental states of each group member;
surely, some Christians do not believe Adam and Eve were real people, no single scientist hopes
to grasp all aspects of nature, and no actual company executive spends every waking hour
fantasizing about profits. These expressions refer to the beliefs, thoughts, and desires of groups
of people, even though such groups are not conscious entities that can have this kind of internal
mental experience. Nonetheless, humans readily use the same mental state vocabulary to
describe the “minds” of groups as they typically do to describe the mental states of individuals.

Perhaps claims about the mental states of groups are merely examples of figurative
language that make it easier to communicate about collections of individuals. That is, it may be
a linguistic convenience to say “senior citizens want the president to stay in office” rather than
“88% of citizens 65 and older polled in a recent representative survey would vote for the
president if he were to run for reelection.” Alternatively, references to the mental states of
groups may be legitimate instances of theory of mind. In the same way humans endow objects,

nonhuman animals, and fictional entities with complex mental states that they do not possess
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(Epley, Waytz, & Cacioppo, 2007), humans may impute legitimate mental states to groups. That
IS, humans may naturally perceive a group mind.

The idea of a group mind coheres with previous research on stereotypes as group mental
states that inform mentalizing about individual group members (Ames, 2005; Ames & Mason,
2012). In this research, perceivers use stereotypes about the groups to which targets belong to
infer the intentions and preferences of these targets (Bottom & Paese, 1997; Plous, 1993; Sagar
& Schofield, 1980), especially when they view targets to be substantially different from them
(Ames, 2004a, 2004b; Ames, Weber, & Zou, 2012). Further evidence of a link between
mentalizing and stereotyping is provided by a neuroimaging experiment that suggests that these
two operations recruit similar brain regions (Contreras, Banaji, & Mitchell, 2012).

These brain regions—medial prefrontal cortex (MPFC), anterior temporal lobe (ATL),
temporoparietal junction (TPJ), and medial parietal cortex—respond robustly across a wide
range of situations in which perceivers represent mental states (for reviews, see Frith & Frith,
2006; Gallagher & Frith, 2003; Mitchell, 2009a; Saxe, 2009). For example, these brain regions
show increased activity when participants read stories about others’ beliefs (Fletcher et al., 1995;
Saxe & Kanwisher, 2003), view cartoons that imply mental states (Brunet, Sarfati, Hardy-Baylé,
& Decety, 2000; Gallagher et al., 2000), see objects move intentionally (Castelli, et al., 2000;
Wheatley, et al., 2007), think about the thoughts of historical characters (Goel, Grafman, Sadato,
& Hallett, 1995), and infer the mental states of competitors in strategy games (Gallagher, Jack,
Roepstorff, & Frith, 2002; McCabe, Houser, Ryan, Smith, & Trouard, 2001).

If humans adopt a theory of mind about groups, then these brain regions should show
robust neural activity when perceivers consider the mental states of groups. Previous research is

suggestive: Viewing photographs and videos of social interactions recruits some of the same
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brain regions that respond to mental state inferences about single individuals (Centelles,
Assaiante, Nazarian, Anton, & Schmitz, 2011; lacoboni et al., 2004; Wagner, Kelley, &
Heatherton, 2011). But the participants in these studies were not asked to infer the mental states
of groups and no comparison was made between inferences about the mental states of groups and
individuals. Therefore, to test the hypothesis that humans adopt a theory of mind about groups,
we conducted an experiment in which participants underwent functional magnetic resonance
imaging (fMRI) while alternately inferring the mental states of groups and individual group

members.

EXPERIMENT 1
METHOD
Participants
Participants were 25 college students and community members from Cambridge, MA (9 male,
16 female; age range: 19-27, M = 22.0) who were right-handed, had no history of neurological
problems, and provided informed consent in a manner approved by the Committee on the Use of
Human Subjects in Research at Harvard University. Three additional participants were
excluded: One for excessive head movement (more than 100 instances of at least 1 mm of
movement or 1° of rotation from one volume to the next) and two for failing to respond to more

than 20% of experimental trials.

Stimuli and behavioral procedure

Participants were scanned using fMRI while performing a photograph judgment task in which

they viewed 80 photographs that depicted groups of people that ranged in size from 3-180
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individuals (M = 12.5). On each trial, participants were asked to consider either the group as a
whole or a single member of the group. During group trials, a blue border appeared around the
entire photograph, whereas during member trials, the blue border appeared around the face or
body of a single person in the group. Participants viewed 40 of the photographs in the member
condition, pseudo-randomly selected for every participant from the stimuli set of group
photographs

For each photograph, participants were asked to perform one of two tasks. On mental
trials, participants were oriented toward the mental states of the targets with the cue, “Enjoy a
long car ride?”. On group versions of mental trials, participants judged how much the group
would enjoy a long car ride together. For member versions of mental trials, participants judged
how much the group member would enjoy a long car ride alone. This question was chosen
because it could be answered equally well for both groups and individuals, and because group
enjoyment depends on the pleasantness of interactions between group members and is not simply
reducible to the enjoyment of group members considered individually.

On physical trials, participants were oriented towards physical properties of the targets
with the cue, “Stay afloat?”. On group versions of physical trials, participants judged how well
the group would stay afloat in a life raft. For member versions of physical trials, participants
judged how well the group member around would stay afloat in a pair of arm flotation devices.
Prior to the start of the experiment, participants saw photographs of these two flotation devices
and read descriptions about them: A Boeing life raft six feet in diameter and capable of holding
up to 500 pounds and inflatable arm bands that are recommended for children but are capable of
holding up to 120 pounds. This question was chosen because it could be answered equally well

for both groups and individuals, and because it requires participants to evaluate targets without
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considering their mental states.

Each trial began with one of the two cue phrases. After 500 ms, the photograph appeared
under the cue, along with a four-point Likert scale (1 = Least, 4 = Most). The cue, photograph,
and scale remained onscreen for an additional 3250 ms, during which participants indicated their
response using a button box in their left hand. For the last 250 ms of a trial, a white fixation
cross appeared in the middle of the screen. To optimize estimation of the event-related fMRI
response, trials were intermixed in a pseudorandom order and separated by a variable stimulus
interval (0-14 s) during which participants passively viewed a fixation crosshair (Dale, 1999).
Trials were segregated into four functional runs, each of which consisted of 60 trials (20 trials in

each group condition, 10 trials in each member condition).

Functional imaging procedure

Imaging data were acquired on a 3.0 Tesla Siemens Tim Trio scanner (Siemens, Erlangen,
Germany) with a standard head coil in the Center for Brain Science at Harvard University.
Functional runs used a gradient-echo, echo-planar imaging (EPI) pulse sequence (TR = 2000 ms;
TE = 30 ms; flip angle = 85°; field of view = 216 x 216 mm; matrix = 72 X 72; in-plane
resolution = 3 x 3 mm; slice thickness = 4 mm). Thirty-one interleaved axial slices parallel to
the AC-PC line were obtained to cover the whole cerebrum. The photograph judgment task
consisted of 4 runs of 160 volume acquisitions each. Each of the functional runs was preceded
by 8 s of gradient and radio frequency pulses that allowed the scanner to reach steady-state
magnetization. After the functional runs in each experiment, a high-resolution T1-weighted

structural scan (MEMPRAGE) was conducted.
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Functional imaging data analysis

FMRI data were preprocessed and analyzed using Statistical Parametric Mapping 8 (SPMS;
Wellcome Department of Cognitive Neurology, London, United Kingdom) and in-house
MATLAB code (MathWorks, Natick, MA) written by Dylan Wagner (Dartmouth College,
Hanover, NH). To correct for head movement, a rigid-body transformation realigned images
within each run and across all runs using the first functional image as a reference. Realigned
images were unwarped to reduce any additional distortions caused by head movement.
Unwarped data were normalized into a stereotaxic space (2-mm isotropic voxels) based on the
SPM8 EPI template that conforms to the ICBM 152 brain template space and approximates the
Talairach and Tournoux atlas space. Normalized images were spatially smoothed using a
Gaussian kernel (8-mm full-width-at-half-maximum) to maximize signal-to-noise ratio and
reduce the impact of individual differences in functional neuroanatomy. Finally, individual runs
were analyzed on a participant-by-participant basis to find outlier volumes with Artifact
Detection Toolbox (ART; McGovern Institute for Brain Research, Cambridge, MA). Outliers
were defined as volumes in which participant head movement exceeded 0.5 mm or 1° and
volumes in which overall signal were more than three standard deviations outside the mean
global signal for the entire run.

For each participant, a general linear model (GLM) was constructed to include task
effects and nuisance regressors (run mean, linear trend to account for signal drift over time, six
movement parameters computed during realignment, and, if any, outlier scans identified by ART
and trials in which participants did not provide a response). To compute unweighted (f) and
weighted (t) parameter estimates for each condition at each voxel, the GLM was convolved with

a canonical hemodynamic response function (HRF) as well as its temporal and spatial
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derivatives. These derivatives explain a significant portion of BOLD variability above and
beyond the canonical HRF (Henson, Rugg, & Friston, 2001). Trials were modeled as events of
durations equal to their respective reaction times to account for differences in RTs across
conditions (Grinband, Wager, Lindquist, Ferrera, & Hirsch, 2008).

Comparisons of interest were implemented as linear contrasts. Given the large sample
size, significant voxels were identified using a voxel-wise statistical criterion of p < 107
Regions-of-interest (ROIs), defined using MarsBar (Centre IRMf, Marseille, France) and in-
house MATLAB code, were required to exceed 32 voxels in extent, establishing an experiment-
wide statistical threshold of p < .05, corrected for multiple comparisons, on the basis of Monte
Carlo simulations (Slotnick, Moo, Segal, & Hart, 2003). Voxels at the intersection of ROIs from
different contrasts were identified using xjView (Stanford University, Palo Alto, CA). Contrasts
maps were overlaid on the same anatomical template without recalculation of the statistical
thresholds used to generate each contrast map. Therefore, conjunctions use conservative
statistical thresholds that can increase our confidence in them. Additional statistical comparisons
were conducted in MATLAB using paired-samples t-tests on the parameter estimates associated

with each trial type.

RESULTS

Behavioral data

Means and standard deviations of responses and response times are displayed in Table 2.1. On
mental trials, participants judged that groups (M = 3.11) would enjoy a long car ride together less
than single members (M = 3.39), t(24) = 2.84, p < .01, Cohen’s d = 0.58. On physical trials,

participants did not judge groups (M = 2.79) differently from single members (M = 2.84), t(24) =
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Table 2.1 Participants’ responses and response latencies for tasks in Experiments 1 and 2.

Target

Group
Member

Group
Member
Individual

Responses Response Latencies

Experiment 1: Photograph judgment task

Mental Physical Mental
3.11% (0.48) 2.79° (0.61) 1.87%(0.35)
3.39°(0.54) 2.84* (0.78) 1.89%(0.37)

Experiment 2: Photograph judgment task

Mental Physical Mental
2.97* (0.38) 2.88% (0.51) 1.88% (0.33)
3.03% (0.31) 2.94% (0.55) 1.88% (0.33)
3.50° (0.38) 3.05" (0.59) 1.79° (0.31)

Experiment 2: False belief localizer

Belief Photo Belief
.93% (.10) 87° (.13) 3.06% (1.05)

Physical
1.77° (0.30)
1.92% (0.35)

Physical
1.81%° (0.32)
1.87% (0.21)
1.73° (0.37)

Photo
3.29° (0.85)

Note: Means and, in parentheses, standard deviations. In the photograph judgment task,
participants’ responses refer to their judgments on a four-point Likert scale (1 = Least, 4 =
Most). In the false belief localizer, participants’ responses refer to their proportion of correct
responses to the questions about the stories. Response times are displayed in seconds. For each
dependent variable, means sharing a superscript do not differ significantly at p < .05, as
computed in paired-samples t-tests.
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0.29, p =.78,d =0.06. Response latencies were closely matched for mental judgments in the
group (M =1.87) and member (M = 1.89) conditions, t(24) = 0.87, p = .39, d = 0.18, but
participants responded more quickly to physical judgments about groups (M = 1.77) than single
members (M = 1.92), t(24) = 3.62, p<.01,d =0.74.

The behavioral data suggest that participants did not answer questions about the mental
states of groups by inferring the mental state a single group member. Inferring the mental state
of a single member rather the group as a whole would mean that participants need not take the
size of the group into account in their inference. However, responses in group trials correlated
with group size: The larger the group, the less enjoyable the long car ride, Fisher-transformed

r(24) =-0.17, p < 10°.

Functional imaging data

Trials from the photo judgment task were conditionalized on the basis of question (mental,
physical) and target (group, member), resulting in 4 conditions of interest. A whole-brain
contrast identified voxels in which BOLD activity was greater during trials in which participants
answered questions about the mental states of groups than their physical appearance (group
mental > group physical). This contrast identified ventral and dorsal aspects of MPFC, bilateral
ATL, bilateral TPJ, and medial parietal cortex (Table 2.2). Consistent with earlier research, a
similar whole-brain contrast of single member trials (member mental > member physical)
identified the same brain regions (Table 2.2). For a formal test that these two contrasts identified
overlapping brain regions, we identified voxels in the intersection of the ROIs defined by each
contrast. This analysis identified voxels in dorsal and ventral MPFC, bilateral ATL, bilateral

TPJ, and medial parietal cortex (Figure 2.1).
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Table 2.2 Brain regions identified in whole-brain, random-effects contrasts (group mental >
group physical, member mental > member physical) in the photograph judgment task of
Experiment 1, p < .05, corrected for multiple comparisons.

Group Mental > Member Mental >
Group Physical Member Physical
Region X y z k X y z k
Temporoparietal junction
Right 54 -51 16 1218 56 -57 14 891
Left -46 =77 30 811 -42 -63 28 1471
Medial prefrontal cortex
Ventral -4 53 -10 1075 -4 47 -8 579
Dorsal -8 61 36 749 -6 45 50 490
Anterior temporal cortex
Left -56 -9 -22 798 -54 -11 -16 1133
Right 56 -1 -22 769 42 19 -32 897
Medial parietal cortex -8 -55 16 524 0 -49 28 95

Note: From left to right, columns list the names of regions obtained from whole-brain, random-
effects contrasts, the stereotaxic Montreal Neurological Institute coordinates of their peak voxels,
and their size in number of voxels (k).
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Figure 2.1 T-maps computed by whole-brain, random-effects contrasts group mental > group
physical (blue) and member mental > member physical (red) in the photo judgment task of
Experiment 1. Voxels at the intersection of the two T-maps are displayed in purple. T-maps are
displayed in sagittal (x = -4), coronal (y = 0), and axial (z = 24) slices of a high-resolution
anatomical template. These contrasts identified ventromedial prefrontal cortex (VMPFC),
dorsomedial prefrontal cortex (DMPFC), bilateral anterior temporal lobe (RATL and LATL),
bilateral temporoparietal junction (RTPJ and LTPJ), and medial parietal cortex (MPC).
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As an additional test of the hypothesis that brain regions recruited by mental state
inferences about individuals are also recruited by mental state inferences about groups, the
parameter estimates of the group contrast (group mental > group physical) were extracted for the
brain regions defined by the member contrast (member mental > member physical), averaging
over all voxels in each ROI (Table 2.3). To test that inferences about the mental states of groups
also recruit these brain regions, we examined whether BOLD activity in these parameter
estimates were significantly higher than zero. This was the case for every ROI, all ts(24) > 5.00,
all ps < 10™, suggesting that perceivers also recruit these regions when they represent the mental
states of groups.

Moreover, to test whether inferences about the mental states of groups recruit these brain
regions as robustly as inferences about the mental states of single members, we examined
whether differences in BOLD activity between the parameter estimates of the group and member
condition (member mental > member physical) were statistically equivalent (Table 2.3).
Although ventral MPFC showed a marginally larger response to groups than single members,
t(24) = 1.84, p = .08, every other ROI showed equivalent responses to mental state inferences
about groups and single members, all ts(24) < 1.60, all ps > .12, suggesting that perceivers
recruit these brain regions as strongly when they represent the mental states of groups as when

they perform similar inferences about individuals.

DISCUSSION
We hypothesized that, if humans adopt a theory of mind about groups, then brain regions
engaged by theory of mind about individuals—MPFC, bilateral ATL, bilateral TPJ, and medial

parietal cortex—should show robust neural activity when perceivers consider the mental states of
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Table 2.3 Mean parameter estimates of the contrasts group mental > group physical and member mental > member physical, extracted
from brain regions identified in whole-brain, random-effects contrasts in the photograph judgment task of Experiment 1 (member
mental > member physical) and Experiment 2 (individual mental > individual physical).

Member Mental > Individual Mental >
Member Physical Individual Physical
Region Paroup Prmember PBaroup Prmember d
Temporoparietal junction
Right 0.55(0.09)  0.39 (0.08) 0.44 (0.09)  0.39 (0.08) 0.13
Left 0.48 (0.09)  0.45 (0.08) 0.40 (0.11)  0.46 (0.12) 0.11
Medial prefrontal cortex
Ventral 0.83(0.13)  0.50(0.11) 0.47 (0.08)  0.23(0.12) 0.47
Dorsal 1.00 (0.19) 0.78 (0.15) 0.35(0.10) 0.34 (0.08) 0.03
Anterior temporal cortex
Left 0.37(0.06)  0.37 (0.05) 0.25(0.05)  0.23 (0.05) 0.08
Right 0.41(0.06)  0.35(0.05) 0.32(0.07)  0.26 (0.06) 0.19
Medial parietal cortex 0.49 (0.10)  0.30 (0.08) 0.25(0.08)  0.19 (0.07) 0.15

Note: From left to right, columns list the names of regions obtained from whole-brain, random-effects contrasts and the parameter
estimates of the group (group mental > group physical) and member (member mental > member physical) contrasts, averaging over all
voxels in each region. The rightmost column lists the effect size (Cohen’s d) of the difference between parameter estimates of the
group and member contrasts in Experiment 2. Numbers in parentheses denote standard errors. Parameter estimates are reliably larger
than zero in every region, all ps <.01. Group and member mean parameters do not differ reliably in any region, all ps > .05.



groups. In support of this hypothesis, these brain regions were more responsive to inferences
about mental states of both groups and individuals than to inferences about the physical
appearance of both groups and individuals.

As such, the results of the present experiment suggest that common brain regions respond
during inferences about mental states of groups and individuals. But this result is puzzling given
that people do not consider the minds of single individuals and the “minds” of groups to be
equivalent. For instance, people are more likely to attribute intentions than emotions to groups,
but they do not show such a bias in imputing mental states to individuals (Knobe & Prinz, 2008).
Therefore, though common brain regions may respond preferentially to theory of mind about
individuals and groups, they may have distinct representations of mental state inferences about
groups and mental state inferences about individuals. To test this hypothesis, we turned to
multivoxel pattern analysis (MVPA), which takes as its unit of analysis not the responses of
individual voxels but the responses of multiple voxels or multivoxel patterns (for review, see
Weil & Rees, 2010). Differences in multivoxel patterns across stimuli index differences in the
underlying representations of these stimuli. For example, face and house percepts elicit distinct
multivoxel patterns in ventral temporal cortex, suggesting that the visual system contains distinct
representations of faces and houses (Haxby et al., 2001). In the present experiment, we
identified brain regions in which multivoxel patterns differentiate mental state inferences about
groups from similar inferences about individual group members. In other words, this analysis
aimed to identify brain regions that contain distinct representations of mental state inferences
about groups and individuals.

We conducted this analysis in an experiment in which participants performed the same

photograph judgment task from Experiment 1. But whereas participants in Experiment 1 only
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viewed some of the photographs in their member condition, participants in Experiment 2 viewed
all photographs in their group and member condition. The larger number of trials in the member
condition as well as the equal number of trials in the group and member conditions allows the
use of MVVPA. Specifically, this modification ensures that the parameter estimates in the
multivoxel patterns of the group and member conditions are equal in statistical power and
reliability. To ascertain that we examined the brain regions that have been previously identified
as responding preferentially to mentalizing, this version of the task included an additional set of
trials that required participants to make mental state inferences about individuals outside of a
group context. These trials were used as a functional localizer of brain regions engaged by
mentalizing. Additionally, participants completed a false belief task (Saxe & Kanwisher, 2003),

which provided an independent functional localizer of brain regions engaged by mentalizing.

EXPERIMENT 2
METHOD
Participants
Participants were 14 individuals (8 male, 6 female; age range: 18-23, M = 19.9) sampled from
the same population as Experiment 1. One participant withdrew from the experiment after

becoming ill during data collection.

Stimuli and behavioral procedure
Participants were scanned using fMRI while performing the same photograph judgment task with
two modifications. First, whereas participants in Experiment 1 viewed 40 of the photographs in

the member condition, participants in Experiment 2 viewed all 80 photographs in their member
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version. Second, the task included photographs that depicted a single individual (40
photographs). These photographs, drawn from the same database, depicted individual people in
a variety of settings. Each photograph was presented twice. In one presentation, participants
judged how much the individual would enjoy a long car ride alone in one set of trials. In the
other presentation, they judged how well the group member would stay afloat in a pair of arm
flotation devices. Trials were segregated into eight functional runs, each of which consisted of
50 trials (10 trials in each group and member condition, 5 trials in each individual condition).
Participants in Experiment 2 also completed two runs of a false belief localizer used to
identify brain regions that represent mental states (Saxe & Kanwisher, 2003). During this task,
participants read 12 vignettes that referred to the false belief of a person (belief blocks). For
example, one belief vignette read, “Jenny put her chocolate away in the cupboard. Then she
went outside. Alan moved the chocolate from the cupboard into the fridge. Half an hour later,
Jenny came back inside.” The corresponding cue read, “Jenny expects to find her chocolate in
the:” and the answer choices read “fridge” and “cupboard.” Participants also read 12 vignettes
that referred to an outdated physical representation, such as a photograph (photo blocks). These
vignettes had the same logical structure as belief stories, but referred to outdated physical, rather
than mental, representations (Zaitchik, 1990). For example, one physical vignette read, “A
photograph was taken of an apple hanging on a tree branch. The film took half an hour to
develop. Inthe meantime, a strong wind blew the apple to the ground.” The corresponding cue
read, “The developed photograph shows the apple on the:” and the corresponding answer choices
read “ground” and “branch.” Each vignette was presented for 10 s, after which it was replaced
by the cue sentence. Participants had 6 s to respond to the cue before the end of the story. Each

cue was followed by a fixation crosshair lasting 10 s. Stories were segregated into two
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functional runs, each of which consisted of 6 belief and 6 photo stories, intermixed in

pseudorandom order.

Functional imaging procedure

The functional imaging procedures were identical to those of Experiment 1. However, the
photograph judgment task consisted of 8 runs of 130 volume acquisitions each. The false belief
localizer consisted of 2 runs of 174 volume acquisitions each. Significant voxels in the
photograph judgment task were identified using a voxel-wise statistical criterion of p <.005 and
ROIs were required to exceed 59 voxels in extent. Given the block design of the false belief
localizer, the thresholds in the analysis of this data were p < 10® and k = 32. These thresholds
established an experiment-wide statistical threshold of p < .05, corrected for multiple

comparisons, on the basis of Monte Carlo simulations (Slotnick, et al., 2003).

Functional imaging data analysis

The functional imaging data analysis was identical to that of Experiment 1, with one exception.
Information-based functional brain mapping with a multivariate spherical searchlight was
conducted for each participant (Kriegeskorte, Goebel, & Bandettini, 2006). For this analysis,
fMRI data from the photo judgment task were preprocessed as before, but they were spatially
smoothed with a smaller Gaussian kernel (4-mm full-width-at-half-maximum). GLMs were also
constructed as before, but each group and member condition was split into one condition with
trials from odd runs and another condition with trials from even runs (e.g., group mental odd,
group mental even). Contrast images were created by comparing the parameter estimates of each

mental condition to those of its corresponding physical condition in a linear contrast (e.g., group
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mental odd > group physical odd). Following Misaki, Kim, Bandettini, and Kriegeskorte (2010),
the multivariate searchlight analysis used the resulting contrast images (group mental odd >
group physical odd, group mental even > group physical even, member mental odd > member
physical odd, member mental even > member physical even) because they reduce the influence of
noisy voxels.

For each voxel, we extracted the parameter estimates of each contrast within a spherical
neighborhood (8-mm radius; neighborhood size in resampled voxels, M = 248, SD = 21) similar
in shape to those used by Kriegeskorte and colleagues (2006). As such, each neighborhood was
associated with four vectors, one for each contrast. These vectors were correlated in four
different ways: Two same-target correlations (group odd with group even, member odd with

member even) and two different-target correlations (group odd with member even, member odd

1+r
1-r

)) and,

with group even). These correlations were Fisher-transformed to z-values (z = % * In (

then, averaged to yield a single same-target correlation and a single different-target correlation.
For each neighborhood, we subtracted the average same-target correlation from the average
different-target correlation and assigned the difference to the center voxel. This analysis yielded
a correlation difference map expressed in z-scores for each participant, indexing the degree to
which each voxel exists in a neighborhood in which group trials correlate with each other more
than with single member trials and, vice versa, single member trials correlate more with each
other than group trials. Finally, a univariate, random-effects analysis identified brain regions that
showed higher same- than different-target correlations across participants. For each voxel, we
performed a right-tailed one-sample t-test against zero with the corresponding z-values from all

participants (same > different).
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RESULTS

Behavioral data

Means and standard deviations of responses and response times are displayed in Table 2.1. On
mental trials, participants indicated that groups (M = 2.97) would enjoy a long car ride together
as much as single members (M = 3.03), t(13) = 0.90, p = .39, d = 0.25. On physical trials,
participants did not judge groups (M = 2.88) differently from single members (M = 2.94), t(13) =
0.28,p=.78,d = 0.08. Response latencies were closely matched for mental judgments in the
group (M = 1.88) and member (M = 1.88) conditions, t(13) = 0.19, p = .85, d = 0.05, as well as
for physical judgments about groups (M = 1.81) and single members (M = 1.89), t(13) = 1.41, p
=.18,d = 0.39.

The behavioral data suggest that participants did not answer questions about the mental
states of groups by inferring the mental state a single group member. Inferring the mental state
of a single member rather the group as a whole would mean that participants need not take the
size of the group into account in their inference. However, responses in group trials correlated
with group size: The larger the group, the less enjoyable the long car ride, Fisher-transformed

r(13) =-0.17, p < 10°.

Functional imaging data

Univariate analysis. Trials from the photo judgment task were conditionalized on the basis of
question (mental, physical) and target (group, member, individual), resulting in 6 conditions of
interest. A whole-brain contrast identified voxels in which BOLD activity was greater during
trials in which participants answered questions about the mental states of individuals than their

physical appearance (individual mental > individual physical). Consistent with earlier research,
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this contrast yielded a set of brain regions that included dorsal and ventral MPFC, bilateral ATL,
bilateral TPJ, and medial parietal cortex (Table 2.4).

The parameter estimates of the group and member conditions (group mental > group
physical, member mental > member physical) were extracted for each of these brain regions,
averaging over all voxels in each ROI (Table 2.3). To test that inferences about the mental states
of groups recruit these brain regions, we examined whether BOLD activity in the parameter
estimates of the group conditions were significantly higher than zero. This was the case for
every ROI, all ts(13) > 2.98, all ps < .01, suggesting that people also recruit these regions when
they represent the mental states of groups. To test that inferences about the mental states of
groups recruit these brain regions as robustly as inferences about the mental states of single
members, we examined whether differences in BOLD activity between the group and member
parameter estimates were statistically unreliable. This was the case for every ROI, all ts(13) <
1.70, all ps > .11, suggesting that people recruit these brain regions as strongly when they
represent the mental states of groups as when they perform similar inferences about individuals.

These results were replicated when ROIs were defined by the false belief localizer. A
whole-brain contrast identified voxels in which BOLD activity was greater during blocks in
which participants read and answered questions about belief stories than closely-matched stories
about physical representations (belief > photo). Consistent with earlier research, this contrast
yielded a set of brain regions that included dorsal MPFC, right ATL, bilateral TPJ, and medial
parietal cortex (Table 2.4).

The parameter estimates of the group and member conditions (i.e., group mental > group
physical, member mental > member physical) were extracted for each of these brain regions,

averaging over all voxels in each ROI. To test that inferences about the mental states of groups
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Table 2.4 Brain regions identified in whole-brain, random-effects contrasts in the photograph judgment task (individual mental >
individual physical) and the false belief localizer (belief > photo) of Experiment 2, p < .05, corrected for multiple comparisons.

Individual Mental > Individual
Belief > Photo

Physical

Region X y z k X y z k
Medial prefrontal cortex

Dorsal -8 45 52 1221 8 61 26 699

Ventral -8 55 2 807 -- -- -- --
Medial parietal cortex -2 -51 22 860 10 -51 34 2491
Anterior temporal cortex

Left -48 -17 -24 813 -- -- -- --

Right 62 -7 -18 123 54 -3 -22 1484
Temporoparietal junction

Left -54 -67 32 166 -60 -59 20 561

Right 66 -49 26 80 58 -53 30 888
Cerebellum

Right 30 -83 -36 376 -- -- -- --

Left -26 -79 -36 99 -24 =77 -38 333
Superior temporal sulcus 44 -45 6 263 -- -- -- --
Parahippocampal gyrus -34 -31 -18 130 -- -- -- --
Inferior frontal gyrus (orbital) -48 29 -14 116 -- -- -- --

Note: From left to right, columns list the names of regions obtained from whole-brain, random-effects contrasts, the stereotaxic
Montreal Neurological Institute coordinates of their peak voxels, and their size in number of voxels (k).



recruit these brain regions, we examined whether BOLD activity in the parameter estimates of
the group conditions were significantly higher than zero. This was the case for dorsal MPFC,
right ATL, and bilateral TPJ, all ts(13) > 2.18, all ps < .03, suggesting that people also recruit
these regions when they represent the mental states of groups. Medial parietal cortex showed a
similar effect, but the difference was statistically reliable at a marginal level, t(13) = 1.60, p =
.06. To test that inferences about the mental states of groups recruit these brain regions as
robustly as inferences about the mental states of single members, we examined whether
differences in BOLD activity between the group and member parameter estimates were
statistically unreliable. This was the case for every ROI, all ts(13) < 1.30, all ps > .21,
suggesting that people recruit these regions as strongly when they represent the mental states of

groups as when they perform similar inferences about individuals.

Multivariate searchlight analysis. A whole-brain contrast identified voxels in neighborhoods in
which multivoxel correlations were higher for inferences about the mental states of the same
class of targets (e.g., group odd with group even) than different classes of targets (e.g., group odd
with member even). This same > different contrast yielded a set of brain regions that included
dorsal MPFC, medial parietal cortex (precuneus and posterior cingulate cortex), left ATL, and
left TPJ (Table 2.5, Figure 2.2). In these brain regions, the patterns of BOLD activity associated
with inferences about the mental states of groups was more similar to the pattern for other groups
than it was for individual members; likewise, the pattern of BOLD activity associated with
inferences about the mental states of individuals was more similar to other individuals than to
groups. The z-values that correspond to the differences between same- and different-target

correlations were reliably larger than zero, all ts(13) > 4.46, all ps < 10™. Moreover, the
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Table 2.5 Brain regions identified in whole-brain, random-effects contrast same > different from
the multivariate searchlight analysis in Experiment 2, p < .05, corrected for multiple
comparisons.

Region X y z k t
Dorsomedial prefrontal cortex -6 41 32 133 3.78
Medial parietal cortex
Precuneus -18 -69 54 228 3.78
Posterior cingulate cortex -8 -49 16 282 3.68
Middle frontal gyrus -30 33 26 342 3.73
Left anterior temporal cortex -46 9 -34 282 3.58
Postcentral gyrus 40 -27 54 142 3.58
Lateral superior frontal gyrus 22 5 56 775 3.56
-18 1 66 165 3.53
Supramarginal gyrus 56 -31 34 166 3.56
Inferior frontal gyrus (orbital) -34 27 -14 250 3.53
Left temporoparietal junction -52 -39 24 133 3.44

Note: From left to right, columns list the names of regions obtained from whole-brain, random-
effects contrast, the stereotaxic Montreal Neurological Institute coordinates of their peak voxels,
their size in number of voxels (k), and their mean weighted parameter estimate (t).
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Figure 2.2 T-map computed by the whole-brain, random-effects contrast same > different from
the multivariate searchlight analysis in Experiment 2 and displayed in sagittal (x = -10, x = -60)
and axial (y = 13) slices of a high-resolution anatomical template. The analysis identified dorsal
medial prefrontal cortex (DMPFC), two clusters in medial parietal cortex: precuneus (PC) and
posterior cingulate cortex (PCC), left anterior temporal lobe (LATL), and left temporoparietal
junction (LTPJ). Bar graphs display the mean differences of Fisher-transformed correlation
averages for group trials (group odd with group even > group odd with member even, member
odd with group even) and member trials (member odd with member even > group odd with
member even, member odd with group even). Error bars represent 95% confidence intervals in
within-subject comparisons (Masson & Loftus, 2003).
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magnitude of these differences did not vary across ROIs, all ts < 1.65, all ps > .12, suggesting
that these brain regions were equally sensitive in their discrimination of groups and single
members during inferences about mental states.

To ensure that these results were not caused by the group or the member condition
exclusively, two additional multivariate searchlight analyses were conducted. A group analysis
examined multivoxel correlations in the group condition (group odd with group even), whereas a
member analysis examined multivoxel correlations in the member condition (member odd with
member even). By analyzing the two same-target correlations separately, we can examine a
correlation difference that detects the presence of a group representation and a correlation that
detects the presence of a member representation. Each of these same-target correlations was
independently contrasted against the average different-target correlation (group odd with member
even, member odd with group even).

The correlation differences of the group analysis and the member analysis were extracted
separately from the ROIs defined by the original multivariate searchlight analysis that averaged
these two correlation differences. If these brain regions contain distinct group and member
representations, then we should expect each of these two correlation differences to be reliably
larger than zero in each ROI. This was the case in most ROIs (Figure 2.2). The correlation
differences from the group analysis were reliably larger than zero in all ROIs, all ts(13) > 3.009,
all ps < 107, suggesting that these brain regions contain distinct group representations. In the
member analysis, the correlation differences were reliably larger than zero in medial parietal
cortex (precuneus and posterior cingulate cortex), left ATL, and left TPJ, all ts(13) > 2.84, all ps
<107, but not in dorsal MPFC, t(13) > 1.23, p = .12; however, the correlation difference in

dorsal MPFC had the predicted direction. These results suggest that these ROIs contain distinct
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member representations. Together, the group analysis and the member analysis suggest that
these brain regions, with the exception of dorsal MPFC, have distinct representations of groups
and individuals.

The multivoxel patterns of these brain regions discriminate inferences about the mental
states of groups from similar inferences about single members. To determine whether these
brain regions discriminated between groups and single members with their univariate responses,
parameter estimates from the contrasts (group mental odd > group physical odd, group mental
even > group physical even, member mental odd > member physical odd, member mental even >
member physical even) were extracted for each of these brain regions, averaging over all voxels
in each ROI. Parameter estimates from odd and even runs of the group contrasts were averaged
as were the parameter estimates from odd and even runs of the member contrasts. The
differences between these two averages were not statistically reliable in any of the ROls, all
ts(13) < 1.53, all ps > .15, suggesting that the univariate, unlike the multivariate, responses of
these brain regions do not carry information about the target of the mental state inference.

Finally, an additional multivariate searchlight analysis was conducted to ensure that the
results of the multivariate searchlight analysis were specific to the group-member distinction.
Photographs were pseudo-randomly assigned to two sets (X and Y) such that group and member
versions of each photograph were always in the same set. Pseudo-random assignments varied
across participant. Experimental trials were reassigned from old group-member conditions to
new X-Y conditions (e.g., if photograph 3 is in set X, then its group and member mental trials in
the first run are in condition X mental odd). Critically, these new conditions contain an equal
number of group and member trials. They were used to build new contrasts (X mental odd > X

physical odd, X mental even > X physical even, Y mental odd > Y physical odd, Y mental even >
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Y physical even), which were submitted to a whole-brain multivariate searchlight analysis. At
each neighborhood, the average of two different-set correlations (X odd with Y even, X even with
Y odd) was subtracted from the average of two same-set correlations (X odd with X even, Y odd
with Y even) and assigned to the center voxel. A whole-brain random-effects analysis to identify
brain regions that showed greater same- than different-set correlations failed to dorsal MPFC,
medial parietal cortex (posterior cingulate cortex or precuneus), left ATL, or left TPJ. Instead, it

yielded a brain region in left posterior superior temporal gyrus ([x y z] = -50, -47, 8).

GENERAL DISCUSSION
People know that groups do not have minds, but nevertheless speak about groups as if they had
mental states like those of individuals. In the present experiments, we observed that brain
regions that respond preferentially during inferences about the mental states of individuals also
responded robustly during inferences about the “mental states” of groups. Irrespective of how
they were identified, dorsal and ventral MPFC, bilateral ATL, bilateral TPJ, and medial parietal
cortex were more strongly engaged by inferences about the mental states of groups than by
similar inferences about physical aspects of these groups. Moreover, these brain regions
responded as robustly to inferences about mental states of groups as they did to similar
inferences about individual group members. As a whole, these results suggest that not only do
humans adopt a theory of mind about groups, but that it is just as robust as is theory of mind
about individuals. As such, the results of the present experiment suggest that common brain
regions underlie inferences about mental states of groups and individuals.

However, the fact that these brain regions are involved in representing the mental states

of groups and individuals leaves open the question of whether these brain regions represent
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inferences about the mental states of groups and individuals similarly or differently. To
determine whether these brain regions contain such target-specific representations (group vs.
individual), we carried out a multivariate searchlight analysis to find brain regions that use
multivoxel patterns to discriminate mental states inferences about groups from similar inferences
about individuals. This analysis identified dorsal MPFC, medial parietal cortex (posterior
cingulate cortex and precuneus), left ATL, and left TPJ as repositories of target identity in
mental state inferences. These brain regions differentiated between inferences about the mental
states of groups and single members despite the fact that the two conditions were closely
matched in behavioral responses, response times, information on screen, and univariate BOLD
activity. Thus, although the same brain regions represent the mental states of groups and
individuals, most of them carry information about whether the target of the mental state
inference is a group or an individual.

One could argue that mental state inferences about groups and individuals recruit the
same brain regions in the present study because participants inferred the mental state of a single,
representative group member when they were asked to mentalize a group. However, two aspects
of the data weigh against this possibility. First, multivoxel patterns in most of these brain
regions differentiate group and member trials. If participants were answering questions about an
individual member in every trial, then multivoxel patterns would not differentiate between group
and member trials. The MVPA suggests that these brain regions have distinct representations of
groups and individuals. Second, participants indicated that larger groups would enjoy car rides
less. If participants had inferred the mental state of a single individual, then their inferences
would have been unaffected by group size. For these two reasons, it is unlikely that participants

inferred the mental state of a single, representative group member when they were asked to
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mentalize a group.

In previous research, the brain regions that people recruit in inferences about the mental
states of other humans were also engaged by mentalizing about nonhumans, such as objects
(Castelli, et al., 2000; Wheatley, et al., 2007), robots (Krach et al., 2008), or other animals
(Mitchell, Banaji, & Macrae, 2005). The present findings extend this body of work by showing
that these brain regions can also respond robustly to inferences about the mental states of groups
of people. Together, these experiments suggest that theory of mind is a cognitive module that
can be flexibly deployed for understanding a diverse array of agents (Epley, et al., 2007).
Although it is likely that theory of mind evolved to understand the behavior of individual
humans (Povinelli & Preuss, 1995), it may have been co-opted by the human mind to increase its
understanding of the behavior of nonhuman agents and groups of people.

In sum, the present experiments contribute to our emerging understanding of how the
human brain represents information about social groups. Although cognitive neuroscientists
have started to document the neural basis of the perception of individuals from different social
groups (for reviews, see Cunningham & Van Bavel, 2009; Decety & Cacioppo, 2011; Eberhardt,
2005; Ito & Bartholow, 2009; Kubota, et al., 2012; Todorov, et al., 2011; Van Bavel &
Cunningham, 2011), only a few experiments have examined the functional neuroanatomy of
perceiving and thinking about groups qua groups. However, this research gap is growing
smaller. For example, recent reports have started to shed light on which brain regions represent
stereotypes and other forms of semantic knowledge about social groups (Contreras, et al., 2012;
Quadflieg, et al., 2009). Given the importance of groups to our everyday life as social animals,
this burgeoning interest in the neural basis of intergroup cognition promises to become an

important program of research in cognitive neuroscience.
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STUDY 3
MULTIVOXEL PATTERNS IN FUSIFORM FACE AREA

DIFFERENTIATE FACES BY SEX AND RACE

Contreras, J. M., Banaji, M. R., & Mitchell, J. P. (2013). Multivoxel patterns in fusiform face area differentiate faces

by sex and race. Under review at PLOS ONE.



INTRODUCTION

One of the seminal breakthroughs in cognitive neuroscience was the discovery of a region of
fusiform gyrus that responds preferentially to human faces, dubbed fusiform face area (FFA;
Kanwisher, McDermott, & Chun, 1997; McCarthy, Puce, Gore, & Allison, 1997). FFA is
thought to extract the physical information that distinguishes the faces of different people; that is,
to represent face identity (for review, see Kanwisher & Yovel, 2006). Familiar faces elicit more
neural activity in FFA than unrecognized faces (Grill-Spector, Knouf, & Kanwisher, 2004), and
lesions to FFA impair face recognition (Barton, Press, Keenan, & O'Connor, 2002). Moreover,
experiments using neural adaptation—in which repeated presentation of a stimulus property
decreases neural activity in brain regions that represent the property (Grill-Spector & Malach,
2001)—suggest that FFA is more sensitive to changes in face identity than to physical changes
unrelated to face identity (Andrews & Ewbank, 2004; Davies-Thompson, Newling, & Andrews,
2012; Rotshtein, Henson, Treves, Driver, & Dolan, 2005; cf. Xu, Yue, Lescroart, Biederman, &
Kim, 2009).

But it is impossible to identify people by their faces without accurately categorizing their
sex and race. The sex and race of a face determine how its identity is represented, inextricably
linking face identity to these two social categories (for review, see Rhodes & Jaquet, 2011).
Indeed, face morphology shows pronounced sexual dimorphism and racial differences (Farkas,
Katic, & Forrest, 2005; Ferrario, Sforza, Pizzini, Vogel, & Miani, 1993). Recently, a set of
studies have used multivariate pattern analysis (MVPA) to investigate whether fusiform gyrus
represents the sex and race of faces. Univariate data analyses average the responses of multiple
voxels. This spatial averaging reduces the information content of the data, which can exist at the

level of the individual responses of multiple voxels, or multivoxel patterns (Kriegeskorte, et al.,
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2006). In contrast, MVVPA interrogates these patterns to reveal the representations that a brain
region contains (for review, see Weil & Rees, 2010). For example, a brain region in which faces
of men and women elicit distinct multivoxel patterns but faces of the same sex yield similar
patterns may represent sex.

Two studies have suggested that fusiform gyrus represents the sex and race of faces. In
one study, participants in a functional magnetic resonance imaging (fMRI) scanner viewed faces
of famous and unfamiliar men and women (Kaul, Rees, & Ishai, 2011). Pattern classifiers
decoded the sex of the faces from fusiform gyrus. In another study, participants were scanned
while viewing faces of unfamiliar Black and White individuals (Ratner, Kaul, & VVan Bavel,
2012). Pattern classifiers decoded the race of the faces from fusiform gyrus. However, the sex
finding has not been tested in FFA and the race finding has not been replicated reliably in FFA.
Multivoxel patterns in FFA from participants who viewed the faces of Black and White
individuals differentiated faces by race only for participants who showed high anti-Black bias
(Brosch, Bar-David, & Phelps, 2012). A different study in which participants viewed
photographs of Asian and White faces found that multivoxel patterns in FFA cannot distinguish
faces by race (Natu, Raboy, & O'Toole, 2011). Therefore, these studies suggest that fusiform
gyrus may represent sex and race. However, evidence on whether FFA represents race is mixed
(one negative result and one qualified positive result) and no study of which we are aware has
examined whether FFA represents sex.

Additionally, the studies that decoded social categories from fusiform gyrus (Brosch, et
al., 2012; Kaul, et al., 2011; Ratner, et al., 2012) have an important limitation. They did not
equate physical differences between photographs of social categories that were unrelated to their

facial structure, such as luminance and contrast as well as high-level differences like hair length.
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Consequently, the distinct patterns associated with social categories may not have reflected face
differences. Consistent with this concern, the pattern classifiers in these studies decoded the
social categories of faces in early visual cortex, which is not face-selective.

The present experiment continues the study of race representations in FFA and begins the
study of sex representations in this face-selective brain region by scanning participants while
they categorized faces of unfamiliar Black men, Black women, White men, and White women by
sex and race. The goal of the present experiment is to determine if, despite the significant
variability in the appearance of the people in the photographs, distinct pattern of voxels represent
female and male faces as well as Black and White faces, suggesting that FFA includes
representations of such social category information. We avoid the important limitation of
insufficiently-controlled stimuli in two ways. First, we used photographs that are uniform in
appearance and emotional expression, cropping face-irrelevant features (e.g., hairstyle) and
background. Also, we controlled for low-level visual differences by equalizing luminance and
contrast across social categories. Second, our stimuli orthogonalize sex and race so that if FFA
differentiates faces by sex and race, this is unlikely to be caused by photograph differences

unrelated to facial structure.

METHOD

Participants

Seventeen college students and community members from Cambridge, MA, participated in this
study (9 female; age range 18-34, M = 22.18). All participants were right-handed, had no history
of neurological problems, and described themselves as White. Participants provided their written

informed consent in a manner approved for this study by the Committee on the Use of Human
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Subjects in Research at Harvard University.

Stimuli and behavioral procedure
In a categorization task, participants viewed 192 photographs of unfamiliar Black men, Black
women, White men, and White women (48 photographs in each condition). Because previous
research is limited by insufficient stimuli control, the present stimuli were meticulously
standardized to rule out alternative interpretations of any results. Photographs were collected
from a variety of different online databases and depicted young adults facing forward with
mouths closed, neutral expression, and eye gaze directed at the camera. The photographs were
grayscaled and cropped to squares, their background was removed, and the luminance and
contrast of the faces were equalized across conditions using in-house MATLAB code
(MathWorks, Natick, MA). For example, the grayscaled images of Black and White faces
differed in luminance (Majacks = 106.67, Mwnites = 144.52), t(95) = 8.11, p < 10", but
preprocessing removed this difference (Mgjacks = 130, Mwhites = 130).

In each scanning run, participants categorized the faces either by sex (man, woman) or by
race (Black, White) using the index and middle fingers of their right hand, which rested on a
button box. Each run was pseudorandomly assigned a categorization dimension (sex, race).
Before each run, participants were instructed as to which categorization dimension (sex or race)
to use and which button would correspond to each social category. Then, participants completed
10 practice trials on a set of 10 faces not used in the categorization task. Across runs, we
counterbalanced the button assignments in such a way that each social category was assigned to
each finger an equal number of times and each photograph was categorized once with the index

finger and once with the middle finger.
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Each trial lasted 2000 ms. For the first 500 ms, a photograph was shown in the center of
the screen. For the remaining 1500 ms of each trial, the photograph was replaced with a white
fixation crosshair, which encouraged participants to attend to the photographs closely.
Photographs were segregated into 8 runs, each of which consisted of 48 photographs (12 in each
of the four social categories, e.g., Black men). To optimize estimation of the event-related fMRI
response, trials were intermixed in a pseudorandom order and separated by a variable stimulus
interval (0-10 s) during which participants passively viewed a white fixation crosshair in the
center of the screen (Dale, 1999).

After the categorization task, participants completed two runs of a canonical face
localizer used to identify cortical regions responsive to faces (Kanwisher, et al., 1997). In each
run, participants viewed photographs of human faces, human bodies, scenes, household objects,
and scrambled versions of the household objects. Each photograph appeared for 1 s and was
followed by a blank screen for 333 ms. Each category was blocked together to yield 10 blocks
of 11 photographs each, 2 blocks per category. One photograph in each block was presented
twice in a row, and participants were instructed to press a button when they detected this
repetition. The blocks were separated by a stimulus interval that lasted 12 s and were presented
in a pseudorandom order, such that participants could not anticipate the category of the
upcoming block. During the task, participants fixated on a small, black circle that appeared in
the center of the screen throughout the entire experiment (including the presentation of the

photographs).

Functional imaging procedure

Imaging data were acquired on a 3.0 Tesla Siemens Tim Trio scanner (Siemens, Erlangen,
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Germany) with a standard head coil at the Center for Brain Science at Harvard University.
Functional runs used a gradient-echo, echo-planar pulse sequence (TR = 3000 ms; TE = 28 ms;
flip angle = 85°; field of view = 216 x 216 mm; matrix = 72 x 72; in-plane resolution = 2.5 x 2.5
mm; slice thickness = 2.5 mm). Forty-five interleaved axial slices parallel to the AC-PC line
were obtained to cover most of the cerebrum; portions of superior parietal lobe were not covered.
The categorization task consisted of 8 runs of 43 volume acquisitions each and the face localizer
consisted of 2 runs of 98 volume acquisitions each. Each of the functional runs was preceded by
8 s of gradient and radio frequency pulses that allowed the scanner to reach steady-state
magnetization. After the functional runs in the experiment, a high-resolution T1-weighted

structural scan (MEMPRAGE) was conducted.

Functional imaging data analysis

Univariate analyses. FMRI data were preprocessed and analyzed using Statistical Parametric
Mapping 8 (SPM8; Wellcome Department of Cognitive Neurology, London, United Kingdom)
and in-house MATLAB code (MathWorks, Natick, MA) written by Dylan Wagner (Dartmouth
College, Hanover, NH). To correct for head movement, a rigid-body transformation realigned
images within each run and across all runs using the first functional image as a reference.
Realigned images were unwarped to reduce any additional distortions caused by head movement.
Unwarped data were normalized into a stereotaxic space (2-mm isotropic voxels) based on the
SPM8 EPI template that conforms to the ICBM 152 brain template space and approximates the
Talairach and Tournoux atlas space. Normalized images were spatially smoothed using a
Gaussian kernel (8-mm full-width-at-half-maximum) to maximize signal-to-noise ratio and

reduce the impact of individual differences in functional neuroanatomy. Finally, individual runs
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were analyzed on a participant-by-participant basis to find outlier volumes with Artifact
Detection Toolbox (ART; McGovern Institute for Brain Research, Cambridge, MA). Outliers
were defined as volumes in which participant head movement exceeded 0.5 mm or 1° and
volumes in which overall signal were more than three standard deviations outside the mean
global signal for the entire run.

For each participant, a general linear model (GLM) was constructed to include task
effects and nuisance regressors (run mean, linear trend to account for signal drift over time, six
movement parameters computed during realignment, and, if any, outlier scans identified by ART
and trials in which participants did not provide a response). To compute unweighted (5) and
weighted (t) parameter estimates for each condition at each voxel, the GLM was convolved with
a canonical hemodynamic response function (HRF). The GLM of the categorization task was
also convolved with the temporal and spatial derivatives of the HRF, which explain a significant
portion of BOLD variability above and beyond the canonical model in event-related designs
(Henson, et al., 2001). Trials were modeled as events of durations equal to their respective
reaction times to account for differences in response times (RTs) across conditions (Grinband, et
al., 2008).

Comparisons of interest were implemented as linear contrasts. In the categorization task,
linear contrasts identified significant voxels with a voxel-wise statistical criterion of p <.005.
Regions-of-interest (ROIs) were required to exceed 75 voxels in extent, establishing an
experiment-wide statistical threshold of p < .05, corrected for multiple comparisons, on the basis
of Monte Carlo simulations (Slotnick, et al., 2003). In the face localizer, ROls were identified
for each participant with a voxel-wise statistical criterion of, at most, p < .05 (median p =.005).

Additional statistical comparisons between conditions were conducted in MATLAB using
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ANOVA on the parameter estimates associated with each trial type.

Multivariate analyses. Preprocessing and GLM estimation were identical to those for the
univariate analysis of the face categorization task, except that normalized images were spatially
smoothed using a smaller Gaussian kernel (5-mm full-width-at-half-maximum).

Trials were conditionalized by sex (men, women), race (Black, White) and run type (odd,
even) to yield eight conditions (e.g., Black men-even). Linear contrasts compared each condition
to baseline. Following Misaki, Kim, Bandettini, and Kriegeskorte (2010), these parameter
estimates were used for the rest of the analysis to reduce the influence of noisy voxels. The
parameter estimates were extracted from each of the ROIs defined by the face localizer and
correlated in three ways: same-sex correlations (Black men-odd with White men-even, Black
men-even with White men-odd, Black women-odd with White women-even, Black women-even
with White women-odd), same-race correlations (Black men-odd with Black women-even, Black
men-even with Black women-odd, White men-odd with White women-even, White men-even with
White women-odd), and different-category correlations (Black men-odd with White women-even,
White men-odd with Black women-even, Black women-odd with White men-even, White women-
odd with Black men-even).

Correlations were Fisher-transformed to z-values and averaged to yield one same-sex
correlation, one same-race correlation, and one different-category correlation. Then, the
different-category correlation was subtracted from each of the other average correlations to yield
two correlation differences. Finally, one-tailed, one-sample t-tests determined if these

correlation differences were reliably greater than zero across participants.
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RESULTS

Behavioral data

Table 3.1 displays means and standard deviations of responses and RTs. Participants categorized
faces more accurately and more quickly by sex (Maccuracy = 0.98, Mgt = 670 ms) than race
(Maccuracy = 0.95, Mgt = 712 ms), ts(16) > 5.65, ps < 10, Cohen’s ds > 1.41. Participants
categorized men (Maccuracy = 0.97, Mgt = 684 ms) more accurately and more quickly than women
(Maccuracy = 0.96, Mgt = 699 ms), ts(16) > 2.25, ps < .04, ds > 0.56. Although participants were
no more accurate to categorize Black (Maccuracy = 0.96) than White faces (Maccuracy = 0.96), p =
.15, they were faster to categorize Black (Mgt = 683 ms) than White faces (Mgt = 699 ms), t(16)
=3.05,p<.01,d=0.76. The sex and race of photographs did not interact in participants’
accuracy and RT, whether collapsing across sex and race runs, within sex runs, or within race
runs, all ps >.22. Moreover, the 3-way interaction of photograph sex, photograph race, and run

(sex, race) was not statistically reliable for accuracy and RT, all ps > .28.

Functional imaging data

Univariate analyses. The face localizer was used to identify FFA and control brain regions
independently (Table 3.2). Replicating previous research (Kanwisher, et al., 1997; McCarthy, et
al., 1997), the contrast of faces > [bodies + scenes + objects + scrambled objects] identified a
bilateral region of fusiform gyrus that corresponds to FFA. As face-selective control regions,
this contrast also identified a bilateral region of inferior occipital gyrus that corresponds to
occipital face area (OFA) (Gauthier et al., 2000), and a bilateral region of superior temporal
sulcus (STS) (Puce, Allison, Bentin, Gore, & McCarthy, 1998). As control regions that are

category-selective but not face-selective, the contrast of scenes > objects identified a bilateral
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Table 3.1 Participants’ responses and response latencies from the categorization task.

Accuracies Response Latencies
Sex Race Sex Race
White men 0.95% (0.04) 0.98" (0.02) 706 (65) 679" (64)
White women 0.94° (0.05) 0.97* (0.03) 722° (86) 692% (78)
Black men 0.96° (0.04) 0.98" (0.03) 700* (60) 650° (65)
Black women 0.94° (0.05) 0.98"™ (0.02) 722° (67) 661" (55)

Note: Means and, in parentheses, standard deviations. Accuracies are displayed in proportions of

correct categorizations. Response times are displayed in milliseconds. For each dependent

variable, means sharing a superscript do not differ significantly at p < .05, as computed in paired-

samples t-tests.
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Table 3.2 Brain regions identified in whole-brain, random-effects contrasts in the categorization
task, p <.05, corrected for multiple comparisons.

Region X y z Participants

Faces > [Bodies + Scenes + Objects + Scrambled Objects]

Fusiform gyrus (FFA) 38.8 -44.3 -18.5 16
-37.1 -47.6 -17.3 16
Inferior occipital gyrus (OFA) 33.3 -716.7 -8.9 14
-33.1 -77.0 -6.55 11
Superior temporal sulcus (STS) 49.8 -43.4 13.9 16
-49.8 -52.8 21.3 9

Scenes > Objects
Parahippocampal gyrus (PPA) 234 -39.5 -7.4 16
-24.1 -42.9 -4.8 16

Objects > Scrambled Objects
Lateral occipital cortex (LOC) 40.5 -66.3 -5.0 8
-42.0 -63.7 -6.7 10

Note: From left to right, columns list the names of regions obtained from whole-brain, random-
effects contrasts, the mean stereotaxic Montreal Neurological Institute coordinates of their peak
voxels across participants, and the number of participants (N = 17) in whom these brain regions
were identified at p < .05, corrected for multiple comparisons. FFA = fusiform face area, OFA =
occipital face area, STS = superior temporal sulcus, PPA = parahippocampal place area, LOC =
lateral occipital complex.
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region of parahippocampal gyrus that corresponds to parahippocampal place area (PPA; Epstein
& Kanwisher, 1998). Additionally, the contrast of objects > scrambled objects identified a
bilateral region of lateral occipital cortex that corresponds to lateral occipital complex (LOC;
Malach et al., 1995).

For completeness, univariate analyses of the categorization task examined potential
differences between photographs as a function of their sex and race. For these analyses, trials

were conditionalized by sex (men, women) and race (Black, White; Table 3.3).

Multivariate analyses. First, we examined whether FFA maintains distinct representations of
female and male faces; that is, whether multivoxel patterns in FFA show higher correlations
between photographs of individuals of the same sex than between photographs of men and
women (Figure 3.1). Consistent with the hypothesis that FFA distinguishes faces by sex, pattern
correlations in FFA were higher between photographs of the same sex than between photographs
of men and women (right FFA, t(15) = 3.03, p < .005; left FFA, t(15) = 2.73, p <.008). The
correlation differences of right and left FFA were equivalent, t(14) = 0.69, p = 0.50, suggesting
that both regions distinguished faces by sex to a similar degree.

Second, we examined whether FFA maintains distinct representations of Black and White
faces; that is, whether multivoxel patterns in FFA show higher correlations between photographs
of individuals of the same race than between photographs of Black and White individuals (Figure
3.1). Consistent with the hypothesis that FFA distinguishes faces by race, pattern correlations in
FFA were higher between photographs of the same race than between photographs of Black and
White faces (right FFA, t(15) = 1.72, p = .05; left FFA, t(15) = 2.21, p <.02). The correlation

differences of right and left FFA were equivalent, t(14) = 1.01, p = 0.33, suggesting that both
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Table 3.3 Brain regions identified in whole-brain, random-effects contrasts in the face localizer
task, p < .05, corrected for multiple comparisons, sorted in descending order by the t-statistic of
their peak voxel (t).

Region X y z k t

Men > Women

No brain regions identified.

Women > Men

Cerebellum 0 -61 -16 204 5.18

Inferior frontal gyrus -28 15 -20 231 471

Superior frontal gyrus 20 61 -6 89 4.50

Cingulate gyrus 4 -29 34 75 3.99
White > Black

Middle frontal gyrus -16 33 -8 437 7.73

14 35 -12 162 6.06

Cerebellum -12 -57 -32 82 5.08

Cingulate gyrus -20 -31 44 112 4.83

Precuneus -16 -45 22 105 412
Black > White

White matter -18 -81 2 126 5.36

Supramarginal gyrus 48 -53 34 142 4.60

Note: From left to right, columns list the names of regions obtained from whole-brain, random-
effects contrasts, the stereotaxic Montreal Neurological Institute coordinates of their peak voxels,
their size in number of voxels (k), and the t-statistic of their peak voxel (t).
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Figure 3.1 Bar graphs display mean correlation differences expressed in z-scores (same-sex >
different-category in red, same-race > different-category in blue). An asterisk denotes a
correlation difference that is reliably greater than zero across participants, p < .05. Error bars
represent 95% confidence intervals in within-subject comparisons (Masson & Loftus, 2003). R
and L as the first letters of a region-of-interest’s (ROI) acronym denote the brain hemisphere in
which the ROI is localized. FFA = fusiform face area, OFA = occipital face area, STS = superior
temporal sulcus, PPA = parahippocampal place area, LOC = lateral occipital complex.
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regions distinguished faces by race to a similar degree.

We speculated that FFA might be the only face-selective brain region to represent the sex
and race of faces because it is the face-selective region that is most sensitive to face identity
(Kanwisher & Yovel, 2006). To test this hypothesis, we repeated the MVVPA with patterns
extracted from other brain regions defined by the face localizer, which included ones previously
implicated in face processing like OFA and STS (Kanwisher & Yovel, 2006) (Figure 3.1).
Neither right nor left OFA or STS distinguished faces by social category reliably, ps >.13. This
suggests that FFA is alone among face-selective brain regions in decoding the sex and race of
faces. Because face information may exist in category-selective cortex outside of FFA (Haxby,
et al., 2001; Op de Beeck, Brants, Baeck, & Wagemans, 2010), we repeated the pattern similarity
analyses with patterns extracted from place-selective PPA and object-selective LOC (Figure 3.1).
Neither right nor left PPA or LOC distinguished faces by social category reliably, ps >.26. This
suggests that other category-selective brain regions lack sex and race information about faces.

However, FFA may differentiate photographs not by facial properties that vary between
social categories, but by lower-level physical differences between the photographs. Many of
these low-level physical differences were removed by careful photograph selection and intensive
preprocessing (see Method: Stimuli and behavioral procedure), but we wanted to test this
alternative hypothesis empirically. Therefore, we analyzed multivoxel patterns from early visual
cortex, which processes lower-level visual features. To do so, we used the stereotaxic
coordinates of the center of mass of the right ([x y z] = 25, -82, -15) and left ([x y z] = -29, -80, -
18) foveal confluence of brain areas V1, V2, and V3, which represents the central portion of the
visual field, as functionally-defined by Dougherty et al. (2003) using retinotopic mapping (Engel

etal., 1994). We extracted patterns from 8-mm spheres centered on these stereotaxic coordinates
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and repeated the pattern similarity analyses with these patterns. Neither the right nor the left
foveal confluence distinguished faces by social category reliably, ps > .66. This suggests that
low-level visual differences between the photographs do not cause multivoxel patterns in FFA to
differentiate faces by sex and race.

Finally, we tested for effects of categorization dimension. To do so, trials were
conditionalized by sex (men, women), race (Black, White), categorization dimension (sex, race),
and run type (odd, even) to yield 16 conditions (e.g., Black men categorized by sex-even). Then,
the same correlation differences as before (same-sex > different-category, same-race > different-
category) were calculated separately for each categorization dimension (e.g., same-sex
categorized by sex > different-category categorized by sex). None of these correlation
differences were reliably larger than zero, ps > .16. The discrepancy between these results and
the positive results of the analysis in which trials were not conditionalized by categorization
dimension are most likely caused by differences in statistical power. The analysis that involves
conditionalizing by categorization dimension has half as many trials per condition as the other
analysis, endowing it with an inferior ability to detect small differences between multivoxel

patterns across conditions.

DISCUSSION

Previous studies suggested that fusiform gyrus represents the sex and race of faces (Kaul, et al.,
2011; Ratner, et al., 2012), although whether FFA in particular represents this information was
unclear (Brosch, et al., 2012; Natu, et al., 2011). In the present experiment, we observed that
multivoxel patterns in bilateral FFA distinguished faces by sex and race. Participants variably

categorized photographs of unfamiliar Black men, Black women, White men, and White women
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by sex and race. Despite the significant variability in the appearance of the people in the
photographs, a distinct pattern of voxels distinguished between female and male faces and
between Black and White faces, suggesting that bilateral FFA includes representations of such
social category information.

These social category representations may be components of face identity
representations, which are thought to exist in FFA (Kanwisher & Yovel, 2006). Because face
identity is inextricably linked to social categories like age, sex, and race (for review, see Rhodes
& Jaquet, 2011), it seems reasonable that FFA might represent face identity as well as the social
categories of faces. FFA could be the neuroanatomical locus in which social categories that are
relevant to face identity (i.e., age, race, and sex) are integrated to form holistic representations of
individual faces. This hypothesis is consistent with behavioral research that suggests that the
human brain codes face identity with reference to social categories (Rhodes & Leopold, 2011).

Analyses of multivoxel patterns from other brain regions suggest that representations of
the sex and race of faces may be unique to FFA. Patterns extracted from other face-selective
brain regions (OFA and STS), other category-selective brain regions (PPA and LOC), and early
visual cortex (foveal confluence of V1, V2, and V3) did not differentiate faces by sex or race.
The null results from patterns in early visual cortex suggest that the careful selection and
intensive preprocessing of the stimuli removed low-level physical differences unrelated to the
sex and race of the stimuli that might have existed in the original photographs. These null results
are especially important in this experiment because previous studies that decoded the sex or race
of faces from fusiform gyrus also decoded sex and race from early visual cortex (Brosch, et al.,
2012; Kaul, et al., 2011; Ratner, et al., 2012).

FFA is thought to process perceptual rather than semantic aspects of person perception
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(Kanwisher & Yovel, 2006). For this reason, the sex and race information that FFA represents is
unlikely to be semantic; that is, FFA may “tell” faces apart by sex and race without “knowing”
what these differences mean. Nonetheless, FFA may play a critical role in social categorization.
Indeed, multivoxel patterns in FFA may be not only stimulus-specific (male faces vs. female
faces) but also task-specific (sex vs. race categorization; Chiu, Esterman, Han, Rosen, & Yantis,
2011). This suggests that neural activity in FFA can be modulated by the type of social
categorization that a person performs. One of the most fruitful future directions for research on
sex and race representations in FFA may be to investigate how this information guides semantic
retrieval about social categories in more anterior regions of temporal lobe, which have been
consistently implicated in semantics about people generally (for review, see Wong & Gallate,
2012) and in stereotypes specifically (Contreras, et al., 2012). Evidence exists to suggest that
stereotyping can modulate neural activity in FFA (Quadflieg et al., 2011), but how
representations in FFA might inform higher-order social processes like stereotyping is unknown.
In sum, the present experiment suggests that FFA distinguishes faces by social categories
like sex and race. In this way, the current research contributes to our emerging understanding of

how the human brain perceives individuals from different social categories.
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DISCUSSION



Though social groups shape almost every respect of our lives, cognitive neuroscientists
have not conducted many investigations to study how the human brain solves the computational
challenges that allow human beings to navigate a social world fragmented along the lines of
group membership. The studies presented in this dissertation explore three domains of
intergroup cognition that have not received much, if any, attention from cognitive
neuroscientists: Semantic knowledge, theory of mind about groups, and social categorization.

Study 1 finds that brain regions previously identified in processing semantic information
are more robustly engaged by nonsocial semantics than stereotypes. In contrast, stereotypes
elicit greater activity in brain regions implicated in social cognition. These results suggest that
stereotypes should be considered distinct from other forms of semantic knowledge. Study 2
shows that this same set of brain regions is more robustly responsive to inferences about the
mental states rather than physical aspects of groups of people. However, this study also finds
that multivoxel patterns in these brain regions differentiate groups from individual members.
These findings suggest that perceivers mentalize about groups in a manner qualitatively similar
to mentalizing about individual people, but that the brain nevertheless maintains important
distinctions between the representations of such entities. Finally, Study 3 shows that patterns of
voxel-based responses differentiate between the faces of Blacks and Whites and between the
faces of men and women. These results suggest that a face-selective brain region in the visual
system have distinct representations of the sex and race of faces.

In addition to addressing important domains of intergroup cognition not previously
explored in previous cognitive neuroscience research, these studies contribute to our
understanding of how the brain enables intergroup cognition in two other ways. First, Studies 1

and 2 examine the functional neuroanatomy of perceiving and thinking about groups qua groups
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rather than examining how we perceive other individuals as group members. As the study of the
neural basis of social psychology progresses, it will need to devote greater attention to the
perception of groups as units of analysis distinct from the individuals that comprise them.
Second, Studies 2 and 3 attempted to identify brain regions that contain distinct representations
of groups and individuals and distinct representations of different social groups. Again, the
study of the neural basis of social psychology will require probing not only which brain regions
are involved in thinking about groups, but understanding what group information these brain
regions represent and how this information is used.

Future research in the cognitive neuroscience of social groups should address the
following questions left unanswered by the present studies. First, what makes semantic
knowledge about individuals and groups similar? The retrieval of semantic knowledge about
individuals recruits similar brain regions to those identified in Study 1 (Mitchell, et al., 2002;
Zahn et al., 2007), suggesting that semantic knowledge about individual people and the groups
that they form share important qualities. Indeed, the representational spaces that support
semantic knowledge about individuals and groups share organizing principles. The contents of
stereotypes and interpersonal perceptions are arranged in a two-dimensional space of warmth and
competence (for review, see Fiske, Cuddy, & Glick, 2007). Using multivariate pattern analysis,
a future experiment could determine whether the brain regions identified in Study 1 have a
common neural code of warmth and competence that underlie multivoxel patterns that
distinguish groups from each other and individuals from each other along dimensions like
warmth and competence.

Second, collections of people vary in the degree to which they are considered cohesive

groups (Lickel et al., 2000). Moreover, group cohesiveness influences the degree to which we
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attribute a mind to a group and the kind of mind that we attribute to a group (Knobe & Prinz,
2008; Waytz & Young, 2012). Therefore, Study 2’s finding that theory of mind about
individuals and groups has a common neural basis may be moderated by the cohesiveness of
social groups. Inferences about the mental states of cohesive groups may recruit brain regions
implicated in theory of mind to a greater degree than inferences about groups that are not
cohesive entities. Alternatively, it may be the case that cohesive and non-cohesive groups can be
distinguished in these brain regions not by the amount of activity that they elicit, but instead by
the multivoxel patterns with which they are associated. Study 2 suggests that these brain regions
differentiate groups from individuals, but they leave open the question of whether these brain
regions can discriminate between different groups.

Finally, social categorization of sex and race involves not only face perception, but also
body perception. Men and women differ from each other not only by facial structure, but also by
body shape. Likewise, people from different races differ in their bodily appearance. Study 3
suggests that the visual system contains distinct representations of the sex and race of faces, but
whether it also discriminates bodies by sex and race is unknown. Future research may
investigate this question by examining whether extrastriate body area, a functionally-defined
region of lateral occipitotemporal cortex that processes information about body form (for review,
see Peelen & Downing, 2007), has multivoxel patterns that differentiate bodies by sex and race.
Further work in this area could study how information about the sex and race of faces and bodies
is integrated into a coherent representation of the social category to which a person belongs.

Together, the three studies that comprise this dissertation aim to increase our
understanding of the functional neuroanatomy that underlies the human capacity to think about

social groups. Given the importance of groups to our everyday life as social animals, the
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burgeoning interest of cognitive neuroscientists in the neural basis of intergroup cognition

promises to become an important program of research in the study of the neural basis of human

psychology.
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