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Enhancing Myoblast Fusion for Therapy of Muscular Dystrophies 

Abstract 

 

Skeletal muscle is a major organ comprising 30-40% of the human body mass. The 

coordination of processes resulting in mature muscle requires many genes, and their loss 

can result in debilitating muscle disorders. Of the strategies being developed to cure 

muscle diseases, enhancement of the natural process of muscle cell fusion in existing or 

introduced myogenic cells has great therapeutic potential. In this work, we determined 

whether a drug that stimulates proliferation and fusion of myoblasts could alleviate murine 

Duchenne muscular dystrophy. We also studied the necessity of a gene that is upregulated 

in early fusing human myoblast cultures and its role in muscle disease development. 

Carbamylated erythropoietin (C-EPO) is an analog of erythropoietin, which 

promotes myoblast proliferation and inhibits fibrosis. We treated mdx mice with 

intraperitoneal injections of C-EPO for 4 and 12 weeks, and monitored weight, serum 

creatine kinase levels, and changes in muscle histology. We observed moderate histological 

improvement at 4 weeks that did not translate into a clinically significant improvement at 

12 weeks. At the dosages tested, C-EPO was not an effective long-term therapeutic for the 

treatment of a Duchenne muscular dystrophy. 

We also studied the role of GPR56 in muscle. Loss of GPR56 causes bilateral 

frontoparietal polymicrogyria, which shares the brain phenotype of dystroglycanopathies 

but not the severe muscle defects. We found that GPR56 is transiently upregulated in 
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differentiating myocytes and nascent myotubes. In muscle cultures, its loss results in 

decreased myoblast fusion and smaller myotubes. During in vivo muscle regeneration, the 

expression of myogenic regulators is delayed in GPR56 knockout mice; however, there are 

no gross morphological changes. These mild defects likely result from decreased signaling 

from GPR56 to SRE and NFAT-directed pathways for myoblast differentiation. Therefore, 

GPR56 promotes myoblast differentiation and fusion through activation of SRE and NFAT 

signaling pathways, but its loss in muscle in vivo is compensated for by other 

complementary factors. 

In summary, these studies add to the existing literature on the role of a specific gene 

in muscle cell fusion and disease development, and of a specific drug in augmenting 

myoblast fusion in the context of muscle disease.  
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Descriptions of skeletal muscle disorders first entered the Western research literature in 

the 1830s.1,2 The patients described suffered from wasted muscles and progressive muscle 

debility. Since then, different diseases of the muscle have been defined both clinically and 

genetically.rev in 3–5 In many of them, debilitating muscle failure eventually results in 

premature death. The fields of research have made enormous advances in understanding 

the pathology and causes of these muscle diseases; yet, cures for these diseases still elude 

us. Our work concerns understanding muscle cell fusion to aid in the development of 

autologous and heterologous cell-based therapies for these diseases. 

 

Skeletal Muscle 

Skeletal Muscle Development 

Skeletal muscle is a major organ of the human body, comprising around 30 – 40% of 

its mass. Its function is to allow the human body to move. Several processes must be 

coordinated for mature, functioning muscle to develop from undifferentiated cells.  During 

muscle development, muscle progenitor cells originating from the somites migrate out into 

the limb bud,6 where they proliferate and undergo commitment towards myogenic 

differentiation. Following precursor cell migration into the limb bud, the development of 

muscle myofibers occurs in two waves.7–9 In the first wave of myogenesis, called primary 

myogenesis, the myoblasts differentiate and fuse into multinucleated primary myofibers. A 

second wave of myogenesis then occurs when more myofibers develop around the initial 

primary myofibers. Further hypertrophic growth of these myofibers leads to mature 

skeletal muscle formation. 
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Several discrete steps are required for the formation of myofibers.  After myogenic 

precursor cell specification in the limb bud, myoblasts must acquire fusion competence and 

undergo cell-cell recognition, cell adhesion and alignment, and finally, membrane fusion.10–

13 After the initial fusion of myoblast to myoblast, other factors regulate the process of 

myoblast-myotube and myotube-myotube fusion.rev in 14  

These steps of myogenic specification in the somite through myoblast fusion into 

myofibers are regulated by the coordination of many factors. Of these, a special group of 

“master” transcription factors of the basic helix-loop-helix (bHLH) family direct these 

processes in a sequential manner.rev in 15 Precursor cells in the somites are specified to the 

myogenic lineage through the expression of the bHLH factor, myogenic factor 5 (Myf5).16 

Another master transcription factor, myogenic differentiation 1 (MyoD), is expressed 

shortly after and also specifies myogenic precursor cells.17 Although expressed in different 

cells,17,18 Myf5 and MyoD can compensate for each other’s loss.19,20 After migration to the 

limb buds and exit from the cell cycle, the expression of myogenin induces myoblasts to 

differentiate.21 Myogenin promotes the expression of factors that lead to adherence and 

fusion, resulting in the formation of multinucleated myofibers. 

Some of the cell-surface effectors of muscle cell differentiation and fusion have also 

been identified. Cell-cell adhesion molecules such as NCAM, N-cadherin, M-cadherin, 

ADAM12, and VCAM-1/VLA-4 are involved in cell-cell adhesion of muscle cells.rev in 22 Other 

proteins have also been implicated as important for fusion, but their specific roles remain 

unclear. These proteins include the transmembrane proteins CD81 and CD9.23 Part of the 

difficulty in identifying cell surface proteins and their roles is that many of them act 

cooperatively and in parallel, thus complementing each other’s function.24 A complete 
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understanding of the molecular regulation of muscle development awaits further 

characterization of these molecules and the identification of other unknown factors that 

are involved. 

 

Skeletal Muscle Structure 

The final product of muscle development is a mature skeletal muscle consisting of 

many bundles of multinucleated myofibers (Figure 1.1A). The myofiber contains many 

specialized organelles that are important for muscle function. The cytoplasm of the 

myofiber, called the sarcoplasm, is densely packed with regularly aligned sarcomeres that 

form the functional contractile units for the muscle (Figure 1.1B). A modified endoplasmic 

reticulum, the sarcoplasmic reticulum, serves as a storage location for calcium ions.25,26 

These ions serve as important mediators of signaling for many calcium-sensitive proteins 

in the muscle, notably those within the sarcomere.27, rev in 28 The transverse (T)-tubules 

connect the sarcolemma to the sarcoplasmic reticulum for transference of action potential 

signals.29,30 The T-tubule system together with the sarcoplasmic reticulum form the 

excitation-contraction coupling unit that transforms the nerve cell stimuli into mechanical 

contractions (Figure 1.1B).25 

The muscle fiber is sheathed by a specialized plasma membrane called the 

sarcolemma, which in addition to the lipid bilayer also contains an extracellular layer of 

polysaccharides such as collagen.  Outside of the sarcolemma is a layer of extracellular 

matrix, or basement membrane, composed of an inner basal lamina and outer fibrillar 

reticular lamina.31,32  
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Figure 1.1.  Mouse skeletal muscle structure 

A. H&E staining of gastrocnemius muscle shows cross-sectional area, with tightly packed 

myofibers. Hematoxylin staining (blue) shows peripherally located nuclei. Eosin staining 

(pink) stains sarcoplasm. Scale bar, 50 µm. Methods for muscle preparation and slide 

staining are detailed in the Chapter 2 Methods section. B. Electron microscopy image of 

soleus muscle shows dense sarcoplasm with aligned sarcomeres (SAR), mitochondria (m), 

sarcoplasmic reticulum (SR), and T-tubule system (TT). Scale bar, 500 nm. Methods for 

muscle preparation and electron microscope are detailed in the Appendix 1 Methods 

section. 
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Figure 1.1 (Continued) 
 
 
 



7 
 

Besides the multinucleated myofibers, skeletal muscle also contains many 

mononuclear cells. The “satellite” stem cells are the major stem cells of the muscle, located 

at the periphery of the muscle fibers between the outer side of the sarcolemma and the 

basal lamina.33 Muscle is constantly taxed by myofiber contraction, but it has an inherent 

capacity for repair through the activation of these satellite stem cells to proliferate and fuse 

into damaged myofibers.34,35 In addition to satellite cells, the muscle contains several other 

mononuclear cell populations. These include cells that have demonstrated some ability to 

contribute to muscle cell regeneration, such as myoendothelial cells,36 muscle side 

population (SP) cells,37–41 CD133+ cells,42 and endothelial-cell associated pericytes.43 The 

exact locations within the muscle of some of these cells remain unknown, but the 

myoendothelial and SP cells have been shown to be located in the interstitium36,44 and the 

pericytes associated with blood vessels in the muscle.43 Additionally, the interstitial spaces 

of muscle include other non-myogenic cells such as fibroblasts, hematopoietic cells, 

endothelial cells, and adipogenic precursor cells.45,46 

 
 
 
Genetic Disorders of Skeletal Muscle 

In the cases of many genetically inherited muscle diseases, mutations in genes 

involved in the development or function of mature muscle render them non-functional and 

thus result in muscle disorders. The majority of genetic muscle disorders can be broadly 

categorized into two types: congenital myopathies and dystrophies. Congenital myopathies 

are characterized by having different degrees of muscle weakness and hypotonia along 

with certain distinct morphological changes in the muscle myofiber.5 In patients, the 

congenital muscle weakness can be mild with a few muscles impaired at birth,47 or severe 
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enough to have their muscle tone and body described as “floppy.”48 Typically the weakness 

is non-progressive.49 The morphological changes that characterize and have been used to 

classify the myopathies include protein accumulation, the presence of cores, central nuclei, 

fiber size variation, and the presence of vacuoles.5 Distinguishing one myopathy from 

another based on these manifestations alone has been difficult;49 the development of 

animal models and the association of specific genes with different myopathies has made 

understanding and classification of their different pathologies easier.3 An emerging theme 

in the congenital myopathies is that they result from problems in excitation-contraction 

coupling and the functional units that contribute to it.3 

The other major group of muscle diseases is the dystrophies. These diseases are 

characterized by degeneration or necrosis of the muscle fibers accompanied by some 

regeneration. The inability to fully regenerate the muscle fibers often results in the 

replacement of muscle by fibrotic and fat tissue.50 These problems are often compounded 

by an influx of inflammatory cells into the muscle. As with the myopathies, a major 

symptom of the dystrophies is skeletal muscle weakness; in the case of the dystrophies, the 

weakness is often progressive. Clinically, the muscle weakness can lead to loss of skeletal 

muscle action; the failure of the diaphragm to power respiration is one cause of premature 

death.51 Traditionally, the various muscular dystrophies were grouped on the basis of their 

clinical phenotypes such as the time of onset, the muscles affected, and the mode of 

inheritance.50 Over the past two decades, however, over 30 causative genes for the 

muscular dystrophies have been identified; it has been proposed to re-classify the diseases 

based not only on the clinical data but also on the shared defects in biochemistry and 

genetics.50,52,53 Five classes of proteins have been proposed to categorize these diseases: 
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sarcolemma and extracellular matrix proteins, glycosylation enzymes of α-dystroglycan, 

endoplasmic reticulum proteins, nuclear envelope proteins, and mitochondrial 

proteins.50,52,53 Etiologically, the loss of these proteins often results in structural instability 

in the sarcolemma of the myofiber or its connection to the extracellular matrix. This 

instability in turn leads to the inability of the fibers to withstand normal muscle 

contraction, leading to their degeneration. 

Our studies of myoblast fusion were framed in the context of two types of muscular 

dystrophies: Duchenne muscular dystrophy (DMD) and the dystroglycanopathies. These 

diseases are caused by mutations in genes that encode proteins whose functions affect the 

dystrophin-associated protein complex (DAPC, Figure 1.2). The DAPC, also known as the 

dystrophin-glycoprotein complex (DGC), spans the sarcolemma to link the extracellular 

matrix to actin inside the sarcoplasm.54–56 It serves to stabilize the membrane during 

muscle contraction.54,56 Protein members of the DAPC include dystrophin, the 

glycoproteins α/β-dystroglycan and the sarcoglycans, and other proteins such as 

sarcospan, syntrophin, and dystrobrevin.56–64  These proteins can be subdivided by 

localization to three complexes: the extracellular/sarcolemmal dystroglycan complex, the 

sarcolemmal sarcoglycan complex, and the sarcoplasmic dystrophin-containing complex.65 

Given the structural and signaling importance of the DAPC, it is perhaps not surprising that 

mutations in the different members of the DAPC have been shown to be the primary cause 

of many different dystrophies.4,50,65  

The first breakthrough in identifying a genetic cause of these dystrophies came 

through the efforts of the research groups of Louis Kunkel and Ron Worton in the late  
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Figure 1.2 

Figure 1.2. Schematic diagram of major components of the dystrophin-associated 

glycoprotein complex 

Mutations in the indicated components result in muscular dystrophies (outlined). Note that 

mutations in enzymes that affect α-dystroglycan result in the diseases indicated for α-

dystroglycan. 

 

1980s. They identified the DMD causative gene, dystrophin, and characterized the 

consequences of its absence in the skeletal muscle of patients with DMD.66–71 These 

patients have progressive muscle weakness in their limb muscles.1,72 The instability in the 

muscle sarcolemma that results from the loss of dystrophin allows high levels of creatine 

kinase to leak into the bloodstream; the extremely high serum creatine kinase levels that 

result are used as diagnostic criteria for DMD.72–74 Muscle biopsies show muscle fiber 

degeneration that is removed by an influx of inflammatory cells and replaced by adipose 
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and fibrotic tissue, often resulting in a phenotype of calf pseudohypertrophy.72,75 Although 

there is some regeneration, at later stages of the disease the capacity of the endogenous 

muscle stem cells to replicate and repair the damaged muscle tissue is lost.76 Ultimately, 

patients with DMD live a shortened life span due to cardiac or respiratory failure.77 

Improvements over the past few decades in patient care have extended life span such that 

the majority of patients live through their twenties.77  

In the years following, other members of the DAPC were quickly found to be 

associated with other muscular dystrophies. Several groups found that dystrophin was part 

of a complex that included glycoproteins, some of which were identified as the α-, β-,γ-, and 

δ-sarcoglycans.55,57–60,78  Together they form a subunit of the DAPC that spans the 

sarcolemma. It was discovered that mutations in any of these sarcoglycans lead to the 

development of muscular dystrophies such as severe childhood autosomal recessive 

muscular dystrophy and the limb-girdle muscular dystrophies (LGMD).79–83, rev in 84,85 In 

these diseases, patients also have elevated serum creatine kinase levels, and the muscular 

dystrophy is progressive.85 They vary in onset from congenital to adult, and also in severity 

of the disease. To differentiate these dystrophies from similar dystrophies caused by 

mutations in other genes, the ones caused by mutations in sarcoglycans have been called 

sarcoglycanopathies.84 

A separate group of muscular dystrophies are caused by mutations affecting the 

extracellular component of the DAPC. α-Dystroglycan links the DAPC to the extracellular 

matrix by binding several extracellular matrix proteins,55,78,86–88 and its glycosylation is 

integral for this binding ability.89–91 The glycosylation of α-dystroglycan is a complex 

process requiring the sequential action of several enzymes.92 Perturbations in the 
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glycosylation of α-dystroglycan result in the dystroglycanopathies.92 Mutations in the genes 

of six glycosylation enzymes, as well as in α-dystroglycan itself, have been found 

responsible for these dystrophies.rev in 92 The clinical manifestations of these mutations are 

Walker-Warburg syndrome, Muscle-Eye-Brain disease, congenital muscular dystrophy 

with or without mental retardation, congenital muscular dystrophy types 1C and 1D, and 

limb girdle muscular dystrophy.93 Patients with these diseases suffer muscle weakness in 

their proximal limbs muscles and increased serum creatine kinase levels.92 Although the 

genes mutated in these diseases all participate in the same biochemical pathway, the extent 

of muscle impairment between these diseases can vary from mild with late onset to severe 

in the congenital muscular dystrophies.93 Interestingly, a majority of the 

dystroglycanopathies are associated with neuronal migration defects94 resulting in a 

particular brain phenotype called cobblestone malformation.95 These associated central 

nervous system defects demonstrate a role for α-dystroglycan and the DAPC in mediating 

cell-extracellular matrix interactions in the brain. It also suggests that patients diagnosed 

with these brain abnormalities may also exhibit defects in skeletal muscle, due to the 

mutation of proteins that have a primary role in both tissues. 

 

Therapies for Duchenne Muscular Dystrophy 

 Although Duchenne muscular dystrophy has been studied for nearly two centuries, 

efforts to find a viable therapy are still ongoing. One of the earliest therapies, the 

administration of corticosteroids, began in the 1970s with a study of prednisone as a 

palliative treatment.96 To date, corticosteroids remain one of the most effective evidence-

based treatments for DMD.97 Although they slow the disease progression and extend 
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muscle function,98–102 the use of corticosteroids only delays the effects of the disease for a 

few years. Efforts by a number of groups are being made to develop better palliative 

therapies and cures;97,103–107 these approaches include therapies that address outcomes of 

dystrophin loss as well as gene and cell-based therapies that aim to replace dystrophin. 

Many drugs and protein biologics are used as alleviatory therapies that address the 

symptoms of Duchenne muscle dystrophy. One class of drugs, the phosphodiesterase (PDE) 

inhibitors, has shown efficacy in preclinical trials of zebrafish108 and mice109,110 and are 

being tested in clinical trials.97 These inhibitors combat the loss of nitric oxide signaling 

seen in DMD patients by preventing the inactivation of a cofactor of nitric oxide, cyclic 

guanosine monophosphate,111 and promote neo-vascularization in the ischemic dystrophic 

model.108,110,111 In preclinical trials, these drugs have been shown to restore muscle 

morphology as well as lower serum creatine kinase levels, indicating a repair of the 

sarcolemmal membrane.108,110,111 Other proposed therapies that have shown efficacy in 

mouse models are biologics that alter the extracellular matrix. Laminin-111 that is 

systemically administered to the mdx mouse model of Duchenne muscular dystrophy has 

been shown to stabilize the sarcolemma through the promotion of α7-integrin 

expression.112 A fibrinogen-blocking peptide was used by another group to reduce 

deposition of fibrin and the associated inflammation.113 A third family of drugs promotes 

muscle fiber growth by activating the activin IIB receptor that regulates myofiber size, or 

by inhibiting its antagonist, myostatin.114 The myofiber hypertrophy results in clear 

improvements in histology and serum creatine kinase levels  in mice115–117 and dogs;118 yet, 

clinical trials using this strategy for various dystrophies have so far been unsuccessful.119 
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More targeted therapies that modify RNA or DNA have been developed in the last 

decade. The dystrophin gene is one of the largest genes in the human genome, comprising 

79 exons. Frameshift mutations in dystrophin lead to loss of the protein and cause DMD. 

Some mutations in dystrophin, however, lead to in-frame splicing that results in shortened 

dystrophin transcripts being translated.120–123 Patients with these mutations have a much 

milder form of dystrophy, Becker’s muscular dystrophy.120 Many therapies are taking 

advantage of this finding by using different agents to alternatively splice out the mutation-

containing exons to produce a truncated protein product in Duchenne patients. These 

agents are targeted antisense oligonucleotide molecules.124–126 Proof-of-principle 

experiments have been successful, and a host of different chemistries that hope to 

overcome the delivery barrier are being tested.127 Current clinical trials are testing two 

forms of antisense oligomers – phosphorodiamidate morpholino oligomers126 and 2’O-

methylphosphorothioate-modified oligoribonucleotides.127–129 Another type of mutation 

that some DMD patients have are nonsense mutations resulting in premature stop 

codons.120–123 Aminoglycosides that promote the read-through of mRNA transcripts by 

suppressing stop codons have shown some promise in mice and human patients with these 

mutations in dystrophin.130–132 A synthetic drug, ataluren, that induces the read-through of 

only premature, and not native, stop codons was also tested in clinical trials and showed a 

promising outcome.133  

One drawback of the previously described approaches to therapy is they do not fully 

replace the lost dystrophin gene product, or in the case of stop codon read-through 

therapies, can only do so for a minority of patients. Gene-therapy approaches to Duchenne 

have overcome the technical difficulties of immune system reactions that all gene-therapy 
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approaches faced in the past, as well as the problem that the full-length dystrophin 

transcript does not fit into viral vectors. The current solution undergoing trial is to use a 

shortened form of dystrophin (minidystrophin) that contains the functional N-terminal and 

C-terminal domains  in an adeno-associated viral vector.134 

One approach likely to be able to replace the full dystrophin gene is cell-based 

therapy. In the early 1990s, several groups used these isolated myoblasts for human 

therapy,135–140 but despite evidence of dystrophin transcripts being made in recipient 

muscle after transplantation, the overall efficiency was too low to be clinically significant. 

Later analyses showed that the therapy was ineffective partially due to engrafted cells 

dying shortly after transplantation or not fusing with the muscle.141–143 The collective 

experience of these attempts highlighted the caveats associated with the need to expand 

myogenic cells in vitro to obtain enough cells for clinical therapy, as well as the issues 

surrounding efficacious delivery.144 Subsequent studies using isolated satellite cells 

showed that these cells did have a great capacity to engraft and fuse into skeletal muscle, 

but the in vitro culture of these cells needs to be optimized to maintain their 

myogenicity.145,146 Since then, efforts to improve the purification of satellite cells to find the 

most engraftable population have been underway. The marker-based prospective isolation 

of satellite cells has demonstrated that they are a heterogenous population, and subsets 

with greater potential for myoblast engraftment exist.147 However, donor cell expansion in 

vitro,148–150 efficient delivery of cells to all muscles,151,152 and improving cell survivability 

after injection150,153–156 still remain issues to be solved. Advances in induced pluripotent 

stem cell technology in conjunction with gene therapy correction have the promise of 

providing an easily expandable source of stem cells for autologous cell replacement, which 
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would sidestep immune rejection.157–161 Nevertheless, the prospect of cell-based therapy as 

a cure is still some years away. In the meantime, the development of other therapeutics is 

necessary for treating the current Duchenne muscular dystrophy patients. 

 

Hypothesis and Overview of Dissertation 

As noted earlier, the enhancement of muscle cell fusion can be used as a strategy to 

either activate endogenous cells to repair damaged muscle or to improve the efficacy of 

heterologous donor cell fusion following transplantation. The development of translational 

approaches to increase muscle cell fusion can be achieved through the testing of drugs and 

the identification of key proteins that promote myoblast cell fusion. To better understand 

the process of muscle cell fusion for clinical use, this work includes studies exploring both 

of these strategies. 

 In the first approach, I examined the utility of a drug that would promote the 

proliferation and fusion of endogenous satellite cells in the context of a mouse model of 

Duchenne muscular dystrophy. If the use of this drug resulted in significant changes in 

muscle function, then it would serve as a pre-clinical candidate for the ameliorative therapy 

of Duchenne muscular dystrophy patients. In addition, it could be tested for use in 

increasing the efficacy of fusion of transplanted cells. The use of the hormone 

erythropoietin, which has shown the ability to stimulate the proliferation of satellite 

cells162 and growth of muscle fibers,163 had been proposed as a therapeutic drug for 

muscular dystrophy.164 It had also showed the ability to limit the development of fibrosis in 

many injury models.165 Synthetic analogs of erythropoietin were created that endeavored 

to preferentially activate erythropoietin signaling independent of the erythropoietin 
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receptor,165 thus avoiding overstimulation of hematopoiesis.165 In Chapter 2, I detail our 

work on testing the ability of one of these analogs, carbamylated erythropoietin, to 

alleviate the signs of muscular dystrophy in the mdx mouse. 

Our second approach was to characterize a potential cell-surface candidate gene 

that is important for muscle cell fusion and could promote the fusion of myogenic cells 

following transplantation. Our laboratory identified G-protein coupled receptor 56 

(GPR56) as one of the cell-surface receptors upregulated during the in vitro differentiation 

of human myoblasts.166 At the same time, mutations in the G-protein coupled receptor 56 

(GPR56) were found to cause the disease bilateral frontoparietal polymicrogyria (BFPP),167 

which shares the brain phenotype seen in the dystroglycanopathies.95,168 Whether loss of 

GPR56 affects the muscle in this disease, however, remains unclear. As such, establishing 

its role in muscle cell differentiation and fusion would be important for both understanding 

these processes as well as for understanding the relationship between the muscle 

pathology of BFPP and the dystroglycanopathies. I studied the muscle phenotype and 

fusion competence of myoblasts from GPR56 knockout mice. These studies were followed 

with the delineation of how GPR56 signaling promoted myoblast differentiation, and the 

findings were related to the clinical findings of muscle phenotypes in BFPP patients. 

Chapter 3 describes these studies. Peripheral findings of tubular aggregates in GPR56 

knockout mouse muscle are also detailed in Appendix 1. 

In Chapter 4, I discuss the overall impact of these findings and future directions for 

this work. 
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Carbamylated erythropoietin does not alleviate signs of dystrophy in mdx mice 
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Abstract 

INTRODUCTION: Erythropoietin promotes myoblast proliferation and inhibits fibrosis, 

thus it could impede the pathogenesis of muscle degenerative diseases. However, its 

stimulation of erythropoiesis limits its use as a therapeutic. An erythropoietin analog, 

carbamylated erythropoietin (C-EPO), retains these protective actions yet does not interact 

with the erythropoietin receptor. METHODS: To determine whether treatment with C-EPO 

alleviates the signs of muscular dystrophy in an animal model of Duchenne muscular 

dystrophy, we treated mdx mice with intraperitoneal injections of 50 µg/kg and 100 µg/kg 

C-EPO for 4 and 12 weeks, and we monitored weight, serum creatine kinase levels, and 

changes in muscle histology. RESULTS: We observed moderate histological improvement at 

4 weeks which did not translate into a significantly decreased level of serum creatine 

kinase. DISCUSSION: At the dosages tested, C-EPO is not an effective therapeutic for the 

treatment of a mouse model of Duchenne muscular dystrophy. 

 

Introduction 

 Muscular dystrophies are a group of diseases characterized by muscle weakness and 

wasting. One of the most common forms of muscular dystrophies is Duchenne muscular 

dystrophy (DMD), a disease caused by mutations in the dystrophin gene.1 This disease is 

often modeled using mdx mice,2 which carry a point mutation in the dystrophin gene that 

results in premature termination of the protein product.3-6 By three weeks of age, mdx mice 

exhibit DMD-like histological changes in limb muscles, including variation in myofiber size, 

an increase in inflammatory cells, and regenerating myofibers which can be distinguished 

by the presence of centrally located nuclei.7-10 The histological changes in the diaphragm 
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muscle of mdx mice at three weeks of age are similar to those of the limb muscles, but there 

is progressive muscle degeneration after this age that is accompanied by greater 

connective tissue infiltration. Functionally, the diaphragm muscle in mdx mice becomes the 

most severely affected,9,10 and it parallels the degeneration observed in the human 

disease.11 In both mdx mice and humans with DMD, reduced muscle membrane integrity 

leads to leakage of muscle proteins, usually measured as creatine kinase (CK), into the 

bloodstream. Measurement of serum CK levels is an accepted test for supporting a 

diagnosis of DMD.12-15 

 Thus far, no effective specific therapy is available for DMD. Many types of 

interventions are undergoing testing in both animal studies and human clinical trials, and 

these include approaches aimed at slowing the disease progression via correction of 

dystrophin expression in the myofibers,16-20 or by alteration of activity of pathways known 

to promote myofiber growth or inhibit myofiber loss and fibrosis.21,22  

 In the hematopoietic system, the cytokine erythropoietin (EPO) prevents apoptosis 

of late erythroid progenitors, and it also supports the proliferation of progenitor cells by 

signaling through the EPO receptor. EPO can act through other receptors, such as the GM-

CSF and IL-3 receptors.23,24 Several studies have highlighted EPO’s protective biological 

effects in organs other than the hematopoietic system,25 and it is hypothesized that these 

effects occur through EPO binding to the common beta receptor, a subunit of GM-CSF, IL3 

and IL5 receptors.26 In particular, EPO has shown an anti-apoptotic effect in both the heart 

and the central nervous system following ischemic- or trauma-induced injury.26,27 

 EPO has several effects that could aid in repair of skeletal muscle injury and 

prevention of fibrosis. In vitro, EPO promotes proliferation of C2C12 and primary mouse 
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myoblasts, suggesting that it can stimulate the progenitor cell population during muscle 

repair.28 In vivo, EPO administration for treatment of chronic renal failure increased 

muscle fiber diameter.29 It promoted angiogenesis30 and increased capillary density in the 

muscle of a mouse injury model of sepsis.31 

 One side effect of therapeutic EPO administration is a potentially harmful rise in 

hemoglobin concentration.32,33 Overexpression of EPO in mice causes excessive 

erythrocytosis that leads to multiple organ degeneration, including skeletal muscle 

degeneration.34 To avoid the hematopoietic effects of EPO and target its other protective 

biological effects, EPO analogs have been developed, such as carbamylated EPO (C-EPO). 

These analogs do not bind to the EPO receptor and lack erythropoietic activity.35 Proof-of-

principle experiments demonstrated that they retain anti-apoptotic, neuroprotective and 

regenerative activity in tissues other than the hematopoietic system by binding to the 

common �-receptor.26 C-EPO has been effective in preventing tissue degeneration in a 

number of disease models, including protecting against motor neuron death in a mouse 

model of amyotrophic lateral sclerosis.36 C-EPO also reduces the inflammatory response in 

cortical37 and cerebral infarcts,35 as well as in experimental autoimmune 

encephalomyelitis,38 and it has been indicated to reduce fibrosis in renal damage caused by 

ureteral obstruction.39  

 In a proof-of-principle experiment for the treatment of DMD, we tested whether 

administration of C-EPO to mdx mice could ameliorate dystrophic signs in muscle. mdx 

mice were injected intraperitoneally 3 times/week with 50 µg/kg or 100 µg/kg C-EPO for 4 

and 12 weeks. Following treatment, serum CK levels were assessed, and histological 

evaluations of myofiber size, percentage of regenerating myofibers and presence of fibrotic 
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tissue were performed in the diaphragm, gastrocnemius, tibialis anterior and quadriceps 

muscles of treated and control mdx mice. Our studies demonstrated that, although 

moderate histological improvement was observed 4 weeks following C-EPO treatment in 

some muscles, lowered serum creatine kinase levels did not accompany these changes. 

 

Materials and Methods 

 

Animals 

C57BL/10ScSn-Mdx/J mice (mdx) were purchased from the Jackson Laboratory (Bar 

Harbor, ME). The mice werea cohort of 5-8 week old females that were homozygous for the 

mdx mutation (a nonsense mutation in exon 23 of the dystrophin gene).4 Doses of 0 µg/kg 

(control), 50 µg/kg or 100 µg/kg weight of carbamylated-erythropoietin (C-EPO) in 0.2% 

bovine serum albumin in phosphate-buffered saline were administered 3 times weekly via 

intraperitoneal (IP) injection, for 4 or 12 weeks. C-EPO was provided by Shire Human 

Genetic Therapies. Previous studies found beneficial effects at these dosages in the central 

and peripheral nervous systems and in the myocardium.35,38,40,41 The total volume of each 

IP injection did not exceed 100 µL. Animals were weighed once a week for the duration of 

the study. Prior to euthanasia, blood was collected from the tail vein to measure serum CK. 

Animals were euthanized via CO2 asphyxiation, and the diaphragm, gastrocnemius, 

quadriceps, and tibialis anterior muscles were collected from each animal and snap frozen 

in Optimal Cutting Temperature (OCT) for histological analysis. Animal groups consisted of 

5-7 mice. All animals were handled in accordance with protocols approved by the 

Institutional Animal Care and Use Committee at Boston Children’s Hospital. 
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Histological analyses of muscle tissue sections 

For each muscle collected, 10 µm thick tissue sections were stained with 

hematoxylin and eosin. Measurements were made from 3 to 4 representative fields per 

muscle. Individual myofiber size was determined by measuring the shortest diameter of 

the fiber (n = 200 to 600 myofibers per muscle). Measurement of shortest diameter was 

chosen over measurement of cross-sectional area to reduce the bias in size due to obliquely 

cut fibers. To determine the fraction of regenerating muscle fibers, the number of 

myofibers with centrally located nuclei was counted and divided by the total number of 

myofibers in a field (n = 50 to 200 per field, n = 150 to 600 per muscle). The presence of 

fibrotic tissue was assessed by determining the area of extracellular spacing between 

muscle fibers using the NIH ImageJ software and dividing it by the total area of the muscle 

tissue within each section. The use of interstitial area as a measure for fibrotic area was 

validated by staining some sections for the intermediate filament protein, vimentin. The 

area of extracellular spacing between fibers calculated from H&E-stained tissue 

corresponded to the area expressing vimentin (data not shown). 

 

Evaluation of CK levels in serum 

One day prior to euthanasia, 200 µL of blood was collected via tail vein nick into BD 

Microtainer serum separator tubes from at least 5 mice per group. Blood was allowed to 

coagulate for 1 hour at room temperature and then centrifuged. Five to 25 µL of plasma 

serum were used in the Stanbio CK-NAC (UV-Rate) CK test to determine serum CK levels. 

For each blood sample, two measurements were taken and averaged. 
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Statistics 

Data are presented as mean values; error bars denote standard error of measurement. For 

all tests, one-way ANOVA with alpha = 0.05 was calculated using the ANOVA: Single Factor 

analysis tool in Excel. If significance was found (p < 0.05), pair wise comparisons were 

made using Student’s t-test. The resulting t-test p-value is reported.  

 

Results 

 To test the effectiveness of C-EPO in reducing the signs of muscular dystrophy, 5-8 

week old mdx female mice were injected IP with vehicle only, 50 µg/kg, or 100 µg/kg C-

EPO. Throughout the study, the weight of the animals was monitored to determine whether 

treatment promoted muscle growth and concurrent gains in muscle weight. Administration 

of C-EPO did not significantly change the weight of the animals compared to vehicle-only 

controls (Figure 2.1). Due to the sacrifice of some of the mice for the 4 week time point, the 

relative weights between treatment groups at 5 weeks changed. Outside of this imbalance, 

the weights of treated mice did not change significantly over time compared to control 

mice. 

 After 4 weeks, H&E-stained muscle sections were examined for improvements in 

muscle histology (Figure 2.2, A-F). The percentage of regenerating fibers and percent area 

of fibrosis were measured in the diaphragm, gastrocnemius, quadriceps, and tibialis 

anterior muscles of each animal. The myofiber diameter was measured in the diaphragm 

only. The percentage of myofibers with centrally located nuclei was significantly higher in 

the diaphragm of both the 50 µg/kg and 100 µg/kg treatment groups, as compared to the  
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Figure 2.1 

Figure 2.1. Gross weight of female mdx mice treated with C-EPO  

Black squares: 0 µg/kg. Gray squares: 50 µg/kg. White squares: 100 µg/kg C-EPO. 

control group (48%, 43%, and 34%, respectively; p < 0.05; Fig 2.2G). The average diameter 

size of the myofibers in the diaphragm was not changed in the 50 µg/kg group compared to 

control, while in the 100 µg/kg group it was decreased (p<0.05; Fig 2.2H). The distribution 

of myofiber diameters in the diaphragm demonstrates that the smaller average size is due 

to an overall shift towards all myofibers being smaller (Figure 2.2I). In the gastrocnemius 

muscle, the percentage of centrally located nuclei was also slightly increased with 

administration of 50 µg/kg C-EPO (80% vs 65%, p = 0.039; Figure 2.2G). However, no 

differences were seen in the tibialis anterior or quadriceps muscles. Evaluation of the 

percent area of interstitial connective tissue in the diaphragms showed a statistically 

significant increase in the group administered 100 µg/kg C-EPO (p = 0.007; Figure 2.2J). 

However, no changes were found in any other muscles analyzed.  
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Figure 2.2. Muscle histology of mdx mice treated with C-EPO for 4 weeks 

A-C: H&E stained diaphragm, scale bar = 50 µm. D-F: H&E stained gastrocnemius, scale bar 

= 100 µm. A, D: 0 µg/kg treatment. B, E: 50 µg/kg treatment. C, F: 100 µg/kg treatment. G: 

Percentage of centrally located nuclei in the diaphragm (Dia), tibialis anterior (TA), 

quadriceps (Quad), and gastrocnemius (GA) muscles. H: Average myofiber diameter in the 

diaphragm. I: Distribution of fiber diameters in the diaphragm. J. Percentage of interstitial 

area in digraph, tibialis anterior, quadriceps, and gastrocnemius muscles. G-J: Black 

squares: 0 µg/kg. Gray squares: 50 µg/kg. White squares: 100 µg/kg C-EOP. ‘*’ denotes 

statistically significant difference versus control (p<0.05). 
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Figure 2.2 (Continued) 
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 After 12 weeks of treatment, each group underwent similar histological analyses 

(Figure 2.3). Unlike what was seen at 4 weeks, there was no significant difference in the 

percentages of regenerating myofibers in treated versus vehicle-treated mice (Figure 2.3G). 

There was also no significant difference in the average myofiber diameter (Figure 2.3H) or 

in the distribution of myofiber diameters (Figure 2.3I). An apparent increase in area of the 

interstitial tissue was observed in the diaphragms of treated mice compared to untreated 

mice, although this difference was not statistically significant (Figure 2.3J). 

 Previous studies using mdx mice have shown that a growth in the number of 

regenerating fibers can be accompanied by a gain in muscle function and a decrease in the 

levels of serum CK.42 To test whether C-EPO administration led to such changes, serum CK 

levels were assayed (Figure 2.4). At neither 4 nor 12 weeks was there a significant decrease 

in the levels of serum CK in C-EPO-treated compared to untreated mdx animals. 

 

Discussion 

 Because of its known neuroprotective effects, as well as indications from several 

studies that erythropoietin had a stimulatory effect on processes that could promote 

muscle regeneration and repair, it was proposed that erythropoietin could be a useful 

therapeutic for muscular disorders.43 To harness the neuroprotective effects of EPO, 

nonhematopoietic derivatives were created, including C-EPO.35 C-EPO has shown 

effectiveness in preventing damage in numerous injury models, including experimental 

myocardial infarction,41 and brain and spinal cord injuries.44 In the myocardium after 

ischemia, C-EPO stimulates PI3-kinase and Akt ,45 genes that are also involved in skeletal 

muscle growth.46,47 
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Figure 2.3. Muscle histology of mdx mice treated with C-EPO for 12 weeks  

A-C: H&E stained diaphragm, scale bar = 50 µm. D-F: H&E stained gastrocnemius, scale bar 

= 100 µm. A, D: 0 µg/kg treatment. B, E: 50 µg/kg treatment. C, F: 100 µg/kg treatment. G: 

Percentage of centrally located nuclei in the diaphragm (Dia), tibialis anterior (TA), 

quadriceps (Quad), and gastrocnemius (GA) muscles. H: Average myofiber diameter in the 

diaphragm. I: Distribution of fiber diameters in the diaphragm. J. Percentage of interstitial 

area in digraph, tibialis anterior, quadriceps, and gastrocnemius muscles. G-J: Black 

squares: 0 µg/kg. Gray squares: 50 µg/kg. White squares: 100 µg/kg C-EOP. ‘*’ denotes 

statistically significant difference versus control (p<0.05). 
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Figure 2.3 (Continued) 
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Figure 2.4 

Figure 2.4. Serum creatine kinase activity in mdx mice treated with C-EPO for 4 and 12 

weeks 

Serum creatine kinase levels significantly increased in the 50 µg/kg-treated group at 4 

weeks (p=0.02) but returned to levels in untreated mice by 12 weeks. ‘*’ denotes a 

statistically significance difference versus control. 

 

 We hypothesized that administration of C-EPO would alleviate the pathology of 

disease in the mdx mouse model of Duchenne muscular dystrophy by promoting progenitor 

cell proliferation in vivo.28 The increased pool of cells would fuse into existing myofibers, 

thus increasing myofiber size, or it would form new (regenerating) myofibers. In addition, 

it was thought that C-EPO could deter the development of fibrosis in muscular dystrophy. 

Two dosages of C-EPO were selected based on studies by others that had demonstrated 

efficacy in central and peripheral nervous system injuries.35,38,40,41 
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 We found that 50 µg/kg of C-EPO stimulated a significant increase in muscle 

regeneration following 4 weeks of administration, however this effect did not persist at 12 

weeks. The observed short-term increase in regenerating myofibers in the diaphragm and 

gastrocnemius muscles was not accompanied by a significant increase in myofiber 

diameter. Surprisingly, the average myofiber diameter of the diaphragm in the 100 µg/kg 

group was decreased. This finding could indicate that, in the presence of C-EPO, activated 

muscle progenitors formed new, small myofibers rather than fusing into and increasing the 

size of existing muscle fibers. However, the distribution of fiber sizes indicates a slight shift 

towards all existing fibers being smaller rather than induction of new small regenerating 

fibers.  

 Overall, C-EPO administration did not significantly reduce the amount of interstitial 

(fibrotic) tissue in the muscles of treated mdx mice compared to controls. Unexpectedly, at 

the highest dosage the amount of fibrosis compared to untreated mice increased 

significantly in the diaphragm muscle 4 weeks following C-EPO treatment. This increase 

compared to untreated mice was not observed in any other muscle analyzed at this time 

point, nor in any of the muscles analyzed from animals that received 12 weeks of C-EPO 

treatment. 

 The serum CK levels at both time points did not decrease in treated versus 

untreated animals. This finding supports the conclusion that despite an increase in the 

number of regenerating myofibers in some of the muscles of the C-EPO-treated mdx mice, 

the overall muscle integrity did not significantly improve. Therefore, we conclude that, 

although C-EPO has been effective in preventing damage in other disease conditions, it did 

not effectively alleviate the pathogenesis of muscular dystrophy in mdx mice. It is unclear 
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as to why C-EPO-treatment did not result in the intended effect. Other studies using either 

erythropoietin or C-EPO for prolonged therapy in mice have noted development of 

anemia.38 In the case of erythropoietin, it has been speculated that anemia might have 

arisen from development of neutralizing antibodies that recognize endogenous proteins.48 

In our study, possible signs of anemia, characterized by whiteness in the paws and a lack of 

blood flow in the tail, were noted at 12 weeks following treatment (data not shown). These 

effects seemed worse with the 100 µg/kg treatment group. It is thus possible that the 

development of anemia might have contributed to the lack of efficacy at 12 weeks. 

 While similar treatment regimens have proven beneficial in decreasing fibrosis and 

improving repair in other injury/disease models, we noted only nominal effects 4 weeks 

following treatment of mdx mice with C-EPO. It remains possible that lower dosages of C-

EPO may result in beneficial effects in mdx skeletal muscle while reducing the chance of 

developing anemia. Future investigations may consider lower dosages to achieve long-term 

improvement in muscle diseases. 
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Chapter 3 
 

Establishing a role for GPR56 in the muscle: 
Investigating the difference in phenotypes between bilateral frontoparietal 

polymicrogyria and the dystroglycanopathies 
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Abstract 

Mammalian muscle cell differentiation is a complex process of multiple steps for 

which many of the factors involved have not yet been defined. In a screen to identify the 

cell-surface regulators of myogenic cell fusion, we found that the G-protein coupled 

receptor 56 (GPR56) was upregulated during the early fusion of human myoblasts and 

downregulated during late differentiation. At the same time, this gene was identified to be 

the causative gene for the disease bilateral frontoparietal polymicrogyria (BFPP). The 

defects in brain development in BFPP are nearly indistinguishable from brain defects in 

patients with the dystroglycanopathy form of muscular dystrophies. Yet, BFPP patients do 

not seem to share the muscle phenotype. Using GPR56 knockout mice, we investigated the 

role of GPR56 in the muscle. We found that GPR56 knockout mice had slight but 

statistically significant increases in serum creatine kinase. GPR56 is transiently 

upregulated in myocytes and nascent myotubes following the induction of MyoD 

expression. Loss of GPR56 resulted in decreased overall myoblast fusion and smaller 

myotube sizes in culture. Decreased signaling through SRE and NFAT signaling pathways 

likely resulted in these phenotypes. Despite delays in the expression of MyoD, myogenin, 

and NFATc2 during regeneration, no overt differences in morphological phenotype were 

seen in the muscle of GPR56 knockout mice compared to wildtype. Because of its transient 

expression and it likely being one of many factors promoting differentiation, 

complementation of its function by other factors results in its loss not being accompanied 

by clinically significant defects in muscle development or function. 
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Introduction 

 The development of muscle from undifferentiated cells is a highly complex, 

multistep process. Genetic defects that result in the loss of any of the proteins involved in 

these processes have the potential to cause muscle disorders such as myopathies or 

dystrophies.1,2 Hence, a clear understanding of the proteins involved in muscle 

development is necessary to understanding how to treat these diseases. Only then can new 

strategies for the treatment of different muscle diseases be unveiled. 

During muscle development, muscle progenitor cells in the somites, migrate out to 

the limb buds and undergo two waves of myogenesis to form mature muscle.3–5, rev in 6 

Several steps in this process of differentiation include progenitor cell proliferation and 

migration, the commitment to differentiation, myoblast-myoblast adhesion, and the fusion 

of cells to form syncytial myofibers.rev in 7 These steps are largely recapitulated during adult 

muscle regeneration in vivo. During muscle regeneration, satellite cells, the adult stem cells 

of skeletal muscle, are activated to proliferate; then they differentiate and fuse to create 

new myofibers or repair damaged myofibers. To study the process of muscle cell 

differentiation, satellite cells can be isolated and cultured in vitro. Isolated satellite cells 

turn into activated myoblasts, which proliferate and can be induced to differentiate and 

fuse upon serum withdrawal.8 

 

Transcription Factor Regulation of Myogenic Differentiation 

Both in vitro and in vivo, the process of differentiation and fusion is enacted through 

the activation of myogenic transcription factors, as well as the extracellular, 

transmembrane, and cytosolic proteins that control the various steps of migration through 
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fusion. Several “master” basic helix-loop helix (bHLH) transcription factors, named for their 

ability to induce myogenicity in non-myogenic cells,9–12 are critical for this regulation.rev in 13 

Myf5, which specifies myogenic cells in the somites,14 supports the proliferation of isolated 

myoblasts in culture, as well as in satellite cells and their progeny during in vivo 

regeneration.15 MyoD is also expressed in proliferating myoblasts and activated satellite 

cells,16 but its upregulation is associated with exit from the cell cycle.17 After exit from the 

cell cycle, the expression of myogenin induces myoblasts to differentiate.18 The marter 

regulator mrf4 is normally expressed after myogenin and maintained in adult muscle,19–21  

Although the master transcription factors are the major directors of muscle 

differentiation, other transcription factors also support the various phases of myogenesis. 

The serum response factor (SRF) has a large role in regulating cell cycle exit and 

commitment to differentiation22–27 by inducing and maintaining MyoD expression.22–24 Like 

MyoD, SRF can activate a sets of genes that either promote a proliferation program or a 

differentiation program.22,26 This switch is controlled by phosphorylation of the SRF.26 In 

either case of proliferation or differentiation, the induction of SRF-directed transcription 

has been tightly tied to the activation of the GTPase RhoA.23,27,28 Later in muscle 

development, SRF signaling pathways are re-used to promote skeletal fiber 

hypertrophy.29,30 

Another important family of transcription factors is the NFAT family, which plays 

multiple roles in the muscle during all stages of development from myogenic determination 

through fiber type specification.31 To date, five family members have been identified: 

NFATc1/NFAT2/NFATc, NFATc2/NFAT1/NFATp, NFATc3/NFAT4/NFATx, 

NFATc4/NFAT3, and NFAT5. As the muscle field predominantly uses the “c” nomenclature, 
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this nomenclature will be used throughout. As with the bHLH family members, the 

activation of the various NFAT family members, by translocation into the nucleus, largely 

overlaps sequentially during myoblast differentiation.32 Immunohistochemical studies in 

differentiating human myoblasts showed NFATc3 translocation in mononuclear 

myoblasts.32 NFATc3 has been shown to cooperate with MyoD to induce the transcription 

of myogenin.33 NFATc2 is active in nascent myotubes32 and promotes further growth of the 

nascent myotubes into mature myotubes.34 NFATc1 translocation to the nucleus is seen in 

both nascent and mature myotubes.32 As expected from this expression pattern, NFATc1 

promotes both early and late fusion of myotubes.35 However, there is also evidence that it 

has a role in promoting Myf5 expression in myogenic reserve cells36 (i.e., cells that remain 

uncommitted in differentiation cultures). In addition to their roles during myoblast 

differentiation, the NFATs are also involved in fiber type specification in mature 

myofibers.37,38, rev in 39–41 

 

Cell-surface Receptor Regulation of Myogenic Differentiation 

While the transcription factor regulation of myoblast differentiation and fusion is 

well understood, identification of the cell-surface receptors that are important for these 

processes has been more difficult. Much of our understanding of the molecular regulation 

of muscle development comes from work in Drosophila,rev in 7 a genetically tractable model. 

Several, but not all, of the genes involved in fly myoblast cell fusion have yielded vertebrate 

homologs.42–46 Furthermore, increased redundancy in vertebrate systems has made it 

difficult to definitively identify molecules as necessary, sufficient, or important for the 

fusion process.47 Thus, the specific roles for the cell surface molecules are often left unclear. 
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Finally, the process of fusion itself is also more complicated in mammalian cells than in fly 

cells. The acquisition of myoblast fusion competence is achieved not only by the expression 

of molecules necessary for adhesion and fusion, but also by changes that increase 

membrane “fluidity” in preparation for membrane fusion between the cells48, 49, rev in 7 After 

the initial fusion of a myoblast to another myoblast, different molecules are often required 

for myoblast to myotube and myotube to myotube fusion.rev in 50 

Nevertheless, the identification of some of the mammalian cell-surface effectors of 

muscle cell differentiation and fusion has been made. The cell-surface molecules NCAM, N-

cadherin, M-cadherin, ADAM12, and VCAM-1/VLA-4 are involved in cell-cell adhesion of 

muscle cells.rev in 7 Other proteins have also been implicated as important for fusion, but 

their specific roles in fusion remain unclear. The transmembrane proteins CD81 and CD9 

promote the fusion of myoblasts through an unknown mechanism,51 while nephrin 

promotes secondary fusion.44 Part of the difficulty in identifying cell surface proteins and 

their roles is that many of them act cooperatively and in parallel, thus complementing each 

other’s function.47 

 

Identification of Novel Regulators of Myogenesis 

While some strides have been made in understanding the molecular basis of muscle 

development, it is clear that gaps remain. Uncovering the proteins involved is important for 

basic biology and can lead to insights for cell-based therapy of muscle diseases. To identify 

candidate factors that are involved in mammalian myoblast differentiation and fusion, our 

lab used microarray profiling to study the gene expression in proliferating mononuclear 

myoblasts, early differentiating myotubes (2-5 nuclei), and late differentiating myotubes 
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(>15 nuclei) derived from human fetal myoblast cultures.52 Several genes changed in 

expression during one or both of the stages of fusion when compared to proliferating 

mononuclear myoblasts and subsequent studies in our lab have elucidated the roles of two 

genes in myogenesis identified in this screen, MCAM52,53 and C6ORF32.54 In the current 

study, we focused on genes whose expression were transiently upregulated in early 

differentiating cultures to find candidates that were more likely to be involved in the early 

stage of fusion. In particular, we were interested in cell surface molecules that could 

possibly lend themselves to protein therapeutics for the enhancement of myoblast fusion in 

vivo. One family of interest was the G-protein coupled receptors (GPCRs) family. They 

comprise the largest protein family targeted for therapeutics,55 yet many remain 

uncharacterized. Of the genes identified that were upregulated specifically during early 

myoblast differentiation, GPR56 was one of the GPCRs of interest for it being the causative 

gene of a disease with delays in motor development and suggestions in the litereature that 

suggested it played a role in muscle cell differentiation. 

 

The G-protein Coupled Receptor 56 May Play a Role in Myogenesis 

GPR56 belongs to the adhesion subfamily of G-protein coupled receptors (aGPCRs). 

To date, this family contains 33 members, the majority of which have unknown ligands and 

thus are categorized as orphans.56 These aGPCRs are uniquely characterized by their 

extracellular N-terminal structure, which is relatively large for GPCRs and contains a GPCR 

proteolytic site (GPS) domain.57 The GPS site is auto-catalytically cleaved during protein 

translation through the action of a recently identified GAIN (GPCR-autoproteolysis 

inducing) domain that encompasses both the GPS domain and regions N-terminal to the 
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GPS domain.58 The resulting extracellular N-terminal fragment (NTF) and membrane-

bound C-terminal fragment (CTF) then re-associate with each other non-covalently at the 

cell surface.59–61 

How aGPRCRs activate G-protein signaling is under debate. Several studies have 

shown that their activation is controlled by the association and disassociation of the NTF 

and CTF,62,63 suggesting that the NTF acts as an inhibitor of the CTF and that agonist 

binding to the NTF frees the CTF for signaling.61 There is complementary evidence that the 

NTF and CTF fragments from different aGPCRs can associate with each other; for example 

GPR56 has been pulled down with the NTF of latrophilin in the brain.64 An alternative view, 

however, has emerged disputing the necessity of GPS cleavage for aGPCR signaling.65  

 The cleavage products of GPR56 have been detected in metastatic melanoma,66 

pancreatic cancer cells,67 neural progenitor cells,68 kidney tissue,61 and Sertoli gonadal 

cells.69 However, there is also evidence for the expression of an uncleaved form in human 

glioma cell lines70 and adult mouse heart, lung, liver, skeletal muscle, and adipose tissue.68 

Despite evidence that uncleaved GPR56 is endogenously expressed, there is increasing 

evidence that the association of the GPR56 NTF with the CTF inhibits signaling, and 

removal of the NTF from the CTF allows the CTF to activate G-proteins and downstream 

second messengers.61,68 Paavola et al demonstrated that the expression of the GPR56 CTF 

increased various signs of receptor activity, including RhoA activation, ubiquitination, 

association with β-arrestins, and internalization.61 Their truncated mutant included the 

GPS domain, however, which would normally not be included in the CTF as cleavage occurs 

after the GPS domain. Given that they did not include the putative N-terminal GAIN domain 

which would recognize and cleave off the GPS domain,58 it remains possible that signaling 
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occurred via interactions between the remaining GPS sequence and the CTF, as Promel et al 

demonstrated was the case with the C. elegans latrophilin protein.65  

 There are several studies that support the hypothesis that GPR56 is involved in 

myoblast differentiation. In addition to our and other studies that showed GPR56 mRNA 

upregulation during early differentiation,52,71 GPR56 has been shown to associate with 

factors that are involved in myoblast fusion.51,72 Pull-down assays demonstrated that 

GPR56 localized to a tetraspanin microdomain specified by the tetraspanins CD81 and CD9, 

which were associated with the Gαq/11 subunit.72 CD81 and CD9 have been implicated as 

partners that promote the fusion of myoblasts.51 GPR56 expression has been associated 

with the migration and adhesion of neural progenitor cells, gliomas, and melanoma 

cells,68,70,73,74 processes that are also important for myoblasts. 

 Most notably, mutations in GPR56 have been identified as the cause of the disease 

bilateral frontoparietal polymicrogyria (BFPP),75,76 which largely affects the development 

of the brain. This disease is characterized by mental retardation, motor developmental 

delay, seizures, and defects in the brainstem and cerebellum.76 The defects in the brainstem 

and cerebellum present as the development of polymicrogyria, which are aberrantly small 

convolutions on the brain surface.77 Loss of GPR56 in BFPP patients leads to breaks in the 

surface of the pial basement membrane, decreased adherence of glial cells, and the 

overmigration of neurons.78,79 Interestingly, this initial diagnosis of patients with BFPP is 

often congenital myopathy, due to muscle atrophy.80 Furthermore, the brain phenotype 

seen in BFPP is indistinguishable from the phenotype seen in many dystroglycanopathies, 

especially Muscle-Eye-Brain disease and Walker-Warburg Syndrome.77,81 These diseases 

are caused by defects in the glycosylation of the protein α-dystroglycan1 and result in the 
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decreased integrity of the pial basement membrane, loss of adherence of glial cells, and 

overmigration of neurons that are seen in BFPP.77 However, the loss of α-dystroglycan 

glycosylation also results in the development of a severe muscular dystrophy, which is not 

seen in BFPP patients.1,77 Patients with BFPP do show early muscle weakness and 

developmental delays. 76 Given the similar etiologies of disease in the brain, there has been 

speculation for what role GPR56 plays in the muscle.  

These lines of evidence suggest that GPR56 has a role in muscle and given its 

relevance to BFPP, it is important to determine what effects its loss has on muscle 

development. Using knockout GPR56 mice, shRNA in C2C12 cells, and luciferase assays to 

determine signaling, we studied the role of GPR56 in muscle. We found that GPR56 is 

transiently upregulated in myocytes (differentiated myoblasts that have not yet fused) and 

nascent myotubes following the induction of MyoD expression and concurrent with 

myogenin expression. Loss of GPR56 resulted in decreased overall myoblast fusion and 

smaller myotube sizes in culture. Decreased signaling through SRE and NFAT signaling 

pathways likely resulted in these phenotypes. Despite delays in the expression of MyoD, 

myogenin, and NFATc2 during muscle regeneration, no overt differences in morphological 

phenotype were observed in the muscle of GPR56 knockout mice compared to wildtype 

littermate controls. Additionally, although defects in fusion due to decreased SRE and NFAT 

signaling were seen, no differences in the later stages of myofiber hypertrophy or fiber type 

specification were seen. Thus, GPR56 is involved in promoting myoblast differentiation 

through SRE and NFAT signaling, but not myofiber hypertrophy or fiber type specification. 

Because of its transient expression and it being one of many factors promoting 
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differentiation, complementation of its function by other factors results in its loss not being 

accompanied by clinically significant defects in muscle development or function. 

  

Methods 

Animals 

GPR56 knockout mice (B6N.129S5-Gpr56tm1Lex/Mmcd) were generated by 

Genentech/Lexicon Genetics; these mice have exon 2 (which contains the start codon) and 

exon 3 deleted by homologous recombination. The absence of GPR56 protein in these 

knockout mice was previously verified,78 and also confirmed in our studies by mRNA and 

protein expression in the muscle. Animals were euthanized by CO2 asphyxiation and the 

appropriate muscles dissected out. Unless otherwise stated, tissue was collected from one-

month-old animals. Skeletal muscle was processed for myoblast isolation as described 

below. For tissue section analyses, tissue was snap-frozen by embedding in OCT (Tissue-

Tek #4583) in liquid nitrogen-cooled isopentane and stored at -80oC. For mRNA and 

protein analyses, tissue was placed into a cryotube, snap-frozen in liquid nitrogen, and 

stored at -80oC. All assays were performed using male animals. All animals were handled in 

accordance with protocols approved by the Institutional Animal Care and Use Committee at 

Boston Children’s Hospital. 

 

Hematoxylin and Eosin (H&E) staining and determination of myofiber diameter 

Ten micron sections of TA muscle tissue were sectioned onto charged glass slides. 

For uninjured muscle, sections were taken from the approximate belly of the muscle. For 

cardiotoxin-injured muscle, sections were taken from areas of high injury. Tissue sections 
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were fixed for 3 min in 70% ethanol/3% formalin/5% glacial acetic acid, and then rinsed in 

water. Slides were then dipped in hematoxylin (Harleco #638) for at least 5 min, rinsed in 

tap water, and differentiated in acid alcohol (0.3% HCl, 70% ethanol). Hematoxylin was 

then allowed to blue in Scott’s Tap Water (0.2% NaHCO3 w/v, 2% MgSO4·7H2O w/v) for 1 

hr to overnight and rinsed in tap water. Slides were then stained in Eosin Y alcoholic 

(Sigma #HT110116) for 2 minutes, dehydrated in an ethanol series (50%, 70%, 80%, 90%, 

100%, 100%), cleared in Histoclear-II (Electron Microscopy Sciences #64111-01), and 

mounted in Cytoseal. (Richard-Allan #8310-16). Tissue sections were imaged using a Nikon 

E1000 microscope with a SPOT Insight Color 3.2.0 camera using SPOT 4.5.9.9 software 

(Diagnostic Instruments). 

Fiber diameter was measured using ImageJ 1.4r (NIH) and the plug-in “Measure and 

Label.java.” For regenerating fibers, only fibers that contained centrally-located nuclei were 

measured. For each field, all fibers were measured. For each mouse, the results were an 

average of the fiber diameter measurements within 2-3 fields. Approximately 140 fibers 

were counted per field, totaling 280-420 fibers per mouse. Each data point represents the 

measurements of 3-5 mice. Error bars represent the standard deviation between the 

measurements for the mice. Significance was determined using an unpaired Student’s t-

test. 

 

Myoblast isolation and purification 

Limb skeletal muscles were dissected from one-month-old WT and GPR56 KO mice 

and then weighed. Tissue was finely minced with scalpels. Up to 3.5 mL collagenase D 

(Roche #11088882001, stock 10 mg/mL in 5 mM CaCl2 in Hanks’ Buffered Saline Solution 
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(HBSS)) and 3.5 mL dispase II (Roche #04942078001, stock 10 mg/mL in Hepes-buffered 

saline) per gram of tissue was added to the minced tissue. Tissue was incubated up to an 

hour at 37oC, and periodically triturated with 25 mL pipettes. Following dissociation, 

myoblast growth media (30% fetal bovine serum (FBS) and 1x 

penicillin/streptomycin/glutamine (PSG) in 1:1 F10/high-glucose DMEM) was added to the 

cells, and the mix was filtered through a 100 µm filter. Cells were pelleted and resuspended 

with 1 mL growth media and 7 mL Red Blood Cell Lysis Buffer (Qiagen #158904) and then 

filtered through a 40 µm filter. Cells were again pelleted and resuspended at 1 x 107 

cells/mL in warm 0.5% bovine serum albumin (BSA) in HBSS. The samples were incubated 

for 1 hour on ice at 0.5 µg antibody/1x106 cells in 0.5% BSA/HBSS with the following 

antibodies: FITC rat anti-mouse Sca-1 (BD Biosciences #553335), APC rat anti-mouse 

PDGF-α (Biolegend #135908), and PE rat anti-mouse CD45 (BD Biosciences #553081). 

After incubation, the cells were washed with cold 0.5% BSA in HBSS, filtered with a 40 µm 

filter, spun down and resuspended in 0.3 mL 0.5% BSA in HBSS with 1 µL propidium 

iodide. Cells were FACS sorted for live PI-/CD45-/Sca-1-/PDGFa- cells82 to remove dead 

cells and debris (PI+), hematopoietic (CD45+), endothelial (Sca-1+), and fibroblast (PDGF+) 

cells. They were then plated on 6 cm plastic plates coated with 5 µg/cm2 collagen type I (BD 

Biosciences #354236) in myoblast growth media supplemented with 10 ng/mL bFGF 

(Atlanta Biologicals #X07995). Flow cytometry was performed on a BD FACSAria (488 nm 

laser) by Marie Torres in the Stem Cell Core Facility, Boston Children’s Hospital, which is 

supported by NIH-P30-HD1865, or on a BD FACSAria II SORP by Suzan Lazo-Kallanian at 

the Hematologic Neoplasia Core facility, Dana Farber Cancer Institute. 
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Immunocytochemistry 

Myoblasts were plated on 0.15% gelatin-coated (gel-coated) 4-well Permanox 

chamber slides and differentiated (see fusion assays for protocol). Cells were fixed with 4% 

paraformaldehyde (PFA) in phosphate buffered saline (PBS) for 15 min and permeabilized 

with 1% Triton X-100/PBS for 3 min. After washing with PBS, cells were blocked with 

blocking buffer (10% FBS/0.1% Triton X-100 in PBS) for 1 hour at RT. Cells were then 

treated with 1% SDS for 1 min and rinsed 3 times for 5 min in PBS. Cells were then 

incubated with the primary antibody in blocking buffer overnight at 4oC. The primary 

antibodies used were: rabbit anti-V5 (1:200, Sigma #V8137), mouse anti-GPR56 (1:100, 

Sigma #SAB1400340), and rabbit anti-caveolin-1 (1:200, Cell Signaling #3238). After 

washing 3 times with PBS, cells were incubated with the secondary antibody (Dylight 488 

anti-mouse IgG or Dylight 594 anti-rabbit IgG, Jackson Immunoresearch #715-486-150, 

#711-516-152, respectively) in blocking buffer for 1 hour at RT. After incubation, cells 

were washed 3 times with PBS, and mounted with DAPI Vectashield (Vector Labs #H-

1200). Cells were imaged with an Orca-ER camera (#C4742-95-12ER) mounted on a Nikon 

E1000 microscope with Openlab 5.5.0 software (Improvision). 

For C2C12 cells, cells were fixed and stained as above, without 1% SDS treatment. 

The primary antibody used was mouse anti-myosin (1:100, Developmental Studies 

Hybridoma Bank (DSHB) #MF-20, developed by D.A. Fischman). 

 

Silencing of GPR56 in C2C12 cells 

Short hairpin oligos were designed against mouse GPR56 mRNA (accession # 

NM_018882) and annealed into the BD RNAi-Ready pSiren-RetroQ viral vector (#631526). 
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The following sequences were used: 5’-TCACGTGACTACACCATCA-3’, and 5’-

CGTTGGTGGATGTGAATAA-3’. For virus generation, 293GP cells were plated at a 1:3 split 

onto a 15 cm plate in 10% FBS/1x PSG in DMEM and transfected the next day with 8 µg 

VSV-G plasmid and 8 µg silencing or control vector, using a standard calcium phosphate 

protocol for transfection. Twelve to 16 hours after transfection, the media was replaced 

with fresh media. After 65-72 hours, the media (containing virus) was collected and filtered 

through a 0.45 µm PES low-protein binding filter to remove cell debris. Virus was stored at 

4oC for up to 4 days, or at -80oC for longer-term storage. 

The viral infection followed a protocol based on Springer et al.83 The viral 

suspension was supplemented with FBS to a final concentration of 20% FBS, and with 

polybrene to a final concentration of 8 ng/µL. The viral mix was added to C2C12s (plated 

the previous day on gel-coated 6-well plates at 7 x 104 cells), incubated for 15 min in a cell 

culture incubator (37oC, 5% CO2), and spun on a Beckman Coulter Allegra 6R centrifuge at 

1100 x g (~2000 revolutions per minute, (rpm)) for 30 minutes at 32oC. The viral mix was 

then removed and replaced with fresh C2C12 growth media (20% FBS, 1x PSG in high-

glucose DMEM). Cells were re-infected with this protocol at 8, 16, and 24 hours after the 

first infection. They were then switched to differentiation media 6 hours after the last 

infection, and assayed for fusion and mRNA and protein profiles as described below. The 

Day 0 (D0) timepoint was taken just prior to switching the media to differentiation. 

Subsequent time points were taken at D1, D2, D3, and D5 for mRNA and protein, and D2 

and D5 for the fusion assay. 

The efficiency of infection was verified in parallel infections with virus carrying the 

pQCLIN construct, which expresses LacZ. Cells were assayed for LacZ at the D0, D2, and D5 
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time points. Cells were washed with PBS, fixed for 15 min with 4% PFA in PBS, 

permeabilized for 3 min with 1% Triton X-100 in PBS, and stained overnight at 4oC in the 

dark with LacZ staining solution (1 mg/mL X-gal, 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 1 mM 

MgCl2 in 1x PBS, made fresh). Between 95 to 100% of the C2C12 cells expressed LacZ (data 

not shown). 

 

Fusion assays 

For myoblast fusion assays, 2x105 WT and KO (littermate) myoblasts were plated on 

gel-coated 6-well dishes in myoblast growth media + 10 ng/mL bFGF. The next day (D0), 

they were switched to differentiation media (2% horse serum/1x PSG in low-glucose 

DMEM), which was changed daily for up to 6 days. To assess fusion, cells were fixed with 

4% PFA in PBS for 15 min at RT, and washed with PBS; the nuclei were then stained with 

DAPI in PBS. Images of cells were taken using a Photometrics CoolSNAP EZ camera 

mounted on a Nikon Eclipse TE2000-S microscope with NIS Elements AR 2.30 SP4 

software. Fusion was analyzed using the cell counter function in ImageJ 1.4r or 1.47b 

(Wayne Rasband, NIH). For each sample, 3 fields were taken and the results were averaged 

per duplicate or triplicate well. Each field contained approximately 100 to 200 nuclei, 

depending on the day of fusion. The fusion index was calculated as: 100 x (total number of 

nuclei in myotubes) / (total number of nuclei). The average myotube size was calculated as: 

(total number of nuclei in myotubes) / (total number of myotubes counted). For these 

counts, myotubes were defined as cells containing 2 or more nuclei. The final results are 

the averages of each experiment with 4 total experiments comprising 3 sets of littermate 

mouse myoblast isolations. Comparisons between WT and KO were made using a paired 
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Student’s t-test, with significance set at p<0.05. Error bars show the standard deviation 

between experimental sets. 

For GPR56-silenced C2C12 assays, cells were switched to differentiation media 6 

hours after the last round of infection. The fusion index and myotube size were assayed as 

with the primary myoblasts, with the average of 10 fields taken per single well per sample 

per trial. The final results are the averaged results from three independent viral infections. 

Comparisons between GPR56-silenced samples and control samples were made using 

ANOVA with one-way variance from StatPlus:mac LE (Analyst Soft Inc, ver. 2009). Error 

bars show the standard deviation between experimental sets. 

 

Proliferation assays 

Littermate wildtype and knockout myoblasts were plated at 1 x 104 cells on 

collagen-coated 12-well plates. Every 2 days for up to 10 days, duplicate wells of myoblasts 

were trypsinized and counted using a hemacytometer. The myoblast growth media was 

replaced every 2 days. The total number of cells was then calculated for each sample. 

Comparisons between wildtype and knockout myoblasts were made using a paired 

Student’s t-test. Error bars show the standard deviation between experimental sets. Data 

represents an average of 4 trials. 

 

RNA isolation from cells and tissue 

For cultured cells, cells were trypsinized and pelleted. RNA was isolated using the 

RNeasy Mini kit (Qiagen #74104) and was stored at -80oC. 



70 
 

For tissues, RNA was isolated using the RNeasy Fibrous Tissue kit (Qiagen #74704) 

with a few modifications. Approximately 10 mg snap-frozen tissue was homogenized in 

650 µL RLT + 1% β-mercaptoethanol (v/v) with Lysing Matrix D beads (MP Bio #6913) in a 

Fastprep F120 homogenizer (Thermo Electric) for two cycles of 40 sec at speed 6, with a 5 

min incubation on ice in between. Homogenized tissue was then spun down at 4oC at 13.2 

rpm for 4 min, and 300 µL of the supernatant containing the RNA was transferred to an 

eppendorf tube. Ten microliters of proteinase K solution and 590 µL RNase-free water was 

then added, and the sample was incubated for 10 min at 55oC. The RNA was then isolated 

using the RNeasy Fibrous Tissue Kit with the DNA removal step as per the manufacturer’s 

recommendations. The RNA was eluted in 100 µL RNAse-free water and stored at -80oC. 

 

Reverse Transcription and Quantitative Real-Time PCR 

cDNA was reversed-transcribed from 0.5 to 2 µg RNA using either the Quantitect 

Reverse Transcription kit (Qiagen #205311), or the Superscript III Reverse Transcription 

kit (Invitrogen #18080-051) with a mix of random hexamers and oligodT primers. For each 

experimental set, the same kit was used. 

For quantitative PCR, 1/40 to 1/20 volume (0.5 to 1 µL) of cDNA from the above 

reaction was amplified using SYBR green (Invitrogen #4364346) and quantified in a 

7900HT Fast Real-Time PCR System (Applied Biosystems). Relative expression was 

calculated using the delta delta Ct method.84 All primers were optimized to run at the same 

efficiency as control primers (β-2-microglobulin (B2M) for cell and uninjured muscle 

assays or GAPDH for cardiotoxin injury assays).85 When possible, primers were designed to  
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Table 3.1. RT-qPCR primer sequences and concentrations 
 

Gene Forward primer 
(5’3) 

Final 
conc. 
(nM) 

Reverse primer 
(5’3’) 

Final 
conc. 
(nM) 

B2M ctgaccggcctgtatgctat 50 ccgttcttcagcatttggat 50 
GAPDH aactttggcattgtggaagg 50 acacattgggggtaggaaca 50 
GPR56 gtgaataactacggccccatt 300 catagcgacgttgaacaggaa 200 
Myf5 ggcatgcctgaatgtaacag 100 gacacggagcttttatctgc 100 
MyoD tacagtggcgactcagatgc 37.5 cggtgtcgtcgccattctg 37.5 
Myogenin cagtgaatgcaactcccaca 100 caaatgatctcctgggttgg 100 
NFATc1 acatgacggggctggag 200 cataactgtagtgttctgctgcggc 400 
NFATc2 atgtgagcaggaggagagga 300 tggacctcaatccgtagctc 200 
NFATc3 gaaaaatgtcaaggggctca  50 gcaaagatggaactgaaggc 50 
NFATc4 gccgcaagctgcgaggatga 200 tcccccagggccaaacgaca 100 
FHL1-1 caacctccggggcaggcatc 200 gcctttaccaaacccgggcttc 400 
Embryonic MHC cgcagaatcgcaagtcaata 100 caggaggtcttgctcactcc 100 
 

span exon-intron junctions and/or large introns. All assays were run with no template and 

minus reverse transcriptase controls. The primers used are listed in Table 3.1. 

 

Protein isolation 

Cells were lysed directly on the plate with RIPA cell lysis buffer (50 mM Tris pH 7.4, 

150 mM NaCl, 1% NP-40, 1 mM EDTA) with 0.1% SDS, protease inhibitor cocktail (Roche 

#4693159001) and phosphatase inhibitor cocktail (Roche #4906837001). Plates were 

then incubated for 30 minutes at 4oC on a shaker. Lysate was collected into 1.5 mL 

microcentrifuge tubes with a plastic spatula and rotated for another 30 minutes at 4oC. 

They were then centrifuged for 25 min at 4oC, 13.2 rpm on a tabletop minicentrifuge. The 

supernatant was aliquoted and the protein concentration was quantified using the Bio-Rad 

DC Protein Assay Kit II (#500-0112). Lysates were stored at -20 or -80oC. 
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Tissue samples were snap-frozen as described above. They were then crushed into a 

powder using a liquid-nitrogen cooled ceramic mortar and pestle. An aliquot of the powder 

was taken and homogenized in TPER buffer (Thermo Scientific #78510) with 0.1% SDS/ 

protease inhibitor cocktail/phosphatase inhibitor cocktail for 1 min at 4oC, using a hand-

held homogenizer and plastic pestles. Samples were then rotated at 4oC for one hour and 

frozen at -20oC to complete lysis. After thawing, samples were centrifuged and the 

supernatant aliquoted and quantified as with the cell lysates. 

 

Western blot analyses 

One to 20 µg protein per sample was prepared with NuPage LDS loading buffer 

(Invitrogen #NP0007) and 5% β-mercaptoethanol (v/v); samples were then denatured for 

10 minutes at 65oC before loading onto 4-12% Bis-Tris gels (Invitrogen #WG1402BOX). 

Gels were run in MES (Invitrogen #NP0002) or MOPS buffer (Invitrogen #NP0001) at 100 

V. Protein was transferred to nitrocellulose for 1 hour in transfer buffer (12.5 mM Tris-

Glycine pH 8.3, 10% methanol). Blots were blocked in 5% BSA/1% milk in TBST (25 mM 

Tris, 3 mM KCl, 140 mM NaCl, 0.01% Tween-20) for one hour at RT and incubated in 

primary antibody in blocking buffer overnight at 4oC on a shaker. For detecting GPR56, 

blots were blocked and incubated with primary antibody in 5% BSA/2% milk/ TBST. After 

3 washes with TBST, blots were incubated with the appropriate HRP-conjugated secondary 

antibodies (1:10,000, Jackson Immunoresearch, anti-mouse IgG #715-035-150, anti-mouse 

IgM #715-036-020, anti-rabbit IgG #711-035-152, anti-goat IgG # 705-035-003) in 5% 

milk in TBST for 40 min at RT. Bands were detected using the Western Lightning 

chemiluminescent detection reagent (Perkin Elmer #NEL105001EA). After detection, blots 
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were stripped for 25 min at 80oC in stripping buffer (0.2 M glycine pH 2.5, 0.05% Tween-

20), washed for 1 hour in TBST, and re-probed for other proteins. The following primary 

antibodies were used: mouse anti-mouse GPR56 (1:1000, H11 clone, generous gift from 

Xianhua Piao, Boston Children’s Hospital, Boston, MA), mouse anti-MyoD (1:1000, BD 

Biosciences #554130), mouse anti-myogenin (1:1000, DHSB #F5D, developed by F.W. 

Wright), goat anti-FHL1 (1:1000, Abcam #Ab23937), mouse anti-PCNA (1:1000, Santa Cruz 

#sc-56), rabbit anti-GAPDH 14C10 (1:1000, Cell Signaling #2118), rabbit anti-α/β-tubulin 

(1:5000, Cell Signaling #2148), and rabbit anti-RhoA (2 µg/mL, Sigma #R9404). For the 

analysis of primary mouse myoblasts, protein lysates from four sets of myoblasts isolated 

from littermate WT and KO mice were analyzed. For the analysis of silenced C2C12 cells, 

protein lysates were made from three sets of C2C12 cells that were independently infected. 

For quantification of myosin heavy chains (MHC), separate gels were run for each 

MHC Western blot. The total protein on nitrocellulose blots was stained with SYPRO Ruby 

Protein Blot Stain (Invitrogen #S-11791). Bands were imaged using the Bio-rad Chemidoc 

XRS+ molecular imaging system and densitometry readings were taken using the volume 

rectangle tool in Quantity One 4.6.2 software. The blot was destained and then blotted for 

mouse anti-slow MHC (1:1000, Sigma #M8421), mouse anti-MHC Type IIA (1:1000, DSHB 

#SC-71, developed by S. Schiaffino), or mouse anti-MHC Type IIB (1:1000, DSHB #BF-F3, 

developed by S. Schiaffino). Multiple ECL readings of the MHC bands were taken using the 

Bio-rad Chemidoc XRS+ to ensure that measurements could be taken from an exposure that 

was not saturated. The densitometry measurements for MHC bands were normalized to the 

total protein SYPRO bands, and the results from three to five mice were averaged. 
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Significance was determined using the Student’s t-test (unpaired) in Excel. Error bars show 

the standard deviation between samples. 

 

Cardiotoxin injections 

One-month-old WT and KO mice were anesthetized with isoflurane. The lower right 

legs were shaved over the tibialis anterior (TA) muscle and disinfected with ethanol. A total 

of 15 µL of 0.5 µg/mL cardiotoxin (Sigma #C9759-5MG) in PBS was injected into three 

different sites in the TA with a Hamilton syringe (26 G needle). Mice were sacrificed at 2, 3, 

4, 6, and 18 days after cardiotoxin injury and their right and left TA muscles were dissected 

for IHC and RNA analyses. Left (uninjured) TA muscles were used as uninjured (D0) 

controls. 

 

Determination of fiber type proportions by IHC 

One-month-old WT and KO mice were sacrificed and their gastrocnemius muscle 

dissected out, mounted on OCT drops for freezing, and snap-frozen in liquid-nitrogen-

cooled isopentane. Sequential 10 µm muscle cross-sections from the approximate center of 

the muscle were fixed in cold acetone for 5 min and then air-dried for 20 min. They were 

then washed with 1x PBS-T (0.1% Tween-20 in PBS) and blocked for 30 min in 2.5% horse 

serum in PBS-T. Sections were then incubated overnight at 4oC in primary antibody in PBS-

T using the following myosin-type specific antibodies: mouse IgG anti-Type I (1:100, Sigma 

#M8421), mouse IgG anti-Type IIA (1:50, DSHB #SC-71, developed by S. Schiaffino), or 

mouse IgM anti-Type IIB (1:50, DSHB #BF-F3, developed by S. Schiaffino) myosin heavy 

chains, and co-stained with a rabbit anti-laminin antibody (1:100, Sigma #L9393) to 
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outline the myofibers. After three 3 min washes in PBS-T, the slides were incubated with 

1:500 Alexa488 anti-mouse IgM (Invitrogen #A-21042) or IgG (Jackson Immunoresearch 

#715-546-150) and 1:500 Dylight594 anti-rabbit IgG (Invitrogen #A-21069) in PBS-T. 

After three 5 min washes in PBS-T, the slides were mounted with DAPI Vectashield. 

The entire section was photographed in sequential fields using a Hamamatsu Orca-

ER camera (#C4742-95-12ER) mounted on a Zeiss Axioplan 2 microscope (5x objective) 

using Axiovision 4.5 SP1 software. The individual fields were merged together into one 

photograph using Photoshop CS3. The total number of positive fibers in each section were 

counted digitally by Hui Meng and Alexandra Lerch-Gaggl at the Medical College of 

Wisconsin. Percentages were found by taking the total number of positive fibers per MHC 

divided by the sum of total positive fibers for each MHC per mouse, multiplied by 100. To 

verify the counts, select tissues were manually counted for positive and total fibers for each 

section using the cell counter function in ImageJ 1.4r (NIH) and compared to the positive 

counts obtained digitally. Digital quantification counted approximately 60% of the fibers 

but maintained the proportion of counts for the various fiber types (Suppl. Figure A2.1). 

Significance was determined using the Student’s t-test (paired) in Excel with significance at 

p < 0.05. The error bars represent the standard deviation between samples. 

 

Evaluation of serum creatine kinase (CK) levels 

Mice aged between 5 and 10 months were nicked in the tail vein, and 200 µL blood 

was collected into BD Microtainer serum separator tubes (BD Biosciences #365956). Blood 

was allowed to coagulate for 1 hour at room temperature and then centrifuged at 13.2 rpm 

in a table-top microfuge for 1.5 min. Twenty microliters of plasma serum were used in the 
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CK-NAC (UV-Rate) CK test (Stanbio #0910) to determine serum CK levels. 

Spectrophotometric readings were taken at 340 nm over the course of 3 minutes in a 

Beckman DU640 spectrophotometer and used to determine enzyme activity. For each 

blood sample, two measurements were taken and averaged. A total of 11 WT and 12 KO 

animals were analyzed. Data were analyzed for statistical significance using the Student’s t-

test (unpaired, homoscedastic) in Excel with significance at p < 0.05. The error bars 

represent the standard deviation between samples. 

 

Luciferase assays 

The mouse GPR56 coding sequence was amplified from a V5-tagged mouse GPR56 

(accession# NM_018882) construct created and kindly provided by Samir Koirala (Boston 

Children’s Hospital, Boston, MA).79 Constitutively active, truncated GPR56 (tGPR56) was 

cloned into pCMV-XL4 by amplifying the C-terminal domain of GPR56 after the GPS 

cleavage site. The location of GPS cleavage was determined by homology to the GPS 

cleavage sites in other aGPCRs.8 The forward primers incorporated NotI restriction enzyme 

sites, a Kozak initiation sequence, and a methionine amino acid translational start site: full-

length GPR56 (mGPR56) forward primer 5’-AAGCGGCCGCCACCATGGCTGTCCAGGTGCTG-3’ 

and tGPR56 forward primer 5’-AAGCGGCCGCCACCATGACCTACTTTGCAGTGCTGAT-3’. The 

reverse primer incorporated a NotI restriction enzyme site after the stop codon and was 

used for both mGPR56 and tGPR56: 5’-TTGCGGCCGCTGCAGAATTGCCCTAGATGC-3’. The 

following luciferase reporters, which were generous gifts from Alan Kopin (Tufts Medical 

Center, Boston, MA), were used: SRE5x-luc and NFAT-RE-luc.  
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HEK293 cells were plated at 6000 cells/96 well one day prior to transfection, or at 

3000 cells/96 well two days prior to transfection, in 10% FBS/DMEM. They were 

transfected with Lipofectamine (Invitrogen #18324-012) with 0-8 ng mGPR56-pCMV-XL4, 

tGPR56-pCMV-XL4, or pCMV-XL4 empty vector control, 20 ng reporter, and 5 ng β-

galactosidase (β-gal) pcDNA1.1 control (generous gift from Alan Kopin, Tufts University, 

Boston, MA), in serum-free DMEM. Twenty-four to 30 hours after transfection, cells were 

assayed for luciferase and B-gal activity. Fifty microliters Steadylite Plus luciferin substrate 

(1:6 dilution in water, Perkin Elmer #6016756) was added to the cells and luminescence 

was measured with a TopCount NXT instrument (Perkin Elmer). β-gal activity was 

measured by adding 80 µL Solution A (4 µL/mL β-mercaptoethanol, 60 mM Na2HPO4, 40 

mM NaH2PO4, 10 mM KCl, 1 mM MgSO4·7 H2O) and 50 µL Solution B (4 mg/mL 2-

Nitrophenyl β-D-galactopyranoside (Sigma #N1127), 60 mM Na2HPO4, 40 mM NaH2PO4, 10 

mM KCl, 1 mM MgSO4·7 H2O) to cells on top of the Steadylite solution, incubating at 37oC, 

and measuring color development in a spectrophotometer. Relative luciferase activity was 

measured by dividing luminescence counts by β-gal counts. Averaged triplicate data for 

each experiment were normalized to the 0 ng/mL data point for mGPR56-pCMV-XL4, and 

the data from three separate experiments were averaged to produce the normalized 

relative luciferase activity. Significance was analyzed using two-way ANOVA with 

Bonferroni correction in GraphPad Prism 5. Error bars denote the standard deviation 

between experiments. 
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Results 

GPR56-deficient muscles develop with slight defects 

Patients with BFPP share similarities in the brain pathology with 

dystroglycanopathy patients, who also exhibit severe muscle defects.77 Some patients with 

BFPP have a motor delay or early muscle hypotonia resulting in an early mis-diagnosis of 

congenital myopathy.76 Studies on differentiating muscle cells reported the upregulation of 

GPR56 during fusion,52,71 leaving open the possibility that GPR56 could play an important 

function in skeletal muscle tissue. To determine whether the absence of GPR56 results in 

muscle defects, we used the GPR56 knockout mouse. This mouse replicates the brain 

pathology seen in BFPP,78,79 suggesting that it would serve as a good model for 

understanding the phenotype and etiology of any muscle defects caused by the loss of 

GPR56.  

We did not notice any motor developmental delays or muscle hypotonia in GPR56 

knockout mice (data not shown). We examined the muscle histology of 1- to 3-month old 

wildtype and knockout mouse gastrocnemius and tibialis anterior muscles by H&E (Figure 

3.1A). In the knockout muscle, there were no signs of myopathy or dystrophy that are often 

seen in muscle disorders, such as fibrosis, necrosis, or increased fiber size heterogeneity. 

Quantification of the myofiber sizes in knockout versus wildtype mice revealed no 

difference in size (Figure 3.1B). However, we did note the presence of tubular aggregates in 

the knockout muscle that were not initially seen in wildtype muscle. However, later 

examinations also revealed tubular aggregates in wildtype muscle, which may have arisen 

due to inbreeding within the colony.86 Therefore, we determined that this phenotype was 
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not a significant pathogenic phenotype that is due to the absence of GPR56 (data on tubular 

aggregates are detailed in Appendix A).  

Another broad indicator widely used in the diagnosis of muscle disorders is an increased 

serum creatine kinase (CK) level,87 an indicator of structural weakness in the muscle fiber 

structure that leads to the leakage of muscle proteins into the bloodstream. We found a 

slight but statistically significant increase in the serum CK levels of GPR56 knockout mice 

over the levels observed in wildtype mice (Figure 3.1C, n=11-12 mice/group). The GPR56 

knockout mice exhibited increased variability in serum CK that ranged higher than the 

levels found in wildtype mice. This mild increase, in addition to the data showing that 

GPR56 is upregulated in human fetal myoblasts undergoing differentiation in vitro,52 

supported the further investigation of GPR56’s role in muscle cell differentiation.  

 

GPR56 is transiently expressed in differentiating myoblasts 

To more carefully define the timing of GPR56 during differentiation, primary mouse 

myoblasts were isolated and induced to differentiate by serum withdrawal. mRNA and 

protein lysates were collected at various time points throughout differentiation (Figure 

3.2A). Both GPR56 mRNA (Figure 3.2B) and protein (Figure 3.2C) are transiently induced 

during early fusion of primary mouse myoblasts (D1, D2), and quickly downregulated 

during later fusion stages. GPR56 protein expression in myoblast cultures follows the onset 

of MyoD expression which marks myoblast commitment and overlaps with the MyoD 

expression that is maintained during early differentiation (Figure 3.2C). GPR56 expression 

is concomitant with myogenin expression, which marks early differentiation. Thus, its  
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Figure 3.1. Gross phenotypes in GPR56 knockout mice  

A. H&E staining of one-month-old gastrocnemius (top, GA) and tibialis anterior (bottom, 

TA) muscles shows no difference between wildtype and knockout muscle. Scale bars = 50 

µm. B. Myofiber diameter in TA muscle shows no difference between wildtype and 

knockout. C. Serum CK levels in wildtype and knockout mice shows slightly elevated serum 

CK levels in knockout mice. *p=0.012. 
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Figure 3.1 (Continued) 
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expression profile suggests that GPR56 is expressed in myoblasts between commitment 

and early fusion. 

The in vitro myoblast cultures at D1 and D2, where GPR56 expression is the highest, 

contain a mixture of proliferating and quiescent myoblasts, committed myocytes, and early 

myotubes with few nuclei. To determine which of these cells were expressing GPR56, we 

performed immunocytochemistry on myoblasts at D1 (Figure 3.2D-G). We detected GPR56 

expression in mononuclear cells that were not associated with myotubes, as well as 

mononuclear cells in close association with myotubes (Figure 3.2D). We also saw some 

expression in myotubes, close to nuclei. To better distinguish whether the GPR56-positive 

mononuclear cells were in myoblasts or myocytes, we co-stained the cultures with 

caveolin-1 (Figure 3.2D-G), which is expressed in proliferating and elongated myoblasts.88 

We found that GPR56 was never co-expressed in cells expressing caveolin-1, suggesting 

that GPR56 is only expressed in early differentiating myocytes. Thus, we narrowed the 

expression of GPR56 from early differentiating myocytes to early fusion and formation of 

small myotubes. 

 

Loss of GPR56 results in less efficient differentiation and fusion 

 The pattern of expression of GPR56 prompted us to study the effect of its loss-of-

function on differentiating myoblasts in vitro. We isolated three sets of myoblasts from the 

limb and back muscles of one-month-old littermate wildtype and GPR56 knockout mice, 

differentiated them for 5 days, and analyzed their fusion competence (Figure 3.3). 

Knockout myoblasts exhibited a decreased ability to fuse, as measured by their fusion 

index at days 2 and 5 in differentiation media (Figure 3.3B). Quantification of the myotube  
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Figure 3.2. GPR56 is transiently expressed in the early differentiation phase of mouse 

myoblasts 

 A. Phase images of mouse myoblasts induced to differentiate over the course of 6 days (D0 

– D6) illustrating the degree of myotube formation. B. GPR56 mRNA expression by qRT-

PCR in primary mouse myoblasts differentiated from D0 to D6. GPR56 mRNA expression 

peaks at D1, then rapidly decreases. C. Protein expression of GPR56, MyoD, myogenin, and 

α/β-tubulin in myoblasts at D0 to D6, as assessed by Western blot. GPR56 protein 

expression peaks at D1 and rapidly decreases by D3, where little expression remains. D-G. 

GPR56 (green) and caveolin-1 (red) staining in differentiating primary mouse myoblasts at 

D1. DAPI (blue) was used to stain nuclei. Arrows depict GPR56+ cells that look close to 

fusion. 
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Figure 3.2 (Continued) 
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Figure 3.3 

Figure 3.3. GPR56 knockout myoblasts fuse less and have decreased MyoD expression   

A. Phase images of WT and GPR56 KO mouse myoblasts undergoing differentiation at D0, 

D2, and D6. B. Fusion index in WT (blue) and KO (red) differentiating mouse myoblasts. 

GPR56 KO myoblasts have decreased fusion at D2 and D5. * p < 0.0.5. C. Protein expression 

by Western blot of GPR56, MyoD, myogenin, and α/β-tubulin in differentiating myoblasts at 

D0-D5. GPR56 KO myoblasts have decreased MyoD expression. D. Percent of myotubes 

with greater than 5 nuclei in WT (blue) and KO (red) differentiating mouse myoblasts. 

GPR56 KO myoblasts have smaller tubes at D2 compared to wildtype. * p < 0.05. 
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size demonstrates that knockout cells also form smaller myotubes at D2 (Figure 3.3D), 

whereas by D5 the myotube size is not significantly different between knockout and 

wildtype cultures. The ability of the knockout myotubes to grow to sizes similar to those of 

wildtype myotubes by D5 suggests that GPR56 plays a role only in the early stages of 

myoblast fusion. 

To more precisely define GPR56 function in relation to myogenic progression, we 

looked at the protein expression of myogenic transcription factors involved in different 

stages of differentiation (Fig 3.3C). We found that MyoD was decreased in the knockouts 

compared with wildtype myoblasts at similar time points, whereas there was no change in 

the early marker of differentiation, myogenin. NFATc189 and NFATc234 promote fusion and 

myotube growth in myoblasts and myotubes after the onset of myogenin expression. Their 

transcriptional activity is supported by the co-activator FHL1.35 We found that FHL1 is 

highly upregulated in the knockouts. 

Because MyoD is expressed prior to and during the period of peak GPR56 

expression, it is somewhat surprising to see that it is downregulated in GPR56 knockout 

myoblasts. It is possible that this downregulation was due to the myoblasts having 

developed in a GPR56-deficient environment, and thus the isolated myoblasts have 

developed compensatory mechanisms that resulted in decreased MyoD expression. To 

confirm that the decrease in fusion was a direct consequence of the loss of GPR56, GPR56 

was silenced using two separate shRNA constructs in the mouse myoblast C2C12 cell line 

(Figure 3.4A). Silencing of GPR56 allows the evaluation of its loss without interference 

from compensatory mechanisms that may have developed in vivo due to long-term loss of 

GPR56. GPR56 expression was efficiently silenced at both the mRNA (Figure 3.4B) and  
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Figure 3.4 

Figure 3.4. Silencing of GPR56 in C2C12 cells results in less efficient fusion and differentiation  

A. Schematic diagram showing the location of GPR56 shRNA constructs (green stars) 

against GPR56 transmembrane domains (rectangles) 2 and 4. GPS = G-proteolytic site. B. 

GPR56 mRNA expression by RT-qPCR in silenced C2C12s. Both shRNA 2 and 3 yielded a 

significant decrease in the expression of GPR56. C. Protein expression by Western blot of 

GPR56-silenced cultures at D0 through D5. U=uninfected; 2, 3 = GPR56 shRNA;  
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Figure 3.4 (Continued). S = scrambled. There is a consistent decrease in GPR56 and 

myogenin protein expression with shRNA 2 and 3. D. Myosin Heavy Chain staining in 

GPR56-silenced cultures shows decreased myotube formation in GPR56 shRNA2 and 3 

silenced cells. E. Fusion is decreased in GPR56-silenced cells. * p < 0.01. F. Myotube size is 

decreased in GPR56-silenced cells. *p < 0.01. G. GPR56 KO myoblasts proliferate more than 

WT myoblasts (* p<0.05, *** p<0.001, n=4 trials). H. Pax7 expression is increased in 

GPR56-silenced C2C12 cells (shRNA 2 and 3) compared to uninfected and scrambled 

C2C12s in differentiation for 0 to 5 days. 

 

protein level (Figure 3.4C). As had been seen with the knockout myoblasts, both fusion and 

myotube size was decreased in the silenced C2C12 cells (Figure 3.4D, E, F). Unlike in the 

knockout myoblasts, MyoD expression was unchanged, whereas myogenin expression was 

decreased, particularly with the shRNA 3 construct (Figure 3.4C). This difference from the 

data generated using the primary myoblasts suggests that GPR56 might not directly affect 

MyoD expression, but that the downstream effects of GPR56 signaling lead to a decrease in 

MyoD expression in the knockout myoblasts. Unlike in the GPR56-knockout myoblasts, 

there was no upregulation in FHL1 expression. The decrease in myogenin expression 

suggests that GPR56 is upstream of myogenin, and that loss of GPR56 results in the 

inefficient activation of factors promoting the commitment to differentiation. 

 If the loss of GPR56 contributed to a decreased ability to commit to differentiation, 

then knockout myoblast cultures might display signs of increased or persistent 

proliferation. Indeed, Pax7 expression was maintained in silenced, differentiating cell 

cultures to a greater degree than in the control cells (Figure 3.4H). We also noticed that 
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knockout myoblasts tended to expand in culture to a greater degree than wildtype 

myoblasts. To quantify this phenotype, we plated equal numbers of littermate wildtype and 

knockout myoblasts and counted the number of cells produced over the course of 10 days. 

We found significantly increased proliferation in the knockout myoblasts (Figure 3.4G). 

Taken together with the data from the fusion assays, this suggests that GPR56 promotes 

the commitment of myoblasts that leads to differentiation and then fusion.  

 

The fusion defects seen in vitro are not replicated in vivo 

 The proliferation and differentiation of myoblasts in vitro mirrors the process of 

myofiber formation during muscle development and regeneration. Defects in development 

that do not result in strong phenotypes are often revealed when regeneration is induced. 

The decreased fusion and myotube size seen in vitro could be translated into reduced 

myofiber size during regeneration model. To evaluate the regenerative capacity of 

knockout muscle, we induced regeneration of the tibialis anterior muscle by injection of the 

snake venom, cardiotoxin, which causes myofibers to degenerate. Myoblast progenitor cells 

are then activated for proliferation, differentiation, and fusion to reform muscle fibers 

within three weeks.90,91 As had been seen in vitro, GPR56 mRNA expression in regenerating 

wildtype muscle is transiently increased and peaks at day 4 after cardiotoxin injection 

(Figure 3.5B), which is when early myofibers are being formed. We examined the muscle 

histology by H&E to determine whether there were any gross defects in the timing or 

extent of regeneration (Figure 3.5A). We found that morphologically, there was no gross 

defect when compared to wildtype muscle. To determine whether there was an initial 

defect in fusion during regeneration as had been seen in vitro, we quantified myofiber size  
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Figure 3.5. Loss of GPR56 does not affect myofiber size after regeneration 

 A. H&E staining of GPR56 WT and KO gastrocnemius muscle at days 4, 6, and 18 after 

cardiotoxin injury. KO morphology and timing does not look different from WT. B. mRNA 

expression of GPR56 by RT-qPCR shows transient upregulation of GPR56 during 

regeneration. C. Myofiber diameter in cardiotoxin-injured WT and GPR56 KO 

gastrocnemius muscle shows no difference in diameter between WT and KO. D. mRNA 

expression by RT-qPCR of various genes in WT (blue) and GPR56 KO (red) cardiotoxin-

injured muscle. Many genes are delayed in expression in KO muscle. * p<0.05. 
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Figure 3.5 (Continued)  
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during regeneration. There was no difference in myofiber diameter during early myofiber 

formation four days after cardiotoxin injection between knockout and wildtype muscle 

tissue (Figure 3.5C). At six days, there was a trend towards smaller fibers in knockout mice 

that was not statistically significant, whereas again by eighteen days, there was no 

difference in myofiber diameter (Figure 3.5). 

 We then examined the expression of critical myogenic transcription factors in 

wildtype and knockout muscles undergoing regeneration. In wildtype mice, myoblast 

proliferation peaked two days after cardiotoxin injury, as seen by the peak in Myf5 and 

MyoD mRNA expression (Figure 3.5D). Early differentiation occurred at days 2 and 3, as 

seen by peaks in the expression of the differentiation transcription factors NFATc2, FHL1, 

and myogenin. Embryonic myosin heavy chain, which is transiently expressed in 

regenerating myofibers,92,93 peaked at days 3 and 4. In contrast, myoblast proliferation in 

knockout mice, as marked by the peak in MyoD expression, occurred at day 3. Interestingly, 

Myf5 expression in knockout muscle was not only delayed, but its maximal expression level 

was much greater than in wildtype mouse muscle. Later phases of differentiation, as 

marked by FHL1, NFATc2, and myogenin expression, also were delayed. Early myofiber 

formation as indicated by the expression of embryonic myosin heavy chain, however, 

seems to match the timing in wildtype mice. Overall, although some of the molecular 

determinants of myoblast differentiation were slightly delayed, they may have been 

compensated for in expression by factors that overlap in their functions, such as Myf5. This 

compensation ultimately led to a largely normal regeneration phenotype in the knockout 

muscle. 
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GPR56 signaling induces transcription from SRE and NFAT elements 

 Several transcriptional pathways are involved in the early differentiation of 

myoblasts into myocytes and small myotubes in vitro. In particular, there is evidence that 

GPR56 signals to serum response element (SRE) and nuclear factor of activated T-cells 

response element (NFAT-RE).94 The SRE DNA element is functionally equivalent to the 

CArG box in myogenic cells,95 to which the serum response factor (SRF) binds. To confirm 

GPR56 signaling to the SRE and NFAT-RE, we created vectors expressing full-length GPR56 

(mGPR56) and constitutively active, truncated C-terminal domain GPR56 (tGPR56)61 and 

tested their ability to activate the SRE and NFAT-RE luciferase reporters. The use of 

constitutively active GPR56 was necessary to ensure that lack of signal was not due to the 

absence of ligand in the tested cells. Truncated GPR56 strongly activated the SRE reporter 

while mildly activating the NFAT reporter (Figure 3.6). As expected from previous reports 

showing constitutive activity of GPR56 when only the C-terminal domain is expressed, the 

truncated form of GPR56 constitutively activated both SRE and NFAT reporters. 

Interestingly, in HEK293 cells, increasing amounts of transfected full-length GPR56 were 

able to reach levels of SRE luciferase activation equal to GPR56-CTD, whereas this was not 

the case for NFAT-RE luciferase activation. 

 

Targets of SRE transcription are downregulated in GPR56 knockout muscle 

MyoD is one transcriptional target of SRE signaling during myoblast commitment and 

differentiation,.22–24 During myogenic differentiation, knockout myoblasts exhibited a 

decrease in MyoD protein (Figure 3.3C). By the time muscle has fully formed in GPR56 

knockout mice, MyoD mRNA expression has become decreased, as shown by decreased  



94 
 

 

 

 

 

 

 

 

 

Figure 3.6. GPR56 signals through SRF and NFAT pathways 

 A. Schematic showing full-length and truncated GPR56. GPS = G proteolytic site. Rectangles 

= transmembrane domains. B. Luciferase reporter assays in HEK293 cells of full-length 

(mGPR56, blue line) or truncated (tGPR56, green line) GPR56 with luciferase reporter 

constructs driven by SRE response elements (SRE) or NFAT response elements (NFAT-RE). 

GPR56 induces signaling from both SRE and NFAT-RE. * p<0.05. *** p<0.001. n=3. C. mRNA 

expression in WT and KO gastrocnemius muscle. Expression of FHL1, NFATc2, and NFATc3 

are decreased in KO muscle. * p<0.05. 
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Figure 3.6 (Continued) 
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mRNA expression in knockout muscle compared to wildtype muscle (Figure 3.6B). 

Similarly, the expression of NFAT family members that are involved in commitment and 

early myoblast fusion are also affected in GPR56 knockout mice. NFATc3 activity supports 

MyoD-directed myogenesis,96,97 whereas NFATc2 is activated in early myotubes.34 The 

mRNA expression of both NFATc2 and NFATc3 were significantly downregulated in GPR56 

knockout muscle (Figure 3.6B). In addition, FHL1, a co-factor of NFATc2 during early 

differentiation35 whose transcription is under the control of SRE,98 also exhibited 

decreased expression in knockout mouse muscle (Figure 3.6B).  

 

Defects in SRE and NFAT signaling do not affect hypertrophy or fiber type differentiation 

The SRE and NFAT signaling pathways activated during myoblast commitment and 

differentiation are later re-used during myofiber maturation to regulate myofiber 

hypertrophy29,30 and fiber type differentiation,37,38 respectively. Because the loss of GPR56 

in knockout mice affected these pathways during muscle cell differentiation, we examined 

the effects of loss of GPR56 on myofiber hypertrophy and fiber type differentiation. As we 

had previously established in our initial investigation of GPR56 knockout muscle and the 

regeneration study, the myofiber diameter in one-month-old GPR56 knockout mice was 

not significantly different than the diameter in wildtype littermates under conditions of 

normal development (Figure 3.1B) or regeneration (Figure 3.5). 

We then examined whether signaling of GPR56 that influenced the NFAT pathway 

during differentiation also had effects on the NFAT-directed process of fiber type 

specification. Using antibodies specific to myosin heavy chains type (MHC) I, IIA, and IIB, 

we examined MHC expression in wildtype and GPR56 knockout gastrocnemius muscle at 
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various ages by Western blotting (Figure 3.7B). There was no statistically significant 

difference in the amount of MHC expression for any of the MHCs examined. Because the 

differentiation defect seen in GPR56 knockout mice was subtle, we also used a more 

sensitive immunohistochemical assay to ensure that the lack of differences in MHC 

expression detected were not due to an inability to detect slight changes in expression by 

Western analysis. Gastrocnemius muscle was isolated from one-month-old littermates, and 

stained with antibodies against MHC I, IIA, or IIB with anti-laminin to outline the myofibers. 

The proportion of positive myofibers for each MHC type was quantified, and the ratio of 

positive myofibers in GPR56 knockout mice versus wildtype littermates was determined. 

Using this method, we also found no difference in the proportion of fiber types (Figure 

3.7A, C). We concluded that although GPR56 affects the differentiation of myoblasts 

through the SRE and NFAT pathway, it does not affect the later SRE- and NFAT-directed 

processes in myofiber growth or fiber type specification. These findings are in agreement 

with the transient nature of GPR56 expression only during myoblast differentiation. 

 

Discussion 

The loss of GPR56 in humans results in the disease bilateral frontoparietal 

polymicrogyria.75,76,99 Clinically, the similarity in brain phenotype and mechanism of 

disease development in BFPP with dystroglycanopathies has resulted in their classification 

as similar diseases.77,80 However, despite a dystrophic phenotype in the 

dystroglycanopathies, the existence of a clear muscle phenotype in BFPP patients has not 

yet been established. The delays in the motor development of BFPP patients have been 

attributed to defects in the cerebellum that affect motor control,79 and patients have shown  
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Figure 3.7. Decreased NFAT signaling does not result in changes in fiber type proportion  

A. Sample immunostaining of gastrocnemius tissue for Myosin Heavy Chains I, IIA, or IIB 

(green) and laminin (red). B. Quantification of the % of positive MHCI, IIA, or IIB fiber types 

in knockout versus wildtype fibers (% pos fibers KO/% pos fibers WT), based on 

immunofluorescence staining in 3 littermate pairs. C. Quantification of the amount of MHC 

I, IIA, or IIB protein expression by Western blot in WT and KO gastrocnemius muscle in 

mice of various ages shows no difference in the amount of MHC isoforms between WT and 

KO. 
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Figure 3.7 (Continued) 

 



100 
 

normal muscle biopsies and serum creatine kinase levels.80 Independently, however, we 

had previously found that GPR56 was upregulated in differentiating human fetal muscle 

cells,52 suggesting that its loss would result in a muscle phenotype. Besides the similarities 

in brain phenotype in the diseases caused by α-dystroglycan and GPR56 loss, the two genes 

also shared possible similarities in function. Both proteins bind the extracellular matrix; α-

dystroglycan to laminin100,101 and GPR56 to collagen III.102 Thus, we investigated GPR56’s 

role in the muscle. We used the GPR56 knockout mouse in conjunction with other cell-

based assays to study GPR56’s role.  

In our initial examination of GPR56 knockout muscle histology, we found no gross 

changes in muscle histology or fiber size. We did, however, find a small but statistically 

significant increase in the serum CK levels, which can be an indication for the presence of 

muscular dystrophy.103,104 However, in the case of GPR56 knockout mice, the degree of 

increase was much smaller than what is seen in mdx mice, which are a mouse model for 

DMD.105 That the increase was slight, albeit significant, is in agreement with other studies 

that did not detect raised serum CK levels in BFPP patients.80 Therefore, the loss of GPR56 

in muscle did not lead to a clinically significant defect in muscle development. 

We next studied the role of GPR56 during muscle cell differentiation in vitro. In 

myoblasts, the SRF transcription factor binds an SRE DNA element within the MyoD 

promoter to promote transcription of MyoD during proliferation and 

differentiation.24,106,107 The activation of SRF transcriptional activity, in turn, is dependent 

on RhoA activity.23 The upregulation of MyoD expression, in correlation with a switch in 

SRF phosphorylation,26 induces proliferating myoblasts to exit the cell cycle.17 MyoD then 

switches to a differentiation program to prepare the cells for fusion. This transcriptional 
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program is aided by many cofactors, including NFATc3. NFATc3 potentiates the ability of 

MyoD to both convert fibroblasts to myoblasts and to activate the myogenic differentiation 

program in C2C12 cells.96 Mice lacking NFATc3 show diminished numbers of myofibers, 

which has been attributed to a decrease in myofiber number during primary myogenesis97 

and confirms that NFATc3 is indeed involved in promoting the early commitment of 

myoblasts. NFATc2 is then activated in the nascent myotubes to promote further fusion.34 

The complex interplay between the myogenic transcription factors makes it difficult to 

clearly define how GPR56 interacts with them. Our data suggests, nevertheless, that GPR56 

promotes myoblast commitment and early differentiation through the activation of SRE 

and NFAT-RE signaling (Figure 3.8). First, GPR56 mRNA and protein expression patterns 

suggest that GPR56 acts in myocytes and in early differentiating myotubes. Secondly, 

GPR56 has been previously shown to activate both SRE and NFAT-RE directed signaling, 

with different human isoforms of GPR56 activating SRE-driven luciferase to varying 

degrees.94 Our findings that GPR56 can activate luciferase driven by SRE and NFAT agree 

with these previous findings. The use of a truncated, constitutively active, GPR56 also 

ensured that any negative results from our assay were not due to a lack of agonist ligands 

in the culture. The data demonstrated that GPR56 more strongly activates SRE-driven 

rather than NFAT-RE driven transcriptional activity. 

When viewed in the context of the changes observed following the loss of GPR56, 

these findings can be used to place GPR56 into a model of how differentiation is regulated. 

Our luciferase data links GPR56 expression with the activation of promoters containing the 

SRE DNA elements, while GPR56 localization data links its expression to myocytes and 

early differentiating myotubes. By combining these data with the previously published data  
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Figure 3.8 

Figure 3.8. Model of GPR56 Signaling Pathway 

GPR56 signals through RhoA to activate SRF signaling during myoblast differentiation 

 

demonstrating that GPR56 activates RhoA,61,68,102 we can draw a pathway for GPR56 at the 

cell surface to activate RhoA signaling and subsequently activate the SRF-mediated 

transcription of MyoD in the nuclei of myoblasts committed to differentiation. 

The inhibition of SRF expression or activity has been shown to lead to decreased 

MyoD23 and myogenin expression.108 In support of this model, we saw a decrease in MyoD 

expression in knockout muscle, as well as decreases in MyoD and myogenin expression in 

differentiating GPR56 knockout and GPR56 silenced myoblasts, respectively. Satellite cells 
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lacking MyoD, continue to proliferate and inefficiently express myogenin when induced to 

differentiate.109 In our studies, GPR56 knockout myoblasts showed increased proliferation 

rates compared to wildtype myoblasts and increased Myf5 expression was also seen in 

regenerating muscle following cardiotoxin injury. Additionally, GPR56-silenced C2C12 cells 

induced to differentiate show increased Pax7 expression, which is normally expressed in 

undifferentiated satellite cells.110  

During late myogenic differentiation, the inactivation of RhoA is necessary for 

differentiation to proceed.111 Similarly, GPR56 expression sharply decreases following a 

peak in expression during myoblast commitment, possibly contributing to the decrease in 

RhoA activation at the later differentiation stage. This decrease matches well with the need 

for RhoA to be inactivated for the fusion of cells to proceed.111 

In our luciferase assays, constitutively active GPR56 stimulated NFAT transcription 

to a lesser degree than it stimulated SRE transcription. There are some plausible reasons 

for the differential levels of activation. One possibility is that GPR56 can equally activate 

NFAT-RE and SRE-driven transcription, but truncated GPR56 is locked in a conformation 

that preferentially signals to SRE. Multiple conformational states that differentially activate 

downstream signaling pathways has been described for other GPCRs.112,113 This 

explanation is less likely as full-length GPR56 also activated NFAT to a lesser degree than 

SRE; and would thus not be locked in to a particular conformational state. Another 

possibility is that GPR56 does not directly activate NFAT, but NFAT activation occurs 

downstream of proteins that are transcribed under SRE activation. One of the genes 

transcriptionally activated by the SRF is FHL1.98,114 FHL1 is a co-activator of NFAT 

transcription in the muscle.35 It is possible that GPR56 activation of NFAT-RE was not 
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direct, but instead through the induction of FHL1 transcription following activation of the 

SRF. Increased FHL1 expression was seen in GPR56 knockout myoblasts, but not in GPR56 

silenced C2C12 cells, and this inconsistency may also be explained by this relationship.  

Our findings not only tie GPR56 to the transcriptional regulation of myoblast 

differentiation, but possibly also to cell-surface drivers of myoblast differentiation. 

Previously published data showed that GPR56 associates with the tetraspanins CD9 and 

CD81.72 These cell-surface molecules are involved in the early differentiation and fusion 

phases of myoblast differentiation.51 The CD9 expression pattern peaks at day one of 

differentiation in C2C12 cells,51 similar to GPR56. In muscle cells, loss of CD9 or CD81 

delays C2C12 differentiation but does not affect the expression of myosin heavy chain 

during later differentiation.51 This phenotype is similar to the phenotypes seen in our study 

of decreased fusion during early differentiation of both C2C12s and primary mouse 

myoblasts lacking GPR56. We also saw that during regeneration, MyoD and myogenin 

expression were delayed, but embryonic myosin heavy chain expression was not. These 

similarities in the phenotypes of molecular changes, along with the previous demonstration 

of interactions between GPR56, CD9, and CD81,72 suggest that GPR56 in myoblasts may act 

in a signaling complex with CD9 and CD81 during early myoblast differentiation. 

Although we did not directly test for the activity of ligands on GPR56, our studies 

can shed some light on ligand activation of GPR56. Our luciferase assays suggest that 

different ligands might activate GPR56 for downstream signaling to different pathways. 

Increasing amounts of transfected, full-length GPR56 receptor fully saturated SRE 

signaling, as seen by the ability of it to match the maximal levels of activity achieved by 

constitutively active GPR56. The same amounts of full-length GPR56 receptor, however, 
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were unable to activate NFAT-RE signaling. The difference in the ability of full-length 

GPR56 to activate SRE and NFAT-RE suggests that in the case of NFAT-RE, the full 

activation of GPR56 was not achieved. We had earlier suggested that NFAT transcriptional 

activity could be downstream of SRE activity, thus explaining its overall decrease in 

luciferase activation. However, this explanation does not fully explain why increasing 

amounts  of full-length GPR56 would not be able to eventually saturate NFAT signaling. One 

explanation, which does not exclude our previous hypothesis, is a single ligand does not 

activate GPR56 for downstream signaling to both pathways. In our model system, the 

putative ligand for NFAT signaling may have been present in lesser amounts, or may have 

had to compete with the ligand for SRE signaling. This duality in ligand activation may have 

implications for the function and mechanism of action of GPR56. Although SRE and NFAT-

RE activation overlap during differentiation, the phases of commitment to differentiation 

and early differentiation that lead to fusion require distinct sets of proteins. The timing and 

control of these different sets of proteins that are activated by GPR56 signaling may be 

controlled by distinct activators. Regardless of the mechanism, NFATc2 and NFATc3 

expression were significantly reduced in GPR56 knockout muscle, supporting the 

conclusion that the NFAT pathway is likely a downstream target of GPR56 signaling. 

There is some evidence for GPR56 having multiple ligands. Previous reports have 

identified two GPR56 ligands, tissue transglutaminase 2 (TG2)66 and collagen III.102 TG2 is a 

singular protein that switches between functioning as a transglutaminase or a GTPase.115 

Its role in muscle has not been well studied, although it has been localized in motor 

endplates in the diaphragm.116 Increases in its expression have also been found in the 

idiopathic myopathies.117 These studies show TG2 in adult muscle rather than developing 
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muscle or differentiating myoblasts, which is when GPR56 is expressed. Thus, TG2 

expression in these cases is less likely to be related to GPR56 function. Nevertheless, TG2 

has been shown to transamidate RhoA, allowing it to bind to another GPCR, serotonin.118 As 

RhoA has been repeatedly shown to be activated by GPR56,61,68,102 it is possible that 

transamidation of RhoA by TG2 is also a mechanism for increasing GPR56 activation of 

RhoA. Whether TG2 can also modify RhoA-GPR56 interactions or act as a ligand to activate 

GPR56 signaling in muscle remains to be determined.  

On the other hand, collagen III activation of GPR56 and its subsequent signaling 

have a greater possibility for relevance as a mechanism of activation in the muscle. 

Collagen III binding to GPR56 leads to activation of RhoA in neural cells,102 and the 

activation of RhoA by GPR56 has also been established in other studies of neural 

progenitor cells68 and HEK cells.61 During the in vitro differentiation of avian myoblasts, 

collagen III expression increases in differentiating myocytes119 in a pattern which is similar 

to that of GPR56 expression. Collagen III expression was also found to increase in human 

fetal muscle cells undergoing differentiation.52 Although we did not identify the ligand for 

GPR56 signaling in the muscle, collagen III is a likely candidate. Our data demonstrating 

different saturation levels of SRE and NFAT-RE signaling also suggest that during the 

phases of differentiation, distinct ligands might be able to activate GPR56 signaling, 

resulting in the activation of different downstream cytoplasmic and nuclear proteins. 

Clearly, the in vitro loss of GPR56 negatively affected the ability of myoblasts to 

efficiently differentiate and fuse. However, the effects of GPR56 loss did not strongly affect 

the development of mouse muscle. The regeneration of GPR56 knockout muscle was not 

significantly altered when using the morphology of the tissue as a benchmark, although the 
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gene expression of Myf5, MyoD, and NFATc2 were delayed. The overall mild phenotype in 

vivo suggests that GPR56 could be one of many factors that promote commitment and 

differentiation and that the redundancy in function with other genes can compensate for its 

loss. Myf5 is known to be able to compensate for loss of MyoD,106,107,120 and the delayed but 

emphatic increase during regeneration may act as a compensatory mechanism for the less 

efficient expression of MyoD expression. This hypothesis is supported by our findings that 

despite a significantly decreased ability of the GPR56 knockout myoblasts to fuse at early 

time points, the cultures were able to catch up in myotube size by later time points (D6). In 

addition, the inability to fuse was more obvious in the GPR56-silenced C2C12 cells, as 

opposed to the GPR56 knockout myoblasts. Because the knockout myoblasts develop in a 

GPR56-null environment and were isolated from postnatal muscle, it is possible that they 

developed mechanisms to compensate for the loss of GPR56. For example, increased Myf5 

expression could contribute to the increased proliferative capacity of knockout myoblasts 

compared to wildtype ones, as Myf5 expression is associated with myoblast proliferation in 

vitro and in vivo.15,121 These compensatory mechanisms, such as the upregulation of 

proteins that served a similar function to GPR56, would not have had time to develop in  

GPR56-silenced of C2C12 cells, and this hypothesis could be one reason for why the 

phenotype of silenced cells was more severe than in the knockout cells. Overall, GPR56 

promotes commitment to differentiation and early fusion, but it is one of many factors that 

have this function and its loss does not lead to major muscle developmental defects.  

The SRF and NFAT family member transcription factors promote myofiber 

hypertrophy during the late phases of myofiber development. Despite seeing decreased 

myotube size in GPR56 knockout myoblast cultures, we did not see an effect on myofiber 
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size in either uninjured or regenerating GPR56 knockout muscle. A noted decrease in MyoD 

expression could be indicative of decreased SRF signaling.22 We also found decreased 

NFATc2 and NFATc3 levels in the GPR56 knockout mouse muscle, which are involved in 

fiber type specification. In skeletal muscle, there are four major fiber types that can be 

classified by their metabolic status and myosin heavy chain contractile abilities.39 Type I 

fibers have slow myosin heavy chains and use oxidative metabolism. Types IIA, IIX, and IIB 

have fast myosin heavy chains; IIA uses oxidative metabolism while IIX and IIB use 

glycolytic metabolism. Various intrinsic and extrinsic factors lead to the specification of, 

maintenance of, and switching to a particular fiber type.40 In vivo RNA silencing of different 

NFATs shows that fiber type specification is influenced and dictated by different 

combinations of four isoforms of NFAT (c1 through c4).38 All four NFAT isoforms studied 

play roles in maintaining the Type I fiber type, whereas only NFATc2 through NFATc4 are 

required for Type IIA and Type IIX fibers, and only NFATc4 for Type IIB fibers. In our study, 

despite decreases in NFATc2 and NFATc3 expression in GPR56 knockout mice, we did not 

see effects in GPR56 knockout mouse fiber type specification. These findings are not 

entirely surprising, as knockouts of various isoforms of NFAT seem to have slight to no 

effect on fiber type specification.34,97 Thus, GPR56 signaling through SRE and NFAT is likely 

to be important only during the early stages of fusion. 

Overall, despite a clear role for GPR56 in myoblast commitment and differentiation, 

there are several reasons for why its loss may not severely impact muscle function in BFPP 

patients. GPR56 expression is very tightly regulated and restricted to early differentiation 

in both myoblasts in culture and regenerating muscle in vivo. It has been suggested that 

cell-surface molecules that have roles in myoblast differentiation have less severe 
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phenotypes when knocked out in mice, compared to the loss of cytoplasmic factors that 

may integrate signaling from several cell surface molecules, due to redundancy in their 

functions.47 In addition, although the functions of α-dystroglycan and GPR56 seem similar, 

the relative importance of their ligands may differ in the brain versus the muscle. A clear 

role for the importance of α-dystroglycan binding to laminin has been established in both 

tissues.122–124 Loss of GPR56, as well as loss of its ligand collagen III, has been shown to 

result in the neuropathies BFPP and Ehlers-Danlos Syndrome, respectively.76,125 The 

similarity in cortical malformations and pial membrane breaks seen in these diseases77–

79,125 show that both laminin and collagen III are crucial extracellular matrix components 

necessary for neural adhesion and migration during development. While laminin is a major 

component of the muscle basal lamina,126 collagen III is expressed only transiently.119 

Additionally, α-dystroglycan is a crucial membrane component of the dystrophin-

associated protein complex that is expressed in both developing and mature muscle, 

whereas GPR56 is expressed transiently. It is likely that while in the brain, α-dystroglycan 

and GPR56 serve similar functions, they represent completely different pathways that are 

used separately in the muscle. Thus, while we see a role for GPR56 during muscle 

development, its loss does not result in the same muscular dystrophy phenotype as results 

from the loss of α-dystroglycan glycosylation. 
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In this work, we sought to better understand how to enhance the process of myoblast 

fusion in an effort to improve therapies for the muscular dystrophies. In the first part of our 

work, we studied the effect of carbamylated erythropoietin (C-EPO), a drug that showed 

promise in promoting satellite cell proliferation and fusion, on the treatment of a mouse 

model of Duchenne muscular dystrophy (DMD), the mdx mouse. In the second part, we 

examined the role of the G-protein coupled receptor (GPCR) 56 (GPR56) in muscle cell 

differentiation and fusion and the development of a muscle phenotype in bilateral 

frontoparietal polymicrogyria (BFPP).  

 

Advances in Our Understanding of Myoblast Differentiation and Fusion 

 In our study of C-EPO, we found that the administration of C-EPO to mdx mice has 

histological benefits in the short term, but not in the long term. As we found, compounds or 

biologics that show promise in inducing fusion in vitro may not work in in vivo settings. C-

EPO had been shown to help in the healing of many different types of diseases involving the 

development of an inflammatory and fibrotic response, but did not show an effect in the 

case of DMD. Clearly the use of C-EPO as a therapy is highly dependent on the disease for 

which it is being used, and the failure of it to be clinically significant in the case of DMD 

highlights the need to test drugs in individual disease models. The possibilities of further 

clinical uses of C-EPO are discussed in the next section. 

 Our study of GPR56 added to our understanding of the process of muscle cell 

differentiation and fusion by expanding our knowledge of cell-surface regulators that 

transmit signals through cytoplasmic proteins and nuclear transcription factors. Cell 

surface receptors are amenable to therapies that deliver drugs or protein ligands through 
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the bloodstream, thus making them good therapeutic targets. We demonstrated that GPR56 

promoted myoblast differentiation and fusion. GPR56 signaling likely promotes the activity 

of SRF and NFAT factors during differentiation. However, its transient expression limits its 

action to differentiation and not the later phases of myofiber growth and myofiber type 

specification.  

 

Implications of Our Studies on Developing Therapies For Clinical Use 

Lessons From Testing the Administration of C-EPO in Mdx Mice 

 Our trial of C-EPO as a possible treatment for muscular dystrophy showed that for 

the dosages tested, C-EPO was not an effective therapeutic drug. A clear understanding of 

the causes of success and failure of our study can give insight into the usefulness and 

approach of using C-EPO as a therapy for muscle diseases. We hypothesize that the 

duration of drug administration plus lack of targeting of the drug specifically to skeletal 

muscle resulted in the early improvement that was later lost. The short-term improvement 

of muscle histology in our study indicated that the EPO pathway did have some capacity to 

promote myoblast fusion in skeletal muscle. In the long-term, systemic administration of C-

EPO allowed it to interact with the hematopoietic system, leading to the possible 

development of anemia; thus, a possible reduction in oxygen delivery to the muscle could 

have reversed C-EPO’s stimulatory effects on myoblast fusion. If we were able to target the 

stimulation of erythropoietin signaling to the muscle only, it may have allowed for the 

growth of the muscle in the long-term. 

The indications of efficacy in the short term suggest that C-EPO may be used in other 

ways to aid in muscle repair. For example, outside of the muscular dystrophies, muscle 
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degeneration and necrosis also occurs in cases of traumatic muscle injury. Administration 

of C-EPO may aid in this case, where the need for muscle regeneration is acute. Indeed, 

another group has demonstrated that EPO promotes the recovery of rat muscle after crush-

induced injury.1,2 In these studies, a single intraperitoneal or intramuscular injection of 

EPO was administered directly after the muscle was crushed. Erythropoietin was detected 

in the blood for only one day after injection, demonstrating quick clearance.  They noted 

increases in muscle strength with decreases in fibrosis marked by collagen deposition, as 

well as increased satellite cell proliferation and decreased apoptosis, compared to saline-

treated mice. Thus, their work validates the short-term use of EPO or C-EPO as a drug that 

can increase satellite cell proliferation and decrease fibrosis in regenerating muscle. 

Clinically, the type of crush injury modeled in these rats parallels muscle injuries in 

patients that are due to acute trauma and may aid in muscle regeneration and healing in 

these cases. 

 Another short-term application of EPO stimulation of myoblast fusion could be in 

the case of myoblast transplantation. We had initially proposed that if C-EPO demonstrated 

efficacy for the alleviation of muscular dystrophy, then it could also be tested for use in 

stimulating the fusion of transplanted myoblasts. Several groups have taken this approach 

with promising results.3–5 Two groups tested whether administration of EPO or C-EPO 

could improve the engraftment of myoblasts into the heart. In the first attempt, 

Chanséaume et al. induced myocardial infarction in the rat heart, then two weeks later 

administered a single bolus of EPO one day prior to the injection of skeletal myoblasts.3  

They found that EPO did not improve cell survival and engraftment. A following study by 

Robey et al. used a slightly different approach and found that EPO and C-EPO 
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administration did improve cell engraftment.4 They tested the ability of C2C12 skeletal 

myoblasts and human embryonic cell-derived cardiomyocytes to engraft in a rat model of 

myocardial infarction. In their case, they found that C-EPO (and EPO) increased the 

engraftment and proliferation of both cell types. They ascribed the differences in their 

results from the previous study to several differences in their methodology. For one, the 

injection of cells was done immediately after the creation of an infarct, rather than two 

weeks afterward. A more important difference, though, was that they pre-treated the cells 

by incubating them with C-EPO for thirty minutes, as well as administered one dose of C-

EPO to the rats prior to injection and another one day after the injection. They postulated 

that the priming of the cells and animals with C-EPO prior to injection was crucial to the 

improvement of cell survivability. Thus, their experiment supports the idea that a short-

term dose of C-EPO may improve the engraftment of myogenic cells. 

 These studies took advantage of EPO’s proliferative and anti-apoptotic effects on 

myoblasts while minimizing overstimulation of the hematopoietic system by using only 

short-term administration of EPO. The negative effects of overstimulation of the 

hematopoietic system can be avoided, however, by a strategy that specifically targets the 

skeletal muscle. Jia et al. found a way to promote long-term stimulation of EPO signaling in 

the skeletal muscle by transducing transplanted myoblasts with a mutant EPO receptor 

(tmEpoR) that had enhanced activity.5 In a model that is directly relevant for treatment of 

muscular dystrophy, Jia et al. used an injection of EPO to stimulate the engraftment of 

C2C12 cells into the muscle of wildtype and mdx mice.5 They found that compared to the 

administration of EPO to the mice, the forced expression of tmEpoR in the transplanted 

myoblasts resulted in a greater engraftment. The combination of both approaches resulted 
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in the greatest engraftment. This study demonstrated that stimulating EPO pathways in 

myoblasts does contribute to increased cell survival of myoblasts transplanted into skeletal 

muscle. 

The question also of whether a drug that increases the fusion of endogenous 

satellite cells would be beneficial to the treatment of DMD remains unanswered; the initial 

increase in satellite cell division may lead to premature exhaustion of the satellite cells in 

DMD patients. The use of C-EPO may be more beneficial in muscle diseases where 

exhaustion of satellite cells is not a problem. For example, many patients with myopathies 

suffer from hypotonia; growth of the muscle by the additional fusion of myoblasts may 

improve the condition of patients with these diseases. Indeed, induction of muscle 

hypertrophy is being tested as a therapy for some myopathies.rev in 6 Additionally, C-EPO’s 

promotion of proliferation and cell survival may aid in the treatment of myopathies for 

which satellite cell apoptosis is an issue..7,8 

In sum, when developing a therapy, consideration of the dosing regimen, the organs 

affected, and the disease etiology are crucial to its success. Many factors have been 

identified that can promote the fusion of myoblasts. When considering their use in therapy, 

future efforts should take note of these considerations. In cases of systemically 

administered drugs or biologics, the off-target effects on other organs become increasingly 

important as time of use of the drug increases. 

 

Lessons From Studying the Effects of Loss of GPR56 on Muscle Development 

 Bilateral frontoparietal polymicrogyria is a congenital disease with striking defects 

in brain development.9–11 These defects include mental retardation, motor developmental 
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delay, seizures, and defects in the brainstem and cerebellum.10  In the dystroglycanopathies 

Walker-Warburg syndrome, Fukuyama congenital muscular dystrophy, and Muscle-Eye-

Brain disease, patients have a brain phenotype defined as “cobblestone-like.” Several 

studies have noted the striking similarities in phenotype between BFPP and the 

cobblestone-like cortexes of patients with these dystroglycanopathies,9,10,12 even noting 

that in the cases of BFPP and Walker-Warburg or Muscle-Eye-Brain disease, differential 

diagnosis based on neuroimaging is extremely difficult.9 These similarities suggest that 

these diseases have shared mechanisms of pathology.  

We found that despite the shared phenotype in the brain, GPR56 and α-dystroglycan 

have markedly different roles in the muscle. Although studies showing GPR56 binding to 

collagen III suggest that like α-dystroglycan, GPR56 is an extracellular matrix binding 

protein, the differences in their expression and function suggest that they are actually 

involved in different pathways. GPR56 is transiently expressed during muscle 

differentiation, while α-dystroglycan is integral to maintaining the integrity of the 

sarcolemma in both developing and mature muscle. Additionally, the relative importance of 

their ligands may differ. In both the brain and muscle, laminin is a major component of the 

basal lamina.13,14 During cerebellar and cortex development, collagen III greatly increases 

in expression in the pial membrane15 and its presence is important for the attachment of 

radial glial endfeet.16 In the muscle, collagen III is expressed mostly during development 

and regeneration.17,18 Hence, we believe that GPR56-collagen III and α-dystroglycan-

laminin have distinct functions in the muscle. Others have also expressed this belief.16  

 Ultimately, because the causes of the dystroglycanopathies and BFPP are in 

separate biochemical pathways, a therapy that can aid one may not be able to aid the other. 
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This dichotomy between phenotype and genetic cause highlight the need to identify and 

study the genetic causes of different diseases, despite shared clinical phenotypes. Only after 

understanding the genetics can therapies for specific diseases be intelligently developed. 

 

Future Directions 

Developing Therapeutics for Muscular Dystrophies 

 Many groups are pursuing different strategies in the search for therapies to treat the 

muscular dystrophies. We found that one drug, C-EPO, was not well-matched for the 

treatment of DMD at the dosages we tested. However, we suggest that C-EPO may be 

beneficial in other applications for the therapy of muscular dystrophy, or in different 

muscle diseases or injury conditions. Many groups are already investigating these 

approaches.1–4 In the case of DMD, a fundamental question remains of whether the 

stimulation of endogenous satellite cells would aid or exacerbate the disease by 

prematurely exhausting the satellite cells. Future studies using different methods of 

satellite cells stimulation of proliferation and fusion that do not affect other organ systems 

would aid in answering this question. 

 

Understanding the Process of Muscle Cell Differentiation and Fusion 

 One of our goals in studying GPR56 was to find a cell-surface molecule that is 

sufficient to induce muscle cell fusion as a way to increase the efficacy of myoblast 

transplantation in DMD. However, most of our studies focused on the role of GPR56 as 

determined by its loss, rather than its overexpression. We found that GPR56 promotes 

differentiation and fusion, but we did not determine whether its overexpression would 
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increase fusion. We also found, as others had seen, that truncated GPR56 greatly activates 

downstream signaling compared to full-length GPR56. Early pilot experiments have 

suggested that the overexpression of GPR56 in myogenic cells could promote greater 

fusion of those cells; overexpression of truncated GPR56 may be able to do so to an even 

greater degree. On the other hand, as we have seen with the C-EPO study, too much 

expression of a promising agent may be detrimental. This may also be the case with the 

constitutive overexpression of GPR56 in myoblasts. GPR56 expression is normally very 

tightly controlled during myoblast differentiation, with it being upregulated during only a 

small window of time between myoblast commitment and early myoblast fusion; it is then 

quickly downregulated. Likewise, the activation and later inactivation of one of its 

downstream messengers, RhoA, are necessary for myoblast fusion to proceed.19 It is likely 

that GPR56 would also require eventual downregulation for further growth of the 

myofibers. In the case of therapy, it may be useful to investigate whether the transient 

upregulation of GPR56, rather than its permanent overexpression, would improve the 

engraftment of myoblasts. Alternatively, the identification of a soluble ligand for GPR56 

could improve the engraftment of myoblasts as has been seen with EPO. 

 Additionally, from our in vivo studies on GPR56 knockout animals, it is clear that 

other proteins can compensate for the function of GPR56. One strong possibility for 

compensatory proteins would be other GPCRs. As we had noted, there is evidence that the 

different domains of GPR56 can interact with other GPCRs.20 In the microarray screen 

performed previously in our lab, other GPCRs were upregulated during early 

differentiation and continually expressed through late fusion.21 By Western blotting, we 

had seen cross-reactivity of the mouse GPR56 antibody with another protein that was not 
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GPR56, thus, it could be similar to GPR56. This cross-reactive protein was seen in lysates of 

differentiating myogenic cells from wildtype, GPR56 knockout, and GPR56-silenced C2C12 

myoblasts. Additionally, GPR56 was found to act in a complex with CD9 and CD81,22 which 

are scaffold proteins that have been implicated in myoblast fusion23 as well as the fusion of 

other cell types.rev in 24 Tetraspanins have been proposed to be molecules that act as 

organizers of lipid microdomains,25 so it is possible that knocking out the tetratspanins 

CD81 or CD9 in conjunction with the loss of GPR56 would remove other proteins that act 

together with GPR56 and support its function. Tetraspanins act in many different 

complexes defined by a combination of factors, however, so knockouts of one tetraspanin 

or another may also knock out other functional complexes not related to GPR56. Future 

studies can investigate these possibilities in discovering protein partners or compensatory 

partners for GPR56 function. 
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Introduction 

 Skeletal muscle can suffer from many signs of distress or disease, including atrophy, 

necrosis, degeneration, and inflammation. One rare sign that has been found in a wide 

variety of muscle conditions and for which a distinct mechanism for its development has 

not been determined is the tubular aggregate. Tubular aggregates were first described in 

detail by Engel et al. in 1970.1 After examining 1500 biopsies from various patients, he 

found 24 male patients that presented with double-walled tubules in the cytoplasm of their 

skeletal muscle fibers. The patients with the most aggregates had hypo- or hyperkalemic 

periodic paralysis; of the other patients, one had porphyria cutanea tarda, and the rest 

were heavy drug users. Two other groups performed similar surveys of muscle biopsies 

from their clinics, and one group found patients with tubular aggregates with hypo- or 

hyperkalemic periodic paralyses, myotonia, myopathies, and undiagnosed muscle 

pain/cramps.2 The other group found a predominance in patients with myalgia and 

associated diseases.3 

 Tubular aggregates have been found in many other human diseases or conditions. 

These include the gyrate atrophy of the choroids and retina and hyperornithinemia,4 

Fukuyama type congenital muscular disease,5 non-diagnosed, apparently inherited 

neuromuscular diseases6-8, and undiagnosed muscle weakness, stiffness, and or pain9-11. 

They have been predominately found in male patients, although occasionally in females as 

well. They are also almost exclusively found in Type II fibers (one case reported findings in 

Type I fibers).12 Table A1.1 shows a summary of some of the literature reporting tubular 

aggregates in humans. The diseases in which tubular aggregates are most commonly found 

include the periodic paralyses and inherited myopathies (both autosomal dominant and  
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Table A1.1. Reports of tubular aggregates in humans 

Disease/ condition Sex Age 
(yr) 

Muscle Tubular Aggregate description 
and related phenotypes found 

Ref 

hypo/hyperkalemic 
periodic paralysis, 
porphyria cutanea tarda, 
chronic drug users 

M ?  Double walled in Type II fibers, 
24 of >1500 biopsies 

1 

Hypo/hyperkalemic PP, 
myotonia congenital, 
inflammatory myopathies, 
muscle pain/cramps  

M ? ? 15 of 1500 biopsies 2 

Myalgia, Myalgia+ALS, 
Myalgia+neuropathy. ALS, 
congenital myopathy, 
muscle weakness 

M, 
F 

? biceps 
or quad 

Double walled 
19 of 3000 biopsies 

3 

Gyrate atrophy or the 
choroids and retina and 
hyperornithinemia 

M, 
F 

? ? Double walled in Type II fibers 
 

4 

Fukuyama type congenital 
muscular dystrophy 

M, 
F 

.75 - 
~2 

Biceps Honeycomb 5 

Dominant neuromuscular 
disease with mild 
progressive proximal 
weakness 

M, 
F 

10- 59 biceps 
or quad 

Double walled in Type I and Type II 
fibers 
Positive for Fast SR Ca-pump 
protein, calsequestrin (weak) 

6, 
12 

Dominant myopathy (late 
onset, muscle pain, 
cramps, stiffness) 

M 86, 
~60’s? 

 Three types of tubules? 7 

Three generations with 
elevated CK, myopathy 

M 19, 42, 
71 

vastus 
lateralis, 
vastus 
lateralis, 
deltoid 

Double walled 
 

8 

‘myasthenic myopathy,’aka 
limb-girdle myopathy  

M 31  Double walled in Type II fibers 
 

9 

Myopathy: pain and 
stiffness in legs induced by 
exertion 

M 42 vastus 
lateralis 

Double walled 
Positive for HSP72, tubulin,  
Negative for desmin, ubiquitin  

10 

Case study: depression, 
complaints of leg pain, 
weakness and numbness 
on the left side 

M 42 Quad Single walled 
Also has cylindrical spirals 

11 

Various patients (mostly 
PP, one myalgia) 

M, 
F 

2.5 - 
30 

Various Positive for SERCA-2, GRP78, GRP94, 
dysferlin, gamma-sarcoglycan 

13 
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Table A1.1 (Continued).  

Disease/ condition Sex Age 
(yr) 

Muscle Tubular Aggregate description 
and related phenotypes found 

Ref 

Patients with myasthenic 
features, autosomal 
dominant (3), autosomal 
recessive (1), sporadic (2) 

M, 
F  

40s - 
50s 

Deltoid Type I and Type II,  
Positive for SERCA1, SERCA2, 
Calsequestrin, Sarcalumenin, 
Triadin, RyR1/2, DHPR, emerin, no 
COX-2 or COX-7 

14 

Not stated ? ? Quad Positive for some, but not all 
mitochondrial proteins 

17 

Alcoholics + chronic liver 
disease 

M, 
F 

47, 52 Rectus 
femoris 

Double walled in Type II fibers 
 

24 

Acute alcoholic 
intoxication 

 34  48 hours after hospitalization: yes 
7 days later: no 

25 

 

autosomal recessive), so it is believed that their formation does include a genetic 

component.  

Because of the diversity of diseases and conditions in which tubular aggregates are 

found, and the rarity with which they are found, there is controversy as to their pathology. 

Based on their morphology, Engel et al. proposed that tubular aggregates were outgrowths 

of the lateral sacs of the sarcoplasmic reticulum.1 Many of the diseases and conditions 

feature disrupted metabolism; therefore the overproliferation of the sarcoplasmic 

reticulum (SR) as a compensatory mechanism has been proposed as one hypothesis for 

their development. This hypothesis has been supported by the finding that tubular 

aggregates sequester increased levels of Ca2+.12 However, the inner tubules seen in the 

aggregates are not a normal feature of the SR. Due to the detection of mitochondrial 

proteins in tubular aggregates, some believe that there is a mitochondrial component. 

Screening for proteins found in mouse and human tubular aggregates has revealed 

presence of endoplasmic/sarcoplasmic reticulum proteins (SERCA ATPases,13-16 ryanodine 
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receptor,14 calsequestrin,6,14 glucose response proteins GRP78 and GPR94,13 

sarcalumenin14), mitochondrial proteins (bcl116, NADH, succinate dehydrogenase),17 

sarcolemmal proteins (dysferlin and -sarcoglycan),13 and cytoplasmic/nuclear 

proteins(HSP72, tubulin, emerin).10 Most, if not all, of the studies that have looked for the 

presence of sarcoplasmic reticular proteins have found them. 

 Studies in mice and rats have shed some light on the molecular basis of 

development of tubular aggregates (Table A1.2). Their development is age-related in 

mice18,19,14,15 (although the same does not seem to be true for humans), and they can occur 

in inbred, wildtype strains, but were not detected in outbred strains.15 In mice, the 

development of tubular aggregates is limited to males and type IIB fibers. The 

predominance of tubular aggregates in males is likely attributable to the balance of 

testosterone and other sex hormones. Castration of male rats that normally develop 

tubular aggregates eliminates the development of aggregates.19,20 Administration of 

testosterone to castrated males and females results in development of tubular aggregates.20 

Knockouts of three genes, caveolin-2,21 myostatin,22 and creatine kinase,23 have been 

attributed to development of tubular aggregates. 

In our investigation of GPR56 knockout mice, we found that GPR56 knockout mice, 

and heterozygote male mice to a much lesser extent, had tubular aggregates, while females 

and wildtypes did not. However, investigations of our colony two years later (which was 

founded by three mice) showed tubular aggregates in both wildtype and GPR56 knockout 

mice. As the phenotype of tubular aggregates occurred in both wildtype and GPR56 

knockout muscle at this later time point, we were unable to equivocally attribute the 

presence of tubular aggregates to the loss of GPR56 expression. 
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Table A1.2. Reports of tubular aggregates in rats and mice 

Genotype/ 
disease/ 
condition 

Sex Age Muscle Tubular  
Aggregates and related 
phenotypes 

Ref 

MRL +/+ 
(autoimmune) 

M 1 mo – 
2 years 

GA Up to 70%,  
Mostly Type II, some double 
walled, at outer perimeter 

19 

MRL +/+ M 1 mo – 
2 years 

Soleus Very rare 19 

MRL +/+, 
castrated at 1 mo 

M 6 mo GA very rare 19 

MRL +/+ F 1 mo – 
2 years 

GA, Soleus No 19 

MRL +/-, MRL 
lpr/lpr, 
BXSB/MpJ, C3H 
HEJ 

M/
F 

1 mo – 
2 years 

GA, soleus No 19 

BALB/c, SJL/J, 
A/J 

M 1 mo – 
2 years 

GA, soleus  19 

C57BL/6 M 5 mo 
and on  

GA, plantaris, 
TA, Quad, 
sternomastoid 

10% at 5 months, 50% at 10 
months 
SERCA1 ATPase+ 
Single walled 

15 

DBA2, Balb/c, 
129 SV, 129O1a 
(inbred strains) 

M ? ? Yes 
SERCA1 ATPase+ 
Single walled 

15 

OF1, NMRI, ICR 
(outbred strains) 

M ? ? No 15 

C57BL6/L, NMRI M 2 mo – 
19 mo 

TA (EM), GA 
(IHC) 

Muller Ic (single walled) 
Type IIB, IIX 
Express SERCA 1, RyR1, 
calsequestrin, sarcalumenin 

14 

SAMP8 M 6 mo 
(not at 
2 mo) 

Quad Yes. By EM did not look to be 
very frequent  
Higher plasma testosterone, 
possibly higher CK 

18 

129 ReJ dy+/- 
(hets), but not wt 
or ko 

M 1-3 mo GA, soleus, 
quad 

5% of fibers 
Type II 
Single walled 

26 

Isolated muscle 
incubated in 
anoxic conditions 

? ? EDL, soleus Double-walled 
Yes in EDL, not in soleus 

27 
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Table A1.2 (Continued). 

Genotype/ 
disease/ 
condition 

Sex Age Muscle Tubular  
Aggregates and related 
phenotypes 

Ref 

Cav-1-/-, Cav-2 -
/- 

M 3 mo GA Yes. Also see mitochondrial 
abnormalities, and delayed 
regeneration 

21 

Cav-3 -/- M 3 mo GA No 21 
Mstn -/- M   Yes, also increase in Type IIB fibers 22 
CK-/- 
(mitochondrial 
and cytosolic) 

M ? GA-soleus-
psoas 

Yes. 
Concurrent changes in metabolic 
enzymes. 

23, 
28 

CK-/-  
*WT were not 
examined 

M 3-5 mo GA Express bc1 (mitochondrial), 
SERCA1 by immunogold in EM, note 
that TAs were not very distinct 

16 

Transgenic 
dominant α-
tropomyosinslow 

M 1 – 12 
mo 

Superficial 
GA 

Yes. Concurrent with other signs of 
nemaline myopathy: rod formation  

29 

  

Methods 

 

Sample preparation for electron microscopy 

GPR56 wildtype, heterozygote, and knockout (B6N.129S5-Gpr56tm1Lex/Mmcd) 

gastrocnemius and soleus muscle were dissected and minced into approximately 1 mm x 1 

mm pieces. The pieces were fixed in 2% formaldehyde, 2.5% glutaraldehyde in 0.1 M 

sodium cacodylate buffer, pH 7.4, overnight at 4oC. Sample preparation after fixation, Epon 

embedding, copper staining, and ultrathin sectioning of the tissue were performed by 

Maria Ericsson, Louise Trakimas, and Elizabeth Benecchi at the Harvard Medical School EM 

Facility according to standard methods. Sections were imaged on a Tecnai G2 Spirit 

BioTWIN electron microscope by Dr. Michael Lawlor. 
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H&E staining 

Ten micron sections of muscle tissue were sectioned onto charged glass slides. 

Tissue sections were fixed for 3 min in 70% ethanol, 3% formalin, 5% glacial acetic acid, 

and then rinsed in water. Slides were then dipped in hematoxylin (Harleco #638) for at 

least 5 min, rinsed in tap water, and differentiated in acid alcohol (0.3% HCl, 70% ethanol). 

Hematoxylin was then allowed to blue in Scott’s Tap Water (0.2% NaHCO3 w/v, 2% 

MgSO4·7H2O w/v) for 1 hr to overnight and rinsed in tap water. Slides were then stained in 

Eosin Y alcoholic (Sigma #HT110116) for 2 minutes, dehydrated in an ethanol series (50%, 

70%, 80%, 90%, 100%, 100%), cleared in Histoclear-II (Electron Microscopy Sciences 

#64111-01), and mounted in Cytoseal. (Richard-Allan #8310-16). Tissue was imaged using 

a Nikon E1000 microscope with a SPOT Insight Color 3.2.0 camera using SPOT 4.5.9.9 

software (Diagnostic Instruments). 

 

Toluidine blue staining 

Ultrathin or 10 µm sections were fixed in 100% methanol for 3 min, and then dried 

on a hot plate set to low temperature. Toluidine blue solution (1% toluidine blue in 1% 

sodium borate for ultrathin sections, 0.01% toluidine blue in 0.01% sodium borate for 10 

µm sections) was dropped onto the slide and stained for 30 sec on the hot plate. The stain 

was rinsed off with water, the slides dried, and sections were mounted in Cytoseal. 

 

Myosin heavy chain staining 

Ten micron tissue sections were fixed with 4% PFA in phosphate buffered saline 

(PBS) for 15 min and permeabilized with 1% Triton X-100. After washing with PBS, 
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sections were blocked with blocking buffer (10% FBS/0.1% Triton X-100 in PBS) for 1 

hour at RT. Sections were then incubated with anti-myosin heavy chain type IIB (1:50, BF-

F3 DSHB developed by S. Schiaffino) in blocking buffer overnight at 4oC. After washing 3 

times with PBS, slides were incubated with secondary antibody (Dylight 488 or Dylight 

594, Jackson Immunoresearch) in blocking buffer for 1 hour at RT. After incubation, slides 

were washed 3 times with PBS, and mounted with DAPI Vectashield (Vector Labs #H-

1200). Slides were imaged on a Nikon E1000 using an Orca-ER camera (#C4742-95-12ER) 

and Openlab 5.5.0 software (Improvision). 

 

Results 

 

We found by H&E staining that knockout mice have acidic inclusions within the 

muscle fibers that increase and aggregate with age (Figure A1.1). To determine whether 

these inclusions were real or artifact, we first confirmed through H&E that older (5 month 

old) knockout mice, but not heterozygote mice (which were have been used as controls in 

other studies) had the inclusions (Table A1.3). We found that toluidine blue stained the 

inclusions more clearly (Figure A1.1), giving credence to the fact that these inclusions were 

real and not due to freezing or fixation artifacts. Using the older mice, we investigated the 

inclusions by electron microscopy and found that these inclusions were tubular aggregates 

(Figure A1.2). In agreement with previous studies, these appearance of aggregates were 

limited to males and type II fibers (Table A1.3, Figure A1.3). The incidence of tubular 

aggregates seemed to increase with age, where young knockout (3 mo) mice had no tubular 

aggregates, 5 month old mice had some, and 7 month old mice had aggregates in nearly all 
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Figure A1.1 

Figure A1.1. Tubular aggregates in male heterozygote and knockout GPR56 mice  

A, B: H&E Stain. C,D: Toluidine blue. Toluidine blue stains the tubular aggregates (arrows).  

 

the fibers. The incidence seemed to increase as well in heterozygote mice, although they 

were not first detected until 7 months of age by H&E. 
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Table A1.3: Mouse muscle samples, early investigations 

Sex Muscle Genotype Age 
(mo) 

ID Tubular Aggregates Detected 
 H&E Toluidine Blue EM 

M 

GA 

WT 5 218 - - No 

Het 

8 OH No - - 

7 
F No Yes, fewer ~12 total, some 

amorphous 
G - Yes, fewer Low, amorphous 

5 37 No - - 
3 YH No   

Ko 

12 OK Yes - - 

7 
E Yes Yes High 
H - Yes Low 
I - Yes High 

5 
36 Yes - - 

214 - - High 
3 YK No - - 

Sol 

Het 7 
F - - No 
G - - No 

KO 7 
E - - No 
H - - No 
I - - No 

F GA 
WT 5 237 - - No 
Het 5 235 - - No 
KO 5 216 - - No 

M: Male, F: Female, GA: Gastrocnemius, Sol: Soleus, -: Not surveyed  

 

Two years after our initial investigations, we wanted to quantify the number of 

tubular aggregates found in each genotype (rather than use the original qualitative 

assessments in number). By this time the colony had grown significantly from the initial 3 

founder mice. We examined 10 µM sections from the gastrocnemius muscle of wildtype and 

knockout mice of 3 months of age by toluidine blue staining. We found that tubular  
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Figure A1.2 

Figure A1.2. Inclusions in the muscle are shown to be tubular aggregates by EM 

A,B. KO gastrocnemius muscle, 7-month-old, with tubular aggregate. Scale bar = 2 µm.  C. 

KO gastrocnemius muscle, 7-month-old, with showing cross-section of tubular aggregate. 

Scale bar = 100 nm. D. HET gastrocnemius muscle, 5-month-old, with amorphous tubular 

aggregate. Scale bar = 500 nm.  
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Figure A1.3.Tubular aggregates occur in Type IIB fibers 

 A-C. H&E staining of myofibers showing inclusions. D-F. Toluidine Blue staining of 

myofibers showing aggregates in dark blue. G. MHC Type I staining (green), sequential to A 

and D. H,I. MHC Type IIB staining (red), sequential to B, E and C,F. Arrows point to MHC 

Type I positive fibers. Asterisks mark the same myofiber for a point of reference. 
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Figure A1.3 (Continued) 
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Table A1.4: Mouse muscle samples, after two years, toluidine blue staining 

Sex Muscle Genotype Age (mo) ID Tubular Aggregates Detected 

M GA 

WT 3 

1761 No 
1763 Yes 
1768 No 
1769 Yes 

KO 3 
1760 No 
1762 Yes 
1773 NO 

 

aggregates now existed in both wildtype and knockout mice, and no difference in the 

numbers of aggregates were noted between the genotypes (Table A1.4). 

 

Discussion 

 Our initial discovery of tubular aggregates presented an interesting phenotype. 

Tubular aggregates are a rare phenotype found in a wide variety of muscle conditions, and 

their composition and mechanism of development are still unknown. To date, only four 

genes, caveolin-2, myostatin, creatine kinase, and α-tropomyosinslow have been associated 

with the development of tubular aggregates. Finding more genetic models for the 

development of tubular aggregates would be important for being able to study both the 

development and the impact of tubular aggregates on muscle.  

 Our initial findings of tubular aggregates were consistent with other findings of 

tubular aggregates in muscle. They were confined to only male mice, and existed in only 

type IIB myofibers. It is not surprising that we detected no tubular aggregates in GPR56 

knockout soleus muscle, as it is made up of mostly Type I and Type IIA muscle fibers. 

However, as our colony grew in age, the tubular aggregates were detected at earlier ages (3 
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months) and also in both wildtype and knockout muscle, although not consistently. As 

tubular aggregates have also been found in the muscle of inbred colonies,15 we believe that 

inbreeding within our colony led to the eventual development of tubular aggregates in both 

wildtype and knockout muscle. This finding obscured the possible contribution that loss of 

GPR56 may have had in contributing to their development. 

 Due to the non-specific nature of the tubular aggregates and the dearth of 

knowledge on the significance of their development, we decided not to continue the 

investigations of their development in GPR56 knockout mice. 
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Supplementary Figures 
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Figure A2.1 

Figure A2.1. Verification of the precision of counting positively staining myofibers by 

automated technique 

Positively stained myofibers were counted through an automated technique. Sample 

sections were counted manually, and the counts compared by dividing the automatically 

counted fibers by the manual counts. Verification shows that in total, approximately 59% of 

the total fibers were counted, and 21% of Type IIA fibers were counted. However ,the 

overall proportion of fiber types remained the same. Therefore, the automated counts 

undercounted but maintained the same proportion of myofibers. 
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