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Abstract
This thesis presents four investigations into mechanical aspects of soft thin structures,

focusing on the effects of stochastic and thermal fluctuations and of material inhomo-

geneities.

First, we study the self-organization of arrays of high-aspect ratio elastic micropil-

lars into highly regular patterns via capillary forces. We develop a model of capillary-

mediated clustering of the micropillars, characterize the model using computer simula-

tions, and quantitatively compare it to experimental realizations of the self-organized pat-

terns. The extent of spatial regularity of the patterns depends on the interplay between

cooperative enhancement and history-dependent stochastic disruption of order during the

clustering process.

Next, we investigate the influence of thermal fluctuations on the mechanics of

homogeneous, elastic spherical shells. We show that thermal fluctuations give rise to

temperature- and size-dependent corrections to shell theory predictions for the mechanical

response of spherical shells. These corrections diverge as the ratio of shell radius to shell

thickness becomes large, pointing to a drastic breakdown of classical shell theory due to

thermal fluctuations for extremely thin shells.

Finally, we present two studies of the mechanical properties of thin spherical

shells with structural inhomogeneities in their walls. The first study investigates the effect

of a localized reduction in shell thickness—a soft spot—whereas the second studies shells

with a smoothly varying thickness. In both cases, the inhomogeneity significantly alters
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Abstract

the response of the shell to a uniform external pressure, revealing new ways to control the

strength and shape of initially spherical elastic capsules.
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Chapter 1

Introduction

Soft matter is the stuff of our everyday lives. From polymers to colloidal assemblies to liv-

ing cells, a wide range of systems derive their mechanical strength from weakly interacting

polyatomic building blocks rather than a rigid lattice of atoms, making them easy to de-

form. Mechanical softness may also arise because of geometry: aluminum foil, graphene,

and optical fibers are all flexible because of their small extent in one or more material di-

mensions. Soft structures display a host of interesting mechanical phenomena over a wide

range of materials and length scales — witness the complex wrinkling of a dried raisin, or

the wild thermal undulations of a red blood cell membrane. As a result of their mechanical

softness, they exhibit instabilities in which small changes in external forces induce large,

potentially discontinuous changes in shape. A variety of driving forces, such as capillary

and osmotic forces and notably thermal fluctuations, may be important for these defor-

mations, and the effects of structural nonuniformities, stochasticity and entropy can be

paramount. Understanding the mechanics of soft structures contributes to our fundamen-

tal understanding of natural structures that arise in biological matter, and also has impor-

tant applications in nanotechnology, enabling the design of new functional materials and

structures.
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Chapter 1 Introduction

This thesis investigates three different phenomena that involve the mechanics of

thin soft structures: the competition between cooperative and history-dependent stochas-

tic effects in the self-organization of flexible micropillars into ordered clusters (Chapter

2), the influence of thermal fluctuations on the mechanical properties of spherical shells

(Chapter 3), and the effect of inhomogeneities in the thickness of spherical shells on their

response to an external pressure (Chapters 4 and 5). Although the phenomena cover a

range of physical concepts that call for various theoretical and computational approaches,

they are nevertheless linked by common themes. Chapters 2 and 3 both focus on the appli-

cation of statistical physics ideas to soft matter systems, whereas chapters 4 and 5 highlight

the importance of geometry in determining the mechanical response of curved membranes

when thermal fluctuations are unimportant. Connecting all the phenomena is the under-

lying physics of slender elastic structures, whether rods or shells. In the following sections

of this introductory chapter, we introduce the phenomena that will be discussed in detail

in the subsequent chapters, focusing on essential physical principles, experimental moti-

vations, and relevant past work.

1.1 Cooperativity and stochasticity in elastocapillary

self-organization

Self-assembly and self-organization refer to the spontaneous formation of global ordered

structures due to local interactions between components or uniformly applied driving

forces, without directed manipulation of individual components during the ordering pro-

cess. Typically, self-assembly refers to processes in which the desired structure is the equi-

librium configuration of the components, whereas self-organization may involve driving

the system out of equilibrium to obtain the final structure. Both are important paradigms

2



Chapter 1 Introduction

Figure 1.1: The phenomenon of elastocapillary coalescence. Two elastic rods that perturb
a fluid surface experience a capillary force Fsurf that draws their tips to each other, causing
them to deform.

for assembling functional structures out of building blocks ranging from individual mole-

cules to macroscopic objects [1]. Technology has yet to enable large numbers of microscale

components to be manipulated individually and reliably, but many physical and chemical

techniques have been developed to tune the interactions among different components, or

between components and their surroundings, to induce them to self-organize into desired

structures. Biological systems also rely on self-assembly and self-organization to construct

functional structures from their building blocks, e.g. the folding of polypeptides into the

desired protein structure, or the assembly of viral capsids from their constituent proteins.

Understanding self-assembly and self-organization is of fundamental as well as techno-

logical importance.

A commonly exploited driving force in self-assembly and self-organization of soft

structures is the capillary force between objects that perturb a fluid interface. Capillary

forces are sufficient to cause slender objects to bundle together, overcoming their resistance

3



Chapter 1 Introduction

to deformation. This everyday phenomenon, familiar to us from the clumping of wet hair

and of paintbrush bristles, is known as elastocapillary coalescence [2]. Fig. 1.1 illustrates the

mechanism, for a pair of elastic pillars attached to a substrate being wet by an evaporating

liquid. When the liquid level falls below the tips of the pillars, the interface is pinned to the

tips, distorting the interface from the planar shape that minimizes its surface area. The net

interfacial energy associated with the surface perturbation is reduced when two pillar tips

move closer to each other, giving rise to an attractive capillary force between tips. For small

interfacial perturbations, and when the distance between the pillar tips is small compared

to the capillary length
�

γ/ρg of the liquid (γ is the surface tension, ρ the liquid density

and g the gravitational acceleration), the capillary force resembles a Coulomb attraction

[3]:

Fsurf(d) ≈ −2πγQ2/d, (1.1)

where d is the distance between pillar tips, and Q is a “capillary charge” associated with

each pillar (identical in this case) which is set by the nature of the pinning at the tip. For

instance, if we restrict the angle of the meniscus to be pinned to some value ψ at r = r0,

where r0 is the radius of the cylindrical pillar, then Q ≈ r0 tan ψ. Alternatively, if we require

the interface to be pinned to some height h0 above the unperturbed surface far away from

the pillars, then Q ∝ h0. (If we had objects with different wetting properties perturbing

the interface, we would assign different charges Q1 and Q2 to the objects; they could even

have opposite sign corresponding to a repulsive capillary interaction.) The capillary length

associated with water is around 2 mm, which makes Eq. (1.1) valid for separations up

to fractions of a millimeter; i.e. relevant for microscale systems. For separations larger

than the capillary length of the liquid, the interaction is screened by gravity and dies out

exponentially [4].

For the capillary force to be sufficient to bring two pillar tips into coalescence,
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we must compare it to the force needed to bend the pillars to bring their tips together.

For small deflections, the force needed to move the pillar tips is linear in the deflection x:

Fbend ∼ (Er4
0/L3)x up to prefactors of order 1, where E is the Young’s modulus and L the

pillar length [5]. Comparing the scale of the capillary forces, γQ2/d ∼ γr2
0/d, to the scale

of elastic deflection forces Er4
0d/L3 needed to bring the tips together over the separation

d, gives a critical pillar length Lc ∼ (Er2
0d2/γ)1/3 above which pillar tips can coalesce due

to capillary forces. For pillars of diameter r0 = 100 nm, with a typical value of Young’s

modulus E = 1 GPa and a liquid with surface tension of 0.07 N/m (similar to water), Lc

is a few microns for separations of d = 1 µm; i.e. capillary forces are sufficient to bring

together micropillars a tenth of a micron in diameter, spaced about a micron apart and a

few microns in height. This makes elastocapillary coalescence a viable mechanism for self-

organization of elastic structures at length scales that are important for biological, photonic

and colloidal applications. Following the coalescence, van der Waals or chemical adhesion

of the pillar tips can stabilize the clusters formed, allowing them to persist even after the

wetting liquid has evaporated completely.

Clustering arrays of microscale pillars with one end attached to a substrate gives

rise to interesting collective phenomena in elastocapillary self-organization. Fig. 1.2 gives

two examples. Fig. 1.2(a) shows the pattern formed due to elastocapillary coalescence of

vertical micropillars distributed randomly on a substrate to which one end of each mi-

cropillar is attached (reported in Ref. [6]). Clumps of micropillars are observed with a

characteristic clustering size that is set by the relation between elasticity, capillarity and

interpillar distance. The final structure differs significantly in its surface properties from

the initial array. Fig. 1.2(b) shows the result of capillary clustering in a regular array of

micropillars initially arranged in a square lattice (from Ref. [7]). The relation between pil-

lar stiffness, surface tension and interpillar distance is such that the system preferentially
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Scale bar 1 µm Scale bar 2 µm

Scale bar 4 µm Scale bar 4 µm Scale bar 20 µm

Figure 1.2: Capillary clustering of arrays of vertical micropillars with one end attached to
a substrate and the other end free. Scanning electron microscopy (SEM) images are shown
looking vertically down on the substrate. (a) Silicon micropillars randomly distributed on
a flat substrate shown before (left) and after (right) capillary clustering. In the unclustered
state, the tips of the individual pillars are visible as light dots. The pillars are roughly
0.02–0.1 µm in diameter, 0.9 µm in height and separated by 0.1 µm on average. (b) Epoxy
micropillars arranged in a highly regular square array, before (left) and after (right) capil-
lary clustering. The pillars are 0.3 µm in diameter, 5 µm in height and nearest neighbors
are separated by 2 µm in the square array. The system forms 2 × 2 clusters of four indi-
vidual pillars joined at the tip, which appear as a characteristic × shape in the top-down
SEM image. (c) Larger region of experiment shown in (b), depicting long-range ordering
of 2 × 2 clusters into domains. Image credits: (a) from J.-G. Fan et al, Nano Letters 4, 2133
(2004); (b), (c) from B. Pokroy et al, Science 323, 237 (2009).
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forms 2 × 2 clusters of four adjacent pillars joined at the tip. Strikingly, these clusters form

ordered domains that extend over many lattice lengths [Fig. 1.2(c)]. Such self-organized

ordered patterns may find application in fabricating dynamic substrates with tunable sur-

face properties (the periodicity of surface features is an important determinant of the ad-

hesion and wetting properties of a substrate), or in trapping colloidal particles suspended

in the wetting liquid into ordered arrays for functional purposes. In Chapter 2, we in-

vestigate the ordering mechanism in elastocapillary clustering of micropillars arranged in

square arrays. We develop, characterize and test a model of pattern formation through

irreversible clustering events on a square lattice that explains many statistical features of

the final clustering patterns, including the spatial extent of the ordered regions and the

density of boundaries separating four translationally equivalent domains.

The formation of ordered patterns during the clustering process is a result of a

meniscus-mediated cooperativity in clustering, as explained in Ref. [7]. Briefly, the for-

mation of a lone cluster on the lattice of initially upright pillars happens due to random

imperfections in the substrate or nonuiformities in the local evaporation rate which affect

the capillary interactions between pillars. Once a cluster forms, however, it distorts the

meniscus nearby and consequently the capillary attraction with neighboring pillars [which

depends on the distance between pillar tips, following Eq. (1.1)] in a way that induces the

formation of 2 × 2 clusters at nearby positions. This leads to a cascade of clustering events

propagating outward from the initial cluster, leaving behind an ordered square superlat-

tice of 2 × 2 clusters with twice the spacing of the pillars themselves. (See Chapter 2 for

further details of the cooperative clustering mechanism.)

However, the ordered arrangement of clusters does not persist across the entire

sample. In the experiment, isolated clustering events occur in different regions of the

sample through a stochastic process, nucleating different clustering cascades that grow
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simultaneously. When the advancing edge of one such cascade meets another, the two

ordered regions may be incompatible, and a boundary is formed between distinct ordered

regions, out of registry by half a unit cell separation. Fig. 1.2(c) shows many of these or-

dered regions, separated by domain boundaries that largely follow the lattice directions.

The characteristic size of each ordered region is set by the competition between the rates

of cooperative and stochastic clustering: a high rate of stochastic nucleation creates many

competing cascades, bringing down the average size of ordered regions. Another impor-

tant determinant of the final cluster patterns is that the clustering is irreversible as the liquid

evaporates. Once a 2 × 2 cluster is formed, it does not unbind during the course of the ex-

periment. This means that there is no analogue of a coarsening mechanism that would

allow clusters to rearrange themselves to improve the overall order of the patterns. The

precise history of the clustering process is crucial in determining the statistics of the final

patterns.

The model we develop in Chapter 2 incorporates these basic ingredients of sto-

chasticity, cooperativity and irreversibility. The emphasis is not on the mechanical aspects

of an individual clustering event, but rather on the statistical properties of the patterns

that arise as a result of multiple events on the same substrate. The model treats the forma-

tion of 2 × 2 clusters as sequential events, starting with a square lattice of initially upright

pillars. Isolated clusters have a uniform probability of forming anywhere on the lattice

where upright pillars are available, via stochastic events. However, once a cluster has been

formed, the rate of cluster formation is enhanced by cooperative capillary forces in nearby

positions on the square lattice. Clusters, once formed, do not unbind, and the process con-

tinues until no more 2× 2 groups of free pillars are left. This sequential process is amenable

to investigation via numerical simulations, which we use to characterize various statistical

properties of the resulting patterns as the relative importance of cooperativity to stochas-
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ticity is varied. We compare these statistical properties (such as average domain size and

density of domain boundaries) to those measured in experimental realizations similar to

those depicted in Fig. 1.2(c).

The procedure of sequential cluster formation we have just described does not

directly include the elastodynamics of the clustering pillars; the dynamical details are sub-

sumed into the stochastic and cooperative clustering rates, which are inferred from the

experimental patterns. Therefore, our model could equally well be used to describe the

adsorption of atoms or molecules onto a surface (such as the crystalline arrangement of

a metal surface, providing a lattice of adsorption sites). Beginning with an empty square

lattice, we cover the lattice by depositing individual atoms randomly on the surface (the

adsorption of an atom at a lattice site corresponds to the formation of a cluster at that po-

sition). Atoms, once deposited, cannot unbind or move, and the deposition of an atom

prevents further deposition on the same lattice site. However, it may increase the affin-

ity of nearby lattice sites —- a mechanism of cooperativity in the irreversible adsorption

process, that can lead to growing clusters of adsorbed atoms, much like the cascades of

cluster formation discussed above. Models of such nonequilibrium adsorption of parti-

cles on a surface are known as sequential adsorption models [8]. Originally developed to

describe the deposition of gas atoms on metallic surfaces, they have been been applied

to pattern formation in processes as varied as car parking and protein adsorption onto

substrates [9]. The particular lattice geometry and the capillary-mediated interactions in

our problem inspired a sequential adsorption model with a new form of cooperativity that

was not considered previously. One of the main results of the analysis in Chapter 2 is that

this new cooperativity disrupts, rather than enhances, the order in the cluster patterns. We

find evidence for such disruption of order in our experimental system; similar mechanisms

may be relevant in other sequential adsorption processes.

9
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The work described in Chapter 2 was performed in collaboration with the re-

search group of Prof. Joanna Aizenberg, whose previous work inspired the analysis, and

in whose laboratory the experiments were performed.

1.2 Statistical physics of thin elastic shells

Soda cans, ping-pong balls, and architectural domes are all examples of shells, thin-walled

structures with an underlying curvature in their undeformed state. The elastic response of

such structures to external forces is fundamentally determined by their geometry in several

ways: first, their small extent in one dimension compared to the other two makes them

much easier to bend than to stretch; second, the relationship between deformations and

strains is inherently nonlinear, even if the material itself obeys linear (Hookean) elasticity;

finally, the background curvature in their shape provides a geometric stiffness to such

structures that tends to stabilize them compared to flat elastic sheets (or plates) made of

the same material. These properties become apparent upon studying the elastic energy

associated with deformations in thin plates and shells.

1.2.1 Elastic energy of plates and shells

An enormous simplification in the elastic description of thin plates and shells (when the

thickness h is small compared both to the extent of the system and the radii of curvature

that describe deviations from planarity) comes from reducing the three-dimensional prob-

lem of determining stresses throughout the material to a two-dimensional one. Thin shell

theory is concerned only with deformations of the mid-surface, which is the set of points

equidistant from the two free surfaces bounding the material. The departure of this surface

from its initial, stress-free configuration is captured in a two-dimensional strain tensor uij
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which quantifies changes in the local metric of the surface at each point, and a bending ten-

sor kij = Kij − K0
ij that quantifies the difference in the curvature Kij of the deformed surface

from the initial curvature K0
ij (the indices i, j of these second-rank tensors run over the two

coordinate directions tangent to the surface at each point). For instance, K0
ij = δij/R for

a shell whose undeformed shape is a sphere of radius R (where δij is the Kronecker delta

function). For a shell made up of an isotropic, Hookean material with (three-dimensional)

Young’s modulus E, thickness h and Poisson ratio ν, the elastic energy density Fel at any

point in the mid-surface is quadratic in the strain and bending tensors [10]:

Fel =
Y

2(1 − ν2)

�
(u11 + u22)

2 − 2(1 − ν)(u11u22 − u2
12)

�

+
κ

2
�
(k11 + k22)

2 − 2(1 − ν)(k11k22 − k2
12)

�
,

(1.2)

where

Y ≡ Eh (1.3)

is the two-dimensional Young’s modulus and

κ ≡ Eh3

12(1 − ν2)
(1.4)

is the bending rigidity, both set by the material properties E, h and ν of the bulk material

making up the shell. The total elastic energy of the shell is obtained by integrating the elas-

tic energy density over the entire mid-surface. The dependencies of the two-dimensional

(2D) elastic constants on the three-dimensional (3D) material properties show that the rel-

ative energy contribution of stretching far overwhelms the contribution due to bending as

the shell thickness h becomes small. Thus, extremely thin plates and shells are much easier

to bend than to stretch, as exemplified by a sheet of paper.

The dimensional reduction from 3D to 2D elasticity introduces errors of order

|h/R| and (h/L)2, where R and L are the characteristic radius of curvature and size of the

undeformed shell; i.e. Eq. (1.2) becomes exact in the limit of infinitely thin shells. When
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the initial curvature of the undeformed surface is set to zero, Eq. (1.2) also describes the

elastic energy of flat plates, as well as solid tethered membranes, i.e. monomers (atoms or

molecules) linked to form a flat elastic network that can support shear [11]. Unlike plates

or shells, membranes can approximate ideal two-dimensional shapes, with their Young’s

modulus and bending rigidity treated as intrinsic properties of the surface, rather than

originating from a bulk material with a thickness in the third dimension.

The elastic energy density, Eq. (1.2), is constructed from invariants (the trace and

the determinant) of the strain and bending tensors, and is therefore independent of the

choice of coordinate system. These tensors can be expressed in terms of the displacements

(two tangential to the initial surface and one normal to it) of the mid-surface in three-

dimensional space, for which a coordinate system is required, and further approximations

may be needed. Appendix C.1 presents one such set of relations for Cartesian coordi-

nates tangential to a section of the shell with dimensions small compared to its radius of

curvature, known as shallow-shell theory. Rather than focusing on a particular choice of

coordinates, we present here key scaling properties of strains and bending moments with

the normal displacement w; these results play a major role in the mechanics and statistical

physics of thin shells.

For small displacements of the mid-surface (compared to the size and radius of

curvature of the shell), the components of the bending tensor can be represented solely in

terms of spatial derivatives of the normal displacement: kij ∼ ∂i∂jw, where w is the normal

displacement and ∂i refers to a spatial derivative in the ith tangential direction (i ∈ {1, 2}).

Contributions of the tangential displacements to the bending tensor are insignificant for

thin shells, as long as the characteristic length of deformations is small compared to the

largest radius of curvature of the shell [10]. The strain tensor, on the other hand, has linear

contributions from gradients of the tangential displacements, but the contribution of the
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normal displacement is again unique in that it couples to the underlying curvature of the

shell in its undeformed state: uij ∼ k0
ijw, where k0

ij is the curvature tensor of the unde-

formed surface. (For instance, a spherical shell of radius R has uij ∼ w/R.) This coupling

makes curved shells fundamentally different from flat plates, for which the lowest order

contribution of w to the strain tensor is quadratic (uij ∼ ∂iw∂jw), rather than linear. A flat

plate can accommodate transverse deformations to its mid-surface by paying only a bend-

ing energy cost, but a curved shell also pays a stretching energy cost at linear order in the

deformation. Since stretching is energetically costlier than bending for thin shells, curved

shells are inherently stiffer purely due to their geometry. A roof sinusoidally corrugated in

one direction is stiffened against bending in an orthogonal direction for this reason.

This geometric stiffness gives rise to an important elastic length scale for defor-

mations in curved shells with characteristic radius of curvature R. For a normal deflection

that varies over a characteristic length l, the bending and stretching energy contributions

are comparable when

κk2
ij ∼ Yu2

ij ⇒ κ
�w

l2

�2
∼ Y

�w
R

�2
⇒ l ∼

�
κR2

Y

�1/4

=

√
hR

[12(1 − ν2)]1/4 ≡ �. (1.5)

The elastic length scale � sets the typical spatial extent for deformations of curved shells.

For instance, if an inward force is applied at some point on the shell, the resulting normal

deflection extends over a length of order �. In the mechanical failure of spherical shells

under large external loads, � sets the wavelength of the unstable deflection mode that

leads to loss of stability, as well as the sharpness of large deformations that appear above

the failure load (described in more detail in Section 1.3).

So far, we have only considered linear contributions of the displacements to the

strain tensor. For small strains (i.e. displacements small compared to the size of the shell),

the higher order contributions of the tangential deformation fields are small compared to
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the linear contributions, and can be ignored. However, the next-order contribution of the

normal deformation to the strain tensor, which scales as ∂iw∂jw, need not be insignificant

even for small strains. A comparison of its magnitude to the linear contribution when

the deformation varies on a length scale l shows that the nonlinear contribution becomes

significant for deflections that scale as

�w
l

�2
∼ w

R
⇒ w ∼ l2

R
or larger, (1.6)

which can be very small for normal deflections that vary over short length scales com-

pared to the radius of curvature. For a deformation that varies over the elastic length scale

� ∼
√

hR which is the characteristic deformation scale in curved shells, the nonlinear con-

tribution is significant when w ∼ h, i.e. for deflections of order the shell thickness or larger.

The strains are still very small for such deflections (uij ∼ h/R), but the nonlinearity cannot

be ignored. The same nonlinearity is also relevant for small deflections in flat plates [5].

The nonlinear contribution of the normal deformations to the strain tensor is es-

sential for many interesting aspects of the mechanics of thin plates and shells, such as

buckling under external loads [12, 10] (see also Section 1.3 and Chapters 4 and 5) and the

focusing of stresses into narrow regions when thin materials are crumpled [13]. It also has

a remarkable effect on the statistical mechanics of thin plates and shells, which we briefly

describe in the following section.

1.2.2 Statistical mechanics of solid membranes

The statistical physics of polymer chains determines many aspects of their behavior in-

dependently of the detailed chemistry of the constituent monomers [14]. Thin elastic

sheets and solid membranes can be regarded as the two-dimensional equivalent of poly-

mers, and studying their statistical mechanics has proven similarly fruitful [11, 15]. Just as
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Figure 1.3: Numerical simulation of a tethered membrane with a bending rigidity and
Young’s modulus, flat in its ground state, exhibiting thermal fluctuations at finite temper-
ature (from Bowick et al, arXiv:cond-mat/9603157).

floppy polymer chains exhibit wild thermal undulations that largely determine their long-

wavelength mechanical behavior, membranes may experience thermal shape fluctuations

that influence their mechanical response. The statistical mechanics of these shape fluctua-

tions is even richer than in polymers, because the combination of bending and stretching

deformations of these two-dimensional objects creates more complex shapes than can be

realized with linear polymers.

Fig. 1.3 shows a numerical simulation of an initially flat elastic membrane at a fi-

nite temperature T. Entropy favors thermal shape fluctuations within the membrane with

deformation energies of order kBT. One might expect the elastic response of such a wildly

fluctuating sheet to be very different from a zero temperature sheet, which would be per-

fectly smooth. The effect of the fluctuations was quantitatively established in studies of

the statistical mechanics of flat solid membranes with the elastic energy of deformations

described by Eq. (1.2) [16, 17], revealing the crucial role of the nonlinear contribution of

normal displacements to the strain tensor (uij ∼ ∂iw∂jw) identified in Section 1.2.1. In

the absence of this nonlinearity, the normal displacements contribute quadratically to the

elastic energy via the bending energy term. The normal deformation field can be bro-

ken down into a linear superposition of independent oscillatory components at differ-
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ent wavelengths l, each with energy density that scales as κ(w/l2)2, that do not interact

with each other. However, including the nonlinear term introduces a quartic contribution

∼ Y(w/l)4 to the stretching energy that couples deformation modes at different length

scales, with the strength of the coupling set by the Young’s modulus Y. The coupling of

long-wavelength normal deformations to the thermally generated shape fluctuations at

smaller wavelengths drastically increases the energy of these deformations compared to

a quiescent membrane [16]. Counter-intuitively, the thermal fluctuations at small scales

have the effect of stabilizing the membrane against fluctuations at longer length scales by

increasing the effective bending rigidity through the nonlinear interactions, giving rise to

a stable flat phase with long-range alignment of the surface normals over the entire mem-

brane at low yet finite temperatures. The nonlinear interactions completely dominate the

elastic behavior of this flat phase, giving rise to strongly renormalized effective elastic

moduli κR and YR that are no longer material constants but depend on the length scale l of

the deformation in a nontrivial manner [17, 18]:

κR ∼ l0.82, YR ∼ l−0.36. (1.7)

The effective bending rigidity associated with long wavelength deformations diverges

with increasing wavelength, and the effective Young’s modulus vanishes! These remark-

able departures from the conventional behavior of zero-temperature solid membranes

amount to a breakdown of classical elasticity theory due to thermal fluctuations for flat

solid membranes.

The anomalous elastic properties described above for monolayer “tethered sur-

faces” [11] are also expected to apply to extremely thin plates that have some thickness in

the third dimension, as long as the thickness is low enough so that the bending rigidity

[Eq. (1.4)] is comparable to the thermal energy kBT. However, the statistical mechanics
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of fluctuating shells could be different because of the underlying curvature of the shell in

its undeformed state. As discussed in Section 1.2.1, curvature couples normal displace-

ments of the surface to in-plane strains, giving rise to a linear contribution (uij ∼ w/R,

where w is the normal displacement and R is the characteristic radius of curvature in the

undeformed state) in addition to the quadratic contribution (uij ∼ ∂iw∂jw). As a result,

the elastic energy of thin shells has stretching energy terms that are quadratic and cubic in

w and its derivatives, in addition to the quartic term responsible for interactions between

different deformation modes in flat membranes. The cubic term ∼ Y(w/R)(∂iw ∂jw) is an

important new interaction for curved shells; it is forbidden by symmetry for flat plates,

and its strength depends on the underlying curvature in addition to the Young’s modulus.

A closed shell may also support a pressure difference between its interior and exterior. In

Chapter 3 of this thesis, we study the mechanics of thermally fluctuating spherical shells,

taking into account the effects of curvature and a uniform external pressure. We use the

technique of perturbation theory in temperature to take into account the nonlinearities

that give rise to nontrivial effects, and compare the results with numerical simulations of

fluctuating shells. The work was performed in collaboration with Gerrit Vliegenthart and

Gerhard Gompper (Institute for Advanced Simulation, Forschungszentrum Jülich, Ger-

many).

1.2.3 Experimental realizations of fluctuating shells

Shell theory continues to be a valuable tool to understand macroscopic structural elements

in civil, mechanical and aerospace engineering. However, advances in experimental tech-

niques have enabled the fabrication and characterization of shell-like elastic structures

at increasingly smaller scales, with thicknesses approaching tens of nanometers or even

smaller. These range from artificially created spherical microcapsules made from poly-
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Figure 1.4: Instantaneous height field (left) and instantaneous displacements (right) for
the top surface of a spherocyte red blood cell under physiological conditions, obtained
using diffraction phase microscopy. Scale bar, 1.5 µm. The image on the left is colored by
height of the surface above the substrate (color bar in microns). The image on the right is
colored by displacement from the undeformed surface (color bar in nanometers). Figure
reproduced from Y. Park et al, Proc. Natl. Acad. Sci. USA 107, 6731 (2010).

meric [19] or protein-based [20] building blocks, to natural structures such as the mam-

malian red blood cell membrane [21]. At such small scales, the shell may be floppy enough

for thermal shape fluctuations to arise, and the effects of these fluctuations on the mechan-

ical response need to be considered.

Red blood cell (RBC) membranes are examples of curved shell-like elastic struc-

tures for which thermal shape fluctuations have been observed (the phenomenon is known

as “flickering”). The RBC membrane is actually a composite membrane, with a fluid com-

ponent (a lipid bilayer) that dominates the bending rigidity and a solid (tethered) compo-

nent that provides a shear modulus. The energy of the composite membrane has a bending

and a stretching component, and is therefore well approximated by a thin shell [21]. Un-

der physiological conditions, the RBC has a characteristic biconcave flattened shape with

a spatially varying curvature (discocyte phase), but abnormal RBCs under certain patho-

logical conditions are nearly spherical (spherocyte phase). Fig. 1.4 shows the thermally

induced shape fluctuations in a spherocyte RBC, measured using a technique known as

diffraction phase microscopy. The deformations seen are reminiscent of the wild fluctu-

ations responsible for the anomalous elasticity of flat membranes (Fig. 1.3). The study in
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Figure 1.5: Buckling of an elastic rod under compressive forces. For forces below a thresh-
old value Fcr, the rod remains straight (top). When a threshold value is crossed, however,
the rod buckles into a curved shape (bottom). The buckling threshold Fcr can depend on
the boundary conditions, which are hinged in this case.

Chapter 3 is relevant to understanding the mechanical properties of such a curved, fluctu-

ating elastic structure.

1.3 Buckling of inhomogeneous shells

Buckling is a ubiquitous phenomenon in the mechanical response of thin rods, plates and

shells. It refers to a sudden change in shape of a structure when external stresses cross a

certain point, often associated with a loss of ability of the structure to support the exter-

nal stress. The classic example of an elastic buckling instability is the buckling of a rod

subjected to compressive stress along its long axis (Fig. 1.5): the rod initially compresses

while remaining straight, but past a certain threshold force, it deforms into a curved shape

and the distance between the two ends of the rod falls drastically with little additional

force. Similar failure modes arise in rods, plates and shells under a variety of loading

conditions [12].

Buckling of thin structures typically involves large displacements from the initial
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shape, which have nonlinear strain-displacement relations and are governed by nonlinear

partial differential equations. However, the onset of buckling can often be predicted by a

eigenvalue analysis of the linear equilibrium equations in the limit of small displacements.

As an example, we consider a linear buckling analysis of the rod under compressive force,

with its ends hinged (originally attributed to the 18th century mathematician Leonhard

Euler).

The linear equation governing the transverse deflection y(x) (where x is the po-

sition coordinate along the long axis) of a rod under compressive force F, valid for small

deflections, is [5]

EI
d2y
dx2 + Fy = 0, (1.8)

where E is the 3D Young’s modulus of the material making up the rod, and I is the second

area moment of the rod cross-section (e.g. I = πr4
0/4 for a cylindrical beam with circular

cross section of radius r0). Apart from the trivial solution y(x) = 0, the equation admits

nontrivial solutions of the form y(x) = A sin(
√

F/EIx), which satisfy the boundary con-

ditions [y(0) = y(L) = 0; y��(0) = y��(L) = 0] provided

F =
n2π2EI

L2 , (1.9)

where n is an integer. Eq. (1.9) is an eigenvalue condition that determines values of the load

for which a nontrivial solution exists. The lowest nonzero eigenvalue n = 1 corresponds

to the buckling load: Fcr = πEI/L2 and the corresponding eigenmode for the deflection

is y(x) = A sin πx/L. Note that the analysis leaves the amplitude A unspecified; the

mode is unstable to further growth when it appears, and the deflection quickly becomes

larger than the range of validity of the linear analysis. Thus, the eigenmode prescribes the

nature of the deflection immediately after loss of stability, but the final shape of the rod

can only be understood by a nonlinear analysis, commonly called a postbuckling analysis
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a b c

Figure 1.6: (a) Characteristic outcome of a buckling simulation on an initially spherical
shell with h/R ≈ 0.05. The shape changes abruptly from spherical to indented at the
buckling pressure. Details of the simulation are provided in Appendix E. (b) Optical fluo-
rescence micrographs of spherical polyelectrolyte capsules (radius 2 µm, thickness 4 nm),
before (left) and after (right) buckling under external osmotic pressure [from Fery et al,
New J. Phys. 6, 18 (2004)]. (c) Metallic spherical shell with radius R = 4.25 in and thick-
ness h = 0.002 in, buckled under constant pressure [from Berke and Carlson, Experimental
Mechanics 8, 548 (1968)].

of the instability.

1.3.1 Buckling of uniform spherical shells

Thin spherical shells, with an elastic energy dictated by Eq. (1.2), exhibit a buckling in-

stability when subjected to a uniform external pressure. When an increasing hydrostatic

pressure is applied, a spherical shell initially responds by contracting uniformly, but past

a critical buckling pressure, its shape abruptly changes and it acquires one or more large

indentations that significantly reduce the enclosed volume. Significant hysteresis is as-

sociated with this transition. In this sense, the buckling of shells in three dimensions re-

sembles a first order phase transition, and the critical buckling pressure represents a limit

of metastability. The situation is quite different for pressurized rings in two dimensions

(or pressurized cylinders), where the behavior at buckling resembles a continuous phase

transition (see, e.g. Ref. [22]). This buckling is an important failure mechanism for spheri-

cal shells and domes, and has been quantitatively studied in thin-walled spheres at scales

ranging from microscopic polymer capsules [23] to metallic shells a few inches in diam-
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Figure 1.7: Shape of a metallic spherical shell with radius R = 4.25 in and thickness
h = 2.2 × 10−3 in, induced to buckle under net external pressure but stabilized by an
enclosed wax ball of slightly smaller radius. The two-dimensional periodic nature of the
buckling mode is visible. Image reproduced from Carlson, Sendelbeck and Hoff, Experi-
mental Mechanics 7, 281 (1967).

eter [24, 25]. Fig. 1.6 displays the large deformations of elastic spherical shells that have

buckled under pressure in numerical simulations and in experimental systems.

The buckling of uniform spherical shells under pressure is a classic problem in

shell theory, with the first analytical solution for the critical buckling pressure attributed

to R. Zoelly in 1915 [26]. As with the buckling of a rod, the buckling pressure pcr can

be derived using a linear eigenvalue analysis of the equilibrium equations derived from

the elastic energy (performed in Chapter 4). The uniform contraction of the sphere is the

only equilibrium solution to the governing equations of the shell at low pressures, but a

nontrivial mode appears when the pressure reaches the critical value (see Chapter 4 for a

derivation) given by

pcr =
2E�

3(1 − ν2)

�
h
R

�2
, (1.10)

where E is the elastic modulus, ν the Poisson ratio, h the shell thickness and R its radius.
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The corresponding deformation eigenmode has a two-dimensional periodic structure with

the characteristic wavelength in both directions set by the elastic length scale introduced

in the previous section [Eq. (1.5)],

λ ≈ 2π� = 2π

√
hR

[12(1 − ν2)]1/4 � R. (1.11)

In fact, there is an infinite set of degenerate modes (associated with the rotational symme-

try of the sphere) that has the required periodic structure at the critical pressure, each of

which is unstable. Ultimately, the particular eigenmode that drives the buckling is selected

by random imperfections or nonuniformities in the shell or the pressure field. This buck-

ling mode is unstable, and is not ordinarily observed in experiments. However, its periodic

structure can be revealed in experiments that arrest its growth. This was done in buckling

experiments on metallic shells, where the buckling mode was arrested by incorporating a

concentric solid ball within the shell with a slightly smaller radius [24]. The experiment

(reproduced in Fig. 1.7) revealed the buckling mode to be a pattern of hexagonal dimples,

whose wavelength was consistent with the elastic length scale .

The linearized stability analysis does not account for the postbuckling shape of

the shell, which consists typically of a large volume-reducing indentation (see Fig. 1.6).

This shape is governed by highly nonlinear equations for the deflections, and a full de-

scription of the postbuckling behavior of spherical shells typically calls for numerical

methods [27, 28, 29, 30]. However, an approximate description of the postbuckling shape,

due to A. V. Pogorelov [31], successfully captures the energetics and shape of the local-

ized inversions for very thin spherical shells. It is energetically favorable for extremely

thin shells to bend rather than stretch, but a closed spherical shell cannot be bent without

also being stretched [27]. Therefore, large deformations in the shell would tend to localize

stretching into small regions. One way to deform a spherical shell in this manner is to
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invert some section of the shell by reflecting it in a plane that intersects the shell. Except

for the rim of the inversion, the shape transformation is isometric with the original shape

of the shell, avoiding a stretching energy penalty. At the rim, however, some stretching

(together with bending) is unavoidable to avoid a singular profile with infinite bending

energy density; the rim of the inversion thus has a finite width over which the singularity

is smoothed out, and the deformation is not isometric. A scaling analysis of the elastic

energy of the deformations confined to the narrow region (reproduced in Appendix A)

reveals that the elastic energy of the inversion scales as Eel ∼ Eh5/2R1/2(d/R)3/2, where

d is the depth of the inversion [5]. If the shell is under external pressure p, the net energy

including the work done by the pressure is E = Eel + p∆V, where ∆V ∼ −Rd2 is the vol-

ume change due to the inversion. The total energy as a function of inversion depth then

has a maximum at hmax ∼ E2h5/R4 p2. Inversions of depth h < hmax are thus expected to

shrink and ultimately disappear, while inversions of depth h > hmax grow in an uncon-

trolled manner. At the buckling pressure pcr arising from the linear stability analysis, hmax

is of the order of the shell thickness h, which means that a very small dimple is suscepti-

ble to growing uncontrollably. Therefore, as soon as the unstable mode appears, one of the

dimples caused by the unstable periodically varying mode grows to form a large inversion

which abruptly reduces the internal volume of the shell by a large amount. This scenario

explains the postbuckling shape associated with spherical shells. The resulting inversion

is stabilized by self-contact of the shell with itself, by a restriction on the internal volume

of the shell due to, say, an enclosed fluid that must be expelled for the inversion to grow,

or by plastic pinning of the highly deformed rim at large inversion depths. Depending on

the dynamics of the process and on random imperfections in the shell, it is also possible

for two or more inversions to grow until self-contact, but these shapes have a higher elastic

energy compared to the shape with just one inversion and are thus metastable [28].
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For extremely thin shells, inversions past a certain depth deviate from the nearly

isometric form considered in the scaling analysis, instead forming rims that have a polyg-

onal structure [as seen for metallic shells in Fig. 1.6(c)]. The transition from a circular to

a polygonal inversion has aspects of a continuous transition as a function of inversion

depth [30], and the associated elastic energy as a function of inversion depth does not de-

viate significantly from the scaling form derived above [32]. As a result, the arguments of

stability of the postbuckling shape in spherical shells are largely unaffected by the transi-

tion to a polygonal rim.

Finally, shells can also be made to buckle by controlling the volume of the shell,

rather than the external pressure. Rather than ramping up the external pressure, we can

consider a shell filled with an incompressible fluid which is slowly removed to reduce the

internal volume of the shell. The initial response of the shell is again to contract uniformly,

until a critical volume reduction ∆Vcr whose value is determined by a linear stability anal-

ysis (see Chapter 5):

∆Vcr

V0
=

�
3(1 − ν)

1 + ν

h
R

, (1.12)

where V0 = 4πR3/3 is the initial volume of the spherical shell. At the critical volume

change, the shape of the shell changes abruptly from being spherical to having a localized

indentation which is of the nearly isometric type, similar to the case of buckling under

pressure. However, the indentation does not grow uncontrollably in this case, but is sta-

bilized by the volume constraint. The inversion that appears when the shell buckles is

precisely the size needed to accommodate the critical volume change. Further reductions

in the internal volume are accommodated by increasing the indentation depth accordingly.
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1.3.2 Controlling buckling using inhomogeneities

Shell buckling, though often considered a mode of structural failure that is to be avoided,

can also be used to drive shape transitions that fulfill a particular purpose. Buckling and

re-inflating spherical shells through global driving forces (such as a uniform change in

pressure) allows dynamic control of the shape and occupied volume for many objects at

once. Such control is particularly useful for changing the shape of shells at microscopic

scales, where direct manipulation of the shape through localized forces may be challeng-

ing, but changing an external osmotic pressure or reducing the internal volume can be

readily achieved through chemical methods and can be done for many shells at once. Re-

cent experimental efforts in materials science have exploited the buckling of microscale

spherical shells for the controlled release of encapsulated substances [33, 34, 35], the mass-

production of anisotropic colloidal particles with a characteristic bowl-like shape similar

to Fig. 1.6(a) [36], and the formation of so-called “lock” colloids, each with a well-defined

indentation that can accommodate a single smaller “key” colloid for directed self-assembly

into chain-like structures [37].

Even more applications for buckling-induced shape transitions could be opened

up by the capability to control the conditions that trigger the buckling transition and the

final shapes that arise as a result. However, the buckling behavior of uniform spherical

shells is controlled primarily by one geometric parameter—the radius-to-thickness ratio of

the shell—limiting the range of achievable buckling properties. For a particular material,

the radius-to-thickness ratio determines the buckling pressure as well as the sharpness and

polygonal nature of the inversion rim, making it difficult to control the shell strength and

the postbuckling shapes independently. Furthermore, the control over the final buckled

shape is limited: practically all shells buckle with the same characteristic single inversion,

whose depth is set either by self-avoidance or by plastic deformations in the sharp rim that
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cannot be precisely controlled. The transition is also hysteretic, i.e. the pressure must be

reduced far below the buckling threshold to reinflate a buckled sphere, making it difficult

to reverse the shape change reliably. The potential of buckling-induced shape transitions

as a dynamic sculpting technique for soft structures could be augmented if the buckling

and postbuckling behavior could be modified in a controlled manner, and the hysteresis

could be reduced to make the shell more responsive to cyclical changes in the external

pressure.

One way to modify the buckling behavior of a shell is by spatially varying the

parameters determining the stiffness of the shell (the elastic modulus E, the Poisson ratio

ν and/or the thickness h). For instance, if the shell is softer in some parts than in others,

the softer regions will deform at lower pressures compared to a uniform shell of the same

average thickness, and could induce the shell to buckle earlier as a result. However, some

inhomogeneities can qualitatively alter the buckling and the postbuckling behavior, in ad-

dition to changing the buckling pressure. Pollen grains of certain plant species provide

a striking example of such an effect [38]. These pollen grains are microscopic ellipsoidal

(nearly spherical) structures with a thin outer layer that behaves like an elastic shell, en-

closing a wet inner medium. The inner medium significantly reduces its volume by drying

out when the pollen grain leaves the flower. If the outer shell were completely uniform,

volume reduction past a certain value would induce an abrupt transition to a buckled

shape with a localized indentation (the eccentricity of the ellipsoidal shape is not suffi-

cient to significantly change the buckling behavior relative to a perfect sphere). However,

some plant species have evolved large soft regions in the outer shell that modify their me-

chanical response in such a way that abrupt buckling events during the volume reduction

are eliminated completely. Instead, the soft regions induce the pollen grains to smoothly

and continuously change their shape as they dry out, and can even guide the deformation
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to seal off the soft regions (which also are the regions through which the inner moisture

escapes during volume reduction) so that water loss past a certain point can be prevented.

Such exquisite control over the material properties of the shell can also be achie-

ved in artificial shells through recent advances in experimental techniques, opening up

new possibilities for controlling the buckling and postbuckling behavior of elastic shells.

In Chapters 4 and 5, we study how the buckling and postbuckling behavior of spherical

shells is modified by specific inhomogeneities in the shell material, motivated by experi-

mental systems in which such inhomogeneities can be realized for spherical shells. Previ-

ous theoretical and numerical studies on the buckling behavior of inhomogeneous shells

focused on the effect of imperfections in the shell, which tend to significantly reduce the

buckling pressure compared to the perfect spherical shell [39, 12, 40]. The forms of imper-

fections considered were either highly localized variations in shape and thickness [41, 42]

or variations that extend over the entire sphere in a random or periodic manner [42, 43].

These were typically chosen to represent damage or imperfections in the shell that arise

during its fabrication. The spatial structures of the inhomogeneities studied in Chapters

4 and 5 of this thesis differ from these earlier studies, as does the emphasis—rather than

understanding accidental imperfections, we aim to study how specifically designed inho-

mogeneities can modify the buckling, postbuckling and hysteresis properties in potentially

desirable ways.

1.3.3 Experimental motivation

In Chapter 4, we study the effect of a single “soft spot”—a region, with a circular boundary,

that is uniformly thinner than the rest of the shell—on the buckling behavior of an other-

wise homogeneous shell. We vary the size of the soft region as well as the ratio of thick-

nesses in the soft region and the remainder of the shell. This may be considered to be an
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isotropic generalization of the soft sectors observed in pollen grains, whose boundaries of-

ten approximate lines of longitude [38]. Microscopic spherical shells with similar soft spots

could be fabricated by confining two immiscible polymer components to the same droplet

interface; the minority component could be induced to phase-separate into a domain with

a circular boundary that has different material properties when solidified. (Such domains

are commonly observed in two-component lipid vesicles [44, 45].) At macroscopic scales of

a few centimeters to a few meters, rapid prototyping (popularly known as “3D printing”)

can be used to fabricate thin shells with precise inhomogeneities of practically any form,

including the shells with soft spots that are the focus of our study. Rapid prototyping tech-

niques have been used to create thin shells with precise variations in curvature [46] and

thickness [47], that have a strong effect on their response to external forces and pressures.

Through such techniques, practically any form of inhomogeneity can be realized in shell

structures, opening up many avenues for further studies on the effects of nonuniformities

on shell buckling.

The work presented in Chapter 5, performed in collaboration with the research

group of Prof. David Weitz, was motivated by buckling experiments conducted on droplet-

templated elastic microcapsules. The capsules were fabricated using water-oil-water dou-

ble emulsion droplets prepared by microfluidics. A capillary injection system prepared

drops consisting of an oil phase separating an inner water droplet from the bulk phase,

also water. Due to surface tension, the two oil-water interfaces (one completely enclosed

by the other) are nearly perfect spheres. The quantity of oil injected into the middle phase

determines its average thickness. However, the inner water droplet is also lighter than the

oil phase, and rises due to its own buoyancy. Therefore, the oil phase gradually thins out

in the top of the droplet and thickens in the bottom, eventually acquiring a smoothly vary-

ing thickness that is symmetric around the axis through the top and bottom poles. The oil
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phase polymerizes upon exposure to ultraviolet (UV) light, forming a thin spherical shell

that freezes in the thickness variation in the oil phase at the instant of polymerization. By

varying the time between droplet preparation and UV polymerization, the extent of inho-

mogeneity (quantified by the difference between the thickness at the top and bottom poles)

can be controlled. To understand the buckling experiments on these shells with smoothly

varying thicknesses, we use theoretical and numerical approaches to study the effect of the

inhomogeneity on the buckling and postbuckling behavior of the capsules as a function of

the average thickness and the degree of inhomogeneity.
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Chapter 2

A two-parameter sequential
adsorption model applied to
microfiber clustering

The study of the self-assembly and self-organization of solid macro-, micro- and nanoscale

structures using capillary forces mediated by a wetting liquid has made an impact in fields

ranging from photonics [48] to the theory of computation [49]. In recent years, the phe-

nomenon of elastocapillary coalescence [50] has been observed in aggregation of fibers

ranging in size from the macroscopic scale [2, 51] down to micro- and nanoscales [52, 6,

53, 54, 55, 56, 7, 57]. In all these investigations, capillary forces in a wetting liquid bring to-

gether the free ends of high-aspect-ratio structures attached to a substrate to form clusters.

For highly symmetrical arrangement of fibers in the individual clusters, a long-range or-

dering in the positions of the clusters has been reported [55, 56, 7, 57]. In particular, when

the fibers are initially arranged in a square lattice and primarily form 2x2 clusters of four

individual fibers connected at the tip, these 2x2 clusters themselves are ordered locally in a

square superlattice with a lattice spacing twice that of the individual fibers [figure 2.1(a)].

This ordering mechanism has potential application not only as a means of creating com-

plex three-dimensional structures with spatial regularity but also as a basis for generating
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dynamic “smart” surfaces capable of ordered particle trapping and release, color changes

and adaptive wetting behavior [7, 58].

A number of previous theoretical treatments of capillary-assisted clustering [51,

52, 53, 55, 54, 59] have analyzed the elastic, capillary and surface tension energies associ-

ated with fiber clustering to determine the critical stiffness of the fibers that allows cluster-

ing to occur, and the typical size/size distribution of clusters. However, less has been said

about the higher-level arrangement, size and ordering of the clustered domains. A quali-

tative picture of long-range ordering of clusters due to the distance dependence of the cap-

illary interactions between submerged fibers is presented in Ref. [7], and a similar descrip-

tion based on the stability of upright fibers is reported in Ref. [57], but to our knowledge

no quantitative comparison of these descriptions with experimentally observed patterns

has been made. The current work develops this aspect of capillary-mediated clustering

of fibers. We propose, characterize and test a nonequilibrium dynamical model for the

irreversible formation of clusters showing long-range order in a square array of fibers.

Our approach falls into a broad class of systems known as sequential adsorption

models [8]. Sequential adsorption (SA) models describe deposition of particles on a surface

through the following algorithm: a trial deposition of a particle is made on the surface

(typically empty initially, though a ‘seeded’ surface with predeposited particles may also

be studied); if the particle does not overlap with any other, the deposition is successful

and the particle is permanently fixed in the chosen spot; if on the other hand the particle

overlaps with an already attached particle then the trial is rejected. Random sequential

adsorption (RSA) models refer to those in which the position of the trial deposition is

chosen purely at random, while cooperative sequential adsorption (CSA) processes are those

in which the probability of a trial deposition at any point on the surface is influenced

(typically enhanced) by the presence of deposited particles nearby. Both RSA and CSA,
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(a)

(b)

Figure 2.1: (a) Top-down scanning electron microscope (SEM) image of a region of an
epoxy microfiber sample in which clusters have been induced via ethanol evaporation and
persist due to van der Waals interactions between the touching fiber tips. Scale bar 50µm.
The region predominantly shows tetramers, i.e. clusters of four fibers whose tips meet at a
height of a few microns above the substrate, centered above the squares of the underlying
lattice of fibers. The inset (bottom right) is a close-up view of a tetramer, showing the
lattice spacing a of the fibers. Four distinct domains (as defined in the text) are highlighted
and labeled A—D. (b) Schematic of the lattice of fibers with some formed tetramers all
belonging to a single domain. (In this and following diagrams, each dot represents the base
of an upright fiber while each ‘x’ represents the top-down view of a tetramer comprising of
four fibers whose bases remain on the square lattice but tips come together at the center.)
The numbers show the division of the dual lattice into four sublattices 1–4 corresponding to
the four distinct domains shown in (a); the remainder of the lattice is occupied by a domain
whose members occupy sublattice 1. In the SEM image, we may assign the tetramers
of domain A to sublattice 1; domains B, C and D then belong to sublattices 2, 3 and 4
respectively.
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on continuum surfaces as well as lattices, have been used to study a variety of physical,

chemical and biological processes (for a comprehensive review see Ref. [8]). The questions

of interest in studying such models range from predicting the final coverage of the surface

when the system has evolved until no further deposition takes place (i.e. there is no further

room for particle deposition and the system reaches a ‘jammed’ or ‘saturated’ state) to

understanding the time evolution up to jamming as well as the spatial distributions and

correlations of the particles at any stage.

Since the deposition events are irreversible, sequential adsorption models are typ-

ically not amenable to study via tools of equilibrium statistical mechanics [8]. Theoretical

modeling begins with the formulation of rate equations describing the filling of empty ar-

eas of the surface with particles. The result is a hierarchical set of rate equations linking

each empty configuration to the set of empty configurations that could result from the

adsorption of a particle anywhere within it. These equations describe a nonequilibrium

generalization of the famous dimer problem of statistical physics [60], with dimers being

replaced by hard spheres in our case. One-dimensional RSA models as well as CSA models

with short-range cooperative effects are exactly solvable. However, in dimensions two and

higher, the hierarchy of rate equations becomes very large and is not exactly solvable even

for the simplest short-range cooperative effects (such as nearest-neighbor exclusion on a

lattice). A variety of approximation methods such as series expansions for small cover-

ages (i.e. early times) and systematic truncation of the hierarchical rate equations has been

adopted to study higher dimensional RSA/CSA models. The algorithmic nature of the

SA process also makes it a good candidate for direct numerical simulation on finite-sized

lattices or surfaces, which is the approach taken in this work.

With experimental patterns like the one depicted in figure 2.1(a) in mind, we de-

velop here a model of irreversible CSA of particles on an initially empty square lattice,
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under the conditions that adsorption of a particle at any site prevents further adsorption

not only at the filled site but at nearest neighbor (NN) and next-nearest neighbor (2NN)

positions, but increases the rate of adsorption at the third (3NN) and fourth (4NN) nearest

neighbor positions. (As explained in detail in section 2.1.1, these lattice positions corre-

spond to the positions of plaquettes of the microfiber array for the particular case of fiber

clustering; representative NN through 4NN positions relative to a 2x2 cluster are indi-

cated in figure 2.2(b).) Local cooperativity in the adsorption process is typically intro-

duced by defining adsorption rates that depend on the local environment of each site [8].

For our model, we assign a rate k(i, j) = k0αiβj to each site that depends on the numbers

i and j of particles previously adsorbed at 3NN and 4NN positions respectively relative

to the site. Enhancement of adsorption near previously adsorbed particles corresponds to

k(i, j) > k(0, 0) for allowed values of (i, j) other than (0, 0). Here k(0, 0) ≡ k0 is the rate of

adsorption of particles for a site that has no filled 3NN or 4NN sites. We shall take α and

β greater than 1, so that they describe in a simple way enhanced “adsorption” (tetramer

clustering in our case) at 3NN and 4NN positions respectively. While the lone particle ad-

sorption rate k0 determines the overall speed at which the surface is covered with particles,

the nature of the adsorbed pattern at any fractional coverage and particularly at saturation

depends only on α and β which are the two adjustable parameters in the model.

Our model is similar to previously studied CSA models on a square lattice with

close-neighbor cooperative effects [8, 61, 62, 63, 64]. Previous studies, however, have fo-

cused on a single level of cooperativity with rates ki = αik0, α > 1 defined at each site when

i is the number of occupied closest neighbor sites. (This rate choice is called a multiplicative

or Arrhenius rate, in contrast to the Eden rate choice, ki = αk0, α > 1 for i ≥ 1.) Some of

these analyses are also useful in explaining the properties of our model. For example, in

the regime of strong cooperativity when adsorption near occupied sites is strongly favored,
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adsorbed particles tend to form growing domains or islands [62, 63] around a randomly

deposited nucleation site. Here we define a domain as a group of tetramers whose centers

may be connected to each other by a network of bonds each of length 2a, where a is the

lattice spacing of the square array of fibers. As shown in figure 2.1, the domains lie on

one of four sublattices and domains belonging to different sublattices meet in boundaries

that largely follow the principal axes of the lattice of fibers. Then k0 may be considered

the rate of nucleation of domains while the other rates describe the growth of domains. As

adsorption continues, growing domains on the same sublattice coalesce upon meeting one

another, while domains belonging to different sublattices meet at a frozen domain bound-

ary. As long as all k(i, j) > 0, the system ultimately reaches a ‘saturated’ or ‘jammed’ state

at which point no further adsorption can take place and the state of the entire lattice may

be described by domain boundaries separating domains of various shapes and sizes. This

saturated state is the one that is compared to the experimental domain patterns. In the

fiber clustering experiments discussed above, rare anomalous clusters of 2, 3, 5, 6,... fibers

constitute additional point-like defects which we disregard here.

In Section 2.1, we summarize the experiments leading to the self-organization of

microfibers and motivate the CSA model with NN/2NN exclusion and 3NN/4NN coop-

erative effects to describe ordering and domain formation in this system. In Section 2.2,

we characterize the patterns of tetramers generated by the model for a range of param-

eter values using computer simulations. We emphasize the effects of the newly consid-

ered 4NN cooperativity (β > 1) to contrast the current model with previously studied

single-parameter models, and highlight the similarity of the tetramer-tetramer correlation

functions for different values of α and β upon appropriate rescaling. In Section 2.3, we

evaluate the ability of the model to reproduce patterns from an actual experiment, using

a single measured quantity to fit the two parameters α and β, and compare the model’s
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performance to that of a similar single-parameter model. We show that a single-parameter

model deviates significantly from the experimental observations, while our new double-

parameter model provides an excellent description of the experimentally observed pat-

terns. In Section 2.4, we conclude by using the insights provided by the model to improve

ordering in the clustering experiment, and consider the potential relevance of the new

model to various sequential adsorption processes and self-assembly. Details of the numer-

ical simulation and the experimental procedure are reported in Appendix B.

2.1 Microfiber clustering and order formation

The formation of large ordered regions during self-organization of nanostructures via cap-

illary forces has been reported by the Aizenberg group in Ref. [7]. In this section we

summarize the experiment and observations that motivate our theory. Highly uniform

square arrays of high-aspect-ratio nano- and microscale polymeric fibers, prepared using

soft lithography as described in Ref. [65], were wet with a solvent which was allowed to

evaporate under ambient conditions. As the solvent-air interface is forced below the tips

of the upright fibers due to evaporation, the tips are drawn together by capillary interac-

tions and adhere to each other upon contact via short-range van der Waals forces, forming

clusters that persist after all the liquid has evaporated and may be observed by optical and

scanning electron microscopy. Under certain conditions of fiber geometry and stiffness,

the clusters formed could be primarily tetramers composed of four fibers meeting at the

tips. The tetramers were arranged in highly regular arrays, with large domains (spanning

several lattice lengths) composed of groups of tetramers ordered in a square superlattice

of lattice constant twice the distance between fibers. A representative SEM image of such

a system after clustering is shown in figure 2.1(a).
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2.1.1 Ordering mechanism and formulation of the CSA model

A qualitative one-dimensional mechanism for the formation of ordered domains has been

proposed [7] that propagates a breaking of the lattice symmetry into one sublattice due

to the nature of the attractive capillary forces between fiber tips. For small displacements

of the meniscus from the horizontal plane, the capillary forces are proportional to γr2/d,

where γ is the surface tension of the ethanol-air interface, r the radius of the fibers and d

the distance between fiber tips at the meniscus [66]. The cooperativity in cluster formation

arises as a result of the inverse relationship between interfiber distance d and capillary

force between fiber tips. Figure 2.2(a) illustrates this mechanism. If a dimer nucleates

due to an imperfection or instability (such as a nonuniformity in the rate of evaporation

of the ethanol, or slight variations in the spacing of the fiber tips when they encounter

the ethanol-air interface), that event induces a fiber to buckle or bend, and the fiber to

the right of the dimer then experiences a net force towards its own neighbor on its right

which is closer to it than the fiber participating in the dimer on its left. Thus, the initial

dimerization induces the fiber to form a new dimer with the fiber on its right. This cas-

cade then continues, propagating a chain of dimers with periodicity 2a. To extend this

picture to two dimensions, note that the formation of a tetramer has the biggest effect on

four pairs of neighboring fibers in the four cardinal directions. For instance, consider the

highlighted pair of fibers in figure 2.2(b). Due to the force imbalance induced by the initial

tetramer, the pair moves toward the fibers to its north, increasing the probability of form-

ing a tetramer in position ‘A’ which is a third-nearest-neighbor, or 3NN, position relative

to the formed tetramer. However, each destabilized fiber also has an enhanced probability

of forming a tetramers at the two positions marked ‘B’, the 4NN positions relative to the

formed tetramer. Hence the effect of the formed tetramer on the fibers closest to it is fully

captured if we include both 3NN and 4NN enhancement in tetramer formation. We would
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(a)

(b)

Figure 2.2: Capillary-mediated cooperative clustering. (a) illustrates the mechanism in a
one-dimensional row of fibers whose tips are drawn together to form dimers (top view,
left; side view, right). The large dots in the top view indicate the bases of upright fibers.
When the liquid-air interface first reaches the upright fiber tips, all interfiber forces are
equal. Now suppose the random formation of a cluster brings fibers g and h together.
The tips of i and h are now further apart than the tips of i and j; hence i experiences an
imbalance of forces (grey arrow) that induces it to cluster with its neighbor j. Now fiber
k experiences a force imbalance, and the effect of the initial clustering of g and h thus
cascades down the lattice. (b) extends the picture to tetramer formation in two dimensions
(top view). Representative first through fourth neighbor squares or “plaquettes” relative to
the nucleating tetramer are indicated by numbers 1–4. Due to the formation of a tetramer,
the four highlighted pairs of fibers experience a force imbalance. As shown for the top
pair, there is a resultant force on each fiber due to capillary attraction with the nearby
fibers and tetramer (whose fibers perturb the ethanol-air interface further away compared
to the unclustered fibers). This increases the probability of tetramer formation at the ‘A’
position (third-nearest neighbor), and to a smaller extent at the ‘B’ positions (fourth-nearest
neighbors).
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expect the effect to be weaker for 4NN tetramers, but to increase when the number of 3NN

or 4NN neighbors is increased as more fibers are perturbed by force imbalances. (Note

that tetramers cannot form at NN or 2NN positions due to a lack of a complete set of four

upright fibers. Also, the absence in the experimental patterns of adjacent pairs of dimers

suggests that any dimer formed near an initial tetramer immediately forms a more stable

tetramer configuration with the next pair of fibers if it is available, giving rise to a 3NN

or 4NN cluster. Hence we do not include the possibility of dimer formation induced by a

tetramer in neighboring fibers.)

Thus the formation of ordered domains occurs in the following way: random

instabilities nucleate lone tetramers in the lattice of initially upright fibers at some back-

ground rate. Once a tetramer is formed, the nature of capillary interactions enhances the

rate at which tetramers are formed at 3NN and 4NN positions near it. The 3NN enhance-

ment tends to be stronger, giving rise to the formation of ordered domains of tetramers

that grow from different nucleating sites. Nucleation of a 4NN tetramer at the edge of a

growing domain disrupts its growth, instead starting a domain belonging to a different

sublattice. Once tetramers are formed, they do not unbind.

Note that formation of tetramers on the square lattice of fibers is equivalent to the

deposition of single particles on sites of the dual square lattice (which is the lattice formed

from the centers of the plaquettes formed by the fiber lattice, or equivalently the fiber lattice

displaced by a/2 in both the x and y directions). Hence the irreversible process of tetramer

formation as described above is equivalent to a cooperative sequential adsorption process of

particles that occupy sites on a square lattice with NN/2NN exclusion and 3NN/4NN

enhancement of deposition. The initial state of upright fibers (no tetramers) is equivalent

to an empty initial lattice for particle deposition. The rate of deposition at each site at

any instant in time is determined by the previously deposited particles (if any) at 3NN
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and 4NN positions, or is equal to the rate of random or bare nucleation if there are no such

deposited neighbors. The final state after all the ethanol has evaporated, when all fibers are

clustered except those that do not have enough neighbors to form tetramers, corresponds

to a state of jamming or saturation for adsorption on the dual lattice.

2.1.2 Choice of CSA model rates

To complete our model, we must specify the local-environment-dependent rate of adsorp-

tion of tetramers at empty sites. The transformation of a group of four upright fibers to a

tetramer happens in less than a hundredth of a second [67], practically instantaneous over

the time scale of the clustering of the entire sample (roughly a minute). We assume that

the formation of a tetramer at a particular site on the (dual) lattice is a stochastic process

with a waiting time that is exponentially distributed with a mean time τ, which depends

on the geometry of the fibers, the surface and bulk properties of the fiber material, the

surface tension of the evaporating liquid and the level of the ethanol-air interface, as well

as the configuration of fibers and/or tetramers at nearby positions. The rate of formation

(adsorption) at the particular site is then 1/τ. We do not attempt to calculate these rates mi-

croscopically for different local environments but treat them as parameters that we extract

from a particular experimental realization by fitting to simulation results.

Even if we restrict ourselves to 3NN/4NN effects of previously formed tetramers,

there are several different rates of adsorption to an empty site based on different possible

configurations of previously adsorbed tetramers around it. For instance, there are five

different configurations involving one, two, three or four tetramers adsorbed at 3NN sites

that are not superimposable via rotations, and several more independent configurations

when considering all possible combinations of adsorbed 3NN/4NN tetramers allowed

under the exclusion rule. To reduce the number of independent parameters in the model,
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we make the simplifying assumption that the adsorption rate k(i, j) at any site is a function

only of the number of tetramers adsorbed at 3NN and 4NN positions (i and j respectively)

and not their spatial arrangement around the site.

The functional dependence of the rate on i and j (which, of course, take only non-

negative integer values) is motivated by the observation of long unbroken domain walls

along both lattice directions, which suggests that individual domains growing from differ-

ent nucleation sites are largely rectangular in shape when they encounter one another. Let

us focus initially on the stronger 3NN cooperativity, ignoring any dependence of the rates

on j so that k(i, j) ≡ ki. Then k0, k1 and k2 represent respectively the rates of nucleation of a

new domain, beginning of a new row at the edge of a growing domain, and growth of an

incomplete row at the edge of a domain by formation of a tetramer at either end of the row.

The ratio k1/k0 determines the average size to which domains grow before they encounter

other domains and stop, while k2/k1 determines the size until which a growing domain

remains rectangular.1 Evans and Nord [64] have shown that multiplicative rates that sat-

isfy k0 : k1 : k2 = 1 : α : α2 with α > 1 give rise to domains that maintain their rectangular

shape until saturation is reached in the adsorption process. In contrast, a weaker arith-

metic increase in cooperativity with i such as k0 : k1 : k2 = 1 : α : 2α would lead to patterns

with irregular domain walls as domains do not maintain their rectangular shape. Mo-

tivated by these observations and the experiments themselves, we choose multiplicative

rates that independently grow with i and j: k(i, j) = k0αiβj, where α and β are the cooper-

ativity parameters associated with 3NN and 4NN tetramers respectively. This simplified

form has several advantages: it reduces the number of parameters to two while retaining

1The time taken to complete an edge on a rectangular domain with edge length m is tc ∼ m/k2; in that
time, the rectangular shape would be spoiled if a new edge is begun before the whole string of m tetramers is
added to complete the growing edge. This happens ∼ mk1tc ≈ m2k1/k2 times; hence the rectangular shape of
the domain can be maintained only for m2k1/k2 � 1 i.e. m � √

k2/k1. Discussed in Ref. [64].
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the desired properties of two cooperativity levels, cooperativity that increases with num-

ber of adsorbed neighbors, and support for rectangular domains; the levels of 3NN and

4NN cooperativity may be independently varied; and the similarity with (one-parameter)

multiplicative rates allows a comparison with models that have been previously studied.

We do not propose that the actual microscopic rates in experiment follow this choice of

rates, but rather that this simplified choice reflects the local environment dependence of

the actual rates sufficiently well to recreate key features of the patterns seen in experiment

— particularly the relative influence of 3NN and 4NN cooperativity. As we shall see, a

large number of experimental features can be understood upon adjusting just these two

parameters.

2.2 Simulation results

We study the proposed CSA model using Monte Carlo simulations, described in brief in

Appendix B. The simulations were carried out on 400x400 lattices, with results averaged

across 100 runs for each (α, β) combination.

2.2.1 Mean coverage at saturation

The coverage θ at any point during the adsorption process is the fraction of filled sites. The

saturation coverage θ∗ is the coverage when no further particles can adsorb. The maximum

possible coverage is achieved when the entire lattice consists of one single domain, in

which case θ∗ = 1/4 (the NN and 2NN exclusion allows at most a fourth of the dual lattice

to be covered in tetramers, all on one sublattice).

The saturation coverage is expected to increase with the cooperativity, because

deviations from the maximum possible value occur only when domains with different
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Figure 2.3: Dependence of saturation coverage, θ∗, on cooperativity parameters α and β in
the CSA model (simulation). The top figure highlights the α-dependence when β is kept
constant and vice-versa on the bottom. The lines are guides to the eye.
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(a) (b) (c)

Figure 2.4: Domain walls between tetramer domains. (a) and (b) depict Type I domain
walls that leave behind upright fibers (depicted by dots) which are not part of any cluster.
On the dual lattice, two empty vertical rows separate the domains. The domain on the left
in (a) belongs to sublattice 1 [if numbering begins from the top left as in figure 2.1(b)] while
the domain on the right belongs to sublattice 2. In (b), the domain boundary is between
domains on sublattice 1 and sublattice 3. (c) depicts a vertical Type II domain wall (dashed
line) that does not leave behind any unclustered fibers. The domains are separated by only
one row of empty sites on the dual lattice. The boundary is between a domain on sublattice
1 and one on sublattice 4. There are, of course, horizontal analogs of all three types of wall.

nucleating sites coalesce. A higher rate of tetramer formation near previously formed

tetramers (compared to nucleation of lone tetramers) ensures that the dual lattice is filled

with fewer domain walls; i.e. higher values of α and β give rise to higher values of satura-

tion coverage, as seen in figure 2.3.

2.2.2 Domain sizes, chord lengths and domain wall densities

We have already defined domains as groups of particles (i.e. tetramers) connected to each

other by a network of 3NN bonds. Domains belonging to different sublattices meet in

domain walls that also run along the principal lattice directions. As figure 2.4(a–c) shows,

there are two types of boundaries between domains that occur at saturation: boundaries

involving free-standing single fibers that do not have enough neighbors to form tetramers

(Type I) and boundaries that do not have such freely standing fibers (Type II). As a result

of the CSA process, patterns with several domains meeting in boundaries of either type

that primarily follow the principal directions of the lattice are generated (figure 2.5). “Zig-

zag” domain walls that follow diagonal directions in the lattice are rare because of the
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Figure 2.5: A typical result of the CSA process run to saturation has a mixture of Type I and
Type II domains in both the horizontal and vertical directions. “Zig-zag” walls are occa-
sionally seen which may be considered a combination of horizontal and vertical sections.
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Arrhenius choice of rates.2

Once the different domains in the simulation result and the domain boundaries

between them have been identified, ensemble-averaged measures of the domain size and

the domain boundary lengths may be obtained. For a given simulation run, if ns is the

number of domains with s particles in them, we define the average domain size sav =

∑ sns/ ∑ ns. We also consider the statistics of adsorbed particles on a row-by-row or

column-by-column basis. Defining a chord as a contiguous string of particles connected

by 3NN bonds in the vertical or horizontal direction of the lattice, we may also measure

the average chord length mav = ∑ mnm/ ∑ nm where nm is the number of chords of length

m. These are all measures of domain size that have been used in previous studies [8, 63].

We also define the domain wall densities ρ1 and ρ2 of type I and type II domain

boundaries respectively as the total length (in lattice units) of each domain wall type at

saturation divided by the number of fibers in the lattice. Zig-zag domain walls are broken

up into vertical and horizontal sections which contribute to the domain wall densities as

well.

Figures 2.6, 2.7, 2.8 and 2.9 summarize the dependence of these measured quanti-

ties on α and β. The effects of the two levels of cooperativity considered are different on the

measures of domain size. Consider an already adsorbed particle M at the edge of a grow-

ing domain. The 3NN cooperativity enhances the adsorption of particles that belong to the

same domain as M. Hence increased 3NN cooperativity, quantified by a larger value of α,

corresponds to larger domains. In contrast, the effect of 4NN cooperativity is to enhance

2The asymptotic size of a single growing domain in an otherwise empty lattice is circular for Arrhenius-
type rates. However, at its initial stages of growth the domain is rectangular since rows fill up quickly for
Arrhenius rates. If we ignore 4NN cooperativity for the moment, Evans and Nord [64] have shown that
growing domains retain their rectangular size up to a linear size of order α1/2 which also turns out to be the
typical size a domain grows before it encounters another domain that nucleated independently. Thus domains
do not attain their asymptotic shape but remain largely rectangular in the saturated state. As we shall see, the
4NN cooperativity tends to make domains even smaller and thus preserves their primarily rectangular shapes.
See also footnote on page 42.
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Figure 2.6: Dependence of average domain size sav on cooperativity parameters α and β in
the CSA model (simulation).
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Figure 2.7: Dependence of average chord length mav on cooperativity parameters α and β
in the CSA model (simulation). Note the qualitatively different trends.
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Figure 2.8: Dependence of type I domain wall density ρ1 on cooperativity parameters α
and β in the CSA model (simulation).
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Figure 2.9: Dependence of type II domain wall density ρ2 on cooperativity parameters α
and β in the CSA model (simulation).
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the rate of formation of particles that belong to a different sublattice than that occupied

by M. This disrupts the growth of the domain by effectively nucleating a new domain

on a different sublattice, giving rise to a Type II domain boundary shown in figure 2.4(c).

Hence increasing the level of 4NN cooperativity, β, gives rise to smaller domains. This is

seen in the measures of average domain size and average chord length from simulation,

figures 2.6 and 2.7. From this argument, increasing β should also increase the density of

type II domain walls, as confirmed in figure 2.9. The density of type I domain walls is

essentially the density of unclustered fibers and thus closely related to the saturation cov-

erage (increased θ∗ should correspond to a fall in ρ1 as fewer unclustered fibers are left at

saturation). Hence increasing α and β both have the effect of reducing ρ1 (figure 2.8).

A useful consequence of the competing influence of 3NN and 4NN cooperativity

on domain size is that the parameters may be varied in tandem to increase the coverage

at saturation without simultaneously increasing the average domain size. In previously

studied models of cooperative sequential adsorption that include only one level of coop-

erativity (typically NN enhancement or NN exclusion and 2NN enhancement [62, 63]),

increasing the rate of cooperative adsorption increases both the saturation coverage and

the size of domains. In contrast, if the system exhibits cooperativity that induces adsorp-

tion of particles on a different sublattice as in the current model, then increasing this rate (β

in the current model) increases the saturation coverage θ∗ while decreasing the measures

of domain size, sav and mav.

2.2.3 Pair correlations

We define spatial pair correlations at saturation as C(x, y) = P(x, y)− θ∗2, where P(x, y)

is the probability that a pair of sites separated by the vector (x, y) in lattice units is occu-

pied. Here we analyze correlations purely in the x direction, C(x, 0), averaged over several
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Figure 2.10: Pair correlation C(l, 0) for different values of α plotted against the rescaled
separation l/mav(α). In all cases, β = 1. mav(α) is taken from data similar to that reported
in figure 2.7 with β = 1.For α > 20 the scaled correlations follow a universal form. The
inset, which plots the absolute value of the pair correlation on a log-linear scale, shows the
loss of scaling at large separations.

simulation runs. The average x and y direction correlations are equal by symmetry. The

correlation C(x, 0) is positive for even values of the lattice separation x and negative for

odd values as a consequence of nearest-neighbor exclusion in the tetramer model. For

instance, C(1, 0) = −θ∗2 since P(1, 0) = 0.

Dependence on 3NN cooperativity

At first we set β to 1 (no 4NN cooperativity) and vary α. The system is then very similar

to the C(2x2) adsorption model with NN exclusion and 2NN cooperativity with Arrhe-

nius rates studied by Evans and co-workers [63, 64] for which scaling arguments were

developed by the authors using semi-deterministic domain growth models. For large α,

the adsorption process resembles a deterministic nucleation and growth process in which

new domains are nucleated with a rate k0 per empty site, following which rectangular do-
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mains grow at a size-dependent rate αk0m where m is the number of adsorbed particles

on a growing edge of the domain. (When α � 1, the time taken for a complete row to be

added to the edge of a growing domain, ∼ m/(α2k0), is much smaller than the time taken

for the new row to be initiated at that edge which is roughly 1/(mαk0). The latter is thus

the rate-determining step for domain growth.) If fluctuations and edge roughening are

ignored, the only relevant quantity is the ratio of the rates of domain nucleation to domain

growth. Hence patterns generated by different values of α should be self-similar if they

are rescaled by a characteristic length ξ that gives rise to the same nucleation to growth

rate ratio for all of them. For Arrhenius rates in the limit of large α in two dimensions, this

length has been shown to scale as ξ ∼ O(α1/2) (Ref. [64]). At high values of α, the average

linear dimension of the domains and the chord length mav are expected to scale in the same

fashion.

A consequence of the length scale set by the strong cooperativity is that the spatial

correlations should display universal scaling on length scales O(ξ) for large values of α.

On length scales larger than the characteristic length, a crossover to the superexponential

decay characteristic of random sequential adsorption processes is expected [63, 68]. Such

behavior is indeed seen in figure 2.10.

Dependence on 4NN cooperativity

The effect of varying β while keeping the value of α constant is shown in figure 2.11. As

β is increased, the positive-valued part of the correlation function [C(l = 2n, 0) where n

is an integer] falls. This is a result of the increased propensity for type II domain walls to

form, which break up contiguous strings of adsorbed particles on the same sublattice in

the x direction [see figure 2.4(c)]. On the other hand, the negative-valued part [C(x = 2n +

1, 0)] becomes more negative, because a particle in the domain on the left of figure 2.4(c)
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Figure 2.11: Pair correlation C(l, 0) for α = 100 and different values of β against separation
l in lattice units.

continues to have vacancies at positions that are odd numbers of lattice displacements

along the same row into the new domain on the right.

The pair correlations in figure 2.11 cannot be made to overlap by rescaling the

horizontal axis. (For instance, if we rescaled the l axis to make the positive-valued parts

of C(l, 0) overlap for β = 1 and β = 8, we can see from the figure that the negative-

valued parts of the curves would be pushed even further away compared to the unscaled

functions.) The simple scaling of correlations seen when β was set to 1 has been lost. In

the former case, scaling was justified by considering a deterministic domain nucleation

and growth process where the ratio of the rates of domain nucleation to growth set the

the characteristic length scale. When 4NN cooperativity is also included, the deterministic

process is modified as follows: nucleation still happens at a rate k0 per empty lattice site,

and rows continue to be added to the straight edge of a growing domain at a rate mαk0

where m is the number of particles at the edge. However, domain growth (where a row is

added to the same sublattice as the domain) now competes with the formation of a new
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Figure 2.12: Pair correlation C(l, 0) for different values of (α, β) chosen such that α/β2 = 2
in all cases. The scaling length ls(α, β) was chosen for each value of (α, β) to obtain the best
data collapse. Inset: |C(l, 0)| against l/ls on a log-linear scale.

domain on the sublattice displaced by one lattice step in either direction perpendicular

to the growing edge, which happens at a rate ∼ mβ2k0. The deterministic process thus

depends on two rate ratios: the ratio of domain nucleation to growth, which is domain

size dependent but controlled by α, and the ratio of domain growth to formation of a new

domain at the growing edge, which equals α/β2 for all sizes of domains.

The pair correlations do not scale as before because it is not possible to find a sin-

gle characteristic length for rescaling that sets both rate ratios to be equal for patterns with

different values of α and β. However, we expect that patterns with the same value of the

ratio α/β2 may be made self-similar by the appropriate rescaling that sets the nucleation-

growth ratio to be uniform. This is confirmed in figure 2.12 where pair correlations for

different values of (α, β) but the same value of α/β2 have the same form upon appropri-

ate rescaling of the horizontal axis. Note that for each of the values of α, a different value

of β would not give a pair correlation that could be collapsed onto the same curves. As
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before, the conclusions drawn from the deterministic model are appropriate only for large

values of α where the domain nucleation and growth picture is not completely obscured

by fluctuations due to the stochastic nature of the sequential adsorption model.

From the above discussion, we also see that the ratio α/β2 quantifies of the rela-

tive influence of the 3NN and 4NN cooperativity on domain sizes. If α/β2 � 1, the 4NN

cooperativity dominates, disrupting domain growth completely even for large α because it

would be much more likely for a new row of tetramers to form on a shifted sublattice than

on the same sublattice as a previously formed row. In that situation one would not observe

large ordered domains at all, but rather see regions of staggered parallel rows of tetramers

on alternating sublattices. The case of α/β2 � 1 is not relevant to the microfiber cluster-

ing system (for which domains extending over a few lattice lengths in either direction are

always observed, indicating that 3NN cooperativity is dominant) and is not considered

here.

2.2.4 Diffracted intensity

Although one does not typically diffract matter or light waves from the tetramer patterns

studied here, Fourier analysis nevertheless provides a powerful tool for uncovering subtle

patterns underlying tetramer formation. We define the diffracted intensity of the dual

lattice of tetramers at a wavevector q as

I(q) =

�����∑x,y
e−i(qxx+qyy)n(x, y)

�����

2

(2.1)

where qx, qy ∈ (−π, π), n(x, y) is the occupation number (0 or 1) of the lattice position

(x, y) and the sum runs over all lattice positions. This quantity is closely related to the

diffracted intensity for scattering from the actual pattern of tetramers; it is the pattern that

would be obtained if every tetramer in the pattern were replaced by a delta function scat-
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Figure 2.13: Intensity plots of diffraction patterns from simulations for different values
of α. Since the pattern is fourfold symmetric, only one quadrant is shown but the x and
y axes have been offset to reveal the shapes of the diffraction spots. The square region
−π/5 < qx, qy < π/5 (dotted line) has been set to zero to emphasize the features near the
edges. There is no 4NN cooperativity; i.e. β = 1 in all cases.
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Figure 2.14: Intensity plots, similar to figure 2.13, of diffraction patterns from simulations
for different values of β. In all cases, α = 20.
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terer at its center (similar to the structure factor for scattering from a collection of identical

atoms). It provides information about the degree of order in the system and the types of

domains and domain boundaries that are present.

In practice, the results of simulations and the experimental measurements are

discrete arrays of size NxN. In this case we calculate the diffracted intensity via a discrete

Fourier transform of the array n(x, y) of occupation numbers. The resulting array provides

an estimate of I(qx, qy) for qx, qy taking on discrete values 2πn/N where n takes on integer

values between −N/2 and N/2. Averaging the calculated patterns from several realiza-

tions of a finite-sized simulation of tetramer deposition at a particular (α, β) provides a

diffraction pattern representative of that set of parameters.

A single domain is a square array of particles with a superlattice spacing of twice

the underlying lattice. The diffraction pattern of an infinite domain consists of delta func-

tion peaks at q = ±(π, 0),±(0, π),±(π, π),±(π,−π), etc., i.e. the reciprocal lattice of

the square superlattice of particles, in addition to the origin. At finite cooperativity, finite-

sized domains on different sublattices interfere to broaden these peaks in specific ways.

To understand this, suppose we start with an infinite domain and create a Type II domain

wall running along the y direction by shifting all the particles to the right of the origin up

by one lattice position. The x coordinates of all occupied sites remain the same in the sum

in equation (2.1); hence the peaks at q = (±π, 0) are unaffected but the peaks at nonzero

values of qy broaden in the qx direction.3 Analogously, Type II domain walls in the x di-

rection broaden the peaks with qx �= 0 in the qy direction. Type I domain walls have an

effect of either diminishing the strength of peaks or broadening them perpendicular to

3The width of a diffraction peak in either direction is inversely proportional to the correlation length of the
pair correlation in that direction. The domain wall reduces pair correlations in the x direction (by dephasing
rows of adsorbed particles that extended across the entire lattice) but not in the y direction, hence affecting the
peak width along qx but not qy.
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Figure 2.15: A section of an experimental image (left) compared to its interpretation in
terms of tetramers on a lattice (right) within the framework of our model. Notice especially
that the hexamer (3x2) clusters, indicated by solid arrows, have been interpreted as being
parts of a continuous type I domain boundary. Similarly, dimers that form along another
type I boundary, indicated by dashed arrows, are interpreted as a row of lone fibers.

their non-zero momentum direction.

Increasing α while setting β = 1 constant (figure 2.13) sharpens the principal

reciprocal lattice peaks by reducing domain wall densities, allowing large domains to

dominate the diffraction pattern. At a constant value of α, increasing the value of β (fig-

ure 2.14) increases Type II domain wall densities exclusively, thus broadening the peaks at

(0,±π) and (±π, 0) perpendicular to the non-zero momentum and diminishing the peaks

at (±π,±π).

2.3 Experimental results

To test our theoretical ideas, we conducted clustering experiments on a sample of size

2 cm x 1 cm, with fibers of height 10¯m and diameter 1.8¯m arranged in a square array

with lattice constant 3.5¯m (Sample I). Experimental details are in Appendix B. Optical

microscope images were taken of a 182 x 182 fiber area at a time, and a pattern recognition

program written in MATLAB® (MathWorks, Inc.) was used to identify the positions of

the formed tetramers on the dual lattice. Thus a 182 x 182 lattice of empty and filled sites
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was obtained from each image, the filled sites being the ones at which a tetramer was

observed. From these lattices, relevant measures such as the coverage, domain sizes and

chord lengths could be measured which correspond exactly to the quantities measured

from the CSA model simulations. We imaged 43 non-overlapping regions, and calculated

pattern statistics for each lattice. Here we report quantities averaged across the 43 regions,

and the corresponding standard error of this average is used as the error estimate.4

In the experiment, we also see clusters that do not strictly consist of four fibers,

such as hexamers (3x2 clusters). These are primarily seen at the boundaries between or-

dered domains belonging to different sublattices. We interpret these clusters in the context

of the tetramer adsorption model as follows: the ethanol-air interface is pinned to the tips

of the fibers even as the level of the ethanol-air interface recedes below the height of the

fibers. The capillary forces between fiber tips are a result of this pinning which perturbs

the interface, and they increase as the height difference between fiber tips and interface in-

creases [66]. These capillary forces compete with the elastic forces involved with bending

the fibers so that their tips touch to form clusters. When the level of the ethanol-air inter-

face is such that capillary forces are strong enough to induce tetramer clustering, tetramer

formation begins and proceeds until saturation; larger cluster formation does not happen

because fiber tips need to be displaced by larger distances, and higher capillary forces are

needed to overcome the corresponding elastic forces. If the evaporation were stopped at

this stage a pattern consisting only of tetramers and upright (unclustered) fibers would

be observed. However, in the actual experiments, ethanol evaporation continues until the

4The standard error, s = σ/
√

n where σ is the estimate of the standard deviation of the measured quantity
and n is the number of measurements taken, is a valid estimate of the error associated with measuring a
mean quantity, as long as the individual measurements are made from the same statistical distribution with
a uniform value of σ. In practice, slight nonuniformities in the sample, as well as spatial irregularities in
the evaporation rate of ethanol, are likely to make the cooperativity levels in each of the 43 regions slightly
different from one another; i.e. the measurements made in each region belong to slightly different statistical
distributions. This variation is not reflected in the standard error which is thus likely to underestimate the
true errors in the measured quantities.
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Table 2.1: Comparison of experiment to model

Quantity Experiment Two-parameter CSA One-parameter CSA
α = 48, β = 2.7 α = 41

θ∗ 0.2258 ± 0.0004 0.2253 0.2213
sav 20.6 ± 0.5 23.2 29.1
mav 4.0 ± 0.1 4.12 4.84
ρ1 0.099 ± 0.002 0.099 0.115
ρ2 0.111 ± 0.002 0.105 0.057

Comparison of measured quantities from Sample I with averaged statistics of the two-
parameter and the one-parameter CSA models with parameters picked by least-squares
fitting of the diffraction pattern with experiment. The simulation results are averaged over
100 instances of a 400 x 400 lattice and the standard error associated with this average is
smaller than the most significant digit reported.

capillary forces become strong enough to draw some of the remaining lone fibers toward

their neighbors to form dimers (clusters of two adjacent pillars), hexamers and larger sized

clusters. Thus we interpret these clusters as a combination of tetramers and lone fibers

when we convert the experimental images into lattice occupancy data. To be consistent

with this interpretation, we translate a row of hexamers in the experiment as a row of

tetramers next to a row of unclustered fibers (rather than randomly assigning a tetramer

to one of the two positions it could occupy in each hexamer) because such a row is most

likely to have arisen at the site of a continuous Type I domain wall which we recreate in

the lattice data. Figure 2.15 shows an example of translating an experimental pattern into

lattice data.

The method of fitting the experimental results to the simulations is as follows: the

two-dimensional diffracted intensity defined in equation (2.1) condenses ensemble-wide

properties of the generated patterns into a two-dimensional array of numbers. We thus

compare the averaged diffracted intensity from the experiment to that from the simula-

tions, choosing α and β that best fit the experimental diffraction pattern. The parame-

ters are chosen that minimize the root mean square deviation of the diffracted intensity,
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Figure 2.16: Least-squares fitting of the experimental result to simulations. Each line shows
the RMS value of the difference in observed and simulated diffraction intensity (averaged
across the two-dimensional array) for a particular value of α while varying β. On the top,
the smallest value of of the RMS deviation decreases and then increases upon varying
α over a large range, suggesting that a unique minimum can be found in the vicinity of
α = 50, β = 3. On the bottom, more refined parameters α = 48, β = 2.7 are seen to provide
the best fit with a precision of ±1 in α and ±0.1 in β.
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Figure 2.17: Comparison between the measured pair correlation of Sample I to the pair
correlation function of the CSA model with α = 48, β = 2.7. Inset: Absolute value of the
pair correlations on a log-linear scale.

weighted by the inverse of the experimental error estimate at each (qx, qy). As figure 2.16

shows, such a minimum value may be extracted from the data to a reasonable precision.

For our experimental measurements, we obtain α = 48 ± 1, β = 2.7 ± 0.1.

Table 2.1 shows a comparison between experiment (second column) and the CSA

model simulation for the optimized α and β values described above (third column). The

measured average values of the different pattern statistics introduced previously appear

to be in reasonable agreement. Figure 2.17 compares the calculated pair correlation func-

tion from the experiment to that of the CSA model with the chosen fit parameters, again

showing reasonable agreement.

We can also compare the performance of the extended CSA model to a one-

parameter model with only 3NN cooperativity and Arrhenius rates ki = k0αi for an empty

site with i occupied sites at third nearest neighbor positions (this is equivalent to the two-

parameter model with β set to 1). Statistics for the best fit obtained for α in the one-
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parameter model have also been reported in table 2.1 (fourth column), showing that the

two parameter model performs significantly better. In particular, the absence of 4NN co-

operativity leads the one-parameter model to greatly underestimate ρ2, the density of type

II domain boundaries which are induced by the 4NN cooperativity mechanism. The high

value of ρ2 in the experiment confirms that the 4NN cooperativity mechanism is important

in tetramer formation.

2.4 Conclusion

We have proposed a lattice sequential adsorption model of ordered tetramer clusters of

microfibers driven by capillary forces. The newly introduced further-neighbor coopera-

tivity allows independent variation of lattice coverage and average domain size: unlike

previously studied cooperative sequential adsorption models, the present model allows

the saturation lattice coverage to be increased without correspondingly raising the aver-

age domain size. This independence arises because the model admits additional domain

boundaries that do not include unoccupied sites.

With a plausible model for ordered cluster formation as judged by the compar-

ison of the theory to experiment, we may ask how to improve ordering in the capillary-

assisted self-organization process. Clearly, increasing the rate of cooperative domain ex-

pansion relative to random domain nucleation gives rise to larger ordered domains. A

low level of the ethanol-air interface relative to the height of the fiber tips increases the

downward as well as inter-fiber-tip capillary forces, which would induce more random

nucleation events. If we control the evaporation of the ethanol (for instance, by controlling

the ambient vapor pressure of ethanol) in such a way that the interface spends a longer

time at a height that induces few tetramers to form on their own, then clustering is more
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likely to be triggered among fibers destabilized by the formation of clusters nearby than

by the effect of the capillary forces on upright fibers. Thus the rate of bare nucleation of

domains is reduced relative to their growth rate, and larger ordered domains could be

produced.

The 4NN cooperativity is also a factor that leads to smaller domains. Indeed,

even if domain growth arises from a single nucleation site and further isolated single-site

nucleation is suppressed, there is always a chance that a domain belonging to a different

sublattice begins somewhere along the growing edges of the domain as long as the 4NN

cooperativity is significant. A second alternative to create uniform domains is to create

artificial domain nucleation sites (say, by weakening or bending individual fibers as has

been demonstrated in Ref. [65]) in a regular square array with each nucleation site created

on the same sublattice and the spacing between nucleation sites smaller than the typi-

cal domain size observed in an uncontrolled clustering experiment. This strategy would

enhance domains on the same sublattice and allow commensurate coalescence before ran-

dom single-site nucleation or 4NN cooperativity-induced nucleation could initialize a do-

main belonging to a different sublattice.

A similar effect can be recreated along one dimension by imposing clustering dy-

namics at a front that sweeps across the sample in one direction rather than allowing ran-

dom nucleation and bidirectional domain growth everywhere in the sample, as has been

previously recognized in Ref. [57]. This bias can be achieved, for instance, by performing

the clustering on a tilted sample. Due to the effect of gravity, the wetting layer retreats

in one direction as the ethanol evaporates, and at any moment clustering happens only in

a few horizontal rows near the retreating edge where the wetting layer is at its thinnest.

Domain growth along the horizontal strip happens very quickly under 3NN cooperativity,

following which the domain edge acts as a template for clustering in the next unclustered
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Figure 2.18: Single simulation result for CSA with α = 40, β = 2 (top) compared with
(bottom) a simulation with the same parameters in which clustering happens only in a
strip three rows wide that is swept across the lattice from top to bottom to mimic the effect
of an evaporation front (see text). There are far fewer domain boundaries in the row-by-
row simulation on the right, and they tend to lie along the vertical axis.
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row. This leads to extended domains in the direction of propagation of the clustering front

(top to bottom), while in the perpendicular (horizontal) direction domains are broken up

by 4NN cooperativity and random nucleation. A pattern resulting from a simulation of

such a mechanism is shown in figure 2.18.

Finally we remark that this work could be relevant to future studies of various

self-organization processes as well as sequential adsorption. For example, this model

could be used to describe nonequilibrium adsorption of a molecule/complex/DNA tile

that has a square/cross symmetry with the neighboring corners/ligands/arms possessing

either opposite charge, or A,B,A,B recognition sites. Then the attachment of the next par-

ticle is mostly enhanced at the NN position where a bidentate junction is formed, but it

will be also enhanced (but to a lesser degree) at the 2NN position where a monodentate

junction is formed. Again, we arrive at double-level cooperativity in adsorption. The dif-

ference is that there will be no NN/2NN exclusion, but instead NN/2NN enhancement;

otherwise, the model is largely the same. Abstraction of complex processes to lattice-type

models that do not focus on microscopic details has been used with success to describe self-

assembly of nanoparticles [69] and vesicle formation [70] among other processes; here we

use an out-of-equilibrium lattice process to study a microscale self-organization process.

The two-parameter sequential adsorption model we have developed could be relevant

to more ‘traditional’ sequential adsorption processes of gas molecules on metal surfaces

where further neighbor interactions are significant, and also to other irreversible processes

that are not adsorption processes in the strict sense but nevertheless may be illuminated

using such models.
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Chapter 3

Statistical physics of pressurized
spherical shells

The elastic theory of thin plates and shells [5], a subject over a century old, has recently

found new applications in understanding the mechanical properties of a wide range of

natural and artificial structures at microscopic length scales. The mechanical properties

of viral capsids [71, 72, 73], red blood cells [21], and hollow polymer and polyelectrolyte

capsules [74, 33, 75, 19, 76] have been measured and interpreted in terms of elastic con-

stants of the materials making up these thin-walled structures. Theoretically, models that

quantify the deformation energy of a two-dimensional membrane have been used to in-

vestigate the shapes of viral capsids [77, 78, 79] and their expected response to point forces

and pressures [80, 81, 82, 83], as well as shape transitions of pollen grains [38].

Like its counterparts in other areas of science, such as fluid dynamics and the

theory of electrical conduction in metals, thin shell theory aims to describe the physics

of slowly varying disturbances in terms of a few macroscopic parameters, such as the

shear viscosity of incompressible fluids and the electrical conductivity of metals. Despite

such venerable underpinnings as the Navier-Stokes equations and Ohm’s law, these hy-

drodynamic theories can break down, sometimes in spectacular ways. For example, it is
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a b

Figure 3.1: Simulated thermally fluctuating shells. (a) Triangulated shell with 5530 points
separated by average nearest-neighbor distance r0 with Young’s modulus Y = 577�/r2

0
and bending rigidity κ = 50� at temperature kBT = 20�, where � is the energy scale of
the Lennard-Jones potential used to generate the disordered mesh. (b) Same as in (a) with
external pressure p = 0.5pc, where pc is the classical buckling pressure. The thermally
excited shell has already buckled under pressure to a shape with a much smaller enclosed
volume than in (a).

know from mode coupling theory [84] and from renormalization group calculations [85]

that thermal fluctuations cause the shear viscosity of incompressible fluids to diverge log-

arithmically with system size in a two-dimensional incompressible fluid. In the theory

of electrical conduction, quenched disorder due to impurities coupled with interactions

between electrons lead to a dramatic breakdown of Ohm’s law in thin films and one-

dimensional wires at low temperatures, with a conductance that depends on the sample

dimensions [86].

Even more dramatic breakdowns of linear response theory can arise in thin plates

and shells. Unlike the macroscopic shell structures of interest to civil engineers, thermal

fluctuations can strongly influence structures with size of order microns, since the elastic

deformation energies of extremely thin membranes (with nanoscale thicknesses) can be

of the order of the thermal energy kBT (where kB is the Boltzmann constant and T the

temperature) for typical deformations. The statistical mechanics of flat solid plates and

membranes (i.e. membranes with no curvature in the unstrained state) has been studied
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previously (see [87, 15] and references therein). Thermal fluctuations lead to scale-dependent

elastic moduli for flat membranes, causing the in-plane elastic moduli to vanish at large

length scales while the bending rigidity diverges [16, 88]. These anomalies arise from the

the nonlinear couplings between out-of-plane deformations (transverse to the plane of the

undeformed membrane) and the resultant in-plane strains, which are second order in the

out-of-plane displacements.

Much less is known about spherical shells subject to thermal fluctuations, such

as the one shown in Fig. 3.1(a). In fact, the coupling between in-plane and out-of-plane

modes is significantly different. Geometry dictates that a closed spherical shell cannot be

deformed without stretching; as a result, out-of-plane deformations provide a first order

contribution to the in-plane strain tensor [5]. This introduces new nonlinear couplings be-

tween in-plane and out-of-plane deformations, which are forbidden by symmetry in flat

membranes. We can also consider the buckling of spherical shells under uniform external

pressure, which has no simple analogue for plates [Fig. 3.1(b)]. An early exploration with

computer simulations combined an analysis of the elastic energy due to the linear strain

contributions of a spherical membrane with the nonlinear corrections from flat membranes

to suggest new scaling behavior for thermally fluctuating spherical membranes [89]. How-

ever, an important nonlinear coupling triggered by the curved background metric was not

considered, nor was the effect of an external pressure investigated. Here, we study the

mechanics of fluctuating spherical shells using perturbation theory and numerical simula-

tions, taking into account the nonlinear couplings introduced by curvature as well as the

effects of a uniform external pressure.
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3.1 Elastic energy of a thin shell

The elastic energy of a deformed spherical shell of radius R is calculated using shallow-shell

theory [12]. This approach considers a shallow section of the shell, small enough so that

slopes measured relative to the section base are small. The in-plane displacements of the

shallow section are parametrized by a two-component phonon field ui(x), i = 1, 2; the out-

of-plane displacements are described by a field f (x) in a coordinate system x = (x1, x2)

tangent to the shell at the origin.1 We focus on amorphous shells, with uniform elastic

properties, and can thus neglect the effect of the 12 inevitable disclinations associated with

crystalline order on the surface of a sphere [77]. In the presence of an external pressure p

acting inward, the elastic energy for small displacements in terms of the bending rigidity

κ and Lamé coefficients µ and λ reads (see Appendix C.1 for details):

G =
�

d2x
�

κ

2
(∇2 f )2 + µu2

ij +
λ

2
u2

kk − p f
�

, (3.1)

where the nonlinear strain tensor is

uij(x) =
1
2
�
∂iuj + ∂jui + ∂i f ∂j f

�
− δij

f
R

. (3.2)

Here, d2x ≡ √gdx1dx2, where g is the determinant of the metric tensor associated with

the spherical background metric. Within shallow shell theory, g ≈ 1 as shown in Ap-

pendix C.1.

If we represent the normal displacements in the form f (x) = f0 + f �(x), where f0

represents the uniform contraction of the sphere in response to the external pressure, and

f � is the deformation with reference to this contracted state so that
�

d2x f � = 0, then the

energy is quadratic in fields u1, u2 and f0. These variables can be eliminated in a functional

integral of exp(−G[ f �, f0, u1, u2]/kBT) by Gaussian integration; details of the calculation

1In this Chapter and the associated Appendices, the out-of-plane displacement field is called f , rather than
w, to maintain consistency with existing literature on the statistical physics of flat membranes [11].
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are presented in Appendix C.2. The effective free energy Geff which results is the sum of a

harmonic part G0 and an anharmonic part G1 in the remaining variable f �(x):

G0 =
1
2

�
d2x

�
κ(∇2 f �)2 − pR

2
|∇ f �|2 + Y

R2 f �2
�

, (3.3)

G1 =
Y
2

�
d2x

��
1
2

PT
ij ∂i f �∂j f �

�2
− f �

R
PT

ij ∂i f �∂j f �
�

.

where Y = 4µ(µ + λ)/(2µ + λ) is the two-dimensional Young modulus and PT
ij = δij −

∂i∂j/∇2 is the transverse projection operator. The “mass” term Y( f �/R)2 in the harmonic

energy functional reflects the coupling between out-of-plane deformation and in-plane

stretching due to curvature, absent in the harmonic theory of flat membranes (plates). The

cubic interaction term with a coupling constant −Y/2R is also unique to curved mem-

branes and is prohibited by symmetry for flat membranes. These terms are unusual be-

cause they have system-size-dependent coupling constants. Note that an inward pressure

(p > 0) acts like a negative R-dependent surface tension in the harmonic term. As re-

quired, the effective elastic energy of fluctuating flat membranes is retrieved for R → ∞

and p = 0. In the following, we exclusively use the field f �(x) and thus drop the prime

without ambiguity.

When only the harmonic contributions are considered, the equipartition result

for the thermally generated Fourier components fq =
�

d2x f (x) exp(iq · x) with two-

dimensional wavevector q are

� fq fq� �0 =
AkBTδq,−q�

κq4 − pR
2 q2 + Y

R2

. (3.4)

where A is the area of integration in the (x1, x2) plane. Long-wavelength modes are re-

stricted by the finite size of the sphere, i.e. q � 1/R. In contrast to flat membranes for which

the amplitude of long-wavelength (q → 0) modes diverges as kBT/(κq4), the coupling be-

tween in-plane and out-of-plane deformations of curved membranes cuts off fluctuations
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with wavevectors smaller than a characteristic inverse length scale [89]:

q∗ = (�∗)−1 =

�
Y

κR2

�1/4
≡ γ1/4

R
,

where we have introduced the dimensionless Föppl-von Kármán number γ = YR2/κ [77].

We focus here on the case γ � 1, so �∗ � R. As p approaches pc ≡ 4
√

κY/R2, the

modes with q = q∗ become unstable and their amplitude diverges. This corresponds to

the well-known buckling transition of spherical shells under external pressure [12]. When

p > pc, the shape of the deformed shell is no longer described by small deformations from

a sphere, and the shallow shell approximation breaks down.

3.2 Anharmonic corrections to elastic moduli

The anharmonic part of the elastic energy, neglected in the analysis described above, mod-

ifies the fluctuation spectrum by coupling Fourier modes at different wavevectors. Upon

rescaling all lengths by �∗, it can be shown that the size of anharmonic contributions to

�| fq|2� is set by the dimensionless quantities kBT√γ/κ and p/pc. The correlation function

including the anharmonic terms in Eq. (3.3) is given by the Dyson equation,

�| fq|2� =
1

�| fq|2�−1
0 − Σ(q)

(3.5)

where Σ(q) is the self-energy, which we evaluate to one-loop order using perturbation

theory in Appendix C.3. While �| fq|2� can be numerically evaluated at any q, an approx-

imate but concise description of the fluctuation spectrum is obtained by expanding the

self-energy up to order q4 and defining renormalized values YR, κR and pR of the Young’s

modulus, bending rigidity and pressure, from the coefficients of the expansion:

AkBT�| fq→0|2�−1 ≡ κRq4 − pRR
2

q2 +
YR

R2 + O(q6). (3.6)
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To lowest order in kBT/κ and p/pc we obtain the approximate expressions

YR ≈ Y
�

1 − 3
256

kBT
κ

√
γ

�
1 +

4
π

p
pc

��
, (3.7)

pR ≈ p +
1

24π

kBT
κ

pc
√

γ

�
1 +

63π

128
p
pc

�
, (3.8)

and

κR ≈ κ

�
1 +

61
4096

kBT
κ

√
γ

�
1 − 1568

915π

p
pc

��
. (3.9)

(See Appendix C.3 for details of the calculation and the complete dependence on p/pc.)

Thus the long-wavelength deformations of a thermally fluctuating shell are governed by

a smaller effective Young’s modulus, a larger effective bending rigidity, and a nonzero

negative surface tension even when the external pressure is zero. At larger p/pc, how-

ever, both the Young’s modulus and the bending modulus fall compared to their zero

temperature values, and the negative effective surface tension determined by pR gets very

large. The complete expressions for the effective elastic parameters, including the full

p/pc-dependence, show that all corrections diverge as p/pc → 1. Furthermore, the effec-

tive elastic constants are not only temperature-dependent, but also system size-dependent,

since
√

γ ∝ R. Although the corrections are formally small for kBT � κ, they nevertheless

diverge as R → ∞! The thermally generated surface tension, strong dependence on exter-

nal pressure, and size dependence of elastic constants are unique to spherical membranes,

with no analogue in planar membranes.

3.3 Simulations of thermally fluctuating shells

We complement our theoretical calculations with Monte Carlo simulations of randomly

triangulated spherical shells with discretized bending and stretching energies that trans-

late directly into a macroscopic 2D shear modulus Y and a bending rigidity κ [90, 28].
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Figure 3.2: Fluctuation spectrum in spherical harmonics. Spherical harmonic ampli-
tude of the shape fluctuations of elastic shells plotted against the dimensionless spheri-
cal wavenumber l for a shell with R = 40r0, Y = 577�/r2

0 and κ = 50� at temperatures
kBT/κ = 7.4 × 10−4 (blue), 0.07 (red) and 0.18 (yellow). The fluctuation amplitudes are
scaled by kBT so that the spectra at different temperatures would coincide in the harmonic
approximation. Each subfigure corresponds to a different value of the external pressure:
p = 0 (a) and p = 0.2pc (b). The symbols are from Monte Carlo simulations, and the
solid lines are the theoretical prediction, Eq. (3.11), using the renormalized elastic con-
stants from perturbation theory [Eqs. (3.7)–(3.9)], except for the lowest temperature, where
the bare elastic constants are used since the anharmonic effects are negligible.
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Details of the simulation procedure are provided in Appendix D. We study shells with

600 < γ < 35000 and 2 × 10−6 < kBT/κ < 0.5. The anharmonic effects are negligible at

the low end of this temperature range.

The fluctuation spectra of the simulated spherical shells are evaluated using an

expansion of the radial displacement field in spherical harmonics [91]. The radial position

of a node i at angles (φ, θ) can be written as ri(φ, θ) = �R0 + f (φ, θ) with �R0 the average

radius of the fluctuating vesicle. The function f (φ, θ) can be expanded in (real) spherical

harmonics

f (φ, θ) = R
lM

∑
l=0

m=l

∑
m=−l

AlmYlm(φ, θ) (3.10)

where lM is the large wavenumber cutoff determined by the number of nodes in the lattice

(lM + 1)2 = N [91]. The theoretical prediction for the fluctuation spectrum including

anharmonic effects is derived in Appendix C.4; the result is

kBT�|Alm|2�−1 ≈κR(l + 2)2(l − 1)2 − pRR3
�

1 +
l(l + 1)

2

�

+ YRR2
�

3(l2 + l − 2)
3(l2 + l)− 2

�
.

(3.11)

Fig. 3.2 displays our theoretical and simulation results for the fluctuation spectrum. At

the lowest temperature (corresponding to kBT√γ/κ ≈ 0.1 � 1), the spectrum is well-

described by the bare elastic parameters Y, κ and p. At the intermediate temperature

(kBT√γ/κ ≈ 10) anharmonic corrections become significant, enhancing the fluctuation

amplitude for some values of l by about 20%–40% compared to the purely harmonic contri-

bution. At this temperature, one-loop perturbation theory successfully describes the fluc-

tuation spectrum. However, at the highest temperature simulated (kBT√γ/κ ≈ 24), the

anharmonic corrections observed in simulations approach 50% of the harmonic contribu-

tion at zero pressure and over 100% for the pressurized shell. With such large corrections,

we expect that higher-order terms in the perturbation expansion contribute significantly to
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the fluctuation spectrum and the one-loop result overestimates the fluctuation amplitudes.

Similarly, thermal fluctuations modify the mechanical response when a shell is

deformed by a deliberate point-like indentation. In experiments, such a deformation is

accomplished using an atomic force microscope [71, 19]. In our simulations, two harmonic

springs are attached to the north and south pole of the shell. By changing the position of

the springs the depth of the indentation can be varied [Fig. 3.3(a), inset]. The thermally

averaged pole-to-pole distance �z� is measured and compared to its average value in the

absence of a force, �z0�. For small deformations, the relationship between the force ap-

plied at each pole and the corresponding change in pole–pole distance is spring-like with

a spring constant ks: �F� ≡ ks(�z0� − �z�). The spring constant is related to the amplitude

of thermal fluctuations in the normal displacement field in the absence of forces by (see

Appendix C.5 for the detailed derivation)

ks =
kBT

2�[ f (x)]2� ≈ kBT
�z2

0� − �z0�2 . (3.12)

This fluctuation-response relation is used to measure the temperature dependence of ks

from simulations on fluctuating shells with no indenters. At finite temperature, anhar-

monic effects computed above make this spring constant both size- and temperature-

dependent:

ks ≈
4
√

κY
R

�
1 − 0.0069

kBT
κ

√
γ

�
. (3.13)

Fig. 3.3(a) shows the force-compression relation for a shell with R = 20r0 and

dimensionless temperatures kBT√γ/κ = 1.36 × 10−4 and kBT√γ/κ = 34. The linear re-

sponse near the origin [Fig. 3.3(b)] is very well described by ks measured indirectly from

the fluctuations in z0 at each temperature, Eq. (3.12). The thermal fluctuations lead to an

appreciable 20% reduction of the spring constant for this case. Measuring spring con-

stants over a range of temperatures [Fig. 3.3(c)] confirms that the shell response softens as
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Figure 3.3: Temperature dependence of response to point forces. (a) Force-compression
curves for simulations of indented shells (symbols) with R = 20r0, Y = 577�/r2

0 and
κ = 50� at low (kBT/κ = 2 × 10−7) and high (kBT/κ = 0.5) temperature. The lines
show the expected linear response at small deformations with the spring constant ks
measured independently from fluctuations in z0 (ks = 29.15�/r2

0 for kBT/κ = 2 × 10−7,
ks = 23.63�/r2

0 for kBT/κ = 0.5). For indentation depths larger than 1 − �z�/�z0� ≈ 0.05,
the regions around the poles become inverted and the response becomes nonlinear. In-
set: schematic showing the definition of z0 (the pole-to-pole distance in the absence of
indentations) and z (pole-to-pole distance following an indentation imposed by harmonic
springs whose free ends are brought close together) for a snapshot of the fluctuating shell.
(b) Blow-up of the boxed region near the origin in (a), highlighting the linear response
regime. (c) Spring constants extracted from fluctuations for shells with three different
radii as a function of temperature, rescaled by the classical result for linear response of
thin shells at zero temperature. The dashed line shows the perturbation theory prediction,
Eq. (3.13). The low-temperature spring constant deviates from the classical result due to a
finite mesh size effect which falls with increasing R (increasing mesh size).
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Figure 3.4: Temperature dependence of the buckling pressure. Buckling pressure for
simulated shells at various radii and temperatures, normalized by the classical (i.e. zero
temperature) critical buckling pressure pc for perfectly uniform, zero temperature shells
with the same parameters. For all shells, Yr2

0/κ = 11.54. In separate sets of symbols, we
either vary the shell radius over the range 7.5 ≤ R/r0 ≤ 55 while keeping the temperature
constant (kBT = 2 × 10−6κ, blue circles; kBT = 0.4κ, yellow squares) or vary the tempera-
ture over the range 2 × 10−8 ≤ kBT/κ ≤ 0.4 while keeping the radius constant at R = 20r0
(red triangles). The parameter kBT√γ/κ sets the strength of anharmonic corrections for
thermally fluctuating shells. The inset shows the 1/R2 dependence of the buckling pres-
sure as the radius is varied, for shells at low and high temperature.

the temperature is increased, in agreement with the perturbation theory prediction. We

note, however, a small but systematic shift due to the finite mesh size of the shells, an ap-

proximately 5% effect for the largest systems simulated here. At the higher temperatures

(kBT√γ/κ > 20), the measured spring constants deviate from the perturbation theory

prediction, once again we believe due to the effect of higher-order terms.

We also simulate the buckling of thermally excited shells under external pres-

sure. When the external pressure increases beyond a certain value (which we identify as

the renormalized buckling pressure), the shell collapses from a primarily spherical shape
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[Fig. 3.1(a)] to a shape with one or more large volume-reducing inversions [Fig. 3.1(b)].

For zero temperature shells, this buckling is associated with the appearance of an unstable

deformation mode in the fluctuation spectrum. At finite temperature, the appearance of a

mode with energy of order kBT is sufficient to drive buckling. Anharmonic contributions,

strongly enhanced by an external pressure, also reduce the effective energy associated with

modes in the vicinity of q∗ primarily due to the enhanced negative effective surface tension

pRR/2 [see Eq. (3.8)]. As a result, unstable modes arise at lower pressures and we expect

thermally fluctuating shells to collapse at pressures below the classical buckling pressure

pc. This is confirmed by simulations of pressurized shells (Fig. 3.4). When anharmonic con-

tributions are negligible (kBT√γ/κ � 1), the buckling pressure observed in simulations is

only ∼ 80% of the theoretical value because the buckling transition is highly sensitive to

the disorder introduced by the random mesh. Relative to this low temperature value, the

buckling pressure is reduced significantly when kBT√γ/κ becomes large.

3.4 Conclusion and outlook

In summary, we have demonstrated that thermal corrections to the elastic response become

significant when kBT√γ/κ � 1 and that first-order corrections in kBT/κ already become

inaccurate when kBT√γ/κ � 20. Human red blood cell (RBC) membranes are known

examples of curved solid structures that are soft enough to exhibit thermal fluctuations.

Typical measured values of the shear and bulk moduli of RBC membranes correspond to

Y ≈ 25 µN/m [21, 92], while reported values of the bending rigidity κ vary widely from 6

kBT to 40 kBT [21, 93]. Using an effective radius of curvature R ≈ 7 µm [21] gives kBT√γ/κ

in the range 2–35. Thus, RBCs could be good candidates to observe our predicted thermal

effects, provided their bending rigidity is in the lower range of the reported values.
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For continuum shells fabricated from an elastic material with a 3D Young’s mod-

ulus E, thickness h and typical Poisson ratio ≈ 0.3, kBT√γ/κ ≈ 100RkBT/(Eh4). Hence

very thin shells with a sufficiently high radius-to-thickness ratio (R/h) must display sig-

nificant thermal effects. Polyelectrolyte [19] and protein-based [20] shells with R/h ≈ 103

have been fabricated, but typical solid shells have a bending rigidity κ several orders of

magnitude higher than kBT unless h � 5 nm. Microcapsules of 6 nm thickness fabricated

from reconstituted spider silk [20] with R ≈ 30 µm and E ≈ 1 GPa have kBT√γ/κ ≈ 3,

and could exhibit measurable anharmonic effects.

Thermal effects are particularly pronounced under finite external pressure—an

indentation experiment carried out at p = pc/2 on the aforementioned spider silk cap-

sules would show corrections of 10% from the classical zero-temperature theory. For sim-

ilar capsules with half the thickness, perturbative corrections at p = pc/2 are larger than

100%, reflecting a drastic breakdown of shell theory because of thermal fluctuations. The

breakdown of classical shell theory explored here points to the need for a renormalization

analysis, similar to that carried out already for flat plates [11].
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Buckling pathways in spherical shells
with soft spots

Thin spherical shells exhibit a buckling instability when subjected to a uniform external

pressure. Under an increasing external pressure, idealized shells without imperfections

remain spherical until a threshold pressure is reached at which the shell buckles: at this

point, a very small increment in pressure triggers a large deformation in the form of one

or more indentations that significantly reduce the enclosed volume. Understanding the

effect of inhomogeneity in the shell material on this buckling transition, besides being a

challenging problem due to the highly nonlinear nature of large deflections in shells, has

the potential to uncover new ways of using buckling to provide form and function. In

this chapter, we study the effect of a previously unexplored inhomogeneity that is simple,

yet general: a soft spot with a circular boundary in an otherwise uniform spherical shell.

We use numerical simulations and theoretical arguments to understand the buckling and

postbuckling behavior as the spot size and stiffness are varied. The response of the shell

may be broken down into the response of the soft region and the response of the remain-

der of the shell; the interplay of these responses plays a significant role in explaining the

observed behavior.
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Our numerical model, described in detail in Appendix E, is similar to ones used

in other studies of the buckling of both uniform [28] and nonuniform [38, 94] shells under

pressure. Our theoretical analysis builds on previous work both on uniform and slightly

imperfect spherical shells [39, 29], and on the buckling of spherical caps i.e. shallow sections

of spheres, with various boundary conditions [95, 96].

The rest of this chapter is structured as follows: we describe in more detail the

elastic energy of deformations in thin spherical shells, and identify the dimensionless

quantities that are relevant for our description. We then present our numerical results

from simulations of buckling shells under external pressure, and describe different buck-

ling pathways that arise as the parameters are changed. To explain our numerical observa-

tions, we analyze the underlying continuum shell theory equations for a soft spot embed-

ded in the rest of the shell. To provide context, we recap the buckling behavior of uniform

shells, which provides much insight on the buckling of shells with soft spots. We then

consider separately the deformations of the cap, and of the remainder of the shell, using

scaling arguments and approximations to understand the underlying nonlinear differen-

tial equations that describe stresses and deformations in the shell. Finally we describe the

hysteresis properties of the inhomogeneous shells when the pressure is cyclically varied,

which is strongly influenced by the soft region. We conclude with potential applications

and possible avenues for further research.

4.1 Elastic theory of thin spherical shells

Typically, the elastic energy of deforming a three-dimensional (3D) object made up of a

uniform elastically isotropic material depends on the detailed elastic strains at each point

within the object and the 3D elastic Young’s modulus E that relates strains to stresses.
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However, a simplification can be made for elastic plates and shells, structures which have

a very small extent in one of the three spatial dimensions [5, 12]. Then, it is sufficient to

consider the deformation of the middle surface, a two-dimensional manifold. The elastic

energy can be described using in-surface strains, which carry an energy penalty set by a

two-dimensional (2D) Young’s modulus Y, and changes in curvature of the middle surface,

penalized by a bending rigidity κ. In terms of the 3D elastic modulus E and Poisson ratio

ν of the material making up the shell, the 2D moduli are

Y = Eh, (4.1)

κ =
Eh3

12(1 − ν2)
, (4.2)

where h is the shell thickness. As a result, the thickness of the shell strongly affects its

elastic response. In particular, for extremely thin plates and shells, the h3-dependence of

κ shows that bending is highly favored over stretching, as demonstrated by the ease of

bending a piece of paper compared to stretching it.

Whereas thin, flat elastic plates can exhibit pure bending deformations with no as-

sociated in-plane stretching and consequently a very low energy cost (the aforementioned

sheet of paper being an example), the same is not always true of shells which are curved

in their undeformed state. In flat plates, the contribution of normal (out-of-plane) defor-

mations of the mid-surface to the in-plane strain is quadratic in the deformation, whereas

the contribution to the bending tensor is linear. As a result, the bending energy domi-

nates the elastic penalty of normal deformations of flat plates. In contrast, the underlying

curvature of a shell mediates a linear coupling between out-of-plane displacements and

in-plane strains: any transverse deformation ζ introduces a strain of order ζ/R, where R is

the radius of curvature of the shell in its ground state [5]. Thus, bending and stretching are

intimately coupled in curved shells, unlike elastic plates and membranes which are flat in
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the ground state.

An important consequence of this coupling is that normal deformations tend to

be localized to narrow widths in spherical shells. A scaling analysis of the energy density

reveals a length scale that sets the extent of characteristic deformations, which is small

compared to the shell radius. Consider a deformation of maximum depth ζ localized over

a length l in the spherical shell, which has a corresponding curvature change of approxi-

mately ζ/l2 and strain ζ/R. The bending energy per unit area of the deformation is κζ2/l4

while the stretching energy per unit area is Yζ2/R2. Minimizing the sum of the bend-

ing and stretching energies with respect to l gives rise to a typical elastic length scale of

localization of deformations for which the total elastic energy is minimized,

l = � ≡
�

κR2

Y

�1/4

≡ R
γ1/4 , (4.3)

where we have introduced the dimensionless Föppl-von Kármán number,

γ ≡ YR2

κ
≈ 10

�
R
h

�2
. (4.4)

The Föppl-von Kármán number quantifies the relative importance of stretching to bending

for spherical shells. It is large for thin elastic shells. Typically, a shell is considered thin, i.e.

the abstraction to a two-dimensional surface is valid and shell theory can be used, when

h � 0.1R; i.e., γ � 1000. Very large Föppl-von Kármáns are common in both natural and

artificial systems. For instance, the radius of a ping-pong ball is about 100 times its wall

thickness, leading to γ ≈ 105. Typical values for the elastic moduli and radius of curvature

of a red blood cell [21] lead to estimates for γ in the range 104–105. Therefore, typical

deformations vary over a length scale � that is much smaller than the radius of the shell.

This separation of scales simplifies the theoretical analysis of deformations of spherical

shells.
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4.1.1 Elastic energy of thin shells

We use the standard Kirchhoff-Love description of thin elastic shells, in which the elastic

energy density of the surface is quadratic in two-dimensional strain and curvature ten-

sors [10]. The elastic energy is the sum of a stretching and a bending component,

E =
�

dS
�

Y
2(1 − ν2)

·
�
(u11 + u22)

2 − 2(1 − ν)(u11u22 − u2
12)

�

+
κ

2
·
�
(k11 + k22)

2 − 2(1 − ν)(k11k22 − k2
12)

��
(4.5)

where the indices i, j label the local coordinate directions tangent to the shell mid-surface,

uij is the 2 × 2 strain tensor and kij = Kij − K0
ij the change in the curvature tensor Kij from

its initial value K0
ij. The integration is carried out over the mid-surface of the shell. The

stress and curvature tensors are defined to vanish when the external pressure vanishes—

the equilibrium shape is a sphere of radius R. The initial curvature tensor K0
ij of the shell

mid-surface is that of a sphere with radius R: K0
ij = δij/R at every point for an orthonormal

basis set up in the tangent plane to the sphere at that point.

This expression forms the basis of a discretized model of a thin shell appropriate

for numerical simulation (see Appendix E). Upon picking a suitable coordinate system,

rewriting the elastic energy expressions in terms of displacement fields and stress func-

tions, and performing a functional minimization with respect to these fields, we obtain the

equations of shell theory, which are nonlinear but amenable to analysis using numerical

and approximate analytical methods. We use both numerical simulations and a theoretical

analysis of the shell theory equations to understand the behavior of inhomogeneous shells.

4.1.2 Shells with soft spots

In our study, we restrict ourselves to a specific inhomogeneity: a thin region with a circular

boundary in an otherwise uniform spherical shell. By considering a small region that is
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softer than the rest of the shell, we open up the possibility of triggering an instability in the

soft region before the shell as a whole collapses. (A stiffer region in the shell would affect

the pressure at which the shell collapses, but would not show any additional instabilities

before this collapse; we do not consider stiffer regions here.) The thin region, or cap, is

assumed to be made of the same material as the rest of the shell (the remainder), but with

a thickness h̃ < h where h is the uniform thickness of the remainder. The elastic moduli

in the cap and the remainder are obtained using Eqs. (4.1) and (4.2) with the appropriate

thicknesses; the cap is thus easier to bend and stretch than the shell. We treat the cap

and the remainder as materially coupled to each other; i.e. the displacements, stresses and

bending moments are continuous across the boundary between the cap and the shell.

In what follows, we will use Ỹ, κ̃, ... to refer to the properties of the cap and Y, κ, ...

for the remainder. Without loss of generality, we choose the soft cap to be centered at the

north pole, and its size is then defined by the azimuthal angle α (in radians) subtended

by its rim. We consider caps small compared to the rest of the shell (α � π/4). The

dimensionless parameters characterizing the shell are the Föppl-von Kármán number γ

(computed using the elastic properties of the remainder), the cap-remainder thickness ratio

τ ≡ h̃/h < 1, and the dimensionless size λ ≡ Rα/� = αγ1/4 (which expresses the radial

size of the cap in units of the elastic length scale � of the remainder). Alternatively, one

could use the Föppl-von Kármán number and elastic length scale of the cap, which are

simply related to the remainder quantities via γ̃ = γ/τ2 > γ, �̃ = �
√

τ < �.

4.2 Numerical results

We numerically simulate the buckling of shells with soft spots under hydrostatic pressure.

(Details of the simulation method are provided in Appendix E.) We restrict ourselves to
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p = 0.126p0 p = 0.128p0 p = 0.210p0

Figure 4.1: Results of a buckling simulation on a shell with γ = 104, τ = 0.4 and cap size
α = 0.52 (where α is the azimuthal angle subtended by the spot at the center of the unde-
formed spherical shape), corresponding to λ = Rα/� = 5.2. Equilibrium configurations at
different pressures, measured in units of the classical buckling pressure of a uniform shell
without the soft spot, are shown. The mesh points in the soft region are colored differently
from the remainder. The shape of the shell is spherical up to the first buckling pressure
pc1 = 0.128p0, when the soft cap snaps through to an inverted shape. This shape is largely
unchanged up to the second, more catastrophic buckling event at pc2 = 0.21p0.

a single inhomogeneity in the form of a region with a circular boundary that is thinner

than the rest of the shell. In buckling simulations, the pressure is measured in units of the

classical buckling pressure p0 = 4
√

κY/R2 of a uniform shell [12] with the same thickness

as the remainder (see Section 4.4 for more details on the buckling transition for uniform

spherical shells).

In a typical simulation, a uniform pressure p is exerted on the shell by adding a

volume integral p
�

dV to Eq. (4.5), and the local equilibrium configuration of the shell is

computed. More generally, p would be the pressure difference between the inside and the

outside of the shell; if the shell contains a fluid such as air or water, we assume that it is

permeable to the enveloped fluid, thus allowing reductions in volume in response to the

pressure. The pressure is initially set to zero, and incremented by a small amount between

successive minimization operations. Fig. 4.1 shows the outcome of a simulation on a shell

with Föppl-von Kármán number γ = 104, thickness ratio τ = 0.4, and dimensionless spot

size λ = 5.2. At early stages (low pressures) the shell responds via a near-uniform con-
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traction while maintaining a roughly spherical shape. At a critical value of the pressure,

which we call pc1 , the cap experiences a snap-through transition to an inverted shape, al-

though the rest of the shell remains spherical. This shape persists until a higher critical

pressure pc2 is reached, at which point the rest of the shell experiences a catastrophic col-

lapse. In real shells, this collapse would be terminated by self-contact of the shell; in our

simulations, we introduce a minimum volume restriction of roughly 10% of the original

volume to stabilize the collapsed shape, as it is computationally simpler to implement than

self-avoidance. For this particular set of parameters, pc1 = 0.128p0 and pc2 = 0.21p0.

This buckling pathway, with two distinct buckling events observed as the pres-

sure is ramped up, is observed over a wide range of values of τ and λ. For future reference,

we will call this pathway I. However, for other parameter ranges, different behavior is ob-

served. For modestly thinned caps such that τ � 0.6, practically all shells only display one

buckling transition, a catastrophic collapse from a spherical shape to a fully deflated shape

similar to the final shape in Fig. 4.1 without any intermediate range of pressures where

only the cap has snapped through. We refer to this as pathway II. There is also a narrow

range of parameters, for small values of τ and λ, in which a deformation is observed in the

cap before the rest of the shell buckles, but the deformation is a smooth and continuous in-

version of the shell as the pressure rises, rather than a sudden snap-through at a particular

pressure. For these shells, the collapse of the rest of the shell still happens when a partic-

ular pressure is reached. This is termed pathway III in what follows. For both pathway II

and pathway III, pc1 refers to the critical pressure at which the lone buckling event occurs,

and pc2 is undefined.

Fig. 4.2 summarizes the various buckling pathways for shells with different thick-

ness ratios τ as a function of the dimensionless size λ = αγ1/4 of the soft spot. These results

are independent of γ for small spots, as will be shown in the theoretical analysis below. We
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Cap snap-through
Complete collapse

Figure 4.2: Buckling pressures pc1 and pc2 of the first and second buckling events as the
pressure is ramped up in numerical simulations, as a function of rescaled cap size for a va-
riety of thickness ratios τ = h̃/h. The pressure is rescaled by the classical buckling pressure
p0 of a sphere with the same properties as the remainder. In all cases, γ = 104, although the
results when expressed with rescaled variables are largely insensitive to γ. Empty sym-
bols signify a snap-through transition localized to the cap, whereas filled symbols signify
catastrophic collapse of the entire shell. Some shells exhibit two distinct buckling events—
snap-through of the cap at the lower pressure pc1 and collapse of the rest of the shell at the
higher pressure pc2 . Other shells display only a single transition, which is always a catas-
trophic collapse of the whole shell, at the first buckling pressure pc1 . The second buckling
pressure pc2 is not defined for these shells.
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observe that when the soft spot is extremely thin compared to the rest of the shell (τ < 0.5),

pathway I is almost always observed: two distinct buckling events occur at pressures pc1

and pc2 , and there is a range of pressures pc1 < p < pc2 over which the cap has experi-

enced snap-through buckling but the shell is stable against further collapse. The exception

is for extremely small spots (λ � 1.5) where buckling occurs via pathway III with a con-

tinuous deformation of the cap from its initial shape to a fully inverted shape, followed by

a single catastrophic buckling event at a pressure pc1 . For less drastic thickness changes

(τ ≥ 0.6), pathway II is almost exclusively observed, i.e. a single catastrophic buckling

event induces collapse of the entire shell, with no significant deviation from the spherical

shape prior to buckling. For τ = 0.5, pathway I is observed in a narrow range of spot

sizes 1.5 < λ < 3.5, and pathway II is observed outside this range. Note that, even when

the cap size shrinks to zero (λ → 0) the critical buckling pressure remains smaller than

p0, the buckling pressure of an ideal shell, due to inevitable small scale inhomogeneities

introduced by the amorphous mesh that describes the shell (see Appendix E).

As expected, the snap-through buckling of the cap happens at higher pressures

for thicker (i.e. stiffer) caps. However, for shells following pathway I (0.2 ≤ τ ≤ 0.5),

the pressure pc2 at which the whole shell collapses has a very weak dependence on the

thickness ratio τ. Except for some small deviations at small λ, the pressure of bulk collapse

for these thickness ratios seems to follow a near-universal curve of p/p0 as a function of

λ. This trend is in contrast to shells following pathway II (τ > 0.5), for which the pressure

associated with large-scale collapse of the shell does depend strongly on τ. We also notice

an interesting common structure in the pc1-vs.-λ curves for different thickness ratios, all of

which have a distinctive concave-upwards shape with strong variations up to a spot size

λ ∼ 3–4 beyond which they level off to a roughly constant value that depends on τ.

To explain these features of the critical pressure function defined by p = pc1(λ, τ)
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and p = pc2(λ, τ), we analyze the various mechanisms that bring about the elastic buckling

instability in the following sections.

4.3 Governing equations of shell theory

We begin by summarizing the equations governing the stresses and strains of elastic spher-

ical shells. (A detailed derivation of the results summarized here is provided in Ap-

pendix F.) Initially, we consider completely uniform shells. For theoretical analysis, we

use shallow shell theory [12], where we consider a section of the shell small enough so that

slopes relative to a tangent plane at the basal point are small. Then, we set up a Carte-

sian coordinate system (x, y) in this tangent plane, and describe deformations of the shell

in terms of tangential displacement fields U(x, y), V(x, y) and the normal displacement

W(x, y). The nonlinear strain tensor is related to the displacements via

uxx = U,x +
1
2

W2
,x −

W
R

, (4.6)

uyy = V,y +
1
2

W2
,y −

W
R

, (4.7)

uxy =
1
2
�
U,y + V,x + W,xW,y

�
, (4.8)

where we use the notation f,α ≡ ∂α f for spatial derivatives. The curvature tensor is ap-

proximately

kij = W,ij. (4.9)

Using these relations in the elastic energy, Eq. (4.5), and minimizing with respect to varia-

tions in U, V and W gives rise to three nonlinear equilibrium equations. These can however

be reduced to one equilibrium equation and one compatibility condition by introducing a

stress function χ, derivatives of which give the 2 × 2 stress tensor σij at every point:

σxx = χ,yy; σyy = χ,xx; σxy = −χ,xy. (4.10)
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In terms of W and χ, the two equations of nonlinear shallow shell theory are

κ∇4W − 1
R
∇2χ − N2(χ, W) = p, (4.11)

1
Y
∇4χ +

1
R
∇2W +

1
2

N2(W, W) = 0. (4.12)

where

∇2 f = f,xx + f,yy, ∇4 f = ∇2(∇2 f ) = f,xxxx + 2 f,xxyy + f,yyyy, (4.13)

and

N2( f , g) = f,xxg,yy + f,yyg,xx − 2 f,xyg,xy (4.14)

defines a second-order nonlinear differential operator. Equations (4.11) and (4.12), together

with appropriate boundary conditions, govern the deflections and stresses of a uniform

shell. The presence of the nonlinear operator makes solving the shallow shell equations

subtle and challenging, but they are amenable to analysis through scaling arguments and

numerical methods.

4.3.1 Equations in polar coordinates

When dealing with shells with soft caps, it is advantageous to use polar coordinates r, θ

rather than x, y, with the origin at the center of the soft region (so that x = r cos θ, y =

r sin θ). In polar coordinates, the strain tensor reads

urr = U,r −
W
R

+
1
2

W2
,r, (4.15)

uθθ =
U
r
+

V,θ

r
− W

R
+

1
2

�
W,θ

r

�2
, (4.16)

urθ =
1
2

�
U,θ

r
+ V,r −

V
r
+

W,rW,θ

r

�
, (4.17)
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the curvature tensor is

krr = W,rr, (4.18)

kθθ =
W,r

r
+

W,θθ

r2 , (4.19)

krθ =
W,rθ

r
− W,θ

r2 , (4.20)

and stresses are given by

σrr =
χ,r

r
+

χ,θθ

r2 ; σθθ = χ,rr; σrθ =
χ,θ

r2 − χ,rθ

r
. (4.21)

The governing equations remain unchanged [Eqs. (4.11) and (4.12)] but with the differen-

tial operators

∇2 f = f,rr +
f,r

r
+

f,θθ

r2 , ∇4 f = ∇2(∇2 f ), (4.22)

N2( f , g) = f,rr

� g,r

r
+

g,θθ

r2

�
+ g,rr

�
f,r

r
+

f,θθ

r2

�
− 2

�
f,rθ

r
− f,θ

r2

�� g,rθ

r
− g,θ

r2

�
. (4.23)

4.4 Buckling of uniform spherical shells under pressure

In preparation for our analysis of nonuniform shells, we review here the buckling of uni-

form spherical shells under external pressure, following the approach in Ref. [39]. The

classical buckling of spherical shells can be understood using a linearized analysis of the

shell equations.

Prior to buckling, a consideration of the forces on a section of the shell shows

that the shell contracts uniformly by an amount W0 = pR2(1 − ν)/2Et and is in a uniform

state of compressive stress σxx = σyy = −pR/2, corresponding to an Airy stress function

χ0 = −pR(x2 + y2)/4. The buckling mode can be obtained by linearizing the nonlinear

shell equations around this pre-stressed state. Upon substituting W = W0 + W1 and χ =

χ0 + χ1 in Eq. (4.34) and keeping terms linear in the normal displacement W1 and Airy
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function χ1, we find:

κ∇4W1 −
1
R
∇2χ1 +

pR
2
∇2W1 = 0, (4.24)

∇4χ1 +
Y
R
∇2W1 = 0. (4.25)

The nonlinear coupling between the pre-stress and the normal deflection via the

term N2(χ0, W1) is responsible for the last term on the left-hand side of Eq. (4.24). We

search for oscillatory solutions of the form W1 = Aeiq·x, χ1 = Beiq·x with some two-

dimensional wavevector q = (qx, qy). Such a solution to Eqs. (4.24) and (4.25) can only

exist provided

κq4 − pR
2

q2 +
Y
R2 = 0, (4.26)

with the requirement for oscillatory solutions being that the wavevector magnitude q ≡
√q · q is real and positive. The smallest value of p at which solutions with q2 > 0 exist

is p = 4
√

κY/R2 ≡ p0, and the corresponding wavevector magnitude of the solution

that arises is q = 1/� = γ1/4/R. This pressure is identified as the buckling pressure of

the shell. Note that the instability would not exist without the coupling between χ0 and

W1 mentioned above, and is a nonlinear effect even though it is captured by a linearized

analysis.

The linearized buckling analysis shows that a uniform shell which contracts iso-

tropically under low external pressures can release this compressive stress, at the cost of

bending energy, by taking on an oscillatory transverse deflection. Such a deflection be-

comes energetically favorable at the pressure p0 = 4
√

κY/R2. In fact, there are many

degenerate deflection modes that arise at this critical pressure, since all wavevectors q

such that q = |q| = 1/� are allowed. The wavelength associated with these modes is

2π� = 2πR/γ1/4 � R since γ � 1 for thin shells. Thus, the buckling of spherical shells is

triggered by one of many degenerate modes with wavelength much smaller than the shell
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radius.

We have not established here that the oscillatory modes that arise at the buckling

pressure are unstable toward further growth. This can be done by evaluating higher order

terms in the elastic energy associated with the modes (see e.g. Ref. [12]). We do not re-

produce that calculation here, but instead present a qualitative argument for the ultimate

fate of the shell at the buckling pressure, from Ref. [5], which considers the energetics of

inversions of sections of the shell. Thin spherical shells under pressure find it favorable to

reduce their volume using nearly isometric inversions, which leave the metric within most

of the inverted region unchanged and localize the elastic energy to the narrow rim of the

inversion (which has a width of order �). The energy associated with an inversion of depth

d is characterized by a quantity we denote the Pogorelov energy [5, 31],

Eel = cκγ1/4(d/R)3/2, (4.27)

where c is a dimensionless constant. (See Appendix A for the derivation of this scaling

form.) If the shell is under external pressure p, the net energy including the work done

by the pressure is E = Eel + p∆V, where ∆V ∼ −Rd2 is the volume change due to the

inversion. We immediately see that at large values of inversion depth d, the second term

dominates, and inversions can reduce their net energy by growing even deeper. The total

energy E(d) has a maximum when

κγ1/4 d1/2

R3/2 ∼ pRd ⇒ dmax

R
∼

�
κ

pR3

�2 √
γ. (4.28)

Therefore, for a particular pressure, inversions of depth d > dmax(p) grow uncontrollably,

until some other constraint such as self-contact prevents further growth of the inversion.

At the buckling pressure, dmax(p0) ∼ R/
√

γ ∼ h; thus, even an inversion of very small

depth, comparable to the thickness h of the shell, is unstable to growth. Pogorelov’s pic-

ture can be reconciled with the linear stability analysis sketched above as follows: the
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Figure 4.3: Simulation of a uniform shell with large Föppl-von Kármán number (γ = 106)
under an external pressure above the buckling transition, and an inner ball of radius
Rinner = 0.99R that repels all mesh points with a steep repulsive potential. The repul-
sive potential prevents vertices from moving closer than a small amount to the center of
the sphere, thus arresting the oscillatory buckling mode. The mesh is colored by the dis-
tance of each point from the center in units of R, to highlight small differences. Note the
periodic array of indentations with amplitudes that vary slowly over the surface.

oscillatory buckling modes that arise at the buckling pressure can be thought of as many

tiny inversions covering the entire sphere; any one of these inversions can grow uncontrol-

lably, giving rise to the characteristic inverted shape of a buckled spherical shell. Thus the

buckling mode is a transient, and the final buckled shape of the shell displays one or more

large inversions that significantly reduce the enclosed volume of the shell, very similar to

the final configuration in Fig. 4.1. These large inversions with depth comparable to the

shell radius have additional features, such as the sharp points of stress focusing, that devi-

ate from the Pogorelov isometric inversion, but the associated scaling of the elastic energy

with depth is hardly changed [32, 30].

The transient buckling mode can only be observed in real shells by arresting its

uncontrolled growth. This has been done for metallic thin shells by buckling a shell that
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encloses a solid ball of slightly smaller radius: the deformed shell contacts the inner ball

when the buckling mode arises, arresting it so it can be visualized [24]. We can replicate

this remarkable experiment in our simulations by including a steep repulsive potential

within the mesh and ramping up the external pressure until the shell buckles, at which

point the internal repulsive potential prevents the unstable mode from growing uncon-

trollably. The result is shown in Fig. 4.3, showing the small-wavelength buckling pattern

that extends over the shell.

4.5 Snap-through of soft caps

We now turn to the shells with soft spots, numerically investigated in Section 4.2. The

radius of the soft spot, measured along a sphere geodesic, is r0 ≡ Rα. We expect large

changes in the buckling due to external pressure whenever r0 > � = R/γ1/4, the elastic

length; i.e. λ = (r0/R)γ1/4 > 1. Indeed, unless λ � 1, the soft spot will substantially

influence the mechanics of the shell and, in particular, be the first region responding to the

external pressure by either deforming continuously or by snap-through buckling when a

threshold pressure is reached. The influence of the cap on the remainder is only expected

to extend over a narrow region of width � into the area occupied by the remainder. As

a result, we expect the equations of shallow shell theory to also accurately describe the

stresses in the remainder for small soft caps. We use polar coordinates, locating the origin

at the center of the cap. We then have two sets of equations, one for the cap (with fields

W̃, χ̃ and elastic moduli Ỹ, κ̃) when r < Rα and one for the remainder (with fields W, χ

and elastic moduli Y, κ) when r > Rα. The fields are related by matching displacements,

stresses and moments at the boundary, r = Rα.
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Figure 4.4: Representative pressure-deflection curve for a clamped shallow spherical cap
(after Ref. [95]). The deflection is averaged over the area of the cap [see Eq. (4.29)]. Upon
increasing the pressure, the average deflection jumps from A to B at the pressure p2.
The green dashed curve CD that branches off at p∗ corresponds to a nonaxisymmetric
deformation.

4.5.1 Mechanism for snap-through buckling

In the limit of an infinitely stiff remainder (τ = h̃/h → 0), all displacements along the

cap boundary are restricted, and by continuity of slopes the slope of the cap shape at the

boundary is fixed to be α. This limit corresponds to the problem of buckling of an elastic

cap, clamped along the entire edge to restrict all deformations, under hydrostatic pressure.

The buckling of clamped caps is a well-studied problem in shell theory, with a definitive

numerical analysis conducted by Huang [95]. We expect that the snap-through buckling

of caps embedded in thin shells with a stiff remainder follows a similar mechanism, which

we summarize here.

At each value of pressure, one or more equilibrium solutions may exist for the

fields within the cap. The signature of loss of stability under pressure is seen in the

pressure-deflection curve associated with these solutions, qualitatively illustrated in Fig. 4.4

(after Ref. [95]). The curve OAB in Fig. 4.4 shows a representative pressure-deflection re-
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lation for axisymmetric deflections. At low enough pressures, an analysis of the linearized

equations shows that the cap deforms axisymmetrically and the deflection averaged over

the cap,

¯̃W =

� r0
0 rW̃(r) dr
� r0

0 r dr
, (4.29)

grows with pressure (r0 = Rα is the radius of the soft spot boundary). At higher pressures,

however, nonlinear effects become important, and the governing equations of the cap ad-

mit multiple solutions that satisfy the boundary conditions. In the range p1 < p < p2, for

instance, three solutions exist at each pressure. When this happens, the pressure-deflection

relation is no longer single-valued. With increasing pressure, at the maximum point A

where two of the solutions merge, the cap deflection jumps directly to point B, signify-

ing axisymmetric snap-though at pressure p2. A subsequent slow decrease in pressure

leads to a “snap-back” in the shape at the pressure p1. We study this mechanism for caps

embedded in spherical shells in Section 4.5.5.

However, for caps beyond a certain size, a non-axisymmetric deflection mode

may appear at a lower pressure p∗, with as a pressure-deflection relation of the form of

the dashed line in Fig. 4.4. Unlike the axisymmetric mode, the nonaxisymmetric deflection

modes are highly degenerate. A stability analysis of such modes in shallow shells [12]

shows that there is no stable shape in the vicinity of such a state; i.e. the slope of the

curve CD is indeed negative at C. Therefore, the appearance of a nonaxisymmetric mode

at p∗ < p2 triggers snap-through buckling of the cap to an inverted shape via the path

OCD. In Fig. 4.4, we show p∗ < p1 for clarity, although this inequality need not hold in

general. We consider the nonaxisymmetric buckling mode for our caps in Section 4.5.4.

In our analysis, we assume that the appearance of a nonaxisymmetric deflection in the

cap immediately triggers snap-through buckling of the cap, which is the case for clamped

caps [95].
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4.5.2 Non-dimensionalizing the equations

Since the snap-through of the cap is primarily determined by the deflections and stresses in

the cap itself, we rescale all quantities with physical parameters that depend on the elastic

properties of the cap. We define the nondimensional radial coordinate and pressure:

s =
r
�̃

, (4.30)

η =
p
p̃0

=
pR2

4
√

κ̃Ỹ
, (4.31)

where �̃ = R/γ̃1/4 and p̃0 ≡ 4
√

κ̃Ỹ/R2 is the classical buckling pressure associated with a

uniform spherical shell with the elastic properties of the cap. We also define the rescaled

fields in both the cap and the remainder

w̃ =
R
�̃2

W̃, φ̃ =
R2

Ỹ�̃4
χ̃; (4.32)

w =
R
�̃2

W, φ =
R2

Ỹ�̃4
χ. (4.33)

Upon substituting these quantities into the shell equations [Eqs. (4.11) and (4.12)], we ob-

tain the following nondimensional equations for the cap:

∇4w̃ −∇2φ̃ − N2(φ̃, w̃) = 4η, (4.34)

∇4φ̃ +∇2w̃ +
1
2

N2(w̃, w̃) = 0, (4.35)

and for the remainder:

1
τ3∇

4w −∇2φ − N2(φ, w) = 4η, (4.36)

τ∇4φ +∇2w +
1
2

N2(w, w) = 0, (4.37)

where the differential operators are now defined using the variables (s, θ) rather than (r, θ).

From this analysis, we see that when cap size is rescaled by the elastic length scale

�̃ and pressure by the classical buckling pressure p̃0, the dependence on elastic moduli
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Figure 4.5: Reduced pressure pc1 / p̃0 of the first buckling event, whether a snap-through
of the cap (for shells following buckling pathway I, empty symbols), or a catastrophic
collapse of the whole shell (buckling pathways II and III, filled symbols), as a function of
the dimensionless spot size λ̃ = αγ̃1/4 in buckling simulations on shells with γ = 104. The
data shown is the same as for the first buckling event in Fig. 4.2, but is rescaled using the
cap parameters p̃0 and λ̃ rather than the shell parametersp0 and λ.

drops out, and caps of vastly different properties but the same thickness ratio τ relative to

the remainder of the shell can be described by just two dimensionless quantities λ̃ = Rα/�̃

and η = p/ p̃0 (as long as they are small enough that shallow shell theory applies).

Fig. 4.5 plots the pressure of the first buckling transition ηc1 = pc1 / p̃0 (whether

it corresponds to a snap-through transition of the cap as for τ < 0.5, or a collapse of the

whole shell as for τ > 0.5), as a function of the parameters τ and λ̃. When compared

to Fig. 4.2, we see that the buckling pressures, when rescaled using p̃0, vary over a much

smaller range and display similar behavior as τ is changed. This observation suggests

that the first buckling transition of the shell is always a snap-through transition of the cap,

and that the mechanism of the snap-through does not vary significantly as τ is changed.

Indeed, all of the ηc1-vs.-λ̃ curves for the buckling pressure share similar characteristics
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for the dependence of buckling pressure on cap size: there is an apparent kink in the

range 5 < λ̃ < 6 that separates a convex dependence for smaller caps from a roughly

constant dependence for larger caps. A similar feature is seen in the buckling pressure

curve for clamped caps, i.e. shallow sections of spheres with clamped circular edges under

pressure [95]. In that case, the kink separates values of λ̃ for which the buckling mode

is axisymmetric i.e. with no circumferential angular dependence about the z axis, from λ̃

values for which the buckling is nonaxisymmetric and has some circumferential variation.

Furthermore, no snap-through buckling is observed for clamped caps with λ̃ < 3.3; below

this size the cap deforms continuously as the pressure is increased. This is similar to the

present case with shells that follow buckling pathway III, where no snap-through buckling

of the cap is observed.

We first use our numerical results to test whether the structure of the ηc1-vs.-λ̃

curves is linked to the buckling mode. We investigate the nature of the buckling mode

that drives the snap-through of the cap by arresting its growth with an internal repulsive

potential, as was done for the uniform sphere in Section 4.4. Fig. 4.6 illustrates the buckling

mode that drives snap-through of the cap, as the cap size is varied for a shell with γ =

104 and τ = 0.4. For small caps, the buckling mode is axisymmetric, whereas for large

caps, it has a periodic structure in the circumferential direction, similar to the situation

for clamped caps [95]. The nature of the buckling mode changes from axisymmetric to

nonaxisymmetric around λ̃ = 5, which corresponds to the kink in the ηc1-vs.-λ̃ curve for

τ = 0.4 (see Fig. 4.5). The number of nodes in the circumferential direction then increases

with cap size, although the wavelength of the buckling mode itself is hardly changed from

an intrinsic size of order �̃. The dependence of the buckling pressure on cap size λ̃ in the

nonaxisymmetric region is also weak.

This structure is retained for other values of τ, although the λ̃-value of the tran-
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λ̃ = 3.9 λ̃ = 5.0 λ̃ = 6.0

λ̃ = 7.1 λ̃ = 10.2

Figure 4.6: (a) Mode for snap-through buckling of a soft cap, for shells with γ = 104,
τ = 0.4, and various dimensionless cap sizes λ̃ = αγ̃1/4. The buckling mode was arrested
in numerical simulations by including an inner ball of radius Rinner = 0.99R whose surface
repels all mesh points with a steep repulsive potential. The mesh is colored by the distance
of each point from the center of the sphere on a linear color scale, to highlight small differ-
ences. The soft region coincides with the region of large variations in deflection at the top
of each shell—as an illustration, the dashed line shows the boundary of the soft region for
the shell with λ̃ = 6.0.
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sition from axisymmetric to nonaxisymmetric buckling falls as τ approaches the uniform

shell limit, τ = 1. The roughly constant value of ηc1 for nonaxisymmetric buckling also

approaches 1 as τ → 1, which is expected because buckling of a uniform shell with the

thickness of the cap would happen at η = 1.

4.5.3 Analysis of linearized equations

The buckling of the cap is a nonlinear phenomenon, that arises due to the coupling terms

in the shell equations [Eqs. (4.34)–(4.37)], which puts an exact analytical study out of reach.

However, we can gain some insight about the behavior under pressure and the approach

to buckling by linearizing the equations about some appropriate state of stress to get the

so-called Reissner equations of shallow-shell theory [97, 98]. We saw in section 4.4 that a

uniform shell contracts uniformly up to the point of buckling; we can expand deflections

and stresses about this state of uniform pre-stress.

In the cap, the rescaled uniform radial deflection w̃0 = 2η(1 − ν) and Airy func-

tion φ̃0 = −s2η solve the shell equations exactly. Upon substituting w̃ = w̃0 + w̃1 and

φ̃ = φ̃0 + φ̃1 in Eqs. (4.34) and (4.35) and keeping terms linear in w̃1 and φ̃1, we get the

Reissner equations within the cap:

∇4w̃1 + 2η∇2w̃1 −∇2φ̃1 = 0, (4.38)

∇4φ̃1 +∇2w̃1 = 0, . (4.39)

General axisymmetric solutions to the differential equations that satisfy the requirement

of continuous and finite stresses at the origin are written in terms of real and imaginary
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parts of J0, the Bessel function of the first kind:

w̃1(s) = c1

�
JR(s) +

η�
1 − η2

JI(s)

�
+ c2

�
JI(s)−

η�
1 − η2

JR(s)

�
+ c3, (4.40)

φ̃1(s) =
1�

1 − η2
[c1 JI(s)− c2 JR(s)] , (4.41)

where

JR(s) ≡ Re[J0(ρ̃s)]; JI(s) ≡ Im[J0(ρ̃s)]; ρ̃ ≡
�

η + i
�

1 − η2
�1/2

. (4.42)

Similarly, substituting w = w0 + w1 and φ = φ0 + φ1, where w0 = 2η(1− ν)τ and

φ0 = −s2η, into the nonlinear equations for the remainder [Eqs. (4.36)–(4.37)], and keeping

terms linear in w1 and φ1, gives the Reissner equations for the remainder:

1
τ3∇

4w1 + 2η∇2w1 −∇2φ1 = 0, (4.43)

τ∇4φ1 +∇2w1 = 0. (4.44)

In the remainder, we look for solutions to the deflection and stress that decay to zero as

s → 0. These can can be written in terms of H(1)
0 , the Hankel function of the first kind:

w1(s) = c4

�
HR(s) +

ητ2
�

1 − η2τ4
HI(s)

�
+ c5

�
HI(s)−

ητ2
�

1 − η2τ4
HR(s)

�
, (4.45)

φ1(s) =
1

τ2
�

1 − η2τ4
[c4HI(s)− c5HR(s)], (4.46)

where

HR(s) ≡ Re[H(1)
0 (ρs)]; HI(s) ≡ Im[H(1)

0 (ρs)]; ρ ≡
�

τ3η + iτ
�

1 − η2τ4
�1/2

. (4.47)

At the boundary we require continuity of the transverse deflection W and its first

derivative W,r, the radial displacement U = r(uθθ +W/R) [or equivalently the strain com-

ponent uθθ = (χ,rr − νχ,r/r)/Y], the radial stress σrr = χ,r/r, and the bending moment

Mrr = −κ(W,rr + νW,r/r). The resulting dimensionless equations, to be satisfied at the cap
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edge s = λ̃, are:

w̃ = w, w̃,s = w,s, φ̃,s = φ,s; (4.48)

φ̃,ss − ν
φ̃,s

λ̃
= τ

�
φ,ss − ν

φ,s

λ̃

�
; (4.49)

τ3
�

w̃,ss + ν
w̃,s

λ̃

�
=

�
w,ss + ν

w,s

λ̃

�
. (4.50)

Note that the non-constant components w̃1, w1, φ̃1, φ1 must be nonzero for η > 0 since

w̃0 �= w0, φ̃0,s �= φ0,s. For each pair of {η, λ̃} values, the boundary conditions give rise

to five linear equations which can be solved for the five constants c1...c5. We will call the

result the Reissner solution for the deflection and stresses in the cap and the remainder.

Fig. 4.7 compares the solution of the Reissner equations to the transverse deflec-

tion from simulations for a few shells, with η values below the buckling threshold. The

linearized solutions capture many features of the full solution, particularly in the vicin-

ity of the boundary between the cap and the remainder and the period of the decaying

oscillations in the cap.

4.5.4 Nonaxisymmetric buckling

The solution of the linearized equations is sufficient to obtain a qualitative understanding

of the nonaxisymmetric buckling of large caps, which we have seen is largely independent

of the cap size λ̃ for each value of τ. Fig. 4.8 shows the behavior of the axisymmetric Reiss-

ner solution for η = 0.8, close to the snap-through pressure, for caps of various sizes and

thickness ratios relative to the remainder. This is expected to approximate the axisymmet-

ric deflection of the shell before the nonaxisymmetric mode appears and causes the cap to

snap through. From Fig. 4.8(a), we see that the solution develops a boundary layer which

does not change significantly when λ̃ > 10; the solutions for large cap size are related

to each other by a simple shift along the r axis. (Clamped caps display a similar behav-
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(a) τ = 0.1, λ̃ = 17.6

0 5 10 15 20 25 30

r/�̃

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
R
/�̃

2

η = 0.2
η = 0.5
η = 0.7

(b) τ = 0.4, λ̃ = 8.8
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(c) τ = 0.7, λ̃ = 6.6
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Figure 4.7: Comparison of the scaled normal deflection WR/�̃2 as a function of radial po-
sition r/�̃ measured from simulations with an amorphous mesh (symbols), to the solution
of the linearized shell equations (lines), for different values of the reduced pressure η. The
values from simulations are obtained by averaging the positions of all mesh points sharing
each r value (i.e. over all values of θ for each value of r). The three subfigures (a–c) corre-
spond to three different shells, all with γ = 104 and cap angle α = cos−1(0.85), but with
different cap-to-shell thickness ratios τ which changes the elastic length �̃ and therefore
the dimensionless cap size λ̃ = Rα/�̃. The vertical arrows indicate the r position of the
boundary between the soft cap and the remainder. All three shells buckle around η = 0.8.
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(a) τ = 0.4, η = 0.8
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(b) λ̃ = 20, η = 0.8

0 5 10 15 20 25 30

r/�̃

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
R
/�̃

2

τ = 0.2
τ = 0.4
τ = 0.6
τ = 0.8

Figure 4.8: Reissner solution for the scaled normal deflection WR/�̃2 for caps with (a) in-
creasing cap size λ̃ at constant pressure η and thickness ratio τ, and (b) increasing thickness
ratio at constant pressure and cap size. The vertical arrows indicate the r position of the
boundary between the soft cap and the remainder.

ior [95].) Since the stresses are also largest in this region close to the cap-shell boundary, the

behavior here dominates the buckling transition. It is likely that the relative insensitivity

of the buckling pressure to the cap size for large caps is a consequence of boundary layer

dominance.

To quantify this effect, we estimate the coupling between the excess stresses due

to the boundary and any nonaxisymmetric mode that may arise. Recall that for uniform

shells, the nontrivial buckling mode arose due to the coupling between gradients of the

transverse displacement W1 and the uniform pre-stress σxx = σyy = −pR/2 (section 4.4).

Now we have an axisymmetric pre-stress {w̃a, φ̃a} that varies in the r direction, which

couples to nonaxisymmetric fields {w̃n, φ̃n} which we shall assume small. We substi-

tute w̃ = w̃a + w̃n and φ̃ = φ̃a + φ̃n into the full nonlinear shell equations [Eqs. (4.34)–

(4.35)] and keep terms linear in the nonaxisymmetric fields. For simplicity, we work in

scaled Cartesian coordinates at a position on the x axis near the cap-shell boundary, so that

w̃a(s) ≈ w̃a(x), and x ≈ λ̃ � 1 which means that the θ direction coincides approximately
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with the y direction. Then the nonlinear coupling gives rise to terms of the form w̃a,xxφ̃n,yy,

φ̃a,xxw̃a,yy and w̃a,xxw̃n,yy. The equations for w̃n and φ̃n now read

∇4w̃n −∇2φ̃n − w̃a,xxφ̃n,yy − φ̃a,xxw̃a,yy = 0, (4.51)

∇4φ̃n +∇2w̃n + w̃a,xxw̃n,yy = 0. (4.52)

For the uniform shell, only φ̃a,xx = −2η was nonzero, but the presence of the cap-remainder

boundary gives rise to a spatially varying w̃n and thus a nonzero w̃a,xx as well. In fact,

φ̃a,xx ≈ −2η remains a good approximation to the pre-buckling Airy stress function in the

cap, so the additional effects which bring down the buckling pressure below η = 1 are

mainly due to the new coupling with w̃a,xx. Let ξ denote a typical value of w̃a,xx in the

boundary layer region. A rough estimate of its effect can be obtained from the equations

∇4w̃n −∇2φ̃n − ξφ̃n,yy + 2ηw̃a,yy = 0, (4.53)

∇4φ̃n +∇2w̃n + ξw̃n,yy = 0. (4.54)

Similar in spirit to the stability calculation for uniform shallow shells, we look for solutions

that oscillate in the y direction of the form w̃n, φ̃n ∝ eiqy, which leads to the eigenvalue

equation

q4 − 2ηq2 + (1 + ξ)2 = 0. (4.55)

Therefore, oscillatory solutions with q2 > 0 exist only if

η > 1 + ξ. (4.56)

According to this argument, regions of the axisymmetric deflection with negative curva-

ture in the radial direction, ξ ∼ w̃a,ss < 0, cause nonaxisymmetric modes to appear at

η ≈ 1 + ξ < 1. The Reissner solution, as well as the full nonlinear solution, display these

regions prominently in the boundary region near the cap-shell boundary (see Figs. 4.7 and
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Figure 4.9: Estimate of the reduced pressure η = p/ p̃0 at which a nonaxisymmetric mode
arises in the cap for various thickness ratios, using the criterion of Eq. (4.56) with the largest
value of second derivative w̃a,xx of the Reissner solution for the cap as the estimate for ξ.

4.8). Therefore, the coupling of the nonaxisymmetric deformation with the pre-buckling

axisymmetric solution can in fact give rise to a nonaxisymmetric solution at pressures be-

low p̃0, the buckling pressure of a complete shell with the same properties as the cap.

Figs. 4.7 and 4.8 show that the most negative value of the curvature in the ax-

isymmetric deflection, w̃a,xx, occurs at the sharp peak in w̃a in the boundary layer. The

magnitude of the curvature depends on the pressure as well as the cap-shell thickness ra-

tio. To estimate when a nonaxisymmetric mode may first arise, we take the value of w̃a,xx

at this peak to be the scale ξ. We use the Reissner solution to find ξ(η); the value ηreissner

that solves the self-consistent equation η = 1 + ξ(η) is a rough estimate of the buckling

pressure. Fig 4.9 shows the result for large caps with different values of τ. Although our

estimate ignores the s-dependence of w̃a,xx and the boundary conditions on w̃a,xx and w̃n, it

successfully reproduces the features associated with the nonaxisymmetric buckling pres-

sure: ηreissner approaches an approximately constant value for λ̃ � 6, and this value gets
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closer to 1 as τ → 1.

Our rough calculation also predicts the inverse wavelength of the circumferen-

tial buckling mode. The solution to Eq. (4.55) at the buckling pressure η = 1 + ξ is

q =
√

1 + ξ =
√

η. Thus, the length scale of the circumferential oscillation is expected

to be unchanged in the nonaxisymmetric buckling region, in agreement with Fig. 4.6.

4.5.5 Axisymmetric buckling

In the small λ̃ region, to the left of the kink in the buckling pressure curves (Fig. 4.5), we

have seen that the snap-through is axisymmetric. The axisymmetric Reissner solution to

the linearized equations, Eqs. (4.38), (4.39) ,(4.43), and (4.44), shows no discontinuity in

the deflection as the pressure is increased; thus, the discontinuous snap-through of the cap

happens only when the nonlinear terms are significant in the governing equations of the

cap. To simplify our analysis, we assume that deflections in the remainder are small, so

that the linearized approach introduced in Section 4.5.3 still applies in the remainder and

the Reissner solution is sufficient to describe its response. This approximation is accurate

for small thickness ratios τ, when the snap-through of the cap happens at small pressures

compared to the buckling pressure of the remainder. (Fig. 4.2).

In the axisymmetric region, w̃ and φ̃ are functions solely of s and the nonlinear

governing equations of the cap [Eqs. (4.34)–(4.35)] simplify to

∇4w̃ −∇2φ̃ − 1
s
(φ̃,sw̃,ss + w̃,sφ̃,ss) = 4η, (4.57)

∇4φ̃ +∇2w̃ +
1
s

w̃,sw̃,ss = 0, (4.58)

expressions which can be integrated once to give equations for the derivative functions
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Figure 4.10: (a) Deflection w̃, averaged over the entire cap, as a function of the reduced
pressure η, for the approximate solutions for the clamped cap obtained using the Galerkin
method for different values of the cap size, λ̃. (b) Estimate of the buckling pressure using
the Galerkin method, for different values of the circumferential strain ε at the boundary.
The clamped cap corresponds to ε = 0.

Θ ≡ −w̃,s and Φ ≡ φ̃,s [99, 95]:

sΘ,ss + Θ,s −
Θ
s
+ sΦ − ΘΦ + 2ηs2 = 0, (4.59)

sΦ,ss + Φ,s −
Φ
s
− sΘ +

Θ2

2
= 0. (4.60)

In addition to these equations and the linearized equations [Eqs. (4.43) and (4.44)]

in the remainder, the continuity equations [Eqs. (4.48)–(4.50)] must be satisfied at the bound-

ary between cap and remainder.

Qualitative analysis

An approximate analytical solution to the nonlinear equations, computed using the Galer-

kin method [100], recovers many aspects of the snap-through buckling transition. We first

consider the previously studied clamped cap limit [95], which corresponds to an infinitely

stiff remainder, i.e. τ → 0. For a clamped cap, the tangent slope and all deformations at

the boundary are fixed, whereas the shape and stresses at the origin must be continuous,

115



Chapter 4 Buckling pathways in spherical shells with soft spots

which leads to to the following boundary conditions for Θ and Φ:

Θ(0) = Φ(0) = 0, (4.61)

Θ(λ̃) = 0, (4.62)

λ̃Φ,s(λ̃)− νΦ(λ̃) = 0. (4.63)

For small caps that exhibit axisymmetric buckling (λ̃ � 5), the size of the cap is smaller

than the length scale of oscillatory variations in w̃, which is set by �̃. As a result, the inward

deflection w̃ has a maximum at the center of the cap and decays monotonically to zero

at the cap boundary. Correspondingly, Θ(s) is zero at the origin and the cap boundary,

and has a single extremal point in between. Many characteristics of the full solution to

the nonlinear equations can be obtained by considering an approximate solution which

reproduces these main features. We choose as our trial solution

Θ(s) = As
�

1 − s
λ̃

�
, (4.64)

which automatically satisfies the boundary conditions. We obtain the value of A that best

approximates the true solution using the Galerkin procedure: the trial solution, substituted

into Eq. (4.60), provides a linear differential equation for Φ which can be solved with the

corresponding boundary conditions to obtain a trial solution for Φ(s) that also depends

on A. These solutions are substituted into the left hand side of Eq. (4.59), which is then

multiplied by Θ(s) ds and integrated from s = 0 to s = λ to get a third order algebraic

equation for the deflection amplitude A:

λ̃4(194A3 − 1581A2 + 2952A) + 151200A − 60480λ̃2η = 0. (4.65)

Roots of this equation provide the best estimate of the solution for the cap shape at any

pressure. The buckling mechanism is evident from the nature of these roots. For small val-

ues of λ̃, Eq. (4.65) has a single real solution for all values of the pressure, and the average
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deflection increases continuously as a function of η. This corresponds to buckling pathway

III for small caps, in which the cap deforms smoothly to its inverted shape without snap-

ping. However, for λ̃ > 3.25, there is a range of pressures for which A, and consequently

the cap-averaged deflection ¯̃w, can take on three real values. As a result, the pressure-

deflection curves, shown in Fig. 4.10(a), take on the characteristic form of curve OAB in

Fig. 4.4, and snap-through buckling occurs at the maximal value of η at which three real

solutions exist (i.e., at point A in Fig. 4.4). This snap-through pressure is obtained in the

Galerkin solution by setting the discriminant of Eq. (4.65) to zero, and the solution is shown

as the bottom curve in Fig. 4.10(b). The approximate solution reproduces many features of

the buckling pressure of clamped caps in the axisymmetric region, such as the absence of a

snap-through for caps below a certain size, and a non-monotonic dependence of buckling

pressure on cap size.

Embedding the cap in a more flexible shell requires modifying the boundary con-

ditions from the clamped limit. The full effect of the remainder on the cap at the boundary

is complicated, and cannot be expressed succinctly. Requiring continuity of stresses and

deformations across the boundary replaces Eqs. (4.62) and (4.63) with equations that relate

the displacement and rotation angle at the boundary to the corresponding stresses and

bending moments, themselves implicitly dependent on the solution to Θ and Φ. However,

the qualitative effect of the remainder on the boundary conditions can be gauged from the

Reissner solutions, which satisfy the same continuity conditions, albeit for linearized ver-

sions of the governing equations. The Reissner solutions suggest that as τ is changed from

zero, Θ(λ̃) will be positive but remains small, whereas Φ,s(λ̃)− νΦ(λ̃)/λ̃, which is pro-

portional to the circumferential strain uθθ , will be negative because of the compression of

the remainder under external pressure. As the thicknesses in the cap and the remainder be-

come comparable, this circumferential strain becomes larger in magnitude. The qualitative
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effect of this modified boundary condition on our approximate solution can be assessed by

replacing the boundary condition on Φ, Eq. (4.63), with

λ̃Φ,s(λ̃)− νΦ(λ̃) = ε, (4.66)

where ε < 0 becomes increasingly negative as τ → 1, and recomputing the approximate

Galerkin solution. The Reissner solutions show that |ε| increases over a range 0 � |ε| � 2

as τ is increased from 0 to 1, for pressures in the range of 0.7 – 0.8. The variation in the

corresponding estimate for the snap-through pressure is shown in Fig. 4.10(b). As the

circumferential strain at the boundary increases, the snap-through buckling pressure curve

moves upward and the smallest value of λ̃ at which buckling is observed decreases, both in

qualitative agreement with the trends in the snap-through pressure as τ is increased (see

Fig. 4.5). Although our analysis is a highly simplified description of the true boundary

conditions (which in reality depend subtly on λ̃, τ and η), it qualitatively captures the

effect of the remainder on the snap-through transition.

Numerical analysis of governing equations

To make our analysis more quantitative, we use the Reissner solution in the shell remain-

der to establish the boundary conditions on Θ and Φ at the boundary, and then numerically

solve the nonlinear governing equations in the cap. The continuity conditions, Eqs. (4.48)–

(4.50), together with Eqs. (4.43) and (4.44) for the fields in the remainder, can be reduced

to two equations that must be satisfied by Θ, Φ and its derivatives at s = λ̃. These equa-

tions depend on the dimensionless quantities λ̃, η and τ. Together with Eqs. (4.61), they

provide a complete set of boundary conditions for the nonlinear differential equations of

the cap, Eqs. (4.59) and (4.60), which are then solved numerically using the bvp4c dif-

ferential equation solver in the MATLAB (Mathworks Inc.) scientific computing package.
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Figure 4.11: Snap-through pressure estimate from numerically solving the governing equa-
tions of the cap with boundary conditions set by the Reissner solution for the remain-
der (solid lines), compared to pc1 , the first buckling pressure measured in simulations
(symbols).

A discontinuity in the pressure-deflection curve for the computed solutions signals the

snap-through buckling pressure, which we compare to the snap-through buckling pres-

sure from simulations in Fig. 4.11. The results quantitatively replicate the observed behav-

ior in simulations at low values of τ. Deviations from the results of simulations become

larger as τ increases, because our assumption of linear behavior in the remainder becomes

less accurate as τ → 1. However, these results confirm that snap-through buckling of the

cap happens via an axisymmetric mode for small values of τ, which arises due to nonlin-

ear couplings between deformations and stresses in the cap. The remainder influences the

boundary conditions on these deformation and stress fields, which shifts the snap-through

pressure closer to η = 1 as τ → 1.

Our results show that the dependence of the first buckling pressure pc1 on the

spot size and thickness can be explained by the loss of stability of a spherical cap of dimen-
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sionless size λ̃, embedded in a remainder whose relative stiffness depends on the thickness

ratio τ. Significantly, this “snap-through” loss of stability of the cap determines pc1 for both

buckling pathways I and II, even though the shapes of the shells at pc1 differ dramatically

between the two pathways (a snap-through localized to the cap for shells following path-

way I, as opposed to a catastrophic collapse for shells following pathway II). From Fig. 4.2,

we see that the transition from pathway I to pathway II occurs when this snap-through

buckling pressure curve moves above the second buckling pressure pc2 at which an inver-

sion localized to the soft cap becomes unstable to catastrophic growth into the remainder

of the shell. In contrast to pc1 , which is determined primarily by the elastic properties of

the cap, this second loss of stability is set mainly by the elastic properties of the remainder.

We analyze this second loss of stability in the following section.

4.6 Collapse of the remainder

Whether through a continuous deformation or a snap-through buckling event, the soft cap

attains an inverted shape, at a particular pressure determined largely by the thickness ratio

τ (the dependence on the cap size itself is weak for large caps). The inversion is an exam-

ple of a nearly isometric shape, that preserves the metric everywhere except for a narrow

region at its rim (whose width is approximately the elastic length within the cap, �̃). When

this inversion has formed, the fate of the remainder of the shell depends on the stability of

the inversion against further growth into the remainder. A scaling argument shows why

such an inversion is unstable for large enough pressures: suppose the inversion has grown

so that the rim is entirely within the remainder. Then, as outlined in Section 4.4, there

exists an inversion depth dmax(p) ∼ (κ/pR3)2R√γ that separates stable inversions from

unstable ones. Inversions of depth d > dmax(p) can reduce their net energy by growing
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deeper, leaving the shell unstable to complete collapse. Conversely, there is a pressure

pI(d) ∼ (κγ1/4/R3)
√

R/d ∼ p0γ−1/4√R/d above which an inversion of depth d grows

uncontrollably leading to collapse of the whole shell. But the inversion of the soft cap has

the effect of ‘seeding’ an inversion with a depth d0/R ≡ 1 − cos α ≈ α2/2 ≈ λ2/2
√

γ

within the remainder (here, d0 is the cap height, an alternative way of measuring the cap

size). If the snap-though of the cap happens at pc1 < pI(d0), the seeded inversion is stable

over the range of pressures pc1 < p < pI(d0), and a second collapse of the whole shell

occurs only when the pressure increases to pc2 = pI(d0). This corresponds to pathway

I as described in Section 4.2. However, if the cap thickness is so high that snap-through

happens at pc1 > pI(d0) (note that pc1 is set by the cap elastic parameters while pI is set

by the remainder) then the inversion of the cap is immediately unstable to further growth

into the remainder, and only a single collapse of the whole shell is observed at p = pc1 .

This scenario corresponds to pathway II for collapse of the shell. Thus, a consideration of

the stability of inversions at different pressures qualitatively explains the transition from

pathway I to pathway II as the thickness of the cap increases relative to the shell (Fig. 4.2).

This approximate description does not take into account the precise evolution of

the inversion energy as the rim of the inversion grows out of the cap into the remainder.

This transition is crucial in determining the true value of pI(h0) and thus the pressure of

collapse of the remainder. We study it in detail in the rest of this section.

4.6.1 Energetics of a nearly isometric inversion in a shell with a soft cap

To numerically investigate the energetics of inversions centered at the north pole for shells

with soft caps, we artificially create inversions by indenting the mesh with hard spheres

that are the same radius as the shell itself. (We use spherical indenters to avoid the polyg-

onal inversions that are associated with inversions created by point indenters [101]. In
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the present case, inversions are ‘seeded’ by the perfectly circular soft cap, and thus we are

interested in inversions with perfectly circular rims.) To maintain equilibrium of forces,

we prepare shells with two identical caps—one at the north pole and one at the south

pole—and then squeeze the sphere between two indenters at each pole, although we re-

port physical quantities (volume change and energy) for just one of the resulting inver-

sions. The equilibrium configuration and corresponding elastic energy of the mesh are

obtained by numerical minimization in the presence of the indenters. The depth of the in-

version is varied by changing the distance between the indenting hard spheres. To prevent

the shell from sliding out from between the indenters, we restrict a few mesh vertices in

the vicinity of the poles to move only in the z direction.

Fig. 4.12 shows the elastic energy of inversions of depth d for shells with soft caps

of various sizes [reported in terms of the cap height d0 = R(1 − cos α)] at zero pressure,

keeping the elastic properties of the shell and the cap unchanged. All energy curves can

be divided into three distinct regions: d � d0, when the inversion rim is localized within

the soft cap; d � d0, when the rim is localized in the remainder, and a transition region

around d ≈ d0. This division is a direct consequence of the fact that the inversion rim is

localized to a narrow region whose width is set by the elastic length scale which is small in

both the cap and the remainder. As a result, the elastic energy approaches the Pogorelov

scaling form [31] with the appropriate elastic constants in the small-d and large-d regions:

Eel → cκ̃γ̃1/4(d/R)3/2 = cτ5/2κγ1/4(d/R)3/2 for h � h0 and Eel → cκγ1/4(d/R)3/2 for

d � d0. The best fit to the numerics is for c = 19, which is consistent with estimates

from asymptotic analyses of the nonlinear shell equations governing the elastic energy of

the inversion [31, 27] and was also independently checked via indentation simulations on

uniform shells. The volume change associated with the inversion, meanwhile, is well-

approximated by that of a perfectly isometric inversion and does not depend strongly on
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Figure 4.12: Elastic energy associated with an inversion of depth d, at zero pressure, for a
shell with a soft cap of height d0. In all cases, γ = 8000 and τ = 0.4. The lines correspond to
the Pogorelov form of the elastic energy for a nearly isometric inversion localized in the cap
(solid line) and remainder (dotted line) respectively, with dimensionless prefactor c = 19.
Inset: The volume reduction ∆V associated with the inversion matches the expectation for
a purely isometric inversion, ∆Viso = 2πd2(3R − d)/3 ≈ 2πRd2 for small caps.
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the cap size (see inset to Fig. 4.12).

The stability of an inverted soft cap at finite pressure can now be studied by exam-

ining the behavior of the total energy Etot(d) = Eel(d)− p∆V(d) as the pressure is ramped

up. Fig. 4.13(a) shows the total elastic energy for a pressurized shell with γ = 8000, τ = 0.4

and cap size d0 = 0.2R (corresponding to λ ≈ 6). For this shell, the cap snaps through to an

inverted shape at pc1 = 0.13p0. The inversion localized to the cap is stable for pressures up

to 0.22p0 because of the existence of a minimum in the energy curve at d/R ≈ 0.2. How-

ever, at p = 0.22p0, the energy minimum vanishes and the pressurized shell can reduce

its energy indefinitely if the inversion grows into the remainder of the shell. Thus, the en-

ergetics of the inversion dictates that the remainder collapses completely at pc2 = 0.22p0,

which matches the point of collapse observed in numerical collapse simulations (Fig. 4.2).

The loss of stability of the remainder of the shell, triggered by the merging of two fixed

points in the energy curve, is analogous to a limit of metastability at a first order phase

transition, and is classified as a saddle-node bifurcation in dynamical systems theory [102].

To test this mechanism for loss of stability of the remainder, we analyzed the total

energy Etot(d) from indentation simulations on shells with various cap sizes, to estimate

the pressure at which the bifurcation occurs. This was compared to the pressure of collapse

of the remainder as measured in pressure collapse simulations (Section 4.2). The results are

reported in Fig. 4.13(b). The estimates from indentation simulations agree quantitatively

with the pressure collapse simulations for cap sizes down to λ ≈ 1. The discrepancy for

smaller cap sizes is to be expected—when the cap size is small compared to the elastic

length scale of the shell, there is no separation of scales that lets us consider the stability

of an inverted cap in the remainder of the shell. In that case, the deformations of the cap

and the remainder are closely coupled and jointly determine the pressure of collapse of the

shell.
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Figure 4.13: (a) Total energy of an inversion in a pressurized shell with γ = 8000, τ = 0.4
and λ = 6.09 (corresponding to a cap height d0 = 0.2R), showing that the shell with in-
version confined to the cap becomes unstable for p > 0.22p0. The arrow indicates the r
coordinate of the border between the cap and the remainder. (b) Collapse pressure esti-
mated using stability considerations from indentation simulations (symbols) compared to
pc2 , the pressure of catastrophic collapse of the remainder measured from pressure buck-
ling simulations (line) for shells with γ = 8000, τ = 0.4, as a function of the dimensionless
cap size λ.
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4.6.2 Dependence of collapse pressure on cap size and thickness

Having shown that stability considerations quantitatively determine pc2 as a function of

spot size for a particular value of the thickness ratio (τ = 0.4), we now use scaling ar-

guments to qualitatively understand how pc2 changes with thickness ratio and cap size.

Our previous estimate, pc2 = pI(d0) ∼ p0γ−1/4√R/d0 ∼ p0/λ was inconsistent with the

simulation results (Fig. 4.2) which show pc2 approaching a constant value for large cap

sizes rather than falling with cap size. (Recall that the cap height d0 and the dimensionless

cap size λ are related via d0 ≈ Rλ2/2
√

γ.) The previous estimate for pc2 did not take into

account the jump in the elastic energy Eel(d) from cτ5/2κγ1/4(d/R)3/2 to cκγ1/4(d/R)3/2

when the inversion rim transitions from the cap into the remainder, which stabilizes the

inversion of depth d ≈ d0 that arose due to the snap-through of the cap [see Fig. 4.12 and

Fig. 4.13(a)]. This transition happens over some narrow depth range d0 � d � d0 + δ,

where δ is the depth change that causes the inversion rim radius r ≈
√

2dR to increase

from r0 =
√

2d0R by an amount of order � (i.e. the rim moved away from the cap boundary

by an elastic length so that it no longer feels its influence). The required change in rim ra-

dius r corresponds to a depth change of order δ ∼
√

d0/R� ∼
√

d0R/γ1/4. The inversion of

depth d ≈ d0 loses its stability when the jump in elastic energy is overcome by the pressure

contribution, i.e. when Etot(d0) ≈ Etot(d0 + δ). For d0 � δ, which corresponds to λ � 1

(the limit of large cap size), this criterion reduces to cκγ1/4(d0/R)3/2(1− τ5/2) ≈ 4πpRd0δ.

Therefore, we expect the second buckling pressure pc2 to scale as

pc2 ∼
κγ1/4(d0/R)3/2(1 − τ5/2)

Rd0δ
∼ κ

√
γ(d0/R)3/2(1 − τ5/2)

(Rd0)3/2 ∼ p0(1 − τ5/2), (4.67)

where we have used p0 = 4
√

κY/R2 = 4κ
√

γ/R3 and δ ∼
√

d0R/γ1/4. According to

this estimate, the ratio pc2 /p0 is independent of cap size for large λ, consistent with the

simulation results (Fig. 4.2). The predicted τ-dependence of the second buckling pressure
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is also consistent with the simulation results: the limiting value of pc2 for large λ falls from

pc2 = 0.23p0 for τ = 0.2 to pc2 = 0.21p0 for τ = 0.4, consistent with pc2 /p0 ∝ (1 − τ5/2).

By combining this result for the loss of stability of the remainder with the results

of the previous sections, we can now fully explain the buckling pathways summarized in

Fig. 4.2. The (pc1 /p0)-vs.-λ curves, set by the snap-through of the cap, move to higher

values of p/p0 as τ increases, whereas the (pc2 /p0)-vs.-λ curves, set by the stability of

the inverted cap against further growth into the remainder, move to lower values as τ

increases [Eq. (4.67)]. For τ ≤ 0.4, the former curve lies below the latter for all values

of λ, and two distinct buckling transitions are observed at pc1 and pc2 (pathway I) over a

wide range of cap sizes. For τ ≥ 0.6, the cap snap-through pressures lie above the stability

curve of the remainder, and an inverted cap is immediately unstable to growing into the

remainder, leading to collapse of the whole shell at pc1 (pathway II) for all cap sizes. The

separate buckling pressure curves cross at thickness ratio τ = 0.5, and shells with this

thickness ratio buckle via either pathway I or pathway II, depending on the size of the soft

region.

4.7 Hysteresis

The buckling of uniform spherical shells is known to be hysteretic under cyclic changes in

external pressure. A buckled shell with a large inversion re-inflates only when the pressure

is brought down significantly below its buckling pressure p0. This is illustrated in Fig. 4.14

for a numerical simulation on a uniform shell with γ = 104. The shell collapses close to

p0 (in practice, all simulated shells buckle slightly below the classical buckling pressure

because of the finite mesh and the nonuniformity in the mesh, to which the buckling tran-

sition is very sensitive), but only reinflates when the pressure is brought down to about
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Figure 4.14: Hysteresis loops for cyclical pressure variation on a shell without (dashed)
and with (solid) a soft spot with τ = 0.4 and λ = 6.4. In both cases, γ = 104. The
curves show the evolution of the enclosed volume V, normalized by the initial volume
V0 = 4πR3/3, as the pressure is first ramped up to p = p0 and then back down to zero in
steps of ∆p = 0.01p0.

10% of the buckling pressure.

This behavior can be understood from the Pogorelov scaling form [Eq. (4.27) and

Appendix A] for the elastic energy of an inversion, which we have already seen leads to an

inflation pressure pI(d) ∼ γ−1/4√R/dp0 to re-inflate an inversion of depth d. In collapsed

shells, the inversion depth is comparable the shell radius, and as a result pI ∼ γ−1/4 p0 is

very small compared to the buckling pressure for thin shells with γ � 1. In practice, this

makes spherical buckled capsules difficult to reinflate.

A large, thin soft region (τ < 0.5, λ � 3) mitigates hysteresis to some extent by

bringing the buckling and reinflation pressures closer to each other. Fig. 4.14 shows the

volume evolution of a shell with τ = 0.4 and λ = 6.4 (λ̃ = λ/
√

τ = 10.1), corresponding

to a cap of height of d0 = 0.2R. The shell follows buckling pathway I (a snap-through
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of the cap followed by buckling of the remainder at higher pressure, as in Fig. 4.1). The

pressure of catastrophic collapse of the shell is brought down to pc2 = 0.22p0, and the

shell reinflates when the pressure is about a third of this value. The soft region also ex-

hibits some hysteresis of its own, snapping back to its initial configuration at a pressure

of 0.03p0 which is lower than the snap-through pressure pc1 = 0.13p0. This cap hysteresis

is characteristic of the bistable state with two equilibrium solutions that is responsible for

snap-through buckling (Fig. 4.4).

These features may be exploited for applications that require shape changes of

elastic capsules in response to changes in the pressure. First, the deflation and re-inflation

pressures associated with large-scale collapse of the shell are brought much closer to each

other for shells with soft spots (when τ < 0.4), reducing the area of the hysteresis loop

and making the shells more responsive to pressure cycling. Second, there is a wide range

of parameters for which the soft spot can be inverted and re-inflated without collapsing

the shell as a whole. This provides a mechanism for making capsules with a well-defined

indentation (set by the cap size) that can be triggered or removed by changing the pressure.

Such capsules could be used to make tunable “lock” colloids in a lock-and-key colloidal

assembly system [37], which may be induced to associate with, or be indifferent to, smaller

“key” colloids depending on whether the cap is inverted to form a receptacle for the keys.

4.8 Conclusion

Our analysis shows that a circular thin region in a spherical shell, although a simple inho-

mogeneity to describe, strongly influences the buckling properties in important and subtle

ways. By varying the thickness and size of the soft region, we can induce the shell to fol-

low three different buckling pathways, each of which can be understood by analyzing the
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governing equations of the cap and the remainder. These pathways can be exploited to

control the shell shapes swept out by varying the external pressure.

A wide range of inhomogeneities in thin shells remains to be explored. It is al-

ready evident that the shape of the soft region [38] and the number of soft spots [47] funda-

mentally changes the buckling behavior; a systematic study of soft spots with non-circular

shapes and of multiple soft spots on the same shell could uncover additional ways to con-

trol and exploit the buckling transition. We could also consider sectors on a shell with a

different 3D elastic modulus E compared to the remainder, allowing us to vary the ratio of

2D Young’s moduli Ỹ/Y independently from the ratio of bending rigidities κ̃/κ. Localized

variations in the shell curvature, already studied in the context of imperfect shells [41],

may have interesting effects on the buckling properties as well. These and many more in-

homogeneities in the shell properties can be explored using numerical simulations of the

type used in this work.

Finally, we remark that a shell with a single soft region is likely to be less sensi-

tive to imperfections in the shell shape than a uniform shell. The sensitivity of the buckling

transition to even minute deviations in the shell shape (of the order of the shell thickness)

from the perfect sphere has already been mentioned. This sensitivity occurs because the

mode responsible for buckling of a uniform shell (pictured in Fig. 4.3) is highly degener-

ate [39]. Since many such modes exist, it is likely that one or more of the modes couples

strongly with the spatial shape variation, and acquires a non-zero amplitude (thus trigger-

ing shell collapse) at a pressure lower than the classical buckling pressure p0 for a perfect

shell. Depending on the strength of the coupling, the instability is triggered at a pressure

that may be anywhere from 20–80% of p0 for real-world shells, even if the deviations from

the perfect sphere are only of the order of the thickness of the shell [40]. As a result, the

true pressure at which uniform shells lose stability can be unpredictable. In contrast, the
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Chapter 4 Buckling pathways in spherical shells with soft spots

collapse of shells with thin soft spots (τ < 0.5) is triggered by loss of stability of the snap-

through state. As described in Section 4.6, this is governed by the energetics of nearly

isometric inversions rather than the presence of highly degenerate modes. Since the scal-

ing of the inversion energy with inversion depth is not sensitive to small imperfections,

the buckling of the shell is expected to happen reliably at roughly 0.22p0 for large spots

(λ � 4), regardless of small deviations from the perfect shape. Even though the buckling

pressure is greatly reduced by the soft spot, it can be known much more precisely. Para-

doxically, introducing a known inhomogeneity in the shell thickness could make the buck-

ling transition more reliable than for a uniform shell! This property could be exploited

for applications, such as release of encapsulated materials under specific environmental

conditions, that require precise control over the pressure at which buckling happens.
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Buckling of shells with a smoothly
varying thickness profile

In this chapter, we study the buckling of spherical shells with a nonuniform thickness that

varies continuously over the shell surface. We consider shells with a spatially varying shell

thickness that gradually increases from one pole to the other, and is symmetric around the

axis joining the the two poles. Such an inhomogeneity is completely different from the

localized “soft spot” nonuniformity studied in Chapter 4. This work was motivated by

buckling experiments on colloidal capsules with nonuniform thicknesses conducted by

Sujit S. Datta, Shin-Hyun Kim and Alireza Abbaspourrad in the research group of Prof.

David Weitz.

This chapter is organized as follows. We first summarize the fabrication and

buckling of colloidal capsules that motivate the study. We then derive the buckling pres-

sure and corresponding threshold volume change for inhomogeneous shells, as a func-

tion of the average shell thickness and the degree of inhomogeneity. We test our results

against numerical simulations of pressurized inhomogeneous shells (details of which are

presented in Appendix E), and show that they are consistent with experimental measure-

ments of the buckling properties of polymer capsules. Finally, we numerically study how
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Chapter 5 Buckling of shells with a smoothly varying thickness profile

Figure 5.1: Schematic showing the capsule geometry investigated. The polymerized shell
separates an inner droplet from the outer phase. When the double emulsions are fabri-
cated, the inner droplet interface (dotted line) is concentric with the outer interface, but
rises due to buoyant forces over time to produce a smoothly varying thickness. The de-
gree of inhomogeneity δ is half the difference in thickness between the top and bottom
poles, and the average thickness is h0.

the hysteresis properties of the shells vary with the degree of inhomogeneity.

5.1 Experimental motivation

The contributions of Sujit S. Datta, Shin-Hyun Kim and Alireza Abbaspourrad (research

group of Prof. David Weitz, Harvard University) to this section and to the experimental

results in this chapter are gratefully acknowledged.

Monodisperse thin-shelled capsules were fabricated using water-oil-water drop-

lets prepared by microfluidics [103]. The inner and outer phases of the droplets are a 10 wt

% solution of polyvinyl alcohol (PVA), while the middle oil phase is a photo-polymerizable

monomer solution. Since the PVA solution is less dense than the oil phase, the light inner

water droplets gradually rise within the oil droplets. This causes the oil to gradually thin

on one side of the droplet and thicken on the other; this effect is exploited to prepare cap-
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Chapter 5 Buckling of shells with a smoothly varying thickness profile

sules with outer radius R0 and spatially varying shell thickness

h(θ) ≈ h0 − δ cos θ, (5.1)

where θ is the azimuthal angle measured from the top of the gravitationally-oriented shell,

h0 is the average shell thickness, and δ is the total distance moved by the inner droplet,

as shown schematically in Fig. 5.1. The average radius of the mid-surface of the shell is

R ≡ R0 − h0/2.

The oil used is polymerizable by exposure to ultraviolet (UV) light, and can be

polymerized either as the capsules are produced in situ, or after different waiting times,

tw; varying the waiting times enables the fabrication of batches of capsules with different

degrees of inhomogeneity. The shells are characterized by a Young’s modulus E ≈ 600

MPa. They are permeable to water but impermeable to Na+ and Cl− ions, which means

that they experience an osmotic pressure in NaCl solution, and can reduce their internal

volume in response to the pressure.

5.1.1 Measurement of buckling properties

The buckling process was quantified by performing ensemble measurements on batches

of identically prepared capsules with known values of the shell geometry parameters

h0, δ and R. Three sets of capsules were tested with the following geometries: {h0, R0,

δ/h0} = {1.2µm, 70µm, 0.20}, {1.3µm, 67µm, 0.23}, and {5.5µm, 55µm, 0.19}. Different

osmotic pressures were applied to separate batches of capsules by mixing the suspensions

in NaCl solution in the range 0.063–2.165 M, corresponding to pressure differences across

the shell of p = 0.025–10.09 MPa. For each value of the osmotic pressure, roughly 75 iden-

tical capsules were monitored over time using optical microscopy. Buckling was signalled

by the abrupt appearance of localized indentations in shells; the fraction of capsules that
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Chapter 5 Buckling of shells with a smoothly varying thickness profile

Figure 5.2: Fraction of capsules buckled over time for three different values of the osmotic
pressure difference p. Capsules have mean shell thickness h0 = 1.2µm, outer radius R0 =
70µm, and thickness inhomogeneity δ/h0 = 0.20. Smooth lines show exponential fits.

buckled increased over time in a thickness- and pressure-dependent manner (Fig. 5.2). The

behavior was quantified by fitting an empirical exponential relationship of buckling frac-

tion with elapsed time (smooth curves in Fig. 5.2). The plateau value of the fit was used to

estimate the total fraction of capsules that ultimately buckle at long times at the particular

pressure, while the time constant of the fit yielded the characteristic time delay before the

onset of buckling, t∗ (explained in Section 5.3.1).

5.2 Buckling pressure of a shell with a smoothly varying thick-

ness

The elastic energy of a shell with a varying thickness is the same as that used in Chapter 4

[Eq. (4.5)], but with position-dependent elastic moduli. We use shallow-shell theory [10,

12] to describe the displacements, restricting ourselves to a section of the shell of size ∼ L,

small enough so that slopes relative to a tangent plane at the basal point are small and
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can be ignored at quadratic order, i.e. (L/R)2 � 1 (see Appendix C.1). Upon setting up

a Cartesian coordinate system (x, y) in the tangent plane with its origin at the basal point,

the elastic energy in terms of the tangential displacement fields U(x, y), V(x, y) and the

normal displacement W(x, y) is [12]:

Eel =
�

dx dy
�

Eh(x, y)
2(1 − ν2)

�
(uxx + uyy)

2 − 2(1 − ν)(uxxuyy − u2
xy)

�

+
Eh(x, y)3

24(1 − ν2)
(W,xx + W,yy)

2 − pW
�

,
(5.2)

where E is the three-dimensional Young’s modulus and ν the Poisson ratio of the shell

material, and the strain tensor uij is related to the displacements via Eqs. (4.6)–(4.8). This

expression ignores terms of order (x/R)2, (y/R)2 � 1.

For a uniform shell with h(x, y) = h0, an analysis of the Euler-Lagrange equations

associated with the elastic energy [Eq. (5.2)] predicts the buckling transition, as described

in detail in Section 4.4. Here we summarize the key results of this analysis. Prior to buck-

ling, the response of the shell to the uniform external pressure p is to compress uniformly

by an amount

W0 =
pR2(1 − ν)

2Eh0
, (5.3)

building up uniform compressive shell stresses

σ0
xx = σ0

yy = −pR/2. (5.4)

The elastic energy associated with this compressed state, which does not involve bending

of the shell surface, is roughly σ2
ij/(Eh0) ∼ p2R2/(Eh0) per unit area. When p gets large, it

becomes energetically favorable for the shell to introduce some bending deformations to

trade the elastic energy of pure compression for bending energy. The buckling transition

is identified by the value of p for which a nonuniform deformation mode of the shell first

arises which is energetically favorable compared to the uniform compression, which is (see
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Section 4.4 for details)

p∗δ=0 =
2E�

3(1 − ν2)

�
h0

R

�2
. (5.5)

The associated displacement fields U, V and W vary sinusoidally in both x and y, with an

associated wavelength

λ∗
δ=0 =

2π

[12(1 − ν2)]1/4

�
h0R � R. (5.6)

The wavelength associated with the buckling mode is very small for thin shells, which

justifies the use of shallow-shell theory to calculate the buckling pressure—a shallow sec-

tion of the shell with L/R � 1 can still accommodate many wavelengths of the buckling

modes and provides a good description of the elastic energy of these modes [12].

We now consider an inhomogeneous shell with a continually varying shell thick-

ness h(θ) = h0 − δ cos θ and radius R of the middle surface. By analogy with the buckling

of homogeneous shells, we expect the buckling transition to be signalled by the existence of

a nontrivial solution to the energy-minimizing displacement fields of the middle surface.

Furthermore, we expect such a mode to first appear in the vicinity of the thinnest point of

the sphere, θ = 0. We consider a shallow section of the sphere, with Cartesian coordinates

whose origin coincides with the thinnest point. As before, shallowness implies that the sec-

tion is small enough that slopes are small compared to the base of the section. The elastic

energy and the stress-strain relations are modified because the thickness of the shell is now

position-dependent: h(x, y) = h0 − δ (1 − Z(x, y)/R) , where Z(x, y) =
�

R2 − x2 − y2 is

the shape of the undeformed middle surface of the shell. Expanding in powers of x/R and

y/R, we have

h(x, y) = h0 − δ

�
1 +

1
2

�
x2 + y2

R2

�
+ ...

�
(5.7)

However, the shallowness of the section implies that (x/R)2, (y/R)2 � 1, and the section

is well-described by setting h ≈ h0 − δ, a constant. The errors introduced by assuming a
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constant shell thickness in the entire shallow section are of the same order as those intro-

duced by the assumption of shallowness itself. Thus, the only modification to the shallow-

shell theory calculation of the critical buckling pressure of the uniform shell is to set the

shell thickness to h = h0 − δ, from which we readily obtain the buckling pressure

p∗ =
2E�

3(1 − ν2)

�
h0 − δ

R

�2
. (5.8)

The wavelength of the buckling modes that arise at this pressure is

λ∗ = 2π
�
(h0 − δ)R/[12(1 − ν2)]1/4. (5.9)

Again, λ∗ � R for thin shells with h0 � R, justifying the assumptions made. Essentially,

the spatial thickness variation of the capsules under study is so gentle that there is hardly

any variation in the mechanical properties of the capsule at the scale of the small wave-

length associated with the buckling modes. As a result, the buckling pressure is set by

the thickness of the capsule in the vicinity of the thinnest spot, where it is approximately

h0 − δ. (We could consider different sections of the capsule, with higher thicknesses, but

the associated buckling mode would arise at a pressure higher than of Eq. (5.8).) Con-

sidering the magnitude of the terms excluded from the Euler-Lagrange equations by our

approximation of constant thickness shows that the corrections to Eq. (5.8) from taking

into account the spatial variation in thickness over the shallow shell would be smaller by

a factor O(δ/R).

To test our theoretical arguments, we perform numerical simulations on shells

with 0.01 ≤ h0/R ≤ 0.04 and 0 ≤ δ/h0 ≤ 0.9 (see Appendix E for details of the sim-

ulation). The results are reported in Fig. 5.3(a), showing good agreement between the

theoretical prediction and the simulation results. The slight discrepancy between theory

and simulation likely reflects the sensitivity of the buckling transition to inevitable small

scale inhomogeneities introduced by the amorphous mesh that describes the shell (see Ap-
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Figure 5.3: (a) Effect of inhomogeneity on the buckling pressure. The symbols show the
buckling pressure from simulations for shells with various average thickness h0 and inho-
mogeneity δ, normalized by the corresponding buckling pressure for uniform shells with
the same average thickness, p∗δ=0 = 2E/

�
3(1 − ν2) × (h0/R)2 [Eq. (5.5)]. The solid line

shows the theoretical prediction, Eq. (5.8). (b) Threshold volume change at buckling, from
simulations. The solid line shows the theoretical prediction [Eq. (5.12)], with ν = 1/3. In
both (a) and (b), the dashed line shows 90% of the theoretical value. The systematic dis-
crepancy of 10% or so between theory and simulation (higher for the extremely thin shells
with h0/R = 0.01) is likely a result of the sensitivity of the buckling transition to the small
amount of disorder in the underlying simulation mesh.
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Figure 5.4: Buckling pressure estimates from experiments. Total fraction of capsules that
have buckled at long times for varying p, for capsules with {h0, R0, δ/h0} = {1.2µm,
70µm, 0.20} (circles), {1.3µm, 67µm, 0.23} (triangles), and {5.5µm, 55µm, 0.19} (squares).
The curves are fits to the error function, the mean and standard deviation of which give
the estimate of the buckling pressure p∗ for each capsule geometry and the error associ-
ated with this estimate respectively. The inset shows this estimate, with the straight line
showing p∗ ∝ (h0/R0)2 scaling.

pendix E). This sensitivity is due to nonlinear couplings between the non-uniformities and

the degenerate buckling modes that arise as the classically predicted buckling pressure is

approached, which drive the transition to happen below the buckling pressure predicted

by the linear stability analysis. We expect this sensitivity to be more pronounced for the

uniform case, where the unstable modes extend over the entire shell, in contrast to the

nonuniform case, where the unstable modes are localized in the shallow region near the

thinnest part of the shell.

5.2.1 Comparison to experimental measurements

The form of the buckling pressure, Eq. (5.8), implies that shells with different thickness-

to-radius ratios h0/R but a constant value of the degree of inhomogeneity δ/h0 exhibit a
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buckling pressure that scales as p∗ ∝ (h0/R)2, similar to uniform shells. This is consistent

with experimental estimates of the buckling pressure for three different capsule geometries

with δ/h0 ≈ 0.2, shown in Fig. 5.4. The dependence of the total fraction of buckled cap-

sules on the external pressure, measured as described in Section 5.1.1, was fit to an error

function (smooth curves in Fig. 5.4); the mean value of the distribution from this fit was

used as an estimate of the buckling pressure p∗ for each capsule geometry. A quadratic

dependence of the buckling pressure of the buckling pressure on the mean thickness was

observed: p∗ ≈ (600± 200)(h0/R)2 MPa (inset to Fig. 5.4), which compares well to the the-

oretical estimate of p∗ ≈ 470(h0/R)2 MPa, obtained by substituting E = 600 MPa, ν = 0.33

and δ/h0 = 0.2 in the shell theory expression, Eq. (5.8).

5.3 Volume change prior to buckling

Prior to buckling, the shell contracts in response to the external pressure, maintaining its

spherical shape. The isotropic stresses in the shell as a result of this contraction are ulti-

mately responsible for shell buckling, which occurs when it becomes energetically favor-

able for the shell to introduce nontrivial bending deformations and trade the elastic energy

of this pure compression for bending energy. Buckling happens when the shell contraction,

proportional to the applied pressure, crosses a threshold value at p∗. Therefore, there is a

threshold internal volume reduction associated with this compression, which we call ∆V∗.

The experimental capsules differ from the idealized shells studied in Chapter 4

in having an inner fluid that takes time to permeate through the capsule. As a result,

capsules exposed to an osmotic pressure at or higher than their buckling pressure do not

buckle immediately, but take some time to eject the inner fluid and attain the threshold

volume reduction ∆V∗ before they buckle. The magnitude of this volume reduction thus
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determines the dynamics of buckling for the colloidal capsules under study.

The volume change prior to buckling is determined by the initial prebuckling

response of the shell to the external pressure. For a spherical shell, the only axisymmetric

stress distribution in response to a uniform pressure p that is well-behaved at the poles is

the uniform stress distribution, Eq. (5.4) [104]. In contrast to the uniform shell, however,

the resulting transverse displacement varies with the shell thickness:

W0(θ) =
pR2(1 − ν)

2Eh(θ)
=

pR2(1 − ν)
2E(h0 − δcosθ)

. (5.10)

The volume change in response to pressures up to the buckling pressure is thus (to lowest

order in the inward displacement)

∆V = 2π
� π

0
R2 sin θ W0(θ) dθ = π(1 − ν)

pR4

Eh0

�
h0

δ
ln

�
1 + δ/h0

1 − δ/h0

��
. (5.11)

The threshold volume change immediately before buckling is obtained by substituting p∗

[Eqn. (5.8)] for p in the above expression to get

∆V∗

V0
=

1
2

h0

R

�
3(1 − ν)

1 + ν

��
1 − δ

h0

�2 h0

δ
ln

�
1 + δ/h0

1 − δ/h0

��
, (5.12)

where V0 = 4πR3/3 is the initial volume of the shell. We recover the result for uniform

shells, ∆V∗/V0 =
�

3(1 − ν)/(1 + ν)× h0/R (Ref. [29]) in the limit δ/h0 → 0. Fig. 5.3(b)

compares the analytical expression to numerical simulations on shells with various thick-

nesses and inhomogeneities, showing good agreement.

5.3.1 Time delay before buckling for experimental capsules

The prediction for the threshold volume change before buckling, Eq. (5.12), can be com-

bined with the dynamics of fluid transport through the shell wall to predict the time delay

between the application of osmotic pressures and the inception of buckling seen in the

experiments. For a capsule to buckle, a volume ∆V∗ of liquid must be ejected from its
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Figure 5.5: Time delay before the onset of buckling, t∗, normalized by h2
0, for various exter-

nal pressures p, for capsules with {h0, R0, δ/h0} = {1.2µm, 70µm, 0.20} (circles); {1.3µm,
67µm, 0.23} (triangles), and {5.5µm, 55µm, 0.19} (squares). Filled symbols show p > p∗
while open symbols show p < p∗. Vertical error bars show uncertainty arising from esti-
mated variation in h0. Black line shows ∼ p−1 scaling.

interior. This is guaranteed to happen as long as the applied pressure difference p is above

p∗. However, the time delay t∗ = ∆V∗/Q before the onset of buckling depends on Q, the

volumetric rate of fluid ejection, which is proportional to p. Therefore, capsules should

buckle faster at higher pressures.

The fluid ejection rate Q can be calculated by integrating Darcy’s law for the flow

of a viscous fluid through a porous barrier over the entire capsule (see Appendix G.1);

combining the result [Eq. (G.1)] with the derived expression for ∆V∗ [Eq. (5.12)] gives

t∗ ≈ V0

Q0

�
3(1 − ν)

1 + ν

h0

R0

�
1 − δ

h0

�2
, (5.13)

where Q0 ≡ 4πR2
0 pk/µh0 is the flow rate of a fluid of viscosity µ out of a uniform shell

with thickness h0 and permeability k. This expression is consistent with experimental ob-

servations that the time to onset of buckling decreases with applied pressure p > p∗, for

shells with different geometries but identical degree of inhomogeneity δ/h0 ≈ 0.2. For

143



Chapter 5 Buckling of shells with a smoothly varying thickness profile

these shells, we expect t∗/h2
0 ≈ 0.8µ/pk according to Eq. (5.13). Fig. 5.5 shows that the

measurements of t∗ at pressures above the critical buckling pressure (filled symbols) col-

lapse when rescaled by h2
0; by fitting these data (solid line), we obtain an estimate of the

shell permeability, k ≈ 7 × 10−24 m2, which is consistent with an independent experimen-

tal measurement of shell permeability, k ≈ 2 × 10−24 m2, obtained by tracking the rate at

which capsule volume decreases after the onset of buckling (described in Appendix G.2).

5.4 Postbuckling shapes

Because the growth of the inversion after buckling is determined by the slow dynamics of

the inner fluid permeating through the capsules, the evolution of the inversion as it grows

in depth can be observed in the experiments over time. The inhomogeneity is expected

to affect the inversion, because the sharp rim of the inversion, where the stretching and

bending energies are confined, moves through regions of varying thickness as the inver-

sion grows. This large-deformation behavior cannot be captured in the linear analysis pre-

sented above; instead, we use numerical simulations to gain insight into the postbuckling

behavior observed in experiments.

5.4.1 Experimental observations

Optical microscopy was used to monitor the evolution of the capsule morphologies after

the onset of buckling, for shells with low (δ/h0 ≈ 0.2) and high (δ/h0 ≈ 0.84) inhomogene-

ity. Slightly inhomogeneous capsules typically buckled through the sudden formation of

a single circular indentation. As this indentation grew over time, its perimeter eventually

sharpened into straight ridges connected by 2-3 vertices [101, 32], as shown in Fig. 5.6(a).

This sharpening reflects the unique physics of thin shells: because it is more difficult to
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Figure 5.6: Folding pathways for different shell inhomogeneities. (a-c) Optical microscope
images exemplifying buckling at p = 0.86 MPa of (a) slightly inhomogeneous capsules
polymerized in situ (tw ≈ 0), with δ/h0 ≈ 0.2, (b-c) very inhomogeneous capsules poly-
merized after a wait time tw = 1 day, with δ/h0 ≈ 0.84. Very inhomogeneous capsules
buckle through the formation of either (b) one single indentation or (c) two indentations.
∆t is time elapsed after buckling. Scale bars are 35µm. (d-e) Examples of simulated shells
with similar geometries as the capsules shown in (a-c), for varying fractional volume re-
duction ∆V/V0. Color scale indicates the spatially-varying shell thickness.

compress the capsule shell than it is to bend it, localizing compressive deformations only

along sharp lines and points on the capsule surface requires less energy than uniformly

compressing the shell [13]. Interesting differences were observed for the very inhomoge-

neous capsules [Fig. 5.6(b)]. The initial folding pathway was similar; however, the perime-

ters of the indentations formed in these capsules sharpened into straight ridges connected

by 4-5 vertices, more than in the slightly inhomogeneous case. Moreover, surprisingly,

roughly 30% of the very inhomogeneous capsules buckled through the formation of one,

then two, adjacent indentations, as exemplified in Fig. 5.6(c). The perimeters of these in-

dentations grew over time, eventually meeting, coalescing, and sharpening into straight

ridges connected by 4-5 vertices [Fig. 5.6(c)].
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5.4.2 Numerical simulations

To investigate the influence of inhomogeneity on the shape of the inversion at large vol-

ume reductions, we simulate large volume reductions for two sets of geometric parame-

ters: shells with h0/R = 0.018 and δ/h0 = 0.20, similar to the more homogeneous capsules

studied in experiments, and shells with h0/R = 0.0165 and δ/h0 = 0.82, similar to the

very inhomogeneous shells. We find the energy-minimizing configurations for a particu-

lar value of the enclosed volume V, which we reduce in steps of 0.0025V0 from VT = V0

to VT = 0.75V0 (further details of the numerical simulation are provided in Appendix E).

For each set of geometric parameters, we investigate the robustness of the resulting shapes

by performing eight different simulations, in each case varying the point on the underly-

ing mesh that corresponds to the thinnest point of the shell. This effectively changes the

random discretization of the shell in each instance.

In all instances, the shells buckle when the shell volume is reduced past ∆V∗

(whose value is approximately 0.0115V0 for the more homogeneous shells and 0.0008V0

for the very inhomogeneous shells) to form a single circular indentation centered at the

thinnest part of the shell. At larger volume changes, however, the shape of the inver-

sion differs between the two shells and among different simulation instances for the same

shell. In more homogeneous shells, the inversion remains circular up to a volume change

of ∆V ≈ 0.05V0, beyond which the perimeter sharpens into straight ridges connected by

4-5 vertices [Fig. 5.6(d)]. Three out of the eight simulation runs on the more homogeneous

shells displayed inversions with 4 vertices, while the remaining five runs displayed inver-

sions with 5 vertices. Remarkably, the two types of inversions do not differ significantly in

their elastic energies, which explains why slight differences in the underlying mesh have

a significant effect on the final shape.

The shape evolution of the inversions in very inhomogeneous shells is qualita-
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tively different [Fig. 5.6(e)]. The inversion takes on a ridged appearance almost immedi-

ately after its formation, at a much smaller volume change (∆V ≈ 0.004V0) compared to

the more homogeneous shells. The number of vertices in the perimeter is also consistently

higher for the very inhomogeneous shells: out of eight simulation runs, three displayed

inversions with 5 vertices, four had inversions with 6 vertices, and one run displayed an

inversion with 7 vertices. Again, there is no significant difference in the elastic energies of

the competing shapes.

These results qualitatively agree with the experimental observations [Fig. 5.6(a-

c)]. We note that while the exact number of vertices formed differs between the experi-

ments and the numerical simulations, both show that the inversions in very inhomoge-

neous capsules develop more vertices than the more homogeneous case. However, in

contrast to the experimental capsules [Fig. 3(c)], we do not systematically observe the for-

mation of adjacent indentations in the simulations on very inhomogeneous shells. This is

likely due to details of the inversion growth dynamics in the experiments, which are not

captured in our quasi-equilibrium simulations.

5.5 Hysteresis properties

We saw in Chapter 4 that an inhomogeneity in the thickness can significantly change the

hysteresis of the shell shape under cyclical changes in pressure. Shells with a smoothly

varying thickness also display interesting hysteresis properties. As for uniform spherical

shells, the shape after buckling has a large, nearly isometric inversion that significantly

reduces the enclosed volume of the shell. However, the energetics of these inversions

is modified by the inhomogeneity. Simulations of the postbuckling shape show that the

inversion is centered around the thinnest region of the shell (θ = 0). Since the rim remains
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Figure 5.7: Hysteresis loops for cyclical pressure variation on simulated shells with h0/R =
0.03 and various levels of inhomogeneity δ/h0. The enclosed volume V is shown normal-
ized by the initial volume V0 = 4πR3/3, as the pressure (normalized by the buckling
pressure p∗δ=0 of a uniform shell with thickness h0) is ramped up to 0.2p∗δ=0 (upper section
of each curve) and then back down to zero (lower section of each curve) in increments of
0.01p∗δ=0. These curves may be compared to the hysteresis curve for a uniform shell from
Fig. 4.14.

localized to a narrow region with width of order
√

hR, we may assume that the energy of

the inversion still follows the Pogorelov scaling form,

Eel ∝ Eh5/2R1/2(d/R)3/2, (5.14)

but the thickness experienced by the rim of the inversion now depends on the inversion

depth. The angle θ subtended by the rim has a simple geometric relation with the depth d:

θ = cos−1(1 − d/R). Upon substituting h = h0 − δ cos θ = h0 − δ(1 − d/R) into Eq. (5.14),

we see that the dominant scaling of the elastic energy is not ∼ d3/2 but ∼ d2 or higher

powers of d at large depths, which is qualitatively different from the situation for uniform

shells. Therefore, the total energy Etot(d) = Eel(d)− p∆V(d), where ∆V(d) ∼ Rd2 is the

volume reduction associated with the nearly isometric inversion, no longer falls without

bound for large d, but instead reaches a stationary point for some value of d, which we call
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deq. Therefore, inversions once formed do not grow uncontrollably but reach an equilib-

rium depth that may be smaller than R, and depends on the pressure.

The volume evolution of numerically simulated shells with different inhomo-

geneities under cyclical pressure changes, shown in Fig. 5.7, reflects this fact. The en-

closed volume V/V0 (where V0 = 4πR3/3 is the initial volume of the spherical shell) is

measured in simulations on shells with various degrees of inhomogeneity but identical

average thickness and radius, as the pressure is ramped up to 0.2p∗δ=0 and then brought

back down to zero in small increments. For shells with δ/h0 < 1, the buckling transition

is apparent in an abrupt drop in the enclosed volume, at a pressure which is lower for the

shell with higher inhomogeneity, consistent with Eq. (5.8). In striking contrast to uniform

shells as well as shells with localized soft spots (Fig. 4.14), the volume change at the buck-

ling transition is an inhomogeneity-dependent fraction of the total volume of the shell, and

the volume continues to reduce further as the pressure increases. For instance, the shell

with δ/h0 = 3/5 (dotted curve in Fig. 5.7) abruptly reduces its volume by roughly 60% at

the buckling pressure (corresponding to an inversion of depth d ≈ 0.5R), but the inversion

continues to grow as the pressure is increased. The shell with δ/h0 = 4/5 (dashed curve in

Fig. 5.7) experiences an even smaller reduction at the buckling threshold of about 0.15V0,

and then smoothly reduces its volume upon further increase in the pressure. For both

shells, the reinflation of the shell as the pressure is reduced is also much smoother than for

uniform shells, and the area enclosed by the hysteresis loop is significantly reduced.

In the limit of a shell that is infinitesimally thin at its north pole, i.e δ → h0, the

hysteresis is almost completely eliminated. Such a shell does not exhibit a finite-pressure

buckling transition [p∗δ→h0
= 0 according to Eq. (5.8)]; instead, a tiny inversion forms at any

nonzero pressure and grows smoothly as the pressure is increased (Fig. 5.7, solid curve).

In this limit, the shell thickness experienced by the rim as the inversion depth d grows

149



Chapter 5 Buckling of shells with a smoothly varying thickness profile

is h = h0d/R, and the elastic energy associated with an inversion of depth d scales as

Eel ∼ Eh5/2
0 R1/2(d/R)4. The equilibrium inversion depth deq is set by Eel ∼ p∆V ⇒

deq ∼ √p. As a result, the volume reduction ∆V ∼ d2
eq ∼ p; i.e. the enclosed volume

falls linearly as p increases, and the shell recovers along an almost identical path as the

pressure is reduced back to zero. Highly inhomogeneous shells thus display a smooth,

almost perfectly reversible volume change in response to continuous changes in pressure,

in striking contrast to uniform spherical shells.

5.6 Conclusion

The combined experimental and theoretical analysis presented in this chapter shows that a

smoothly varying inhomogeneity strongly influences the buckling properties of a spherical

shell. As for shells with soft spots (studied in Chapter 4), the value of the buckling pres-

sure is determined by the thinnest region, and the inhomogeneity also influences the shape

evolution past buckling, although the nature of the buckling pathway and particularly the

hysteresis behavior differ from both uniform shells and shells with localized soft spots.

Shell theory, combined with Darcy’s law, also explains the dynamics of the buckling pro-

cess in experiments. Our results demonstrate that combining concepts of shell theory with

novel fabrication techniques can open up new ways to control buckling in microstructures.
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Appendix A

Elastic energy of nearly isometric
inversions in spherical shells

In this Appendix, we present a scaling argument for the elastic energy of a nearly isometric

inversion in a spherical shell. The treatment of large volume-reducing deformations in

spherical shells as nearly isometric shape changes is originally due to Pogorelov [31], and

a more recent nonlinear analysis of the shape can be found in Ref. [27]. Here, we reproduce

an argument for the scaling of the elastic energy with the shell elastic moduli and the

inversion depth, presented in Ref. [5].

In the limit of extremely thin spherical shells (with thickness h much smaller than

the radius R), the energy density associated with changing the metric of the mid-surface

scales as the Young’s modulus Y = Eh, whereas the energy density associated with bend-

ing deformations scales as the bending rigidity κ = Eh3/12(1− ν2) (where ν is the Poisson

ratio). Therefore, thin shells are nearly inextensible, and bending deformations are ener-

getically preferred to stretching deformations. The shape of a nearly inextensible shell is

close to an isometric transformation of the shell (although it cannot be identically isometric

for finite Y, since every bending deformation of a shell must be accompanied by some fi-

nite stretching due to the curvature [5]). An isometric, volume-reducing transformation of
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(a)

(b)

Figure A.1: (a) Isometric transformation on the sphere. The transformation is obtained by
mirroring the section of the sphere containing the geodesic segment ABC in the plane p,
so that B → B�. (b) Parameters describing the nearly isometric inversion of the sphere,
on which the singular rim of the isometric inversion, with radius r, is smoothed out due
to some stretching in a region of width l. The angle θ subtended by the inversion rim
at the center of the sphere relates r to the inversion depth d measured from the plane of
reflection to the lowest point of the inversion, as well as the amplitude ζ of the deformation
to its width l. The scaling analysis below shows that the width of the rim is indeed small
compared to the radius for thin shells.

a spherical shell is obtained by a mirror reflection of a part of the shell in some plane that

intersects it [Fig. A.1(a)]. Such a transformation preserves the metric of the mid-surface ev-

erywhere, and thus costs no stretching energy. However, the circular rim of the inversion

is infinitely sharp, i.e. its curvature and correspondingly its bending energy diverge. The

true deformation of the shell must deviate from the isometric shape close to the edge, pay-

ing a finite stretching energy cost to remove the singular behavior of the curvature. The

net bending and stretching energies associated with this “smoothing out” of the singular

edge determine the elastic energy associated with such an inversion. Its dependence on

the elastic parameters and on the inversion size can be derived using scaling arguments.
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We consider a nearly isometric inversion of depth d (measured from the reflecting

plane) in a sphere of radius R. Suppose the deformations from the isometric transforma-

tion are confined to a circular strip of width l and radius r in the neighborhood of the

singular rim of the associated isometric transformation of the shell [Fig. A.1(b)]. Relating

the depth d = R(1 − cos θ) and the rim radius r = sin θ for small values of θ leads to

r ≈
√

2dR. (A.1)

The amplitude of deformation ζ near the rim is also related to d by the requirement that

the angle between the tangent at the rim and the mirror plane be θ. Hence, ζ/l ≈ tan θ,

which gives

ζ ≈ lr
R

≈ l
�

2d
R

. (A.2)

The elastic strain scales as ζ/R, and the stretching energy density is thus Y × (strain)2 ∼

Y(ζ/R)2. The curvature in the strip scales as ζ/l2, giving rise to a bending energy den-

sity of κ × (curvature)2 ∼ κ(ζ/l2)2. The total elastic energy is obtained by multiplying

these energy densities with the area over which the strains are localized, which is 2πrl.

Minimizing the net elastic energy

Eel ∼ c1Y(2πrl)(ζ/R)2 + c2κ(2πrl)(ζ/l2)2 (A.3)

(where c1 and c2 are dimensionless constants) with respect to l gives

l ∼
�

κR2

Y

�1/4

=

√
hR

[12(1 − ν2)]1/4 ≡ �. (A.4)

where � is the elastic length associated with deformations in spherical shells [Eq. (1.5)].

For thin shells, � � R, justifying the assumption that the deformations are localized to

a narrow region near the rim of the inversion. Substituting the relations (A.1), (A.2) and

(A.4) in Eq. (A.3) gives the scaling form of the Pogorelov energy,

Eel ∼ κ3/4Y1/4R1/2
�

d
R

�3/2
∼ Eh5/2R1/2

�
d
R

�3/2
, (A.5)
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where we used the dependence of Y and κ on the shell thickness h for the second relation.

In terms of the dimensionless Föppl-von Kármán number γ ≡ YR2/κ, we have

Eel ∼ κγ1/4
�

d
R

�3/2
. (A.6)

In the above arguments, we ignored the background curvature of the shell in

its undeformed state when we estimated the bending energy. (We assume that the shell

is completely stress-free in its initial shape, and the preferred, or spontaneous, curvature

of the mid-surface is 1/R.) This is because the Pogorelov scaling form is relevant only

for inversions beyond a particular size, set by the criterion that the inversion rim must

be larger in radius than the elastic length scale which sets its width: r � � ⇒ d � h.

For indentations with depth d of the order of the shell thickness h or smaller, the picture

of a nearly isometric inversion with a well-defined narrow rim breaks down. (Instead,

the entire indentation extends over a region whose size scales with �, and the energy is

quadratic in the indentation depth in that case.)

In the rim of the inversion, the curvature change we have kept in the approxima-

tion of the bending energy is ∆k = ζ/�2 ∼
√

d/R/� ∼
√

d/h/R. For the Pogorelov scaling

to be valid, d � h ⇒ ∆k � 1/R, i.e. the curvature change is indeed large compared to the

background curvature 1/R of the shell, which can be ignored when calculating the elastic

energy in the narrow rim of the inversion.

The background curvature may also contribute in the interior of the inversion,

away from the rim: although the metric has not changed in this region and there is no

stretching energy cost, the curvature has changed sign from 1/R to −1/R, and there is an

associated bending energy cost that scales as κ × (2/R)2 × area ∼ κ(r/R)2 ∼ κ(d/R). This

must be compared to the bending energy cost in the narrow rim, which scales as κ(∆k)2 ×

(2πr�) ∼ κ(d/R)
√

d/h, which is again much larger than the bending contribution from
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the background curvature provided d � h. Therefore, we are justified in ignoring the

background curvature contribution to the bending energy.
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Appendix B

Capillary clustering of microfibers:
methods

In this Appendix, we provide details of the numerical and experimental methods used in

Chapter 2.

B.1 Details of numerical simulation

The two-parameter cooperative sequential adsorption process was simulated in a program

written in the C++ programming language. For each realization of the adsorption process

for a particular set of (α, β) values, a two-dimensional binary state array (0 ≡ “empty”; 1

≡ “occupied”) of size equal to that of the lattice being simulated was initialized to zero

(all positions vacant). Periodic boundary conditions were used to minimize finite-size

effects. Initially all sites were assigned the same rate k0 = 1 in arbitrary units. At each

iteration of the sequential process, a site was chosen at random for an adsorption trial.

The probability of a site being chosen was set to be proportional to the rate of adsorption

assigned to it. If adsorption of a particle was allowed by the exclusion rules, the state of

that site was changed to “occupied” and the adsorption rate of vacant sites at 3NN and

4NN positions was updated using the set values of α and β. The iterations continued until
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no further adsorption was allowed by the exclusion rules. Since the evolution in time of the

process was not of interest, the simulation was sped up by periodically eliminating sites at

which adsorption was excluded from consideration as adsorption candidates so that the

frequency of unsuccessful adsorption attempts remained low and the jammed state was

attained quickly.

B.2 Experimental methods

The microfiber array was prepared in epoxy, using a polydimethylsiloxane (PDMS) mold

fabricated from a silicon master. The fabrication of the mold is described in detail in

Ref. [65]. The epoxy used was UVO-114 single component UV-initiated epoxy (Epoxy

Technology, Inc.). Epoxy was poured into the PDMS mold using a pipette and allowed

to cure under a B-100 UV lamp (UVP Blak-Ray) for 20 minutes, after which the mold was

peeled off. The hardened epoxy sample was exposed to plasma in a FEMTO plasma sys-

tem (Diener Electronic) for 20 seconds to improve its wettability. To induce clustering, the

sample was placed on a flat surface and 10 µl of absolute anhydrous ethanol was dropped

on it using a pipette. The ethanol was allowed to evaporate under ambient conditions.

Optical microscope images of the clustered microfiber sample used for pattern

recognition were taken using a Leica DMRX microscope connected to a QImaging Evolu-

tion VF CCD camera. SEM images used for illustrations in Chapter 2 were recorded with

a JEOL JSM-6390 scanning electron microscope.
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Appendix C

Thermally fluctuating spherical
shells: analytical calculations

In this Appendix, we provide detailed derivations of the theoretical results presented in

Chapter 3.

C.1 Fields and strains in shallow shell theory

We describe the deformations of the sphere using shallow shell theory which we summarize

here. We follow the presentation by Koiter and van der Heijden [12]. A shallow section of

the sphere is isolated and Cartesian coordinates (x1, x2) are set up to define a plane that just

touches the undeformed sphere at the origin and lies tangent to it; the z axis is thus normal

to the sphere at the origin (Fig. C.1). We use the Monge representation to parametrize

the undeformed shell by its height z = Z(x1, x2) above the plane, where Z(x1, x2) is the

undeformed state corresponding to a sphere of radius R with its center located on the

z-axis above the (x1, x2) plane;

Z(x1, x2) = R



1 −

�

1 − x2
1

R2 − x2
2

R2



 (C.1)

158



Appendix C Thermally fluctuating spherical shells: analytical calculations










Figure C.1: The coordinate system in shallow shell theory. A section of the undeformed
sphere is shown with the (x1, x2) plane tangential to it at the origin. The red arrows show
the directions into which displacements u1(x1, x2), u2(x1, x2) and f (x1, x2) are decomposed
at a particular point in the coordinate plane.

The assumption in shallow shell theory is that the section of the shell under consideration

is small enough that slopes ∂1Z ∼ x1/R and ∂2Z ∼ x2/R measured relative to the (x1, x2)

plane are small. (Partial derivatives are denoted by ∂/∂xi ≡ ∂i.) Then the undeformed

state is approximately parabolic in x1 and x2,

Z(x1, x2) ≈
x2

1 + x2
2

2R
. (C.2)

Deformations from this initial state are quantified via a local normal displacement

f (x1, x2) perpendicular to the undeformed surface and tangential displacements u1(x1, x2)

and u2(x1, x2) within the shell along the projections of the x1 and x2 axes on the sphere

respectively. In terms of these fields, a point (x1, x2, Z(x1, x2)) in the undeformed state

moves to (x1 + u1 − f ∂1Z, x2 + u2 − f ∂2Z, Z + f ) to lowest order in the slopes ∂iZ = xi/R.

The strain tensor is defined by the relation between the length ds� of a line element in the

deformed state and the corresponding line element length ds in the undeformed state [5]:

(ds�)2 = ds2 + 2uijdxidxj. (C.3)
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With this definition and neglecting terms of order (∂iZ)2 and their derivatives, we find the

nonlinear strain tensor used in Chapter 3 [Eq. (3.2)],

uij(x) =
1
2
�
∂iuj + ∂jui + ∂i f ∂j f

�
− δij

f
R

. (C.4)

The stretching energy is then given by [5]

Gs =
1
2

�
dS

�
2µu2

ij + λu2
kk

�
, (C.5)

where µ and λ are the Lamé coefficients and dS is an area element.

We also include a bending energy of the Helfrich form [105] that penalizes changes

in local curvature:

Gb =
κ

2

�
dS (H − H0)

2, (C.6)

where κ is the bending rigidity, H the mean curvature and H0 the spontaneous mean cur-

vature (which we take to be equal everywhere to the curvature 2/R of the undeformed

shell). For a shallow section of the shell, the local curvature can be written in terms of the

height field Z(x1, x2) + f (x1, x2) as

H = ∇2(Z + f ) =
2
R
+∇2 f , (C.7)

where ∇2 = ∂11 + ∂22 is the Laplacian in the tangential coordinate system. Finally the

energy due to an external pressure p equals the work done,

W = −p
�

dS f . (C.8)

The area element is dS = dx1dx2/
�

1 − (x2
1 + x2

2)/R2 ≈ dx1dx2 when terms of

order (xi/R)2 and above are neglected. Summing the stretching, bending and pressure

energies leads to the elastic energy expression G = Gs + Gb + W used to study thermally

fluctuating shells, Eq. (3.1).
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Since we are restricted to a shallow section of the shell, the theory is strictly appli-

cable only to deformations whose length scale is small compared to the radius R. The typi-

cal length scale � of deformations can be obtained by balancing the bending and stretching

energies Gb and Gs discussed above. Upon noting that the stretching free energy density in

a region of size � is Gs ∼ Y( f /R)2, where Y is a typical elastic constant, and Gb ∼ κ f 2/�4,

we recover the Föppl-von Kármán length scale,

�∗ =
R

γ1/4 , (C.9)

where the Föppl-von Kármán number is γ = YR2/κ. More sophisticated calculations

(sketched below) show that the relevant elastic constant is the 2D Young’s modulus, Y =

4µ(µ + λ)/(2µ + λ).

For a shell made up of an elastic material of thickness h, taking Y and κ from the

3D Young’s modulus of an isotropic solid within thin shell theory provides the estimate

γ ≈ 10(R/h)2 [5]. For shallow shell theory to be valid, we need �∗ � R. Hence shallow

shell theory is valid when γ � 1 i.e. R � h, which is precisely the limit of large, thin

curved shells which are most susceptible to thermal fluctuations. This agreement between

shallow shell theory and more general shell theories that are applicable over entire spher-

ical shells has been discussed by Koiter [106] in the context of the response of a shell to a

point force at its poles. Shallow shell theory was also used to study the stability of pressur-

ized shells by Hutchinson [39]. In both cases, shallow shell theory was shown to be valid

for thin shells such that h/R � 1. Since thermal fluctuations are only relevant for shells

with radii several orders of magnitude larger than their thickness, shallow shell theory is

an excellent starting point for the extremely thin shells of interest to us here.
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C.2 Elimination of in-plane phonon modes and uniform spheri-

cal contraction by Gaussian integration

A spherical shell under the action of a uniform external pressure that is lower than the

critical buckling threshold responds by contracting uniformly by an amount f0. The out-

of-plane deformation field can then be written as a sum of its uniform and non-uniform

parts,

f (x) = f0 + f �(x) = f0 + ∑
q �=0

fqe−iq·x, (C.10)

where f �(x) represents the contribution to the field from its q �= 0 Fourier components.

(In this section, for ease of presentation we use the normalization fq ≡ 1
A
�

d2x f (x)eiq·x,

where A is the area of integration in the (x1, x2) plane. The inverse transform is then

f (x) = ∑q fqe−iq·x.) With this decomposition,
�

d2x f �(x) = 0 and thus only f0 contributes

to the pressure work W. On the other hand, only f � contributes to the nonlinear part of the

strain tensor. Hence the elastic energy G = Gb + Gs + W defined above is harmonic in the

in-plane phonon fields u1(x) and u2(x) as well as the uniform contraction f0. To analyze

the effects of anharmonicity, it is useful to eliminate these fields and define an effective free

energy [87],

Geff[ f �] = −kBT ln
��

D�u(x1, x2)
�

d f0 e−G[ f �, f0,u1,u2]/kBT]
�

. (C.11)

To carry out the functional integrals in Eq. (C.11) for a fixed out-of-plane displacement field

f �(x), the strain tensor uij must also be separated into its q = 0 and q �= 0 components:

uij = ũ0
ij + ∑

q �=0

�
i
2
�
qiuj(q) + qjui(q)

�
+ Aij(q)− δij

fq

R

�
e−iq·x (C.12)

where

Aij(q) =
1

2A

�
d2x ∂i f � ∂j f � eiq·x. (C.13)
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The uniform part of the strain tensor has the following components:

ũ0
11 = u0

11 + A11(0)−
f0

R
,

ũ0
22 = u0

22 + A22(0)−
f0

R
,

ũ0
12 = u0

12 + A12(0).

(C.14)

Here, u0
ij are the uniform in-plane strains that are independent of f0. This restriction implies

that u0
11 + u0

22 = 0 because a simultaneous uniform in-plane strain of the same sign in the

x1 and x2 directions corresponds to a change in radius of the sphere and thus cannot be

decoupled from f0. Hence in addition to f0 and u0
12, there is only one more independent

degree of freedom, ∆u0 ≡ u0
11 − u0

22, that determines the uniform contribution to the strain

tensor.

Finally we perform the functional integration in Eq. (C.11) over the phonon fields

ui as well as the three independent contributions to the uniform part of the strain tensor

— f0, ũ0
12 and ∆u0. The resulting effective free energy is, upon suppressing an additive

constant,

Geff =
�

d2x

�
κ

2
(∇2 f �)2 +

Y
2

�
1
2

PT
ij ∂i f �∂j f � − f �

R

�2
�
− A

pR
2

[A11(0) + A22(0)] (C.15)

where PT
ij = δij − ∂i∂j/∇2 is the transverse projection operator. Note that as a result of

the integration the Lamé coefficients µ and λ enter only through the 2D Young’s modulus

Y = 4µ(µ + λ)/(2µ + λ). Finally, substituting

A11(0) + A22(0) =
1

2A

�
d2x

�
(∂1 f �)2 + (∂2 f �)2� = 1

2A

�
d2x|∇ f �|2 (C.16)

in Eq. (C.15) gives the effective free energy used in the analysis of thermal fluctuations in

spherical shells, Eq. (3.3). In the following, we drop the prime on the out-of-plane dis-

placement field since f0 has now been eliminated. When only the harmonic contributions

are considered, the equipartition result for the thermally generated Fourier components
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q q’
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κq4 − pR
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[PT

ij (k1 + k2)k1ik2j ][P
T
lm(k3 + k4)k3lk4m](2π)2δ2(k1 + k2 + k3 + k4)

k
1

k

k

2

3
Y

2R
[PT

ij (k1 + k2)k1ik2j ](2π)
2δ2(k1 + k2 + k3)

Figure C.2: The bare propagator for f (q) and the vertices arising from the non-quadratic
terms in Geff. The slashes on specific legs denote spatial derivatives. PT

ij (q) = δij − qiqj/q2

is the transverse projection operator in momentum space. Note an unusual feature of this
graphical perturbation theory: the system size, i.e. the sphere radius R, enters explicitly
both in the propagator and as a coupling constant in the third order interaction vertex.

fq =
�

d2x f (x) exp(iq · x) with two-dimensional wavevector q are

� fq fq� �0 =
AkBTδq,−q�

κq4 − pR
2 q2 + Y

R2

. (C.17)

where A is the area of integration in the (x1, x2) plane. This harmonic spectrum of fluctu-

ating shells [Eq. (3.4)] takes on corrections due to the anharmonic terms that are calculated

in the next section.

C.3 One-loop contributions to the self-energy

Here we describe the self-energy used to calculate the leading anharmonic corrections to

the fluctuation spectrum of pressurized spherical shells. The Feynman rules obtained from

the effective free energy Geff[ f ] are summarized in Fig. C.2. Henceforth, Fourier com-

ponents are defined as in Chapter 3: fq =
�

d2x f (x) exp(iq · x) with two-dimensional

wavevector q. The inverse Fourier transformation of the out-of-plane deformation field is

f (x) =
1
A ∑

q �=0
fqe−iq·x, (C.18)
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a

b

Figure C.3: One-loop corrections to the two-point height-height correlation function in
momentum space. Note that in calculating the self-energy, the external propagators are
not included; i.e. they are “amputated”. The contribution in a resembles that for mem-
branes with a flat ground state, except for the R-dependent pressure and mass terms in the
propagator. The nonlinear corrections in b, however, arise from a cubic coupling constant
proportional to 1/R and are unique to the spherical geometry.

where A is the area of integration in the (x1, x2) plane and the sum is over all allowed

Fourier modes. The one-loop contribution to the self-energy Σ(q) due to the anharmonic

three-point vertex (cubic term in the energy) and the four-point vertex (quartic term) are

summarized in Fig. C.3. Fig. C.3(a) is also present in the calculation for flat membranes [87],

and provides a contribution

−Y
� d2k

(2π)2

[PT
ij (k)qiqj]2

κ|q + k|4 − pR
2 |q + k|2 + Y

R2

(C.19)

to the self-energy. Fig. C.3(b) involves two-vertex terms arising from the cubic coupling

unique to shells with curvature (note that, despite “amputation” of the propagator legs,

the diagrams are distinct because the slashes decide the momentum terms which survive
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various index contractions in addition to determining the momentum of the transverse

projection operator introduced at each vertex). The net contribution to the self-energy

from the four diagrams in Fig. C.3(b) is

Y2

R2

� d2k
(2π)2

1�
κ|q + k|4 − pR

2 |q + k|2 + Y
R2

��
κk4 − pR

2 q2 + Y
R2

�×

�
1
2
[PT

ij (q)kikj]
2 + [PT

ij (k)qiqj]
2 + [PT

ij (k)qiqj][PT
lm(k + q)qlqm] + 2[PT

ij (k)qiqj][PT
lm(q)klkm]

�

(C.20)

While the inverse of the harmonic correlation function, Eq. (C.17), only contains

terms of order q0, q2, q4, the one-loop corrections to the spectrum [Eqs. (C.19–C.20)] gener-

ate terms with these powers of q as well as terms of order q6 and above in the full inverse

fluctuation spectrum. If we keep only terms of order q4 and below in the calculation of the

one-loop fluctuation spectrum, we can provide an approximate description of the low-q

behavior of the shell in terms of effective elastic constants:

AkBT�| fq→0|2�−1 ≡ κRq4 − pRR
2

q2 +
YR

R2 + O(q6), (C.21)

where YR, κR and pR are the effective Young’s modulus, bending rigidity and dimensionless

pressure respectively. At long length scales, probes of the elastic properties of thermally

fluctuating shells would provide information of these effective elastic constants rather than

the “bare” constants Y, κ and p that describe the zero-temperature shell. Upon expanding

the integrands in Eqs. (C.19–C.20) to O(q4) the momentum integrals can be carried out

analytically to obtain:

YR = Y
�

1 − 3
128π

kBT
κ

√
γ

(1 − η2)3/2

�
η
�

1 − η2 + π − cos−1 η

��
, (C.22)

κR = κ

�
1 +

1
30720π

kBT
κ

√
γ

(1 − η2)7/2

�
η
�

1 − η2
�
−1699 + 3758η2 − 2104η4

�

+ 15(61 − 288η2 + 416η4 − 192η6)
�

π − cos−1 η
���

,

(C.23)
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ηR = η +
1

1536π

kBT
κ

√
γ

(1 − η2)5/2

��
1 − η2

�
64 − 67η2�+ 3

�
21η − 22η3�

�
π − cos−1 η

��
.

(C.24)

where we have defined a dimensionless pressure η ≡ p/pc and pc = 4
√

κY/R2 is the

classical buckling pressure of the shell. We see explicitly that the quantities diverge in the

limit η → 1. To lowest order in the external pressure, we have

YR ≈ Y
�

1 − 3
256

kBT
κ

√
γ

�
1 +

4
π

p
pc

��
, (C.25)

pR ≈ p +
1

24π

kBT
κ

pc
√

γ

�
1 +

63π

128
p
pc

�
, (C.26)

and

κR ≈ κ

�
1 +

61
4096

kBT
κ

√
γ

�
1 − 1568

915π

p
pc

��
. (C.27)

These are the approximate renormalized elastic quantities tabulated in Eqs. (3.7–3.9).

In evaluating the above expressions, the momentum integrals in Eqs. (C.19–C.20)

must strictly speaking be carried out over the phase space of all allowed Fourier modes

f (k) of the system, which go from some low-k cutoff kmin ∼ 1/R to a high-k cutoff set by

the microscopic lattice constant. However, since all integrals converge in the ultraviolet

limit k → ∞, the upper limit of the k-integrals can be extended to ∞. The integrals are

well-behaved at low momenta due to the mass term ∼ Y/R2 in the propagator. Hence we

carry out the momentum integrals over the entire two-dimensional plane of k. The excess

contribution to the self energy by including spurious Fourier modes with 0 < k < 1/R,

i.e. for wavevectors less than the natural infrared cutoff kmin ∼ 1/R, gives rise to an error

of roughly 1/
√

γ which is negligible for extremely thin shells. This correction is of similar

magnitude to the errors introduced by using shallow shell theory (which is inaccurate for

the longest-wavelength modes with wavevector k ∼ 1/R) which are also negligible in the

thin-shell limit.
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C.4 Calculation of fluctuation spectrum with spherical harmonics

Whereas the perturbation theory calculations were carried out using a basis of Fourier

modes in a shallow section of the shell to decompose the radial displacement field, the fluc-

tuation spectrum is most efficiently measured in simulations using a spherical harmonics

expansion. To compare the simulation results to the expected corrections from perturba-

tion theory, we use the description of the shell in terms of the effective elastic constants YR,

κR and pR, Eqs. (3.7–3.9).

Consider a spherical shell of radius R with bending rigidity κ and Lamé coef-

ficients λ and µ, experiencing a tangential displacement field u = (ux, uy) and a radial

displacement field f . Like any smooth vector field, u can be decomposed into an irro-

tational (curl-free) part and a solenoidal (divergence-free) part: u ≡ ∇Ψ + v, where the

scalar function Ψ generates the irrotational component and v is the solenoidal component.

Upon expanding f ≡ ∑l,m AlmRYm
l and Ψ ≡ ∑l,m BlmR2Ym

l in terms of spherical harmon-

ics Ym
l (θ, φ), the elastic energy of the deformation to quadratic order in the fields is given

by [89]

G = R2 ∑
l,m

��
κ

2
(l + 2)2(l − 1)2

R2 + 2K
�

A2
lm − 2Kl(l + 1)AlmBlm

+
1
2

l(l + 1) [(K + µ)l(l + 1)− 2µ] B2
lm

�
+ Gsol(v),

(C.28)

where K = λ + µ is the bulk modulus. The solenoidal component v does not couple to the

radial displacement field and provides an independent contribution Gsol which is purely

quadratic in the field v.

To this elastic energy, we also add the surface energy-like contribution GS =

−(pR/2)∆A due to the “negative surface tension” −pR/2 present in the shell when it

is uniformly compressed in response to an external pressure p. Here ∆A is the excess area

due to deformations about the average radius. In terms of spherical harmonic coefficients,
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this area change can be written [107]

∆A ≈ R2 ∑
l>1,m

A2
lm

�
1 +

l(l + 1)
2

�
. (C.29)

As we did for the elastic energy in shallow shell theory, we can now integrate out

the quadratic fluctuating quantities Blm and the solenoidal field v to obtain an effective

free energy in terms of the radial displacements alone:

Geff =
R2

2 ∑
l>1,m

�
κ(l + 2)2(l − 1)2

R2 − pR
�

1 +
l(l + 1)

2

�
+

4µ(µ + λ)(l2 + l − 2)
(2µ + λ)(l2 + l)− 2µ

�
A2

lm.

(C.30)

The fluctuation amplitude is obtained via the equipartition theorem:

kBT�|Alm|2�−1
0 = κ(l + 2)2(l − 1)2 − pR3

�
1 +

l(l + 1)
2

�
+

4µ(µ + λ)(l2 + l + 2)
(2µ + λ)(l2 + l)− 2µ

R2

= κ(l + 2)2(l − 1)2 − pR3
�

1 +
l(l + 1)

2

�
+

Y
1 + Y

2µ(l2+l−2)

R2.

(C.31)

where Y = 4µ(µ + λ)/(2µ + λ) is the 2D Young’s modulus introduced earlier. The ef-

fect of anharmonic contributions to the fluctuation spectrum can now be calculated by

using the effective temperature-dependent quantities YR, κR and pR in place of the bare

elastic constants in the above expression. However, the last term in Eq. (C.31) also requires

knowledge of the thermal corrections to the Lamé coefficient µ which was eliminated in

the shallow shell calculation when the tangential displacement fields were integrated out.

For the discretized stretching energy used in the simulations, we have µ = 3Y/8. If we

assume that this relationship is not significantly changed by the anharmonic corrections to

one-loop order, then µR ≈ 3YR/8. Upon substituting this approximation together with the

other effective elastic parameters in Eq. (C.31), we find

kBT�|Alm|2�−1 ≈κR(l + 2)2(l − 1)2 − pRR3
�

1 +
l(l + 1)

2

�
+ YRR2

�
3(l2 + l − 2)
3(l2 + l)− 2

�
(C.32)
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which is the same as Eq. (3.10).1

C.5 Linear response of the shell to point forces

We calculate the response of the shallow shell to a point force at the origin, corresponding

to a force field h(x) = Fδ2(x). The Fourier decomposition of this force field is

hq = F, for all q. (C.33)

The linear response of the deformation field f to this force is related to its fluctuation

amplitudes in the absence of the force, �| fq|2�h=0, by the fluctuation-response theorem:

� fq� =
�| fq|2�h=0

AkBT
hq =

�| fq|2�h=0

AkBT
F. (C.34)

The inward deflection at the origin is then

� f (x = 0)� = 1
A ∑

q
� fq� =

F
A2kBT ∑

q
�| fq|2�h=0. (C.35)

This can be related to � f 2�, the mean square fluctuations of the deformation field in real

space which is a position-independent quantity in the absence of nonuniform external

forces:

� f 2� ≡ �[ f (x)]2�h=0 =
1

A2 ∑
q

∑
q�
� fq fq� �e−i(q+q�)·x

=
1

A2 ∑
q
�| fq|2�h=0.

(C.36)

From Eqs. (C.35) and (C.36), we obtain

� f (x = 0)� = F
kBT

� f 2�. (C.37)

1If, as is more likely, the thermal corrections to µ and Y do differ to O(kBT), we can nevertheless estimate
that the resulting error term introduced by the assumption µR ≈ 3YR/8 is suppressed by a factor 4/[3(l2 +
l − 2) + 4] relative to the anharmonic corrections and is thus at least an order of magnitude smaller than the
anharmonic contribution itself when l > 1.
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This equation relates the depth of the indentation due to a force F at the origin to the mean

square fluctuations of the deformation field f in the absence of such a force.

When only harmonic contributions are considered, Eq. (C.17) gives us the mean

square amplitude �| fq|2�0 = AkBT/(κq4 − pRq2/2 + Y/R2) in terms of the elastic con-

stants and external pressure. Upon taking the continuum limit of the sum over wavevec-

tors ∑q → A
�

d2q/(2π)2, we can calculate the fluctuation amplitudes exactly:

� f 2� =
� d2q

(2π)2
kBT

κq4 − pR
2 q2 + Y

R2

=
RkBT
8
√

κY
1 + 2

π sin−1 η
�

1 − η2
, (C.38)

where η = p/pc = pR2/(4
√

κY) is the dimensionless pressure, and η < 1, i.e. we restrict

ourselves to pressures below the classical buckling pressure. From Eqs. (C.37) and (C.38),

we get the linear relation between the indentation force and the depth of the resulting

deformation:

F =
8
√

κY
R

�
1 − η2

1 + 2
π sin−1 η

� f (x = 0)�. (C.39)

The temperature drops out and we obtain a result valid for T = 0 shells as well. The

expression reproduces the well-known Reissner solution [97] for the linear response of a

spherical shell to a point force when η = 0, and also reproduces the recent result from

Vella et al [108] for indentations on spherical shells with an internal pressure when η < 1.

At finite temperatures, however, anharmonic effects contribute terms of order (kBT)2 and

higher to � f 2�, making the response temperature-dependent.

In the simulations, the shells contract by a small amount due to thermal fluctua-

tions, even in the absence of external forces. Thus, indentations are measured relative to

the thermally averaged pole-to-pole distance of the shell at finite temperature, �z0� < 2R.

Equal and opposite inward forces are applied to the north and south poles of the shell

to maintain a force balance (see details in Appendix D.3) and the resulting average pole-

to-pole distance, �z�, is measured. This corresponds to an average indentation depth of
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(�z0� − �z�)/2 at each pole, with associated force [from Eq. (C.37)]

F =
kBT
� f 2�

(�z0� − �z�)
2

≡ ks(�z0� − �z�), (C.40)

i.e. the shell as a whole acts as a spring with spring constant

ks =
kBT

2� f 2� . (C.41)

At T = 0, we have

ks =
4
√

κY
R

�
1 − η2

1 + 2
π sin−1 η

; (C.42)

in particular, ks = 4
√

κY/R in the absence of external pressure. Anharmonic contribu-

tions change the fluctuation amplitude � f 2� and hence the linear response. To lowest or-

der in temperature, the effects of anharmonic contributions can be obtained by using the

renormalized elastic constants calculated using perturbation theory [Eqs. (C.25)–(C.27)] in

Eq. (C.42) and keeping terms to O(T). In particular, even if the bare pressure p = 0, the

renormalized dimensionless pressure pR is nonzero and affects the spring constant, as do

the temperature-dependent effective elastic moduli. The result in this case is

ks(T > 0) ≈ 4
√

κY
R

�
1 − 0.0069

kBT
κ

√
γ

�
. (C.43)

This completes the derivation of Eq. (3.13).
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Appendix D

Simulations of thermally fluctuating
shells

In this Appendix, we present details of the numerical simulations used to probe the me-

chanics of thermally fluctuating shells. We gratefully acknowledge the contributions of

Gerrit Vliegenthart (Forschungszentrum Jülich, Germany) to this work.

D.1 Monte Carlo Simulations of randomly triangulated shells

A random triangulation of radius R0 is constructed by distributing N nodes on the surface

of a sphere with the required radius. The first two of these nodes are fixed at the north and

the south pole of the sphere whereas the positions of the remaining N − 2 nodes are ran-

domized and equilibrated in a Monte Carlo simulation. During this equilibration process

the nodes interact via a steeply repulsive potential (the repulsive part of a Lennard Jones

potential). After equilibration, when the energy has reached a constant value on average,

the simulation is stopped and the final configuration is ‘frozen’. The neighbors of all nodes

are determined using a Delaunay triangulation [109]. The spherical configurations as well

as the connection lists are used in further simulations.

In subsequent simulations nearest neighbors are permanently linked by a har-
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monic potential giving rise to a total stretching energy [110],

Es =
k
2 ∑

i,j
(|rij − r0

ij|2), (D.1)

where the sum runs over all pairs of nearest neighbors, rij is the distance between two

neighbors and r0
ij the equilibrium length of a spring. The equilibrium length r0

ij is deter-

mined at the start of the simulation, when the shell is still perfectly spherical and thus

the stretching energy vanishes for the spherical shape. The spring constant k is related to

the two-dimensional Lamé coefficients λ = µ =
√

3k/4 and the two-dimensional Young

modulus Y = 2k/
√

3 [110].

The mean curvature (more precisely, twice the mean curvature) at node i is dis-

cretized using [91, 111, 112]

Hi =
1
σi

ni · ∑
j(i)

σij

lij
(ri − rj) (D.2)

where ni is the surface (unit) normal at node i (the average normal of the faces surrounding

node i), σi = ∑j(i) σijlij is the area of the dual cell of node i, σij = lij[cot θ1 + cot θ2]/2 is the

length of a bond in the dual lattice and lij = |ri − rj| is the distance between the nodes i

and j. The total curvature energy is,

Eb =
κ

2 ∑
i

σi(Hi − H0)
2 (D.3)

with κ the bending rigidity and H0 the spontaneous curvature at node i. In all simulations

H0 = 2/R0 (since Hi is twice the mean curvature). In the cases of elastic shells under

pressure a term PV is added to the Hamiltonian where P is the external pressure and V

the volume of the shell.

Similar elastic networks with stretching and bending potentials have been stud-

ied in relation to the stability of membranes, icosahedral and spherical shells that contain

defects [77, 83, 28, 110, 113, 114] or defect scars [112, 115, 116, 117] as well as for the defor-

mation of icosahedral viruses [80, 81, 82] and the crumpling of elastic sheets [90].
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Simulations are performed for shells of 5530 (R0 = 20 r0), 22117 (R0 = 40 r0)

and 41816 (R = 55 r0) nodes. The Hookean spring constant and the bending rigidity are

taken such that the shells have Föppl-von-Kármán numbers in the range 650 < γ < 35000

and that the dimensionless temperature is in the range 2 × 10−6 < kBT/κ < 0.5. Monte

Carlo production runs consist typically of 1.25 × 108 Monte Carlo steps where in a single

Monte Carlo step an attempt is made to update the positions of all nodes once on average.

Configurations were stored for analysis typically every Nsamp = 2000 Monte Carlo steps.

For the largest system (41816 nodes), such a run took about 700 days of net CPU time

spread over several simultaneous runs in a Linux cluster of Intel XEON X5355 CPUs. For

the smaller shells, the computational time scaled down roughly linearly with system size.

D.2 The fluctuation spectrum from computer simulations

For a particular configuration of a simulated shell, the coefficients Alm of the expansion

of the radial displacements in spherical harmonics [Eq. (3.10)] are determined by a least

squares fit of the node positions to a finite number lM of (real) spherical harmonics. In

practice we have used lM = 26 as the upper wavenumber cutoff for all simulations. At

each temperature and pressure, this procedure is repeated for about 10000 independent

configurations and the results averaged to obtain the curves presented in Fig. 3.2.

D.3 Simulations of shells indented by point-like forces

To perform indentation simulations, two harmonic springs are attached to the north and

south pole of the shell. This leads to an additional term in the Hamiltonian,

Vs =
1
2

ki

�
zN

i − zN
�2

+
1
2

ki

�
zS

i − zS
�2

/2,
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where ki = κ/r2
0 is the spring constant of the indenter. Here, one end of the springs, at

positions zN and zS, is attached to the vertices at the north and south pole, respectively. The

positions of the other end of the springs, at zN
i and zS

i , are fixed externally and determine

the indentation force and depth, as indicated in Fig. D.1.

By changing zN
i and zS

i , the depth of the indentation can be varied. After the

springs are fixed a certain distance apart, the thermally average pole-to-pole distance �z�

is measured and compared to its value in the absence of a force, �z0�. The instantaneous

force at the poles is calculated from the instantaneous extension of the harmonic springs

after each Nsamp Monte Carlo steps; thermal averaging then determines the average corre-

sponding to �z�. This provides the force-indentation curves in Fig. 3.3(a–b).

D.4 Measuring the effective spring constant from fluctuations

It is very difficult to unambiguously identify the linear regime in the force-indentation

curves to measure the temperature-dependent spring constants. Extracting the effective

spring constant of shell deformation ks from a linear fit in the small indentation region

is subject to inaccuracies and sensitivity to the number of points included in fitting. In-

stead, we extract the spring constants of thermally fluctuating shells by using the relation

Eq. (C.41) between ks and the fluctuations in z0 (see Appendix C.5 for derivation):

ks ≈
kBT

�z2
0� − �z0�2 . (D.4)

It is straightforward to measure the average pole-to-pole distance of the fluctuat-

ing shell in the absence of external forces, �z0� = �R − fN − fS�, where fN and fS are the

inward displacements at the north and south poles respectively. Since the displacements

at the poles are expected to be independent of each other, the mean squared fluctuations
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in z0 are closely related to the mean square fluctuations in f :

�z2
0� − �z0�2 ≈ 2� f 2�. (D.5)

The spring constant can thus be measured indirectly from the fluctuations in the pole-to-

pole distance using Eq. (C.41):

ks =
kBT

2� f 2� ≈ kBT
�z2

0� − �z0�2 . (D.6)

This procedure was used to measure the temperature-dependent spring constants reported

in Fig. 3.3(c).

177



Appendix D Simulations of thermally fluctuating shells

a

b

Figure D.1: Illustration of the indentation simulation of a randomly triangulated shell.
Shown here are vertical cuts through a shell of radius R0 = 20 r0 at low (a) and high (b)
temperatures. (a) A shell at low dimensionless temperature kBT/κ

√
γ = 10−5, at which

anharmonic effects are negligible, is indented by two harmonic springs (dark blue lines)
attached to the north (zN) and south (zS) pole of the shell. Fixing the springs at a separation
zi = zN

i − zS
i leads to a pole separation z. The green points indicate the positions zN

i and zS
i

of the fixed end points of the springs. A close-up of the north pole of the shell is shown on
the right. The mesh contains a minority of 5 and 7-fold coordinated vertices in addition to
6-fold coordinated ones. (b) Illustration of a fluctuating indented shell at R0 = 20 r0 and
kBT/κ

√
γ = 15.
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Numerical simulations of
zero-temperature shells

In this Appendix, we present the detailed procedure used to simulate the buckling of

thin spherical shells when thermal fluctuations are unimportant. These simulations were

used in Chapters 4 and 5. In our simulations, the shells are composed of “amorphous"

randomly-positioned points connected by springs. Similar models have been used to

study the deformations of uniform spherical shells [28], viruses [77, 80, 81, 82, 83] and

pollen grains [38]. The computer programs used to conduct these numerical simulations

are based on code generously provided by Eleni Katifori.

For our simulations, we discretize the elastic energies on a floating mesh of 20,000

points. The initial mesh (a section of which is shown in Fig. E.1) is disordered, with a dis-

tribution of nearest neighbor distances, to eliminate the effect of the 12 regularly spaced

five-fold disclinations that inevitably arise when tiling a spherical surface with equilateral

triangles [77]. The disordered mesh is created by confining 20,000 points on the surface

of a sphere, introducing a steep repulsive potential between nearest neighbor pairs (the

repulsive part of a Lennard-Jones potential) and letting the points equilibrate at finite tem-

perature via a Monte Carlo simulation. Once the system has equilibrated, the point posi-
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Figure E.1: Disordered mesh used in simulations. For clarity, only one octant of the mesh
is shown. Mesh points are colored according to the number of nearest neighbors: blue (five
neighbors), yellow (six neighbors) or red (seven neighbors); and nearest-neighbor pairs are
connected by lines.

tions are “frozen” and the nearest neighbors calculated as the edges of the convex hull of

the set of points. This set of points and bonds is computed once and used as the initial

configuration for all the simulations.

The elastic stretching energy of deformations from the initial unstrained config-

uration is approximated by a harmonic spring energy associated with bonds connecting

nearest-neighbor pairs [110]:

Es = ∑
�ij�

√
3

4
Y(rij − r0

ij)
2 (E.1)

where rij and r0
ij are the lengths in the deformed and initial states of the bond connecting

nearest-neighbor mesh points i and j. This form reproduces the stretching energy compo-

nent of the elastic energy [Eq. (4.5)] in the continuum limit, with ν = 1/3 [110].

Previously used discretizations of the bending energy in terms of the angles be-

tween surface normals of adjacent facets in the mesh [110, 38] are not suitable for dis-

ordered meshes [91]. Instead, we reconstruct the change in curvature kij from the mean
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curvature Hi and Gaussian curvature Ki estimated at each point i. This requires the dis-

cretized surface area A and enclosed volume V of the shell, obtained by treating the mesh

as a polyhedron with planar triangular facets whose edges are the nearest-neighbor bonds.

Each facet j contributes an area Aj = |(rj2 − rj1) × (rj3 − rj1)|/2, where rji (i ∈ {1, 2, 3})

are the position vectors of the three mesh points ji that define the facet. The tetrahedron

defined by the origin and the three vertices of each facet j contributes a signed volume

Vj = [rj1 · (rj2 × rj3)]/6 to the total volume of the polyhedron. The contribution correctly

calculates the enclosed volume of the mesh, provided the facet vertices j1, j2 and j3 are

ordered so that the vector (rj2 − rj1)× (rj3 − rj1) points towards the outside of the shell. An

estimate of the signed mean curvature at mesh point i is [118]

Hi =
1
2

Fi · Ni
Ni · Ni

(E.2)

where Fi = ∇ri A is the gradient of the discretized surface area A = ∑j Aj with respect

to ri, and Ni = ∇ri V is the gradient of the discretized volume V = ∑j Vj. The Gaussian

curvature at each point is estimated using the Gauss-Bonnet theorem:

Ki =
1
σi



2π − ∑
j(i)

αj



 (E.3)

where αj is the angle subtended by facet j at point i, and the sum is over all triangular

facets sharing point i. σi = ∑j(i) Aj/3 is the area associated with each vertex, computed as

one-third of the sum of areas Aj of the facets j(i) sharing point i. The discretized bending

energy is [94]

Eb = ∑
i

κσi
2

�
4
�

Hi −
1
R

�2
− 2(1 − ν)

�
Ki −

2Hi
R

+
1

R2

��
. (E.4)

The pressure is implemented by adding a term pV to the total energy, where the

enclosed volume V of the shell is approximated by the polyhedral volume enclosed by

the mesh. This net discretized energy Es + Eb + pV of the 3 × 20, 000 mesh points is then
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minimized using the BFGS quasi-Newton optimization algorithm, which finds local min-

ima accessible smoothly from the initial state. We use the freely available GNU Scientific

Library [119] to perform the minimization. The final configuration is checked for stability

to a small random perturbation of all the point positions.

Buckling of spherical shells under pressure is simulated by setting the pressure

initially to zero, then ramping it up in discrete small steps, finding the local energy mini-

mum at each incremental value of the pressure. A buckling event is identified by a sudden

large volume change between small changes in pressure. To prevent well-separated parts

of the mesh from intersecting each other when the shell collapses, we constrain the inter-

nal volume of the mesh from falling below 10% of the original volume, by adding a term

Econs = µ/(V − 0.1V0)6 to the total energy, whereV0 = 4πR3/3 is the enclosed volume of

the undeformed shell, and µ is kept small so that the constraint term only becomes relevant

when V gets very close to V0.

In Chapter 4, we investigate the nature of the unstable buckling mode by arresting

its growth as soon as it appears. To do this, we simulate a solid inner ball centered at the

origin (taken to be the center of the undeformed spherical shell) with a slightly smaller

radius than the shell. We include a repulsive energy Erep = ∑i �/(ri − Rinner)12, where ri

is the distance of point i from the origin, and Rinner = 0.99R is the radius of the simulated

inner ball. The strength � ∼ 10−25YR2 is kept very small so that points in the mesh only

feel the influence of this repulsion when they are very close to the inner ball surface, which

happens only when buckling has occurred.

To find energy-minimizing configurations at a particular target volume VT in

Chapter 5, we use the penalty method [120, 38]. We add a penalizing term Evol = Λ(V −

VT)2 to the energy, where V is the volume enclosed by all the facets of the mesh, with Λ

initially chosen to be very small. We increment Λ systematically between successive mini-
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mizations of the total energy, until the difference between the actual and target volumes is

negligible.
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Appendix F

Derivation of the nonlinear equations
of shallow shell theory

In this Appendix, we outline the derivation of the nonlinear differential equations of shal-

low shell theory for a spherical shell, Eqs. (4.11) and (4.12), starting with the elastic energy

of deformations for a Hookean shell [Eq. (4.5)]. Shallow shell theory considers a section of

the shell small enough so that slopes relative to a tangent plane at the basal point are small.

Then, we set up a Cartesian coordinate system (x, y) in this tangent plane, and describe

deformations of the shell in terms of tangential displacement fields U(x, y), V(x, y) and the

normal displacement W(x, y) (see Appendix C.1). In this shallow shell coordinate system,

the strain tensor uij and bending tensor kij are expressed in terms of the displacement fields

as [12]

uxx = U,x +
1
2

W2
,x −

W
R

, (F.1)

uyy = V,y +
1
2

W2
,y −

W
R

, (F.2)

uxy = uyx =
1
2
�
U,y + V,x + W,xW,y

�
, (F.3)

and

kij = W,ij. (F.4)
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where we use the notation f,α ≡ ∂α f for spatial derivatives. The total energy, including the

elastic contribution [Eq. (4.5)] as well as the contribution due to a finite external pressure

p, reduces to

Etot =
�

dx dy
�

Y
2(1 − ν2)

�
(uxx + uyy)

2 − 2(1 − ν)(uxxuyy − u2
xy)

�

+
κ

2

�
(W,xx + W,yy)

2 − 2(1 − ν)(W,xxW,yy − W2
,xy)

�
− pW

�
,

(F.5)

up to corrections of order (L/R)2.

Upon minimizing Etot with respect to variations in U, V and W, we obtain the

equations,

κ∇4W − 1
R
(σxx + σyy)− (σxxW,x + σxyW,y),x − (σxyW,x + σyyW,y),y = p, (F.6)

σxx,x + σxy,y = 0, (F.7)

σxy,x + σyy,y = 0, (F.8)

where ∇2 f = f,xx + f,yy, ∇4 f = ∇2(∇2 f ), and σij is the 2D stress tensor, with components

σxx =
Y

1 − ν2 (uxx + νuyy), (F.9)

σyy =
Y

1 − ν2 (uyy + νuxx), (F.10)

σxy = σyx =
Y

1 + ν
uxy. (F.11)

Eqs. (F.7) and (F.8) are automatically satisfied by introducing the Airy stress function χ,

derivatives of which give the stress tensor [5]:

σxx = χ,yy; σyy = χ,xx; σxy = −χ,xy. (F.12)

When σij is written in terms of the Airy function, Eq. (F.6) becomes

κ∇4W − 1
R
∇2χ − N2(χ, W) = p, (F.13)
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where

N2( f , g) = f,xxg,yy + f,yyg,xx − 2 f,xyg,xy (F.14)

is a second-order nonlinear differential operator. Although any choice of the function

χ(x, y) automatically satisfies Eqs. (F.7) and (F.8), χ must also be related to real displace-

ment fields U, V and W via Eqs. (F.9)–(F.11). Eliminating the fields U and V from these

three equations reduces them to a single compatibility condition for χ:

1
Y
∇4χ +

1
R
∇2W +

1
2

N2(W, W) = 0. (F.15)

Equations (F.13) and (F.15) are the two nonlinear equations of shallow spherical shells,

used for the analysis in Chapter 4. They are a specific case of the Donnell-Mushtari-Vlasov

equations for shallow shells of general curvature [10].
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Appendix G

Fluid flow through an
inhomogeneous spherical capsule

In this Appendix, we provide details of the fluid ejection out of spherical inhomogeneous

capsules prepared by microfluidics and studied in Chapter 5. The contribution of Sujit S.

Datta (Harvard University) to this Appendix is gratefully acknowledged.

G.1 Flow rate out of an inhomogeneous capsule

The buckling of a capsule is driven by the fluid ejection from the capsule interior, due to the

imposed osmotic pressure difference across the capsule shell, p. This is resisted by the me-

chanical pressure required to compress the shell, pm, at most pm ≈ 2E(1 − ν)−1h0(1/R∗ −

1/R0) ≈ 3E(h0/R0)[(1−∆V∗/V0)−1/3 − 1], where R∗ is the radius of the shell at buckling.

For the shells studied in this work, pm < p∗; we thus expect the buckling dynamics to be

dominated by the imposed osmotic pressure for p � p∗, and we neglect pm in the simple

model presented here.

We now estimate the flow rate out of an inhomogeneous capsule due to p; the

capsule has shell thickness h(θ) = h0 − δ cos θ, as shown in Fig. 5.1. We use spherical

coordinates (r, θ, φ) centered on the capsule center. For an arbitrary area element dA on
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the shell surface at (R0, θ, φ), the local volumetric ejection rate is given by Darcy’s law,

dA· k/µh(θ), where k is the shell permeability and µ is the fluid viscosity. Integrating this

over the entire shell surface yields the total ejection rate through the shell:

Q = R2
0

� 2π

0
dφ

� π

0
sinθ

pk
µ(h0 − δcosθ)

dθ =
4πR2

0 pk
µh0

· 1
2δ/h0

ln
�

1 + δ/h0

1 − δ/h0

�
. (G.1)

G.2 Estimate of capsule permeability

We estimate the capsule permeability k by measuring the change in the radius of a circular

indentation r over time, immediately after it is formed in the shell, as shown in Fig. G.1.

We assume the volume of the indentation ∆Vcap is given by that of a spherical cap having

radius r(t). The permeability is then given by k ≈ µh0d(∆Vcap)/d(∆t)
p·4πR2

0
. In reality, the edges

of the indentation are rounded, with radius of curvature ∼
√

h0R0 ∼ 15µm [5]; we thus

expect our estimated ∆Vcap to over-predict the actual ∆V, and consequently, we expect to

under-predict the shell permeability by a factor ∼ 2.
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Figure G.1: Change in the volume of a circular indentation formed in a capsule, ∆Vcap,
over time ∆t. The indentation forms at ∆t = 0. Top left panel shows the top view of the
indentation formation, measured using optical microscopy; we use image processing to
detect the edge of the indentation, shown in the panel to the right, and track the radius
of the indentation over time, r(t). We assume a spherical cap geometry, schematically
shown in the side view, to calculate ∆Vcap; the data are shown for three different capsules
(different colors). We fit the small-time dynamics (∆t < 102s) to measure the permeability.
The capsules have h0/R0 = 0.1 and δ/h0 ≈ 0.2, and are buckled at p = 10 MPa.
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