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Abstract

Practical application of statistics in biomedical research is predicated on the notion that

one can readily return valid effect estimates of the health consequences of treatments (ex-

posures) that are being studied. The goal as statisticians should be to provide results

that are scientifically useful, to use the available data as efficiently as possible, to avoid

unnecessary assumptions, and, if necessary, develop methods that are robust to incor-

rect assumptions. In this dissertation, I provide methods for effect estimation that meet

these goals. I consider three scenarios: (1) clustered binary outcomes; (2) continuous

outcomes with a binary treatment; and (3) continuous outcomes with potentially missing

continuous exposure. In each of these settings, I discuss the shortfalls of current statistical

methods for effect estimation available in the literature and propose new and innovative

methods that meet the previously stated goals. The validity of each proposed estimator

is theoretically verified using asymptotic arguments, and the finite sample behavior is

studied through simulation.
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1. Introduction



Practical application of statistics in biomedical research is predicated on the notion that

one can readily return valid effect estimates of the health consequences of treatments

(exposures) that are being studied. The goal as statisticians should be to provide results

that are scientifically useful, to use the available data as efficiently as possible, to avoid

unnecessary assumptions, and, if necessary, develop methods that are robust to incorrect

assumptions.

In randomized clinical trials, where control over the treatment assignment is possible,

comparing the effectiveness of the treatments is a fairly straightforward endeavor. One re-

lies on the random treatment assignment to ensure that the treatment groups are balanced

with regards to covariates that influence the outcome. However, in situations where a

randomized clinical trial is not feasible, researchers rely on epidemiological evidence to

estimate the effect of different treatments.

For example, consider the problem of estimating the effect of air pollution on cardiovascu-

lar health. A randomized clinical trial designed to answer this question would randomly

assign individual to receive differing doses of air pollution, and require the participants

to receive the assigned level of air pollution for a prolonged period of time. Such a study

is not feasible, as it is not ethical to expose individuals to an exposure (air pollution) that

is known to have detrimental health effects. Additionally, it is not clear how one would

deliver the necessary dose of air pollution without locking the participant in a chamber

that exposes them to a constant level of pollution.

As an alternative, one can consider the epidemiological evidence that air pollution ad-

versely effects cardiovascular health. In such a setting, the spatiotemporal variation in

air pollution and the cardiovascular outcome would be used to estimate the association

of interest. The use of “association” was by choice, as it will be difficult to make any

causal conclusions since the exposure was not randomized. Due to the lack of random-

ization, there may exist other factors that influence both exposure and outcome on the

same spatiotemporal scale (i.e. daily temperature), and as such, will not allow us to prop-
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erly estimate the effect of air pollution on cardiovascular health.

This problem is not unique to studies of air pollution and health. Many studies must rely

on observational data in which the exposure has not been randomized, and do so to esti-

mate the health effect of interest. The field of causal inference has attempted to address

this issue by trying to recreate a hypothetical randomized trial based on the observational

data. The potential outcomes framework of Rubin (1974) gives a theoretical foundation

defining a causal effect, and subsequent methodological developments use potential out-

comes to perform valid causal inference from observational data (see Rosenbaum and

Rubin (1983) and Robins et al. (2000) as starting points on relevant literature).

In this dissertation, I address the problem of effect estimation in biomedical research by

first defining health effects that are scientifically meaningful. I consider three scenar-

ios: (1) estimating risk ratios from clustered binary outcomes; (2) estimating the average

causal effect of a binary treatment on a continuous outcome; and (3) estimating the lin-

ear effect of a continuous exposure on a continuous outcomes with missing data in the

exposure. For each health effect of interest, I discuss the shortfalls of current statistical

methods available in the literature and propose new and innovative methods that meet

the previously stated goals of robustness and efficiency with minimal assumptions. The

validity of each proposed estimator is theoretically verified using asymptotic arguments,

and the finite sample behavior is studied through simulation.

In Chapter 2, I discuss estimating the risk ratio of a treatment or exposure on a binary

outcome when there is clustering in the data. Such data could arise from a cluster ran-

domized trial or from a study with repeated measures on an individual (e.g. longitudinal

data). In Chapter 3, I discuss estimating the average causal effect of a binary treatment on

a continuous outcome. I propose a new class of estimators for the average causal effect,

the model averaged double robust estimators, that account for model uncertainty in both

the propensity score and outcome model through the use of model averaging. The model

averaged double robust estimators extend the desirable double robustness property by

3



achieving consistency under the much weaker assumption that either the true propen-

sity score model or the true outcome model be within a specified, possibly large, class of

models. In Chapter 4, I introduce the concept of bias inflation due to exposure prediction

of a confounded effect estimate by simultaneously considering exposure prediction and

confounding adjustment. I derive a closed form expression for the bias of an effect esti-

mate when using a predicted exposure that decomposes into the product of two pieces:

the bias due to the lack of adjustment for confounding and a bias inflation factor due to

predicting the exposure.
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Abstract

Risk ratios are often the target of inference in epidemiologic studies. The log-binomial

model is a natural choice that readily returns risk ratios, but suffers from well known

convergence issues. Alternate methods have been proposed to estimate risk ratios for

a common binary outcome; however, there has been little work in estimating risk ra-

tios for clustered binary data. The modified Poisson regression approach can be used

to take clustering into account through the use of generalized estimating equations, but

leads to a potentially inefficient estimator due to the incorrect distributional assumption.

In this article, we derive an estimate of the risk ratio that accounts for clustering in the

outcome, does not rely on an estimate of the baseline risk for consistency, and delivers

asymptotically efficient estimates of the risk ratio parameter. An alternative efficient es-

timator is provided that bounds the predicted probability by 1, thus guaranteeing stable

performance of the estimator. A simulation study is provided verifying that the proposed

estimator outperforms the modified Poisson approach as well as estimators that assume

no clustering. We apply our method to the Young Citizens study, a cluster randomized trial

involving a behavioral intervention deigned to train children aged 10-14 years to educate

their communities about HIV.

2.1 Introduction

Risk ratios are often the target of inference in epidemiologic studies. They allow a re-

searcher to easily evaluate the multiplicative association between risk factors and binary

outcomes. The log binomial model (Wacholder, 1986) is a natural choice that readily re-

turns risk ratios, but suffers from well known convergence issues (Zou, 2004). The tra-

ditional approach to avoid convergence issues is to report odds ratios by using logistic

regression as the odds ratio provides a good approximation of the risk ratio when the

outcome is rare. However, it is often the case that the outcome is not rare within all levels
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of risk factors, and using logistic regression will lead to overestimation of the risk ratio.

Further, the odds ratio effect measure may be misinterpreted by non-experts (Knol et al.,

2011).

Several methods have been proposed to estimate risk ratios for a common binary outcome

(Wacholder, 1986; Lee, 1994; Skove et al., 1998; Greenland, 2004; Zou, 2004; Spiegelman

and Hertzmark, 2005; Chu and Cole, 2010; Tchetgen Tchetgen, 2012). Each of these meth-

ods, except for Lee (1994) and Tchetgen Tchetgen (2012), share the requirement that the

log-baseline risk must be estimated in order to obtain a consistent estimate of the risk

ratios. This requirement is not easily satisfied, and may lead to a violation of the model

restriction that all predicted probabilities are less than 1. Worse, failure to satisfy the

model conditions often results in a lack of convergence of the estimation procedures.

Recently, methods have been proposed to address these issues. Chu and Cole (2010)

developed a Bayesian approach that incorporates the model restriction in the estimation

procedure, while Tchetgen Tchetgen (2012) presents a frequentist approach that allows

for consistent and efficient estimation of the risk ratios that does not rely on obtaining an

estimate for the baseline risk. It was shown that a simple plug-in estimate of the baseline

risk may be used without altering the large sample efficiency of the estimated risk ratios.

Another, the modified Poisson regression approach, has been widely cited and adopted as

a simple method of risk ratio estimation for both observational and intervention studies

(Zou, 2004). This method uses a Poisson distribution for the data in place of the Bernoulli

distribution.

However, there has been little work in estimating risk ratios for clustered binary data.

Such data could arise from a cluster randomized trial or from a study with repeated mea-

sures on an individual (e.g. longitudinal data). Yelland et al. (2011) provide evidence

that the modified Poisson regression approach can be used to take clustering into account

through the use of generalized estimating equations (GEE) (Liang and Zeger, 1986). They

showed that for both observational and intervention studies, the modified Poisson regres-
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sion approach using GEEs to account for clustering results in small relative bias and near

nominal confidence interval coverage. A major drawback of this approach is that the co-

variance structure is guaranteed to be misspecified because of the incorrect distributional

assumption, leading to a potentially inefficient estimator. Note that the misspecified co-

variance structure is by choice and is chosen to improve numerical convergence.

In this article, we generalize the work of Tchetgen Tchetgen (2012) to allow for clustered

outcomes in the estimation of risk ratios. We show that our method does not rely on an es-

timate of the baseline risk for consistency and delivers asymptotically efficient estimates

of the risk ratios. A slight modification to the approach is described that guarantees the

estimated probabilities are bounded by 1. Therefore, the method guarantees stable per-

formance of the estimated risk ratios. We provide a simulation study under both correct

and incorrect specification of the working correlation structure that verifies the proposed

estimator outperforms the modified Poisson approach as well as estimators that assume

no clustering.

We apply our method to the Young Citizens study (Kamo et al., 2008), a cluster randomized

trial involving a behavioral intervention deigned to train children aged 10-14 years to

educate their communities about HIV.

2.2 Methods

2.2.1 Independent outcomes

To begin, we give a brief review of the work of Tchetgen Tchetgen (2012). Consider inde-

pendent binary outcomes Yi and a set of q covariates Xi with:

log(P (Yi = 1|Xi)) = log(E[Yi|Xi]) = α0 +Xiβ0

where the parameter of interest is the q-dimensional vector of log relative risks, β0.

8



Tchetgen Tchetgen (2012) provided a simple estimator of β0 that is asymptotically effi-

cient, in the sense that it has the minimal variance of any regular and asymptotically lin-

ear (Bickel et al., 1998) estimator of β0. Specifically, a large class of estimators was derived

that contains many common estimators of the risk ratio as well as the semiparametric

efficient estimator. First, an initial consistent estimate of β0 is provided that is free of the

intercept and can be constructed by solving the equation 0 =
∑

i:Yi=1(Zi − exp{β̂Wi})Wi,

where Wi = −(Xi − X̄) and Zi = 0 for all i. This corresponds to an artificial case only

model in which the pseudo-outcome Zi is assumed to follow a Poisson distribution with

mean given by the intercept-free multiplicative model exp(βWi), which facilitates its use

with standard regression software. Then, the class of one-step update estimators is given

by:

β̂(w) = β̂ +

[∑
i

YiT̂i(w)XT
i

]−1 [∑
i

YiT̂i(w)

]

where β̂ is an initial consistent estimate of β0 and

T̂i(w) =

{
wi −

∑
iwi exp(β̂TXi)∑
i exp(β̂TXi)

}

It was shown that wi = Xi is asymptotically equivalent to the Breslow-Lee estimator,

wi = exp(−β̂TXi)(Xi −X) returns β̂ exactly, and β̂(wopt) is asymptotically efficient, with

wopt,i = (1− p̂i)−1

[
Xi −

∑
iXi(1− p̂i)−1p̂i∑
i(1− p̂i)−1p̂i

]
and

p̂i = exp(β̂TXi)
∑
j

Yj exp(−β̂TXj)/n

9



In general, the difficulty in estimating β0 lies in the fact that an estimate of the predicted

risk p̂i must be provided and must be such that predicted probability is bounded by 1 on

the support of X . The estimator β̂(wopt) (and hence p̂i) uses a simple plug-in estimate for

the log-baseline risk, but any consistent estimate of α0 could be used without affecting

the large sample efficiency of β̂(wopt). However, this does not guarantee the predicted

probability is bounded by 1 on the support of X . Tchetgen Tchetgen (2012) provides

a solution that bounds the predicted probability without requiring an estimate of the

baseline risk and will be discussed in detail in Section 2.3.1

2.2.2 Correlated outcomes

We generalize the approach of Tchetgen Tchetgen (2012) to allow for correlation among

the outcomes. Let Yi be a k-dimensional response vector and Xi be a (kxq) matrix of

covariates for i = 1, . . . , n. Consider the semiparametric model with the only restriction

E [Y|X] = µ(X|α0, β0) = exp (α01k + Xβ0)

where β0 is a q-dimensional parameter of interest. Note that all observations share a

common intercept, but this assumption can easily be relaxed as discussed in Section 2.3.2

below. The key in the derivation of our estimator is that our model is semiparametric in

the sense that we allow the intercept and the dependence between outcomes to remain

unrestricted by treating them as nuisance parameters. As a result, our inferences are

robust to misspecification of the baseline risk and working covariance structure.

We briefly review the principles of semiparametric theory. Consider a modelMwith pa-

rameters (φ, η), where φ is a finite dimensional parameter of interest and η is a potentially

infinite dimensional nuisance parameter. Define the nuisance tangent space Λ for the

semiparametric modelM as the mean-square closure of scores for the nuisance parame-

ter η along all regular parametric submodels. The efficient score seffφ for the parameter φ in
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the modelM is the orthogonal projection of the score sφ for φ onto the ortho-complement

Λ⊥ to the nuisance tangent space Λ in the Hilbert space L2 ≡ L2(F0) of mean zero func-

tions with inner product EF0(T
T
1 T2), where F0 is the distribution function that generated

the data (Bickel et al., 1998).

Define the restricted mean model as MRM = {F0 : E[Y |X] = exp(α01k + Xβ0)}, θ0 =

(α0, β0) and let Dβ(X) = ∂µ(X;θ0)
∂βT

. Bickel et al. (1998) gives the set of all influence func-

tions for β0 in the restricted mean modelMRM is given by:

Λ⊥RM =
{
ϕ(X) = E [A(X)Dβ(X)]−1A(X)ε : A(X) arbitrary

}
As stated before, we treat the baseline risk as a nuisance parameter in our semiparametric

model. Therefore, the nuisance tangent space ΛRM needs to additionally span the space of

scores for α0. In other words, Λ = ΛRM + Λα, where Λα is the closed linear space spanned

by scores for α0 along all regular parameteric submodels, or Λ⊥ = Λ⊥RM ∩ Λ⊥α , where Λ

is the nuisance tangent space of the semiparametric model in which the baseline risk is a

nuisance parameter. Using this result, one can characterize the set of influence functions

for any regular and asymptotically linear estimator of β0 in the semiparametric model

that treats α0 as a nuisance parameter. Proofs of all the following results are provided in

Section A.1.1.

Result 1: The set of all influence functions of β0 can be characterized by the set:

Λ⊥ =

{
ϕ(X) = E [A(X)Dβ(X)]

−1
A(X)ε :

A(X) = h(X)− E[h(X)µ(X;θ0)]

E[µT (X;θ0)µ(X;θ0)]
µT (X; θ0),

h(X) arbitrary

}

This implies that for any choice of h(X), U(h; X) = A(X)ε can be used as an estimating equation

and the resulting estimator has influence function belonging to Λ⊥.

Given that we have characterized the set of all influence functions, a result due to Bickel

et al. (1998) states that, under certain regularity conditions, any regular and asymptoti-

11



cally linear estimator of β0 that can be obtained by solving an estimating equation has an

influence function belonging to Λ⊥ and asymptotic distribution given by:

√
n(β̂ − β0) =

1√
n

n∑
i=1

ϕ(X) + op(1)

Standard application of the central limit theorem implies:

√
n(β̂ − β0)

L→ N (0,E[ϕ⊗2]) (2.1)

As we now show, the benefit of treating the log-baseline risk as a nuisance parameter

in a semiparametric model is that solving an estimating equation for β0 whose influence

function belongs to Λ⊥ is robust to misspecification of the baseline risk exp(α0).

Result 2: Consider any U(h; X, α0, β0) as defined in Result 1, and replace the log-baseline risk α0

with any arbitrary value α. Then,

E [U(h; X, α, β0)] = 0

Result 2 implies that we have a set of unbiased estimating equations for β0 that are robust

to misspecification of α0; therefore, a working estimate of the baseline risk can be used

in place of the true baseline risk, and the resulting estimators are regular and asymp-

totically linear with influence functions belonging to Λ⊥. The estimator provided for

independent outcomes in Section 2.2.1 has influence function belonging to Λ⊥ by tak-

ing h(X) = DT
β (X)V −1

ind (X) − E[DTβ (X)V −1
ind(X)µ(X|θ0)]

E[µT (X|θ0)V −1
ind(X)µ(X|θ0)]

µT (X|θ0)V −1
ind (X), where Vind(X) =

diag{µ(X|θ0)(1 − µ(X|θ0))} and remains robust to misspecification of the baseline risk

for clustered outcomes. However, the estimator provided for independent outcomes is

inefficient in the setting of clustered outcomes because it fails to consider the covariance

structure between the clustered outcomes.

12



Result 3: The efficient score for β0 inM is given by U(heff ; X) with

heff = DT
β (X)V −1(X)−

E
[
DT
β (X)V −1(X)µ(X|θ0)

]
E [µT (X|θ0)V −1(X)µ(X|θ0)]

µT (X|θ0)V −1(X)

where V (X) = E[εεT |X].

The efficient score U(heff ; X) given in Result 3 can be used as an estimating equation.

The resulting estimator β̂eff is efficient in large samples and has asymptotic distribution

given by Equation 2.1. In practice, estimation of the nuisance parameters (α0 and V −1(X))

is needed. We have already shown in Result 2 that any estimating equation for β0 whose

influence function belongs to Λ⊥ is robust to misspecification of the log-baseline risk;

as a direct result, the efficient score U(heff ; X) is robust to misspecification of the log-

baseline risk. Further, estimating equations for β0 given by Λ⊥ do not depend on the

covariance structure V (X) for unbiasedness. Therefore, any estimate of V (X) can be used

in U(heff ; X) and the resulting estimator still has influence function belonging to Λ⊥.

To construct the efficient estimate of the log risk ratio β0, we will use the efficient score in

an estimating equation. Specifically, let β̂eff be the solution to:

n∑
i=1

U(heff ; Xi, Yi) = 0 (2.2)

A theorem due to Bickel et al. (1998) states that for any initial n1/2-consistent estimator of

β0, an efficient estimator can be constructed by a one-step update in the direction of the

estimated efficient score using:

β̂eff = β̂ −

[∑
i

̂̇seffβ

]−1∑
i

ŝeffβ

where ŝeffβ is an empirical version of seffβ (and
∑

i
̂̇seffβ is an empirical estimator of the

expected derivative of the efficient score) obtained by replacing all expectations by their

13



empirical counterpart, with β0 estimated by β̂ and exp(α0) estimated by the plug-in esti-

mator
∑

i 1
T
kYi exp(−Xiβ̂). Bickel et al. (1998) also states under standard regularity con-

ditions, n1/2(β̂eff − β0) is asymptotically normal with mean zero and variance given as

before.

In practice, each expectation is replaced with its empirical counterpart, so that β̂eff is

simple to calculate. One can use the estimate provided for independent outcomes as an

initial β̂; however, based on our simulations in Section 3.3, a better choice is to use the

modified Poisson estimator. Note that the efficient estimator β̂eff is only feasible if V (X)

is known. Since this covariance function is unknown, it must be modeled.

A major contribution of this method is that it allows a researcher to capture the correla-

tion among the clustered outcomes by modeling of V −1(X), which in turn may be used to

increase the efficiency if correctly specified. Modeling the covariance structure for binary

outcomes can be a challenging task. Consider the parameterization in terms of correla-

tions proposed by Bahadur (1961). If we let Rj =
Yj−µj

{µj(1−µj)}1/2
, ρjk = corr(YjYk) = E(RjRk),

ρjkl = E(RjRkRl) and so on. Then,

Pr(Y = y) =

k∏
j=1

µ
yj
j (1− µj)(1−yj)

1 +
∑
j<k

ρikrjrk +
∑
j<k<l

ρiklrjrkrl + ...+ ρ1...kr1r2 · · · rk



We proceed under the common assumption that all 3rd order or higher correlations are

zero, so that all that must be specified to estimate V −1(X) is a working correlation struc-

ture, R(ρ). Since the model does not put any restriction on V −1(X), we additionally allow

for a dispersion parameter φ, and V̂ (Xi) = φA
1/2
i R(ρ)A

1/2
i , where Ai = diag[µ̂i(1 − µ̂i)].

Common choices of correlation structures include exchangeable, autoregressive, and un-

structured and details of the choices and estimation of correlation parameters can be

found in Liang and Zeger (1986). As a note, in theory φ = 1, but we have found that

allowing it be estimated from the data improves finite sample variance estimation.
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2.3 Additional results and simulation

2.3.1 An alternate efficient estimator

Estimation of β̂eff depends on Â
1/2
ij = [µ̂ij(1 − µ̂ij)]

1/2 through the covariance function,

which is only defined for 0 ≤ µ̂ij ≤ 1. As such, the efficient estimator may run into

convergence issues if the estimated risks are not bounded by 1. To get around such a

problem, we adopt the method proposed by Tchetgen Tchetgen (2012). Specifically, let

logit(µij) = logit(exp
(
α + Xi(j)β0

)
)

Then, ignoring knowledge about the functional form of the predicted risk, fit the model:

logit(µij) = ξ(Xi(j)β0)

where ξ(·) is an unrestricted function, and Xi(j)β0 is replaced with the initial estimate

Xi(j)β̂. Any nonparametric technique can be used to approximate ξ(·) including polyno-

mial series, kernel smoothing, wavelet regression, or spline regression (Wasserman, 2005;

Friedman et al., 2008). Let ξ̂ij = ξ̂(Xi(j)β̂) denote such an estimator, and the resulting

µ̃ij = expit
{
ξ̂ij

}
is used in the place of µij in the updating of β̂eff .

Here, we briefly illustrate that polynomial series regression does not change the efficiency

of the resulting estimator. Let φk(Mi) = Mk
i for k = 1, ..., K. Then, for fixed K, let

p̃i denote the predicted probabilities obtained by standard logistic regression of Yi on

{φk(Mi) : k ≤ K} using the data {(Mi, Yi) : i = 1, ..., n}. A result due to Hirano et al.

(2003) implies that since ξ(·) has at least four bounded derivatives, setting K = Cn1/6 for

some constant C is sufficient for the resulting estimator µ̃i to converge to µi at rates no

slower than n1/4, and the resulting estimator β̃eff of β0 is semiparametric efficient.

15



2.3.2 A more general model

All previous results were derived for the model that assumes a common baseline risk

for observations within a cluster, but easily extend to a model that allows for different

baseline risks. Such models are useful in the context of repeated measures over time (i.e.

longitudinal data), and allow for the model to capture the risk changing over time.

As before, let Yi be a k-dimensional response vector and Xi be a (kxq) matrix of covariates

for i = 1, . . . , n. Consider the semiparametric model where the only restriction is

E [Y|X] = µ(X|α0, β0) = exp (α0 + Xβ0)

where β0 is a q-dimensional parameter of interest and α0 is a k-dimensional vector of log-

baseline risks. Following the same development as before, it can be shown that the set of

influence functions for β0 treating the vector of baseline risks α0 as a nuisance parameter

are of the form:

Λ⊥ =


ϕ(X) = E [A(X)Dβ(X)]

−1
A(X)ε,

A(X) = h(X)− E [h(X)M(X; θ0)] E
[
MT (X; θ0)M(X; θ0)

]−1
MT (X; θ0),

h(X) arbitrary


where Dβ(X) = ∂µ(X;θ0)

∂βT
and M(X; θ0) = diag(µ(X; θ0)).

This set contains influence functions of all regular and asymptotically linear estimators

of β0 when the baseline risk is arbitrarily flexible. As such, this set is contained in the

set of influence functions derived in Result 1 because assuming a common baseline risk

is a more restrictive model. Similarly (but not exclusively), this set could also be used to

construct regular and asymptotically linear estimators of β0 in the context of longitudinal

data where the baseline risk is indexed by time, α(t).
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2.3.3 Simulations

In this section, we empirically verify the efficiency of the proposed estimator, and its ro-

bustness to misspecification of the covariance structure. We compare three estimators: (1)

the estimator of Tchetgen Tchetgen (2012) which ignores possible correlation of the clus-

tered outcomes; (2) the modified Poisson approach assuming an exchangeable correla-

tion structure; and (3) our proposed estimator β̂eff assuming an exchangeable correlation

structure.

The data is generated in a manner to reflect a cluster randomized trial for a binary treat-

ment, and is generated as follows: (1) for each independent cluster i, generate Xi as q − 1

normal random vectors and a vector of treatment indicator variables; and (2) generate the

k−dimensional response Yi such that log(E[Yi|X]) = α0 + Xiβ0 with correlation structure

given by R. The baseline risk was chosen to be 0.37. Various relative risks and two corre-

lation structures were considered. First, the exchangeable correlation structure assumes

all pairwise correlations between observations within a cluster are equal to ρ. This struc-

ture is widely used in practice and is useful in capturing the overall correlation within a

cluster. The second correlation structure we consider mimics what might be expected if

the clusters are households where the first two observations in each cluster are the parents

and the remaining observations are the children. This household correlation structure is

given by:


1 0.05 0.1 0.1 0.1

0.05 1 0.1 0.1 0.1
0.1 0.1 1 0.3 0.3
0.1 0.1 0.3 1 0.3
0.1 0.1 0.3 0.3 1

 (2.3)

Table 2.1 provides the absolute bias and mean squared error of each estimator for esti-

mating the relative risk of the binary treatment when there are 1000 clusters of size 5 and

the true correlation structure is either exchangeable with ρ = 0.3 or the household struc-
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ture given in Equation 2.3. Recall that the working correlation structure for the modified

Poisson and the efficient estimator is assumed to be exchangeable. The estimator that

assumes independent observations has the highest mean squared error under each value

of the relative risk, and the efficient estimator has the smallest mean squared error. These

results are as anticipated; accounting for the correlation in the outcome improves the ef-

ficiency of both the modified Poisson and the efficient estimator. Although the modified

Poisson approach accounts for correlation, it is inefficient due to misspecification of the

covariance structure (due to the misspecification of the distribution). The efficient esti-

mator correctly models this covariance structure, and as a result has the smallest mean

squared error.

Consider the results when the relative risk of the binary treatment is 1.05 in Table 2.1

under the exchangeable correlation structure; we note that the three estimators have ap-

proximately the same absolute bias (2.98x10−3, 2.67x10−3, and 2.89x10−3), but that the ef-

ficient estimator has the smallest mean squared error of 1.93x10−3 compared to 2.61x10−3

and 2.00x10−3. Moving to the case where the relative risk of the binary treatment is 2,

accounting for the correlation in the outcome dramatically reduces the bias, with the bias

of the estimator that assumes independence equal to 6.18x10−3 and that of the efficient

estimator equal to 0.12x10−3.

Consider the situations in Table 2.1 where the true correlation structure is the household

structure given in Equation 2.3. Here, the modified Poisson and efficient estimator in-

correctly assume that the working correlation structure is exchangeable, but still show a

reduction in mean squared error when compared to the estimator that assumes indepen-

dence. The same patterns are observed under the misspecification of the covariance struc-

ture as were observed under the correct specification, with the estimator that assumes in-

dependent observations having the highest mean squared error under each value of the

relative risk. In each case, the efficient estimator has smaller mean squared error than

the estimator that assumes independent observations. Further, the bias of the efficient

estimator remains small under the misspecification of the correlation structure. Under
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the case when the relative risk of the binary treatment is 2, the efficient estimator has a

bias and mean squared error of 1.35x10−3 and 3.58x10−3, respectively, while the estima-

tor assuming independence has a larger bias and mean squared error at 10.48x10−3 and

3.89x10−3, respectively.

Table 2.2 is a reproduction of Table 2.1 but for a continuous covariate in place of the binary

treatment. The results follow a similar pattern.

The results of these simulations verify that the proposed efficient estimator reduces mean

squared error of the estimated risk ratios across a variety of simulated scenarios. All es-

timators considered in this simulation study are consistent and provide asymptotically

valid inference. However, it appears that accounting for clustering in the outcomes re-

duces finite sample bias.

2.4 Application: Young Citizens Data

We applied our proposed estimator for the risk ratio to data from the Young Citizens study

(Kamo et al., 2008). The trial involved a behavioral intervention designed to train children

aged 10-14 years to educate their communities about HIV. The study involved 30 commu-

nities that were paired based on a clustering algorithm incorporating demographics, and

one community in each pair randomly assigned treatment group with the other assigned

to the control group. Residents within each community were surveyed post-intervention

to determine their beliefs about the ability to children to teach the community about HIV.

The primary outcome of this study was a composite scored reflecting the strength of this

belief. However, to illustrate our estimator, we chose to consider a secondary outcome

of the study, specifically the residents’ beliefs regarding whether or not the AIDS prob-

lem was getting worse in their community (Stephens et al., 2012). This outcome was

derived by collapsing a 4-point scale with values ”strongly agree”, ”agree”, ”disagree”,

or ”strongly disagree” into two values, ”agree” or ”disagree”.
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We estimated the risk ratio of the intervention using the efficient estimator given in Sec-

tion 2.2.2 assuming an exchangeable correlation structure, the modified Poisson approach

assuming an exchangeable correlation structure, and the estimator that assumes indepen-

dence given in Section 2.2.1. Additionally, we estimate the odds ratio of the intervention

using a GEE with a logit link and assuming an exchangeable correlation structure. In all

of the estimators, we control for the baseline covariates residential or urban community,

religion, ethnic group, and indicators of wealth by including the covariates into the linear

predictor of the mean.

Table 2.3 provides the estimated risk ratio of the intervention, the standard error, and the

95% confidence interval for each of the estimators considered. We would like to note that

standard GEE for the log-binomial model with correlated data failed to converge, and as

such, a different approach must be taken to estimate the risk ratios. The outcome is not

rare (∼82% responded ”agree”); therefore, using odds ratios to estimate the risk ratio is

not valid.

Table 2.3: Results of analysis of Young Citizens study
Estimator log(Risk ratio) Std. Error 95% Confidence Interval
β̂eff -0.0188 0.0375 (-0.0922 , 0.0547)
β̂MP -0.0206 0.0406 (-0.1002, 0.0590)
β̂OR -0.1222 0.2529 (-0.6179 , 0.3736)

Estimated log-risk ratio (or log-odds ratio) of the intervention, the standard error, and correspond-
ing 95% confidence interval. β̂eff is the efficient estimator provided in Section 2.2.2 assuming an
exchangeable correlation structure, β̂MP is the modified Poisson estimator assuming an exchange-
able correlation structure, and β̂OR is the log-odds ratio estimated using the GEE with a logit link
and assuming an exchangeable correlation structure.

The efficient estimator and that of the modified Poisson approach provide similar esti-

mates of the log-risk ratio, −0.0188 and −0.0206, respectively, with the efficient estimator

slightly smaller in magnitude. The standard error of the efficient estimator is 0.0375, com-

pared to 0.0406 for the modified Poisson approach. This corresponds to an empirical

asymptotic relative efficiency of 0.85 for the modified Poisson compared to the efficient

estimator, and is reflected in by a narrowing of the confidence intervals. Neither approach
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leads to significant effects at the α = 0.05, but the results do illustrate the efficient esti-

mator has tighter confidence intervals than that of the modified Poisson approach. Also

provided in Table 2.3 is the log-odds ratio estimated using a GEE with a logit link and

assuming an exchangeable correlation structure. The estimated log-odds ratio is −0.1222,

illustrating that the odds ratio is not a good approximation of the risk ratio in the trial

and likely overestimates the relative risk of the intervention.

2.5 Discussion

In this paper, we have proposed an efficient estimator of the risk ratio that accounts for

clustering among binary outcomes. We prove that this estimator is robust to misspeci-

fication of the baseline risk, in the sense that the estimator does not directly rely on an

estimate of the baseline risk for consistency, and showed that it has the smallest asymp-

totic variance of any regular and asymptotically linear estimator. Further, a modification

of the estimator is provided that guarantees the predicted probability is bounded by 1 (a

model restriction), and as a result, guarantees stable performance of the estimator.

Simulations confirm that the proposed estimator has smaller variance than estimators

that assume independence and the modified Poisson approach both under correct and

incorrect specification of the correlation structure. Additionally, the simulations suggest

that the proposed estimator may have smaller finite sample bias in the estimation of the

risk ratios when compared to estimators that assume independence. Therefore, it is im-

portant to account for correlation among clustered outcomes both to improve efficiency

and to remove finite sample bias.

The gains in efficiency of the proposed estimator when compared to the modified Pois-

son approach are due to allowing for correct specification of the underlying data distri-

bution. A priori, the modified Poisson approach incorrectly models the data as a Poisson

distribution, leading to a misspecification of the covariance structure and ruling out the
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possibility of an efficient estimator. The estimator proposed in this paper allows for cor-

rect distributional assumptions, and avoids the common drawbacks of this assumption

by being robust to misspecification of the baseline risk.
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Abstract

We propose a new class of estimators for the average causal effect, the model aver-

aged double robust (MA-DR) estimators, that account for model uncertainty in both the

propensity score and outcome model through the use of model averaging. The MA-

DR estimator is defined as a weighted average of double robust estimators, where each

double robust estimator corresponds to a specific choice for the outcome model and the

propensity score, respectively. The MA-DR estimators extend the desirable double ro-

bustness property by achieving consistency under the much weaker assumption that ei-

ther the true propensity score model or the true outcome model be within a specified,

possibly large, class of models. We provide asymptotic results and conduct a large scale

simulation study that indicates the MA-DR estimator has better finite sample behavior

than the usual double robust estimator. We show that the MA-DR that a priori links the

propensity score and the outcome model can have 90% less variance than a double ro-

bust estimator constructed via model selection for the propensity score and the outcome

model separately. Importantly, our simulation suggests that our MA-DR estimator dra-

matically reduces mean squared error by the largest percentage in the realistic situation

where the outcome model is misspecified.

3.1 Introduction

Methods for causal inference are predicated on knowledge of the covariates necessary

to satisfy the no unmeasured confounding assumption, but the exact set of covariates

needed to control confounding is rarely known. Practical tools that acknowledge uncer-

tainty in confounder selection and are robust to model misspecification are imperative

for correct estimation of the average causal effect (Vansteelandt et al., 2010; Wang et al.,

2012a).

Although the literature on causal inference is vast, existing methods do not account for the
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uncertainty in selection of confounders,C, or in the form of the model for the treatment,X

(Vansteelandt et al., 2010). For example, a wealth of methods that rely on specification of a

propensity score model, P(X|C), for treatment assignment (e.g propensity score matching

or inverse probability weighting estimators; see (Lunceford and Davidian, 2004) for a

review) typically assume that both the covariates to include and the functional form of

the propensity score model are known a priori.

In addition to specification of P(X|C), a broad class of methods for causal inference rely

on the additional specification of a model for potential outcomes P(Y (x)|C) (Rosenbaum

and Rubin, 1983, 1984; Drake, 1993), where Y (1) and Y (0) are the potential outcomes un-

der each treatment. Included in this class are methods for inverse probability treatment

weighted estimators that are often promoted for properties such as consistency and dou-

ble robustness (Scharfstein et al., 1999; Bang and Robins, 2005; Tan, 2010). Within the class

of double robust estimators, covariate and model selection is specified a priori for both

the propensity score and the outcome models separately, presenting further challenges

to acknowledging uncertainty with respect to the selection of the confounders and pro-

viding robustness to model misspecification. There are few tools or guidelines for model

selection in double robust estimators, and many researchers take an ad-hoc approach.

One possible tool to formally account for model uncertainty in the adjustment for con-

founding is Bayesian model averaging (Raftery et al., 1997; Draper, 1995). These methods

are based on treating the indicators of whether each confounder is included in the model

as a nuisance parameter, and it has been suggested that an effect estimate can be formed

by weighting the model-specific estimates (Hoeting et al., 1999), where the weights are

determined by the models’ posterior probabilities.

In the context of a regression model, where the goal is the estimation of the effect of X on

Y adjusting for measured confounders, the use of Bayesian model averaging with non-

informative priors on the models has received some criticism (Crainiceanu et al., 2008;

Vansteelandt et al., 2010; Wang et al., 2012a): variable selection based on the outcome
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model only prioritizes the Cs strongly associated with Y , and variable selection based

on the propensity score model only prioritize the Cs that are strongly associated with X .

Both these approaches can result in inefficient and biased inferences because they fail to

identify the full set of necessary confounders (Brookhart, 2006; Schneeweiss et al., 2009).

Wang et al. (Wang et al., 2012a) propose a solution to this important problem for a con-

tinuous exposure X and with confounding adjustment made by introducing Cs into the

regression model as covariates. Two regression equations are specified along with two

vectors of inclusion indicators: (1) a linear regression model for Y given X and C (the

outcome model); and (2) a linear regression model for X given C (the exposure model).

They assume a priori that if a covariate C is highly predictive of the exposure X, then the

same covariate C will have a large probability of being included into the outcome model.

It is shown that the model averaged estimator of the effect of X on Y, obtained with this

form of prior dependence between the outcome model and the exposure model has lower

mean squared error than the model averaged estimator that assumes a priori that the two

vectors of inclusions indicators are independent.

Accounting for model uncertainty in the context of causal inference is a widely unex-

plored topic. In this paper, we propose a new class of methods for estimating the average

causal effect, which we call the model averaged double robust estimators, that formally ac-

count for model uncertainty through the use of model averaging while maintaining the

desirable properties of consistency and double robustness. These methods provide valid

estimation of the average causal effect that: 1) are robust to the misspecification of the

model for the treatment assignment; 2) are robust to the misspecification of the model for

outcome; and 3) account for the uncertainty in the selection of the confounders in both the

propensity score model and in the outcome model. Importantly, we show that a model

averaged double robust estimator that assumes dependence between the propensity score

and the outcome model a priori and separates estimation of the model weights into two

stages can reduce the mean squared error of the double robust estimator by more than

90% when compared to traditional model selection procedures.
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3.2 Methods

3.2.1 A double robust estimator

Consider continuous potential outcomes (Y (0), Y (1)), binary treatment X, and a p-

dimensional set of potential confounders C. Assume there is no unmeasured con-

founding (Robins et al., 2000) (also referred to as strong ignorable treatment assign-

ment(Rosenbaum and Rubin, 1983)), so that (Y (0), Y (1)) ⊥⊥ X|C. Let (Yh, Xh, Ch) be

independent observations for h = 1, ..., n. We are interested in estimating the average

causal effect:

∆ = E [Y (1)− Y (0)] = E {E(Y |X = 1, C)− E(Y |X = 0, C)} (3.1)

Given a model for the propensity score, P(X = 1|C) = e(C), and a model for the outcome

under each treatment, E(Y |X = 1, C) = m1(C) and E(Y |X = 0, C) = m0(C), we define

the well known parametric (∆̂p), inverse probability weighted (∆̂IPW ), and double robust

(∆̂DR) estimators as:

∆̂p =
1

n

n∑
h=1

{m̂1h − m̂0h}

∆̂IPW =
1

n

n∑
h=1

{
YhXh

êh
− Yh(1−Xh)

1− êh

}
=

1

n

n∑
i=1

Xh − êh
êh(1− êh)

Yh

∆̂DR =
1

n

n∑
h=1

{
YhXh − (Xh − êh)m̂1h

êh
− Yh(1−Xh) + (Xh − êh)m̂0h

1− êh

}
(3.2)

where m̂1h, m̂0h, and êh are the estimated outcomes and propensity score for individual

h under model m1(C), m2(C), and e(C), respectively. To simplify the model averaging

arguments in the next section, note that ∆̂DR can be decomposed into ∆̂IPW , ∆̂p, and a

third estimator ∆̂PIPW .
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∆̂DR =
1

n

n∑
h=1

[
m̂1h − m̂0h +

Xh − êh
êh(1− êh)

Yh −
Xh − êh
êh(1− êh)

m̂Xh

]
= ∆̂p + ∆̂IPW − ∆̂PIPW

where ∆̂PIPW is a parametric inverse probability weighted estimator and m̂Xh = m̂1h if

Xh = 1 and m̂Xh = m̂0h otherwise. Observe that ∆̂p only depends on the outcome model,

∆̂IPW only depends on the propensity score model, and ∆̂PIPW depends on both.

The model for the propensity score and the outcome under each treatment can be selected

in any number of ways. A researcher may rely on expert knowledge to decide both the

functional form and the covariates to include in each model, or may rely on a model

selection procedure that chooses the best model from a set of candidate models. For

the remainder of this paper, we will refer to ∆̂MS
DR as the “model selected double robust

estimator” in which both the propensity score and the outcome model have been selected

independently using BIC (Schwarz, 1978) as a model selection procedure.

3.2.2 Model averaged double robust estimator

Let Mps =
{
Mps

1 ,M
ps
2 , ...,M

ps
Mps

}
, M0 =

{
M0

1,M0
2, ...,M0

M0

}
, and M1 ={

M1
1,M1

2, ...,M1
M1

}
be finite collections of models for P(X = 1|C), E(Y |X = 0, C), and

E(Y |X = 1, C), respectively. For example, the collection of models for the propensity

scoreMps could consist of logistic regression models with all subsets of C as linear pre-

dictors. LetMom =M1×M0 denote all combinations of models inM1 andM0. Further,

define ∆̂DR
ij as the double robust estimator corresponding to the modelsMps

i andMom
j .

We define the model average double robust estimator as:
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∆̂MA
DR =

∑
ij

pij∆̂
DR
ij (3.3)

where pij = P(Mps
i ,Mom

j |D) is the joint posterior probability of models Mps
i and Mom

j .

We expand the estimator based on the decomposition in the previous section. Let ∆̂IPW
i ,

∆̂p
j , and ∆̂PIPW

ij be the inverse probability weighted estimator, the parametric estimator,

and the parametric inverse probability weighted estimator for the corresponding models

Mps
i andMom

j . Then,

∆̂MA
DR =

∑
i

pi•∆̂
IPW
i +

∑
j

p•j∆̂
p
j −

∑
ij

pij∆̂
PIPW
ij (3.4)

where pi• =
∑

j pij and p•j =
∑

i pij . Note that Equation 3.4 has a model averaged

term for the inverse probability weighted, parametric, and parametric inverse probability

weighted estimators. The variance of the model averaged double robust estimator can be

estimated using standard resampling methods (e.g. bootstrap; see (Efron and Tibshirani,

1993)).

3.2.3 Prior and posterior model probabilities

To complete the specification of the model averaged double robust estimator, a prior dis-

tribution on the model class must be assumed. We will return to choices of priors mo-

mentarily, but first let Ai be the prior odds ofMi versus some other modelM1 that both

belong to some model classM. Then, the posterior probability of modelMi is given by:

P(Mi|D) =
AiBi1∑

j:Mj∈MAjBj1

(3.5)
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where Bi1 is the Bayes factor for modelMi against another modelM1. Bayes factors and

their estimates are well studied, and there is extensive literature on the subject (Smith and

Spiegelhalter, 1980; Nishii, 1984; Kass and Raftery, 1995; Konishi and Kitagawa, 1996).

Among the properties of Bayes factors is consistency for model selection, which is a nec-

essary component for consistency of ∆̂MA
DR as seen in Section 3.2.4. A well known and

popular estimate of Bayes factors is based on BIC (Schwarz, 1978) and allows us to esti-

mate posterior model probabilities with ease.

Returning to the specification of a prior distribution for the model space, the simplest

choice is to assume that all models are equally likely a priori. This corresponds to as-

suming that the prior odds of each model is 1, and that the form of the propensity score

and the outcome model are independent. Therefore, the resulting model averaged double

robust estimator is given by:

∆̂MA−i
DR =

∑
i

pi∆̂
IPW
i +

∑
j

qj∆̂
p
j −

∑
ij

piqj∆̂
PIPW
ij (3.6)

where pi = P(Mps
i |D) and qj = P(Mom

j |D). Notice that because of the prior indepen-

dence, the posterior probabilities of the propensity score and outcome models are also

independent. Therefore, P(Mps
i |D) and P(Mom

j |D) can be computed separately using

readily available software, and the model averaged double robust estimator is straight-

forward to calculate as given in Equation 3.6.

However, efficiency can be gained through the use of a prior on the model space that iden-

tifies confounders (Cs that are associated with both treatment and outcome) for use in the

propensity score model. Under the prior independence assumption, the posterior model

probability of the propensity score only prioritizes models in which the Cs are strongly

associated with X and ignores all relationships with Y . The current literature in causal

inference suggests that inclusion of covariates that are only related to the exposure into

a propensity score model adds to the variance of the resulting double robust estimator
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(Rubin et al., 1997; Brookhart, 2006).

In this light, we propose an alternative formulation of the prior distribution on the model

space that links the propensity score model to the outcome model through prior model

dependence. First, let the prior odds of propensity score modelMps
i toMps

1 conditional

on the outcome modelMom
j be such that:

P(Mps
i |Mom

j )

P(Mps
1 |Mom

j )
=

{
1, ifMps

i ⊂Mom
j

0, otherwise
(3.7)

where Mps
i ⊂ Mom

j indicates that the systematic component of Mps
i is a subset of the

systematic component ofMom
j . We refer to the ‘systematic component’ of a model as the

specification of its linear predictor, so that there is no issue with the exposure being binary

while the outcome is continuous, and we assumeMps andMom contain models with the

same nested systematic components. We then choose a reference propensity score model

Mps
1 such that Mps

1 ⊂ Mom
j for all j. The reference model is either a null model or a

model that includes confounders that are strictly required regardless of the inclusion of

the other confounders. Further, assume that the prior distribution on the outcome model

space is uniform. We will denote the model averaged double robust estimator using this

prior as ∆̂MA−d
DR . The posterior model probabilities used in the construction of ∆̂MA−d

DR

can be estimated by first finding the prior odds of each model combination under the

prior model dependence given by Equation 3.7 and then using Equation 3.5 to find the

posterior model probabilities.

The prior model dependency given by Equation 3.7 forces the set of potential confounders

included in the propensity score model to be a subset of those that are included in the

outcome model. In other words, the prior probability of excluding a variable from the

propensity score model given that it is excluded from the outcome model is one, and

the prior probability of including a variable in the outcome model given that it is in the

propensity score model is one. This type of restriction is supported by the current litera-
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ture on propensity scores (Rubin et al., 1997; Brookhart, 2006), and is related to the priors

for continuous exposure introduced by Wang et al. (Wang et al., 2012a).

Our motivation for this prior distribution on the model space was to identify the set of

potential confounders that should be included into the propensity score model based on

the fact that they are associated with both treatment and outcome, instead of being asso-

ciated with treatment only. In other words, the prior dependency given in Equation 3.7

gives zero weight a priori to propensity score models having a systematic component

that is not included in the outcome model. However, the estimation of the joint poste-

rior model probability P(Mps
i ,Mom

j |D) based on this prior has the additional undesirable

property that it allows feedback from the propensity score into the outcome model. This

feedback is such that the posterior model probabilities will favor outcome models that

include any of the potential confounders that are associated with either X or Y , and some

efficiency is lost by including potential confounders that are only associated with X into

the outcome model.

We will cut the feedback from propensity score into the outcome model with the goal of

improving the efficiency of the model averaged double robust estimator through the use

of a two-stage approach for calculating the model weights. The two-stage approach for

calculating the model weights and the resulting model averaged double robust estimator

proceeds as follows:

1. Estimate the marginal posterior of the outcome model, qj = P(Mom
j |D), assuming

a uniform prior on the outcome model space and ignoring the specification of the

propensity score model

2. Estimate the posterior of the propensity score model conditional on the outcome

model, P(Mps
i |Mom

j ,D), using the prior model dependence given by Equation 3.7

3. Multiply the estimates from Stage 1 and 2 to find the joint model weight of the

propensity score and outcome model, p∗ij = qjP(Mps
i |Mom

j ,D)
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4. Estimate the resulting model averaged double robust estimator ∆̂MA−dII
DR using p∗ij as

the model weights. The notation II in the superscript of the estimator corresponds

to the fact that we are calculating the model weights in two stages.

The model weights under this two-stage approach can be easily calculated because they

are a transformation of the model probabilities assuming a uniform prior on the model

space. First, the outcome model probabilities qj = P(Mom
j |D) in Step 1 are simply the

model probabilities assuming a uniform prior on the model space. For the estimation of

P(Mps
i |Mom

j ,D) in Step 2, note that conditional on each outcome model, the prior odds for

the propensity score models are uniform for models that meet the restrictionMps
i ⊂Mom

j .

Simple implementation transforming either Bayes’ factors, BIC, or model probabilities

under a uniform prior on the model space to model weights using the two-stage approach

is available.

The difference between the two-stage model weights given by p∗ij and the proper posterior

model probabilities used in the estimator ∆̂MA−d
DR is that the two-stage approach forces the

marginal outcome model weights to be equal to the marginal posterior outcome model

probabilities under a uniform prior on the model space. More specifically, the estimation

of qj in Stage 1 of the two-stage method does not correspond to the true marginal posterior

P (Mom
j |D), while the estimation of P(Mps

i |Mom
j ,D) in Stage 2 does correspond to the true

conditional posterior.

3.2.4 Asymptotic properties of ∆̂MA
DR

All of the results of this section require consistency of the posterior model probabilities.

As stated in Section 3.2.3, the Bayes factor and its BIC approximations are consistent (Kass

and Raftery, 1995).

We will show that if either the true propensity score model is contained inMps or the true

outcome models are contained inMom and the posterior model probabilities are consis-

35



tent for selecting the true models, then we have that ∆̂MA
DR is consistent for the average

casual effect defined in Equation 3.1. This result implies that we have added another

layer of robustness to the double robust estimator, as we only need the true models to be

in the collection of models. All→ indicate limits as n→∞, and p→ indicates convergence

in probability while L→ indicates convergence in distribution.

Lemma 1. Assume there is no unmeasured confounding, independent observations, and that

Mom contains the true model, Mom
1 , for both E(Y |X = 1, C) and E(Y |X = 0, C). If p•1 =∑

i P(Mps
i ,Mom

1 |D)
p→ 1, then

∆̂MA
DR

p→ ∆

Lemma 2. Assume there is no unmeasured confounding, independent observations, and thatMps

contains the true model,Mps
1 , for P(X = 1|C). If p1• =

∑
j P(Mps

1 ,Mom
j |D)

p→ 1, then

∆̂MA
DR

p→ ∆

Theorem 1. Assume there is no unmeasured confounding, independent observations, and let

Mom andMps be collections of models. If,

(1) Mom contains the true models, Mom
1 , for both E(Y |X = 1, C) and E(Y |X = 0, C), and

p•1 =
∑

i P(Mps
i ,Mom

1 |D)
p→ 1

or

(2)Mps contains the true model,Mps
1 , for P(X = 1|C), and p1• =

∑
j P(Mps

1 ,Mom
j |D)

p→ 1

Then,

∆̂MA
DR

p→ ∆
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Proof. These results can be verified through the use of Slutsky’s theorem and standard

arguments utilizing the no unmeasured confounding assumption.

The consistency of ∆̂MA
DR was shown here in relation to the true propensity score and out-

come model. However, the requirement that Mom and Mps contain the truth could be

replaced with the requirement that Mom and Mps contain a model that is sufficient to

control confounding. No longer would the requirement be that posterior model probabil-

ity be consistent for the truth, but only that the sum of the posterior model probabilities

that adequately control confounding converges in probability to 1.

Next we will show that if the collection of modelsMom andMps contain the true models

and the posterior model probabilities are
√
n-consistent for model selection, then ∆̂MA

DR is

asymptotically equivalent to ∆̂DR when the true outcome and propensity score models

are known a priori and achieves the semiparametric variance bound.

Theorem 2. Consider ∆̂MA
DR as described by Equation 3.4. Assume no unmeasured confounding

and independent observations. LetMom andMps be collections of models that contain the true

models for E(Y |X = 1, C), E(Y |X = 0, C), and Pr(X = 1|C). LetMom
1 andMps

1 denote the

true outcome and propensity score models, and let ∆̂DR
11 be the double robust estimator usingMom

1

andMps
1 . Assume the usual regularity conditions so that n1/2(∆̂DR

11 −∆)
L→ N (0,V) where V is

the semiparametric variance bound. If p11 = 1− op( 1√
n
), then

n1/2(∆̂MA
DR −∆)

L→ N (0,V)

or

n1/2(∆̂MA
DR − ∆̂DR

11 ) = op(1)

Proof. This result can be verified by recognizing that p11 = 1− op( 1√
n
) implies pij = op(

1√
n
)

for (i, j) 6= (1, 1), and repeated application of Slutsky’s Theorem.
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The restriction on the posterior model probabilities (p11 = 1 − op(
1√
n
)) for this result is

quite strong and is not expected to be satisfied easily. Technically speaking, all of the

previous results hold for any consistent model selection procedure, whether Bayesian or

frequentist. This is not surprising, as model averaging and model selection are asymptot-

ically equivalent. However, we expect that in finite samples model averaging and model

selection will differ.

3.3 Simulations

3.3.1 Set up

It is not the purpose of these simulations to verify the asymptotic properties of ∆̂MA
DR , but

instead to illustrate its finite sample behavior relative to the double robust estimator using

model selection for both the propensity score and the outcome model (∆̂MS
DR ). We consider

the model averaged double robust estimator assuming both prior model independence

and prior model dependence. Let ∆̂MA−i
DR denote the model averaged double robust esti-

mator that assumes prior model independence given by Equation 3.6, let ∆̂MA−d
DR denote

the model averaged double robust estimator that assumes the prior model dependence

given by Equation 3.7, and let ∆̂MA−dII
DR be the model averaged double robust estimator

that assumes the prior model dependence given by Equation 3.7 and uses the two-stage

approach for calculating model weights. See Table 3.1 for a description of the estimators

considered in these simulations.

We use two groups of simulations. In Group 1, all effects of the potential confounders

are linear in both treatment and outcome. In Group 2, we allow for interactions and

non-linearities in the confounder-outcome and confounder-treatment relationships. We

consider a situation where we have 5 measured potential confounders. In all of our sim-

ulations, we restrict Mps and Mom to only include linear combinations of the potential

confounders so that there are 25 = 32 models for both the propensity score and the out-
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come. Therefore, in Group 2, the true models are not contained in eitherMps orMom.

A full description of all scenarios can be found in Table 3.2 and Table 3.3. All simulations

set β = 1 and use a sample size of 500 with 10,000 replications. In Group 1, we generate

the data as follows: (1) C1, ..., C5
iid∼ N(0, 1); (2) X ∼ Bernoulli(p = expit(Cαps)); and (3)

Y ∼ N(βX + Cαom, 1). We consider different values of the unknown parameters αps and

αom to mimic different levels of confounding.

In Group 2, we generate the data in a similar manner, but with non-linearities in the

propensity score or outcome models as follows: (1) C1, ..., C5
iid∼ N(0, 1); (2) X ∼

Bernoulli(p = expit(f(C)); and (3) Y ∼ N(βX + g(C), 1), where f(·) and g(·) are poly-

nomial functions of C. For example, Scenario 7 is linear in the propensity score model,

with f(C) = C1 +C2 +C5, but non-linear in the outcome, with g(C) = 0.5
∑5

i=1

∑5
j=1 CiCj .

Additional simulation scenarios and sensitivity analyses are included in Section A.2.2.

Table 3.2: Description of Group 1 in the simulation study comparing double robust estimators for
the average causal effect

Scenario αps (PS model) αom (Outcome model)
1 (0.4,0.3,0.2,0.1,0) (0,0,0,0,0)
2 (0.5,0.5,0.1,0,0) (0.5,0,1,0.5,0)
3 (0.1,0.1,1,1,1) (2,2,0,0,0)
4 (0.5,0.4,0.3,0.2,0.1) (0.5,1,1.5,2,2.5)
5 (0.5,0.4,0.3,0.2,0.1,0,0,0,0,0) (0.5,1,1.5,2,2.5,0,0,0,0,0)

All effects of confounders are linear on both the treatment and outcome. Data is generated as

follows: (1)C1, ..., C5
iid∼ N(0, 1); (2)X ∼ Bernoulli(p = expit(Cαps)); and (3) Y ∼ N(βX+Cαom, 1)

3.3.2 Results

Recall that the “model selected double robust estimator”, ∆̂MS
DR , refers to the double robust

estimator in which both the propensity score and the outcome model have been selected

independently using BIC based model selection. Table 3.4 provides the percent decrease

in mean squared error of the three model averaged double robust estimators defined in
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Table 3.1 when compared to ∆̂MS
DR , for each simulation scenario when the sample size is

500. Strikingly, we observe the smallest mean squared error using ∆̂MA−dII
DR across all

simulation scenarios presented here.

Table 3.4: Results of simulation study comparing double robust estimators for the average causal
effect

Percent reduction in MSE
Scenario ∆̂MA−i

DR ∆̂MA−d
DR ∆̂MA−dII

DR

1 0.60 1.35 5.42
2 -0.03 -0.01 5.23
3 1.39 2.00 59.33
4 0.36 0.36 0.36
5 0.76 1.08 1.27
6 -1.16 -5.75 29.1
7 -12.5 -61.78 90.1
8 0.87 1.48 29.9
9 1.24 -0.65 5.94
10 0.19 0.47 0.38

The percent reduction in mean square error as compared to the model selected double robust
estimator when the sample size is 500 for various model averaged double robust estimators. See
Table 3.1 for definition of each estimator and Tables 3.2 and 3.3 for descriptions of each scenario.
Bold indicates estimator with smallest MSE.

We have found that utilizing model averaging strategies on double robust estimators can

reduce mean squared error as compared to the model selected double robust estimator.

Our simulations support this claim, as at least one of the model averaged estimators al-

ways has a smaller mean squared error when compared with the model selected double

robust estimator. This holds even when the true model’s functional form is not included

in the model class considered.

In the Group 1 simulations, where all effects are linear in the potential confounders, model

averaging assuming prior model independence ,∆̂MA−i
DR , reduces mean squared error up

to 1.39% compared to model selection. This is a very modest gain, but demonstrates

that simply applying model averaging to account for model uncertainty has a benefit
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over using standard model selection procedures. The estimators ∆̂MA−d
DR and ∆̂MA−dII

DR ,

where we assume prior model dependence, have reductions in mean squared error that

are generally larger than those of ∆̂MA−i
DR . In fact, the estimator ∆̂MA−dII

DR has reductions in

mean squared error that range from 0.36% to 59.33%.

Considering Scenario 3, ∆̂MA−dII
DR has 59.33% smaller mean squared error when compared

to the model selected double robust estimator ∆̂MS
DR . Most of this reduction is in the vari-

ance of the estimator, as both estimators have little to no bias. This indicates that even in

the case where all potential confounders are linear in both the propensity score and the

outcome model, model averaging can reduce the variance of the double robust estimator

dramatically if we assume prior model dependence and use the two-stage approach to

cut model feedback.

We can explain this reduction in variance in Scenario 3 by noting that only C1 and C2 are

confounders, while C3, C4, and C5 are strongly associated with the exposure only. There-

fore, using model selection on the propensity score model independently of the outcome

model will tend to choose models that include C3, C4, and C5. These three potential con-

founders are unrelated to the outcome, so their inclusion in the propensity score model

only adds to the variance of the estimator. By utilizing model averaging with the prior

model dependence given by Equation 3.7, we effectively restrict the model space of the

propensity score a priori to be those models that include only the potential confounders

that are associated with the outcome (C1 and C2). Thus, C3, C4, and C5 are excluded from

consideration by the prior distribution because they are unrelated to the outcome, and

the reduction in mean squared error can be attributed to the correct identification of the

C’s associated with both the outcome and the treatment for use in the propensity score

model. It is important to note here that the 59.33% reduction in mean squared error occurs

when we have both assumed prior model dependence and used the two-stage approach

for calculating model weights. The benefit of the latter point is argued in Section 3.2.3,

but in this specific example, the posterior model probabilities used to construct ∆̂MA−d
DR

will favor the outcome model that includes all five potential confounders. This is ineffi-
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cient because only C1 and C2 are associated with the outcome and including C3, C4, C5 -

which are only associated with X - into the outcome model, will lead to a large increase

in the variance of the estimator. Therefore, cutting the feedback from the propensity score

model into the outcome model when calculating the model weights improves efficiency.

In Scenario 4, the estimators ∆̂MA−i
DR , ∆̂MA−d

DR , and ∆̂MA−dII
DR each reduce the mean squared

error by 0.36% when compared with ∆̂MS
DR . This occurs because each of the five potential

confounders are associated with both the exposure and the outcome, where those that are

strongly associated with the outcome are moderately associated with the exposure and

those that are strongly associated with the exposure are moderately associated with the

outcome. Therefore, each method for estimating the posterior model weights will tend to

select models that contain all five potential confounders.

Scenario 5 is a reproduction of Scenario 4, but with an additional 5 potential confounders

that are unrelated to both the exposure and the outcome. In Scenarios 4 and 5, all the

model averaged double robust estimators outperform the model selected double robust

estimator. However, we note that when additional potential confounders are added (Sce-

nario 5), the model averaged double robust estimators gain efficiency as compared to the

model selected variety. This gain is expected to continue as more potential confounders

are added, and since the estimator is scalable to a large number of potential confounders,

the efficiency gain in using model averaging over model selection is likely to increase as

the number of potential confounders grows.

Moving to Group 2 of the simulations, where the class of models considered is misspec-

ified for either the propensity score or the outcome, ∆̂MA−i
DR increases the mean squared

error in 2 out of the 5 scenarios, the estimator ∆̂MA−d
DR increases the mean square error in 3

out of 5 scenarios compared to ∆̂MS
DR , and no general conclusion about the comparison of

model selection versus model averaging can be made. However, the estimator ∆̂MA−dII
DR

has a smaller mean squared error than ∆̂MS
DR in all presented scenarios and reduces the

mean squared error between 0.38% and 90.1%. In fact, ∆̂MA−dII
DR appears to reduce mean
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squared error the most when the outcome model has been misspecified (Scenarios 6-8). In

all of the Scenarios 6-8, ∆̂MA−dII
DR has at least 25% smaller mean squared error than ∆̂MS

DR .

In Scenario 7, the use of model averaging has reduced the variance (again, the mean

squared error approximates the variance due to little to no bias) by 90.1%. To put this into

perspective, if the model selected double robust estimator had a variance of 10, then the

model averaged double robust estimator assuming prior model dependence and using

the two-stage approach for calculating model weights would have a variance of about 1.

To illustrate the why cutting the feedback between the propensity score model and out-

come model is effective, Tables 3.5 and 3.6 provide the marginal outcome model and

propensity score model weights, respectively, used in the construction of ∆̂MA−i
DR , ∆̂MA−d

DR ,

and ∆̂MA−dII
DR for Scenario 7 averaged over the 10,000 realizations. First, we will compare

the model weights that are used in ∆̂MA−i
DR and ∆̂MA−dII

DR to describe why ∆̂MA−i
DR increases

the mean squared error by 12.5% while ∆̂MA−dII
DR reduces mean square error by 90.1%

when compared to the model selected double robust estimator. Note that the marginal

outcome model weights used in ∆̂MA−i
DR and ∆̂MA−dII

DR are the same, so that the differ-

ence in the two estimators is due to the propensity score model weights. Referring to

Table 3.6, the model weights used in construction of ∆̂MA−i
DR assign 83.5% of the mass to

the true propensity score model, while the weights used in construction of ∆̂MA−dII
DR place

the mass across many different propensity score models. The reduction in mean squared

error can be attributed to the fact that when the outcome is non-linear in the potential

confounders, it is unclear if adjusting for confounders linearly in the propensity score is

optimal. The estimator ∆̂MA−dII
DR captures this uncertainty, and the resulting model av-

eraged double robust estimator averages over many different propensity score models

resulting in a 90.1% reduction in mean squared error.

Next, we compare the model weights that are used in ∆̂MA−d
DR and ∆̂MA−dII

DR to describe

why ∆̂MA−d
DR increases the mean squared error by 61.78% while ∆̂MA−dII

DR reduces mean

square error by 90.1% when compared to ∆̂MS
DR . The prior model dependence forces a
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Table 3.5: Marginal posterior outcome model weights in Scenario 7
Model Systematic Component ∆̂MA−i

DR ∆̂MA−d
DR ∆̂MA−dII

DR

1 C1 0.043 0 0.043
2 C2 0.043 0 0.043
3 C3 0.045 0 0.045
4 C4 0.046 0 0.046
5 C5 0.043 0 0.043
6 C1 + C2 0.031 0 0.031
7 C1 + C3 0.032 0 0.032
8 C1 + C4 0.032 0 0.032
9 C1 + C5 0.031 0 0.031
10 C2 + C3 0.032 0 0.032
11 C2 + C4 0.032 0 0.032
12 C2 + C5 0.032 0 0.032
13 C3 + C4 0.035 0 0.035
14 C3 + C5 0.032 0 0.032
15 C4 + C5 0.032 0 0.032
16 C1 + C2 + C3 0.025 0 0.025
17 C1 + C2 + C4 0.025 0 0.025
18 C1 + C2 + C5 0.027 0.437 0.027
19 C1 + C3 + C4 0.026 0 0.026
20 C1 + C3 + C5 0.025 0 0.025
21 C1 + C4 + C5 0.025 0 0.025
22 C2 + C3 + C4 0.026 0 0.026
23 C2 + C3 + C5 0.024 0 0.024
24 C2 + C4 + C5 0.025 0 0.025
25 C3 + C4 + C5 0.025 0 0.025
26 C1 + C2 + C3 + C4 0.022 0 0.022
27 C1 + C2 + C3 + C5 0.025 0.216 0.025
28 C1 + C2 + C4 + C5 0.025 0.216 0.025
29 C1 + C3 + C4 + C5 0.022 0 0.022
30 C2 + C3 + C4 + C5 0.022 0 0.022
31 C1 + C2 + C3 + C4 + C5 0.027 0.131 0.027
32 intercept only 0.063 0 0.063

The marginal posterior outcome model weights used in the construction of ∆̂MA−i
DR , ∆̂MA−d

DR , and
∆̂MA−dII
DR for each model in Mom in Scenario 7 and sample size 500 averaged over the 10,000

realizations. See Table 3.1 for a description of the estimators and Table 3.3 for a description of
Scenario 7
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Table 3.6: Marginal posterior propensity score model weights in Scenario 7
Model Systematic Component ∆̂MA−i

DR ∆̂MA−d
DR ∆̂MA−dII

DR

1 C1 0 0 0.126
2 C2 0 0 0.127
3 C3 0 0 0.021
4 C4 0 0 0.021
5 C5 0 0 0.126
6 C1 + C2 0 0 0.099
7 C1 + C3 0 0 0.003
8 C1 + C4 0 0 0.003
9 C1 + C5 0 0 0.094
10 C2 + C3 0 0 0.004
11 C2 + C4 0 0 0.002
12 C2 + C5 0 0 0.097
13 C3 + C4 0 0 0
14 C3 + C5 0 0 0.003
15 C4 + C5 0 0 0.003
16 C1 + C2 + C3 0 0 0.003
17 C1 + C2 + C4 0 0 0.003
18 C1 + C2 + C5 0.835 0.941 0.095
19 C1 + C3 + C4 0 0 0
20 C1 + C3 + C5 0 0 0.006
21 C1 + C4 + C5 0 0 0.003
22 C2 + C3 + C4 0 0 0
23 C2 + C3 + C5 0 0 0.003
24 C2 + C4 + C5 0 0 0.003
25 C3 + C4 + C5 0 0 0
26 C1 + C2 + C3 + C4 0 0 0
27 C1 + C2 + C3 + C5 0.08 0.029 0.004
28 C1 + C2 + C4 + C5 0.078 0.029 0.004
29 C1 + C3 + C4 + C5 0 0 0
30 C2 + C3 + C4 + C5 0 0 0
31 C1 + C2 + C3 + C4 + C5 0.007 0.001 0
32 intercept only 0 0 0.146

The marginal posterior propensity score model weights used in the construction of ∆̂MA−i
DR ,

∆̂MA−d
DR , and ∆̂MA−dII

DR for each model inMom in Scenario 7 and sample size 500 averaged over the
10,000 realizations. See Table 3.1 for a description of the estimators and Table 3.3 for a description
of Scenario 7.
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potential confounder that is included in the propensity score model to be included in the

outcome model, and we see this through the marginal outcome model posterior proba-

bilities used in the construction of ∆̂MA−d
DR . All of the mass is assigned to outcome mod-

els that include the three potential confounders that are associated with the treatment

(C1, C2, and C5) – only 4 of the 32 models have non-zero mass. The estimator ∆̂MA−dII
DR

distributes the outcome model weight more evenly across the model space, with all 32

outcome models receiving mass between 0.022 and 0.063. A similar result is observed in

the marginal propensity score model weights, with ∆̂MA−d
DR assigning 94.1% of the mass

to the true propensity score model and ∆̂MA−dII
DR distributing the weight across the model

space. Therefore, the weights used in the estimator ∆̂MA−d
DR tends to favor the potential

confounders that are associated with the treatment in both the propensity score model

and the outcome model. The data generating mechanism is non-linear in the potential

confounders; using model selection or assigning most of the posterior weight to a few

models that adjust for confounding linearly led to an inefficient estimate. This is impor-

tant, as it emphasizes that model averaging provides the most gain in efficiency when

there is non-linearities in the data generating mechanism.

To further emphasize this point, Figure 3.1 plots the model specific double robust esti-

mators ∆̂DR
ij versus their corresponding posterior weights pij used in the construction of

∆̂MA−i
DR , ∆̂MA−d

DR , and ∆̂MA−dII
DR for a single realization of the data in Scenario 7. The verti-

cal line is placed at the value of the corresponding model averaged estimator. It can be

seen that when estimating both ∆̂MA−i
DR and ∆̂MA−d

DR , the posterior mass is assigned to a

few models that provide biased estimates of the true ∆ = 1. When estimating ∆̂MA−dII
DR ,

the posterior weight is spread across a different set of models that all provide a less bi-

ased estimate of ∆=1. As a reference, the model selected double robust estimate of ∆

is ∆̂MS
DR = 3.84, which lies in the region of models that are assigned positive mass when

estimating both ∆̂MA−i
DR and ∆̂MA−d

DR .

Figure 3.1 provides results for a single realization of the data in Scenario 7, and as such,

could be an artifact of randomness. To provide evidence of the contrary, Figure 3.2 pro-
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vides a plot averaged over 10,000 realizations of the data in Scenario 7 that is constructed

as follows: (1) for each simulated dataset, we round the model specific estimates ∆̂DR
ij

to the nearest whole number; (2) we assign each integer to the sum of the weights pij of

the model specific double robust estimators that are mapped to that integer; and (3) we

average the weights that are assigned to each integer over the 10,000 realizations of the

data. In the estimation of ∆̂MA−dII
DR , approximately 80% of the posterior weight is assigned

to models whose estimates round to the true value of ∆ = 1, while in the estimation of

∆̂MA−i
DR and ∆̂MA−d

DR , only between 40% and 60% of the posterior mass is assigned to these

same models. The model specific double robust estimators were rounded to the near-

est integer to collapse the estimators based on the quality of the estimate within a given

dataset. This allows us to summarize on average, how well do models that are assigned

positive weight estimate ∆ = 1.

Putting the information from Figure 3.1 and 3.2 together, ∆̂MA−dII
DR is a weighted aver-

age of model specific estimates that assigns most of the posterior weight to models that

provide better estimates of ∆ = 1. This leads directly to ∆̂MA−dII
DR reducing the mean

squared error by 90.1% when compared to ∆̂MS
DR . In comparison, the estimators ∆̂MA−i

DR

and ∆̂MA−d
DR fail to assign high posterior weight to models that provide good estimates of

∆ = 1, leading to more variable estimators.

The decision to compare the efficiency of the model averaged double robust estimator

to that of the model selected double robust estimator was made because in practice, one

must always make a decision regarding the models to be used. Without relying on expert

knowledge, the only other alternative is to include all of the potential confounders in

both the propensity score and outcome models. A sensitivity analysis was performed

that indicates the results of our simulations are not sensitive to the choice of using model

selection in place of the kitchen sink approach. Additionally, if we allow the potential

confounders to be generated in a non-i.i.d. fashion, similar results hold.
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Figure 3.1: The model specific double robust estimators ∆̂DR
ij versus their corresponding posterior

weights pij used in the construction ∆̂MA−i
DR , ∆̂MA−d

DR , and ∆̂MA−dII
DR of for a single realization of the

data in Scenario 7. The vertical line is placed at the value of the corresponding model averaged
estimator. The true value of ∆ is 1. See Table 3.1 for definition of each estimator and Table 3.3 for
a description of Scenario 7.
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averaged over the 10,000 realizations. The true value of ∆ is 1. See Table 3.1 for definition of each
estimator and Table 3.3 for a description of Scenario 7.
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3.4 Discussion

We introduced model averaged double robust estimators, a new class of estimators for the

average causal effect that account for model uncertainty. We proved that these estimators

extend the popular double robustness property, by only requiring that the propensity

score model or the outcome model be within a class of models. We also assessed small

sample behavior: in realistic scenarios we showed substantial improvements over ap-

proaches that do not consider uncertainty in variable selection.

Our asymptotic results build on the most basic double robust estimator for the average

causal effect. It has been demonstrated elsewhere that this double robust estimator can

be biased especially when some of the estimated propensity scores are close to zero or

are highly variable, and several adjustments to the estimator have been proposed (see

(Robins et al., 2007; Cao et al., 2009; Tan, 2010) for discussion on this topic). The results on

consistency of the model averaged double robust estimator will carry over to these other

double robust estimators. Also, in the definition of the model averaged double robust

estimator, we have assumed that the confounders’ effect on the potential outcomes are

the same between treatment groups, but this assumption is unnecessary. The methods

presented in this paper can easily be extended to situations where the response surface

differs between potential outcomes (Wang et al., 2012b) by using separate models for the

potential outcomes, and independently calculating the posterior model probabilities.

We devised a two-stage approach for calculating the weights of the propensity score and

outcome models. This two-stage approach utilizes a prior distribution on the model space

that assumes dependence between a confounder’s inclusion in the propensity score and

the outcome model while cutting feedback from the propensity score model into the out-

come model. Different choices of priors on the model space could have induced other

desirable dependencies between the propensity score and the outcome model. For exam-

ple, a similar dependence is implicit in the recent method proposed by Wang et al. (Wang

et al., 2012a), for continuous exposures in the context of linear regression. This work has
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recently been extended to binary exposures by Zigler and Dominici (Zigler and Dominici,

2012) in the context of stochastic search variable selections for propensity score models.

In our simulations, we have shown that through this two-stage approach for the calcula-

tion of model weights, one can reduce the mean squared error of the proposed estimator

substantially —more than 90% in the most extreme cases. Reductions in mean squared

error are largest in the likely situation when the outcome model is outside the model class

considered and guaranteed to be misspecified. These results are not surprising, as there

is a growing body of evidence that the use of non-informative priors for model selection

in causal inference is not optimal (Brookhart, 2006; Crainiceanu et al., 2008; Schneeweiss

et al., 2009; Vansteelandt et al., 2010; Wang et al., 2012a). While ∆̂MA−dII
DR had the smallest

mean squared error in the majority of the sensitivity analyses presented, in a few cases

another estimator was more efficient. In these situations, the difference between the most

efficient estimator and ∆̂MA−dII
DR was minimal. It is unlikely that a researcher will correctly

model the outcome; therefore, if a researcher chooses to use a doubly robust approach for

estimation of the average causal effect, the two-stage model averaged double robust esti-

mator with prior model dependence ∆̂MA−dII
DR provides a very attractive implementation.

We restricted our class of models to be linear in the potential confounders, but even in

the presence of non-linearities in the data generating mechanism, there were observed

reductions in mean squared error as compared with the double robust estimator that

performs model selection for the propensity score and the outcome model separately.

Extension to nonlinear model classes would be conceptually straightforward.

Further work is needed to investigate whether these conclusions continue to hold when

the set of potential confounders is larger and when the sample size is smaller (large p

and small n). However, it is legitimate to conjecture that the improvements in efficiency

should be greater in both directions, as both would emphasize the difference between

model selection and model averaging. From this perspective, we expect that the gains

presented in Section 3.3 should be conservative. For large model spaces, it is not feasi-
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ble to explore every model combination as we did in our simulation study. However,

one could implement Bayesian methods designed for model selection in the high dimen-

sional data setting (George and McCulloch, 1993; O’Hara and Sillanpää, 2009; Johnson

and Rossell, 2012), and use the corresponding posterior model weights in a model aver-

aged double robust estimator.

The methods described in this paper share some similarities with the targeted maximum

likelihood super-learner of van der Laan and colleagues (van der Laan et al., 2007; van der

Laan, 2010). The super-learner acknowledges that no single learner is optimal and at-

tempts to combine learners in a fashion to minimize a loss function via cross-validation.

In this sense, model averaging the double robust estimator achieves the same goal, but

instead combines candidate estimators via their posterior model probabilities. To fur-

ther distinguish the methods, one must recognize that in both cases a researcher needs to

characterize some underlying part of the true data distribution (e.g. the propensity score),

denoted Q, to estimate the average causal effect. The super-learner attempts to find the

best estimate ofQ upfront, and then uses this estimate ofQ to construct a single estimator

of the average causal effect. In contrast, the model averaged double robust estimator con-

structs several estimates of the average causal effect based on different parametric models

that fully characterizeQ, and then directly averages these model specific estimates based

on the posterior support of each model.

Causal inference approaches are increasingly used to analyze large observational studies,

such as administrative databases used in comparative effectiveness research or environ-

mental epidemiology. In these applications, there seldom is a clear-cut way of deter-

mining a priori the precise set of confounders of scientific relevance. At the same time,

improvements in computing speed and parallelization are creating the opportunity for

a more systematic investigation of alternative specifications for confounding adjustment.

In this scenario, the proposed model averaging strategy shows great promise as a data

analysis tool to perform robust and consistent inferences with good small sample proper-

ties.
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Abstract

Current epidemiological methods for studying the health effects of air pollution rely on

exposure prediction models to align the air pollution exposure values with the outcome

of interest. Such prediction is necessary because ambient air pollution is measured at a

set of fixed and spatially sparse monitors that do not cover the entire study region, and in

general, do not align spatially with the outcome. Many air pollution prediction methods

have been suggested, including the nearest neighbor approach, kriging, and land-use

regression. In land-use regression, geographic covariates are used in a regression model

to improve the local heterogeneity of the predicted exposure, but little consideration is

made as to whether the land-use covariates are also spatially correlated with the outcome.

In this paper, we introduce the concept of bias inflation due to exposure prediction of

a confounded health effect estimate by simultaneously considering exposure prediction

and confounding, and discuss its impact on air pollution epidemiology. We derive a

closed form expression for the bias of a health effect estimate when using a predicted

exposure that decomposes into the product of two pieces: the bias due to the lack of

adjustment for confounding and the bias inflation factor due to predicting the exposure.

Importantly, we show that bias inflation factor can be large even when the confounding

bias is small; therefore, our results suggest that exposure prediction and confounding

adjustment need to be considered simultaneously.

4.1 Introduction

In the past two decades, there has been a wealth of epidemiological research on the health

effects of air pollution (see Dominici et al. (2003); Pope (2007); Breysse et al. (2012) for

reviews of the literature). Most published studies have found significant associations

between short-term and long-term exposure to ambient levels of air pollution and a wide

range of adverse health outcomes.
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Due to the spatial nature of air pollution monitoring networks, spatial misalignment be-

tween the exposure and outcome is very common in these studies of air pollution and

health. This occurs because the air pollution measurements are obtained from fixed mon-

itoring locations, while the outcome data is generally not available at the exact monitor

locations. As such, the great majority of cohort studies are affected by some sort of mis-

alignment between exposure and outcome.

The current approach to align exposure and outcome is to use observed air pollution

measurements at the monitor locations to develop a statistical model for predicting air

pollution levels that align with the outcome data. Many different methods can be em-

ployed to predict missing air pollution values, including nearest neighbor and kriging

approaches (Oliver and Webster, 1990; Madsen et al., 2008). These approaches typically

lead to predicted exposure values that are spatially smoother than the true underlying

exposure. Recently, land-use regression (LUR) has garnered much attention because of

its ability to improve local variation in the exposure prediction by incorporating land-use

(geographic) covariates into the prediction model. Hoek et al. (2008) provides a review

of LUR models, and see others for application of LUR in epidemiology (Henderson et al.,

2007; Ross et al., 2007; Yanosky et al., 2008; Sahsuvaroglu et al., 2009; Neupane et al., 2010;

Kloog et al., 2012a,b; Cesaroni et al., 2013).

Another issue that is prevalent in cohort studies of air pollution and health is spatial

confounding, which arises due to the complex spatial dependencies that exist between air

pollution, the health outcome of interest, and other covariates. A researcher will employ

expert knowledge in an attempt to control any spatial confounding through the use of

covariates that vary in space. Great care is taken to minimize the magnitude of the bias

in the health effect estimate, although it is unlikely that the bias has been completely

negated.

Sheppard et al. (2011) provides a discussion of both confounding and exposure measure-

ment error in air pollution epidemiology, and points out that exposure assessment should
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be evaluated in the context of health effect estimation. With effect estimation in mind, it

is known that: (1) better exposure prediction (i.e. smaller prediction error) does not nec-

essarily lead to better effect estimation (i.e. smaller mean squared error) (Szpiro et al.,

2011a); and (2) confounding can lead to biased effect estimation (Pope III and Burnett,

2007). However, the current literature treats confounding and exposure prediction as two

separate statistical issues. That is, methods that account for the measurement error in the

predicted exposure often fail to acknowledge the existence of confounding, while meth-

ods designed to control confounding often fail to acknowledge that the exposure has been

predicted.

In this paper, we introduce the concept of bias inflation due to exposure prediction of a con-

founded health effect estimate by simultaneously considering exposure prediction and con-

founding and discuss its impact in the context of epidemiological studies of air pollution

and health. We show that if confounding has not been sufficiently accounted for in the

health effect model and a predicted exposure is used in place of the true exposure, then

the bias of the health effect estimate can be larger (in magnitude) than the bias due to

confounding when using the true exposure. We derive a closed form expression for the

bias of a health effect estimate when using a predicted exposure that decomposes into

the product of two pieces: the bias due to the lack of adjustment for confounding and a

bias inflation factor due to predicting the exposure. Therefore, exposure prediction and

confounding adjustment must be considered simultaneously.

4.2 Bias inflation due to exposure prediction

Bias inflation due to exposure prediction of a confounded health effect estimate occurs

when there exists bias due to the lack of adjustment for confounding and exposure pre-

diction is necessary. Therefore, to begin the discussion of bias inflation, we first must

define what is meant by bias due to the lack of adjustment for confounding.
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Let Ci be a set of normally distributed covariates with mean µc and covariance Σc, and

assume that the outcome Yi and the exposure Xi are generated under the following linear

models:

Yi = β0Xi + Ciγ0 + εyi (4.1)

Xi = Ciα0 + εxi (4.2)

where εyi and εxi are independent, normally distributed, mean zero error terms with vari-

ances σ2
y|xc and σ2

x|c. Suppose interest lies in the estimation of the linear exposure-outcome

relationship β0, conditional on the covariates Ci. Here, and throughout, no restriction is

placed on γ0 or α0, and individual components of the vectors are free to be 0.

We define bias due to the lack of adjustment for confounding as the bias in our estimation

of β0 that is due to failure to control for the covariates Ci. That is, if one were to ignore

Ci when fitting the outcome regression model and instead fit Yi = βXi + εi, then the

least squares estimate for β, call it β̂x, is biased. We call this the bias due to the lack of

adjustment for confounding and denote it as bias(β̂x) = E[β̂x − β0].

Now suppose that the exposure and outcome are completely misaligned (that is, either

the exposure or the outcome is observed for all i, but not both). Further, let Wi = Ciα0

be the predicted exposure with α0 known. Consider fitting the outcome regression model

that uses the predicted exposure Wi in place of the true exposure Xi and fails to control

for any confounding (Yi = βWi + εi). The bias of the least squares estimator for β, call it

β̂w, is given by:

bias(β̂w) = E[β̂w − β0] = bias(β̂x)
σ2
x

σ2
w

(4.3)

where σ2
x = σ2

w + σ2
x|c and σ2

w = αT0 Σcα0 denote the variances of X and W , respectively.

We call the second term of Equation 4.3 ( σ
2
x

σ2
w

) the bias inflation factor, and note that it is
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equal to the inverse of the population R2 when using W to predict X . From an intuitive

standpoint, we expect that the variation in the true exposure σ2
x will always be more than

the variation in the predicted exposure σ2
w, and hence, the bias inflation factor is always

greater than 1 (i.e. the R2 is always less than 1).

Notice that the bias of β̂w is the product of two pieces: (1) the bias due to lack of adjust-

ment for confounding assuming that the true exposure is known (bias(β̂x)); and (2) the

bias inflation factor due exposure prediction ( σ
2
x

σ2
w

). It is easy to see that bias(β̂x) = 0 im-

plies that bias(β̂w) = 0; therefore, bias inflation due to exposure prediction should only

an issue if there is some uncontrolled confounding. However, even in the presence of

uncontrolled confounding, bias(β̂x) 6= 0 implies bias(β̂w) 6= 0.

The bias inflation factor decreases as R2 increases and goes to 1 as the exposure model

is able to predict the true exposure X more accurately. Note that the bias inflation fac-

tor can be large even if the bias due to lack of adjustment for confounding is small. It is

tempting to suggest that in an attempt to obtain an unbiased estimate of the health ef-

fect, a researcher should build an exposure model that more accurately predicts the true

exposure (a model with the largest R2). However, the relationship is not that simple. In

fact, the bias of the health effect estimate can either increase or decrease in magnitude if

a subset of the confounders are used in the exposure prediction model (see Section A.3.2

for closed form results). We will illustrate this concept using a simulated cohort study of

the association between long-term exposure to PM2.5 and cardiovascular disease in the

New England region.

The previous results can easily be extended to situations where: (1) the outcome, ex-

posure, and confounders are not assumed to be normally distributed; (2) the exposure

prediction model uses a subset of the Cs as defined in Equation 4.2; and/or (3) the out-

come model controls for a subset of the Cs as defined in Equation 4.1. For (1), we replace

expectations with convergence in probability and all results continue to hold. For (2) and

(3), closed form expressions for the biases are available in Section A.3.2.
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In air pollution epidemiology, it is of great concern that there may be unmeasured spatial

confounding. A researcher will attempt to control spatial confounding through the use

of covariates that vary in space and is hopeful that the magnitude of the bias is mini-

mal. The previous results can also be extended to incorporate these situations. Without

going into mathematical details, it can be shown that if: (1) there is unmeasured spatial

confounding; and (2) covariates that vary in space are used to predict air pollution, then

there exists the potential for bias inflation due to exposure prediction. It is a challenge

to untangle the complex spatial dependencies between the health outcome, air pollution,

the measured covariates, and the unmeasured spatial confounders, and as such, it will be

difficult to begin to quantify the magnitude of bias inflation due to exposure prediction

in such studies. However, the existence of this bias can be demonstrated mathematically

and by simulation, and much greater care is needed when predicted exposure levels are

used in air pollution epidemiology research.

4.3 Simulations

4.3.1 Set up

Through the introduction of the concept of bias inflation due to exposure prediction, we

have provided theoretical evidence that an exposure prediction model chosen solely on

its ability to predict the true exposure may not lead to a better health effect estimate.

We now provide a simple simulated example that clearly shows better prediction (higher

R2) does not imply better effect estimation and illustrates bias inflation due to exposure

prediction.

Consider a hypothetical cohort study of the association between long-term exposure to

PM2.5 and cardiovascular disease in the New England region. Assume we have the car-

diovascular hospitalization rates over the study period for each of the 2165 zipcodes in

New England, and we wish to assign each zipcode to the mean PM2.5 level over the study
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period as a measure of exposure. Of the 2165 zipcodes, 57 have air pollution monitors

within their boundaries, and the exposure for these zipcodes can be measured directly as

the mean monitor value during the study period. For the remaining 2108 zipcodes, we

assume the exposure values are missing and need to be predicted.

Figure 4.1 provides a map of the 2165 zipcodes in New England, with the 57 PM2.5 moni-

toring locations marked with an x. We observe that the PM2.5 monitors are sparse in New

England, and tend to cluster near major population centers. As such, the spatial hetero-

geneity in PM2.5 across New England will be difficult to capture based solely on spatial

location (i.e. latitude and longitude).

Figure 4.1: Map of the 2165 zip codes in New England, with the 57 PM2.5 monitoring locations
marked with an x
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The intention of this simulation is to illustrate how the choice of covariates used in the

PM2.5 prediction model will affect the estimated health effect of long-term PM2.5 exposure

on hospitalization rates for cardiovascular disease. As such, we generate 1000 realizations

of our hypothetical cohort in the following manner:

1. Use the observed distribution of 9 land-use (LU) covariates for each zipcode in New

England. Table 4.1 provides a complete list and summary statistics for each land-use

covariate considered.

2. Augment the 9 LU covariates with one N(0, 1) random variable, and denote the

centered and standardized versions of these 10 covariates as Ci.

3. Generate the exposure based on the relationship between the observed PM2.5 levels

and C. That is, fit the exposure model Xi = Ciα + εx for the 57 zipcodes that have

observed PM2.5 measurements, and use the resulting α̂ and σ̂2 = v̂ar(εx) to generate

a simulated “true” exposure as: X̃i = Ciα̂ +N (0, σ̂2)

4. Generate the cardiovascular hospitalization rates: ln(Yi) = βXX̃i + Ciγ +

N (0, 0.4672), where γ = (0.01, 0.01,−0.1,−0.08, 0.8,−0.09,−0.09, 0.04, 0.008) and

βX = 0.04. Other choices of γ were considered and are available in the Section

A.3.3.

5. Remove the “true” PM2.5 values X̃ from the dataset to reflect the zipcode that are

missing exposure. The final dataset contains 57 zipcodes of (Yi, X̃i,Ci) and 2108

zipcodes of (Yi,Ci)

The decision to not incorporate spatial correlation among the PM2.5 values was to fa-

cilitate discussion, and it not reflective of what is expected in practice. This simulation

scenario uses the worst case scenario; the same set of covariates that are used to predict

and are also the ones that need to be used to adjust for confounding. In reality, there will

be partial overlap between these two sets. See the Section A.3.2 for further discussion.
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We will proceed using land-use regression (LUR) to estimate PM2.5 levels that are miss-

ing from the study. However, since the decision was made to not incorporate spatial

correlation among the PM2.5 values in the simulated cohorts, our LUR regression will not

involve spatial smoothing. Once the LUR is used to estimate the missing PM2.5 values,

an outcome regression is performed using a completed dataset that replaces the missing

2108 PM2.5 values with their corresponding predicted values.

The only remaining decision for the purpose of our simulation is which LU covariates to

include in the LUR. Considering every combination of the LU covariates would amount

to 210 = 1024 possible models. Instead, we chose to consider 10 nested regression models

that include the 10 LU covariates in order of their true predictive power of PM2.5 . The

following summarizes the steps used to predict PM2.5 and estimate the resulting health

effect:

1. Fit the land-use regression model including only C1 as a predictor for the 57 zip

codes with observed PM2.5

2. Estimate the 2108 missing PM2.5 values, W , based on the model from Step 1

3. Estimate the effect of long-term PM2.5 exposure on cardiovascular hospitalization

rates using a regression model only including W as a predictor (ln(Yi) = βWi + εi)

4. Repeat 1-3, but using {C1, C2}, {C1, C2, C3}, ... , {C1, ..., C10} as predictors in the

exposure regression model from Step 1

Note that in Step 3, we fit a regression model that fails to control confounding and gives

a biased health effect estimate. The magnitude of this bias, which is given in closed form

in Section A.3.2, is determined by a tradeoff between the bias due to lack of adjustment

and the prediction accuracy of the PM2.5 regression model and does not depend on the

true value of βX . As such, we consider only one value of βX = 0.04.
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4.3.2 Results

Figure 4.2 provides the R2 from the LUR models and the corresponding bias of the health

effect estimate from the hypothetical study of the association between long-term exposure

to PM2.5 and cardiovascular hospitalization rates in the New England region. The LUR

that provides the health effect estimate with the smallest bias is the one that includes the

first five LU covariates (% forrest, % open space, % urban, traffic density, and elevation)

and has corresponding R2 value of less than 0.6. By including the two additional covari-

ates distance to major road and point emissions, the R2 can be increased to 0.7, but results

in a large bias. Of the 10 models considered, 5 have a smaller bias than the model that

uses the true exposure (the dotted line), suggesting that a predicted exposure can either

improve or worsen effect estimation when compared to the true exposure in the presence

of uncontrolled confounding.
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Figure 4.2: Tradeoff between R2 and bias from the hypothetical cohort study of the association be-
tween long-term exposure to PM2.5 and cardiovascular hospitalization rates in the New England
region

Table 4.2 provides the percent of simulated datasets in which H0 : β = 0 is rejected at the

α = 0.05 level when different subsets of C are used in the LUR to predict the exposure.
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Table 4.2: Results of the hypothetical cohort study of the association between long-term exposure
to PM2.5 and cardiovascular disease in the New England region
Exp. Model % Reject H0 % Reject H0 & β̂ > 0 % Reject H0 & β̂ > 0 %Bias
{C1} 100.0 100.0 0.0 102
{C1, C2} 99.8 99.8 0.0 60
{C1, C2, C3} 99.8 99.8 0.0 53
{C1, · · · , C4} 98.2 98.2 0.0 30
{C1, · · · , C5} 89.6 89.6 0.0 3
{C1, · · · , C6} 35.6 35.6 0.0 -50
{C1, · · · , C7} 3.0 1.0 2.0 -104
{C1, · · · , C8} 26.4 0.0 26.4 -142
{C1, · · · , C9} 29.0 0.0 29.0 -143
{C1, · · · , C10} 30.0 0.0 30.0 -144

Include is the percent of simulated datasets in which H0 : β = 0 is rejected at the α = 0.05 level
when different subsets of C are used in the LUR to predict the exposure. Also included is the
percent of simulations in which H0 is rejected and β̂ is in the correct direction (β̂ > 0), the percent
of simulations in which H0 is rejected and β̂ is in the wrong direction (β̂ < 0), and the percent
bias.

Also included is the percent of simulations in which H0 is rejected and β̂ is in the correct

direction (β̂ > 0), the percent of simulations in which H0 is rejected and β̂ is in the wrong

direction (β̂ < 0), and the percent bias.

As indicated in Figure 4.2, the exposure prediction model that minimizes the bias of the

health effect estimate isM5, with corresponding bias of 3%. This LUR model rejects H0

in 89.6% of the simulated datasets, with all rejection coming when the estimated health

effect is in the correct direction. Therefore, if in this analysis we happened to chooseM5

to predict PM2.5 , we would get nearly unbiased estimates of the effect of long-term PM2.5

exposure on cardiovascular health and nearly 90% power to detect the true effect size.

However, if we deviate from this optimal model by either adding or removing LU covari-

ates from the PM2.5 prediction model, the percent bias ranges from -144% to 102%. By

including the two additional covariates distance to major road and point emissions that

increase R2 by almost 0.1, we observe a bias of -104%, with H0 being rejected only 3.0%

of the time. Worse, two-thirds of the rejects occur when the estimated health effect is in

the wrong direction. Thus, if in this analysis we happened to chooseM7 to predict PM2.5
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, we would get biased results that estimate the health effect of long-term PM2.5 exposure

on cardiovascular hospitalization rates to be in the wrong direction.

This simple simulation illustrates that in the presence of uncontrolled confounding, a

more accurate prediction of the exposure does not necessarily lead to a better health ef-

fect estimate. In fact, exposure prediction only exacerbates the problem of uncontrolled

confounding, but all is not lost. Recall that in this hypothetical study, we purposefully fail

to control for any confounding, but with a properly chosen PM2.5 prediction model, we

were able to return nearly unbiased effect estimates. In that situation, the bias inflation

due to exposure prediction was beneficial for effect estimation. In general, we should be

able to return valid effect estimates when using predicted exposure if: (1) confounding

has sufficiently been controlled; or (2) an exposure prediction model is chosen to negate

the effect of uncontrolled confounding.

The latter point is a challenging proposition, and current approaches in environmental

epidemiology do not allow for consideration of the issue. In our simulation, we are able

to determine which model should be used, but this is only because we know the true data

generating mechanism. Without such knowledge, statistical methods for choosing an

exposure prediction model to minimize the bias of the health effect estimate are needed.

4.4 Discussion

In this paper, we simultaneously consider spatial misalignment and spatial confounding

in the context of cross-sectional studies, which rely almost entirely on the spatial varia-

tion between the exposure and the outcome to estimate the health effect of interest. We

introduce the concept of bias inflation due to exposure prediction of a confounded health effect

estimate, and purposely illustrate the point in a worst case (but not unrealistic scenario)

where there is large overlap between covariates that are predictors of the exposure and

covariates that are important measured confounders. We derive a closed form expres-
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sion for the bias of a health effect estimate, and show that this bias is the product of two

pieces: the bias due to the lack of adjustment for confounding and the bias inflation factor

due to predicting the exposure with a set of measured covariates that are also measured

confounders. Importantly, we show that bias inflation factor can be large even when the

confounding bias is small; therefore, exposure prediction and confounding adjustment

need to be considered simultaneously.

The potential for bias inflation due to exposure prediction can be demonstrated mathe-

matically and by simulation, although quantifying the magnitude of the bias in practical

applications will be conceptually challenging due to the complex spatial dependencies be-

tween the outcome, the exposure, the measured covariates, and the unmeasured spatial

confounders. It is often the case that researchers build an air pollution prediction model

that maximizes the spatial heterogeneity and cross-validatedR2, but do so independently

of the outcome regression. We have provided evidence that such a process may lead to

substantial bias inflation of the underlying health effect of interest.

Current statistical methods dealing with spatial misalignment and confounding adjust-

ment treat the two topics as distinct issues. For example, methods to overcome spatial

misalignment rely on exposure prediction, and exposure prediction can be viewed as a

measurement error problem (Gryparis et al., 2009; Szpiro et al., 2011b). The measurement

error can be decomposed into a Berkson-like component (Carroll et al., 1995) arising from

modeling the exposure surface and a classical component arising from the estimation of

the parameters of the exposure prediction model and several correction methods have

been proposed (Gryparis et al., 2009; Szpiro et al., 2011b). However, these methods are

only concerned with the bias of the health effect estimates due to measurement error and

do not consider how predicting exposure with covariates that are correlated with the out-

come might bias the health effect estimates. Similarly, methods designed for confounding

adjustment do not acknowledge that the exposure has been predicted. For example, Wang

et al. (2012a) was designed for the selection of confounders in the context of linear models

for both the outcome and the exposure when the exposure has been fully observed.
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Development of new statistical methods are needed that simultaneously predict exposure

while adjusting for spatial confounding. The decision to include or exclude a potential

confounder from either the outcome or the exposure model needs to be based on both

the predictive power of the covariate on the exposure and the strength of the relation-

ship with the outcome. An extension of Wang et al. (2012a) into the context of missing

exposure could provide a foundation of methodologies used to simultaneously predict

exposure and control confounding.

Our results do not address how spatial smoothing will affect the bias of a health effect in

the presence of unmeasured spatial confounding. However, it is reasonable to postulate

that bias inflation due to exposure prediction will exist when employing spatial smooth-

ing. Such results would be related to the work of Dominici et al. (2004); they provide

results to reduce confounding bias in the pollution-mortality relationship due to unmea-

sured time-varying factors such as season and influenza epidemics in the context of time

series studies. One could adapt their results for use in cross-sectional studies of air pollu-

tion and health by indexing by space instead of time.

The issue of bias inflation due to exposure prediction was presented in the context of

cross-sectional studies of air pollution and health. However, there is a likely statistical

parallel for time series studies. If missing air pollution values are imputed using covari-

ates that are temporally correlated with both air pollution and outcome, then a similar

bias inflation is likely to occur. Meteorological covariates are one potential set of covari-

ates that are temporally correlated with both air pollution and health.

The form of the bias inflation due to exposure prediction shares a remarkable similar-

ity to that of a known result from causal inference; in the presence of unmeasured con-

founding, conditioning on instrumental variables can inflate the bias of the effect estimate

(Bhattacharya and Vogt, 2012; Pearl, 2012).

The results of this paper assumed a simple linear relationship between the outcome, the

exposure, and the confounders, but in practice, more complex models will be assumed
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for both the exposure prediction model and the outcome regression model. However,

even under these more complex models, there is potential for bias inflation of a health

effect estimate due to exposure prediction, and much greater care is needed when using

predicted exposure values in epidemiological studies of health.
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A. Appendices



A.1 Efficient estimation of risk ratios from clustered binary
data

A.1.1 Proof of results

Proof of Result 1: Recall that the nuisance tangent space is characterized by Λ = ΛRM +Λα,

where ΛRM is the nuisance tangent space from the restricted mean model and Λα is the

closed linear space spanned by scores for α0 along all regular parametric submodels. For

any A(X)ε ∈ Λ⊥RM , then

Π
[
A(X)ε|(ΛRM + Λα)⊥

]
= A(X)ε− Π [A(X)ε|ΛRM + Λα]

= A(X)ε− Π [A(X)ε| {Λα − Π [Λα|ΛRM ]}]

= A(X)ε− Π [A(X)ε|Λ∗α]

= A(X)ε−
E
[
A(X)εεTV −1(X)M(X)1k

]
E [µT (X)V −1(X)µ(X)]

µT (X)V −1(X)ε

= A(X)ε− E [A(X)µ(X)]

E [µT (X)V −1(X)µ(X)]
µT (X)V −1(X)ε

where Λ∗α is the closed linear space spanned by the efficient score for α0 inMRM . There-

fore, we have characterized the set of all influence functions for β0 in the modelMRM that

treats the baseline risk as a nuisance parameter as:

Λ⊥1 =

{
ϕ(X) = E

[
A(X)Dβ(X)

]−1
A(X)ε :

A(X) = h(X)− E[h(X)µ(X;θ0)]

E[µT (X;θ0)V−1(X)µ(X;θ0)]
µT (X; θ0)V −1(X),

h(X) arbitrary

}

All that is left is to show Λ⊥ = Λ⊥1 . For any h(X) ∈ Λ⊥1 , let S(X) =[
h(X)− E[h(X)µT (X)µ(X)]

E[µT (X)µ(X)]

]
µT (X). Then,
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E [S(X)µ(X)] = 0

so that Λ⊥1 ⊂ Λ⊥. Alternately, for any S(X) ∈ Λ⊥, let h(X) = S(X) −
E[S(X)µ(X)]

E[µT (X)V −1(X)µ(X)]
µT (X)V −1(X). Then,

E [h(X)µ(X)] = 0

implying that Λ⊥ ⊂ Λ⊥1 , and we are done.

Proof of Result 2: Let U(h; X, α0, β0) be as defined in Result 1. Replace the log-baseline
risk α0 with an arbitrary value α. Then, for all h,

E[U(h;X, α, β0)] = E
[
h(X)ε(X;α, β0)−

E [h(X)µ(X;α, β0)]

E [µT (X;α, β0)µ(X;α, β0)]
µT (X;α, β0)ε(X;α, β0)

]
= E [h(X)(Y − µ(X;α, β0))]−

E [h(X)µ(X;α, β0)]

E [µT (X;α, β0)µ(X;α, β0)]
E
[
µT (X;α, β0)(Y − µ(X;α, β0))

]
= E [h(X)E[Y |X]]− E [h(X)µ(X;α, β0))]−

E
[
h(X)eXβ0eα

]
E [µT (X;α, β0)µ(X;α, β0)]

E
[
µT (X;α, β0)E[Y |X]

]
+

E [h(X)µ(X;α, β0)]

E [µT (X;α, β0)µ(X;α, β0)]
E
[
µT (X;α, β0)µ(X;α, β0)

]
= E [h(X)µ(X;α0, β0)]−

E
[
h(X)eXβ0eα

]
E [µT (X;α, β0)µ(X;α, β0)]

E
[
µT (X;α, β0)µ(X;α0, β0)

]
= E [h(X)µ(X;α0, β0)]−

E
[
h(X)eXβ0eα0

]
E [µT (X;α, β0)µ(X;α, β0)]

E
[
µT (X;α, β0)eXβ0eα

]
= 0

Proof of Result 3: Recall the efficient score is defined by seffβ = Π[sβ|Λ⊥], where sβ is the

score for β0. Under the restricted moment model, the efficient score (Bickel et al., 1998)

for θ0 = (α0, β0)T is given by:

seff,RMθ = (sRMα , sRMβ )T = Π
[
sθ|Λ⊥RM

]
= DT (X)V −1(X)ε = (1k,X)TM(X|θ0)V −1(X)ε

where D(X) = ∂µ(X|θ)
∂θT

, M(X|θ) = diag {µ(X|θ)} is the (kxk) diagonal matrix made up of

the elements of µ, and V −1(X) = E
[
εεT
]−1. Then, by definition of the efficient score and

using arguments similar to Result 1:
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seffβ = sRMβ − Π
[
sRMβ |Λ∗α

]
where Λ∗α is the closed linear space spanned by the efficient score for α0 inMRM . Thus,

seffβ = s∗β −Π
[
s∗β | Λ∗α

]
= s∗β − E

[
s∗βs
∗T
α

]
E
[
s∗αs
∗T
α

]−1
s∗α

= XTM(X|α0, β0)V −1(X)ε− E
[
XTM(X|α0, β0)V −1(X)εεTV −1(X)MT (X|α0, β0)1k

]
E
[
1TkM(X|α0, β0)V −1(X)εεTV −1(X)MT (X|α0, β0)1k

]−1
1TkM(X|α0, β0)V −1(X)ε

= XTM(X|α0, β0)V −1(X)ε− E
[
XTM(X|α0, β0)V −1(X)MT (X|α0, β0)1k

]
E
[
1TkM(X|α0, β0)V −1(X)MT (X|α0, β0)1k

]−1
1TkM(X|α0, β0)V −1(X)ε

= XTM(X|α0, β0)V −1(X)ε− E
[
XTM(X|α0, β0)V −1(X)µ(X|α0, β0)

]
E
[
µT (X|α0, β0)V −1(X)µ(X|α0, β0)

]−1
µT (X|α0, β0)V −1(X)ε
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A.2 Model averaged double robust estimation

A.2.1 Consistency under the dependent prior: A different view

The prior provided in the paper can be relaxed so that inclusion-exclusion criteria is not

strict. In fact, it can written in a form that is close to the prior of Wang et al. (2012a). Let

the class of model be defined by the indicators αX and αY , where αX is the indicator that a

particular covariate is included in the propensity score model and αY is the indicator that

a particular covariate is included in the outcome model. Using this notation, the propen-

sity score model can be written as g(E[X|C]) = ξ0 +
∑p

k=1 α
X
k ξkCk for some link function

g(·), and the outcome model can be written as E[Y |X,C] = γ0 + βX +
∑p

k=1 α
Y
k γkCk. Re-

laxing the inclusion-exclusion criteria, the prior model dependence given by Equation 3.7

can be written as:

P (αY = 1|αX = 1)

P (αY = 0|αX = 1)
= ω

P (αX = 1|αY = 1)

P (αX = 0|αY = 1)
= 1

P (αY = 1) =
1

2

Note that this implies,

P (αY = 1, αX = 1) =
1

4

P (αY = 1, αX = 0) =
1

4

P (αY = 0, αX = 1) =
1

4ω

P (αY = 0, αX = 0) =
2ω − 1

4ω
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So for any finite ω, the prior distribution does not affect the consistency of the posterior

probabilities because the prior does not restrict model space, and the consistency of the

posterior model probabilities relies on the consistency of the Bayes factor. In other words,

because we have not restricted the model space, the likelihood will overpower the prior

for large sample sizes.

With this in mind, the MA-DR estimator is consistent for any finite ω in the prior specifi-

cation above. The prior presented in Equation 3.7 is for ω =∞, and we do not believe the

consistency result will hold. However, the strict prior (ω =∞) leads to a posterior that is

computationally much less burdensome than for any other choice of ω, except ω = 1.

Thus, we view the ω = ∞ case as an approximation to any large choice of ω. This is a

reasonable approximation because for large ω, the prior will overwhelm the likelihood in

finite samples. Therefore, the prior model dependence does not lead to a estimator that

is consistent for the average causal effect, but is an approximation of an estimator that is

consistent for the average causal effect.

A.2.2 Additional simulations

This set of simulations expands both the set of simulation scenarios along with the esti-

mators being compared. Table A.1 provides a description of each estimator included in

these simulations. A full description of all scenarios can be found in Table A.2 and Table

A.3. All simulations set β = 1 and use a sample size of 500 with 10, 000 replications.

Table A.4 and Table A.5 provide the mean squared error and the bias of each estimator

under each additional simulation scenario. These simulations highlight a few additional

points that were not covered in the original paper. First, applying model averaging to

only a parametric or IPW estimator does not perform as favorably as the model averaged

double robust estimator. Specifically, consider ∆̂MA−dII
DR , ∆̂MA

IPW , and ∆̂MA
para.

First, looking at the MSE of ∆̂MA
IPW , it is considerably higher in many scenarios. Take
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Table A.2: Description of Group 1 in the additional simulation study comparing estimators for the
average causal effect

Scenario αps (PS model) αom (Outcome model)
1 (.1,.1,.01,0,0) (.5,0,1,.5,0)
2 (.5,.5,.1,0,0) (.5,0,1,.5,0)
3 (1,.5,.1,0,0) (.5,1,2,1,0)
4 (.3,0,0,0,0) (1,0,0,0,0)
5 (.4,.3,.2,.1,0) (0,0,0,0,0)
6 (.5,.4,.3,.2,.1) (.5,1,1.5,2,2.5)
7 (1,1,0,0,0) (.2,.2,2,2,2)
8 (.05,.05,.5,.5,.5) (2,2,.2,.2,.2)
9 (0.1,.025,.012,0.053,0.034) (.5,.53,.22,.44,.62)
10 (0,0,0,0,0) (1,0,0,0,0)
11 (.1,-.1,.01,0,0) (-.5,0,1,.5,0)
12 (-.5,.5,.1,0,0) (.5,0,1,-.5,0)
13 (1,-.5,-.1,0,0) (.5,1,2,1,0)
14 (.3,0,0,0,0) (-1,0,0,0,0)
15 (.4,-.3,-.2,.1,0) (0,0,0,0,0)
16 (.5,.4,-.3,.2,.-1) (.5,1,-1.5,2,-2.5)
17 (1,1,0,0,0) (.2,-.2,2,2,2)
18 (.05,-.05,-.5,.5,.5) (-2,2,.2,.2,.2)
19 (-0.1,.025,.012,-0.053,0.034) (-.5,.53,.22,.44,-.62)
20 (0,0,0,0,0) (-1,1,0,0,0)
21 (.1,.1,1,1,1) (2,2,0,0,0)
22 (1,1,0,0,0) (.5,.5,2,2,2)
23 (1,1,0,0,0) (.8,.8,2,2,2)

All effects of confounders are linear on both the treatment and outcome. Data is generated as

follows: (1)C1, ..., C5
iid∼ N(0, 1); (2)X ∼ Bernoulli(p = expit(Cαps)); and (3) Y ∼ N(βX+Cαom, 1)
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Scenario 6 for example, where all 5 covariates are moderate confounders. The MSE is

268.5x10−3, while all other estimators have MSE less than 20x10−3. Quickly taking a look

at the bias of this estimator, we see a value of 0.460, corresponding to 46% bias. Therefore,

the model averaged IPW estimator, assuming an independent prior on the model space,

can provide highly variable and highly biased results.

Next, consider ∆̂MA
para. This estimator performs more favorably when compared with

∆̂MA−dII
DR , which is not all that surprising since in many of the simulations, the outcome

model class is correctly specified. In 12 of the 35 simulation scenarios, ∆̂MA
para has smaller

mean squared error than ∆̂MA−dII
DR . However, when comparing the biases of the two esti-

mators, we can point to several example where the bias of ∆̂MA
para is considerably more than

that of ∆̂MA−dII
DR . Considering only Scenario 25, the bias of ∆̂MA−dII

DR is 65.79x10−3, while

the bias of ∆̂MA−dII
DR is only 2.8x10−3. This is approximately a 95% reduction in the bias.

This is a situation where the data generating mechanism in the propensity score model is

non-linear in the confounders, while the true outcome model is linear in the confounders.

Therefore, even though we have a properly specified outcome model class, we cannot

return a valid effect estimate due to the separation of the treatment groups.

We believe this verifies that simply using model averaging on either the IPW or a para-

metric estimator may lead to inefficient and/or biased effect estimates. Also included in

this simulation is the MA-DR estimator that assume the prior of Wang et al. (2012a), and

the estimator that assume the prior specified above with ω = 10. These are not discussed

in detail, but note that they behave similarly to ∆̂MA−d
DR .

The last estimator worth discussing in this simulation is the frequentist analog of

∆̂MA−dII
DR . We label this as ∆̂MS−II

DR , which is constructed in the following manner: (1)

select the outcome model based on BIC alone; and (2) select the propensity score model

from the class of models that excludes covariates that are not included in the chosen out-

come model. This estimator performs very similar to that of ∆̂MA−dII
DR in terms of both

bias and MSE. In fact, the two estimators are asymptotically equivalent.
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A.3 Bias inflation due to exposure prediction in environ-
mental epidemiology

A.3.1 Bias inflation due to measurement error

The main results of our paper rely on the fact that our predicted exposure follows a Berk-

son error model, and an extension of our results into the case of a Berkson error model

is straightforward. Consider the true exposure X is measured with error, and that the

measured exposure X∗ follows the Berkson error model:

Xi = X∗i + ε∗i

where ε∗i is a mean zero error term that is uncorrelated with X∗i . Let Yi be as in Equation

4.1 and consider estimating β0 using the misspecified regression model Yi = βX∗i +εi. The

bias of the least squares estimate β̂∗ of β is given by:

bias(β̂∗) = E[β̂∗ − β0] = bias(β̂x)
σ2
x

σ2
x∗

(4.1)

where σ2
x∗ = var(X∗). Note that the expression given in Equation 4.1 is precisely the same

as given in Equation 4.3.

This slightly more general result is quite interesting. When there is uncontrolled con-

founding and an exposure is used that is measured with error (Berkson error), then the

bias of the health effect is the product of two pieces: (1) the bias due to lack of adjustment

for confounding; and (2) a bias inflation factor that is the ratio of the true variance of the

exposure to that of error prone exposure.

Now consider a classical measurement error scenario; the measured exposure is related

to the true exposure by
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X∗ = X + η

where η is a mean zero error term that is uncorrelated with X . Schwartz and Coull (2003)

provide a discussion of this issue in the context of controlling for confounding due to mul-

tiple exposures, but their results apply if we treat one exposure as confounders. Specif-

ically, it can be shown that the expected value of a health effect estimate when using an

exposure that has classical measurement error is given by:

σ2
x

σ2
x + τ 2

(β + ξγ) +
1

σ2
x + τ 2

cov(η, Y )

where τ 2 = var(η) and the pth element of ξ is given by Cip = ξpXi + εi. Note that using

this notation, bias(β̂x) = ξγ. Under the common assumption that the measurement error

is non-differential on the outcome, then the expression simplifies to be:

σ2
x

σ2
x + τ 2

(β + ξγ)

Typically, the term σ2
x

σ2
x+τ2

is referred to as an attenuation factor, as it attenuates the esti-

mated effect E[β̂x] = β + ξγ towards zero.

A.3.2 Bias inflation when confounding has been partially controlled or
different subsets of confounders are used to predict exposure

In this discussion, we consider four types of covariates: (1) those unrelated to outcome

or exposure; (2) those related to outcome but not exposure; (3) those related to exposure

but not outcome; and (4) those related to both outcome and exposure. Covariates of type

(1) and (2) are not interesting in this setting, while (3) should be used to predict exposure

and (4) are the confounders that need to be accounted for in the health effects model.
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First, consider the same set up as before, with the exposure-outcome-confounder rela-

tionship given by Equation 4.1 and 4.2. Let C = (C(1),C(2)) and ΣC = var(Ci) =(
Σ1 Σ12

Σ21 Σ2

)
, where each subset of C could contain any type of covariate. Further,

let W = Cα be the predicted exposure if the exposure model from Equation 4.1 were

known exactly,W1 = C(1)α∗1 be the predicted exposure if the misspecified exposure model

Xi = C
(1)
i α∗1 + ε were known exactly, and W2 = C

(2)
i α∗2 be the predicted exposure if the

misspecified exposure model Xi = C
(2)
i α∗2 + ε were known exactly.

Table A.6 provides the bias of the health effect estimate for each choice of the predicted

exposure and an outcome model that either fails to control for any confounding (Y =

βW + ε) or an outcome model that controls for only C(1) (Y = βW + C(1)γ + ε). Further,

let R̃2
z denote the population value of the R2 from the exposure model that uses arbitrary

Z as a prediction of X . Table A.7 provides the R2 and its corresponding population value

for each of the predicted exposures W , W1, or W2.

The bias of β̂w given in Table A.6 is the bias of the health effect estimate provided in

Equation 4.3 that was previously described under the situation that the predicted expo-

sure W is used in an outcome model that fails to control for any confounding. Recall that

is was shown that this bias is the product of the bias due to lack of adjustment for any

confounding and a bias inflation factor due to exposure prediction that is the inverse of

the R̃2
w.

This relationship holds true for any collection of covariates, regardless of their association

with the exposure and the outcome. For example, suppose all C are only related to the

exposure. Then, there is no confounding and as a result, the bias of β̂w is 0. Similarly,

suppose that all C are only related to the outcome. Then, R̃2
w = 0 because C has no power

to predict exposure, and the bias of β̂w increases in magnitude to infinity.

Next, consider a situation where the true set of confounders C is unknown to the re-

searcher but the true exposure X is observed, and instead of controlling for the full set of

Cs, the decision is made to only control for the subset C(1) (first row, second column). The
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bias of the health effect estimate from the misspecified outcome model Y = βX+γC(1) +ε

is given by bias(β̂(1)
x ) in Table A.6. This corresponds to the bias due to the failure to con-

trol for the confounding due to C(2). In other words, it is the bias due to confounding

that remains after controlling for C(1), but failing to control for the full set of necessary

confounders C. Suppose that C(1) contains all covariates that are confounders and C(2)

contains any remaining covariates. Then, bias(β̂(1)
x ) = 0 because confounding has suffi-

ciently been controlled by C(1) alone. However, suppose that C(2) contains all covariates

that are confounders, C(1) contains any remaining covariates, and C(1) and C(2) are un-

correlated. Then, bias(β̂(1)
x ) = bias(β̂x)R̃

−2
w2

so that the bias of the health effect estimate is

inflated by controlling for covariates that are not confounders. This is a specific example

of bias inflation that arises from conditioning on instrumental variables.1,2

Now consider a situation where the true exposure X is unobserved, and instead is pre-

dicted with a subset of the Cs (second row, first column). The bias(β̂w1) is the bias of the

health effect estimate in the situation that the predicted exposure W1 = C(1)α∗1 is used in

the outcome model that fails to control for any confounding. From Table A.6, we note that

this bias decomposes into two parts, with the first one being the bias due to the failure to

control for confounding due to C(2). Therefore, ignoring the second term, using C(1) to

predict the exposure appears to help control the confounding due to C(1). However, this

is not exactly the case, as the second term of bias(β̂w1) in Table A.6 can either decrease or

increase the magnitude of the bias. Further we note that bias(β̂w1) depends on the inverse

of R̃2
w1

; therefore, the bias of β̂w1 is a function of how well W1 predicts X . As R̃2
w1

goes to

1, bias(β̂w1) = bias(β̂x), so that if W1 predicts X perfectly, we are left with the bias due to

lack of adjustment for confounding in the situation where the true exposure X is known.

Similarly, as R̃2
w1

goes to 0, the bias(β̂w1) increases in magnitude to infinity, suggesting

that if we cannot accurately predict the exposure, we cannot return a valid effect esti-

mate. However, as R̃2
w1

varies between 0 and 1, no general statement can be made about

the magnitude of the bias. Similar results hold for bias(β̂w2).

Suppose that C(1) contains all covariates that are confounders and C(2) contains any re-
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maining covariates. Then, bias(β̂w1) = bias(β̂x)R̃
−2
w1

, or in other words, we have an ex-

pression similar to bias(β̂w) in that we are inflating the bias due to lack of adjustment

for confounding. By moving covariates that are not confounders from C(2) into C(1), we

would increase R̃2
w1

and as a result bias(β̂w1) would decrease. Therefore, if all confounders

are used to predict the exposure, we decrease the bias of the health effect estimate by im-

proving the prediction accuracy.

The last situation provided in Table A.6 is a situation where the true exposure X is un-

observed, instead is predicted with a subset of the Cs, and a different set of Cs are

used to control confounding in the outcome model (third row, second column). Specif-

ically, the bias(β̂(1)
w2 ) is the bias of the health effect estimate in the situation that the pre-

dicted exposure W2 = C(2)α∗2 is used in the outcome model that controls for only C(1)

(Y = βW2 + C(1)γ + ε). We wish to only point out a few features of the expression for this

bias. First, the bias depends on the true underlying effect β0. As the true effect size in-

creases, so does the magnitude of bias. Second, the expression for the bias of β̂(1)
w2 is much

more complex than any of the other biases given in Table A.6 and will not be described

in detail. However, suppose again that C(1) contains all covariates that are confounders

and C(2) contains any remaining covariates. Further, assume that C(1) and C(2) are uncor-

related. Then, bias(β̂(1)
w2 ) = 0. This occurs because: (1) confounding has been sufficiently

controlled through C(1); and (2) the exposure is predicted with covariates that are uncor-

related with confounders. However, if C(1) and C(2) are correlated, then bias(β̂(1)
w2 ) 6= 0.

Considering these results, if we can separate our covariates into two orthogonal sets, one

of which contains all necessary confounders, then we can hope to construct an exposure

prediction model along with an outcome regression model that yield an unbiased health

effect estimate.

The biases given in Table A.6 are difficult to compare, except for in the simplest situations

as in bias(β̂x) and bias(β̂w). Therefore, it is difficult to make any general conclusions about

whether including or excluding a potential confounder from either the exposure model
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or the outcome model is beneficial or detrimental to the final goal of effect estimation.

The previous point warrant further discussion; when the goal of a study is effect estima-

tion, the decision to include or exclude a potential confounder from either the outcome or

the exposure model needs to be based on more than just the predictive power of the po-

tential confounder on the exposure or the strength of the relationship with the outcome,

but instead the decision needs to be based on some tradeoff between the two. Current

statistical methods for model selection fail in this regard, as they have been designed to

control confounding and ignore exposure prediction all together.

A.3.3 Additional simulations

Following the simulation setup of the Section 4.3 exactly, we provide additional simulated

results for two additional choices of the parameter γ. Specifically, let

γa = (0,−0.044,−0.075, 0.105, 0.090,−0.082, 0.096, 0.0897,−0.041, 0.011)

γb = (0.025, 0.0067,−0.0058, 0.005, 0.0208, 0.0033, 0.025, 0.025, 0.0125, 0)

The purpose of these two additional specifications is to illustrate that in some cases, in-

creasing the R2 always decreases the bias, while in others, increasing the R2 always in-

creases the bias. From Figure A.1, we note that the bias increases with the R2. Therefore,

adding additional covariates to the exposure prediction model adds bias to the estimated

health effect. From Figure A.2, we note that the bias decreases as R2 increases. Therefore,

adding additional covariates to the exposure prediction model improves the health effect

estimate.

These results, in addition to those in the main text, provide evidence that bias inflation

due to exposure prediction can either reduce or increase the bias of the health effect es-

timate. Therefore, it is not possible to make general conclusions as to whether better
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exposure prediction models will lead to better health effect estimates.
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Figure A.1: Tradeoff betweenR2 and bias from the hypothetical cohort study of the association be-
tween long-term exposure to PM2.5 and cardiovascular hospitalization rates in the New England
region under γa
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