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Abstract

Practical application of statistics in biomedical research is predicated on the notion that
one can readily return valid effect estimates of the health consequences of treatments (ex-
posures) that are being studied. The goal as statisticians should be to provide results
that are scientifically useful, to use the available data as efficiently as possible, to avoid
unnecessary assumptions, and, if necessary, develop methods that are robust to incor-
rect assumptions. In this dissertation, I provide methods for effect estimation that meet
these goals. I consider three scenarios: (1) clustered binary outcomes; (2) continuous
outcomes with a binary treatment; and (3) continuous outcomes with potentially missing
continuous exposure. In each of these settings, I discuss the shortfalls of current statistical
methods for effect estimation available in the literature and propose new and innovative
methods that meet the previously stated goals. The validity of each proposed estimator
is theoretically verified using asymptotic arguments, and the finite sample behavior is

studied through simulation.
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1. Introduction



Practical application of statistics in biomedical research is predicated on the notion that
one can readily return valid effect estimates of the health consequences of treatments
(exposures) that are being studied. The goal as statisticians should be to provide results
that are scientifically useful, to use the available data as efficiently as possible, to avoid
unnecessary assumptions, and, if necessary, develop methods that are robust to incorrect

assumptions.

In randomized clinical trials, where control over the treatment assignment is possible,
comparing the effectiveness of the treatments is a fairly straightforward endeavor. One re-
lies on the random treatment assignment to ensure that the treatment groups are balanced
with regards to covariates that influence the outcome. However, in situations where a
randomized clinical trial is not feasible, researchers rely on epidemiological evidence to

estimate the effect of different treatments.

For example, consider the problem of estimating the effect of air pollution on cardiovascu-
lar health. A randomized clinical trial designed to answer this question would randomly
assign individual to receive differing doses of air pollution, and require the participants
to receive the assigned level of air pollution for a prolonged period of time. Such a study
is not feasible, as it is not ethical to expose individuals to an exposure (air pollution) that
is known to have detrimental health effects. Additionally, it is not clear how one would
deliver the necessary dose of air pollution without locking the participant in a chamber

that exposes them to a constant level of pollution.

As an alternative, one can consider the epidemiological evidence that air pollution ad-
versely effects cardiovascular health. In such a setting, the spatiotemporal variation in
air pollution and the cardiovascular outcome would be used to estimate the association
of interest. The use of “association” was by choice, as it will be difficult to make any
causal conclusions since the exposure was not randomized. Due to the lack of random-
ization, there may exist other factors that influence both exposure and outcome on the

same spatiotemporal scale (i.e. daily temperature), and as such, will not allow us to prop-



erly estimate the effect of air pollution on cardiovascular health.

This problem is not unique to studies of air pollution and health. Many studies must rely
on observational data in which the exposure has not been randomized, and do so to esti-
mate the health effect of interest. The field of causal inference has attempted to address
this issue by trying to recreate a hypothetical randomized trial based on the observational
data. The potential outcomes framework of Rubin (1974) gives a theoretical foundation
defining a causal effect, and subsequent methodological developments use potential out-
comes to perform valid causal inference from observational data (see Rosenbaum and

Rubin (1983) and Robins et al. (2000) as starting points on relevant literature).

In this dissertation, I address the problem of effect estimation in biomedical research by
tirst defining health effects that are scientifically meaningful. I consider three scenar-
ios: (1) estimating risk ratios from clustered binary outcomes; (2) estimating the average
causal effect of a binary treatment on a continuous outcome; and (3) estimating the lin-
ear effect of a continuous exposure on a continuous outcomes with missing data in the
exposure. For each health effect of interest, I discuss the shortfalls of current statistical
methods available in the literature and propose new and innovative methods that meet
the previously stated goals of robustness and efficiency with minimal assumptions. The
validity of each proposed estimator is theoretically verified using asymptotic arguments,

and the finite sample behavior is studied through simulation.

In Chapter 2, I discuss estimating the risk ratio of a treatment or exposure on a binary
outcome when there is clustering in the data. Such data could arise from a cluster ran-
domized trial or from a study with repeated measures on an individual (e.g. longitudinal
data). In Chapter 3, I discuss estimating the average causal effect of a binary treatment on
a continuous outcome. I propose a new class of estimators for the average causal effect,
the model averaged double robust estimators, that account for model uncertainty in both
the propensity score and outcome model through the use of model averaging. The model

averaged double robust estimators extend the desirable double robustness property by



achieving consistency under the much weaker assumption that either the true propen-
sity score model or the true outcome model be within a specified, possibly large, class of
models. In Chapter 4, I introduce the concept of bias inflation due to exposure prediction
of a confounded effect estimate by simultaneously considering exposure prediction and
confounding adjustment. I derive a closed form expression for the bias of an effect esti-
mate when using a predicted exposure that decomposes into the product of two pieces:
the bias due to the lack of adjustment for confounding and a bias inflation factor due to

predicting the exposure.
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Abstract

Risk ratios are often the target of inference in epidemiologic studies. The log-binomial
model is a natural choice that readily returns risk ratios, but suffers from well known
convergence issues. Alternate methods have been proposed to estimate risk ratios for
a common binary outcome; however, there has been little work in estimating risk ra-
tios for clustered binary data. The modified Poisson regression approach can be used
to take clustering into account through the use of generalized estimating equations, but
leads to a potentially inefficient estimator due to the incorrect distributional assumption.
In this article, we derive an estimate of the risk ratio that accounts for clustering in the
outcome, does not rely on an estimate of the baseline risk for consistency, and delivers
asymptotically efficient estimates of the risk ratio parameter. An alternative efficient es-
timator is provided that bounds the predicted probability by 1, thus guaranteeing stable
performance of the estimator. A simulation study is provided verifying that the proposed
estimator outperforms the modified Poisson approach as well as estimators that assume
no clustering. We apply our method to the Young Citizens study, a cluster randomized trial
involving a behavioral intervention deigned to train children aged 10-14 years to educate

their communities about HIV.

2.1 Introduction

Risk ratios are often the target of inference in epidemiologic studies. They allow a re-
searcher to easily evaluate the multiplicative association between risk factors and binary
outcomes. The log binomial model (Wacholder, 1986) is a natural choice that readily re-
turns risk ratios, but suffers from well known convergence issues (Zou, 2004). The tra-
ditional approach to avoid convergence issues is to report odds ratios by using logistic
regression as the odds ratio provides a good approximation of the risk ratio when the

outcome is rare. However, it is often the case that the outcome is not rare within all levels



of risk factors, and using logistic regression will lead to overestimation of the risk ratio.
Further, the odds ratio effect measure may be misinterpreted by non-experts (Knol et al.,

2011).

Several methods have been proposed to estimate risk ratios for a common binary outcome
(Wacholder, 1986; Lee, 1994; Skove et al., 1998; Greenland, 2004; Zou, 2004; Spiegelman
and Hertzmark, 2005; Chu and Cole, 2010; Tchetgen Tchetgen, 2012). Each of these meth-
ods, except for Lee (1994) and Tchetgen Tchetgen (2012), share the requirement that the
log-baseline risk must be estimated in order to obtain a consistent estimate of the risk
ratios. This requirement is not easily satisfied, and may lead to a violation of the model
restriction that all predicted probabilities are less than 1. Worse, failure to satisfy the

model conditions often results in a lack of convergence of the estimation procedures.

Recently, methods have been proposed to address these issues. Chu and Cole (2010)
developed a Bayesian approach that incorporates the model restriction in the estimation
procedure, while Tchetgen Tchetgen (2012) presents a frequentist approach that allows
for consistent and efficient estimation of the risk ratios that does not rely on obtaining an
estimate for the baseline risk. It was shown that a simple plug-in estimate of the baseline
risk may be used without altering the large sample efficiency of the estimated risk ratios.
Another, the modified Poisson regression approach, has been widely cited and adopted as
a simple method of risk ratio estimation for both observational and intervention studies
(Zou, 2004). This method uses a Poisson distribution for the data in place of the Bernoulli

distribution.

However, there has been little work in estimating risk ratios for clustered binary data.
Such data could arise from a cluster randomized trial or from a study with repeated mea-
sures on an individual (e.g. longitudinal data). Yelland et al. (2011) provide evidence
that the modified Poisson regression approach can be used to take clustering into account
through the use of generalized estimating equations (GEE) (Liang and Zeger, 1986). They

showed that for both observational and intervention studies, the modified Poisson regres-



sion approach using GEEs to account for clustering results in small relative bias and near
nominal confidence interval coverage. A major drawback of this approach is that the co-
variance structure is guaranteed to be misspecified because of the incorrect distributional
assumption, leading to a potentially inefficient estimator. Note that the misspecified co-

variance structure is by choice and is chosen to improve numerical convergence.

In this article, we generalize the work of Tchetgen Tchetgen (2012) to allow for clustered
outcomes in the estimation of risk ratios. We show that our method does not rely on an es-
timate of the baseline risk for consistency and delivers asymptotically efficient estimates
of the risk ratios. A slight modification to the approach is described that guarantees the
estimated probabilities are bounded by 1. Therefore, the method guarantees stable per-
formance of the estimated risk ratios. We provide a simulation study under both correct
and incorrect specification of the working correlation structure that verifies the proposed
estimator outperforms the modified Poisson approach as well as estimators that assume

no clustering.

We apply our method to the Young Citizens study (Kamo et al., 2008), a cluster randomized
trial involving a behavioral intervention deigned to train children aged 10-14 years to

educate their communities about HIV.

2.2 Methods
2.2.1 Independent outcomes

To begin, we give a brief review of the work of Tchetgen Tchetgen (2012). Consider inde-

pendent binary outcomes Y; and a set of g covariates X; with:

log(P(Y; = 1|X;)) = log(E[Yi| Xi]) = a0 + Xif

where the parameter of interest is the g-dimensional vector of log relative risks, f.

8



Tchetgen Tchetgen (2012) provided a simple estimator of /3, that is asymptotically effi-
cient, in the sense that it has the minimal variance of any regular and asymptotically lin-
ear (Bickel et al., 1998) estimator of 3. Specifically, a large class of estimators was derived
that contains many common estimators of the risk ratio as well as the semiparametric
efficient estimator. First, an initial consistent estimate of 3, is provided that is free of the
intercept and can be constructed by solving the equation 0 = ;. _,(Z; — exp{ BW Wi,
where W; = —(X; — X) and Z; = 0 for all i. This corresponds to an artificial case only
model in which the pseudo-outcome Z; is assumed to follow a Poisson distribution with
mean given by the intercept-free multiplicative model exp(8W;), which facilitates its use

with standard regression software. Then, the class of one-step update estimators is given

by:

Bw) =B+ > YiTi(w)

i

> YT (w)X] ] _

where B\ is an initial consistent estimate of 3, and

Ty(w) = {wi B eXPSBTXi)}
>_iexp(B7X;)

It was shown that w; = X, is asymptotically equivalent to the Breslow-Lee estimator,

w; = exp(—BTX;)(X; — X) returns 3 exactly, and B (wept) is asymptotically efficient, with

o\ Xi(1— ;) 'ps
wopt,i:<1_pi) 1 |iX7,_ Zz ( p) p‘|

2.i(1=Dpi)~'ps

and

B = exp(BTX,) > Y;exp(—BTX;) /n

J



In general, the difficulty in estimating f3, lies in the fact that an estimate of the predicted
risk p; must be provided and must be such that predicted probability is bounded by 1 on
the support of X. The estimator 3 (wopt) (and hence p;) uses a simple plug-in estimate for
the log-baseline risk, but any consistent estimate of o, could be used without affecting
the large sample efficiency of ] (wepe). However, this does not guarantee the predicted
probability is bounded by 1 on the support of X. Tchetgen Tchetgen (2012) provides
a solution that bounds the predicted probability without requiring an estimate of the

baseline risk and will be discussed in detail in Section 2.3.1

2.2.2 Correlated outcomes

We generalize the approach of Tchetgen Tchetgen (2012) to allow for correlation among
the outcomes. Let Y, be a k-dimensional response vector and X, be a (kxg) matrix of

covariates for i = 1,...,n. Consider the semiparametric model with the only restriction

E[Y|X] = pu(X|ag, Bo) = exp (ol + X5o)

where 3 is a g-dimensional parameter of interest. Note that all observations share a
common intercept, but this assumption can easily be relaxed as discussed in Section 2.3.2
below. The key in the derivation of our estimator is that our model is semiparametric in
the sense that we allow the intercept and the dependence between outcomes to remain
unrestricted by treating them as nuisance parameters. As a result, our inferences are

robust to misspecification of the baseline risk and working covariance structure.

We briefly review the principles of semiparametric theory. Consider a model M with pa-
rameters (¢, n), where ¢ is a finite dimensional parameter of interest and 7 is a potentially
infinite dimensional nuisance parameter. Define the nuisance tangent space A for the
semiparametric model M as the mean-square closure of scores for the nuisance parame-

ter n along all regular parametric submodels. The efficient score sgf ! for the parameter ¢ in

10



the model M is the orthogonal projection of the score s, for ¢ onto the ortho-complement
A+ to the nuisance tangent space A in the Hilbert space £, = £2(Fp) of mean zero func-
tions with inner product Eg, (T{ T3), where Fy is the distribution function that generated

the data (Bickel et al., 1998).

Define the restricted mean model as Mgy = {F : E[Y|X] = exp(aoly +Xbo)}, 6 =
(ap, o) and let Dg(X) = %. Bickel et al. (1998) gives the set of all influence func-

tions for f3, in the restricted mean model Mg, is given by:

Afr = {p(X) = E[A(X)Ds(X)] " A(X)e : A(X) arbitrary }

As stated before, we treat the baseline risk as a nuisance parameter in our semiparametric
model. Therefore, the nuisance tangent space A ) needs to additionally span the space of
scores for ay. In other words, A = Agy + A,, where A, is the closed linear space spanned
by scores for g along all regular parameteric submodels, or A* = Af,, N A%, where A
is the nuisance tangent space of the semiparametric model in which the baseline risk is a
nuisance parameter. Using this result, one can characterize the set of influence functions
for any regular and asymptotically linear estimator of 3, in the semiparametric model
that treats o, as a nuisance parameter. Proofs of all the following results are provided in

Section A.1.1.

Result 1: The set of all influence functions of [, can be characterized by the set:

E[uT (X300) 1(X;00)]

L _ e AX) = h(X) - pEEOOOL T(X ),
A —{sa(X)—E[A(X)Dﬁ(X)] AX)e: o v

This implies that for any choice of h(X), U(h; X) = A(X)e can be used as an estimating equation
and the resulting estimator has influence function belonging to A*.

Given that we have characterized the set of all influence functions, a result due to Bickel

et al. (1998) states that, under certain regularity conditions, any regular and asymptoti-

11



cally linear estimator of 3, that can be obtained by solving an estimating equation has an

influence function belonging to A+ and asymptotic distribution given by:

\/_(ﬁ Bo) = \/—Z(P ) +op(1

Standard application of the central limit theorem implies:

V(B — Bo) 5 N(0,E[p*2) (2.1)

As we now show, the benefit of treating the log-baseline risk as a nuisance parameter
in a semiparametric model is that solving an estimating equation for 3, whose influence

function belongs to A+ is robust to misspecification of the baseline risk exp(ay).

Result 2: Consider any U (h; X, aw, o) as defined in Result 1, and replace the log-baseline risk

with any arbitrary value o.. Then,
E {U(h, X7 a, BO)] =0

Result 2 implies that we have a set of unbiased estimating equations for /3, that are robust
to misspecification of «; therefore, a working estimate of the baseline risk can be used
in place of the true baseline risk, and the resulting estimators are regular and asymp-
totically linear with influence functions belonging to A*+. The estimator provided for
independent outcomes in Section 2.2.1 has influence function belonging to A+ by tak-
; _ pr 1 E[DT (X)V,,,4(X)u(X60)] B
ing h(X) = Dg(X)V,;(X) — pF(X[0)V; 1 (X), where V;,q(X) =

B
ind E[uT (X[00)V;,, 4 (X)u(X]00 )]

diag{1(X|6y)(1 — u(X|6))} and remains robust to misspecification of the baseline risk

for clustered outcomes. However, the estimator provided for independent outcomes is
inefficient in the setting of clustered outcomes because it fails to consider the covariance

structure between the clustered outcomes.

12



Result 3: The efficient score for By in M is given by U (h®//; X)) with

E [Df (X)VH(X)u(X[6o)]

E [T (X[00)V—1(X) u(X|60)] 1 (X[00)VHX)

h'l = DE(X)VH(X) —

where V (X) = E[ee!|X].

The efficient score U(h®//;X) given in Result 3 can be used as an estimating equation.
The resulting estimator B¢f1 is efficient in large samples and has asymptotic distribution
given by Equation 2.1. In practice, estimation of the nuisance parameters (o and V(X))
is needed. We have already shown in Result 2 that any estimating equation for 3, whose
influence function belongs to A is robust to misspecification of the log-baseline risk;
as a direct result, the efficient score U(h¢//; X) is robust to misspecification of the log-
baseline risk. Further, estimating equations for 3, given by A+ do not depend on the
covariance structure V' (X) for unbiasedness. Therefore, any estimate of V' (X) can be used

in U(h*/7; X) and the resulting estimator still has influence function belonging to A*.

To construct the efficient estimate of the log risk ratio 3, we will use the efficient score in

an estimating equation. Specifically, let j3¢/1 be the solution to:

> UMHI X, Y;) =0 (2.2)
i=1
A theorem due to Bickel et al. (1998) states that for any initial n'/2-consistent estimator of

Bo, an efficient estimator can be constructed by a one-step update in the direction of the

estimated efficient score using:

-1
o3 [t s

2

where 57 is an empirical version of seﬁf I (and Zzg;ff is an empirical estimator of the

expected derivative of the efficient score) obtained by replacing all expectations by their

13



empirical counterpart, with j, estimated by B and exp(ay) estimated by the plug-in esti-
mator >, 17Y; exp(—X; 3). Bickel et al. (1998) also states under standard regularity con-
ditions, n'/2(3¢/1 — ) is asymptotically normal with mean zero and variance given as

before.

In practice, each expectation is replaced with its empirical counterpart, so that BelT s
simple to calculate. One can use the estimate provided for independent outcomes as an
initial 3 ; however, based on our simulations in Section 3.3, a better choice is to use the
modified Poisson estimator. Note that the efficient estimator 3¢/7 is only feasible if VV(X)

is known. Since this covariance function is unknown, it must be modeled.

A major contribution of this method is that it allows a researcher to capture the correla-
tion among the clustered outcomes by modeling of V~*(X), which in turn may be used to
increase the efficiency if correctly specified. Modeling the covariance structure for binary
outcomes can be a challenging task. Consider the parameterization in terms of correla-
tions proposed by Bahadur (1961). If we let R; = {AL;(}I/]—_W' pir = corr(Y;Yy) = E(R;Ry),
piki = E(R; R R;) and so on. Then,

k
Pr(Y =y) = H Hé{j(l - Mj)(l_yJ) L+ Zpikrﬂk + Z PikiT5TETL + oo+ 1L ETIT2 "+ T
j=1 i<k J<k<l

We proceed under the common assumption that all 37 order or higher correlations are
zero, so that all that must be specified to estimate V~!(X) is a working correlation struc-
ture, R(p). Since the model does not put any restriction on V~*(X), we additionally allow
for a dispersion parameter ¢, and V(X;) = ¢A| “R(p)A;”?, where A; = diag[fii(1 — 1i,)).
Common choices of correlation structures include exchangeable, autoregressive, and un-
structured and details of the choices and estimation of correlation parameters can be
found in Liang and Zeger (1986). As a note, in theory ¢ = 1, but we have found that

allowing it be estimated from the data improves finite sample variance estimation.
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2.3 Additional results and simulation

2.3.1 An alternate efficient estimator

Estimation of 3°// depends on K;—/ > = [f;;(1 = 7i;)]"/? through the covariance function,
which is only defined for 0 < ji;; < 1. As such, the efficient estimator may run into
convergence issues if the estimated risks are not bounded by 1. To get around such a

problem, we adopt the method proposed by Tchetgen Tchetgen (2012). Specifically, let

logit(j;;) = logit(exp (04 + Xi(j)ﬁo))

Then, ignoring knowledge about the functional form of the predicted risk, fit the model:

logit(ii;) = &(Xi(f0)

where £(-) is an unrestricted function, and X, is replaced with the initial estimate
Xi() B. Any nonparametric technique can be used to approximate &(-) including polyno-
mial series, kernel smoothing, wavelet regression, or spline regression (Wasserman, 2005;
Friedman et al., 2008). Let Eij = £ (Xi() B) denote such an estimator, and the resulting

[ij = expit {aj} is used in the place of 1;; in the updating of 3¢/7.

Here, we briefly illustrate that polynomial series regression does not change the efficiency
of the resulting estimator. Let ¢y (M;) = M} for k = 1,...,K. Then, for fixed K, let
p; denote the predicted probabilities obtained by standard logistic regression of Y; on
{pp(M;) : k < K} using the data {(1;,Y;) : ¢ = 1,...,n}. A result due to Hirano et al.
(2003) implies that since ¢(+) has at least four bounded derivatives, setting K = Cn'/¢ for
some constant C' is sufficient for the resulting estimator /i; to converge to y; at rates no

slower than n!'/4, and the resulting estimator Bt of By is semiparametric efficient.
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2.3.2 A more general model

All previous results were derived for the model that assumes a common baseline risk
for observations within a cluster, but easily extend to a model that allows for different
baseline risks. Such models are useful in the context of repeated measures over time (i.e.

longitudinal data), and allow for the model to capture the risk changing over time.

As before, let Y, be a k-dimensional response vector and X, be a (kxg) matrix of covariates

fori =1,...,n. Consider the semiparametric model where the only restriction is

E[Y|X] = u(Xlao, Bo) = exp (a0 + X o)

where 3, is a g-dimensional parameter of interest and ay is a k-dimensional vector of log-
baseline risks. Following the same development as before, it can be shown that the set of
influence functions for f3, treating the vector of baseline risks o as a nuisance parameter

are of the form:

p(X) =E[AX)Ds(X)] " AX)e,
AL = A(X) = h(X) = E[h(X)M(X; 00)] E [MT(X; )M (X;60)] " MT(X; ),
h(X) arbitrary

where Dj(X) = 285%0) and M(X; 6) = diag(u(X; fo)).

This set contains influence functions of all regular and asymptotically linear estimators
of 5y when the baseline risk is arbitrarily flexible. As such, this set is contained in the
set of influence functions derived in Result 1 because assuming a common baseline risk
is a more restrictive model. Similarly (but not exclusively), this set could also be used to
construct regular and asymptotically linear estimators of /3, in the context of longitudinal

data where the baseline risk is indexed by time, a/(?).

16



2.3.3 Simulations

In this section, we empirically verify the efficiency of the proposed estimator, and its ro-
bustness to misspecification of the covariance structure. We compare three estimators: (1)
the estimator of Tchetgen Tchetgen (2012) which ignores possible correlation of the clus-
tered outcomes; (2) the modified Poisson approach assuming an exchangeable correla-
tion structure; and (3) our proposed estimator Belt assuming an exchangeable correlation

structure.

The data is generated in a manner to reflect a cluster randomized trial for a binary treat-
ment, and is generated as follows: (1) for each independent cluster i, generate X; as ¢ — 1
normal random vectors and a vector of treatment indicator variables; and (2) generate the
k—dimensional response Y; such that log(E[Y;|X]) = ap + X, with correlation structure
given by R. The baseline risk was chosen to be 0.37. Various relative risks and two corre-
lation structures were considered. First, the exchangeable correlation structure assumes
all pairwise correlations between observations within a cluster are equal to p. This struc-
ture is widely used in practice and is useful in capturing the overall correlation within a
cluster. The second correlation structure we consider mimics what might be expected if
the clusters are households where the first two observations in each cluster are the parents
and the remaining observations are the children. This household correlation structure is

given by:

1 005 01 0.1 0.1
005 1 01 01 0.1
01 01 1 03 03 (2.3)
01 01 03 1 0.3
0.1 0.1 03 03 1

Table 2.1 provides the absolute bias and mean squared error of each estimator for esti-
mating the relative risk of the binary treatment when there are 1000 clusters of size 5 and

the true correlation structure is either exchangeable with p = 0.3 or the household struc-
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ture given in Equation 2.3. Recall that the working correlation structure for the modified
Poisson and the efficient estimator is assumed to be exchangeable. The estimator that
assumes independent observations has the highest mean squared error under each value
of the relative risk, and the efficient estimator has the smallest mean squared error. These
results are as anticipated; accounting for the correlation in the outcome improves the ef-
ticiency of both the modified Poisson and the efficient estimator. Although the modified
Poisson approach accounts for correlation, it is inefficient due to misspecification of the
covariance structure (due to the misspecification of the distribution). The efficient esti-
mator correctly models this covariance structure, and as a result has the smallest mean

squared error.

Consider the results when the relative risk of the binary treatment is 1.05 in Table 2.1
under the exchangeable correlation structure; we note that the three estimators have ap-
proximately the same absolute bias (2.98x107?, 2.67x1073, and 2.89x10~?), but that the ef-
ficient estimator has the smallest mean squared error of 1.93x10~* compared to 2.61x10~?
and 2.00x1073. Moving to the case where the relative risk of the binary treatment is 2,
accounting for the correlation in the outcome dramatically reduces the bias, with the bias
of the estimator that assumes independence equal to 6.18x10™% and that of the efficient

estimator equal to 0.12x107°.

Consider the situations in Table 2.1 where the true correlation structure is the household
structure given in Equation 2.3. Here, the modified Poisson and efficient estimator in-
correctly assume that the working correlation structure is exchangeable, but still show a
reduction in mean squared error when compared to the estimator that assumes indepen-
dence. The same patterns are observed under the misspecification of the covariance struc-
ture as were observed under the correct specification, with the estimator that assumes in-
dependent observations having the highest mean squared error under each value of the
relative risk. In each case, the efficient estimator has smaller mean squared error than
the estimator that assumes independent observations. Further, the bias of the efficient

estimator remains small under the misspecification of the correlation structure. Under
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the case when the relative risk of the binary treatment is 2, the efficient estimator has a
bias and mean squared error of 1.35x107° and 3.58x107%, respectively, while the estima-
tor assuming independence has a larger bias and mean squared error at 10.48x10~* and

3.89x107?, respectively.

Table 2.2 is a reproduction of Table 2.1 but for a continuous covariate in place of the binary

treatment. The results follow a similar pattern.

The results of these simulations verify that the proposed efficient estimator reduces mean
squared error of the estimated risk ratios across a variety of simulated scenarios. All es-
timators considered in this simulation study are consistent and provide asymptotically
valid inference. However, it appears that accounting for clustering in the outcomes re-

duces finite sample bias.

2.4 Application: Young Citizens Data

We applied our proposed estimator for the risk ratio to data from the Young Citizens study
(Kamo et al., 2008). The trial involved a behavioral intervention designed to train children
aged 10-14 years to educate their communities about HIV. The study involved 30 commu-
nities that were paired based on a clustering algorithm incorporating demographics, and
one community in each pair randomly assigned treatment group with the other assigned
to the control group. Residents within each community were surveyed post-intervention
to determine their beliefs about the ability to children to teach the community about HIV.
The primary outcome of this study was a composite scored reflecting the strength of this
belief. However, to illustrate our estimator, we chose to consider a secondary outcome
of the study, specifically the residents” beliefs regarding whether or not the AIDS prob-
lem was getting worse in their community (Stephens et al., 2012). This outcome was

derived by collapsing a 4-point scale with values ”strongly agree”, “agree”, "disagree”,

or "strongly disagree” into two values, “agree” or “disagree”.
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We estimated the risk ratio of the intervention using the efficient estimator given in Sec-
tion 2.2.2 assuming an exchangeable correlation structure, the modified Poisson approach
assuming an exchangeable correlation structure, and the estimator that assumes indepen-
dence given in Section 2.2.1. Additionally, we estimate the odds ratio of the intervention
using a GEE with a logit link and assuming an exchangeable correlation structure. In all
of the estimators, we control for the baseline covariates residential or urban community,
religion, ethnic group, and indicators of wealth by including the covariates into the linear

predictor of the mean.

Table 2.3 provides the estimated risk ratio of the intervention, the standard error, and the
95% confidence interval for each of the estimators considered. We would like to note that
standard GEE for the log-binomial model with correlated data failed to converge, and as
such, a different approach must be taken to estimate the risk ratios. The outcome is not
rare (~82% responded “agree”); therefore, using odds ratios to estimate the risk ratio is
not valid.

Table 2.3: Results of analysis of Young Citizens study
Estimator log(Risk ratio) Std. Error 95% Confidence Interval

Belt -0.0188 0.0375 (-0.0922 , 0.0547)
pmP -0.0206 0.0406 (-0.1002, 0.0590)
Bor -0.1222 0.2529 (-0.6179 , 0.3736)

Estimated log-risk ratio (or log-odds ratio) of the intervention, the standard error, and correspond-
ing 95% confidence interval. 347 is the efficient estimator provided in Section 2.2.2 assuming an
exchangeable correlation structure, BMP is the modified Poisson estimator assuming an exchange-
able correlation structure, and 3O is the log-odds ratio estimated using the GEE with a logit link
and assuming an exchangeable correlation structure.

The efficient estimator and that of the modified Poisson approach provide similar esti-
mates of the log-risk ratio, —0.0188 and —0.0206, respectively, with the efficient estimator
slightly smaller in magnitude. The standard error of the efficient estimator is 0.0375, com-
pared to 0.0406 for the modified Poisson approach. This corresponds to an empirical
asymptotic relative efficiency of 0.85 for the modified Poisson compared to the efficient

estimator, and is reflected in by a narrowing of the confidence intervals. Neither approach
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leads to significant effects at the v = 0.05, but the results do illustrate the efficient esti-
mator has tighter confidence intervals than that of the modified Poisson approach. Also
provided in Table 2.3 is the log-odds ratio estimated using a GEE with a logit link and
assuming an exchangeable correlation structure. The estimated log-odds ratio is —0.1222,
illustrating that the odds ratio is not a good approximation of the risk ratio in the trial

and likely overestimates the relative risk of the intervention.

2.5 Discussion

In this paper, we have proposed an efficient estimator of the risk ratio that accounts for
clustering among binary outcomes. We prove that this estimator is robust to misspeci-
fication of the baseline risk, in the sense that the estimator does not directly rely on an
estimate of the baseline risk for consistency, and showed that it has the smallest asymp-
totic variance of any regular and asymptotically linear estimator. Further, a modification
of the estimator is provided that guarantees the predicted probability is bounded by 1 (a

model restriction), and as a result, guarantees stable performance of the estimator.

Simulations confirm that the proposed estimator has smaller variance than estimators
that assume independence and the modified Poisson approach both under correct and
incorrect specification of the correlation structure. Additionally, the simulations suggest
that the proposed estimator may have smaller finite sample bias in the estimation of the
risk ratios when compared to estimators that assume independence. Therefore, it is im-
portant to account for correlation among clustered outcomes both to improve efficiency

and to remove finite sample bias.

The gains in efficiency of the proposed estimator when compared to the modified Pois-
son approach are due to allowing for correct specification of the underlying data distri-
bution. A priori, the modified Poisson approach incorrectly models the data as a Poisson

distribution, leading to a misspecification of the covariance structure and ruling out the
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possibility of an efficient estimator. The estimator proposed in this paper allows for cor-
rect distributional assumptions, and avoids the common drawbacks of this assumption

by being robust to misspecification of the baseline risk.
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Abstract

We propose a new class of estimators for the average causal effect, the model aver-
aged double robust (MA-DR) estimators, that account for model uncertainty in both the
propensity score and outcome model through the use of model averaging. The MA-
DR estimator is defined as a weighted average of double robust estimators, where each
double robust estimator corresponds to a specific choice for the outcome model and the
propensity score, respectively. The MA-DR estimators extend the desirable double ro-
bustness property by achieving consistency under the much weaker assumption that ei-
ther the true propensity score model or the true outcome model be within a specified,
possibly large, class of models. We provide asymptotic results and conduct a large scale
simulation study that indicates the MA-DR estimator has better finite sample behavior
than the usual double robust estimator. We show that the MA-DR that a priori links the
propensity score and the outcome model can have 90% less variance than a double ro-
bust estimator constructed via model selection for the propensity score and the outcome
model separately. Importantly, our simulation suggests that our MA-DR estimator dra-
matically reduces mean squared error by the largest percentage in the realistic situation

where the outcome model is misspecified.

3.1 Introduction

Methods for causal inference are predicated on knowledge of the covariates necessary
to satisfy the no unmeasured confounding assumption, but the exact set of covariates
needed to control confounding is rarely known. Practical tools that acknowledge uncer-
tainty in confounder selection and are robust to model misspecification are imperative
for correct estimation of the average causal effect (Vansteelandt et al., 2010; Wang et al.,

2012a).

Although the literature on causal inference is vast, existing methods do not account for the
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uncertainty in selection of confounders, C, or in the form of the model for the treatment, X
(Vansteelandt et al., 2010). For example, a wealth of methods that rely on specification of a
propensity score model, P(X|C), for treatment assignment (e.g propensity score matching
or inverse probability weighting estimators; see (Lunceford and Davidian, 2004) for a
review) typically assume that both the covariates to include and the functional form of

the propensity score model are known a priori.

In addition to specification of P(X|C'), a broad class of methods for causal inference rely
on the additional specification of a model for potential outcomes P(Y (x)|C) (Rosenbaum
and Rubin, 1983, 1984; Drake, 1993), where Y (1) and Y (0) are the potential outcomes un-
der each treatment. Included in this class are methods for inverse probability treatment
weighted estimators that are often promoted for properties such as consistency and dou-
ble robustness (Scharfstein et al., 1999; Bang and Robins, 2005; Tan, 2010). Within the class
of double robust estimators, covariate and model selection is specified a priori for both
the propensity score and the outcome models separately, presenting further challenges
to acknowledging uncertainty with respect to the selection of the confounders and pro-
viding robustness to model misspecification. There are few tools or guidelines for model

selection in double robust estimators, and many researchers take an ad-hoc approach.

One possible tool to formally account for model uncertainty in the adjustment for con-
founding is Bayesian model averaging (Raftery et al., 1997; Draper, 1995). These methods
are based on treating the indicators of whether each confounder is included in the model
as a nuisance parameter, and it has been suggested that an effect estimate can be formed
by weighting the model-specific estimates (Hoeting et al., 1999), where the weights are

determined by the models’ posterior probabilities.

In the context of a regression model, where the goal is the estimation of the effect of X on
Y adjusting for measured confounders, the use of Bayesian model averaging with non-
informative priors on the models has received some criticism (Crainiceanu et al., 2008;

Vansteelandt et al., 2010; Wang et al., 2012a): variable selection based on the outcome
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model only prioritizes the Cs strongly associated with Y, and variable selection based
on the propensity score model only prioritize the C's that are strongly associated with X.
Both these approaches can result in inefficient and biased inferences because they fail to

identify the full set of necessary confounders (Brookhart, 2006; Schneeweiss et al., 2009).

Wang et al. (Wang et al., 2012a) propose a solution to this important problem for a con-
tinuous exposure X and with confounding adjustment made by introducing Cs into the
regression model as covariates. Two regression equations are specified along with two
vectors of inclusion indicators: (1) a linear regression model for Y given X and C (the
outcome model); and (2) a linear regression model for X given C (the exposure model).
They assume a priori that if a covariate C is highly predictive of the exposure X, then the
same covariate C will have a large probability of being included into the outcome model.
It is shown that the model averaged estimator of the effect of X on Y, obtained with this
form of prior dependence between the outcome model and the exposure model has lower
mean squared error than the model averaged estimator that assumes a priori that the two

vectors of inclusions indicators are independent.

Accounting for model uncertainty in the context of causal inference is a widely unex-
plored topic. In this paper, we propose a new class of methods for estimating the average
causal effect, which we call the model averaged double robust estimators, that formally ac-
count for model uncertainty through the use of model averaging while maintaining the
desirable properties of consistency and double robustness. These methods provide valid
estimation of the average causal effect that: 1) are robust to the misspecification of the
model for the treatment assignment; 2) are robust to the misspecification of the model for
outcome; and 3) account for the uncertainty in the selection of the confounders in both the
propensity score model and in the outcome model. Importantly, we show that a model
averaged double robust estimator that assumes dependence between the propensity score
and the outcome model a priori and separates estimation of the model weights into two
stages can reduce the mean squared error of the double robust estimator by more than

90% when compared to traditional model selection procedures.
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3.2 Methods
3.2.1 A double robust estimator

Consider continuous potential outcomes (Y (0),Y (1)), binary treatment X, and a p-
dimensional set of potential confounders C. Assume there is no unmeasured con-
founding (Robins et al., 2000) (also referred to as strong ignorable treatment assign-
ment(Rosenbaum and Rubin, 1983)), so that (Y(0),Y (1)) 1L X|C. Let (Y}, Xy, Cy) be
independent observations for h = 1,...,n. We are interested in estimating the average

causal effect:

A=E[Y(1)-Y(0)] = E{E(Y|X =1,C) — E(Y|X = 0,C)} (3.1)

Given a model for the propensity score, P(X = 1|C) = ¢(C'), and a model for the outcome
under each treatment, E(Y|X = 1,C) = my(C) and E(Y|X = 0,C) = mo(C), we define
the well known parametric (AP), inverse probability weighted (ATPY), and double robust

(APR) estimators as:

-~ I~ R
Af = > {ian — Mo}
h=1

IPwW __ 2 : h<\h h h o h h
A E { — } — E —Yh

he1 /e\h 1 — /€\h n i—1 é\h(l — é\h)
APR _ 1 i {YhXh - ()/(\h —en)mip  Yi(l— X)) + (i(h - é\h)ﬁ’mh} (3.2)
n e e 1—¢,

where my;, Mop, and e, are the estimated outcomes and propensity score for individual
h under model m;(C), ms(C), and e(C), respectively. To simplify the model averaging
arguments in the next section, note that APE can be decomposed into APW AP and a

third estimator APTPV
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where APIPW is a parametric inverse probability weighted estimator and iy, = My, if
X, = 1and my, = mg, otherwise. Observe that AP only depends on the outcome model,

APW only depends on the propensity score model, and AP/PW depends on both.

The model for the propensity score and the outcome under each treatment can be selected
in any number of ways. A researcher may rely on expert knowledge to decide both the
functional form and the covariates to include in each model, or may rely on a model
selection procedure that chooses the best model from a set of candidate models. For
the remainder of this paper, we will refer to AM = as the “model selected double robust
estimator” in which both the propensity score and the outcome model have been selected

independently using BIC (Schwarz, 1978) as a model selection procedure.

3.2.2 Model averaged double robust estimator

Let MP = { PSS, M’A;} M = {MOMY . MY, and M! =
{M}, M3, ..., M}, } be finite collections of models for P(X = 1|C), E(Y|X = 0,C), and
E(Y|X = 1,C), respectively. For example, the collection of models for the propensity
score MP® could consist of logistic regression models with all subsets of C' as linear pre-
dictors. Let M = M! x M denote all combinations of models in M' and M°. Further,
define ﬁgﬁ as the double robust estimator corresponding to the models M}” and M.

We define the model average double robust estimator as:
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ij

where p;; = P(M}®, M9™|D) is the joint posterior probability of models M?}* and M7™.
We expand the estimator based on the decomposition in the previous section. Let AIPW,
ﬁ? , and AL/P" be the inverse probability weighted estimator, the parametric estimator,

and the parametric inverse probability weighted estimator for the corresponding models

M* and M$™. Then,

Abp = ZPioAl‘IPW + ZP-jA;) - ZPijAf;IPW (3.4)
i J ]

where p;s = > p;; and pe; = }_;pi;- Note that Equation 3.4 has a model averaged
term for the inverse probability weighted, parametric, and parametric inverse probability
weighted estimators. The variance of the model averaged double robust estimator can be

estimated using standard resampling methods (e.g. bootstrap; see (Efron and Tibshirani,

1993)).

3.2.3 Prior and posterior model probabilities

To complete the specification of the model averaged double robust estimator, a prior dis-
tribution on the model class must be assumed. We will return to choices of priors mo-
mentarily, but first let A; be the prior odds of M, versus some other model M; that both
belong to some model class M. Then, the posterior probability of model M; is given by:

AiBi
Zj:MjeM A;jBj

P(M,|D) = (35)
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where B;; is the Bayes factor for model M, against another model M. Bayes factors and
their estimates are well studied, and there is extensive literature on the subject (Smith and
Spiegelhalter, 1980; Nishii, 1984; Kass and Raftery, 1995; Konishi and Kitagawa, 1996).
Among the properties of Bayes factors is consistency for model selection, which is a nec-
essary component for consistency of A4 as seen in Section 3.2.4. A well known and

popular estimate of Bayes factors is based on BIC (Schwarz, 1978) and allows us to esti-

mate posterior model probabilities with ease.

Returning to the specification of a prior distribution for the model space, the simplest
choice is to assume that all models are equally likely a priori. This corresponds to as-
suming that the prior odds of each model is 1, and that the form of the propensity score
and the outcome model are independent. Therefore, the resulting model averaged double

robust estimator is given by:

APAT =S APV 13" A =S pig ARV (3.6)
7 7 i

where p; = P(M{*|D) and ¢; = P(M$™|D). Notice that because of the prior indepen-
dence, the posterior probabilities of the propensity score and outcome models are also
independent. Therefore, P(M}*|D) and P(M$™|D) can be computed separately using
readily available software, and the model averaged double robust estimator is straight-

forward to calculate as given in Equation 3.6.

However, efficiency can be gained through the use of a prior on the model space that iden-
tifies confounders (C's that are associated with both treatment and outcome) for use in the
propensity score model. Under the prior independence assumption, the posterior model
probability of the propensity score only prioritizes models in which the C's are strongly
associated with X and ignores all relationships with Y. The current literature in causal
inference suggests that inclusion of covariates that are only related to the exposure into

a propensity score model adds to the variance of the resulting double robust estimator
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(Rubin et al., 1997; Brookhart, 2006).

In this light, we propose an alternative formulation of the prior distribution on the model
space that links the propensity score model to the outcome model through prior model
dependence. First, let the prior odds of propensity score model M%’ to M}* conditional

on the outcome model /\/ljm be such that:

P(MP|ME™) {1, if MP® C Mo 37)

W 10, otherwise
where M}* C M$™ indicates that the systematic component of M]” is a subset of the
systematic component of M$™. We refer to the ‘systematic component” of a model as the
specification of its linear predictor, so that there is no issue with the exposure being binary
while the outcome is continuous, and we assume MP?% and M°™ contain models with the
same nested systematic components. We then choose a reference propensity score model
7” such that M{* C M3 for all j. The reference model is either a null model or a
model that includes confounders that are strictly required regardless of the inclusion of
the other confounders. Further, assume that the prior distribution on the outcome model
space is uniform. We will denote the model averaged double robust estimator using this
prior as ﬁjg}‘g_d. The posterior model probabilities used in the construction of ﬁjg]‘g_d
can be estimated by first finding the prior odds of each model combination under the

prior model dependence given by Equation 3.7 and then using Equation 3.5 to find the

posterior model probabilities.

The prior model dependency given by Equation 3.7 forces the set of potential confounders
included in the propensity score model to be a subset of those that are included in the
outcome model. In other words, the prior probability of excluding a variable from the
propensity score model given that it is excluded from the outcome model is one, and
the prior probability of including a variable in the outcome model given that it is in the

propensity score model is one. This type of restriction is supported by the current litera-
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ture on propensity scores (Rubin et al., 1997; Brookhart, 2006), and is related to the priors

for continuous exposure introduced by Wang et al. (Wang et al., 2012a).

Our motivation for this prior distribution on the model space was to identify the set of
potential confounders that should be included into the propensity score model based on
the fact that they are associated with both treatment and outcome, instead of being asso-
ciated with treatment only. In other words, the prior dependency given in Equation 3.7
gives zero weight a priori to propensity score models having a systematic component
that is not included in the outcome model. However, the estimation of the joint poste-
rior model probability P(M}”*, M$™|D) based on this prior has the additional undesirable
property that it allows feedback from the propensity score into the outcome model. This
feedback is such that the posterior model probabilities will favor outcome models that
include any of the potential confounders that are associated with either X or Y, and some
efficiency is lost by including potential confounders that are only associated with X into

the outcome model.

We will cut the feedback from propensity score into the outcome model with the goal of
improving the efficiency of the model averaged double robust estimator through the use
of a two-stage approach for calculating the model weights. The two-stage approach for
calculating the model weights and the resulting model averaged double robust estimator

proceeds as follows:

1. Estimate the marginal posterior of the outcome model, ¢; = P(M$™|D), assuming
a uniform prior on the outcome model space and ignoring the specification of the

propensity score model

2. Estimate the posterior of the propensity score model conditional on the outcome

model, P(M}*|M?™, D), using the prior model dependence given by Equation 3.7

3. Multiply the estimates from Stage 1 and 2 to find the joint model weight of the
propensity score and outcome model, p;; = ¢;P(M}°| M5, D)
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4. Estimate the resulting model averaged double robust estimator ﬁ%‘,ﬁ"dl "using p;; as
the model weights. The notation /7 in the superscript of the estimator corresponds

to the fact that we are calculating the model weights in two stages.

The model weights under this two-stage approach can be easily calculated because they
are a transformation of the model probabilities assuming a uniform prior on the model
space. First, the outcome model probabilities ¢; = P(M$"|D) in Step 1 are simply the
model probabilities assuming a uniform prior on the model space. For the estimation of
P(M{*|M$™, D) in Step 2, note that conditional on each outcome model, the prior odds for
the propensity score models are uniform for models that meet the restriction M} C M?™.
Simple implementation transforming either Bayes’ factors, BIC, or model probabilities
under a uniform prior on the model space to model weights using the two-stage approach

is available.

The difference between the two-stage model weights given by p;; and the proper posterior
model probabilities used in the estimator ﬁﬁf 7% is that the two-stage approach forces the
marginal outcome model weights to be equal to the marginal posterior outcome model
probabilities under a uniform prior on the model space. More specifically, the estimation
of ¢; in Stage 1 of the two-stage method does not correspond to the true marginal posterior

P(M¢$™|D), while the estimation of P(M}”|M$™, D) in Stage 2 does correspond to the true

conditional posterior.

3.24 Asymptotic properties of A4

All of the results of this section require consistency of the posterior model probabilities.
As stated in Section 3.2.3, the Bayes factor and its BIC approximations are consistent (Kass

and Raftery, 1995).

We will show that if either the true propensity score model is contained in M?* or the true

outcome models are contained in M°" and the posterior model probabilities are consis-
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tent for selecting the true models, then we have that AMA is consistent for the average
casual effect defined in Equation 3.1. This result implies that we have added another
layer of robustness to the double robust estimator, as we only need the true models to be
in the collection of models. All — indicate limits as n — 0o, and % indicates convergence

in probability while % indicates convergence in distribution.

Lemma 1. Assume there is no unmeasured confounding, independent observations, and that
MO™ contains the true model, M§™, for both E(Y|X = 1,C) and E(Y|X = 0,C). If pey =
S P(MP MDY B 1, then

A 2 A

Lemma 2. Assume there is no unmeasured confounding, independent observations, and that MP*

contains the true model, MY, for P(X = 1|C). If pre = >_; P(MT", M3™|D) 21, then

AMA 2 A

Theorem 1. Assume there is no unmeasured confounding, independent observations, and let

M and MP® be collections of models. If,

(1) M°™ contains the true models, M{™, for both E(Y|X = 1,C) and E(Y|X = 0,C), and
Per = 3., P(MP°, M™|D) B 1

or

(2) MP* contains the true model, MY", for P(X = 1|C), and p1s = >, P(M}*, M9™|D) = 1

Then,

NN
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Proof. These results can be verified through the use of Slutsky’s theorem and standard

arguments utilizing the no unmeasured confounding assumption. O

The consistency of AM i was shown here in relation to the true propensity score and out-

come model. However, the requirement that M°" and M"* contain the truth could be
replaced with the requirement that M°” and MP?® contain a model that is sufficient to
control confounding. No longer would the requirement be that posterior model probabil-
ity be consistent for the truth, but only that the sum of the posterior model probabilities

that adequately control confounding converges in probability to 1.

Next we will show that if the collection of models M°™ and MP"* contain the true models
and the posterior model probabilities are \/n-consistent for model selection, then ﬁ%‘g is
asymptotically equivalent to Apr when the true outcome and propensity score models

are known a priori and achieves the semiparametric variance bound.

Theorem 2. Consider ﬁ%ﬁ‘ as described by Equation 3.4. Assume no unmeasured confounding
and independent observations. Let M°™ and MP* be collections of models that contain the true
models for E(Y|X =1,C), E(Y|X = 0,C), and Pr(X = 1|C). Let M{™ and MY’ denote the
true outcome and propensity score models, and let ADLE be the double robust estimator using M9™
and MP*. Assume the usual reqularity conditions so that n'/2(APE — A) 5 N(0,V) where V is

the semiparametric variance bound. If p;; =1 — op(\/iﬁ), then

ni2(AMA — A) 5 N(0,V)

or

n'?(Apg = AR = 0,(1)

Proof. This result can be verified by recognizing that p1, = 1 —0,(=) implies p;; = 0,( =)

for (i,7) # (1,1), and repeated application of Slutsky’s Theorem. O
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The restriction on the posterior model probabilities (p;; = 1 — op(\/Lﬁ)) for this result is
quite strong and is not expected to be satisfied easily. Technically speaking, all of the
previous results hold for any consistent model selection procedure, whether Bayesian or
frequentist. This is not surprising, as model averaging and model selection are asymptot-
ically equivalent. However, we expect that in finite samples model averaging and model

selection will differ.

3.3 Simulations

3.3.1 Setup

It is not the purpose of these simulations to verify the asymptotic properties of AM 7, but
instead to illustrate its finite sample behavior relative to the double robust estimator using
model selection for both the propensity score and the outcome model (AM ). We consider
the model averaged double robust estimator assuming both prior model independence
and prior model dependence. Let 3%];‘—" denote the model averaged double robust esti-
mator that assumes prior model independence given by Equation 3.6, let Ngg‘—d denote
the model averaged double robust estimator that assumes the prior model dependence
given by Equation 3.7, and let AY/~%T be the model averaged double robust estimator
that assumes the prior model dependence given by Equation 3.7 and uses the two-stage
approach for calculating model weights. See Table 3.1 for a description of the estimators

considered in these simulations.

We use two groups of simulations. In Group 1, all effects of the potential confounders
are linear in both treatment and outcome. In Group 2, we allow for interactions and
non-linearities in the confounder-outcome and confounder-treatment relationships. We
consider a situation where we have 5 measured potential confounders. In all of our sim-
ulations, we restrict MP® and M°™ to only include linear combinations of the potential

confounders so that there are 2> = 32 models for both the propensity score and the out-
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come. Therefore, in Group 2, the true models are not contained in either M?* or M.

A full description of all scenarios can be found in Table 3.2 and Table 3.3. All simulations
set 8 = 1 and use a sample size of 500 with 10,000 replications. In Group 1, we generate
the data as follows: (1) C4,...,Cs w N(0,1); (2) X ~ Bernoulli(p = expit(Ca®?)); and (3)
Y ~ N(BX + Ca’™,1). We consider different values of the unknown parameters o”* and

a™ to mimic different levels of confounding.

In Group 2, we generate the data in a similar manner, but with non-linearities in the
propensity score or outcome models as follows: (1) C4,...,Cs “ON (0,1); 2) X ~
Bernoulli(p = expit(f(C)); and (3) Y ~ N(5X + ¢(C),1), where f(-) and g(-) are poly-
nomial functions of C'. For example, Scenario 7 is linear in the propensity score model,
with f(C) = C, 4 Cy+ Cs, but non-linear in the outcome, with ¢(C) = 0.537_, 235:1 CiC;.

Additional simulation scenarios and sensitivity analyses are included in Section A.2.2.

Table 3.2: Description of Group 1 in the simulation study comparing double robust estimators for
the average causal effect

Scenario «oP® (PS model) a®™ (Outcome model)
1 (0.4,0.3,0.2,0.1,0) (0,0,0,0,0)

2 (0.5,0.5,0.1,0,0) (0.5,0,1,0.5,0)

3 (0.1,0.1,1,1,1) (2,2,0,0,0)

4 (0.5,0.4,0.3,0.2,0.1) (0.5,1,1.5,2,2.5)

5 (0.5,0.4,0.3,0.2,0.1,0,0,0,0,0) (0.5,1,1.5,2,2.5,0,0,0,0,0)

All effects of confounders are linear on both the treatment and outcome. Data is generated as
follows: (1) Cy, ..., Cs N(0,1); (2) X ~ Bernoulli(p = expit(Ca??));and (3) Y ~ N(BX+Ca’™, 1)

3.3.2 Results

Recall that the “model selected double robust estimator”, 3]‘5 g , refers to the double robust
estimator in which both the propensity score and the outcome model have been selected
independently using BIC based model selection. Table 3.4 provides the percent decrease

in mean squared error of the three model averaged double robust estimators defined in
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Table 3.1 when compared to 3%5, for each simulation scenario when the sample size is

500. Strikingly, we observe the smallest mean squared error using Kgfg—d” across all

simulation scenarios presented here.

Table 3.4: Results of simulation study comparing double robust estimators for the average causal
effect

Percent reduction in MSE
. AMA—i AMA-d AMA-dII
Scenario Apy ApR ApPR

1 0.60 1.35 5.42
2 -0.03 -0.01 5.23
3 1.39 2.00 59.33
4 0.36 0.36 0.36
5 0.76 1.08 1.27
6 -1.16 -5.75 29.1
7 -12.5 -61.78 90.1
8 0.87 1.48 29.9
9 1.24 -0.65 5.94
10 0.19 0.47 0.38

The percent reduction in mean square error as compared to the model selected double robust
estimator when the sample size is 500 for various model averaged double robust estimators. See
Table 3.1 for definition of each estimator and Tables 3.2 and 3.3 for descriptions of each scenario.
Bold indicates estimator with smallest MSE.

We have found that utilizing model averaging strategies on double robust estimators can
reduce mean squared error as compared to the model selected double robust estimator.
Our simulations support this claim, as at least one of the model averaged estimators al-
ways has a smaller mean squared error when compared with the model selected double

robust estimator. This holds even when the true model’s functional form is not included

in the model class considered.

In the Group 1 simulations, where all effects are linear in the potential confounders, model
averaging assuming prior model independence ,&%;;‘—", reduces mean squared error up
to 1.39% compared to model selection. This is a very modest gain, but demonstrates

that simply applying model averaging to account for model uncertainty has a benefit
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over using standard model selection procedures. The estimators A}A~4 and AMA~4,

where we assume prior model dependence, have reductions in mean squared error that
ANM A—i ; ANMA—dIT : :

are generally larger than those of Ay . In fact, the estimator Az has reductions in

mean squared error that range from 0.36% to 59.33%.

Considering Scenario 3, K%*dl ! has 59.33% smaller mean squared error when compared

to the model selected double robust estimator ﬁ%’ 5. Most of this reduction is in the vari-
ance of the estimator, as both estimators have little to no bias. This indicates that even in
the case where all potential confounders are linear in both the propensity score and the
outcome model, model averaging can reduce the variance of the double robust estimator

dramatically if we assume prior model dependence and use the two-stage approach to

cut model feedback.

We can explain this reduction in variance in Scenario 3 by noting that only C'; and C are
confounders, while C, Cy, and Cj are strongly associated with the exposure only. There-
fore, using model selection on the propensity score model independently of the outcome
model will tend to choose models that include Cs, Cy, and C5. These three potential con-
founders are unrelated to the outcome, so their inclusion in the propensity score model
only adds to the variance of the estimator. By utilizing model averaging with the prior
model dependence given by Equation 3.7, we effectively restrict the model space of the
propensity score a priori to be those models that include only the potential confounders
that are associated with the outcome (C; and C5). Thus, C3, Cy4, and C5 are excluded from
consideration by the prior distribution because they are unrelated to the outcome, and
the reduction in mean squared error can be attributed to the correct identification of the
(’s associated with both the outcome and the treatment for use in the propensity score
model. It is important to note here that the 59.33% reduction in mean squared error occurs
when we have both assumed prior model dependence and used the two-stage approach
for calculating model weights. The benefit of the latter point is argued in Section 3.2.3,
but in this specific example, the posterior model probabilities used to construct ﬁgﬁ_d

will favor the outcome model that includes all five potential confounders. This is ineffi-
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cient because only € and (), are associated with the outcome and including C, Cy, Cs -
which are only associated with X - into the outcome model, will lead to a large increase
in the variance of the estimator. Therefore, cutting the feedback from the propensity score

model into the outcome model when calculating the model weights improves efficiency.

In Scenario 4, the estimators ﬁj\gﬁ’i, ﬁ%fé’d, and E%*dl ! each reduce the mean squared
error by 0.36% when compared with 3% 5. This occurs because each of the five potential
confounders are associated with both the exposure and the outcome, where those that are
strongly associated with the outcome are moderately associated with the exposure and
those that are strongly associated with the exposure are moderately associated with the
outcome. Therefore, each method for estimating the posterior model weights will tend to

select models that contain all five potential confounders.

Scenario 5 is a reproduction of Scenario 4, but with an additional 5 potential confounders
that are unrelated to both the exposure and the outcome. In Scenarios 4 and 5, all the
model averaged double robust estimators outperform the model selected double robust
estimator. However, we note that when additional potential confounders are added (Sce-
nario 5), the model averaged double robust estimators gain efficiency as compared to the
model selected variety. This gain is expected to continue as more potential confounders
are added, and since the estimator is scalable to a large number of potential confounders,
the efficiency gain in using model averaging over model selection is likely to increase as

the number of potential confounders grows.

Moving to Group 2 of the simulations, where the class of models considered is misspec-
ified for either the propensity score or the outcome, ﬁ]‘gﬁ_i increases the mean squared

error in 2 out of the 5 scenarios, the estimator A}~ increases the mean square error in 3

MS
D

out of 5 scenarios compared to A}z, and no general conclusion about the comparison of

model selection versus model averaging can be made. However, the estimator A} 2~%!
has a smaller mean squared error than A¥5 in all presented scenarios and reduces the

mean squared error between 0.38% and 90.1%. In fact, ﬁjgﬁ’dl ! appears to reduce mean
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squared error the most when the outcome model has been misspecified (Scenarios 6-8). In

all of the Scenarios 6-8, ﬁgﬁ_dl !'has at least 25% smaller mean squared error than AM 5.

In Scenario 7, the use of model averaging has reduced the variance (again, the mean
squared error approximates the variance due to little to no bias) by 90.1%. To put this into
perspective, if the model selected double robust estimator had a variance of 10, then the
model averaged double robust estimator assuming prior model dependence and using

the two-stage approach for calculating model weights would have a variance of about 1.

To illustrate the why cutting the feedback between the propensity score model and out-
come model is effective, Tables 3.5 and 3.6 provide the marginal outcome model and
propensity score model weights, respectively, used in the construction of 3%‘[ P 3% A=,
and ﬁgﬁ’dl ! for Scenario 7 averaged over the 10,000 realizations. First, we will compare
the model weights that are used in ﬁ%f 27" and ﬁ% A=4IT to describe why K?j A~" increases
the mean squared error by 12.5% while ﬁgﬁ_dl ! reduces mean square error by 90.1%
when compared to the model selected double robust estimator. Note that the marginal
outcome model weights used in ﬁ%&f‘_i and ﬁjg]’?_dﬂ are the same, so that the differ-
ence in the two estimators is due to the propensity score model weights. Referring to
Table 3.6, the model weights used in construction of 3%&4”' assign 83.5% of the mass to
the true propensity score model, while the weights used in construction of ﬁjg 274 place
the mass across many different propensity score models. The reduction in mean squared
error can be attributed to the fact that when the outcome is non-linear in the potential
confounders, it is unclear if adjusting for confounders linearly in the propensity score is
optimal. The estimator ﬁj‘g,?_dl ! captures this uncertainty, and the resulting model av-
eraged double robust estimator averages over many different propensity score models

resulting in a 90.1% reduction in mean squared error.

Next, we compare the model weights that are used in 3%&4_‘1 and ﬁjgﬁ_dl " to describe
why AYA-4 increases the mean squared error by 61.78% while A¥A~-9T reduces mean

square error by 90.1% when compared to 3%5 . The prior model dependence forces a
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The marginal posterior outcome model weights used in the construction of A D

Table 3.5: Marginal posterior outcome model weights in Scenario 7

Model Systematic Component ANAT AMR—d AMA-dI
1 Ch 0.043 0 0.043
2 Cy 0.043 0 0.043
3 Cs 0.045 0 0.045
4 Cy 0.046 0 0.046
5 Cs 0.043 0 0.043
6 Cy + Oy 0.031 0 0.031
7 Cy + Cs 0.032 0 0.032
8 Cy+Cy 0.032 0 0.032
9 Cy + Cs 0.031 0 0.031
10 Cy+Cs 0.032 0 0.032
11 Cy + Cy 0.032 0 0.032
12 Cy + Cs 0.032 0 0.032
13 Cs+ Oy 0.035 0 0.035
14 Cs + Cs 0.032 0 0.032
15 Cyi+Cs 0.032 0 0.032
16 Ci+Cy+Cs 0.025 0 0.025
17 Cy+Cy+Cy 0.025 0 0.025
18 Cy+Cy+Cs 0.027 0.437 0.027
19 Cy+C5+Cy 0.026 0 0.026
20 Cy+C5+Cs 0.025 0 0.025
21 Ci+Cy+Cs 0.025 0 0.025
22 Co+Cs5+Cy 0.026 0 0.026
23 Cy+C5+Cs 0.024 0 0.024
24 Co+Cy+Cs 0.025 0 0.025
25 Cs+Cy+Cs 0.025 0 0.025
26 Ci+ Cy + C5+ Cy 0.022 0 0.022
27 Ci+ Cy +C3+ Cs 0.025 0.216 0.025
28 Ci+ Cy +Cy+ Cs 0.025 0.216 0.025
29 Ci+ Cs+Cy + Cs 0.022 0 0.022
30 Cy+ C5 + Cy + Cs 0.022 0 0.022
31 Ci+Co+Cs5+Cy+C5  0.027 0.131 0.027
32 intercept only 0.063 0 0.063

MA—i NMA—d
4 ADR

R

, and

KAD/[I?_M I for each model in M°™ in Scenario 7 and sample size 500 averaged over the 10,000
realizations. See Table 3.1 for a description of the estimators and Table 3.3 for a description of

Scenario 7
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Table 3.6: Marginal posterior propensity score model weights in Scenario 7
Model Systematic Component ANAT AMR—d AMA-dI

1 Cy 0 0 0.126
2 Cs 0 0 0.127
3 Cs 0 0 0.021
4 Cy 0 0 0.021
5 Cs 0 0 0.126
6 Ci + Gy 0 0 0.099
7 Ci + Cs 0 0 0.003
8 C1+Cy 0 0 0.003
9 C1+Cs 0 0 0.094
10 Cy + (s 0 0 0.004
11 Cy + Cy 0 0 0.002
12 Cy + Cs 0 0 0.097
13 Cs+Cy 0 0 0

14 C3 4 Cs 0 0 0.003
15 Cy +Cs 0 0 0.003
16 C1+Cy+Cs 0 0 0.003
17 Ci+ Cy + Cy 0 0 0.003
18 C1+Cy+ Cs 0.835  0.941 0.095
19 Ci+C3+Cy 0 0 0

20 C1+C3+Cs 0 0 0.006
21 Ci+Cy+Cs 0 0 0.003
22 Co+C3+Cy 0 0 0

23 Cy+C3+ Cs 0 0 0.003
24 Co+Cy+ Cs 0 0 0.003
25 Cs+Cy+ Cs 0 0 0

26 Cir+Co+Cs5+Cy 0 0 0

27 Ci+Co+C5+Cs 0.08 0.029 0.004
28 Ci+Co+Cy+Cs 0.078  0.029 0.004
29 Ci+C3+Cy+Cs 0 0 0

30 Co+C3+Cy+Cs 0 0 0

31 Ci+Co+Cs+Cy+Cs  0.007  0.001 0

32 intercept only 0 0 0.146

The marginal posterior propensity score model weights used in the construction of &1\1%14,

ﬁj\g é‘_d, and 3%1 E‘_dl ! for each model in M°™ in Scenario 7 and sample size 500 averaged over the
10,000 realizations. See Table 3.1 for a description of the estimators and Table 3.3 for a description
of Scenario 7.
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potential confounder that is included in the propensity score model to be included in the
outcome model, and we see this through the marginal outcome model posterior proba-
bilities used in the construction of ﬁjg]‘g_d. All of the mass is assigned to outcome mod-
els that include the three potential confounders that are associated with the treatment
(Cy, Cy, and Cs) — only 4 of the 32 models have non-zero mass. The estimator ﬁgé_dl I
distributes the outcome model weight more evenly across the model space, with all 32
outcome models receiving mass between 0.022 and 0.063. A similar result is observed in
the marginal propensity score model weights, with ﬁjgﬁ_d assigning 94.1% of the mass
to the true propensity score model and ﬁj‘g A7 distributing the weight across the model
space. Therefore, the weights used in the estimator ﬁgﬁ’d tends to favor the potential
confounders that are associated with the treatment in both the propensity score model
and the outcome model. The data generating mechanism is non-linear in the potential
confounders; using model selection or assigning most of the posterior weight to a few
models that adjust for confounding linearly led to an inefficient estimate. This is impor-

tant, as it emphasizes that model averaging provides the most gain in efficiency when

there is non-linearities in the data generating mechanism.

To further emphasize this point, Figure 3.1 plots the model specific double robust esti-
mators 351% versus their corresponding posterior weights p;; used in the construction of
AMA= AMA=d and AMA=dIT for a single realization of the data in Scenario 7. The verti-
cal line is placed at the value of the corresponding model averaged estimator. It can be
seen that when estimating both ﬁ%g—i and ﬁ]gﬁ_d, the posterior mass is assigned to a
few models that provide biased estimates of the true A = 1. When estimating AXA-417,
the posterior weight is spread across a different set of models that all provide a less bi-
ased estimate of A=1. As a reference, the model selected double robust estimate of A
is AMS — 384, which lies in the region of models that are assigned positive mass when

estimating both A¥A~7 and AMA-d,

Figure 3.1 provides results for a single realization of the data in Scenario 7, and as such,

could be an artifact of randomness. To provide evidence of the contrary, Figure 3.2 pro-
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vides a plot averaged over 10,000 realizations of the data in Scenario 7 that is constructed
as follows: (1) for each simulated dataset, we round the model specific estimates ﬁg.R
to the nearest whole number; (2) we assign each integer to the sum of the weights p;; of
the model specific double robust estimators that are mapped to that integer; and (3) we
average the weights that are assigned to each integer over the 10,000 realizations of the
data. In the estimation of ﬁjg]’g_dl !, approximately 80% of the posterior weight is assigned
to models whose estimates round to the true value of A = 1, while in the estimation of
AMA= and A4, only between 40% and 60% of the posterior mass is assigned to these
same models. The model specific double robust estimators were rounded to the near-
est integer to collapse the estimators based on the quality of the estimate within a given
dataset. This allows us to summarize on average, how well do models that are assigned

positive weight estimate A = 1.

Putting the information from Figure 3.1 and 3.2 together, ﬁj‘gﬁ_df T'is a weighted aver-

age of model specific estimates that assigns most of the posterior weight to models that
AMA—dII
DR

provide better estimates of A = 1. This leads directly to reducing the mean

squared error by 90.1% when compared to AMS In comparison, the estimators ﬁj‘gﬁ_"
and Mfg‘*d fail to assign high posterior weight to models that provide good estimates of

A =1, leading to more variable estimators.

The decision to compare the efficiency of the model averaged double robust estimator
to that of the model selected double robust estimator was made because in practice, one
must always make a decision regarding the models to be used. Without relying on expert
knowledge, the only other alternative is to include all of the potential confounders in
both the propensity score and outcome models. A sensitivity analysis was performed
that indicates the results of our simulations are not sensitive to the choice of using model
selection in place of the kitchen sink approach. Additionally, if we allow the potential

confounders to be generated in a non-i.i.d. fashion, similar results hold.
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Figure 3.1: The model specific double robust estimators ﬁfj’R versus their corresponding posterior
weights p;; used in the construction Bgﬁ_i, Ejg ﬁ_d, and 3]2)4}%4—(11 Toffora single realization of the
data in Scenario 7. The vertical line is placed at the value of the corresponding model averaged
estimator. The true value of A is 1. See Table 3.1 for definition of each estimator and Table 3.3 for

a description of Scenario 7.
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Figure 3.2: Summary of the posterior weights p;; averaged over 10,000 realizations of the data
in Scenario 7 that is constructed as follows: (1) for each simulated dataset, the model specific
estimates ﬁi’:;R are rounded to the nearest whole number; (2) each integer is assigned the sum of
the weights p;; of the model specific double robust estimators that are mapped to that integer;
and (3) average the weights that are assigned to each integer over the 10,000 realizations of the
data. The horizontal axis is the value of the model specific double robust estimators that have
been rounded to the nearest integer, and the vertical axis is the sum of the posterior weights of
the corresponding model averaged double robust estimators that round to the specified integer
averaged over the 10,000 realizations. The true value of A is 1. See Table 3.1 for definition of each
estimator and Table 3.3 for a description of Scenario 7.
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3.4 Discussion

We introduced model averaged double robust estimators, a new class of estimators for the
average causal effect that account for model uncertainty. We proved that these estimators
extend the popular double robustness property, by only requiring that the propensity
score model or the outcome model be within a class of models. We also assessed small
sample behavior: in realistic scenarios we showed substantial improvements over ap-

proaches that do not consider uncertainty in variable selection.

Our asymptotic results build on the most basic double robust estimator for the average
causal effect. It has been demonstrated elsewhere that this double robust estimator can
be biased especially when some of the estimated propensity scores are close to zero or
are highly variable, and several adjustments to the estimator have been proposed (see
(Robins et al., 2007; Cao et al., 2009; Tan, 2010) for discussion on this topic). The results on
consistency of the model averaged double robust estimator will carry over to these other
double robust estimators. Also, in the definition of the model averaged double robust
estimator, we have assumed that the confounders’ effect on the potential outcomes are
the same between treatment groups, but this assumption is unnecessary. The methods
presented in this paper can easily be extended to situations where the response surface
differs between potential outcomes (Wang et al., 2012b) by using separate models for the

potential outcomes, and independently calculating the posterior model probabilities.

We devised a two-stage approach for calculating the weights of the propensity score and
outcome models. This two-stage approach utilizes a prior distribution on the model space
that assumes dependence between a confounder’s inclusion in the propensity score and
the outcome model while cutting feedback from the propensity score model into the out-
come model. Different choices of priors on the model space could have induced other
desirable dependencies between the propensity score and the outcome model. For exam-
ple, a similar dependence is implicit in the recent method proposed by Wang et al. (Wang

et al., 2012a), for continuous exposures in the context of linear regression. This work has
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recently been extended to binary exposures by Zigler and Dominici (Zigler and Dominici,

2012) in the context of stochastic search variable selections for propensity score models.

In our simulations, we have shown that through this two-stage approach for the calcula-
tion of model weights, one can reduce the mean squared error of the proposed estimator
substantially —more than 90% in the most extreme cases. Reductions in mean squared
error are largest in the likely situation when the outcome model is outside the model class
considered and guaranteed to be misspecified. These results are not surprising, as there
is a growing body of evidence that the use of non-informative priors for model selection
in causal inference is not optimal (Brookhart, 2006; Crainiceanu et al., 2008; Schneeweiss
et al., 2009; Vansteelandt et al., 2010; Wang et al., 2012a). While ﬁgg_dl " had the smallest
mean squared error in the majority of the sensitivity analyses presented, in a few cases
another estimator was more efficient. In these situations, the difference between the most
efficient estimator and AYA~9T was minimal. It is unlikely that a researcher will correctly
model the outcome; therefore, if a researcher chooses to use a doubly robust approach for
estimation of the average causal effect, the two-stage model averaged double robust esti-

mator with prior model dependence ﬁj\g]‘g_dl I provides a very attractive implementation.

We restricted our class of models to be linear in the potential confounders, but even in
the presence of non-linearities in the data generating mechanism, there were observed
reductions in mean squared error as compared with the double robust estimator that
performs model selection for the propensity score and the outcome model separately.

Extension to nonlinear model classes would be conceptually straightforward.

Further work is needed to investigate whether these conclusions continue to hold when
the set of potential confounders is larger and when the sample size is smaller (large p
and small n). However, it is legitimate to conjecture that the improvements in efficiency
should be greater in both directions, as both would emphasize the difference between
model selection and model averaging. From this perspective, we expect that the gains

presented in Section 3.3 should be conservative. For large model spaces, it is not feasi-
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ble to explore every model combination as we did in our simulation study. However,
one could implement Bayesian methods designed for model selection in the high dimen-
sional data setting (George and McCulloch, 1993; O'Hara and Sillanp&a, 2009; Johnson
and Rossell, 2012), and use the corresponding posterior model weights in a model aver-

aged double robust estimator.

The methods described in this paper share some similarities with the targeted maximum
likelihood super-learner of van der Laan and colleagues (van der Laan et al., 2007; van der
Laan, 2010). The super-learner acknowledges that no single learner is optimal and at-
tempts to combine learners in a fashion to minimize a loss function via cross-validation.
In this sense, model averaging the double robust estimator achieves the same goal, but
instead combines candidate estimators via their posterior model probabilities. To fur-
ther distinguish the methods, one must recognize that in both cases a researcher needs to
characterize some underlying part of the true data distribution (e.g. the propensity score),
denoted Q, to estimate the average causal effect. The super-learner attempts to find the
best estimate of Q upfront, and then uses this estimate of Q to construct a single estimator
of the average causal effect. In contrast, the model averaged double robust estimator con-
structs several estimates of the average causal effect based on different parametric models
that fully characterize Q, and then directly averages these model specific estimates based

on the posterior support of each model.

Causal inference approaches are increasingly used to analyze large observational studies,
such as administrative databases used in comparative effectiveness research or environ-
mental epidemiology. In these applications, there seldom is a clear-cut way of deter-
mining a priori the precise set of confounders of scientific relevance. At the same time,
improvements in computing speed and parallelization are creating the opportunity for
a more systematic investigation of alternative specifications for confounding adjustment.
In this scenario, the proposed model averaging strategy shows great promise as a data
analysis tool to perform robust and consistent inferences with good small sample proper-

ties.
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Abstract

Current epidemiological methods for studying the health effects of air pollution rely on
exposure prediction models to align the air pollution exposure values with the outcome
of interest. Such prediction is necessary because ambient air pollution is measured at a
set of fixed and spatially sparse monitors that do not cover the entire study region, and in
general, do not align spatially with the outcome. Many air pollution prediction methods
have been suggested, including the nearest neighbor approach, kriging, and land-use
regression. In land-use regression, geographic covariates are used in a regression model
to improve the local heterogeneity of the predicted exposure, but little consideration is
made as to whether the land-use covariates are also spatially correlated with the outcome.
In this paper, we introduce the concept of bias inflation due to exposure prediction of
a confounded health effect estimate by simultaneously considering exposure prediction
and confounding, and discuss its impact on air pollution epidemiology. We derive a
closed form expression for the bias of a health effect estimate when using a predicted
exposure that decomposes into the product of two pieces: the bias due to the lack of
adjustment for confounding and the bias inflation factor due to predicting the exposure.
Importantly, we show that bias inflation factor can be large even when the confounding
bias is small; therefore, our results suggest that exposure prediction and confounding

adjustment need to be considered simultaneously.

4.1 Introduction

In the past two decades, there has been a wealth of epidemiological research on the health
effects of air pollution (see Dominici et al. (2003); Pope (2007); Breysse et al. (2012) for
reviews of the literature). Most published studies have found significant associations
between short-term and long-term exposure to ambient levels of air pollution and a wide

range of adverse health outcomes.
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Due to the spatial nature of air pollution monitoring networks, spatial misalighment be-
tween the exposure and outcome is very common in these studies of air pollution and
health. This occurs because the air pollution measurements are obtained from fixed mon-
itoring locations, while the outcome data is generally not available at the exact monitor
locations. As such, the great majority of cohort studies are affected by some sort of mis-

alignment between exposure and outcome.

The current approach to align exposure and outcome is to use observed air pollution
measurements at the monitor locations to develop a statistical model for predicting air
pollution levels that align with the outcome data. Many different methods can be em-
ployed to predict missing air pollution values, including nearest neighbor and kriging
approaches (Oliver and Webster, 1990; Madsen et al., 2008). These approaches typically
lead to predicted exposure values that are spatially smoother than the true underlying
exposure. Recently, land-use regression (LUR) has garnered much attention because of
its ability to improve local variation in the exposure prediction by incorporating land-use
(geographic) covariates into the prediction model. Hoek et al. (2008) provides a review
of LUR models, and see others for application of LUR in epidemiology (Henderson et al.,
2007; Ross et al., 2007; Yanosky et al., 2008; Sahsuvaroglu et al., 2009; Neupane et al., 2010;
Kloog et al., 2012a,b; Cesaroni et al., 2013).

Another issue that is prevalent in cohort studies of air pollution and health is spatial
confounding, which arises due to the complex spatial dependencies that exist between air
pollution, the health outcome of interest, and other covariates. A researcher will employ
expert knowledge in an attempt to control any spatial confounding through the use of
covariates that vary in space. Great care is taken to minimize the magnitude of the bias
in the health effect estimate, although it is unlikely that the bias has been completely

negated.

Sheppard et al. (2011) provides a discussion of both confounding and exposure measure-

ment error in air pollution epidemiology, and points out that exposure assessment should
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be evaluated in the context of health effect estimation. With effect estimation in mind, it
is known that: (1) better exposure prediction (i.e. smaller prediction error) does not nec-
essarily lead to better effect estimation (i.e. smaller mean squared error) (Szpiro et al.,
2011a); and (2) confounding can lead to biased effect estimation (Pope III and Burnett,
2007). However, the current literature treats confounding and exposure prediction as two
separate statistical issues. That is, methods that account for the measurement error in the
predicted exposure often fail to acknowledge the existence of confounding, while meth-
ods designed to control confounding often fail to acknowledge that the exposure has been

predicted.

In this paper, we introduce the concept of bias inflation due to exposure prediction of a con-
founded health effect estimate by simultaneously considering exposure prediction and con-
founding and discuss its impact in the context of epidemiological studies of air pollution
and health. We show that if confounding has not been sufficiently accounted for in the
health effect model and a predicted exposure is used in place of the true exposure, then
the bias of the health effect estimate can be larger (in magnitude) than the bias due to
confounding when using the true exposure. We derive a closed form expression for the
bias of a health effect estimate when using a predicted exposure that decomposes into
the product of two pieces: the bias due to the lack of adjustment for confounding and a
bias inflation factor due to predicting the exposure. Therefore, exposure prediction and

confounding adjustment must be considered simultaneously.

4.2 Bias inflation due to exposure prediction

Bias inflation due to exposure prediction of a confounded health effect estimate occurs
when there exists bias due to the lack of adjustment for confounding and exposure pre-
diction is necessary. Therefore, to begin the discussion of bias inflation, we first must

define what is meant by bias due to the lack of adjustment for confounding.
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Let C; be a set of normally distributed covariates with mean p. and covariance ¥, and
assume that the outcome Y; and the exposure X; are generated under the following linear

models:

Y; = 5oX; + Ciyo + € (4.1)

Xz' = CZ‘OC() + 6? (42)

where €/ and ¢/ are independent, normally distributed, mean zero error terms with vari-
2 2 . . . . . .

ances o, and o7, . Suppose interest lies in the estimation of the linear exposure-outcome

relationship /3, conditional on the covariates C,. Here, and throughout, no restriction is

placed on 7, or o, and individual components of the vectors are free to be 0.

We define bias due to the lack of adjustment for confounding as the bias in our estimation
of 3y that is due to failure to control for the covariates C;. That is, if one were to ignore
C; when fitting the outcome regression model and instead fit ¥; = BX; + ¢;, then the
least squares estimate for 3, call it sz is biased. We call this the bias due to the lack of

~

adjustment for confounding and denote it as bias(gm) = E[B. — o).

Now suppose that the exposure and outcome are completely misaligned (that is, either
the exposure or the outcome is observed for all 7, but not both). Further, let W; = C,aq
be the predicted exposure with oy known. Consider fitting the outcome regression model
that uses the predicted exposure ; in place of the true exposure X; and fails to control
for any confounding (Y; = SW, + ¢;). The bias of the least squares estimator for j3, call it

B, is given by:

N

bias(Bu) = E[Bu — Bo] = bias(B,) % (4.3)

g

g

2
z|c

where 02 = 02 + ¢ and 02 = ol X.ap denote the variances of X and W, respectively.

We call the second term of Equation 4.3 (;—2) the bias inflation factor, and note that it is
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equal to the inverse of the population R? when using W to predict X. From an intuitive
standpoint, we expect that the variation in the true exposure o2 will always be more than
the variation in the predicted exposure o2, and hence, the bias inflation factor is always

greater than 1 (i.e. the R? is always less than 1).

Notice that the bias of j3,, is the product of two pieces: (1) the bias due to lack of adjust-
ment for confounding assuming that the true exposure is known (bms(@,)); and (2) the
bias inflation factor due exposure prediction (%). It is easy to see that bz’as(fB\I) = 0 im-
plies that bias(f,) = 0; therefore, bias inflation due to exposure prediction should only
an issue if there is some uncontrolled confounding. However, even in the presence of

uncontrolled confounding, bias(gx) # 0 implies bias(gw) # 0.

The bias inflation factor decreases as R? increases and goes to 1 as the exposure model
is able to predict the true exposure X more accurately. Note that the bias inflation fac-
tor can be large even if the bias due to lack of adjustment for confounding is small. It is
tempting to suggest that in an attempt to obtain an unbiased estimate of the health ef-
fect, a researcher should build an exposure model that more accurately predicts the true
exposure (a model with the largest R?). However, the relationship is not that simple. In
fact, the bias of the health effect estimate can either increase or decrease in magnitude if
a subset of the confounders are used in the exposure prediction model (see Section A.3.2
for closed form results). We will illustrate this concept using a simulated cohort study of
the association between long-term exposure to PM; ;5 and cardiovascular disease in the

New England region.

The previous results can easily be extended to situations where: (1) the outcome, ex-
posure, and confounders are not assumed to be normally distributed; (2) the exposure
prediction model uses a subset of the Cs as defined in Equation 4.2; and/or (3) the out-
come model controls for a subset of the Cs as defined in Equation 4.1. For (1), we replace
expectations with convergence in probability and all results continue to hold. For (2) and

(3), closed form expressions for the biases are available in Section A.3.2.
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In air pollution epidemiology, it is of great concern that there may be unmeasured spatial
confounding. A researcher will attempt to control spatial confounding through the use
of covariates that vary in space and is hopeful that the magnitude of the bias is mini-
mal. The previous results can also be extended to incorporate these situations. Without
going into mathematical details, it can be shown that if: (1) there is unmeasured spatial
confounding; and (2) covariates that vary in space are used to predict air pollution, then
there exists the potential for bias inflation due to exposure prediction. It is a challenge
to untangle the complex spatial dependencies between the health outcome, air pollution,
the measured covariates, and the unmeasured spatial confounders, and as such, it will be
difficult to begin to quantify the magnitude of bias inflation due to exposure prediction
in such studies. However, the existence of this bias can be demonstrated mathematically
and by simulation, and much greater care is needed when predicted exposure levels are

used in air pollution epidemiology research.

4.3 Simulations

4.3.1 Setup

Through the introduction of the concept of bias inflation due to exposure prediction, we
have provided theoretical evidence that an exposure prediction model chosen solely on
its ability to predict the true exposure may not lead to a better health effect estimate.
We now provide a simple simulated example that clearly shows better prediction (higher
R?) does not imply better effect estimation and illustrates bias inflation due to exposure

prediction.

Consider a hypothetical cohort study of the association between long-term exposure to
PM, 5 and cardiovascular disease in the New England region. Assume we have the car-
diovascular hospitalization rates over the study period for each of the 2165 zipcodes in

New England, and we wish to assign each zipcode to the mean PMj 5 level over the study
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period as a measure of exposure. Of the 2165 zipcodes, 57 have air pollution monitors
within their boundaries, and the exposure for these zipcodes can be measured directly as
the mean monitor value during the study period. For the remaining 2108 zipcodes, we

assume the exposure values are missing and need to be predicted.

Figure 4.1 provides a map of the 2165 zipcodes in New England, with the 57 PM, 5 moni-
toring locations marked with an x. We observe that the PM, 5 monitors are sparse in New
England, and tend to cluster near major population centers. As such, the spatial hetero-
geneity in PM, 5 across New England will be difficult to capture based solely on spatial

location (i.e. latitude and longitude).

Figure 4.1: Map of the 2165 zip codes in New England, with the 57 PM3 5 monitoring locations
marked with an x
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The intention of this simulation is to illustrate how the choice of covariates used in the
PM,; 5 prediction model will affect the estimated health effect of long-term PM, 5 exposure
on hospitalization rates for cardiovascular disease. As such, we generate 1000 realizations

of our hypothetical cohort in the following manner:

1. Use the observed distribution of 9 land-use (LU) covariates for each zipcode in New
England. Table 4.1 provides a complete list and summary statistics for each land-use

covariate considered.

2. Augment the 9 LU covariates with one N(0,1) random variable, and denote the

centered and standardized versions of these 10 covariates as C;.

3. Generate the exposure based on the relationship between the observed PM, 5 levels
and C. That is, fit the exposure model X; = C;a + ¢, for the 57 zipcodes that have
observed PM, 5 measurements, and use the resulting & and 0% =var(e,) to generate

a simulated “true” exposure as: X, = C;a + N(0,52)

4. Generate the cardiovascular hospitalization rates: In(Y;) = BX)E- + Ciy +
N(0,0.467%), where v = (0.01,0.01, 0.1, —0.08,0.8, —0.09, —0.09, 0.04, 0.008) and
Bx = 0.04. Other choices of v were considered and are available in the Section

A.3.3.

5. Remove the “true” PM, 5 values X from the dataset to reflect the zipcode that are
missing exposure. The final dataset contains 57 zipcodes of (V;, )?i, C,;) and 2108
zipcodes of (Y;, C;)

The decision to not incorporate spatial correlation among the PM, 5 values was to fa-
cilitate discussion, and it not reflective of what is expected in practice. This simulation
scenario uses the worst case scenario; the same set of covariates that are used to predict
and are also the ones that need to be used to adjust for confounding. In reality, there will

be partial overlap between these two sets. See the Section A.3.2 for further discussion.
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We will proceed using land-use regression (LUR) to estimate PM, 5 levels that are miss-
ing from the study. However, since the decision was made to not incorporate spatial
correlation among the PM, 5 values in the simulated cohorts, our LUR regression will not
involve spatial smoothing. Once the LUR is used to estimate the missing PM, 5 values,
an outcome regression is performed using a completed dataset that replaces the missing

2108 PM, ;5 values with their corresponding predicted values.

The only remaining decision for the purpose of our simulation is which LU covariates to
include in the LUR. Considering every combination of the LU covariates would amount
to 2! = 1024 possible models. Instead, we chose to consider 10 nested regression models
that include the 10 LU covariates in order of their true predictive power of PM,; . The
following summarizes the steps used to predict PM, ;5 and estimate the resulting health

effect:

1. Fit the land-use regression model including only C) as a predictor for the 57 zip

codes with observed PM; 5
2. Estimate the 2108 missing PM, 5 values, W, based on the model from Step 1

3. Estimate the effect of long-term PM,; 5 exposure on cardiovascular hospitalization

rates using a regression model only including W as a predictor (In(Y;) = W, +¢;)

4. Repeat 1-3, but using {C4,Cs}, {C1,Cs, Cs}, ... , {Ch,...,Cio} as predictors in the

exposure regression model from Step 1

Note that in Step 3, we fit a regression model that fails to control confounding and gives
a biased health effect estimate. The magnitude of this bias, which is given in closed form
in Section A.3.2, is determined by a tradeoff between the bias due to lack of adjustment
and the prediction accuracy of the PM,; 5 regression model and does not depend on the

true value of Sx. As such, we consider only one value of Sx = 0.04.

65



4.3.2 Results

Figure 4.2 provides the R? from the LUR models and the corresponding bias of the health
effect estimate from the hypothetical study of the association between long-term exposure
to PM, ; and cardiovascular hospitalization rates in the New England region. The LUR
that provides the health effect estimate with the smallest bias is the one that includes the
tirst five LU covariates (% forrest, % open space, % urban, traffic density, and elevation)
and has corresponding R? value of less than 0.6. By including the two additional covari-
ates distance to major road and point emissions, the R? can be increased to 0.7, but results
in a large bias. Of the 10 models considered, 5 have a smaller bias than the model that
uses the true exposure (the dotted line), suggesting that a predicted exposure can either
improve or worsen effect estimation when compared to the true exposure in the presence

of uncontrolled confounding.
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Figure 4.2: Tradeoff between R? and bias from the hypothetical cohort study of the association be-
tween long-term exposure to PM; 5 and cardiovascular hospitalization rates in the New England
region

Table 4.2 provides the percent of simulated datasets in which Hj : 8 = 0 is rejected at the

a = 0.05 level when different subsets of C are used in the LUR to predict the exposure.
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Table 4.2: Results of the hypothetical cohort study of the association between long-term exposure
to PM 5 and cardiovascular disease in the New England region

Exp. Model % Reject Hy % RejectHyo & 5 >0 % Reject Hy & 3 >0 %Bias

{Ci} 100.0 100.0 0.0 102
{Cy, C} 99.8 99.8 0.0 60
{C1,Co,C5} 9.8 99.8 0.0 53
{Ci,--+,Ci} 982 98.2 0.0 30
{Ci,-- .Cs}  89.6 89.6 0.0 3
{Ci, -+ ,Cs} 356 35.6 0.0 -50
{Cy,--,C:} 30 1.0 2.0 -104
{Ci, -+ ,Cs} 264 0.0 26.4 -142
{Ci, -+ ,Co} 290 0.0 29.0 -143
{Cy,---,Co} 300 0.0 30.0 -144

Include is the percent of simulated datasets in which Hy : 8 = 0 is rejected at the a = 0.05 level
when different subsets of C are used in the LUR to predict the exposure. Also included is the

percent of simulations in which Hj, is rejected and B\ is in the correct direction ( B > 0), the percent
of simulations in which Hj is rejected and f is in the wrong direction (8 < 0), and the percent
bias.

Also included is the percent of simulations in which H is rejected and 3 is in the correct

direction (3 > 0), the percent of simulations in which Hj is rejected and B is in the wrong

direction (8 < 0), and the percent bias.

As indicated in Figure 4.2, the exposure prediction model that minimizes the bias of the
health effect estimate is M5, with corresponding bias of 3%. This LUR model rejects H,
in 89.6% of the simulated datasets, with all rejection coming when the estimated health
effect is in the correct direction. Therefore, if in this analysis we happened to choose M;5
to predict PM, 5 , we would get nearly unbiased estimates of the effect of long-term PM, 5

exposure on cardiovascular health and nearly 90% power to detect the true effect size.

However, if we deviate from this optimal model by either adding or removing LU covari-
ates from the PM, ; prediction model, the percent bias ranges from -144% to 102%. By
including the two additional covariates distance to major road and point emissions that
increase R? by almost 0.1, we observe a bias of -104%, with H, being rejected only 3.0%
of the time. Worse, two-thirds of the rejects occur when the estimated health effect is in

the wrong direction. Thus, if in this analysis we happened to choose M- to predict PM, 5
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, we would get biased results that estimate the health effect of long-term PM, 5 exposure

on cardiovascular hospitalization rates to be in the wrong direction.

This simple simulation illustrates that in the presence of uncontrolled confounding, a
more accurate prediction of the exposure does not necessarily lead to a better health ef-
fect estimate. In fact, exposure prediction only exacerbates the problem of uncontrolled
confounding, but all is not lost. Recall that in this hypothetical study, we purposefully fail
to control for any confounding, but with a properly chosen PM, 5 prediction model, we
were able to return nearly unbiased effect estimates. In that situation, the bias inflation
due to exposure prediction was beneficial for effect estimation. In general, we should be
able to return valid effect estimates when using predicted exposure if: (1) confounding
has sufficiently been controlled; or (2) an exposure prediction model is chosen to negate

the effect of uncontrolled confounding.

The latter point is a challenging proposition, and current approaches in environmental
epidemiology do not allow for consideration of the issue. In our simulation, we are able
to determine which model should be used, but this is only because we know the true data
generating mechanism. Without such knowledge, statistical methods for choosing an

exposure prediction model to minimize the bias of the health effect estimate are needed.

4.4 Discussion

In this paper, we simultaneously consider spatial misalignment and spatial confounding
in the context of cross-sectional studies, which rely almost entirely on the spatial varia-
tion between the exposure and the outcome to estimate the health effect of interest. We
introduce the concept of bias inflation due to exposure prediction of a confounded health effect
estimate, and purposely illustrate the point in a worst case (but not unrealistic scenario)
where there is large overlap between covariates that are predictors of the exposure and

covariates that are important measured confounders. We derive a closed form expres-
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sion for the bias of a health effect estimate, and show that this bias is the product of two
pieces: the bias due to the lack of adjustment for confounding and the bias inflation factor
due to predicting the exposure with a set of measured covariates that are also measured
confounders. Importantly, we show that bias inflation factor can be large even when the
confounding bias is small; therefore, exposure prediction and confounding adjustment

need to be considered simultaneously.

The potential for bias inflation due to exposure prediction can be demonstrated mathe-
matically and by simulation, although quantifying the magnitude of the bias in practical
applications will be conceptually challenging due to the complex spatial dependencies be-
tween the outcome, the exposure, the measured covariates, and the unmeasured spatial
confounders. It is often the case that researchers build an air pollution prediction model
that maximizes the spatial heterogeneity and cross-validated R?, but do so independently
of the outcome regression. We have provided evidence that such a process may lead to

substantial bias inflation of the underlying health effect of interest.

Current statistical methods dealing with spatial misalignment and confounding adjust-
ment treat the two topics as distinct issues. For example, methods to overcome spatial
misalignment rely on exposure prediction, and exposure prediction can be viewed as a
measurement error problem (Gryparis et al., 2009; Szpiro et al., 2011b). The measurement
error can be decomposed into a Berkson-like component (Carroll et al., 1995) arising from
modeling the exposure surface and a classical component arising from the estimation of
the parameters of the exposure prediction model and several correction methods have
been proposed (Gryparis et al., 2009; Szpiro et al., 2011b). However, these methods are
only concerned with the bias of the health effect estimates due to measurement error and
do not consider how predicting exposure with covariates that are correlated with the out-
come might bias the health effect estimates. Similarly, methods designed for confounding
adjustment do not acknowledge that the exposure has been predicted. For example, Wang
et al. (2012a) was designed for the selection of confounders in the context of linear models

for both the outcome and the exposure when the exposure has been fully observed.

69



Development of new statistical methods are needed that simultaneously predict exposure
while adjusting for spatial confounding. The decision to include or exclude a potential
confounder from either the outcome or the exposure model needs to be based on both
the predictive power of the covariate on the exposure and the strength of the relation-
ship with the outcome. An extension of Wang et al. (2012a) into the context of missing
exposure could provide a foundation of methodologies used to simultaneously predict

exposure and control confounding.

Our results do not address how spatial smoothing will affect the bias of a health effect in
the presence of unmeasured spatial confounding. However, it is reasonable to postulate
that bias inflation due to exposure prediction will exist when employing spatial smooth-
ing. Such results would be related to the work of Dominici et al. (2004); they provide
results to reduce confounding bias in the pollution-mortality relationship due to unmea-
sured time-varying factors such as season and influenza epidemics in the context of time
series studies. One could adapt their results for use in cross-sectional studies of air pollu-

tion and health by indexing by space instead of time.

The issue of bias inflation due to exposure prediction was presented in the context of
cross-sectional studies of air pollution and health. However, there is a likely statistical
parallel for time series studies. If missing air pollution values are imputed using covari-
ates that are temporally correlated with both air pollution and outcome, then a similar
bias inflation is likely to occur. Meteorological covariates are one potential set of covari-

ates that are temporally correlated with both air pollution and health.

The form of the bias inflation due to exposure prediction shares a remarkable similar-
ity to that of a known result from causal inference; in the presence of unmeasured con-
founding, conditioning on instrumental variables can inflate the bias of the effect estimate

(Bhattacharya and Vogt, 2012; Pearl, 2012).

The results of this paper assumed a simple linear relationship between the outcome, the

exposure, and the confounders, but in practice, more complex models will be assumed
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for both the exposure prediction model and the outcome regression model. However,
even under these more complex models, there is potential for bias inflation of a health
effect estimate due to exposure prediction, and much greater care is needed when using

predicted exposure values in epidemiological studies of health.

71



A. Appendices



A.1 Efficient estimation of risk ratios from clustered binary
data

A.1.1 Proof of results

Proof of Result 1: Recall that the nuisance tangent space is characterized by A = Agy + Ay,
where Ag), is the nuisance tangent space from the restricted mean model and A, is the
closed linear space spanned by scores for ¢ along all regular parametric submodels. For

any A(X)e € Ag,,, then

where A’ is the closed linear space spanned by the efficient score for «y in Mgy,. There-
fore, we have characterized the set of all influence functions for 3, in the model Mz, that

treats the baseline risk as a nuisance parameter as:

— E[T (X:00)V 1 (X)u(X;00)]

Ar = {s&(X) = E[AX)Ds(X)] " AX)e h(X) arbit
arpitrary

A(X) = h(X) EROOuXi00)l ____)7(X; 09)V—1(X), }

All that is left is to show At = A{. For any h(X) € A{, let S(X) =

Erx)u” X)uX)] | 1
[h(X)_ Ejroupay | # (X)- Then,
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E[S(X)u(X)] =0

so that A{ < At.  Alternately, for any S(X) € A+, let K(X) = S(X) —

Eseux)]  mx\y-1(xX
Eproov-iooeoor (XIV(X). Then,

E [h(X)u(X)] = 0

implying that A+ C A{, and we are done.

Proof of Result 2: Let U(h; X, ap, fy) be as defined in Result 1. Replace the log-baseline

risk oy with an arbitrary value o. Then, for all A,
ERCORKi0 0] oxeo o ixea

E [/J,T(X; a, BO)M(X§a7ﬂO)]“ (Xv aBO) (X7 7:80)1|

E [RX)u(X; o, fo)] T(X: 0 Xew
E [NT(X;ayﬁO)H()Qa,,Bo)]E |:1u' (X= :ﬁO)(Y /'L(Xv aﬁO))]

E [h(X)eXFoex)
E [uT(X; @, Bo)u(X; v, Bo)]
E [NT(X§ a, Bo)u(X; a,ﬂo)]

E [h(X)eXFoex]
E [ (X; o, Bo) (X5 e, Bo)]
E [A(X)eXPoex0]
E[T (X5, Bo)pn(Xs, Bo)]

E[U(h;X,,B80)] =E {h(X)e(X; a, Bo) —

=E[RX)(Y — u(X;0,B0))] —

= E[R(X)E[Y|X]] - E [A(X)n(X; o, 80))] - E [T (X3 0, Bo)E[Y[X]

E [h(X)u(X; o, Bo)]
E [uT(X; , Bo)u(X; a, Bo)]

= E[h(X)u(X; ap, Bo)] —

E [MT(X; o, Bo)u(X; v, 50)]

= E[h(X)u(X; ao, Bo)] E [MT(X; a, Bo)exﬁoe"‘]

=0

Proof of Result 3: Recall the efficient score is defined by sgf I = [sg|A'], where s is the
score for (3;. Under the restricted moment model, the efficient score (Bickel et al., 1998)

for 6y = (aw, B)” is given by:

s PV (5B SEMYT T [y A | = DT (X)V ™ (X)e = (14, X)TM(X80)V ™ (X)e
where D(X) = %, M(X]0) = diag {u(X|0)} is the (kxk) diagonal matrix made up of
the elements of 11, and V~!(X) = E [e€”] !, Then, by definition of the efficient score and

using arguments similar to Result 1:
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s§’ = o5 — T [s5M]A]

where A’ is the closed linear space spanned by the efficient score for o in Mzy,. Thus,
st = sy — T [sh | AL]
=s5—E [SESZT] E [shsi!] - s,
= X" M(XJao, o)V (X)e — B [XTM(X]ao, o)V (X)ee VHX)MT (X ao, fo) 1]
E [17 M(X|ag, B0)V " (X)eeT V1 (X)MT (Xag, fo)1x] " 1M (X|ag, Bo)V " (X)e
= X" M (X]ag, Bo)V " (X)e — E [ XM (X]aw, Bo) VH(X)M " (X, Bo)1x]
E [1} M (X|a, BO)V_l(X)MT(XWO,50)1k]71 14 M(X|ao, Bo)V ™ H(X)e
= X" M (X|ag, fo)V " (X)e - E [XT M (X]ag, Bo)V ™~ (X)u(X|ao, Bo)]

E (1" (X|ag, Bo) V™ (X) u(X]exo, Bo)] T (Xag, o)V (X)e
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A.2 Model averaged double robust estimation
A.2.1 Consistency under the dependent prior: A different view

The prior provided in the paper can be relaxed so that inclusion-exclusion criteria is not
strict. In fact, it can written in a form that is close to the prior of Wang et al. (2012a). Let
the class of model be defined by the indicators a* and o*, where o is the indicator that a
particular covariate is included in the propensity score model and o is the indicator that
a particular covariate is included in the outcome model. Using this notation, the propen-
sity score model can be written as g(E[X|C]) = & + Y _1_, ;i &C) for some link function
g(+), and the outcome model can be written as E[Y | X, C| = v + X + >_1_, a} 7C}. Re-
laxing the inclusion-exclusion criteria, the prior model dependence given by Equation 3.7

can be written as:

Pa¥ =1jaX =1)
=w
P(a¥ =0laX =1)
Pa® =1la¥ =1) |
P(aX =0]aY =1)
1
P(OéY = 1) = 5
Note that this implies,
Y X 1
Pla' =1« :1)21
1
Pa” =1,a% =0) = 1
1
Pa¥ =0, =1) = w
w
2w—1
P(a” =0,a% =0) = “’4
w

76



So for any finite w, the prior distribution does not affect the consistency of the posterior
probabilities because the prior does not restrict model space, and the consistency of the
posterior model probabilities relies on the consistency of the Bayes factor. In other words,
because we have not restricted the model space, the likelihood will overpower the prior

for large sample sizes.

With this in mind, the MA-DR estimator is consistent for any finite w in the prior specifi-
cation above. The prior presented in Equation 3.7 is for w = oo, and we do not believe the
consistency result will hold. However, the strict prior (w = c0) leads to a posterior that is

computationally much less burdensome than for any other choice of w, except w = 1.

Thus, we view the w = oo case as an approximation to any large choice of w. This is a
reasonable approximation because for large w, the prior will overwhelm the likelihood in
finite samples. Therefore, the prior model dependence does not lead to a estimator that
is consistent for the average causal effect, but is an approximation of an estimator that is

consistent for the average causal effect.

A.2.2 Additional simulations

This set of simulations expands both the set of simulation scenarios along with the esti-
mators being compared. Table A.1 provides a description of each estimator included in
these simulations. A full description of all scenarios can be found in Table A.2 and Table

A.3. All simulations set 8 = 1 and use a sample size of 500 with 10, 000 replications.

Table A.4 and Table A.5 provide the mean squared error and the bias of each estimator
under each additional simulation scenario. These simulations highlight a few additional
points that were not covered in the original paper. First, applying model averaging to
only a parametric or IPW estimator does not perform as favorably as the model averaged

double robust estimator. Specifically, consider A}~ AN and AMA.

First, looking at the MSE of ﬁ%‘?ﬁ/, it is considerably higher in many scenarios. Take
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Table A.2: Description of Group 1 in the additional simulation study comparing estimators for the

average causal effect

Scenario «aP® (PS model) a®™ (Outcome model)
1 (.1,.1,.01,0,0) (.5,0,1,.5,0)

2 (.5,.5,.1,0,0) (.5,0,1,.5,0)

3 (1,.5,.1,0,0) (.5,1,2,1,0)

4 (.3,0,0,0,0) (1,0,0,0,0)

5 (4,3,2,1,0) (0,0,0,0,0)

6 (.5,4,3,2,.1) (.5,1,1.5,2,2.5)

7 (1,1,0,0,0) (2,2,2,2,2)

8 (.05,.05,.5,.5,.5) (2,2,2,.2,.2)

9 (0.1,.025,.012,0.053,0.034)  (.5,.53,.22,.44,.62)
10 (0,0,0,0,0) (1,0,0,0,0)

11 (.1,-.1,.01,0,0) (-.5,0,1,.5,0)

12 (-5,.5,.1,0,0) (.5,0,1,-5,0)

13 (1,-.5,-.1,0,0) (.5,1,2,1,0)

14 (.3,0,0,0,0) (-1,0,0,0,0)

15 (4,-.3,-.2,.1,0) (0,0,0,0,0)

16 (.5,4,-3,2,-1) (.5,1,-1.5,2,-2.5)
17 (1,1,0,0,0) (2,-22.2,2)

18 (.05,-.05,-.5,.5,.5) (-2,2,.2,.2,2)

19 (-0.1,.025,.012,-0.053,0.034) (-.5,.53,.22,.44,-.62)
20 (0,0,0,0,0) (-1,1,0,0,0)

21 (.1,.1,1,1,1) (2,2,0,0,0)

22 (1,1,0,0,0) (.5,5,2,2,2)

23 (1,1,0,0,0) (.8,8,2,2,2)

All effects of confounders are linear on both the treatment and outcome. Data is generated as

1id

follows: (1) C1, ...,C5 ~ N(0,1); (2) X ~ Bernoulli(p = expit(CaP®));and (3) Y ~ N(SX+Ca®™ 1)
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Scenario 6 for example, where all 5 covariates are moderate confounders. The MSE is
268.5x1073, while all other estimators have MSE less than 20x1073. Quickly taking a look
at the bias of this estimator, we see a value of 0.460, corresponding to 46% bias. Therefore,
the model averaged IPW estimator, assuming an independent prior on the model space,

can provide highly variable and highly biased results.

Next, consider AM4 ~ This estimator performs more favorably when compared with

para*
AMA=AIT \which is not all that surprising since in many of the simulations, the outcome
model class is correctly specified. In 12 of the 35 simulation scenarios, AMA hag smaller

para

mean squared error than AY7~%!. However, when comparing the biases of the two esti-

AMA

para

mators, we can point to several example where the bias of

that of ﬁgg’dl !. Considering only Scenario 25, the bias of ﬁjgﬂf‘*dl "'is 65.79x1073, while

is considerably more than

the bias of A¥A=4 is only 2.8x10~3. This is approximately a 95% reduction in the bias.
This is a situation where the data generating mechanism in the propensity score model is
non-linear in the confounders, while the true outcome model is linear in the confounders.
Therefore, even though we have a properly specified outcome model class, we cannot

return a valid effect estimate due to the separation of the treatment groups.

We believe this verifies that simply using model averaging on either the IPW or a para-
metric estimator may lead to inefficient and/or biased effect estimates. Also included in
this simulation is the MA-DR estimator that assume the prior of Wang et al. (2012a), and
the estimator that assume the prior specified above with w = 10. These are not discussed

in detail, but note that they behave similarly to A%I e

The last estimator worth discussing in this simulation is the frequentist analog of
ﬁ]‘gﬁ_dl ! We label this as ﬁ%fg_f !, which is constructed in the following manner: (1)
select the outcome model based on BIC alone; and (2) select the propensity score model
from the class of models that excludes covariates that are not included in the chosen out-
come model. This estimator performs very similar to that of A¥A~4T in terms of both

bias and MSE. In fact, the two estimators are asymptotically equivalent.
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A.3 Bias inflation due to exposure prediction in environ-
mental epidemiology

A.3.1 Bias inflation due to measurement error

The main results of our paper rely on the fact that our predicted exposure follows a Berk-
son error model, and an extension of our results into the case of a Berkson error model
is straightforward. Consider the true exposure X is measured with error, and that the

measured exposure X* follows the Berkson error model:

where €] is a mean zero error term that is uncorrelated with X/. Let Y; be as in Equation
4.1 and consider estimating 3, using the misspecified regression model Y; = X +¢;. The

bias of the least squares estimate B+ of Bis given by:

‘Q
8N

bias(B*) = E[B" — fo] = bias(B,) (4.1)

8N
*

g

where 02, = var(X*). Note that the expression given in Equation 4.1 is precisely the same

as given in Equation 4.3.

This slightly more general result is quite interesting. When there is uncontrolled con-
founding and an exposure is used that is measured with error (Berkson error), then the
bias of the health effect is the product of two pieces: (1) the bias due to lack of adjustment
for confounding; and (2) a bias inflation factor that is the ratio of the true variance of the

exposure to that of error prone exposure.

Now consider a classical measurement error scenario; the measured exposure is related

to the true exposure by
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X" =X+n

where 7 is a mean zero error term that is uncorrelated with X. Schwartz and Coull (2003)
provide a discussion of this issue in the context of controlling for confounding due to mul-
tiple exposures, but their results apply if we treat one exposure as confounders. Specif-
ically, it can be shown that the expected value of a health effect estimate when using an

exposure that has classical measurement error is given by:

0.2

X
2 2
or+T

1
(B4E&v) + o TQcov(n, Y)

xT

where 72 = var(n) and the p'" element of ¢ is given by C;, = ,X; + ¢. Note that using
this notation, bias( B\x) = ¢v. Under the common assumption that the measurement error

is non-differential on the outcome, then the expression simplifies to be:

0,2

X
2 2
oL+ T

(B+&7)

Typically, the term Uf—ETQ is referred to as an attenuation factor, as it attenuates the esti-

mated effect E[@] = [ + &7y towards zero.

A.3.2 Bias inflation when confounding has been partially controlled or
different subsets of confounders are used to predict exposure

In this discussion, we consider four types of covariates: (1) those unrelated to outcome
or exposure; (2) those related to outcome but not exposure; (3) those related to exposure
but not outcome; and (4) those related to both outcome and exposure. Covariates of type
(1) and (2) are not interesting in this setting, while (3) should be used to predict exposure

and (4) are the confounders that need to be accounted for in the health effects model.
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First, consider the same set up as before, with the exposure-outcome-confounder rela-
tionship given by Equation 4.1 and 4.2. Let C = (CW,C®) and ¥¢ = var(C;) =
( g; gf ), where each subset of C could contain any type of covariate. Further,
let W = Ca be the predicted exposure if the exposure model from Equation 4.1 were
known exactly, W; = CMa; be the predicted exposure if the misspecified exposure model
X; = Cgl)a’{ + € were known exactly, and W, = ng)a;‘ be the predicted exposure if the

misspecified exposure model X; = 052)045 + e were known exactly.

Table A.6 provides the bias of the health effect estimate for each choice of the predicted
exposure and an outcome model that either fails to control for any confounding (Y =
BW + €) or an outcome model that controls for only CV) (Y = W + CWy + ¢). Further,
let R2 denote the population value of the R? from the exposure model that uses arbitrary
Z as a prediction of X. Table A.7 provides the R? and its corresponding population value

for each of the predicted exposures W, W, or W.

The bias of 3, given in Table A.6 is the bias of the health effect estimate provided in
Equation 4.3 that was previously described under the situation that the predicted expo-
sure WV is used in an outcome model that fails to control for any confounding. Recall that
is was shown that this bias is the product of the bias due to lack of adjustment for any

confounding and a bias inflation factor due to exposure prediction that is the inverse of

the R2.

This relationship holds true for any collection of covariates, regardless of their association
with the exposure and the outcome. For example, suppose all C are only related to the
exposure. Then, there is no confounding and as a result, the bias of B is 0. Similarly,
suppose that all C are only related to the outcome. Then, R2 = 0 because C has no power

to predict exposure, and the bias of B, increases in magnitude to infinity.

Next, consider a situation where the true set of confounders C is unknown to the re-
searcher but the true exposure X is observed, and instead of controlling for the full set of

Cs, the decision is made to only control for the subset CV (first row, second column). The
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bias of the health effect estimate from the misspecified outcome model Y = 3X +~vC® +¢
is given by bias(gg(gl)) in Table A.6. This corresponds to the bias due to the failure to con-
trol for the confounding due to C?. In other words, it is the bias due to confounding
that remains after controlling for C(), but failing to control for the full set of necessary
confounders C. Suppose that C(V) contains all covariates that are confounders and C®
contains any remaining covariates. Then, bias(BL") = 0 because confounding has suffi-
ciently been controlled by C*) alone. However, suppose that C?) contains all covariates
that are confounders, C!) contains any remaining covariates, and C!) and C® are un-
correlated. Then, bias(BY") = bias(gx)é;f so that the bias of the health effect estimate is
inflated by controlling for covariates that are not confounders. This is a specific example

of bias inflation that arises from conditioning on instrumental variables.!?

Now consider a situation where the true exposure X is unobserved, and instead is pre-
dicted with a subset of the Cs (second row, first column). The bias(ﬁwl) is the bias of the
health effect estimate in the situation that the predicted exposure W; = CMaj is used in
the outcome model that fails to control for any confounding. From Table A.6, we note that
this bias decomposes into two parts, with the first one being the bias due to the failure to
control for confounding due to C?). Therefore, ignoring the second term, using C%) to
predict the exposure appears to help control the confounding due to C). However, this
is not exactly the case, as the second term of bias(ﬁwl) in Table A.6 can either decrease or
increase the magnitude of the bias. Further we note that bz'as(gwl) depends on the inverse
of R2 .; therefore, the bias of Bwl is a function of how well W, predicts X. As R? , goes to
1, bias(By,) = bias(B,), so that if W, predicts X perfectly, we are left with the bias due to
lack of adjustment for confounding in the situation where the true exposure X is known.
Similarly, as }N%Z)l goes to 0, the bias(gwl) increases in magnitude to infinity, suggesting
that if we cannot accurately predict the exposure, we cannot return a valid effect esti-
mate. However, as E?Ul varies between 0 and 1, no general statement can be made about

the magnitude of the bias. Similar results hold for bias(gw).

Suppose that C™M) contains all covariates that are confounders and C? contains any re-
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maining covariates. Then, bias(gwl) = bz’as(@)é;f, or in other words, we have an ex-
pression similar to bias(f,) in that we are inflating the bias due to lack of adjustment
for confounding. By moving covariates that are not confounders from C® into C), we
would increase ﬁfm and as a result bias(gwl) would decrease. Therefore, if all confounders
are used to predict the exposure, we decrease the bias of the health effect estimate by im-

proving the prediction accuracy.

The last situation provided in Table A.6 is a situation where the true exposure X is un-
observed, instead is predicted with a subset of the Cs, and a different set of Cs are
used to control confounding in the outcome model (third row, second column). Specif-
ically, the bz’as(ﬁf@) is the bias of the health effect estimate in the situation that the pre-
dicted exposure W, = C®aqj is used in the outcome model that controls for only CV)
(Y = BWs + CWy + ¢). We wish to only point out a few features of the expression for this
bias. First, the bias depends on the true underlying effect 5,. As the true effect size in-
creases, so does the magnitude of bias. Second, the expression for the bias of 31(,}2) is much
more complex than any of the other biases given in Table A.6 and will not be described
in detail. However, suppose again that C!) contains all covariates that are confounders
and C® contains any remaining covariates. Further, assume that C(*) and C® are uncor-
related. Then, bz’as(Aqfvlz)) = 0. This occurs because: (1) confounding has been sufficiently
controlled through CY; and (2) the exposure is predicted with covariates that are uncor-

related with confounders. However, if CV) and C® are correlated, then bias(35,) # 0.

Considering these results, if we can separate our covariates into two orthogonal sets, one
of which contains all necessary confounders, then we can hope to construct an exposure
prediction model along with an outcome regression model that yield an unbiased health

effect estimate.

The biases given in Table A.6 are difficult to compare, except for in the simplest situations
as in bias(3,) and bias(f,). Therefore, it is difficult to make any general conclusions about

whether including or excluding a potential confounder from either the exposure model
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or the outcome model is beneficial or detrimental to the final goal of effect estimation.

The previous point warrant further discussion; when the goal of a study is effect estima-
tion, the decision to include or exclude a potential confounder from either the outcome or
the exposure model needs to be based on more than just the predictive power of the po-
tential confounder on the exposure or the strength of the relationship with the outcome,
but instead the decision needs to be based on some tradeoff between the two. Current
statistical methods for model selection fail in this regard, as they have been designed to

control confounding and ignore exposure prediction all together.

A.3.3 Additional simulations

Following the simulation setup of the Section 4.3 exactly, we provide additional simulated

results for two additional choices of the parameter . Specifically, let

= (0, —0.044, —0.075,0.105, 0.090, —0.082, 0.096, 0.0897, —0.041,0.011)

,ya
7* = (0.025,0.0067, —0.0058, 0.005, 0.0208, 0.0033, 0.025,0.025, 0.0125, 0)

The purpose of these two additional specifications is to illustrate that in some cases, in-
creasing the R? always decreases the bias, while in others, increasing the R? always in-
creases the bias. From Figure A.1, we note that the bias increases with the R%. Therefore,
adding additional covariates to the exposure prediction model adds bias to the estimated
health effect. From Figure A.2, we note that the bias decreases as R? increases. Therefore,
adding additional covariates to the exposure prediction model improves the health effect

estimate.

These results, in addition to those in the main text, provide evidence that bias inflation
due to exposure prediction can either reduce or increase the bias of the health effect es-

timate. Therefore, it is not possible to make general conclusions as to whether better
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exposure prediction models will lead to better health effect estimates.
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