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Abstract 

 

 The vertebrate small intestine is responsible for nutrient absorption during 

digestion. To this end, the surface area of the gut tube is maximally expanded, both 

through a series of loops extending its length and via the development of a complex 

luminal topography.   

 Here, I first examine the mechanism behind the formation of intestinal loops.  I 

demonstrate that looping morphogenesis is driven by mechanical forces that arise from 

differential growth between the gut tube and the anchoring dorsal mesenteric sheet.  A 

computational model based on measured parameters not only quantitatively predicts the 

looping pattern in chick, verifying that these physical forces are sufficient to explain the 

process, but also accounts for the variation in the gut looping patterns seen in other 

species. 

 Second, I explore the formation of intestinal villi in chick.  I find that intestinal 

villi form in a stepwise process as a result of physical forces generated as proliferating 

endodermal and mesenchymal tissues are constrained by sequentially differentiating 

layers of smooth muscle.  A computational model incorporating measured differential 
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growth and the geometric and physical properties of the developing chick gut 

recapitulates the morphological patterns seen during chick villi formation.  I also 

demonstrate that the same basic biophysical processes underlie the formation of intestinal 

folds in frog and villi in mice. 

Finally, I focus on the process by which intestinal stem cells are ultimately 

localized to the base of each villus.   The endoderm expresses the morphogen, Sonic 

hedgehog (Shh).   As the luminal surface of the gut is deformed during villus formation 

there are resulting local maxima of Shh signaling in the mesenchyme.   This results, at 

high threshold, in the induction of a new signaling center under the villus tip termed the 

villus cluster.  This, in turn, feeds back to restrict proliferating progenitors in the 

endoderm, the presumptive precursors of the stem cells, to the base of each villus. 

 Together, these studies provide new insight into the formation of the small 

intestine as a functional organ and highlight the interplay between physical forces, tissue-

level growth, and signaling during development. 
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The mechanics of development 

 An enduring goal of biology is to understand the emergence of morphologies 

during development.  The last decades have seen enormous progress in understanding 

this process in various settings, with a focus on the critical role of morphogenic signals, 

tissue interactions, and transcriptional networks in patterning early fields of naive 

progenitors.  However, lasting gaps in our understanding of how tissues take their shape 

suggest that the dominant approaches of the last several decades may not provide us with 

a compete tool set with which to address questions of morphogenesis.  In fact, a century 

ago, a mechanical view of how shapes and structures form in the embryo prevailed: In his 

seminal 1907 work, On Growth and Form, D’Arcy Thompson provide an apt description 

of biological patterns as “diagrams of underlying forces”.  Indeed, the last decade has 

seen a renewed interest in how mechanical forces shape biological structures, with a 

focus on combining molecular insights with biomechanical investigation of how the 

embryo takes its shape.  

 Studies at the intersection of physics and biology have highlighted the role of 

mechanical forces in development on molecular, cellular, and tissue levels (Davidson 

2011).  At the molecular level, forces are translated into chemical cues within the cell, 

instigating gene expression and downstream cellular behaviors such as proliferation or 

cell death (Farge 2011).  The development of synovial joints provides an excellent 

example of a developmental setting where forces are translated at the molecular level.  

During development, progenitor cells differentiate into synovial joints just as the adjacent 

muscle is developing.  While the role of musculature in joint formation has been long 

appreciated (Drachman and Sokoloff 1966), the molecular underpinnings are still under 
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investigation.  More recent work demonstrates that !-catenin is mechanically activated in 

the forming joint by oscillation of the muscle during development (Kahn et al. 2009).  In 

several different genetic mouse models that lack muscle or muscle contraction, !-catenin 

is not activated in joint progenitors and joints do not form in adults (Kahn et al. 2009).  

Therefore, in synovial joint formation, muscle-driven mechanical strain induces genetic 

changes necessary for proper development.  Our understanding of this type of cellular 

mechanosensing is still evolving, but much of what is known involves focal adhesions, 

adherens junctions, and stretch-activated ion channels.  These molecules change shape in 

response to force, prompting a cascade of biochemical events within the cell (Farge 

2011). 

 Additionally, the study of epithelial behavior had benefitted from biomechanical 

exploration as, in developing tissues, epithelia both experience and exert mechanical 

forces as they move, bend, and fold into patterned structures (Davidson 2012).  A recent 

study highlights the importance of force in epithelial movement during zebrafish 

gastrulation (Behrndt et al. 2012).   The authors find a contracting actomyosin band acts 

as a purse string, inducing the spreading of an epithelial layer termed the enveloping cell 

layer (EVL) over the yolk cell (Behrndt et al. 2012).  This is an important example of the 

developmental role of actin purse strings, however, the actomyosin band in zebrafish 

EVL spreading also exerts a friction-base pulling force, revealing a novel mechanical 

function for the actomyosin band.  Such studies highlight the many ways mechanical 

forces contribute to epithelial movements. 

 Mechanical forces can also be exerted on the tissue-level, inducing organs to take 

their shape.  The chick embryo has proved to be a valuable system for these type of 
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studies.  Recent work demonstrates that the vesicles of the chick brain are shaped by 

variations in actomyosin contractility across an initially uniform tube, thus dividing the 

tube into segments (Filas et al. 2012a).  An additional study extends these findings to 

zebrafish, artificially varying contractility patterns and in zebrafish to mimic those of 

Xenopus (Filas et al. 2012b).  This study explores the idea that spatiotemporal patterns of 

tissue contractility are varied across species to produce a diversity of vesicle patterns.   

The vertebrate gut as a model for mechanical studies of development 

 The midgut is a favorable system for starting to analyze how mechanical forces 

participate in morphogenic processes, as it is a relatively simple structure, initially 

forming as a linear tube running down the midline of the embryo and ultimately forming 

a twisted and coiled cylinder that maintains radial symmetry throughout its length.   

 The human intestine is approximately 20 feet long, a fact which immediately 

brings to mind concerns about space - how can we efficiently fit such a long structure 

into the small space it is allotted in the body.  Perhaps its apt to draw a comparison to the 

well-studied phenomenon of how DNA is packed into the cell's nucleus.  In both cases 

some sort of folding or looping must occur to accommodate space constraints.  Although 

this organ may appear as a jumble of loops, the loops are actually patterned identically 

within a species meaning that every individual within a species will have the same size 

and number of loops.  However, looping pattern varies significantly between species 

(Figure 1.1).  In fact, these structures have had taxonomic value and were used in  
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Figure 1.1. Variation in looping pattern across species.  Looping 

patterns were believed to have taxonomic value and have been used to 

classify bird species.  Adapted from On the Intestinal Tract of Birds, 

Chalmers Mitchell, 1896 
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the past to classify bird species (Beddard et al. 1898, Mitchell et al. 1896).  It's tempting 

to speculate about the ways in which these variations are tied to differences in diet and 

energy needs between species.    

  While the looping pattern provides an artful mechanism for fitting a longer gut 

tube into the body, undoubtedly contributing to the luminal surface area necessary for 

optimal nutrient absorption, one can imagine alternative mechanisms to increase surface 

area such as altering the morphology of the luminal tissue.  And in fact, the lumen of the 

intestine is covered with finger-like projections termed villi.   And these villi indeed serve 

to dramatically increase the surface area of the intestine, allowing that of the human 

intestine to reach an astounding 200 square meters, roughly the size of a tennis court.  

  Again these patterns seem to vary widely between species suggesting villi shape 

and number may have to be adjusted in nature to fit the need of the species. The fact that 

looping and villi pattern are so freely modulated in nature makes the question of how 

they form even more enticing, and I investigate these open questions in Chapters Two 

and Three.  My explorations of how villi form motivated an investigation of the process 

by which intestinal stem cells are ultimately localized to the base of each villus during 

development.  In Chapter Four, I focus on how mechanically-driven morphogenesis of 

the gut epithelium drives proliferating progenitors to their presumptive niche.   I’ll begin 

with a summary of our current understanding of vertebrate gut development. 

Initiating left-right asymmetry and looping in the vertebrate gut 

Although the external body plan of vertebrate species displays almost perfect 

bilateral symmetry, the internal layout of various organs including the heart, gut,  
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Figure 1.2. Variation in villi pattern across species.  Shown are luminal 

morphologies from a variety of adult species.  Note that different shapes provide 

more or less surface area.  Adapted from Krause et al. 1974, Walker et al. 2004, 

Ferri et al. 1976, Kotze et al. 1995, Wang et al. 2010, McAvoy et al. 1978, 

Nakamura et al. 1983. 
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stomach, and liver is asymmetric.  Intriguingly, this asymmetry is invariant, with each 

organ consistently biased to the same side within a species.  Thus, the break in symmetry 

seen in internal organs is not a result of random phenomena or evidence of stochastic 

fluctuations (Levin et al 2004).  Individuals with a condition known as situs inversus 

show complete reversal of the internal organs, but rarely suffer health consequences as a 

result of this abnormality (Levin et al. 2004).  However, cases where some organs show 

left-right reversal while other organs do not, a condition termed situs ambiguous or 

heterotaxia, can result in birth defects with serious medical consequence (Burn et al. 

1991).  Our understanding of the establishment of left-right asymmetry and the 

underlying causes when this process goes awry has grown dramatically over the past 

decade through investigation at the molecular and genetic level.    

The development of left-right asymmetry can be thought of in four stages: the 

initial break in symmetry, establishment differential expression patterns around the 

embryonic organizer termed the node, propagation of this asymmetry to the lateral plate 

mesoderm, and the transfer of left-right cues to developing organs.  Although much of 

this process is conserved between mouse and chick, the initial steps establishing left-right 

asymmetry differ between the species.  The first asymmetric gene expression in chick is 

preceded by asymmetric cell rearrangement responsible for a leftward movement of cells 

around the node (Gros et al. 2009).  In mouse, fluid flow caused by the leftward rotation 

of node cilia is thought to initiate differential gene expression (Nonaka et al. 1998). 

Starting within the first day of chick development, at HH (Hamburger and Hamilton 

1951) stage 5, left-right patterning involves a complex cascade of genes from several 

classic developmental pathways that show dramatic unilateral expression patterns around 
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the node (Pagan-Westphal and Tabin et al. 1998).  Nodal, a secreted factor and member 

of the TGF! family shows early left-sided expression in both mouse and chick in the 

perinodal region and then later in the lateral plate mesoderm (Levin et al. 1995, Lowe et 

al. 1996). Pitx2 is directly regulated by Nodal and its expression is maintained during 

organogenesis, long after Nodal expression retracts. Downstream signaling and 

regulation of Pitx2 during asymmetric organ morphogenesis, such as during gut and heart 

development, is well conserved between mouse and chick (Schlueter et al. 2007).   

 The gut was arguably the first organ to bring about asymmetry in the multicellular 

organism (Boorman et al. 2002).  Additionally, unlike the heart, which undergoes 

asymmetric growth and shape changes along with looping (Mannet 2000, 2009), the 

intestine in humans, mouse, and chick remains a single symmetrical tube throughout 

morphogenesis, allowing for a more straightforward examination of left-right 

development during the single process of directional coiling. Morphogenesis of the gut is 

thus a particularly desirable system for the investigation of asymmetric oranogenesis.   

In amniotes, the gut forms as the endoderm folds from a sheet to a closed tube and 

brings with it a layer of splanchnopleural mesoderm, part of the lateral plate mesoderm 

that will become smooth muscle surrounding the gut (Roberts et al. 2000).  During this 

process, a section of splanchnopleural mesoderm, termed the dorsal mesentery remains 

attached to the body wall suspending the primitive gut tube in the coelom (Davis et al. 

2008).  The gut is divided into the foregut, midgut, and hindgut along the anterior-

posterior axis.  The first break in symmetry in the gut occurs in the midgut region when 

the gut tube tilts as it forms the first hairpin loop.  This loop moves out of the body cavity 

and undergoes counterclockwise rotation.  Later in development, the loops retract back  
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Figure 1.3. The formation and rotation of the gut tube. (A)  A Cross-section 

during gut tube formation with the gut tube (endoderm) shown in yellow, and the 

mesoderm/mesentery shown in pink (B) Side view of the primitive gut tube. (C) 

Cross-section of the primitive gut tube, dorsal mesentery will break symmetry with a 

leftward tilt. (D) Primary intestinal loop moving into the umbilicus (in mammals) or 

yolk sac (in birds). (E) Gut tube retracting into the body cavity. (F) Final orientation 

of the midgut, full loop pattern not shown.  From Davis et al. 2008. 
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into the body and continues to rotate counterclockwise until positioned properly with 

respect to other internal organs (Schematized in Figure 1.3, Davis et al. 2008).  

Malrotation of the midgut is a condition that often results in volvulus, blockage and loss 

of blood flow to the intestines, and occurs in about 1 in 500 live births, often with serious 

medical consequences (Strouse et al. 2004).  Thus, it is essential that the first loop always 

form asymmetrically in the same direction, a process guided by the initial tilt of the 

midgut dorsal mesentery (Davis et al. 2008).  

The midgut tilt forms as a result of differences in gene expression on the left and 

right sides of the dorsal mesentery, which lead to changes in cellular architecture, such as 

cell shape and density (Davis et al. 2008).  Specifically, Pitx2 and downstream signals 

direct cells in the left mesenchyme of the mesentery to condense and cells of the right 

mesentery to adopt a dispersed appearance changing the mesentery shape from a 

rectangle to a trapezoid in cross section.  This relatively small asymmetry tilts the midgut 

and provides a bias for subsequent gut rotation (Davis et al .2008, Kurpios et al. 2008).   

 These studies provide an understanding of the process by which asymmetry is 

established, however, the gut rotation alone is insufficient to pack the entire small 

intestine into the body cavity, and additional loops are formed as the tube elongates. 

Although gut looping is seemingly a simpler, and more accessible process than heart 

looping, there have been virtually no investigations of how loops form in the mammalian 

or avian gut, however, several studies have investigated heart looping.  In fact, these 

studies have developed mechanical hypotheses for heart loop formation, postulating that 

membranes around the heart create torsion leading to looping (Taber et al. 1995, 2006, 
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2010).  These investigations of heart looping inspire similar biomechanical studies of 

looping and morphogenesis in other developing organs. 

Intestinal epithelial development, reorganization, and villi initiation 

 The intestinal epithelium arises from the endoderm, one of the three primary germ 

layers derived during gastrulation.   The endoderm remains an undifferentiated layer of 

pseudostratified, cuboidal cells throughout the embryonic gut until about mid-gestation 

when instructive and permissive developmental cues from the neighboring mesenchyme 

direct pattering of the organ-specific endoderm (Reviewed in Noah et al. 2011).  The 

intestinal epithelium undergoes a transition into columnar cells accompanied by the 

formation of small outgrowths, first composed of only epithelium, and then 

encompassing both the epithelium and mesenchyme as they grow out.  These outgrowths 

represent the beginnings of intestinal villi and form in an anterior to posterior wave along 

the gut (Reviewed in Spense et al. 2011).   

 Work from the past several decades purports that secondary lumina form within 

the epithelium and meet the central lumen to form villi, however this hypothesis has not 

been deeply explored (Reviewed in Noah et al. 2011).  Recently, an alternative view of 

mouse villus formation was put forward; postulating a potential inductive role of the 

epithelial derived signal Sonic Hedgehog (Shh) in triggering a morphogenetic cascade 

directing villus outgrowth (Walton et al. 2012). The key results that led in this direction 

were the failure of villus formation when Shh activity was pharmacologically blocked 

with the Shh antagonist cyclopamine and the increased size of the villi when guts were 

provided with excess Shh signal.  These results reveal Shh signaling is necessary for villi 
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initiation, however because Shh directs many cellular processes during radial patterning 

of the gut, coordinating mesenchymal proliferation and smooth muscle differentiation, it 

is difficult to interpret the phenotype when Shh signal is perturbed before villi form 

(Sukegawa et al. 2000, Ramalho-Santos et al. 2000, Mao et al. 2010).  Therefore the 

mechanism underlying villi initiation during intestinal development remain unknown. 

 Although the mechanisms driving the formation of villi have not been clearly 

illustrated, several studies from the mid-twentieth century provide careful descriptions of 

intestinal morphometry and morphology as villi form.  Coulombre and Coulombre in 

1958 review the striking changes in geometric form that arise as villi develop in the 

chick, describing the luminal topographies that arise before villi.  In most avian species 

studied, the luminal surface of the intestine is first folded into longitudinal ridges which 

buckle into zigzags and then give way to true villi (Figure 1.4).  Quantitative observations 

of geometry and growth as villi form in chick date even farther back to the turn of the 

century (Hilton 1902) and this body of observational work allows for spatial and 

temporal correlations to be made and testable hypotheses to be put forth.   

 Early studies of intestinal villi morphogenesis in mouse confirm that rodent villi 

do not initiate ridge-like folds but rather form direct epithelial elevations from the smooth 

luminal surface (Sbarbati et al. 1981, Figure 1.4).  These studies and others (Burgess 

1975) supposed that dynamic growth of the gut tube might contribute to the formation of 

villi, however these hypotheses have not been further probed in a biological setting. 

Epithelial-mesenchymal signaling in the developing villus  

 Studies of mutant mice with intestinal phenotypes highlight the importance of a 
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Figure 1.4. Villi formation in chick and mouse. Schematized luminal views of the 

developing intestine based on observational studies of villi development from the 

last century.  The longitudinal axis on the intestine runs top to bottom. Top, During 

villi formation in chick, the luminal surface of the intestine is first folded into 

longitudinal ridges which buckle into zigzags and then give way to true villi.   In 

mouse, ridges and zigzags do not form and villi form directly from a smooth surface.  

Adapted from  Coulobre and Coulombre et al. 1958. 
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number of key developmental genes in proper villi formation.  Bmps in the mesenchyme 

are downstream of epithelial Shh signal and serve to communicate reciprocally back to 

the epithelium (Ramalho-Santos et al. 2000).  Loss of Foxf1 and Foxf2, transcription 

factors downstream of Shh and Bmps, results in misshapen villi (Ormestad et al. 2006).  

Similarly mice lacking either the PDGF-A ligand or the PDGF receptor alpha (PDGFR") 

have impaired villi development (Karlsson et al. 2000).  Additionally, epithelial Ezrin, 

involved in linkage between membrane proteins and the cytoskeleton, is necessary for 

proper villi formation (Saotome et al. 2004).   

 As villi form, mesenchymal factors Bmp4, PDGFR", and Foxf1/2 are all 

expressed specifically in the mesenchyme directly under the growing tip of the villus, a 

region termed the villus cluster (Karlsson et al. 2000, Ormestad et al. 2006).  It has been 

recently shown that Shh signal from the epithelium is upstream of these mesenchymal 

expression patterns, however how such a localized pattern expression forms in the 

mesenchyme as a result of uniform epithelial Shh is not known (Walton et al. 2012).  In 

fact, the function of the villus cluster is still under investigation.  

Proliferation, Wnt and the intervillous zone 

 The cluster does not serve as a zone of proliferation, and in fact is devoid of 

mitotic cells (Karlsson et al. 2000, Madison et al. 2012).  Further, the epithelial cells 

adjacent to the cluster also lack markers of proliferation, suggesting cluster signals inhibit 

proliferation.  These results are perhaps surprising as one might expect the region near 

the elongating villus tip to encourage local outgrowth.  Instead, as villi form, proliferation 

transitions from being uniform throughout the epithelium to restricted to the space 
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between growing villi. (Reviewed in Noah et al. 2011)  Proliferation in the adult intestine 

is directed by canonical Wnt signal, as is the case in many embryonic and adult contexts 

(Pinto et al. 2003, 2005).   Similarly Wnt is important for proliferation in the embryonic 

epithelium, however its role in the embryonic gut may be more complex (Reviewed in 

Spense et al. 2011).  Still, Tcf4, a main effector of the canonical Wnt pathway is required 

for proliferation to be maintained in the intervillous region as villi form (Korinek et al. 

1998).  Additionally, Wnt target genes such as CD44 share an embryonic expression 

pattern with proliferation, becoming restricted to the region between villi as they form 

(Kim et al 2007, Madison et al. 2005). Axin2, a reporter of canonical Wnt signal, is 

expressed in a manner similar to proliferation and CD44 (Jho et al. 2002).  However, the 

localization of !-catenin, a central player in the Wnt pathway may not align with 

proliferation during gut development, pointing to additional roles for Wnt, outside of 

proliferation, as villi form (Kim et al 2007).  

Intestinal stem cells in the adult and embryo 

 In the adult intestine, proliferation is restricted to the crypt, the intestinal stem cell 

niche.  Adult intestinal stem cells (ISCs) are long-lived, multipotent cells that serve to 

replenish the mucosal surface of the intestine during homeostasis (Umar 2010).  The 

discovery of a number of putative ISC markers has aided in our understanding of how 

ISCs contribute to homeostasis and disease.  One such gene, Lgr5 is specifically 

expressed in the cycling crypt basal cells (CBCs) of the crypt (Barker et al. 2007).  

Lineage tracing and transplantation studies demonstrating that Lgr5-positive cells are 

multipotent and long-lived have established Lgr5 as a bone fide intestinal stem cell 

marker (Barker et al. 2007).  Impressively, a single Lgr5-positive cell can form a self-
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renewing, long-lived, gut-like organoid in culture (Sato et al. 2009).   

 As Lgr5 faithfully marks the ISC population, tracing its expression back through 

embryogenesis could reveal the origin of this cell type, however, only a very limited 

number of studies have set out to trace ISC markers, such as Lgr5, back to their 

embryonic origin.  Preliminary evidence that ISC markers are not embryonically 

expressed as well as data supporting embryonic expression has been put forth (Kim et al. 

2012, Garcia et al. 2009). The earliest established expression of the ISC marker Lgr5 is 

found at P0 and just after in the intervillous region before crypts form (Kim et al. 2012, 

Itzkovitz et al 2012), however, Lgr5 is expressed embryonically in several other tissues 

(Barker et al. 2012).  Additionally, the Lgr5 null mice do display a gastrointestinal 

phenotype, suggesting the gene may be expressed in the embryonic intestine (Morita et 

al. 2004).  

Summary of thesis 

 In this dissertation, I first examine the mechanism behind the formation of 

intestinal loops.  I demonstrate that looping morphogenesis is driven by mechanical 

forces that arise from differential growth between the gut tube and the anchoring dorsal 

mesenteric sheet.  A computational model based on measured parameters not only 

quantitatively predicts the looping pattern in chick, verifying that these physical forces 

are sufficient to explain the process, but also accounts for the variation in the gut looping 

patterns seen in other species. 

 I then explore the formation of intestinal villi in chick.  I find that intestinal villi 

form in a stepwise process as a result of physical forces generated as proliferating 
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endodermal and mesenchymal tissues are constrained by sequentially differentiating 

layers of smooth muscle.  A computational model incorporating measured differential 

growth and the geometric and physical properties of the developing chick gut 

recapitulates the morphological patterns seen during chick villi formation.  I also 

demonstrate that the same basic biophysical processes underlie the formation of intestinal 

folds in frog and villi in mice. 

Finally, I focus on the process by which intestinal stem cells are ultimately 

localized to the base of each villus. As the luminal surface of the gut is deformed during 

villus formation, there are resulting local maxima of Shh response in the mesenchyme.   

This results, at high threshold, in the induction of a new signaling center under the villus 

tip termed the villus cluster.  This, in turn, feeds back to restrict proliferating progenitors 

in the endoderm, the presumptive precursors of the stem cells, to the base of each villus. 

We assay for expression of ISC markers in the embryonic gut and find that embryonic 

progenitors resemble adult ISCs, suggesting ISCs may be remnants of this pool of 

embryonic progenitors. 
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Summary 

 
The developing vertebrate gut tube forms a reproducible looped pattern as it grows 

into the body cavity.  Here we use developmental experiments to eliminate 

alternative models and show that gut looping morphogenesis is driven by the 

homogeneous and isotropic forces that arise from the relative growth between the 

gut tube and the anchoring dorsal mesenteric sheet, tissues that grow at different 

rates. A simple physical mimic, using a differentially strained composite of a pliable 

rubber tube and a soft latex sheet is consistent with this mechanism and produces 

similar patterns. We devise a mathematical theory and a computational model for 

the number, size and shape of intestinal loops based solely on the measurable 

geometry, elasticity and relative growth of the tissues. The predictions of our theory 

are quantitatively consistent with observations of intestinal loops at different stages 

of development in the chick embryo. Our model also accounts for the qualitative 

and quantitative variation in the distinct gut looping patterns seen in a variety of 

species including the quail, finch and mouse illuminating how the simple 

macroscopic mechanics of differential growth drives the morphology of the 

developing gut. 

Introduction 

 Understanding morphogenesis, the origin of shape in anatomical structures, 

organs, and organisms, has been a central goal of developmental biology since its origins. 

Historically, the subject focused on the morphology and dynamics of embryonic growth
1
 

with many analogies to observable physical phenomena. This metaphoric approach to 
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biological shape is epitomized in D’Arcy Thompson’s On Growth and Form
2
, with its 

focus on a mathematical and physical approach to the subject, emphasizing the role of 

differential growth in determining form. However, with the modern revolution in 

molecular biology, the field focused on a framework built around gene regulation, 

signaling molecules and transcription factors. This has led to much insight into the logic 

of the developmental networks controlling processes as diverse as the patterning of the 

limb skeleton
3
 and the branching morphogenesis of the lung

4
. More recently, however, 

there has been a renewed appreciation for the fact that to understand morphogenesis in 

three dimensions, one must combine the molecular insights (genes and morphogens) with 

the knowledge of physical processes (transport, deformation and flow) generated by 

growing tissues.  

 In this context, there has been only recent, limited exploration of the role of 

tissue-scale mechanical forces in organogenesis
5-10

. Such large-scale forces can become 

important when the shape of an organ is remodeled after its initial structure has been 

formed. An important example of this hierarchy is the looping morphogenesis of the 

gut
11

. The midgut forms as a simple linear tube of circular cross-section running down 

the midline of the embryo, and grows at a faster rate than the surrounding tissue to 

eventually become significantly longer than the trunk. As the size of the developing mid- 

and hindgut exceeds the capacity of the embryonic body cavity, a primary loop is forced 

ventrally into the umbilicus (in mammals) or yolk stalk (in birds). This loop first rotates 

by 90
0
 counterclockwise, followed by another 180

0
 during the subsequent retraction into 

the body cavity. Eventually, the rostral half of the loop forms the midgut (small intestine) 

while the caudal half forms the upper half of the hindgut (the ascending colon). 
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 The chirality of this gut rotation is directed by left-right asymmetries in cellular 

architecture that arise within the dorsal mesentery
12-14

, an initially thick and short 

structure along the dorsal-ventral axis through which the tube is attached to the 

abdominal wall. This leads the mesentery to tilt the gut tube leftward with a resulting 

counterclockwise corkscrewing of the gut as it herniates
12-13

. However, the gut rotation is 

insufficient to pack the entire small intestine into the body cavity, and additional loops 

are formed as the intestine bends and twists even as it elongates. Once the gut attains its 

final form, which is highly stereotypical in a given species, the loops retract into the body 

cavity. During further growth of the juvenile, no additional loops are formed
15

 as they are 

tacked down by fascia, which restrict movement and additional morphogenesis without 

inhibiting globally uniform growth. 

Results 

Relative growth between gut and attached mesentery drives looping 

 Throughout development, the gut tube remains attached to the body wall along its 

entire length by the dorsal mesentery, and is fixed at both its rostral and caudal ends to 

the mouth and anus, respectively, and thus preserves its connectivity and chirality during 

growth. The resulting number, shape and size of loops are also conserved in any given 

species, as shown in Figure 2.1a at embryonic day 16 (E16) for the chick. 

 In principle, this regularity of looping could result from either the intrinsic 

properties of the gut tube and mesentery, or from external spatial packing constraints. 

However, surgical dissection of the gut and mesentery from the rest of the embryonic 

tissues shows that all the loops remain intact and identical to their in ovo structure at 
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various stages of development (Figure 2.1a), ruling out any role for body-cavity-induced 

constraints. Another possible mechanism for the reproducible looping is an increased 

asymmetric proliferation of cells in the gut tube at the location of the bends. To test this 

we counted the numbers of mitotic cells in the entire midgut section during the formation 

of the first loop at E5 (Figure 2.1b) and later when there were 9 loops (E12) (Figure 

2.1b). We observed consistently uniform proliferation with no significant differences 

along the rostro-caudal axis of the gut tube, including at loop formation locations, and in 

between loops, as well as no observable azimuthal or radial differences in proliferation 

rates at different cross-sections (Appendix I), consistent with observations that the 

embryonic gut tube cross-section remains circular along its length.  

 Since spatial constraints from the body cavity and the gut tube alone cannot 

explain the reproducible looping, we turned to the dorsal mesentery, the webbed tissue 

that attaches the gut tube to the embryo throughout its length. As looping morphogenesis 

is initiated, the dorsal mesentery changes from a thick, asymmetric multilayer structure to 

a thin double-epithelial sheet with no observable left-right asymmetry (Appendix I).  

 To test whether the dorsal mesentery is integral to the intestinal loops, we 

separated it from the gut surgically or enzymatically and find that the intestine uncoils 

into a straight tube, indicating that it was under compression. Simultaneously, the 

unconstrained dorsal mesentery when freed from the gut tube contracts (Figure 2.1c), 

indicating that this tissue is under tension. Thus the mesentery-gut composite is required 

to maintain the mature loops in the gut. 
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Figure 2.1. Morphology of loops in the chick gut.  a, Chick gut at day 5 (E5), E8, 

E12, E16 shows stereotypical looping pattern. b, Proliferation in the E5 (left) and E12 

(right) gut tube (above in blue) and mesentery (below in red). Each blue bar represents 

the average number of phospho-H3 positive cells per unit surface in 40 (E5) or 50 

(E12) 10mm sections. For the mesentery, each red bar represents the average number 

of phospho-H3 positive cells per unit surface over 6 10mm sections (E5), or in 

specific regions demarcated by vasculature along the mesentery (E12).  The inset 

images of the chick guts align the proliferation data with the location of loops (all 

measurements were done in 3 or more chick samples). c, The gut and mesentery 

before and after surgical separation at E14 show that the mesentery shrinks while the 

gut tube straightens out almost completely. d, The E12 chicken gut under normal 

development (left) and after in ovo surgical separation of the mesentery at  E4 (right). 

Note the gut and mesentery repair their attachment, leading to some regions of normal 

looping (highlighted in green). However a portion of the gut lacks normal loops as a 

result of disrupting the gut-mesentery interaction over the time these loops would have 

otherwise developed. 

!
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Figure 2.1 (Continued) 
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 To find out if the dorsal mesentery is also required for the formation of the loops, 

we surgically separated a portion of the dorsal mesentery from the gut in ovo, beginning 

immediately caudal to the cranial (superior) mesenteric artery (SMA), at day E4, prior to 

looping.  Strikingly, where the mesentery and gut were separated, the intestinal loops fail 

to form (Figure 2.1d) even as normal loops form in locations rostral and caudal to it 

(green lines, Figure 2.1d). Although we were unable to cut the dorsal SMA in ovo during 

gut loop development, once the loops had matured (E12), surgical dissection of the SMA 

leaves the loops intact and in fact highlights their periodic structure (Figure 2.1c). This 

rules out any possible requirement for the SMA in directing loop structure, and for the 

vasculature as well, since secondary vessels develop only after the loops themselves have 

formed.  

 Although the gut grows uniformly, to investigate if the mesentery might grow 

inhomogeneously and thus force the gut to loop at precise locations, analogous to a 

master puppeteer, we examined the proliferation rate of the mesentery at E5 and at E12. 

There were no observed differences along the rostro-caudal axis (Figure 2.1b), suggesting 

that the growing mesentery exerts a uniform compression along the length of the gut, 

countered by an equal and opposite tensile reaction on it from the gut.  

 Taken together, our observations suggest that uniform differential growth between 

the gut and the mesentery could be at the origin of loop formation. Since the gut tube is 

slender, with a length that is much larger than its radius, it responds physically to the 

differential strain-induced compression from the attached mesentery by bending and 
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looping, while remaining attached to the embryo rostro-caudally. Most importantly, the 

fact that the gut relaxes to a straight configuration while the mesentery relaxes to an 

almost flat configuration implies that the tissues behave elastically, a fact that will allow 

us to quantify the process simply. 

A physical model of gut looping 

 To investigate the physical origins of this looping pattern, we developed a simple 

simulacrum of the gut-mesentery composite using a silicone rubber tube and a thin latex 

sheet (see Appendix I). The differential strain induced by relative growth between the gut 

and the mesentery is simulated by extending the latex sheet (the mesentery) along its 

length, and stitching it to the wall of the naturally straight, unstretched rubber tube (the 

gut) along the edge parallel to the direction of membrane stretching (Figure 2.2a). Upon 

removing all external loads from the composite system, we observe the spontaneous 

formation of loops in the tube very similar in shape to the looping patterns seen in ovo 

(Figure 2.2b). Varying the differential strain, the thickness of the latex sheet, the radius of 

the rubber tube and their material properties (Supplementary Information) shows that the 

wavelength and amplitude of the repeating loops depends only on these measurable 

parameters. 

Scaling laws for loop period, radius and number  

 We now quantify the simple physical picture for looping sketched above to derive 

expressions for the size of a loop characterized by the contour length l and mean radius of 

curvature R of a single period (see Figure 2.3a). The geometry of the growing gut is 

characterized by its inner and outer radii  and , much smaller than its evolving length,  
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Figure 2.2 Rubber simulacrum of gut looping morphogenesis.  a, To construct the 

rubber model of looping, a thin rubber sheet (mesentery) is stretched uniformly along 

its length and then stitched to a straight unstretched rubber tube (gut) along its 

boundary; the differential strain mimics the differential growth of the two tissues. The 

system is then allowed to relax, free of any external forces. b, On relaxation, the 

composite rubber model deforms into a structure very similar to the chick gut (here, 

the thickness of the sheet is 1.3mm and its Young’s modulus is 1.3MPa, the radius of 

the tube is 4.8mm its thickness is 2.4mm, and its Young’s modulus is 1.1MPa, see 

Supplementary Information for details). c, Chick gut at E12. The superior mesenteric 

artery has been cut out (but not the mesentery), allowing the gut to be displayed 

aligned without altering its loop pattern. 

!
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while that of the mesentery is described by its homogeneous thickness h, which is much 

smaller than its other two dimensions. Since the tube and mesentery relax to nearly 

straight flat states once surgically separated, we can model the gut as a one-dimensional 

elastic filament growing relative to a thin two-dimensional elastic sheet (mesentery). As 

the gut length becomes longer than the perimeter of the mesentery to which it is attached, 

there is a differential strain  that compresses the tube axially while extending the 

periphery of the sheet. When the growth strain is larger than a critical value , the tube 

buckles out of the line to take on a wavy shape of characteristic amplitude A and period 

. At the onset of buckling, the extensional strain energy of the sheet 

U
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The above theory is valid only at the onset of looping and cannot predict the amplitude or 

radius of a loop.  Far from the onset of the instability, at a strain , we use a 

torque balance argument to determine the finite radius of the loop. To deform the gut into 

a loop of radius R, the elastic torque required is Tt !EtIt/R and must balance the torque 

exerted by the membrane with strain  over a width w and length R, Tm !Emhw R. 
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The width of this strip is the radial distance from the tube over which the peripheral 

membrane stretching strain is relaxed, and determined by the relation  !w/(R-w). 

Writing Tt !Tm and assuming  yields the scaling law 

R ! (
E
t
I
t

E
m
h"

0

2
)
1/3        (2) 

 

Quantitative geometry and biomechanics of chick gut looping 

 A comparison of the results of our predictions with quantitative experiments 

requires the measurement of the geometry of the tissues, their elastic properties and the 

relative strain mismatch at different stages of chick gut development; we chose three 

stages E8, E12, and E16 (Figure 2.3). The mesentery has a time-varying thickness h, 

which is evaluated from histological cross-section (Appendix I), while the inner/outer 

radii of the gut tube were extracted from DAPI-stained tube cross-sections (Figure 2.3b 

and insets). The length of the gut tube Lt was measured on the dissected gut. The natural 

rest length of the periphery of mesentery Lm was measured by cutting out thin strips along 

the junction with the gut and aligning them unstretched with a ruler (Figure 2.3c). The 

bending stiffness of the gut tube and the stretching stiffness of the mesentery was 

measured using in vitro uniaxial low-rate tensile tests, where the load was generated by a 

magnet applying a calibrated force on a millimeter size steel ball, attached on one end of 

a tissue sample which was pinned at the other end. The extension of the sample under 

load was tracked using videomicroscopy to extract its stress s vs. strain e response curve 

(see insets of Figure 2.3d,e and Methods/Appendix I).
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Figure 2.3. Geometric and mechanical measurements of chick gut. a, Schematic 

summarizing the parameters involved in the physical model. b, inner and outer tube diameter. 

Measurements are extracted from DAPI stained tube cross section shown in insets. c, Tube 

and mesentery differential growth. Inset shows the length measurement on one isolated loop. 

d, Stress vs. extension for the mesentery at E8, E12 and E16. The curves are linearized at a 

characteristic strain corresponding to the physiological strain, as shown by the black lines, to 

extract the effective Young modulus  and the effective strain e0. e, Stress vs. strain curves 

for the gut tube at E8, E12 and E16. f, Mesentery and tube Young’s modulii ,  as a 

function of  time, E8, E12, E16. g, effective differential growth strain   as a function of  

time, E8, E12, E16. 

!
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 For the mesentery, we observe a non-linear response curve with a sharp break at a 

strain , where ep=Lt/Lm-1 is the physiological strain mismatch, typical of the strain-

stiffening seen in biological soft tissues
16

. We define an effective modulus Em and strain 

 by locally linearizing the response (see Fig. 3d):  and , 

noting that the membrane has negligible stiffness when . For the gut, we 

measured the modulus Et=s/e from the linear low-strain response curve ( <10%, Fig. 

3e). In Fig. 3f,g we summarize the variation of Em, Et, and  as a function of 

developmental time. Measurements of the mesentery stiffness at various locations and in 

various directions did not exhibit significant differences (Appendix I). This indeed allows 

us to model the mesentery and the gut as isotropic, homogeneous material. 

 The measured biophysical parameters allowed us to create a detailed numerical 

simulation of gut looping. Since the gut and mesentery grow slowly, inertial forces are 

unimportant, and the composite system is always in mechanical equilibrium. This 

configuration was calculated as follows: the mesentery was modeled as a discrete elastic 

membrane consisting of a hexagonal lattice of springs with a discrete energy associated 

with in-plane stretching/shearing deformations as well as out-of-plane bending 

deformations
17

, relative to the rest length of the springs.  The gut was modeled as an 

equivalent membrane strip (that is two elements wide) with a discretized energy 

associated with bending and stretching deformations, and elastic stiffnesses different 

from those of the membrane . The geometry, mechanical properties and relative growth 

of the tissues parameterized by  are all experimentally measured at 

different time points during development. Given these input parameters, energy 
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minimization for different relative growth strains  yields predictions for the looping 

morphology of the gut (see Methods, Appendix I). 

 In Figure 2.4a, we compare the results of our observation at E16 with numerical 

simulations, and in Figure 2.4b,c we compare our quantitative measurements of the 

wavelength and radius of curvature of the chick gut at the different measured stages of 

development (see also Appendix I) with those of both the rubber simulacrum and 

numerical simulations, as a function of the geometry and elastic moduli of the tube and 

sheet. Over the range of strain  in the simulation and for the various 

rubber models, we plot the wavelength  and radius R of the loop in Fig. 4b,c, and find 

that they follow the relations 

 

 and 

 

(3) 

in accord with the our  simple scaling laws (1)- (2). Table 2.1 compares the values of 

these parameters for the chick gut with the expressions given in (3), and confirms that our 

model strikingly captures the salient properties of the looping patterns with no adjustable 

parameters, strongly suggesting that the main features of the chick gut looping pattern are 

established by the simple balance of forces induced by the relative growth between the 

gut and the mesentery.  

Comparative study of gut looping across species  

To test our theory beyond the development of the chick gut, we took advantage of the 

distinct gut looping patterns
 
observed in different avian taxa, which have served as  
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Figure 2.4. Predictions for loop shape, size and number at 3 stages in chick gut 

development.  a, Comparisons of the chicken gut E16 (top) with its simulated counterpart 

(bottom). b, Scaled loop contour length l/r0  plotted vs. eq. (3a)  for the chick gut (black 

squares), the rubber model (green triangles), and numerical simulations (purple circles), 

are consistent with the scaling law (1). c, Scaled loop radius R/r0, plotted vs. eq. (3b), for 

the chick gut, the rubber model, and numerical simulations, are consistent with the scaling 

law (2). Symbols are as in b. 

!

!
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Table 2.1 

 

Chicken  n ! (mm) R (mm) 

Experimental observation 2.4 ± 0.4 4.6 ± 1.0 1.4 ± 0.2 

E8 

Computational model* 1.8 ± 0.3 6.1 ± 1.5 1.6 ± 0.3 

Experimental observation 9.0 ± 0.5 5.6 ± 1.2 1.5 ± 0.1 

E12 

Computational model
†
 7.3 ± 1.6 6.8 ± 1.6 1.7 ± 0.3 

Experimental observation 15.0 ± 0.5 9.5 ± 0.5 1.9 ± 0.1 

E16 

Computational model
‡
 17.5 ± 2.4 8.1 ± 1.9 1.9 ± 0.5 

* Lt = 11.0±0.5 mm, h = 13.0±1.5 !m, ro = 155±8 !m, ri = 44±5 !m, Em = 35±14 kPa, Et = 4.8±1.4 kPa, !p = 38±7 %, and 

!0 = 28±5 %. 

†
 Lt = 50.0±8.3 mm, h = 8.0±1.5 !m, ro = 209±12 !m, ri = 72±9 !m, Em = 156±78 kPa, Et = 5.6±1.7 kPa, !p = 116±19 %, 

and !0 = 30±5 %. 

‡
 Lt = 142.1±3.3 mm, h = 7.1±1.4 !m, ro = 391±27 !m, ri = 232±31 !m, Em = 861±344 kPa, Et = 4.2±1.3 kPa, !p = 218±15 

%, and !0 = 33±8 %. 

Table 2.1. Summary of the observed number of loops, loop wavelength and radius for the 

chick for different stages of gut development and given geometrical and physical 

parameters associated with the gut and the mesentery show that the model predictions are 

quantitatively consistent with observations. 

!
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criteria for phylogenetic classification, and are thought of as having adaptive 

significance, independent of bird size. 

 We compared the gut looping patterns of the chick with the closely related (but 

differently sized) quail and that of a songbird, the zebra finch. In Figure 2.5a, we see that, 

as previously described
18,19

 the gut of the chick and quail are organized almost identically 

but on different scales, while the digestive tracts of songbirds and chickens are markedly 

different. To make the comparison quantitative, we repeated the morphometric and 

mechanical measurements (Appendix I) and used these to generate predictions from our 

scaling theory and computational model. In all cases, the predicted values of ", R and n 

are again in excellent agreement with those observed in embryonic guts of the 

appropriate species (Figure 2.5b,c, Table 2.2). For instance, we find that, although growth 

strains ep are similar between the chick and quail, the quail mesentery has a tension 

 approximately five times that in the chick mesentery. Qualitatively, this greater 

elastic force produces a smaller loop, hence inducing more loops per length and thus the 

same number of loops in the smaller bird. In contrast, most of the geometrical and 

physical parameters characterizing the developing gut and mesentery in the chick and 

zebra finch are different and lead to different looping parameters.  

 Finally, to challenge our theoretical model with a non-avian example, we 

performed a similar set of measurements throughout the course of gut development in 

mouse embryos. In agreement with our findings from birds, the geometrical and 

biophysical properties of the developing gut and dorsal mesentery suffice to accurately 

predict the stereotypical patterns of the mature intestinal loops in mouse embryos (Figure 

2.5, Table 2.2). The latter are notably characterized by softer tissues and higher mismatch  
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Figure 2.5. Comparative predictions for looping parameters across species. a, Gut 

looping patterns in the chick, quail, finch and mouse, to scale show qualitative 

similarities in the shape of the loops, although the size and number of loops vary 

substantially. b, Comparison of the scaled contour length ë/r0 vs. eq. (3a) are 

consistent with the scaling law (1) for the different species. Black symbols are for the 

animals shown in (a), other symbols are the same as in fig. 4b. c, Comparison of the 

scaled loop radius R/r0 vs. eq. (3b) are consistent with the scaling law (2) for the 

different species. Symbols are as in b. In b and c, points are reported for chick E8-12-

16, quail E12-15, finch E10-13 and mouse E14.5-16.5. 

!

!
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Table 2.2 

 

Species  n ! (mm) R (mm) 

Experimental observation 9.0 ± 0.7 4.6 ± 0.4 1.2 ± 0.1 

Quail E12 

Computational model* 10.0 ± 1.3 4.1 ± 1.0 1.2 ± 0.3 

Experimental observation 5.5 ± 0.5 3.6 ± 0.5 0.6 ± 0.3 

Finch E13 

Computational model
†
 5.3 ± 0.8 3.7 ± 0.9 0.9 ± 0.2 

Experimental observation 6.0 ± 0.5 6.0 ± 0.7 0.7 ± 0.1 

Mouse E16.5 

Computational model
‡
 5.6 ± 0.8 6.4 ± 1.5 1.0 ± 0.1 

* Lt = 41.3±0.4 mm, h = 14.9±1.6 !m, ro = 248±13 !m, ri = 154±12 !m, Em = 515±206 kPa, Et = 4.4±1.3 kPa, !p = 110±13 

%, and !0 = 23±5 %. 

†
 Lt = 19.7±0.8 mm, h = 6.0±0.6 !m, ro = 227±14 !m, ri = 120±13 !m, Em = 802±321 kPa, Et = 2.6±0.8 kPa, !p = 110±11 

%, and !0 = 32±5 %. 

‡
 Lt = 35.9±0.9 mm, h = 12.3±1.6 !m, ro = 270±16 !m, ri = 178±14 !m, Em = 94±37 kPa, Et = 1.9±0.9 kPa, !p = 200±13 %, 

and !0 = 64±5 %. 

 

 

 

 

 

 

Table 2.2. Summary of the observed number of loops, loop wavelength and radius for 

the quail, finch and mouse given the geometrical and physical parameters associated 

with the gut and the mesentery show that the model predictions are quantitatively 

consistent with observations. 

!

 

!
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strain, producing tightly coiled loops, as seen in Figure 2.5a. Interestingly the 

physiological stresses in the mesentery fall in the same range (see Supplementary 

Information) for all the species investigated in this study, suggesting that both growth and 

properties of tissues might be regulated by mechanical feedback. 

Discussion 

 The developing intestine is a simple elongated tubular structure that is 

stereotypically and reproducibly folded into a compact organ through the process of 

looping morphogenesis. Our study has shown that the associated looping patterns are 

quantitatively determined by the differential growth between the gut tube and dorsal 

mesentery and their geometric and elastic properties, both in an organism and across 

species using a combination of quantitative experiments, computations and scaling 

arguments. We thus bring a quantitative biomechanical perspective to the mostly 

metaphoric arguments in On Growth and Form
2
. 

 The simplicity of the mechanical origin in the diversity in gut looping patterns, 

long associated with the adaptive significance of the distinct diets and residence times in 

different animals
18

 also suggests that since it is sufficient to modulate the uniform tissue 

growth rates, tissue geometry and elasticity of the gut-mesentery system to change these 

patterns, these are the minimal properties upon which selection has acted to achieve the 

looping patterns found in nature.  

 Identification of the relevant cellular parameters influencing gut morphogenesis 

opens the door to future studies of the genes involved in controlling cell proliferation and 

matrix formation in space and time, and sets the stage to understand the processes by 
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which biochemical and biophysical events across scales conspire to drive the 

developmental regulation of growing tissues.
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Materials and Methods 

Embryos. Fertile chicken eggs (White Leghorn eggs) were obtained from commercial 

sources. Fertile zebra finch eggs were provided by the lab of Tim Gardner at Boston 

University.  Fertile Japanese quail eggs were obtained from Strikland Game Bird. All 

eggs were incubated at 37.5°C and staged according to Hamburger and Hamilton
20 

 (HH). 

Mouse embryos were collected from stage pregnant females (Charles River 

Laboratories). 

Immunohistochemistry and histology. Small intestines were collected from chick 

embryos at desired stages and fixed in 4% paraformaldehyde in PBS and embedded in 

paraffin wax, allowing for 10mm transverse sections of the gut tube.  Fast green staining 

was performed as described in ref. 20. Immunohistochemistry was performed with rabbit 

polyclonal anti-phospho-H3 (1:100) (Millipore) overnight at 4 degrees in PBS containing 

3% goat serum and 0.1% Triton X-100.  Sections were next incubated with Alexa Fluor 

594 goat-anti-rabbit secondary antibody (Molecular Probes) (1:300) for 1 hour at room 

temperature.  DAPI (Molecular Probes) was used as a nuclear counter stain and to 

determine the size of the inner and outer radii of the gut tube. 

In ovo gut surgeries. The gut tube and the dorsal mesentery were separated in ovo at HH 

stage 23-25 by using a pulled glass needle to cut the connection between the two tissues.  

Most, but not all, of the connection was ablated as care was taken to avoid puncturing the 

dorsal aorta which runs over the gut tube and dorsal mesentery at this stage.  Embryos 

were re-incubated until E12 when they were collected to examine the resulting looping 

pattern. 
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Physical simulacrum using rubber. We cut a wide strip of elastic rubber sheet 

(McMaster-Carr) of various thicknesses. The sheet was held stretched in one direction at 

the desired extension using clamps, and a silicon rubber tubes (NewAge Industries, inc.), 

was stitched to the sheet using sewing thread (further details, see Supplementary 

Information). 

Calibration of the magnetic force. The attractive interaction between a permanent disc 

magnet (commercial grade, axially magnetized, neodymium Nd-Fe-B; The Magnet 

Source) and high precision ball bearings' steel balls (AISI 440C stainless steel, radii 

rb=0.122, 0.253 and 0.398 mm; New England Miniature Ball Corp.) was calibrated using 

a "falling ball viscometer" geometry: immersed in a tube filled with pure glycerol, the 

magnet is approached atop the ball that consequently rises (we ensured that all materials 

used to manipulate the beads and the magnet during the measurements, calibration and 

tensile tests, had no magnetic susceptibility). The force exerted by the magnet is balanced 

by gravity, drag and inertia. At low Reynolds number, drag force and inertia can be 

measured from the ball trajectory that is extracted using video tracking (see details in 

Appendix I). We can then calculate the attractive force F(d) between the magnet and the 

ball as a function of their separation distance d. We report our results in Fig. S3 and 

Table S1 (Appendix I). Notably, for distances 2<d<8 mm used in the tissue tensile test 

described thereafter, the force ranges from 1mN to 1mN. 

Measurements of tissue mechanical properties. We surgically dissected fragments of 

the mesentery and of the gut tube  from live embryos. Samples of the mesentery were cut 

out to leave a well-defined, constant millimeter-width stripe with principal axis either 

perpendicular to the tube (radial measurement) or parallel to the tube pathway (tangential 
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measurement). For mesentery fragments, the steel beads were glued using synthetic glue 

(Instant Krazy Glue) at one end of the tissue stripe. The other end was pinned to an 

agarose gel layer. During the dissection of the sample, we kept sections of the tube or of 

the superior mesenteric artery to provide convenient handles to attach the bead (see 

Figure 2.3d and Appendix I, where sections of the tube are clearly visible). For gut tube 

fragments, the steel beads were inserted into the tube and secured by tying the lumen 

using a hair with an overhand knot. The other end of the tube was held on the agarose gel 

using a horseshoe pin (Figure 2.3e & Appendix I).  All dissections, manipulations and 

tensile tests were performed in Ringer buffer (Sigma Aldrich), and the measurements 

occurred within a few hours after the dissection. The magnet was attached to a plastic 

arm held on a micrometric translation stage, and approached to the sample on the agarose 

gel (Appendix I). The magnet attracts the steel bead and stretches the sample in a 

controlled fashion.  The tensile tests were video-recorded to track the extension L of the 

sample and the distance bead-magnet d, and were ran the following way: the sample was 

first pre-conditioned by stretching it once to an extension ratio greater than 1, after which 

the magnet was removed to let the sample relax to its rest length L0, at which stage we 

visually extracted the rest width w0 of mesentery samples. The magnet was then moved 

back towards the sample in a step piecewise motion. At each step, the sample stretches 

and we perform the next step approach of the magnet only after a visual equilibrium 

extension of the sample is reached. We thus effectively measured the static elasticity of 

the tissue, by mean of the nominal stress F(d)/A0 response to a nominal strain e=L/L0-1; 

here A0 is the cross section of the sample at rest: A0=w0(1+ )
1/2

h for the mesentery by 

virtue of material incompressibility, and A0=p(ro
2
-ri

2
) for the tube. We further verified 
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that this method returns reproducible results, with same-sample variations below sample-

to-sample variations that we measured at about 50%. Several stress-strain response 

curves, corresponding to samples of mesentery and gut tubes extracted from different 

Chicken E16 embryos are shown in Appendix I to appreciate the level of reproducibility. 

Computational model. The mesentery is modeled as a hexagonal lattice of linear springs 

with rest length , whose discrete energy 

 accounts for in-plane stretching (first 

term, where  is the spring length between nodes i and j) and out-of-plane bending 

(second term, where  is the unit normal vector to the triangular facet) such that it tends 

to the energy of an elastic membrane of thickness h and modulus  as 
17

. The 

gut tube is modeled with a similar 2-element width lattice of springs with rest length . 

The discrete energy  of this strip 

contains also in- and out-of-plane deformations terms (first and second term 

respectively), which are chosen such that the in- and out-of-plane bending stiffness 

converge both to  for a tube of outer radius  (see details in Appendix I). At various 

time points in the development of the gut (E8, E12, E16), the parameters by 

 are all experimentally measured and input into the energy, with the 

relative growth  imposing the mismatch strain between the membrane and 

the tube attached to it. Then the energy  is minimized by a damped molecular 

dynamics algorithm
17

, to yield the equilibrium configuration of the gut-mesentery 

composite system. 
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Summary:  

 The intestinal villi are critical elaborations of the lining of the gut, essential 

for providing sufficient surface area for nutrient absorption.  In both the developing 

human and chick gut, the villi are formed in a step-wise progression, wherein the 

mesenchyme and attached epithelium are together first folded into longitudinal 

ridges, then a zigzag pattern, and finally individual villi.  We find that these steps of 

villification are tightly correlated with the differentiation of radially organized 

smooth muscle layers of the gut.  Experimental manipulations where smooth muscle 

differentiation is specifically blocked during gut morphogenesis, or where artificial 

non-muscle barriers are introduced in the system, demonstrate that formation of the 

smooth muscle layers is necessary for each sequential step of villification to occur.  

The muscle acts to restrict the expansion of the proliferating and growing endoderm 

and mesenchyme; this generates compressive stresses that lead to the buckling and 

folding of these tissues.  The final step in which the villi emerge additionally depends 

upon a shift from uniform endodermal and mesenchymal proliferation to a pattern 

where cell division is restricted from the most luminal aspect of the folded tissue.  A 

quantitative computational model incorporating measured differential growth and 

the geometric and physical properties of the developing chick gut recapitulates the 

morphological patterns seen during chick villification.  From a comparative 

perspective, in spite of the conservation of the progression of villi development 

between certain avian and mammalian species, there is a great diversity in the 

structures lining the gut in different taxa, and in their morphological progression.  

By examining the timing and requirement for smooth muscle formation in other 
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species as well by tuning our model to accommodate measured species-specific 

modes of differential growth, as well as their geometric and physical properties, we 

find that a subset of the same basic biophysical processes underlie the formation of 

intestinal folds in frog (which do not form villi) and the villi in mice (which form 

villi without going through ridge and zigzag intermediates). 

Introduction:  

 The intestinal villi are critical structures, dramatically increasing the epithelial 

surface area through which nutrients can be absorbed.  The rapidly renewing epithelial 

surface of the villi is maintained by stem cell populations located at their base, and is of 

particular importance as it is a major target of human carcinogenesis. However, the 

morphogenesis of intestinal villi during embryogenesis remains very poorly understood.  

 In descriptive terms, the primitive midgut is established as a cylinder with an 

outer layer of mesenchyme and inner, luminal lining of endoderm.  As development 

proceeds, distinct radial layers of smooth muscle differentiate.  In parallel, the luminal 

surface of the gut transforms from a smooth surface to a much more complex, convoluted 

morphology.  In humans, as well as in mice and birds, this takes the form of an organized 

array of finger-like projections termed intestinal villi (Reviewed in McLin et al. 2009 and 

Noah et al. 2011).  There are, however, a wide array of luminal morphologies found in 

the midgut of other species, from honeycomb-like patterns in some snakes (Ferri et al. 

1976) to parallel ridges in goldfish and some mammals such as the platypus (Walker et 

al. 2004, Krause 1974), to zigzag ridges in frogs (McAvoy et al. 1978).  Moreover, even 

among species that do form villi, the gut does not appear to undergo the same 

morpogenesis.  Human, cattle, and chick villi have all been reported to form through a 
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sequential process involving formation of longitudinal ridges, zigzags, and then villi (Bell 

et al. 1980, Lacroix et al. 1984, Hilton 1902, Winkler et al. 1998, Coulombre et al. 1958).  

In contrast rodent villi do not initiate ridge-like folds but rather form direct epithelial 

elevations from the smooth luminal surface (Sbarbati et al. 1982).  

 Regardless of the steps by which they form, the induction of intestinal villi 

requires crosstalk between tissue layers of the gut (Madison et al. 2004).  Studies of 

tissue interactions during villi formation have focused on chemical communication, 

highlighting many molecular players required for proper villi formation (Karlsson et al. 

2000, Ormestad et al. 2005, Walton et al. 2012).  These studies, however, have not shed 

light on how intestinal villi grow and take their form during development. While early 

work (Burgess 1975) suggested there could be a mechanical underpinning of the 

formation of intestinal villi, and while a recent study puts forth a theoretical model of this 

process (Hannezo et al. 2012), there has been no systematic biological or physical study 

of this supposition.  

Results: 

Radial morphogenesis and differentiation of the chick midgut 

 During villus development in the chick, the gut proceeds through several stages of 

morphogenesis forming a series of distinct, striking patterns.  Until embryonic day 7 (E7) 

the gut tube, comprised of an inner endodermally derived epithelium, and an outer layer 

of mesenchyme, maintains a smooth luminal surface (Figure 3.1A).  However, at E8 as 

the first layer of circumferentially oriented smooth muscle begins to form, longitudinal 

ridges start to arise appearing as an inward buckling of the tube (Figure 3.1B), thus 
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breaking the azimuthal symmetry of the lumen.  These ridges increase in number until 

E13 when the differentiation of this layer is complete.  At this point, a second layer of 

muscle that is oriented longitudinally differentiates just exterior to the circular layer, and 

concurrently the folds shift into parallel zigzags (Figure 3.1C), thus breaking the axial 

symmetry of the lumen.  Finally, at E16 a third muscle layer that is also longitudinally 

oriented differentiates just interior to the circular layer and coincides with the formation 

of bulges arising from the zigzag pattern, presaging the formation of definitive villi 

(Figure 3.1D). Because the emergence of luminal ridges, zigzags, and villi each coincides 

with the formation of a layer of smooth muscle, we hypothesized that development of 

each of these patterns requires the formation of a smooth muscle layer.   

Intestinal ridges form due to muscle-constrained azimuthal growth of the endoderm 

and mesenchyme 

 The notion that differential growth of layered tissues can lead to their patterning 

via buckling is classical (His 1870), and has been evoked to understand epithelial 

buckling and ridge formation in biological contexts such as the trachea and esophagus 

(Wiggs et al. 1997, Yang et al. 2007), employing models of two or three layer tissues 

with disparate growth rates and properties (Moulton and Goriely 2011).  However, 

investigations of mucosal buckling have typically been restricted to the study of adult 

tissue in both healthy and diseased states, rather than in developmental settings, where 

dramatic changes in morphology occur on the time scale of days.  

In the gut, at the time that ridges form on the luminal surface, there are three 

layers: an external layer of newly differentiating, mesodermally derived smooth muscle, 

an adjacent layer of still undifferentiated mesodermally derived mesenchyme, and an  
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Figure 3.1. Formation of luminal patterns in chick corresponds with 

differentiation of smooth muscle layers. Left, Transverse sections of developing 

chick guts immunostained for nuclei (DAPI, blue) and smooth muscle actin ("SMA, 

green).  Middle, close-up of left panel to view smooth muscle layers.  Right, whole 

mount images of corresponding chick gut lumen pattern, longitudinal axis of gut tube 

runs top to bottom.  (A) The chick lumen is smooth before muscle layers form. (B) 

Longitudinal ridges form just as a layer of circularly oriented smooth muscle 

differentiates (arrowhead). The number of folds increases as this muscle layer 

develops. (C) Just as zigzags form from ridges, a layer of longitudinal muscle 

develops exterior to the circular layer (arrowhead).  Zigzags periodicity is maintained 

but zigzags become larger and more compact over time. (D) As villi emerge from 

zigzags, a second longitudinal layer forms, interior to the circular layer (arrowhead). 

Villi continue to elongate through hatching. (Scale bar = 100µm). 
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Figure 3.1 (Continued) 
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innermost layer of endodermally derived epithelium.  In principle, the two mesodermal 

layers could act in concert forcing the buckling of the endoderm, or conversely, the 

mesenchyme and endoderm could form a functional composite buckling together in the 

context of the surrounding smooth muscle.  To test these possibilities we manually 

separated these layers and observed the effects on their respective morphologies. We first 

assayed whether the circular layer of smooth muscle is integral to the ridge pattern by 

surgically separating it from the combined mesenchymal and epithelial layers.  We 

performed these dissections at various stages: from E8, when the circular muscle layer 

has first formed, to E12 just before the following longitudinal muscle layer forms.  In all 

these stages, we found that once separated the mesenchyme and attached epithelium 

unfold in a matter of a few seconds indicating that these layers were under reversible 

elastic compression when constrained within the muscle layer which acts to directs the 

folding seen at these stages (Figure 3.2A).  In order to quantify this compression, we 

compared the outer circumference of the separated mesenchyme and endoderm to the 

inner circumference of the once attached muscle layer (Figure 3.2B).  The ratio of the 

muscle circumference to that of the mesenchyme and endoderm, i.e. the circumferential 

stretch consistently averages to 0.55 across the stages measured; thus the mesenchyme 

and endoderm are compressed within the ring of smooth muscle by a factor of 

approximately two.  These results demonstrate that the circular muscle layer is required 

for ridge maintenance.  Conversely, however, the separation of the endoderm from the 

composite of mesenchyme and muscle does not abolish ridge pattern in the mesenchyme 

(Figure 3.2C), showing that this interaction is not required for maintenance of the ridges. 
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 Taken together these results support a model where the muscle, once 

differentiated, forms a stiff constraint mechanically blocking the expansion of the 

mesenchyme and endoderm.  Hence, with further growth of these tissues relative to the 

muscle layer, compressive forces are generated and buckling occurs.  This leads to the 

prediction that in the absence of muscle differentiation, the gut tube would simply 

continue to expand radially and no ridges would form.  To test this, we developed an 

explant culture system, which allows for in vitro growth of guts for up to 72 hours.  

When segments of E6 guts, which have smooth lumens and lack any smooth muscle, are 

cultured for 48 hours in vitro, they differentiate a ring of circumferential smooth muscle, 

and three parallel ridges, indistinguishable from guts allowed to develop to E8 in vivo 

(Figure 3.2D).  E6 guts were then cultured in the presence of 10 µM AG1295 or FK506, 

drugs known to block the differentiation of smooth muscle, via two distinct mechanisms 

(Kurahashi et al. 2008 and Fukada et al. 1998).  Guts segments cultured in the presence 

of either compound do not form a smooth muscle layer and do not form luminal folds 

(Figure  3.2D). Importantly, these compounds do not influence proliferation cell death 

when compared to guts grown with the vehicle alone (Appendix II). Further, we observed 

a significant increase in the outer circumference of guts lacking circular smooth muscle 

when compared to control gut samples, suggesting that blocking smooth muscle 

differentiation eliminates circumferential restriction of the outward expansion of the gut 

tube.  To quantify the degree of constraint provided by the muscle, we compared 

geometry of the cultured tissues and find that the ratio of inner circumference of the 

muscle layer in the control samples to the outer circumference of the gut segments 

cultured with either compound to be on average 0.53.  This result suggests when these  
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Figure 3.2. Differentiation of circularly oriented smooth muscle is necessary for 

maintenance and development of ridges. (A). Whole gut rings from E8, E10, E12 

guts (left) are surgically separated at the junction of the mesenchyme and circular 

smooth muscle, (dotted line).  The separated mesenchyme and attached endoderm 

unfold (middle) when detached from muscle (right). (B) Inner circumference of 

muscle layer (green line) compared with outer circumference of the separated 

mesenchyme and endoderm (blue line) over time.  A measure of compression is 

obtained by taking the ratio of green line to the blue line (bar graph).  (C) Surgical 

separation of endoderm from mesenchyme and muscle at E10 does not abolish ridge 

pattern in mesenchyme.  (D) Top, Transverse sections of a fresh E8 gut or E6 guts 

cultured in vehicle alone (Dmso) or with either 10µm AG1295 or 10µm FK506 for 48 

hours, immunolabeled with DAPI (blue) and SMA (green), experiment schematized 

bottom left.  Bottom right, Quantification of compression from E8 muscle.  Graph 

shows the ratio of the inner circumference of the circular muscle at E8 (green 

arrowhead) to the mesenchyme outer circumference after culture (blue arrowhead).  

(E) Transverse sections of guts labeled as in D, culturing E6 guts in the presence of 

either SNP or Motilin does not impact ridge formation.  (F) Transverse sections of 

guts labeled as in D, cultured in silk tubes of 380µm inner diameter (top), 300µm inner 

diameter (middle), or cultured in 300µm and extracted before fixation (bottom).  (n<3 

for all culture experiments, error bars represent one stdev. Scale bar = 100µm) 

!



 64!

 

Figure 3.2 (Continued) 

!



 65!

layers are attached in the E8 gut, the mesenchyme and attached epithelium are 

compressed by a factor of approximately two (Figure 3.2D). This ratio strikingly mirrors 

the stretch ratio obtained from surgical separation of the layers, indicating specifically 

that differentiation into smooth muscle accounts for nearly all of the circumferential 

constraint provided by the outer layer of gut tube. 

 Because the smooth muscle begins peristaltic compression as soon as it forms, in 

principle the contractile properties of the muscle could be critical in driving epithelial 

buckling in addition to, or instead of, its function as a physical barrier to expansion.  To 

test whether this active contraction of the circular layer of smooth muscle contributes to 

ridge formation, we cultured E6 gut segments with either sodium nitroprusside (SNP), a 

compound shown to inhibit active smooth muscle contraction during peristalsis, or 

Motilin, known to increase the frequency and size of peristaltic smooth muscle 

contraction (Benabdallah et al. 2008, Harada et al. 1992).  After 48 hours in culture, 

neither compound impacted the formation of ridges suggesting the spontaneous 

mechanical activity of smooth muscle is not required for epithelial buckling (Figure 

3.2E).  Rather, these data support the hypothesis that the circular smooth muscle acts a 

physical constraint to expansion of the mesenchyme and endoderm.   

 To assess whether the lack of expandability of the differentiated circular smooth 

muscle layer is sufficient to drive luminal folds, we sought to mimic its physical presence 

in samples where smooth muscle development was blocked and assess ridge formation.  

We utilized silk tubes, which can be manufactured to any distinct thickness, and hence 

stiffness, while permitting free diffusion due to their inherent porosity.  We synthesized 

silk tubes by spinning silk fibroin around a reciprocating rotating mandrel with a 
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specified diameter, allowing us to mimic the inner diameter of the circular smooth muscle 

(Lovett et al. 2008).   E6 gut segments were cultured inside of silk tubes in the presence 

of either AG1295 or FK506 or vehicle alone for 48 hours.  Gut segments grown in 

vehicle alone develop a layer of circular smooth muscle and form luminal folds (Figure 

3.2F).  As shown above, the segments grown in AG1295 or FK506 do not form a muscle 

layer and when given sufficient room to expand in silk tubes of 380um inner diameter, 

still do not form luminal ridges (Figure 3.2F).  Markedly, the segments grown in AG1295 

and FK506 that are restricted by a tube of the requisite inner diameter of 300um do form 

ridges similar to those seen in control guts in spite of the lack of smooth muscle (Figure 

3.2F).  These results demonstrate that the mechanical barrier function of the 

circumferential smooth muscle is sufficient to cause luminal ridges. Moreover, upon 

removal from the confining silk tube, these ridges are quickly lost, much as they were 

from gut tubes upon surgical removal of the circumferential muscle layer (Figure 3.2F), 

supporting our previous finding that continued mechanical constraint is required for the 

maintenance of luminal ridges. 

Zigzag intermediates in villus morphogenesis form in response to muscle-

constrained bilateral compression 

   Previous work has shown that a thin layer atop an elastic substrate may take on a 

zigzag topography when it is compressed biaxially (Bowden et al., 1998, Mahadevan et 

al. 2005, Rizzieri et al. 2006).  Therefore we hypothesized that the longitudinal layer of 

smooth muscle that forms at E13 may induce longitudinal compression that, in 

conjunction with the previously established circumferential muscle compresses the gut 

biaxially.  To investigate whether the longitudinal layer combines with the circular layer 
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to form the zigzag pattern, we again performed surgical separations of the mesenchyme 

and attached endoderm from the muscle layers, measuring separated lengths along the 

longitudinal axis.  When we perform this dissection at E12, before longitudinal muscle or 

zigzags have formed, the length of the separated mesenchyme and attached endoderm is 

approximately the same as the muscle to which it was attached (Figure 3.3A).  Thus, as 

expected, before the longitudinal layer forms, the mesenchyme and endoderm are not 

under longitudinal compression.  However, after the longitudinal layer and zigzags arise 

at E13, E14, and, E15, the ratio of the length of the separated muscle to mesenchyme and 

endoderm is approximately 0.75, 0.69, and 0.55 respectively (Figure 3.3A).  This 

suggests that the mesenchyme and endoderm are under an increasing amount of 

longitudinal compression as the muscle layer forms. Conversely, separation of the 

endoderm from the mesenchyme and muscle at E14 does not abolish zigzag pattern, 

suggesting this interaction is not required for maintenance of the zigzags (Figure 3.3B). 

 To directly test whether the development of the outer longitudinal layer is 

required for the formation of zigzags, we returned to our in vitro culture system.  When 

E12 gut segments, which have only a single, circumferential smooth muscle layer and 

contain parallel ridges but not zigzags, are cultured for 48 hours, they differentiate a 

longitudinal smooth muscle layer and undergo morphogenesis to form zigzags, 

indistinguishable from guts harvested at E14 (Figure 3.3C).  We next repeated these 

cultures in the presence of one of the two muscle blocking compounds, AG1295 or 

FK506.  Importantly, we find these compounds only block further smooth muscle 

formation and leave established layers intact.  However, in the presence of either 

AG1295 or FK506 the longitudinal muscle layer fails to differentiate and the zigzag  
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Figure 3.3. Differentiation of outer and inner longitudinally oriented smooth 

muscle layers is required for development of the zigzags and villi, respectively.  

(A) Ratio of lengths in the longitudinal axis of separated muscle layers to 

mesenchyme and attached endoderm before (E12) and after (E13, E14, E15) 

longitudinal muscle layer forms.  (B) Separation of endoderm from mesenchyme and 

muscle at E14 does not abolish zigzag pattern in mesenchyme. (C) E12 guts cultured 

in vehicle alone (Dmso) or with either 10µm AG1295 or 10µm FK506 for 48 hours, 

experiment schematized bottom left. Top panels are luminal views, bottom are 

longitudinal sections immunolabeled with DAPI (blue) and SMA (green). Bottom 

right, Quantification of compression from E14 longitudinal muscle.  Graph shows the 

ratio of the length of the control cultured segments to those lacking muscle.  (D) Fresh 

E17 gut or E15 guts cultured in vehicle alone (Dmso) or with either 10µm AG1295 or 

10µm FK506 for 48 hours. Top panels are luminal views, bottom are longitudinal 

sections, labeled as in 3C. Bottom right, Quantification of compression from inner 

longitudinal muscle.  Graph shows the ratio of the length of the control cultured 

segments to those lacking muscle. (n<3 for all culture experiments, error bars 

represent one stdev. Scale bar = 20µm) 
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Figure 3.3 (Continued) 
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pattern does not form, but the ridges remain (Figure 3.3C).  This suggests that the 

longitudinal layer is required to induce zigzags. Additionally, when differentiation of this 

longitudinal muscle is blocked, the length of the tube increases significantly compared to 

control gut segments.  Specifically, the ratio of the length of control gut segments to 

those cultured in the presence of either compound is on average 0.66, suggesting that, in 

the E14 gut, this longitudinal muscle layer compresses the mesenchyme and attached 

epithelium by a factor of approximately 1.5 (Figure 3.3C).  Importantly, this corroborates 

the value for compression from the outer longitudinal layer in E14 we obtained following 

manual dissection of the layers. As for ridge formation above, transformation of ridges to 

zigzags occurs independent of active contraction of smooth muscle (Appendix II). 

Smooth muscle differentiation is also required for villus morphogenesis  

 To investigate whether the final patterning step where villi form is also dependent 

on the differentiation of a smooth muscle layer, we cultured E15 guts, which have both a 

circumferential layer and outer longitudinal layer, for 48 hours in the presence of the 

muscle blocking compounds or with the drug vehicle alone.  We find that gut segments 

cultured with vehicle alone develop an inner longitudinal muscle layer and begin to form 

villi.  However, those cultured with either AG1295 or FK506 fail to form this muscle 

layer and also do not initiate villi outgrowth (Figure 3.3D).  Again, when differentiation 

of this longitudinal muscle is blocked, the length of the tube increases significantly 

compared to control gut segments (Figure 3.3D).  The ratio of the length of gut segments 

grown with vehicle alone to that of those lacking the outer longitudinal muscle is on 

average 0.68., suggesting this inner longitudinal layer also compresses the mesenchyme 

and endoderm by a factor of approximately 1.5.  These findings support the hypothesis 
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that differentiating smooth muscle acts as a barrier to the expansion of the attached 

mesenchyme and endoderm, compressing these layers first circumferentially to form 

ridges, then longitudinally to form zigzags, and finally longitudinally again to form villi. 

We emphasize that since the patterns relax when the muscular constraints are released, 

the morphology of the lumen minimizes the energy of constrained growth in a soft 

layered elastic tissue. 

Quantitative models substantiate the role of tissue growth constrained by muscle 

layers to drive ridge and zigzag formation 

 To more quantitatively understand the physical basis of luminal patterns, we 

constructed a mathematical and computational model of the process based on measured 

geometrical and biophysical parameters (Figure 3.4A).  We start with a composite of a 

cylindrical elastic mesenchyme adhered to a cylindrical endoderm that are together 

squeezed to fit into a rigid tubular configuration with an outer boundary of diameter D 

that mimics the circular smooth muscle. Based on our measurements of the mechanical 

properties we assume that the tissues may be well described using a simple neo-Hookean 

constitutive model. The strain energy density of the model is given by 

, 

where µ and K are the shear and bulk moduli, respectively, F is the elastic deformation 

gradient, and J = det(F). Given the timescale of several days, we assume that the tissues 

are compressible with a typical K = 3µ of a solid matrix of soft tissues (Cowin et al. 

2007). We simulate the relative growth of the endoderm and mesenchyme compared to 
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the muscular layer by expanding their stress free states.  At each stage, we minimize the 

elastic energy of the system by a custom finite element model (Appendix II).  

In Figure 3.4B we show a series of images from a biologically-based simulation 

that closely mimics the folding pattern progression observed from E7 to E14 (Figure 

3.4C). Direct input parameters of the simulations include the outer circumference 

of the compressed mesenchyme-endoderm composite, which increases by a 

factor of 2.7 as time goes from E7 to E14 (Figure 3.4A), and elastic moduli. Based on the 

measurements (Figure 3.4A), we assume that the endoderm is 12 times stiffer than the 

mesenchyme ( ), i.e., we neglect the small difference in the measured modulus 

between E8 and E10. We also utilize image analysis to measure the circumference and 

thickness of the endoderm and the volume occupied by the mesenchyme from the stained 

cross-section images (Appendix II). Since these measurements are based on deformed 

states, they cannot be input directly to the simulation. Instead, we look for rates of 

uniform growth of the mesenchyme and endoderm that lead to the observed cross-section 

geometries and compression ratios in circumferential and longitudinal directions (Figure 

3.4A). To this end, the mesenchyme is allowed to grow laterally with the muscle such 

that its stress free circumference is 1.5  throughout the simulation. The endoderm 

grows faster than the mesenchyme; its stress-free circumference is assumed to expand by 

a factor of 13.5 from E7 to E14. The stress-free thickness of the endoderm is one third of 

that of the mesenchyme, , and the thickness of the whole 

mesenchyme/endoderm composite decreases by a factor 1.5 during the simulation, 

implying that the endoderm thickness decreases from 18 µm at E7 to 12 µm at E14. From 

E7 to E14 the intestine grows substantially also in the longitudinal direction. We do not  
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Figure 3.4. A numerical simulation based on measured geometric and biophysical 

parameters predicts the formation of an increasing number of ridges, and the 

emergence of zigzags in chick (A) Left, Circumference of the inner boundary of the 

muscle (blue) and endoderm (red). Middle left, Spacing of longitudinal ridge folds, 

measured along the endoderm, relative to the deformed thickness of the endoderm. 

Black dashed line is the theoretical estimate . Middle right, Ratio of muscle 

to separated mesenchyme-endoderm composite in circumferential (blue) and 

longitudinal (red) directions. Right, Shear modulus of mesenchyme (blue) and 

endoderm (red), and the relative modulus (magenta). In all panels solid lines are 

experimental observations and dashed lines are computational model. (B) A series of 

images from a single simulation run that shows the first folds forming in a fully 

stuffed tube, followed by an increase in the number of folds and buckling into zigzag 

pattern. (C) Transverse sections of corresponding chick guts labeled with DAPI (blue) 

and SMA (green) show similarity of patterns. 
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Figure 3.4  (Continued) 
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simulate this explicitly, but model a longitudinal section of length 1.25D and apply 

periodic boundary conditions at the ends. This does not affect the results since only the 

growth relative to the muscle is important. 

Under the assumption of small strains, a thin sheet of stiffness and thickness 

 assumes a buckling wavelength  on an elastic substrate of 

stiffness  (Chen et al. 2004). With  which, when measured 

along the endoderm, matches fairly well with the spacing of the longitudinal folds (Fig. 

4A). However, strains in the intestine are large and also the substrate (mesenchyme) is 

under substantial compression, which implies that the mesenchyme thickness also affects 

the spacing. Furthermore, the folds during stages E8 to E12 when the tube is entirely 

stuffed are not of uniform size, as is evident from, for example, E12 cross-sections that 

show small and large folds alternating. Nevertheless, by varying the thickness and 

stiffness of the endoderm in our simulation, we confirm that the above theoretical # 

approximately predicts how the average spacing changes with thickness and stiffness of 

the endoderm. 

In conclusion, from E7 to E12 our model captures the progression of luminal 

ridge folds during chick villi development. Furthermore, our simulation can be extended 

to model the subsequent patterning step at E13 and E14 where zigzags arise simply by 

applying a longitudinal compressive strain due to the longitudinal muscle layers 

equivalent to the values shown in Figure 3.3 Thus ridge and zigzag formation follows 

from simple mechanical instabilities in the growing but constrained tissue, associated 

with two broken symmetries first circumferentially and then longitudinally.  
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Villus formation requires localized changes in endodermal and mesenchymal 

proliferation in addition to smooth muscle differentiation. 

 While we demonstrated in Figure 3 that additional compression from the inner 

longitudinal layer is necessary for the formation of villi from zigzags, simply applying 

additional longitudinal compression in our simulation after zigzags form does not result 

in the formation of villi (Appendix II). This suggests additional parameters contribute to 

the process of villi formation.  Previous work in mouse has shown that although 

proliferating cells can be found uniformly across the mesenchyme and endoderm before 

villi arise, as villi form, proliferating cells are found only in the intervillous region 

(Reviewed in Noah et al. 2010).  A similar phenomenon occurs in chick as proliferating 

cells appear uniformly within each tissue layer through the formation of zigzags, but at 

E15 just before villi arise, proliferating cells are found predominantly in the valleys 

between the raised zigzags (Figure 3.5A).  Interestingly, we note that after definitive villi 

begin to form at E16, proliferation is no longer restricted from the tips (Figure 3.5A).  We 

hypothesize that this proliferation pattern at E16 is due to a change in topography of the 

zigzags as villi arise, displacing the proliferating populations upward from the valley.  

Specifically each “arm” of the zigzag twists out of the plane and into the lumen, 

pinching-off a region of the zigzag arm near each “elbow”, delineating pockets of 

mesenchyme surrounded by endoderm that will each become a villus (Figure 3.5B).  This 

shift in topography brings the highly proliferating cells in the zigzag valleys to the tips of 

the pattern where they can find the most room to expand.   

To theoretically investigate whether the topographical changes during zigzag 

twisting would in fact relocate regions of proliferation as villi form, we created a 
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malleable clay model of zigzags.  We labeled the proliferating regions of our model 

zigzags and performed a manual twist of the clay, mimicking the twist observed in the 

E16 gut (Figure 3.5B).  We then sectioned the resulting shape (Figure 3.5C).  The 

resulting clay label localization closely matches Edu staining for proliferation in the 

sectioned post-twist E16 gut tissue (Figure 3.5C).  These results suggest that the tissue 

movements we describe could account for the proliferation patterns seen, and that non-

uniform proliferation is involved in villi formation.   

 To probe the effect of non-uniform growth in our computational model, we set up 

a minimal configuration of planar mesenchyme and endoderm layers (Appendix II). 

Initially, the layers are grown laterally such that the endoderm is compressed to 50% of 

its stress-free width and length and the mesenchyme is compressed to 60% of its stress-

free width and length. This implies that the mesenchyme-endoderm composite would 

expand by nearly a factor of two in both lateral directions if it were relaxed, in agreement 

with the measured compression ratios during late zigzag stages (Figure 3.3A). The 

compression first results in a tightly packed elastic zigzag pattern (Appendix II), with the 

energetically optimal spacing of approximately twice the thickness of the mesenchyme-

endoderm composite in both directions. The approximate equality of the longitudinal and 

azimuthal spacing can be confirmed from experimental images in Figure 3.5. As a next 

step we incorporate non-uniform growth to this pattern by allowing the growth of spots of 

the endoderm in the zigzag valleys . These spots are centered at the deepest points of the 

valleys, and their initial lateral diameter is 6  in the stress-free endoderm. These spots  



 78!

Figure 3.5. The formation of villi from zigzags involves non-uniform proliferation 

and a complex change in topography. (A) Transverse sections of Edu labeled (red) 

guts show of patterns of proliferation over time. (B) Top, Luminal views of guts from 

E15 to E16 as villi form. Bottom, clay models, purple label represents proliferating 

regions. Clay model is twisted to mimic change in topology seen above. (C) Top, 

Labeled twisted model is sliced reveal label localization. Bottom, Edu label in 

longitudinal sections of E16 guts.  (D) Top, Images from a single simulation run that 

incorporates non-uniform proliferation along with measured geometric and 

biophysical parameters show the formation of villi in whole mount, shown at an angle 

and from above. Bottom, Corresponding whole mount images of the chick lumen as 

villi form (red color and stained puncta are due to antibody stain and can be 

disregarded) (E) Top, Sections of the same simulation shown in D. Bottom , Sections 

of corresponding stage in chick demonstrates similarity of geometry. 

!
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Figure 3.5  (Continued) 
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are grown laterally such that their diameter doubles during the simulation relative to areas 

of the endoderm outside the spots. This pattern of growth causes the zigzags to shift and 

twist so as to relocate the rapidly growing regions to the arms, similar to our clay model 

and consistent with the observed proliferation patterns. As the spots keep growing at the 

arms, they form pre-villous bulges. Sliced plane views of this twisted pattern reveal its 

similarity with the corresponding experimental patterns (Figure 3.5E); bulging peaks are 

rotated while the regular zigzag valleys persist deeper in the pattern. Thus, although the 

final patterning step where definitive villi arise involves more complex morphogenetic 

tissue movements and non-uniform proliferation, it follows from the same general 

physical principles as the first patterns since it is guided by the preceding zigzag pattern. 

A phylogenetically conserved mechanism directs luminal gut morphogenesis 

 Although the patterns seen on the luminal surface of the gut vary dramatically 

across species (Appendix II), the underlying physical principles we have uncovered for 

the chick lumen morphology suggests that these patterns develop according to the same 

basic mechanical mechanisms elsewhere.  In the adult Xenopus, the luminal surface of 

the intestine is folded into a zigzag pattern (McAvoy et al. 1978).  Development of this 

pattern involves progressing through the same patterning steps as in chick, with a smooth 

lumen forming ridges that then develop into zigzags (Figure 3.6A).  We observe that 

ridges form just as the circular smooth muscle layer thickens, and zigzags arise when the 

outer longitudinal muscle is said to shorten longitudinally, likely shortening the attached 

tissue layers (Figure 3.6A and Schreiber et al. 2005).  Importantly, Xenopus, unlike chick, 

do not develop an inner longitudinal muscle layer (Figure 3.6A).  It follows from our 

studies in chick that the absence of this layer may explain why individual villi do not 
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develop from zigzags in Xenopus.  Specifically without the additional compression from 

this longitudinal layer, the Xenopus gut remains in a zigzag pattern in the adult state.  

 In the adult mouse, villi resemble the finger-like projections seen in chick, 

however, the mouse gut does not progress through intermediate patterns during villi 

development and instead, villi emerge directly from a smooth lumen (Sbarbati et al. 

1982).  Importantly, however, we find that villi arise in mouse only once smooth muscle 

layers form (Figure 3.6E). This suggests that the relatively rapid pace at which muscle 

layers form in the mouse does not leave time for proliferation and expansion of the inner 

mesenchyme and endoderm in between the differentiation of sequential muscle layers, 

and thus prevents the development of visible intermediate patterns such as ridges and 

zigzags.  Specifically, in mouse, all muscle layers develop within a 48 hour period, a very 

short time window when compared to the 8 days required for muscle to fully develop in 

chick (McHugh et al. 1995).  To experimentally determine whether villi formation in 

mouse also requires differentiation of smooth muscle, we tested the effect of the smooth 

muscle inhibitors used in our chick studies on the formation of villi in mouse guts grown 

in culture.  Just as in chick, the mouse guts grown in the presence of AG1295 or FK506 

do not form smooth muscle and concomitantly do not develop villi (Figure 3.6B).  This 

finding suggests that compression from the smooth muscle layer is necessary for, and 

likely drives, the formation of villi in mouse. 

 To quantitatively test our theory of villi formation in mouse, we performed 

mechanical and morphometric measurements of the tissues in the developing mouse gut 

(see Figure 3.6C).  We incorporated these measurements into our simulations (Appendix 

II) and, in agreement with our results in chick, we found that the relative growth with the  
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Figure 3.6. The mechanical mechanism of villi formation can be extended to 

other species. (A) Luminal pattern formation in Xenopus. Sectioned immunolabeled 

with DAPI (blue) and SMA (green). The gut begins with a smooth lumen (stage 54), 

ridges form as circular muscle thickens (stage 63), and zigzags arise as the 

longitudinal layer shortens during metamorphosis (stage 66). (B) Transverse sections 

of  E11.5 mouse guts (labeled as in A) cultured in vehicle alone (Dmso) or with either 

10µm AG1295 or 10µm FK506 for 72 hours, experiment schematized above. (C) Left, 

Circumference of the inner boundary of the muscle (blue) and endoderm (red). Solid 

lines are experimental observations and dashed lines are computational model. Thin 

dashed line shows the stress-free circumference of the simulated endoderm. Middle, 

Spacing of folds relative to the deformed thickness of the endoderm, measured along 

the endoderm. Right, Shear moduli of mesenchyme (blue) and endoderm (red), and the 

relative moduli (magenta). (D) A series of cross-sectional (top) and luminal (bottom) 

images from a single simulation run based on measurements from the developing 

mouse gut. Color shows distance of the luminal surface to the center line relative to 

the diameter of the tube. (E) Top, Transverse sections (labeled as in A) and Bottom, 

Whole mount images of the lumen for corresponding stages during mouse villi 

formation. 
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Figure 3.6  (Continued) 
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measured geometric and biophysical parameters suffice to predict the formation of villi in 

mouse (Figures 3.6D and 3.6E).  Most importantly, while in chick the endoderm is more 

than ten times stiffer than the adjacent mesenchyme, the mouse endoderm is only 

approximately 1.5 times as stiff as the mesenchyme (Figure 6.3C).  Our simulations 

reveal that the soft endoderm in mouse is essential for the initial folding that occurs in 

endoderm alone, and for the direct formation of an array of pre-villous bumps rather than 

zigzags. Indeed, the formation of bumps in mouse is qualitatively similar to sulcus 

formation on squeezed gel surfaces that lack a stiff top layer and the associated zigzag 

phase (Tallinen et al. 2013, Dervaux et al. 2012). The formation of bumps requires 

substantial compression in both lateral directions, which in mouse occurs via nearly 

simultaneous development of circumferential and longitudinal smooth muscle layers. As 

in chick, both mesenchyme and endoderm are under substantial compression. They 

buckle together, with spacing of bumps comparable to the thickness of the whole 

mesenchyme-endoderm composite. Stretching the classical buckling formula 

 to predict the spacing of bumps yields , i.e., half of the fold 

spacing in chick, which approximately coincides with our measurements (Figures 3.4A 

and 3.6C, note that we approximate  by the deformed thickness in the plots). In 

general, however, the above formula for # gives only a qualitative hint on how the 

endoderm modifies the spacing.  

Discussion: 

In the chick, a series of morphological patterns emerge during the process of villi 

formation, each attributable to the differentiation of a layer of smooth muscle.  The 
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mesenchyme and endoderm are first compressed circumferentially leading to buckling in 

this circumferential axis, then compressed longitudinally adding longitudinal buckling to 

the pattern generating zigzags.  Finally, further longitudinal compression from a newly 

formed second layer of longitudinal muscle  forces the tissue layers to buckle radially 

into the lumen, because circumferential and longitudinal compression prohibits further 

expansion in these axis.  We find that this same mechanism underlies villi formation in 

mouse, and that differences in the way villi emerge can be explained by relatively minor 

changes in the relative growth and physical properties of the developing tissues. 

 Recently, an alternative view of mouse villus formation was put forward; 

postulating a potential inductive role of the endodermally derived signal Sonic Hedhehog 

(Shh) in triggering a morphogenetic cascade directing villus outgrowth (Walton et al. 

2012).  The key results that led in this direction were the failure of villus formation when 

Shh activity was pharmacologically blocked with the Shh antagonist cyclopamine and the 

increased size of the villi when guts were provided with excess Shh signal.  However, as 

these reagents were applied prior to villus formation, they were de facto also treated prior 

to smooth muscle differentiation.  As Shh activity is both necessary and sufficient to 

direct smooth muscle formation in the developing intestine (Sukegawa et al. 2000, 

Ramahlo-Santos et al. 2000) an alternative interpretation is suggested.  This would, of 

course have been difficult for the prior authors to anticipate in the absence of knowledge 

of the direct role of smooth muscle differentiation on villus formation. 

 Our study highlights the fact that relatively minor change in the growth, physical 

properties, and geometry of the developing tissue in various species can dramatically 

alter the process of villi formation, or final pattern formed.  Perhaps these properties are 
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an elegantly simple set of parameters which can be tuned in nature to drive variation.   

We previously reported a qualitatively similar mechanical basis based on differential 

growth for the looping pattern of the intestine and determined that variation in the same 

simple set of parameters are responsible for a diverse array of looping patterns (Savin et 

al. 2011). Importantly, just as altering luminal topography influences luminal surface 

area, looping allows for a longer tube to be packed into the small space allotted for the 

organ in the body, providing an additional opportunity for increased luminal surface area.  

Therefore, the embryo may simply exploit basic mechanical properties of the tissue, 

optimizing gut size and luminal morphology in concert to form the best adapted intestine.  

For example, if the chick gut must fit into a relatively small space, the optimal gut could 

be highly looped or could be shorter with a more intricate surface morphology.  

Interestingly the inner longitudinal muscle layer concurrently restricts the tube length and 

increases luminal surface by driving the formation of villi, a topography with more 

surface area than zigzags.  As this layer does not form in frog, we speculate that it arose 

in higher vertebrates as a mechanism to optimize gut function through changing  both gut 

length and luminal surface pattern simultaneously. 
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Materials and Methods: 

Embryos and Dissections 

Fertile chicken eggs (White Leghorn eggs) were obtained from commercial sources. All 

eggs were incubated at 37.5°C and staged according to Hamburger and Hamilton. Timed 

pregnant CD1 mice were obtained from Charles River. Xenopus embryos were derived 

by in vitro fertilizations and allowed to develop to the desired stages.  The layers of the 

gut tube were separated using human hair, fine forceps, and tungsten wire to cut the 

connections between the layers.   

Immunohistochemistry and Edu Staining 

Small intestines were collected from embryos at desired stages and fixed in 4% 

paraformaldehyde in PBS and embedded in OCT, allowing for 14um transverse sections 

of the gut tube.  Immunohistochemistry was performed with mouse anti-smooth muscle 

actin (FITC-conjugated, 1:200, Abcam), rabbit polyclonal anti-phospho-H3 (1:100, 

Millipore) overnight at 4 degrees in PBS containing 3% goat serum and 0.1% Triton X-

100 (Davis, Kurpios et al. 2008).  Sections were next incubated with Alexa Fluor 594 

goat-anti-rabbit secondary antibody (1:300) for 1 hour at room temperature.  DAPI 

(molecular probes) was used as a nuclear counter stain. 1mM Edu (Invitrogen) was 

injected in ovo and embryos were harvested 4 hours post-injection. Edu was detected in 

sectioned tissue using the Click-iT Edu system (Invitrogen) 

Organ Culture 

Intestines were dissected from the embryos of the desired stage in cold PBS, connective 

tissue was removed, and intestines were gently pinned to an agar base with tungsten wire 

(for chick E6 or E12, mouse E11.5) or placed on transwells (Costar 3428) (for chick E15) 
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in DMEM media supplemented with 1% pen/strep and 10% Chick Embryonic Extract 

(for chick tissue only). Intestines were cultured for 48 – 72 hr (as indicated in the figure 

legends) at 37 °C with 5% CO2 with media changes every 24 hr. 

Elasticity Measurements  

Layers of tissue were separated as described above, a ring of gut tissue was placed in a 

dish of PBS between a glass coverslip, acting as a substrate, and a piece of glitter which 

was attached to a long, thin tungsten beam.  The beam act as a cantilever, allowing us to 

observe beam bending as a measure of force from the tissue on the beam – a stiffer tissue 

will cause more bending (deflection). The ring of tissue is then compressed along its 

diameter through slow measured movements of a micromanipuator attached to the 

tungsten beam.  Images were taken every 10um and measurements of the displacement of 

the beam were attained by analyzing the resulting data with imageJ.  Plots of 

displacement of the beam (distance the glitter moved) versus force (deflection of the 

beam * bending stiffness) were created for each sample.  The resulting data were 

incorporated into a fine element model (details in Appendix II) in order to determine the 

modulus of the measured sample. 

Computational model of luminal patterns 

See text, for details Appendix II. 

Clay Modeling 

Clay models were constructed out of Crayola Modeling Clay (CVS) and labeled with 

purple nail polish.  Photos were taken with a standard digital camera. 
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Summary 

Adult intestinal stem cells (ISCs) are long-lived, multipotent cells that serve 

to replenish the mucosal surface of the intestine during homeostasis.  In the adult, 

these cells reside in the crypt, the intestinal niche located at the base of villi.  Here 

we investigate the process by which intestinal stem cells are ultimately localized to 

the base of each villus.  In the early embryo, proliferating progenitors are evenly 

distributed throughout the epithelium and are then restricted to the space between 

villi as they form during development.  We find, as mechanical forces deform the 

luminal surface of the gut during villi formation, uniform Shh signal from the 

epithelium results in local maxima of Shh responsive genes in the mesenchyme.  We 

demonstrate that the shape of the overlying epithelium determines how the 

mesenchyme receives and interprets these signals, and ultimately induces a new 

signaling center under the villus tip termed the villus cluster.  Signals from the 

cluster, in turn, feed back to restrict proliferating progenitors in the epithelium, the 

presumptive precursors of the stem cells, to the base of each villus.  Further, we 

assay for expression of ISC markers in the embryonic gut and find that embryonic 

progenitors resemble adult ISCs, suggesting ISCs may arise from this pool of 

embryonic progenitors.  

Introduction 

 As the fastest self-renewing adult tissue, the intestine relies heavily on the 

resident stem cell population.  The epithelial lining of the intestine is maintained during 

homeostasis by stem cells residing in the crypt, a structure at the base of the villi which 
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acts as the niche.  Until recently, our understanding of intestinal stem cells was limited, as 

isolation of this population was not possible.  However, the discovery of genes specific to 

these cells has enabled investigation of the behavior and molecular signature of intestinal 

stem cells.  Specifically, lineage tracing and transplantation studies demonstrating that 

Lgr5-positive cells are multipotent and long-lived have established Lgr5 as a bone fide 

intestinal stem cell marker (Barker et al. 2007).  Impressively, a single Lgr5-positive cell 

can form a self-renewing, long-lived, gut-like organoid in culture (Sato et al. 2009).  

Lgr5 is exclusively expressed in the crypt-basal columnar cells (CBCs) located between 

Paneth cells at the base of the crypt, therefore CBCs have been termed Lgr5-positive 

intestinal stem cells, (referred to simply as ISCs in this dissertation) (Barker et al. 2007). 

 In addition to Lgr5, ISCs possess a molecular signature involving several 

expressed factors including Ascl2, Smoc2, CD44, Msh1, and Olfm4 (Itzkovitz et al. 

2011, reviewed in Barker et al. 2012) These genes have been utilized to locate, track, and 

test the function of ISCs in the adult during homeostasis and in disease.  Additionally, 

assaying expression of these genes has allowed for exploration of the signaling events 

that maintain the ISC niche. The Wnt, hedgehog, and TGF-!/Bmp pathways, among 

others, coordinate proliferation, differentiation, and migration events necessary for proper 

function of the niche (Reviewed in Crosnier et al. 2006).  Notably, the Wnt pathway, 

through the action of its effector Tcf4, is necessary for epithelial proliferation and 

maintenance of the niche (van Es et al. 2012).  Additionally, both Lgr5 and CD44 are 

prominent targets of Wnt (Barker et al. 2007, Wielenga et al. 1999).  Bmps, expressed in 

a graded fashion in regions outside the crypt, are downstream of hedgehog and serve to 

restrict Wnt, and therefore proliferation (Haramis et al. 2004, He et a. 2004).    
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 While, in the adult, proliferation is limited to the crypt, in the early stages of gut 

development, all cells of the endodermally-derived epithelium are mitotically active 

(Reviewed in Crosnier et al. 2006).  After villi begin to form, proliferating cells are found 

only in the space between the emergent villi (Reviewed in Crosnier et al. 2006, Noah et 

al. 2010).  During the final stages of embryogenesis, the proliferation pattern is further 

refined within this intervillous space where crypts will later form after birth.  It has 

therefore been postulated that, in the embryo, the epithelium is composed of proliferative 

progenitors, and adult ISCs are the remnants of this population, protected in some way 

from differentiation (Reviewed in Crosnier et al. 2006, Takashima et al. 2012).  

Therefore understanding how proliferation is restricted to the intervillous space may 

additionally shed light on how ISCs arise and are directed towards the niche.   

 Because the signaling that governs proper function of the niche during 

homeostasis is coordinated by pathways with established roles in embryonic 

development, we speculate these same pathways orchestrate the birth of ISCs during 

development.  The Wnt pathway in the developing intestine has been shown to direct 

proliferation, as loss of TCF4 results in absence of intervillous proliferation (Korinek et 

al. 1998).  However, the Wnt pathway may have additional, non-proliferative functions in 

the embryo that differ from its role in the adult (Kim et al. 2007).  The PDGF-A ligand is 

expressed in the epithelium and signals to its receptor in the underlying mesenchyme 

(Karlsson et al. 2000).  This pathway plays a role in establishing the intervillous zone, as 

loss of the epithelial PDGF-A ligand leads to decreased proliferation (Karlsson et al. 

2000).  Additionally Shh and Ihh are expressed throughout the epithelium during 

intestinal development and are upstream of Bmp4 and the transcription factors Foxf1 and 
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Foxf2 in the mesenchyme (Ramalho-Santos et al. 2000, Ormestad et al. 2005). Loss of 

hedgehog signal leads to inhibition of Bmps and therefore enhanced activity of Wnt 

target genes, such as CD44, as well as increased proliferation outside of the intervillous 

space (Madison et al. 2005).  Similarly, loss of Foxf1/2 in the developing intestine leads 

to expansion of epithelial Wnt signal and proliferation the villous tips (Ormestad et al. 

2005).  Further, loss of Ihh in the epithelium leads to an increase in Lgr5 expression 

(Kosinski et al. 2010)  These findings suggest that epithelial hedgehog induces Bmp in 

the underlying mesenchyme which, in turn, represses Wnt signal, proliferation, and 

potentially Lgr5 in the overlying epithelium.  Importantly, because Bmps are expressed in 

a graded pattern with higher expression at the villous tip than in the mesenchyme at the 

base of villi, repression of Wnt and downstream proliferation occurs specifically in the 

surrounding, villous tip epithelium.  Therefore these non-uniform mesenchymal patterns 

play a role in protecting proliferating progenitors in the intervillous space, and an 

understanding of how these patterns form may shed light on how intestinal ISCs arise. 

 Additionally, an understanding of ISC development requires spatial and temporal 

investigation of ISC marker expression during development.  In Drosophila, a pool of 

proliferating progenitors are specified in the embryo and adult ISCs arise out of this pool 

of progenitors.  Importantly, all of the markers of adult ISCs in Drosophila are expressed 

in embryonic progenitors (Reviewed in Takashima et al. 2012).  Conversely, in Xenopus, 

ISCs appear to arise de novo, as markers of ISCs such as Lgr5 do not arise until after 

metamorphosis (Sun et al. 2010).  This process is driven by endogenous thyroid hormone 

and is accompanied by a wave of cell death in the epithelium (Sun et al. 2010).  

Surprisingly, the origin of this important cell type in humans, as well as in chick and 
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mouse, is not known.  The earliest established expression of the ISC marker Lgr5 is 

found at birth, or shortly after, in the intervillous region before crypts form in mouse 

(Kim et al. 2012, Itzkovitz et al 2012).  A limited number of studies have set out to trace 

ISC markers such as Lgr5 back to their embryonic origin.  Preliminary evidence that ISC 

markers are not embryonically expressed as well as data supporting embryonic 

expression has been put forth (Kim et al. 2012, Garcia et al. 2009). We hypothesize that 

ISC marker expression in the embryo aligns with proliferation, as the ability to proliferate 

is an important component of the ISC signature.  Additionally, the signals that regulate 

proliferation also regulate Lgr5.  Alignment of ISC marker expression with this striking 

regression of proliferation would reveal a strong molecular and cellular resemblance 

between the embryonic progenitors and adult ISCs.   Such a finding would suggest a 

portion of these embryonic, mitotically-active progenitor cells are preserved in an 

undifferentiated state in order to give rise to ISCs in the adult. 

 Through studies of the developing gut in both chick and mouse, we aim to address 

how epithelial proliferation becomes restricted to the intervillous region, how non-

uniform expression patterns in the mesenchyme arise in response to uniform epithelial 

signals, and whether proliferating embryonic gut progenitors share aspects of the genetic 

signature of adult ISCs. 

Results 

  Proliferation in the intestine of the developing chick, as in mouse and other 

species, is initially found uniformly throughout the epithelium but is progressively 

restricted, and is specific to the crypt after hatching.  Specifically, in chick, proliferation
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Figure 4.1. Proliferation is restricted from the most luminal aspects of the zigzag 

topography during gut development. Proliferation at E12 when the luminal pattern 

consists of many ridges is uniform throughout the epithelium.  Beginning at E14 and 

through E15, just as zigzags are becoming larger and more compact and right before 

definitive villi form, proliferation is restricted from the inner most aspect of the 

pattern.  Staining is evident only in the regions at the base of the pattern.  1µM Edu 

was applied in ovo for four hours and Edu was detected on 14 µM transverse tissue 

sections.  



 100!

is restricted from the most luminal aspect of the zigzag pattern at E15 just as the cluster 

signal forms and before true villi form (Figure 4.1).  Because this restriction is coincident 

with the formation of the villus cluster, a locus of signal in the mesenchyme under the 

growing villus tip, we speculate signals from the cluster inhibit proliferation in the 

adjacent epithelium.  In order to address this hypothesis, we first investigated the origin 

of the cluster and its genetic signature.  In mouse, the cluster forms in response to 

epithelial Shh signals (Walton et al. 2012). We hypothesize that epithelial ligands, Shh 

and PDGFA signal to their receptors in the underlying mesenchyme, leading to the 

cluster expression pattern.  I find that when I culture E15 chick guts in the presence of an 

excess of Shh, thus abolishing a gradient of the ligand, cluster-specific expression is lost 

and instead expression is seen uniformly across the mesenchyme. Conversely, when 

cultured in the presence of cyclopamine, all expression of Ptc1 and Bmp4 is abolished 

(Figure 4.2).  These data corroborate a recent study of the villus cluster in mouse and 

confirm that, in chick, Shh is upstream of Bmp4 and that a gradient of Shh is necessary to 

instigate a cluster of expression specific to the villus tip mesenchyme.  

 How such a uniform epithelial signal could induce this non-uniform mesenchymal 

pattern is a fascinating unanswered question. In a simple one-dimensional morphogentic 

field, cellular response is based on the distance between a cell and the morphogen source. 

When extending this model to two or three-dimensions, it is critical to consider that the 

shape of the source tissue can assume a non trivial role in how a signal is received. As the 

luminal pattern of the chick gut is transformed from ridges to zigzags to villi, the 

mesenchyme and overlying epithelium are driven to change their shape. Figure 4.3 

shows, in cross section, the changes in shape seen in the epithelium and underlying  
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Figure 4.2. Shh is upstream of BMP4 in the villus cluster.  In situ hybridization of E15 

chick guts cultured for 36 hours.  Normally, Shh is expressed uniformly throughout the 

mesenchyme and its receptor, and pathway target, Ptc as well as Bmp4 are expressed in a 

cluster under the tip of the pattern.  Upon addition of Shh, the localized signal is lost and 

both Ptc and Bmp4 are expressed throughout the underlying mesenchyme.  When cultured 

in the presence of cyclopamine, expression of both Ptc1 and Bmp4 are is lost.   



 102!

 

 

 

!

Figure 4.2 (Continued) 
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mesenchyme as the zigzags condense, enlarge, and flatten from E13 to E15.  We 

hypothesize that the shape of the overlying epithelium determines how the mesenchyme 

receives and interprets signals.  I designed a simple model to simulate the patterns that 

could occur when a morphogen defuses in a gradient from the various shapes of epithelia 

seen in our system.  The model predicts a pattern of expression in the mesenchyme that 

changes from a region of expression directly under the epithelium of a wide flat zigzag to 

a filled-in pattern in the narrow, tall zigzag (Figure 4.3).  The expression pattern of 

PDGFR", a gene known to be expressed in the cluster, closely aligns with these 

predictions (Figure 4.3).  Additional genes known to be expressed in the cluster such as 

Bmp4 and Ptc1 as well as Foxf1 also align with these predicted expression pattern over 

time (Figure 4.4). In the finger-like cross section seen just before definitive villi emerge, 

the epithelial layer encapsulates the responding mesenchymal cells.  Interestingly, due to 

the finger-like shape and relatively small size of the domain, mesenchymal cells may 

receive signal from more than one point along the epithelium leading to the potential for 

an additive effect of the signal.  This additive effect would lead to a density of signal at 

the villus tip, where cells are receiving signal from multiple directions.  This pattern can 

be seen both in the model and in the corresponding in situs.  Our model provides an 

explanation for the how a localized mesenchymal signal such as the villus cluster could 

arise in spite of the fact that the overlying epithelium is secreting a signal uniformly.  

 To test the role of the epithelial shape in articulating signals to the underlying 

mesenchyme, I manipulated the shape of the epithelium and assayed the resulting 

expression patterns.  I altered the shape of the tissue by slicing the E15 gut tube into rings  
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Figure 4.3. The shape of the overlying epithelium determines how the mesenchyme 

receives and interprets signals. Top, Changes in shape seen in the epithelium and 

underlying mesenchyme as the zigzags condense, enlarge, and flatten from E13 to E15.  

Middle, A simple model to simulate the mesenchymal expression patterns that could 

occur when a morphogen defuses in a gradient from the various shapes of epithelia seen in 

our system.  The outline of the epithelium in cross-section is lined with points, each with a 

radial decrease in color intensity, simulating diffusion of a morphogen from the 

epithelium.  The darker regions represent higher levels of signal from the epithelium.  

Bottom, The simulated patterns closely mimic the expression patterns of the cluster gene 

PDGFR-" from E13 to E14.  Images shown are in situ hybridizations performed on 

transverse sections. 
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Figure 4.3 (Continued) 
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Figure 4.4. Cluster genes also align with predicted expression patterns.  Shh is 

expressed throughout the epithelium.  The expression of  Ptc2, Bmp4, Foxf1, and 

PDGFR-" align with the predictions of our model: a pattern of expression in the 

mesenchyme that changes from a region of expression directly under the 

epithelium of a wide flat zigzag (left) to a filled in pattern in the narrow, tall zigzag 

(middle) to a cluster of signal at the tip of the luminal pattern (right).  Images 

shown are in situ hybridizations performed on transverse sections. 
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Figure 4.4 (Continued) 
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and then flipping these rings inside out changing the luminal topography from a narrow 

or rounded peak to a wider ridge (Figure 4.5).  I then culture these inside out rings for 36 

hours.  When done at E14 or E15 the expression pattern in the inside out tissue reverts 

back to the pattern normally seen the wider peaks of E13 guts, with expression tracing the 

area just under the epithelium.  These results support our hypothesis that epithelial shape 

determines the nature of the mesenchymal expression patterns, such as the villus cluster, 

through the articulation of signal gradients. 

 The loss of the cluster in these inside out experiments would predict a return to 

uniform proliferation in the epithelium, as repression from the cluster would be 

eliminated.  Indeed, I find that proliferation in the inside out epithelium resembles that of 

an E13 gut with uniform epithelial Edu staining, whereas control guts show proliferation 

still excluded from the tips (Figure 4.6).  I have developed a complimentary assay to turn 

an earlier, E10 ridge-stage gut into one with villi-like protrusions by culturing the guts 

against a fine mesh (Figure 4.7).  I find that while the control samples from E10 guts 

maintain even proliferation throughout the epithelium, proliferation is lost in tips of these 

artificially induced villi (Figure 4.7).  Together these results suggest the villus cluster 

restricts proliferation of the surrounding epithelium.  

 We hypothesize that proliferation is restricted through repression of epithelial 

Wnt signal, as canonical Wnt in the gut is so closely tied to proliferation, and because 

previous data points to Shh, and its downstream mesenchymal factors such as BMP4 and 

Foxf1, as negative regulators of canonical Wnt signal mouse in the developing intestine 

(Madison et al. 2005, Ormestad et al. 2005).  I have assayed for expression of CD44v6, a 

variant isoform of CD44 and a known target of canonical Wnt, in mouse intestines over 
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Figure 4.5. The role of the epithelial shape in articulating signals to the underlying 

mesenchyme.  Top left, E15 chick gut before and after being manually turned inside out.  

Top right, Control and inside out samples are cultured for 36 hours and assayed for cluster 

gene expression. Reverting the architecture back to a wide flat peak abolishes Bmp4 

expression and returns expression to just under the epithlium.  Bottom, expression patterns of 

additional cluster genes reveals similar results.  Additionally, these data confirm Foxf1 is 

downstream of Shh signal from the epithelium as its expression is expanded in the presence of 

Shh and lost when cultured with cyclopamine (Bottom right).  Again the topographically 

driven mesenchymal patterns are abolished when an excess of Shh, or cyclopamine interfere 

with the gradient from the epithelium.  Images shown are in situ hybridizations performed on 

transverse sections. 
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Figure 4.5 (Continued) 
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Figure 4.6. E15 inside out cultured guts show a return to uniform proliferation in the 

epithelium. E15 gut rings were cultured for 36 hours, either as normal rings (top) or after 

bring turned inside out (bottom). Proliferation in the inside-out epithelium resembles that of 

an E13 gut with relatively uniform epithelial Edu staining, whereas control guts show 

proliferation still excluded from the tip.  Results are most clearly viewed in two close up 

samples on the right.  Gut samples were cultured in 10µM Edu for four hours and Edu was 

detected on 14 µM transverse tissue sections 
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Figure 4.7. Proliferation is lost in tips of artificially induced villi.  E10 gut samples were 

cultured for 36 hours, either as normal ridged tissue or under a fine mesh (schematized top 

left).   Top, E10 ridge-stage guts cultured under the mesh form villi-like protrusions, seen in 

close-up (middle) and from the side (right).  Control samples from E10 guts (left) maintain 

even proliferation throughout the epithelium, proliferation is lost in tips of these artificially 

induced villi (right).  Gut samples were cultured in 10µM Edu for four hours and Edu was 

detected on 14 µM transverse tissue sections. 
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Figure 4.7 (Continued) 
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time and find that its expression is uniform initially, but is lost at villus tips just after the 

cluster forms, aligning with patterns of proliferation (Figure 4.8).  Additionally because 

CD44v6 is also a known marker of ISCs, we speculate CD44v6-positive, cycling 

epithelial cells that are first found along the entire epithelium and then restricted to the 

base of the luminal pattern are a protected population of progenitors from which adult 

ISCs arise. Therefore, to explore the hypothesis that adult ISCs can be thought of as 

preserved embryonic progenitors, we investigated whether additional components of the 

adult ISC signature are shared with the cycling cells of the developing gut.  We have 

begun to investigate the embryonic expression of Lgr5 in the gut through single-molecule 

fluorescent in situ hybridization (FISH).  Preliminarily we find Lgr5 is expressed at low 

levels throughout the epithelium of the developing chick gut (Figure 4.9).  As expected, 

we find expression is limited to the forming crypt after hatching (Figure 4.9).  We 

additionally confirmed the existence of Lgr5 transcripts through qPCR.  Importantly we 

find expression of Lgr5 is expressed more highly in E12 endoderm than the E12 

mesoderm of the same stage (Figure 4.9). Additionally, the transcript is expressed in 

samples of the whole gut during development, albeit at lower levels than those found at 

hatching.  Thus, preliminarily, Lrg5 is expressed in the chick embryonic epithelium. 

Future Directions and Discussion 

 The data shown here demonstrate that changes in the topography of the 

epithelium during the mechanically driven morphogenesis impact the manner in which 

signals defusing from the epithelium are received by the underlying mesenchyme.  We 

show that non-uniform mesenchymal patterns of Ptc1, BMP4, Foxf1 and PDGFR-" in the 

villus cluster arise as a result of the shape of the overlying epithelium by changing the
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Figure 4.8. The Wnt target gene CD44v6 is expressed uniform initially, but is lost at 

villus tips just after the cluster forms in mouse.  CD44v6 antibody staining of mouse 

intestines reveals its expression pattern mimics previously published proliferation patterns 

during development. In mouse the cluster forms at approximately e15.5, coinciding with the 

regression of both proliferation and CD44v6 to the intervillous region.!

!
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Figure 4.9.  Lgr5 is expressed in the intestinal epithelium of the developing chick.  Lgr5 

expression is assayed by single-molecule fluorescence in situ hybridization (FISH).  Lgr5 

transcripts are found throughout the epithelium, and exclusively in the epithelium at E13 

(green dots, top panels). Once the crypt forms after hatching, Lgr5 transcripts are specific to 

the crypt, as we would expect (green dots, bottom panels). qPCR of gut tissue shows Lgr5 is 

expressed more highly in the endoderm than in the mesenchyme at E13, confirming what we 

see in FISH experiments.  Also, comparison of embryonic levels of Lrg5 in the whole gut 

tissue reveals Lgr5 is expressed at E15, and E18, albeit at lower levels than at hatching.  

qPCR data was normalized to !-actin. 
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Figure 4.9 (Continued) 
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shape of the tissue and observing loss of the cluster expression pattern.  While Ptc1 

Bmp4, and Foxf1 are downstream of epithelial Shh, it is not known whether PDGF 

interacts with Shh signaling in the cluster, although previous reports suggest that 

PDGFR-" in the villus cluster is not downstream of Shh (Walton et al. 2012).  Because 

Bmp expression appears more specific to the cluster than the Shh readout Ptc1, it seems 

likely an additional epithelial signal serves to refine this signal from Shh, leading to a 

more precise cluster pattern.  Therefore, perhaps Shh acts in cooperation with a pathway 

such as PDGF to coordinate cluster expression.  These questions regarding the dynamics 

of signaling in the villus cluster can be addressed in our in vitro system through the 

addition of recombinant proteins, agonists, and antagonists to guts grown in culture.  

Specifically we plan to culture E15 guts in the presence of cyclopamine to block Shh and 

Bmp inhibitors such as Noggin and assay for PDGFR-" expression. Additionally we’d 

like to culture guts in the presence of inhibitors of PDGF signal and query whether Bmp4 

or Ptc expression is impacted. 

 The presence of the cluster appears necessary for restricting proliferation from the 

villus tip as loss of cluster signal in experiments where gut segments are turned inside out 

results in a return of proliferation to the peaks of the pattern.  We aim to test our 

prediction that culturing E15 gut segments in the presence of antagonists of Shh or 

antagonists of downstream BMP would similarly return proliferation to the peaks of the 

pattern as cluster driven restriction or proliferation would be abolished.  Additionally, 

artificially inducing a tissue topography which would induce a cluster signal results in 

loss of proliferation in the overlying epithelium.  We aim to confirm whether this 

manipulation of the tissue induces a cluster signal where there was not one previously. 
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We will also apply cluster signal agonists as well as antagonists and observe the impact 

on proliferation patterns in artificial villi to confirm that Shh and downstream factors in 

the cluster inhibit neighboring proliferation. Our hypothesis would predict that addition 

of cyclopamine to artificially induced villi would return proliferation to the tips of the 

pattern. 

 Lastly, we are exploring the location of ISC markers during intestinal 

development.  We find that, in mouse, CD44 is initially expressed uniformly in the 

epithelium and is progressively confined to the intervillous space, aligning with patterns 

of proliferation.  As CD44 is a target of Wnt, which is repressed by cluster signals, Wnt 

signals are likely to be responsible for the regression of CD44 from the villous tips.  We 

predict the same pattern exists in the developing chick intestine and are assaying 

expression of CD44 and additional Wnt targets in the chick.  Additionally, it will be 

interesting to confirm our hypothesis that the regression of Wnt targets from the villous 

tip is cluster-driven.  To do so, we can culture guts in the presence of Shh and BMP 

antagonists and assay for expression of CD44.  We expect inhibiting hedgehog or BMP 

will prevent CD44 from being restricted from the tips of the tissue.  Additionally, we aim 

to assay CD44 and expression of other Wnt target genes in guts that have been turned 

inside out guts with artificially induced protrusions.  We anticipate the guts grown inside 

out will not restrict CD44 from the tips of the tissue and E10 guts forced to form 

protrusions through application of a grid will prematurely restrict proliferation from the 

tips of the artificial villi. 

  Preliminarily, we find that Lgr5 is expressed embryonically, first uniformly in the 

epithelium and later restricted to the crypt, therefore aligning with proliferation and Wnt 
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targets.  This finding supports the existence of an embryonic progenitor pool that shares 

molecular and cellular features with adult ISCs.  Further, resemblance of the embryonic 

progenitors to ISCs supports the hypothesis that ISCs arise, after birth, from the 

embryonic progenitor pool.  Lgr5 is expressed at relatively low levels, even in the cells of 

the crypt, making this transcript difficult to detect through traditional methods, however, 

further characterization of Lgr5 expression through single-molecule FISH will be carried 

out.  Lastly, if Lgr5 expression profiles emulate that of proliferation, it will be important 

to investigate whether Shh and downstream Bmp and Foxf1 are upstream of Lrg5 

expression. This can be accomplished by assaying for Lgr5 expression using single-

molecule FISH in guts cultured in the in presence of Shh and Bmp antagonists proposed 

above. 

 Stem cells in the adult maintain and repair tissues throughout the life of an 

organism.  These cells retain the capacity to self-replicate and give rise to multiple cell 

types.  Understanding the ontogeny of ISCs may shed light on how they are programmed 

into such uniquely multipotent and long-lived adult cells.  A grasp of how this cell type 

arises may provide insights into methods for inducing or manipulating ISC formation.  

While adult stem cells exist in many tissue types, established tissue-specific adult stem 

cell markers are rare, therefore the discovery of ISC markers like Lgr5 appoints the 

intestine an ideal system in which to explore the ontogeny of adult stem cells. 
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Materials and Methods: 

Embryos and Dissections 

Fertile chicken eggs (White Leghorn eggs) were obtained from commercial sources. All 

eggs were incubated at 37.5°C and staged according to Hamburger and Hamilton. Timed 

pregnant CD1 mice were obtained from Charles River.  

Immunohistochemistry, Edu Staining, In situ hybridization, single-molecule FISH 

Small intestines were collected from embryos at desired stages and fixed in 4% 

paraformaldehyde in PBS and embedded in OCT, allowing for 14µm transverse sections 

of the gut tube.  Immunohistochemistry was performed with anti-CD44v6 (BMS145 

eBioscience), 1:100, overnight at 4°C in PBS containing 0.1% Triton X-100, and 

detected with a standard DAB-IHC protocol.  DAPI (molecular probes) was used 1:1000 

as a nuclear counter stain. 1mM Edu (Invitrogen) was injected in ovo and embryos were 

harvested 4 hours post-injection.  Edu was added to a final concentration of 100µM in 

vitro and samples were incubated for 4 hours.  Edu was detected in sectioned tissue using 

the Click-iT Edu system (Invitrogen).  In situ hybridizations were performed as in Davis, 

Kurpios et al. 2008, DIG-labeled probes were detected with NBT/BCIP (Sigma).  Single-

molecule FISH experiments were carried out as previously described (Itzkovitz et al. 

2011) with Lgr5 probes purchased from Biosearch Technologies. 

Organ Culture 

Intestines were dissected from the embryos of the desired stage in cold PBS, connective 

tissue was removed, and intestines were gently placed on transwells (Costar 3428) in 

DMEM media supplemented with 1% pen/strep and 10% Chick Embryonic Extract (for 
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chick tissue only). Intestines were cultured for 36 hours, or as indicated, at 37 °C with 5% 

CO!. 

In vitro tissue manipulations 

In order to invert the E15 gut into the inside out conformation, I cut thin rings of tissue 

(approximately 150 to 200 µm in thickness) and encourage the ring of gut to invert with 

forceps.  As the inner circumference is longer than the outer one, leading to residual 

strain in the tissue, the tissue prefers the inside out conformation, and so inversion is not 

difficult. To induce artificial villi, I dissect E10 gut segments, slice them lengthwise to 

open the tube and place them lumen-side-up on a transwell filter.  Then I place a fine 

mesh over the surface of the tissue. No added pressure is needed to induce protrusions.  

The filter is removed after 36 hours in culture when the sample is collected and fixed. 
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Chapter Five 

Concluding Discussion 
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The biophysical basis of loop and villi morphogenesis 

 The vertebrate intestine acts as the main site for nutrient absorption in the body. 

The surface area of the luminal lining of the tube is maximized in order to optimize 

intestinal function.  One way to boost surface area is to increase the length of the tube, 

however, the size of the organ is restricted by the space allotted for it in the body cavity. 

Therefore, folding the tube into a series of loops allows a longer intestine to maintain a 

compact form.  Alternatively, modifying the luminal topography can dramatically 

increase surface area without increasing the size of the organ.  Thus, investigating how 

the intestine forms loops and builds luminal topographies is key to understanding its how 

a functional organ develops. Further, understanding the mechanisms driving these 

patterning events will give a clearer picture of how variation in patterns may have 

developed across species. 

 Using a combination of biological experiments, physical models, theory, and 

quantitative simulations, we demonstrate that the vertebrate gut forms loops as a result of 

homogeneous and isotropic forces that arise from the relative growth between the gut 

tube and the anchoring dorsal mesenteric sheet, tissues that grow at different rates.  We 

developed a computational model and validated its predictive ability in chick as well as in 

other bird species and in mouse.  Importantly looping pattern depends upon a simple set 

of parameters: geometry, growth rate, and physical properties.  We speculate these are the 

minimal properties upon which selection has acted to achieve the diversity of looping 

patterns found in nature.   

 This same set of parameters is responsible for the diversity of luminal patterns 

explored in our studies of villi formation.  We find intestinal villi form in a stepwise 



 127!

process as a result of physical forces generated as proliferating endodermal and 

mesenchymal tissues are constrained by sequentially differentiating layers of smooth 

muscle.  Our study reveals that relatively minor changes in the growth, physical 

properties, and geometry of the developing tissue in various species can dramatically 

alter the process of villi formation, or final pattern formed.  Again, we speculate these 

properties are an elegantly simple set of parameters which can be tuned in nature to drive 

variation. 

 Because the same parameters underlie the outcomes of both loop and villi 

formation, and because loops and villi form simultaneously and conspire to increase 

surface area it is important to consider the formation of these two patterns together.  It is 

interesting to consider that the embryo may simply exploit basic mechanical properties of 

the tissue, optimizing gut size and luminal morphology in concert to form the most 

morphologically adapted intestine.  For example, as discussed in Chapter 4, the inner 

longitudinal muscle layer concurrently restricts the tube length and increases luminal 

surface by driving the formation of villi.  As this layer does not form in frog, we 

speculate that it arose in higher vertebrates, optimizing gut function through changing 

both gut length and luminal surface pattern simultaneously.   

 Further, in our interspecies comparisons of the formation of both loops and villi, 

we find that differences in physical properties between mouse and chick define the 

divergence of their patters.  Specifically, the gut tube in mouse is much softer than that in 

chick leading to a more tightly looped gut.  Similarly, our computational modeling 

reveals that the softer mouse endoderm is responsible for the direct formation of an array 

of villi rather than ridge or zigzag intermediates.  Therefore, in this instance, interspecies 
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variation of both looping and villi patterns centers on the difference in stiffness between 

the species.  It would be interesting to explore whether this difference in stiffness is 

consistent throughout other developing tissues and whether it similarly contributes to 

interspecies variation in other organs.  

 The biomechanical basis of pattern formation we describe should be explored at a 

molecular and cellular level as mechanical properties of the tissue are derived from the 

molecular make up of the cells and tissue layers.  Since tissue stiffness plays such a 

central role in pattern formation and defines differences in pattern between species, it will 

be important to explore the molecular root of these differences.  Assaying for levels and 

localization of known adhesion molecules, cytoskeletal elements as well as components 

of the basal lamina, which underlies the epithelium, in chick versus mouse would allow 

us to explore the basis of a softer endoderm in mouse.   

 A more directed approach would be to mine for mouse mutants of these same 

molecular components which present with altered villi morphology.  In fact, mice lacking 

the basal lamina component laminin 5" exhibit alterations in mucosal architecture that 

resemble zigzags (Mahoney et al. 2005).  The loss of laminin 5" is said to potentially 

increase the stiffness of the lamina and endoderm through compensatory mechanisms.  It 

would be fascinating to pursue whether this laminin 5" knockout mouse reverts to an 

embryonic chick luminal topography because of changes in epithelial stiffness.   We have 

developed the tools to measure tissue layer stiffness and could therefore verify that loss 

of laminin 5" leads to a stiffer endoderm.  Further, we could manipulate expression of 

laminins or similar molecules in chick though in ovo and in vitro studies with the aim of 

inducing a softer endoderm and mimicking mouse-like villi formation.  These studies 
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would deepen our understanding of the molecular basis of physical properties that govern 

luminal architecture.  Lastly, it would be interesting to examine whether these mutant 

mice display any looping phenotypes, as we might expect if the stiffness of the gut is 

altered. 

 The biomechanical mechanisms we provide for how loops and villi form allow for 

directed follow up studies of genetic underpinnings of differences in growth, geometry, 

and physical properties between species.  A comparison of chick and quail looping would 

allow for an investigation of the genetic basis of the difference in pattern between these 

closely related species.  We find that, although growth strains are similar between the 

chick and quail, the quail mesentery has a tension approximately five times that in the 

chick mesentery. Qualitatively, this greater elastic force produces a smaller loop, hence 

inducing more loops per length and thus the same number of loops in the smaller bird.  

With this mechanical understanding in hand, we can explore the genetic basis behind the 

interspecies differences in pattern by specifically pursuing the molecular mechanisms of 

a thinner mesentery in chick.    

 Although both looping and villi provide opportunity for added surface area, there 

may be instances where modifying one pattern may be more advantageous than the other. 

For example flying vertebrates, especially those that migrate, are known to possess 

shorter guts than comparable, similarly sized non-flying animals.  A shorter gut tube is 

required because the energetic costs of flight increase with load carried.  Therefore these 

species must achieve the same nutrient absorption in a shorter tube (Caviedes-Vidal et al. 

2007).  While this can be achieved through molecular and cellular adaptations of the 

epithelium, a more elaborate luminal surface is also said to play a compensatory role in 
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this case (Lavin et al. 2008).  Further, Elasmobranchs such as the skate and shark have 

short, unlooped intestines, potentially due to an underdeveloped mesentery, but maintain 

a significant surface area due to elaborate infolding of the inner surface of the intestine 

(Wilson et al. 2010, Chatchavalvanich et al. 2006). Therefore in the absence of a 

mechanism allowing for a longer gut to be folded into the body, these species appear to 

have evolved elaborate luminal strictures to maximize the surface area of a shorter gut. 

 Certainly, the final length of the villus dramatically impacts the surface area it 

contributes.  However, while the number of villi is patterned by biomechanical 

mechanisms, how the length of villi is determined is not understood. While longer villi 

provide greater surface area, structural limitations must constrain the final height 

possible.  It will be interesting to pursue how villi continue to elongate after the initial 

villi pattern is set.  Once the pattern of villi is set just before hatching, separation of the 

endoderm from the mesenchme does not abolish the villi pattern suggesting at the stage 

when villi elongate, the tissue layers are no longer interacting in an elastic way to direct 

morphogenesis.  Instead, proliferating cells at the base of villi may force growth upward 

to encourage outgrowth, or cells may migrate in the direction of elongation as villi grow. 

 In Chapter Four, I demonstrate that proliferation is restricted to the base of the 

pattern as a result of repressive signals from a the villus cluster, a mesenchymal signaling 

center.  Interestingly, the villus cluster arises as the zigzag topography changes from E13 

to E15, repressing proliferation at the tips of the pattern just before villi form.  According 

to our quantitative modeling, this non-uniform proliferation pattern is an important part 

of delineating individual villi.  Therefore, the mechanically-driven remodeling of the 

luminal pattern leads to a change in signaling, altering the pattern of proliferation, which 
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feeds back on the luminal architecture leading to the formation of villi from zigzags.  

This mechanism is a fascinating example of the interplay between mechanical forces, 

morphogenesis, molecular cues, and cellular behaviors such as proliferation during 

development.  Further, this is an important example of an instance where a change in 

shape of the tissue alters signals rather than signals leading to changes in shape.  

Therefore, in this case, patterning follows morphogenesis rather than the more canonical 

reverse scenario. 

The role of epithelial architecture in signal articulation and patterning  

 The villus cluster not only plays a role in villus formation, but may also direct the 

process by which intestinal stem cells are ultimately localized to the base of each villus.  

We demonstrate the cluster inhibits proliferation in neighboring cells protecting a pool of 

embryonic progenitors in the region near the prospective niche.   

 While this signal mechanism has not been previously implicated in 

morphogenesis, changing epithelial architecture is likely to play an important role in 

signal articulation on other settings.  This mechanism seems most likely to be important 

when patterning is performed on a small scale where epithelial signals have the potential 

to overlap in a pocket of underlying mesenchyme.  One example of a setting where 

epithelial shape may be important is in the formation of epithelial placodes.  In chick, 

feather placodes arise as evenly spaced elements, first as ectodermal thickenings and then 

instigating mesenchymal condensation (Reviewed in Wolpert et al. 1998).  Interactions 

between the ectoderm-derived epithelium and underlying mesenchyme are known to be 

essential for proper patterning but to what extent these interactions depend on the 
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changing shape of the epithelium has not been explored (Mckinnel et al. 2004).  It seems 

possible, as the villi-shaped placode elongates, a cluster-like expression domain forms in 

the mesenchyme and influences the neighboring ectoderm. 

 It would also be interesting to pursue local epithelial shape changes in the context 

of branching morphogenesis.  This process often involves small pockets of mesenchymal 

tissue surrounded by an epithelium, as is the case in forming villi.  In the developing 

mouse lung, as a branch forms, signals are located to the forming tip, and this may be due 

to signaling dynamics within this epithelial architecture (Lebeche et al. 1999).  These 

localized signals are essential for proper branching, and interestingly, involve many of 

the same pathways utilized in sculpting villi and placodes (Warburton et al. 2000).  

 We investigated the cellular and molecular similarities between embryonic 

progenitors and adult ISCs.  Preliminarily, we find that these cells express targets of 

canonical Wnt signal and Lgr5, both components of the ISC signature.  Further study is 

required to uncover the ontogeny of ISCs but our studies thus far point to an embryonic 

origin.  Although our data suggests Lgr5 is expressed embryonically, our findings also 

point to lower levels of expression per cell in the embryonic epithelium than in the adult 

crypt.  This increase in expression may be driven by thyroid hormone (T3) at hatching in 

chick and birth in mouse as is the case during metamorphosis in Xenopus (Sun et al. 

2010).  We speculate that endogenous T3, which does spike near hatching, or alternative 

factors, induce higher levels of Lgr5 in the intervillous region where the gene is already 

expressed (Lu et al 2007).  Further, a neonatal increase in signal does not conflict with an 

embryonic origin for ISCs, and in fact T3 induction at birth alone could not account for 

the localized expression of Lgr5 seen at birth.   
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 Perhaps an embryonic origin for ISCs is not suspiring given the similarity of the 

roles ISCs and embryonic progenitors play in their relative contexts: embryonic 

progenitors proliferate and populate the epithelium as it forms just as in the adult ISCs 

serve to replenish the gut as it is injured and shed during homeostasis.  Assaying 

embryonic expression of Lgr5 may deepen our understanding of its function in adult 

ISCs.  Additionally, it will be interesting to explore the expression pattern of the 

additional factors that compose the ISC signature.  While the presence of these markers 

in the embryo would strengthen our hypothesis that ISCs share features with embryonic 

progenitors, because these markers behave differently during injury an disease, it is also 

possible they will have different embryonic profiles (Iztkovitz et al. 2011).   

 Reflecting on the similarities between embryonic progenitors and adult ISCs 

allows for comparison of intestinal development and regeneration.  The parallels between 

these two processes are far reaching and, often what we know of one is used to aid in our 

understanding of the other.  It will be particularly interesting to utilize what we learn 

about the differences and similarities of embryonic progenitors and adult ISCs in studies 

aimed at understanding how ISCs are programmed. 

Summary 

 In conclusion, my dissertation studies have shown that looping morphogenesis is 

driven by mechanical forces that arise from differential growth between the gut tube and 

the anchoring dorsal mesenteric sheet.  A computational model based on measured 

parameters not only quantitatively predicts the looping pattern in chick, verifying that 
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these physical forces are sufficient to explain the process, but also accounts for the 

variation in the gut looping patterns seen in other species. 

 Second, I find that intestinal villi form in a stepwise process as a result of physical 

forces generated as proliferating endodermal and mesenchymal tissues are constrained by 

sequentially differentiating layers of smooth muscle.  A computational model 

incorporating measured differential growth and the geometric and physical properties of 

the developing chick gut recapitulates the morphological patterns seen during chick villi 

formation.  I also demonstrate that the same basic biophysical processes underlie the 

formation of intestinal folds in frog and villi in mice. 

Finally, I show that as the tissue architecture is morphed by mechanical forces 

during villi formation, epithelial signals communicated to the underlying mesenchyme 

shift, resulting in a localized, villus cluster signal.  Signals from the cluster, in turn, feed 

back to restrict proliferating progenitors in the endoderm, the presumptive precursors of 

the stem cells, to the base of each villus. We assay for expression of ISC markers in the 

embryonic gut and find that embryonic progenitors resemble adult ISCs, suggesting ISCs 

may be remnants of this pool of embryonic progenitors 

Together, these studies provide new insight into the formation of the small 

intestine as a functional organ and highlight the interplay between physical forces, tissue-

level growth, and signaling during development. 
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Supplementary Material for “Villification” Shyer et al. 

 

 

Computational model of luminal patterns 

When the mesenchyme-endoderm composite is surgically separated from the muscle, it 

expands and unfolds. Furthermore, when the endoderm is peeled from the mesenchyme 

and cut open it relaxes to an approximately planar sheet. These observations suggest that 

the patterning is driven by mechanical instabilities and that the folded states are energy 

minima of an elastic mesenchyme-endoderm composite whose constituents grow 

uniformly, but at different rates, in a cylindrical volume constrained by a relatively much 

stiffer muscle. This is true during development at least until approximately E14 or E15 in 

chick and mouse.  

To investigate the folding patterns numerically, we construct a finite element 

model that minimizes the deformation energy of the system consisting of elastic 

mesenchyme and endoderm layers. The simulated layers are discretized into a rectangular 

mesh, and each rectangle is divided into five tetrahedron elements as indicated in Figs. 

S7. Arrangement of the tetrahedrons in any two neighboring rectangles is reflected in 

order to preserve the reflection symmetries of the mesh. The mesh spacing is denoted by 

a. 

 

A stress-free state of a tetrahedron is contained in matrix 

 

, 

 

where ,  and  are vectors describing the tetrahedron (Fig. S7D). Growth is 

implemented simply by expanding the stress-free state . The deformed state of the 

tetrahedron is contained in  

 

, 
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where ,  and  are the deformed basis vectors (Fig. S7E) and F is the deformation 

gradient. At each time step of the simulation F is obtained by 

 

. 

 

We model the tissues by a neo-Hookean constitutive model with strain energy density  

 

, 

 

where µ and K are the shear and bulk moduli, respectively, and J = det(F). We assume K 

= 3µ in all simulations. W is the energy per unit volume in the deformed state. The 

corresponding Cauchy stress, i.e., the force per unit area in the deformed state is given by 

 

. 

 

Surface traction of each deformed face (i = 1, 2, 3, 4) of the tetrahedron is given by 

 

, 

 

where  are normals with lengths proportional to the deformed areas of the faces. Nodal 

forces are obtained by distributing the traction of each face equally to its three vertices. 

 Our model includes also the self-avoidance of luminal surface. Element faces at 

the surface make up a triangular lattice for which self-avoidance can be enforced by 

processing vertex-triangle and edge-edge contacts. Contacts are penalized by energy 

if the separation d between a vertex and triangle, or between two edges, 
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is less than the contact range . Contact force from this potential is interpolated to 

the nodes of the associated geometric primitives. 

 After the nodal forces are determined the Newton’s equations of motion are 

solved for the nodes by an explicit scheme 

 

, 

 

 

Here  is the time step, mass of a node, and  viscous 

damping factor. Vectors f, v and x are force, velocity and position of a node, respectively. 

The damped Newton’s dynamics is simulated in order to minimize the elastic energy. 

Hence the simulations are performed slowly (quasistatically) to allow full elastic 

relaxation at any time, with negligible inertial and viscous effects. 

 

Details for the tubular chick and mouse simulations (Figs. 4 and 6 in the main 

article) 

To model the relative growth in the mesenchyme-endoderm tubes, time is parameterized 

by  and dimensions of the mesenchyme and endoderm are varied as a function of t 

so as to approximate the observed geometries. In both simulations mesenchyme and 

endoderm are restricted into a cylindrical tube with diameter D and length L = 1.25D. 

The outer boundary of the mesenchyme is clamped to the cylinder and periodic boundary 

conditions are applied at the ends of the tube. Stress-free states of the mesenchyme and 

endoderm are flat, which means that if they were separated and cut open they would relax 

into flat sheets. 

In the chick simulation (Fig. 4) the size of the simulation mesh, including both 

layers, is 400 $ 160 $ 24 rectangles (width $ length $ thickness). D expands linearly by a 

factor 2.7 as time goes from t = 0 to t = 1, corresponding to real time going from E7 to 

E14. The endoderm is 12 times stiffer than the mesenchyme ( ). Stress-free 

dimensions of the endoderm are 

 

thickness  , 



 156!

width (circumferential)   and 

length (longitudinal)  . 

 

Stress-free dimensions of the mesenchyme are 

 

thickness  , 

width (circumferential)   and 

length (longitudinal)  . 

 

In the mouse simulation (Fig. 6) the size of the simulation mesh, including both 

layers, is 320 $ 160 $ 30 rectangles (width $ length $ thickness). D expands linearly by a 

factor 2 as time goes from t = 0 to t = 1, corresponding to real time going from E12.5 to 

E15.5. The endoderm is 1.5 times stiffer than the mesenchyme ( ). Stress-free 

dimensions of the endoderm are 

thickness  , 

width (circumferential)   and 

length (longitudinal)  . 

 

Stress-free dimensions of the mesenchyme are 

 

thickness  , 

width (circumferential)   and 

length (longitudinal)  . 
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We emphasize that direct input parameters of these simulations include the outer 

diameter D and moduli of the endoderm and mesenchyme. The above stress-free states 

are chosen so as to approximately yield the observed cross-sectional geometries and 

expansion ratios of separated mesenchyme-endoderm composite. Even though the 

dimensions of the stress-free states are not fitting parameters in strict sense, they are 

fairly tightly guided by the observed deformed states. For example, circumference and 

thickness of the chick endoderm measured from the cross-section images are close to the 

corresponding stress-free dimensions due to its relatively high stiffness. On the other 

hand, mesenchyme appears strongly squeezed in the cross-section images and it is thus 

difficult to tell precisely what stress-free dimensions it has. Simulations, however, 

suggest that folding is not sensitive to the exact shape of the stress-free state of the 

mesenchyme. We have also performed coarse residual strain measurement of the 

mesenchyme on few samples that indicate that the above stress-free states are realistic. 

 

Details for the zigzag simulation (Fig. 5 in the main article) 

The effect of non-uniform growth on a zigzag pattern is investigated by simulating a 

small planar domain that contains one zigzag cell (visualizations in Fig. 5 and Fig. S5A 

show nine replicates of the simulated domain). The domain has periodic lateral 

boundaries and a clamped base. The mesh size is 120 $ 120 $ 32 rectangles (width $ 

length $ thickness). Stiffness of the endoderm is  and its stress-free thickness 

is
 

.  

The simulation starts from a zigzag pattern that is created by growing the 

endoderm laterally such that its stress-free width and length , where W 

and L are the lateral dimensions of the simulation domain. The mesenchyme is grown 

laterally as well such that its dimensions and . The lateral 

dimensions of the simulation domain are optimized to minimize the energy of the pattern, 

which yields . This result is in agreement with the approximately 

equal circumferential and longitudinal spacing of the zigzags in real chick intestines. 

 The flat stress-free state of the endoderm is broken by laterally expanding spots 

that are centered in the pits of the zigzag pattern, i.e., the points of the endoderm that are 

nearest to the base (Fig. S5B). For parameterized time going from t = 0 (uniformly 

compressed state) to t = 1, the relative expansion of a spot is given by 

, where r is the distance from the origin of the spot along the 

endoderm in the stress-free state before the expansion. This form of expansion keeps the 

total stress-free area of the endoderm approximately constant due to the negative 

expansion far from the spots. The total expansion includes superposed contributions of 
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both spots in the simulation domain. As a result the whole zigzag valley expands, with 

the most expansion at the pits (Fig. S5C). Lateral dimensions of the simulation domain 

and the stress-free state of the mesenchyme are held fixed during this step. 

 The applied growth field here only qualitatively mimics the experimental 

observations, since it is difficult to determine the actual growth field. In addition to 

proliferation, cell migration may contribute in the process of moving from a flat to non-

flat stress-free state. Nevertheless, the simulation robustly captures the twisting and 

rotation of the zigzags that precede the formation of definite villi. Interestingly, this 

transformation breaks the longitudinal reflection symmetry of the pattern, despite the 

initial zigzag pattern as well as the applied growth field have the longitudinal reflection 

symmetry. 

 

Simulation for Measurement of Shear Modulus 

To be consistent with the experimental set-up to measure the shear moduli of di!erent 

layers of chick/mouse gut, we construct the model for simulation as shown in Fig. S.1 

using the mean values of geometric parameters measured from experiments. The gut 

samples, which are modeled as deformable cylindrical tubes, sit in between two rigid 

planes, the top one being the glitter and the bottom one being the substrate. The sti! layer 

is colored in green and the soft layer is colored in blue. The incompressible neo Hookean 

material is used for both layers. Hard contact in the normal direction and frictionless 

sliding in the tangential direction are imposed as the contact conditions between the plane 

and outer surface of the tube. Only one eighth of the complete tube is simulated in 

practice by imposing appropriate symmetric boundary conditions on its symmetric 

planes. The simulated sti! section is meshed by 50 $ 20 $ 40 elements along the 

circumferential, the thickness and the length direction respectively, and the soft section is 

meshed by 50 $ 30 $ 40 in the corresponding directions. The reaction force on the top 

plane is recorded as a function of the displacement by which it is quasistatically 

compressed down for post analysis to get the shear moduli of both layers. The simulation 

is run in commercial finite element package ABAQUS 6.11. The extraction of shear 

modulus of the sti! layer from experimental data is straightforward. As for a given 

geometry and only one neo Hookean material, the reaction force on the glitter is linear in 

its shear modulus G. A test simulation with modulus G0 is run, and thus G = cG0 , where 

the coe"cient c is determined from the least-squares fitting between the simulation curve 

and the experimental data. Only first 5 to 8 points at which the compression displacement 

is relatively small are used for the numerical fit to determine c because in the strongly 

nonlinear regime sti!ening occurs in most polymer materials and neo Hookean 

constitutive model is no longer valid. We also fit the 5 individual measurements 

separately and then take the mean of the fitted moduli. The two results are almost 

identical. Knowing the modulus of the sti! layer, in order to get that of the soft layer, we 
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compress the two layers together laterally.  As the dependence of reaction force on the 

moduli of both layers is implicit, we have to repeat the simulation many times varying the 

modulus of the soft layer while keeping that of the sti! layer the same until the 

experimental data is enclosed by a narrow range of simulation curves with di!erent 

moduli. Within this region, linear interpolation of curves with prescribed moduli is 

adopted to best match the experimental data by the least-squares fitting. Again, we fit 

both the averaged curve and the 5 individual measurements separately and then average 

the moduli. The two results are almost identical.  
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Supplemental Figures: 

 

Figure S1: AG1295 and FK506 do not impact proliferation or cell death.  E6 chick gut 

segments were grown in culture for 48 hours, compare with guts collected from E8 embryos, left.  

While levels of proliferation (top) are lower in vitro than to in vivo, gut segments cultured in the 

presence of either AG1295 or FK506 do not display significantly altered proliferation when 

compared to segments grown in drug vehicle alone.  Additionally, while there is slightly more 

cell death (bottom) in guts grown in vitro than in vivo, segments grown in the presence of either 

drug do not exhibit more cell death than those grown in vehicle alone.  

 

!
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Figure S2: Peristaltic contraction is not involved in the formation of zigzags.  E12 guts were 

cultured for 48 hours with either sodium nitroprssuide or motilin or no drug (control).  Sodium 

nitroprusside inhibits contraction and motilin stimulates contraction, in all cases zigzags begins to 

form. 

 

 

 

 

Figure S3: Segmentation of a cross-section. Solid lines show the outer circumference S0 of the 

mesenchyme (yellow), outer circumference of the endoderm (magenta) and inner circumference 

of the endoderm (cyan). The dashed red line is the mean circumference Se of the endoderm that is 

plotted in Figs. 4A and 6C. Thickness of the deformed endoderm can be approximated as the area 

occupied by the endoderm divided by Se. 
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Figure S4: Localized growth of a zigzag pattern leads to twisting and bulging of arms. (A) A 

zigzag pattern resulting from uniform growth is show top left. With additional longitudinal 

compression the zigzags only squeeze, preserving the up/down reflection symmetry. The cascade 

on bottom shows the twisting and up/down symmetry breaking due to enhanced growth of the 

valleys (parameterized time t = 0.5, 0.75, and 1 from left to right). The applied growth map is 

shown in C for t = 1. The growth map is based on the depth map of the original zigzag pattern (B) 

such that peak growth occurs at the zigzag pits. Purple areas in simulation snapshots have the 

highest expansion, corresponding to the maxima in the growth map and minima in the height 

map. 
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Figure S5: The patterns seen on the luminal surface of the gut vary across species. 

Luminal views (top) and cross sectional view (bottom) of guts of various species. The African 

house snake gut at E55 shortly before hatching (left) has tall flat zigzags.  The adult seahorse gut 

(middle) has disorganized zigzags with lateral extensions. The zebrafish gut (right) has short 

zigzagging protrusions that are oriented laterally. Scale bar is 500µm 
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Figure S6: Computational model for the mesenchyme-endoderm tube. (A) A composite of 

elastic mesenchyme (blue) and endoderm (red) layers is squeezed into a cylindrical tube. (B) A 

magnified view of the deformed mesh. (C) A schematic of a primitive rectangle showing the 

arrangement of its five tetrahedrons. Schematic stress-free and deformed states of a tetrahedron 

are shown in D and E, respectively. 
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