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Singularities, Supersymmetry and Combinatorial Reciprocity

Abstract

This work illustrates a method to investigate certain smooth, orientable,

codimension-two, real submanifolds of spheres of arbitrary odd dimension

(with complements that fiber over the circle) using a novel supersymmetric quan-

tum invariant. Algebraic (fibered) links in S2n+1 [310310], including Brieskorn-Pham

manifolds and homology spheres with exotic differentiable structure [6363], [6464],

[374374], are examples of said manifolds with a relative diffeomorphism-type that

is determined by the corresponding (multivariate) Alexander polynomial [480480],

[257257].

The twist-regularized Wess-Zumino model is a two-dimensional, interacting,

(partially-broken) supersymmetric, topological (constructive) quantum field

theory on a spacetime torus [222222], [223223], [225225]. Given a suitable complex ana-

lytic superpotential f , the supersymmetric partition function or elliptic genus,

Z f = Tr Γ e´βH´iσP´iθ J admits an explicit representation involving a ratio of

Jacobi theta functions depending only the weights of f and spacetime-twist pa-

rameters (op. cit.). Said genus is a weak Jacobi form and enjoys a translational-

unimodular Z2 ˙ SL2(Z)-symmetry despite the model possessing no a priori

conformal structure.

I propose that the elliptic genus Z f of the twist-regularized Wess-Zumino

model with superpotential f encodes the reduced Alexander polynomial ∆K f

iii



of the algebraic link K f . That is, by specializing to the Steenbrink series of the

mixed Hodge structure (of a corresponding fiber) [436436], [437437], [438438], [439439] from

a q-expansion of Z f , one may isolate the singularity spectrum, determine the

eigenvalues of the Picard-Lefschetz monodromy (acting on said fiber) and com-

pute the corresponding characteristic polynomial and the reduced Alexander

polynomial as a factor [310310], [315315]. Moreover, a Z2-symmetry of the elliptic

genus descends to classical functional equations satisfied by the Steenbrink

series, Hilbert-Poincaré series of the local algebra [363363], the Lefschetz zeta func-

tion of an infinite cyclic covering of (the complement of the interior of a tubular

neighborhood of) K f [309309], [352352], and the reduced Alexander polynomial of K f ,

all of which imply a reciprocity law for the singularity spectrum. Furthermore,

the number of quantum mechanical grounds states is the zero-twist limit of the

elliptic genus [225225], the Fredholm index of a supercharge [474474], and coincides

with the rank of the middle homology group of the Milnor fiber and the dimen-

sion of the local algebra. Finally, since the isotopy-type of algebraic knots in S3

are classified by their (univariate) Alexander polynomials [257257], the correspond-

ing moduli space of twist-regularized Wess-Zumino models admits a similar

classification by the corresponding elliptic genera.

Although comparably different and quite general, the proposed method

complements the observation that the Jones polynomial of links in S3 may be

interpreted as arising from Chern-Simons (gauge) theory [475475].
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Preface

Mathematics, rightly viewed, possesses not only truth, but supreme beauty
— a beauty cold and austere, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet sublimely pure, and
capable of a stern perfection such as only the greatest art can show. The true
spirit of delight, the exaltation, the sense of being more than man, which is the
touchstone of the highest excellence, is to be found in mathematics as surely as
in poetry. — Bertrand Russell

The key to maintaining an unreasonable effectiveness of physics in mathemat-

ics and vice versa is through the continued investigation of topics where deep

and inspiring connections bridge the two, often estranged, fields. Yearning for

increased cross-fertilization, Supersymmetry (SUSY) is a purported symme-

try of nature that manifests as an involution interchanging particles of integral

and half-integral spin and as a rather general algebraic structure at the helm of

representation theory, whose elements act on operator-valued tempered distri-

butions related to said particles.

From a physical perspective, SUSY is believed to be spontaneously broken

near or above the electroweak scale („ 246 GeV), which may account for the

dearth of supersymmetric partner particles, or sparticles. Such scarcity of phys-

ical evidence, despite the plethora of suggestive theories and computations,

forms the impetus to craft more powerful and robust particle accelerators to
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delve into energetic terra incognita. From a mathematical perspective, however,

SUSY is defined through a Z2-graded Lie superalgebra of operators and the cu-

rio** underlying large-scale cancellations and simplifications in certain compu-

tations. More recently, mathematicians have taken an interest in SUSY, not only

for the myriad of novel intrinsic symmetries but also for its overwhelmingly

predictive power for yielding new insight—even full-fledged solutions—to prob-

lems which have hitherto been completely intractable. It is therefore reasonable,

if not paramount, to desire a thorough understanding of SUSY from complementary

physical and mathematical perspectives. Such a compelling principle lies at the

foundation of this modest work.

R. E. M. II

Cambridge, MA

*I dare say even impudent curio, for one often finds its mysterious silhouette cast on the
most unlikely of mathematical problems without reason or cause or so much as any hint of an
invitation.
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Chapter 0

Prologue

Mathematics knows no races or geographic boundaries; for mathematics, the
cultural world is one country. — David Hilbert
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0.1. Hilbert’s Sixth Problem

For his address of the Le Congrès International de Mathématiciens at the Sor-

bonne in Paris, France, on 8 August 1900, Hilbert prepared a list of 24 unsolved

problems, publishing 23 and announcing only 10, which covered virtually all
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active areas of mathematics including physics. Perhaps Hilbert’s most ambi-

tious request is the sixth problem, which requires the axiomatization of physics,

not unlike his work in formalizing Euclidean geometry. At that time, quantum

theory had not yet been realized, as Planck’s derivation of Wien’s Law of black-

body radiation based on thermodynamic entropy, ideal oscillators and quan-

tized energy was proposed on 19 October 1900, and published the following

year. Relativity, too, would have to wait until 1905, when Einstein published his

first treatise contextualizing the work of Maxwell, Hertz, Doppler and Lorentz.

In retrospect, we understand Hilbert’s sixth problem as one of classical physics

without relativity. Despite this often ignored chronology, many have sought the

axiomatization of quantum theory with relativity — and rightly so. The great predic-

tive power of the union stands alone as the pinnacle of human investigation.

Beginning with the Dirac-von Neumann Axioms of quantum systems and

measurements [465465], mathematicians began to develop axiomatic schemes to

distill and isolate the essential criteria that every reasonable quantum theory

should satisfy. This was followed by Jost-Hall-Wightman Axioms of quan-

tum field theory [444444], Lehmann-Symanzik-Zimmermann and Haag-Ruelle

Axioms for scattering [174174], Haag-Kastler Axioms of local quantum physics

[173173, 174174], Nelson Axioms of Euclidean Markov fields [338338, 339339] and, more re-

cently, Osterwalder-Schrader Axioms of Euclidean field theory [365365, 366366]. For

years and to the dismay of many, the only completely tractable models that

satisfied these axiomatic approaches were non-interacting or free field theories

and concrete composites thereof. It was not until the work of Glimm and Jaffe
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that mathematical methods could be used to unify quantum theory with rela-

tivity in a mathematically consistent and highly non-trivial fashion, when the

essential self-adjointness of the Hamiltonian in a non-linear, relativistic field the-

ory in two-dimensional Minkowski spacetime was realized [145145, 146146, 147147, 148148].

The collective work of Glimm and Jaffe [149149, 150150], Nelson, Simon, Spencer and

Symanzik, among others, in understanding the construction, existence of mass

gaps and phase transitions of free and interacting quantum field theories in two

and more dimensions, is the study of Constructive Quantum Field Theory. For a

historical and personal account of the development of the field, consult [224224].

0.2. The Standard Model

According to the Standard Model (SM) with gauge group SU(3)ˆ SU(2)ˆ

U(1), eight massless, spin-0 bosons (the gluons, tgu), three massive, spin-1 vec-

tor bosons (the two charged and neutral weak bosons, W+, W´ and Z) and a

massless, spin-1 scalar boson (the photon, γ) mediate three fundamental interac-

tions in the observable universe**: the strong force, the electroweak force and the

electromagnetic force, respectively. Predicted in 1968 by the Glashow-Weinberg-

Salam Model (GWSM) with gauge group SU(2)ˆU(1) and observed indirectly

in 1973 (Gargamelle Bubble Chamber) and directly in 1983 (UA1/2) at CERN

[207207], the mediators of the short-range weak nuclear force, the intermediate vector

*A conjectured spin-2 massless boson, the graviton, may mediate the gravitational force, and
dark matter and weakly interacting massive particles (WIMPS) may account for the remaining
unobserved mass in the universe.
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bosons, W˘ (mW « 80.385 GeV)** and Z (mZ « 91.1876 GeV), are responsible

for the stability of all interacting matter via nuclear transmutation by beta de-

cay and electron capture. While the gluons and photon are massless by local

gauge invariance, an unbroken SU(2)ˆU(1) gauge symmetry requires massless

vector bosons. The GWSM†† solves this mass discrepancy and preserves renor-

malizability by invoking the Higgs mechanism [126126, 190190, 191191], which purports

the existence of a precursor quantum field, the elusive Higgs field, that sponta-

neously breaks SU(2) ˆ U(1) and manifests as a massless scalar, the photon,

three asymmetrically massive vector bosons, W˘ and Z, and a massive scalar,

the Higgs boson. The resulting bosons are then available to couple with elemen-

tary fermionic particles or leptons, such as the electron e´, muon µ´, tauon τ´

and their corresponding neutrinos νe´ , νµ´ and ντ´ .

The GWSM alone is insufficient to predict a light Higgs boson mass, in con-

trast to that of the photon and the ratio of those of the weak bosons. Instead the

GWSM implies that it be directly proportional to an unconstrained variable, the

Higgs boson self-coupling parameter, λ, by the relation mh =
?

2λvh, where vh

*As is customary in quantum field theory, we assume natural units, e.g., h̄ = c = 1.

†More precisely, the GWSM postulates an SU(2)L ˆU(1)Y invariant Lagrangian containing
four massless (precursor) scalar fields A1, A2, A3 and B and a single complex (Higgs) doublet
Φ. The Higgs field is a left-handed doublet with weak isospin + 1

2 and hypercharge +1 that
preserves U(1)EM but spontaneously breaks SU(2)L ˆ U(1)Y, resulting in a non-zero vacuum
expectation value of the Higgs field vh, two charged, massive vector bosons, W+ and W´ (from
linear combinations of A1 and A2) and a neutral, massive vector boson, Z (from linear combina-
tions of A3 and B), a massless photon, γ (from linear combinations of A3 and B), and a massive
scalar h, the Higgs boson.
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is the vacuum expectation value of the Higgs boson. Precise muon lifetime ex-

periments incorporating two-loop, Quantum Electrodynamic (QED) corrections

yield a Fermi coupling GF = 1.166364(5)ˆ 10´5 GeV´2 (CODATA 2010), from

which one infers the value vh = 1
4?2
?

GF
« 246.221 GeV. By imposing (renormal-

ization group-improved) unitarity bounds on the corresponding elastic scatter-

ing amplitudes, one derives the upper bound mh ď 2 4
?

2
b

π
3GF

« 712.664 GeV

[260260, 283283]. Enhancing further the GWSM with a Yang Mills SU(3)-gauge theory,

Quantum Chromodynamics (QCD), yields the SM with an additional six mas-

sive, color-charged spin-1
2 fermions or quarks (up u, down d, strange s, charm c,

top t and bottom b) and, with their antiparticles, conspire in pairs to form the

meson families (e.g., π, η, K, D and B) and in triplets** to form the baryon fami-

lies (e.g., nucleons, Λ, ∆, Σ, Ξ, and Ω) through the strong interaction. However,

isolated quarks or anti-quarks are believed to be essentially unobservable due

to their low-energy confinement [164164, 384384] and high-energy asymptotic freedom

[163163] which allows only a rather weak coupling with gluons. In total, there are

eighteen parameters†† which determine the SM: three gauge coupling parame-

ters, three charged lepton masses, six quark masses, three flavor mixing angles,

one charge-parity (CP)-violating phase, the Higgs boson mass and vacuum

*Exotic baryons (e.g., tetraquark and pentaquark bound states) should exist but have not yet
been definitively observed.

†The representation theory of the Poincaré (spacetime symmetry) group and the internal
symmetry groups (isospin, flavor, etc.) including their Lie algebras, govern transformations and
mass spectra of the Standard Model.
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expectation value (determined by the masses of the W˘ and Z vector bosons)

[396396].

While the literature is rich with theoretical proposals that engage elec-

troweak symmetry-breaking and the Higgs mechanism** in more appeal-

ing ways, the SM is most likely the simplest and definitely the most well-

understood. According to the SM, the three neutrinos (νe, νµ and ντ) and their

antiparticles are massless spin-1
2 fermions. However, experimental evidence sug-

gest neutrino oscillations between flavor types, which a priori require massive

neutrinos [102102]. Coupling parameter unification (e.g., grand unification), baryon

asymmetry, hierarchy problem, dark matter, naturalness, etc., are additional

issues which are not addressed by SM, per se. Therefore, if one is to properly

model the universe (sans gravity), the SM must be modified, extended and/or

subsumed accordingly.

0.3. Supersymmetry

Supersymmetry (SUSY) is a conjectured symmetry of nature between

integer-spin particles, the mediators of the fundamental forces, and half-integer-

spin particles, the constituents of matter. In dimensions three and greater, a

given Lagrangian represents a supersymmetric quantum theory if and only if there

*By enhancing further still the Standard Model to a Two-Higgs-Doublet Model (THDM)
[5959], the Lee-Quigg-Thacker bound of the lightest Higgs boson can be improved to mh ď 411
GeV [238238].
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exists an infinitesimal field transformation interchanging the integer and half-

integer spin fields and admitting an equivalent representation as a graded Lie

algebra of field operators.** Given a boson b P B and fermion f P F, where B

and F are suitable Fock spaces, the images b̂ = Qb and f̂ = Q f , where Q is a

supersymmetric charge operator, are the corresponding super-partners—the former

a super-fermion, the latter a super-boson. In theories with unbroken supersymme-

try, the mass of super-partners is identical to their partners, while in those with

broken supersymmetry, the mass of super-partners is comparatively larger, and

may explain why no super-partners have yet been observed.

0.3.1. Supersymmetry and the Standard Model. In a supersymmetric ex-

tension of the SM, namely, the Minimally Supersymmetric Standard Model

(MSSM), a type III THDM proposed by Dimopoulos and Georgi [112112], the

*As there is no notion of spin in less than three dimensions, the existence of a graded Lie al-
gebra of field operators suffices to define a two-dimensional, supersymmetric quantum theory.
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squared-mass of the light, CP even, scalar component of the Higgs field, the

Higgs boson, is independently quadratically and logarithmically divergent in a

sharp momentum cut-off [113113]. However, certain quark-squark** interactions pro-

vide perturbative counter-terms that dramatically suppress such divergences,

which is one of the many appealing features of SUSY. In particular, the MSSM

with soft SUSY-breaking (near the electroweak scale) postulates two Higgs dou-

blets leading to five potentially observable Higgs particles: two vector bosons,

H+ and H´, two CP even scalars, h and H, and a CP odd scalar, A, satisfying

the following mass inequalities at tree level††: mW˘ ď mH˘ ď mH, mh ď mZ ď mH

and mh ď mA ď mH˘ , respectively [170170]. At one-loop level, the MSSM predicts

an explicit upper bound on the light Higgs boson mass mh within the decoupling

limit‡‡ through the quartic coupling contributions from the aforementioned vec-

tor bosons and (broken supersymmetric) radiative corrections from the top-stop

quark sector with mixing parameter α,

m2
h ď m2

Z +
3GF
?

2π2

(
m4

t,1 log
mt̃

mt,1
+ m4

t,2α2(6´ 3α2)

)
,

*In the MSSM, superpartners also share gauge numbers (viz., color charge, weak isospin
charge, hypercharge).

†This is the lowest order in perturbation theory and considers only interactions with loopless
Feynman diagrams, hence the name.

‡The mass of the CP-odd Higgs A is assumed to be significantly larger than that of Z.

8



where (in natural units) the pole top quark mass mt « 172.9 GeV and is given at

two different energy scales, mt,1 « 157 GeV and mt,2 « 150. GeV [115115]. Assum-

ing nearly maximal mixing (α « 1) and conjecturing mt̃ « 1 TeV, one computes

mh ď 132 GeV [172172]. However, neglecting stop mixing, one computes the upper

bound mh ď 110 GeV [115115], which violates the LEP exclusion mh ą 114.4 GeV

[265265].

0.3.2. Recent Discovery of a New Boson. By early 2010, groups at the Teva-

tron at Fermilab and the Large Hadron Collider (LHC) working independently

observed curious activity in pp-collisions in the range 115–130 GeV. As of 2011,

the CMS and ATLAS experiments at CERN improved known bounds for a light

Higgs boson by exclusion to the interval 114 GeV ď mh ď 157 GeV (at 90–95%

confidence), consistent with a TeV-scale stop mass, maximal mixing in the de-

coupling limit and the MSSM upper bound. By mid 2012, CERN announced the

observation of a new boson with a mass of approximately 125.3** GeV and decay

channels consistent with those of a light Higgs boson predicted by the SM [2424].

While many anticipate a full resolution of the experimental search for a Higgs

boson in the very near future, a complete physical model predicting precisely

its mass remains hitherto undiscovered.

0.3.3. Spacetime Symmetry. Beyond the axiomatic approaches, early math-

ematical results in quantum field theory involved spacetime symmetries. One

*By late 2012, CERN measurements had been improved to 126.0 ˘ 0.4 (stat) ˘ 0.4 (syst)
GeV.
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notable example is a curious and wide-sweeping result of Coleman and Man-

dula, which proved every local spacetime symmetry (under certain reasonable

assumptions) must submit to a restricted form.

Proposition 0.1 (Coleman, Mandula, [8888]). Let G be an arcwise-connected

symmetry group of the S-matrix (in the weak operator topology), where

S = 1´ i(2π)4δ(Pµ ´ P1µ)T, (0.1)

such that the following conditions hold:

1. The group G contains a subgroup locally isomorphic to the Poincaré group;

2. All particle types correspond to positive-energy representations of the Poincaré

group. For any positive real M, there are finitely many particle types of mass

less than M;

3. Elastic-scattering amplitudes are analytic functions of the center-of-mass en-

ergy s and invariant momentum transfer t in some neighborhood of the physi-

cal region, except at normal thresholds;

4. Let |py and |p1y be any two one-particle momentum eigenstates, and let |p, p1y

be the two-particle state created from these. Then T|p, p1y does not vanish

except perhaps for certain isolated values of s; and,

5. The generators of G, written as integral operators in momentum space, have

distributions for their kernels.

Then, G is necessarily locally isomorphic to the direct product of an internal symmetry

group and the Poincaré group.
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Remark 0.3.1. Proposition 0.10.1 involves Lorentz invariance (1.), particle

finiteness (2.), weak elastic analyticity (3.), the occurrence of scattering (4.) and,

according to Coleman and Mandula, an ugly technical assumption (5.). M

Although SUSY may have first been anticipated in the mathematical work

of Frölicher and Nijenhuis [137137, 138138] and perhaps rediscovered by Miyazawa

[318318, 319319], it is generally believed to have been introduced independently in the

physics literature by Golfand and Likhtman [152152], Volkov and Akulov [464464],

and Wess and Zumino [470470]. In particular, Wess and Zumino introduced a renor-

malizable four-dimensional supersymmetric quantum field theory with cubic

interaction.

Haag, Lopuszanski and Sohnius [175175] generalized the Coleman-Mandula

Theorem to formally include SUSY as a spacetime symmetry by considering Lie

super-algebras containing both commuting (even degree) and anti-commuting

(odd degree) generators. As a direct consequence, certain quantum field theo-

ries whose operators form a (possibly broken) Lie super-algebra circumvent the

restriction of the Coleman-Mandula Theorem and exhibit larger spacetime sym-

metry than once believed possible. Although it is plausible that an unbounded

cascade of ever-increasing spacetime symmetry groups might arise from more

complicated Lie (super-)algebraic structures underlying the set of quantum

operators, the imposition of reasonable phenomenological constraints suggest

that SUSY is the most general (local) symmetry allowed in four-dimensional

Minkowski spacetime.
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0.4. The WZθ,φ Model

In 1987, Jaffe, Lesniewski and Lewenstein [219219] studied the vacuum struc-

ture of Wess-Zumino Quantum Mechanics, that is, a supersymmetric model

of holomorphic quantum mechanics with a bosonic, polynomial superpoten-

tial V. They calculated the Fredholm or Witten index** of the supercharge Q+
V

(satisfying (Q+
V )

2 = H + P), viz.,

ind(Q+
V ) = lim

βÑ8
TrH b Γ e´βH (0.2a)

= n+ ´ n´ (0.2b)

= deg BV, (0.2c)

where n+ = ker Q+
V is the number of bosonic ground states and n´ = ker (Q+

V )
˚

is the number of fermionic ground states. In particular, they proved a Vanishing

Theorem of the absence of fermionic ground states, namely, n´ = 0, i.e., Q+
V is

injective. This fact proves that the Witten index for this model is non-negative.

In 1999, Jaffe [222222] studied a twist-regularized, interacting, bosonic quantum

field theory with a twisted, bosonic partition function

Zb
g(β) = TrH bU(g´1) e´βH, (0.3)

* The equality above suggests that the Fredholm index depends on the singularity structure
of f = BV at infinity, since deg f = lim suprÑ8

log f (r)
log r , where f (r) = maxt| f (z)| | |z| = ru.
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where U(g) is a unitary representation of a group G and H is a U(g)-invariant,

self-adjoint Hamiltonian H on a bosonic Hilbert space H b. Taking U =

e´iσP´iθ J and G equal to corresponding group of transformations, he proved

twist positivity, namely,

Zb
γ(θ, σ, β) = TrH b e´βH´iσP´iθ J (0.4a)

=
n
ź

i=1

ź

k P T̂

|1´ γi(k)|´2
ą 0, (0.4b)

which holds for fixed θ, σ, β ą 0 and any g P G, thus implying the existence of a

twisted Feynman-Kac representation of the interacting Hamiltonian, H = H0 + V.

In 2000, Jaffe [223223] studied a particular generalization of the aforementioned

bosonic field theory, as a twist-regularized, supersymmetric, generalized Wess-

Zumino model (WZθ, φ) on a (1, 1)-spacetime torus T = S1ˆ S1 of circumference

`. Within the confines of mathematical approaches to quantum field theory, the

WZθ,φ model remains to date the only interacting supersymmetric quantum

field theory that satisfies a weaker, finite-volume version of the Osterwalder-

Schrader Axioms and wherein the ground-state structure is somewhat under-

stood. Given a weighted homogeneous potential V of the bosonic fields with

weights tω1, . . . , ωnu Ă QX (0, 1
2 ], which satisfies the elliptic bounds (a technical

estimate which precludes flat-directions and ensures a trace-class heat kernel),

Jaffe computed the twist, boson-fermion elliptic genus** (or Z2-graded partition

* The elliptic genus is a graded invariant arising from the categorification of the WZθ,φ model
in much the same way that the Jones polynomial is regarded as the graded Euler characteristic
Khovanov Homology of the corresponding knot.
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function) ZV : C ˆH Ñ C of complex twist z = 1
2π (θ ´ φτ) and spacetime

τ = 1
` (σ + iβ) parameters,

ZV(z, τ) = TrF Γe´βH´iσP´iθ J (0.5a)

= eiθĉ/2
n
ź

i=1

ź

kě0

(1´ y´(1´ωi)qk)(1´ y(1´ωj)qk+1)

(1´ y´ωi qk)(1´ yωi qk+1)
(0.5b)

= y´ĉ/2
n
ź

i=1

ϑ1((1´ωi) z, τ)

ϑ1(ωi z, τ)
, (0.5c)

where ĉ = n ´ 2
řn

i=1 ωi, y = e2πiz and q = e2πiτ. This is possible since the

elliptic genus ZλV is constant in λ P [0, 1], and ZλV is evaluated in the limit

λ Ñ 0. As a result of the representation as a ratio Jacobi theta functions, the

elliptic genus ZV is a weak Jacobi form and satisfies the following Z2 ˙ SL2(Z)-

symmetry: For γδ = ((m, n), (a b
c d)) P Z2 ˙ SL2(Z) and (z, τ) P CˆH, one has

the transformation law

ZV
|γδ

(z, τ) = yĉ/2 eĉ[cz2´(2m+1)z´a1τ´b1]
c,d ZV(z, τ), (0.6)

where a1 = ma + nc and b1 = mb + nd and ez
c,d = eπiz/(cτ+d).

0.5. Algebraic Links

A link is a closed, oriented 1-manifold smoothly embedded in S3 or R3; a

knot is a link consisting of a single, connected component. In particular, a knot

may be viewed as a homeomorphism from S1 to R3.
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Figure 0.2. The Trefoil (31) and Cinquefoil (51) [389389]

It is prudent to consider a simple and illustrative, yet quite general, family

of algebraic (fibered) links. Given two integers p, q ą 1, the polynomial f = xp +

yq over C2 is a complex analytic map with an isolated critical point at the origin.

Therefore, the complex algebraic variety or algebraic hypersurface Vf, 0 = f´1(0)

is singular only at 0. In [6161], Brauner proves that the intersection of Vf, 0 with a

sufficiently small 3-sphere, which we shall denote by K f = Vf, 0 X S3
ε , is a (p, q)-

torus link** Tp,q with gcd(p, q) components. The torus knots T2,3 and T2,5 are

shown in Figure 0.20.2. The reduced Alexander polynomial of the torus link is

given by

∆Tp,q(t) =
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)δr,1

(tp ´ 1)(tq ´ 1)
, (0.7)

where r = gcd(p, q). Various prime links, including torus links, and their link

data can be found in Appendix AA.

0.5.1. Milnor Fibration. Pham and Brieskorn studied algebraic hypersur-

faces and complete intersections of complex analytic polynomials of the form

*Knots of the form Tp,2 » T2,p are often denoted by the Alexander-Briggs notation p1, e.g,
T2,3 is 31.
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f =
řn

i=0 zai
i with ai ě 1, generalizing the torus links to higher dimensions

[6363], [6464], [374374]. Pham, in particular, proved that Vf, 1 = f´1(1) is a deforma-

tion retraction of, hence homotopy equivalent to, the join Ca0 ‹ ¨ ¨ ¨ ‹ Can , where

Cn – Zn is the multiplicative group of the nth roots-of-unity (or simply a cyclic

group of order n) viewed as a pointed, discrete topological space (Cn, 1) with

the identity element 1 identified as the base-point. Since one has the homotopy

equivalences Cn »
Žn´1 S0 and Sn ‹ Sm » Sn+m+1 for n, m ě 0, it follows that

in fact Vf, 1 has the homotopy-type of a wedge sum of n-spheres
Žµ Sn, where

µ =
śn

i=0(ai ´ 1).

Milnor studied the map φ f = f
} f } : S2n+1

ε zVf Ñ S1, where f is a given com-

plex analytic function of n + 1 variables with an isolated critical point at the

origin. He proved that φ f is a fibration over S1 with fibers Ff, θ = φ´1
f (eiθ) and

described various topological features of the intersection K f = Vf, 0 X S2n+1
ε ,

most notably proving that it forms a link [310310]. In particular, he computed

the homotopy type of the fiber Ff, 0 as that of a wedge sum of spheres
Žµ Sn,

where µ = rank H̃n(Ff, 0; Z), and the corresponding algebraic link K f is (n´ 2)-

connected, possibly knotted and with (possibly reduced) Alexander polyno-

mial equal to the characteristic polynomial of the monodromy homomorphism

h˚( f ) : H̃n(Ff, 0, C)Ñ H̃n(Ff, 2π, C). For torus links,

∆h˚(t) =
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)

(tp ´ 1)(tq ´ 1)
,
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For the case that f : (Cn+1, 0) Ñ (C, 0) is a weighted homogeneous singu-

larities with isolated critical points at the origin and with weights tω0, . . . , ωnu,

Milnor proved the diffeomorphism Ff, 0 –d Vf, 1, thereby generalizing the rele-

vant collective work of Brauner, Brieskorn and Pham. Milnor and Orlik gave a

method to compute the characteristic polynomial ∆h˚(t) = det(tI´ h˚) explicitly

in terms of the weights and also defined the algebra

A f = Ctz0, . . . , znu/xB0 f , . . . , B fny, (0.8)

where

µ = dimC A f =
n
ź

i=0

(
1

ωi
´ 1
)

, (0.9)

providing an algebraic interpretation to the rank of the middle homology group

of the fiber Ff, 0.

0.5.2. Milnor Conjecture. In the same monograph, Milnor proved the rela-

tion µ = 2δ ´ r + 1 satisfied by a square-free complex algebraic plane curve f ,

where δ is the delta invariant, that is, the number of double points of Vf, 0, and

r is the number of branches of Vf, 0 passing through the origin. Milnor conjec-

tured that δ coincides with the unknotting number u(K f ) of the corresponding

link and is completely determined by the (singular) homology of fibers Ff, θ. For

knots of the torus-type Tp,q corresponding to f = xp + yq, where p and q are

coprime, then r = 1 and δ is one-half the rank of the middle reduced homology

group H̃1(Ff, 0; Z) or, equivalently, the genus g(Ff, 0) =
µ
2 = 1

2(p´ 1)(q´ 1). In
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general, the integers δ and r count the positive lattice points (all interior and

some boundary) and the number of interior lattice points of the hypotenuse

(only boundary), respectively, of the lattice right triangle convt0, pe1, qe2u.

Thus, the unknotting number of said knots is a combinatorial and homological

invariant, for u(Tp,q) =
1
2(µ + r´ 1).

Using Donaldson invariants, in 1992, Kronheimer and Mrowka proved that

complex curves in K3 surfaces satisfy the genus minimizing property [247247, 248248].

Among the many consequences of this important work is a proof of the Mil-

nor Conjecture on the delta invariant and unknotting number. Using Seiberg-

Witten invariants**, in 1994, Kronheimer and Mrowka succeeded in proving the

Thom Conjecture, that a (connected) complex projective algebraic curve Cd of

degree d ě 1 in CP2 minimizes the genus in its homology class [247247, 248248]. That

is, if C is an oriented two-dimensional manifold smoothly embedded in CP2

with homology class [Cd] for some (complex projective algebraic) curve Cd, then

its genus is bounded from below, g(C) ě g(Cd) =
1
2(d´ 1)(d´ 2).

0.5.3. Faltings Theorem. Topological invariants such as the genus have also

proved to be indispensable in the study of rational points on elliptic curves. In

1983, Faltings proved a generalization of the Mordell Conjecture which states

that a non-singular algebraic curve of genus g ą 1 over a number field, that

* This is one example of Jaffe’s Unreasonable Effectiveness of Physics in Mathematics, a lecture
in some sense dual to Wigner’s Unreasonable Effectiveness of Mathematics in the Natural Sciences.
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is, a finite degree extension of the field of rationals, Q, has finite many ratio-

nal points. The Fermat curve Wd : Q2 Ñ R of degree d, defined by the locus

t(x, y) P Q2 | xd + yd = 1u, has genus g(Wd) = (d´1
2 ). Falting’s Theorem, there-

fore, implies that Wd contains finitely many rational points for d ą 2, proving

a weak form of the Fermat Conjecture** (or Fermat’s Last Theorem). The extent

to which Milnor’s construction of algebraic links and their invariants can shed

further light on properties of elliptic curves is an active area of research.

0.5.4. Signature of a Manifold. Let M4k denote a closed,oriented,

4k-manifold. Consider the self-cup product map B : H2k(M4k; Z)/T Ñ

H4k(M4k; Z) – Z, where B : x ÞÑ x ! x, which is a quadratic form of type

(p, q) [314314]. The Thom signature σ(M4k) is defined as the signature of the qua-

dratic form B, that is, p ´ q, and is a homomorphism σ : Ω4k Ñ Z given by a

Q-linear combination of the Pontryagin numbers [203203]. The signature σ(M4k)

is therefore a cobordism invariant.

0.5.4.1. Hirzebruch Signature Theorem. Hirzebruch related the Thom signa-

ture to the L-genus [203203]. In particular, the Hirzebruch-Thom signature σ(Mn) is

defined for any compact, smooth, oriented differential manifold Mn of positive

dimension, and is the value of the pairing of the L-genus with the fundamental

*The conjecture states that there are no integral solutions of ad + bd = cd for d ą 2 save the
trivial solutions satisfying abc = 0. In 1995, Andrew Wiles published a proof of the Taniyama-
Shimura Conjecture, which implied the Fermat Conjecture, based on the work of Hellegouarch,
Frey, Serre, Ribet, Flach and Kalyvagin.
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homology class [Mn],

σ(Mn) =

$

&

%

0 n ı 0 mod 4

xLk, [Mn]y n = 4k
(0.10)

where Lk = Lk(p1, . . . , pk) is a Q-polynomial of degree at most k over ori-

ented cobordism invariants, namely, the Pontryagin classes pk = pk(TMn) P

H4k(Mn; Z). In general, Lk is given in terms of the complexified tangent bundle

of Mn, Lk =
ś2k

i=1
xi

tanh xi
, where xi = ci(Mn) are the Chern roots of Mn. The fact

that σ(Mn) is an integer imposes strict divisibility criteria on the Pontryagin

classes of Mn. For 4, 8 and 12-manifolds, the signature relations are

σ(M4) = 1
3xp1, [M4]y (0.11)

σ(M8) = 1
32¨5x7p2 ´ p2

1, [M8]y (0.12)

σ(M12) = 1
33¨5¨7x2p3

1 + (2 ¨ 31)p3 ´ 13p1p2, [M12]y, (0.13)

respectively. The signature often has curious divisibility properties. According

to Hirzebruch [202202], if b4(M12) = 0 (the fourth betti number), then

x2p3
1 ´ 13p1p2, [M12]y = 0, (0.14)

so the corresponding signature satisfies

945σ(M12) = 62xp3, [M12]y (0.15)

and is therefore divisible by 62 as xp3, [M12]y P Z and gcd(945, 62) = 1.
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0.5.5. Exotic Spheres.

Definition 0.2. A homology n-sphere is an n-manifold possessing the same

homology groups as those of an n-sphere, i.e., Hi(X; Z) – t0u for 1 ď i ď n´ 1

and H0(X; Z) – Hn(X; Z) – Z. A homotopy n-sphere is an n-manifold homotopy

equivalent to Sn. A topological n-sphere is an n-manifold homeomorphic to Sn.

An exotic n-sphere is a topological n-sphere not diffeomorphic to Sn.

Remark 0.5.1. Every homotopy n-sphere is a homology n-sphere. Every

topological n-sphere is a homotopy n-sphere. M

Proposition 0.3 (Poincaré Conjecture). For n ě 2, every homotopy n-sphere

is homeomorphic to an n-sphere, i.e., a topological n-sphere.

Proof . The case n = 2 is classical. In 1961, Smale proved the cases n ě 5.

In 1982, Freedman proved the case n = 4. In 2003, Perelman proved the case

n = 3. �

Conjecture 0.4 (Smooth Poincaré Conjecture). For n ě 2, every homotopy

n-sphere is diffeomorphic to Sn.

Remark 0.5.2. The case n = 2 is classical. In 1956, Milnor gave a counter-

example for n = 7. Milnor and Kervaire produced counter-examples for n ě 7.

The conjecture is known to hold for n = 5, 6. Perelman proved the case n = 3.

The case n = 4 is open. M
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0.5.6. Milnor 7-Sphere. While investigating S3-bundles over S4 with rota-

tion and structural group SO(4), in 1956, Milnor discovered that the 7-sphere

has several differentiable structures [305305]. In particular, Milnor constructs a

Thom space T with boundary M and signature σ(T) = 1 and xp2
1, [T]y = k2 for

some integer k congruent to 2 modulo 4. However, by equation (4.1144.114),

xp2, [T]y = 1
7(45σ(T) + xp2

1, [T]y) = 1
7(45 + k2), (0.16)

which is not an integer if k is not congruent to ˘2 modulo 7. Therefore, M is not

diffeomorphic to S7 in the excluded cases.

Proposition 0.5 (Reeb). Given a compact n-manifold M and a Morse function

f : M Ñ R with exactly two critical points, then M is homeomorphic to Sn.

Milnor proves that M is a compact, oriented smooth 7-dimensional manifold

satisfying the assumptions of Reeb’s Sphere Theorem, so M is homeomorphic

to S7. For a detailed discussion of this intriguing topic, see [311311], Chapter 20 in

[316316] and Chapter 4 in [306306].

0.5.7. Homotopy Spheres. Let Σn, [Σn] and Θn = t[Σn] |Σn » Snu de-

note a homotopy n-sphere, an equivalence class of n-spheres up to oriented

h-cobordism, and the additive abelian group of such classes under the opera-

tion of connected sum, with inverse given by reversing orientation [237237, 311311]. By

the work of Smale, Freedman, Perelman and others, the h-Cobordism Theorem

implies that the elements of Θn are in fact oriented diffeomorphism classes. In
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particular, every homotopy n-sphere is a topological n-sphere for n ě 0. There

is a cyclic subgroup bPn+1 ă Θn consisting of the homotopy spheres which

bound (n+1)-dimensional parallelizable (smooth) manifolds. The groups Θn

and bPn+1 are the Milnor-Kervaire groups. For 2 ď n ď 6, Θn and bPn+1 are trivial.

For m ě 2,

|bP4m| = 22m´2(22m´1
´ 1) num(4|B2m|

m ), (0.17)

where Bm is the mth-Bernoulli number. Milnor and Kervaire prove that bP2m+1

is trivial for m ě 1. Recent work by Hill, Hopkins and Ravenel showed

bP2l´2 – Z2 for l ě 8. Essential to the complete understanding of bP4m+2 is

the computation of the Kervaire Invariant. Based on the work of Kervaire, et al.,

the current state of knowledge of the order of these groups is the following:

|bP4m+2| =

$

’

’

’

&

’

’

’

%

1 m P t1, 3, 7, 15u

1 or 2 m = 31

2 otherwise,

(0.18)

where the group bP126 is hitherto not known. The number of exotic spheres in

dimension n is inferred from a careful study of the group Θn, and its order |Θn|,

that is, the number of h-cobordism classes of smooth homotopy n-spheres as

a function of n ě 1 [237237] (A001676A001676). The Milnor-Kervaire numbers |Θn| and

|bPn+1| for 7 ď n ď 20 are given in Table 0.10.1. For example, there are 27 exotic

spheres in dimension 7.
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Table 0.1. Milnor-Kervaire Groups Θn and bPn+1 (7 ď n ď 20)

n 7 8 9 10 11 12 13 14 15 16 17 18 19 20

|Θn| 28 2 8 6 992 1 3 2 16256 2 16 16 523264 24

|bPn+1| 28 1 2 1 992 1 1 1 8128 1 2 1 261632 1

0.5.8. Brieskorn-Pham Manifolds. Consider the polynomial

f = z5
0 + z3

1 + z2
2 + z2

3 + z2
4 + z2

5 + z2
6 (0.19)

over C7, and define the 1-parameter family of complex hypersurfaces Vf, κ =

f´1(κ) with κ P C a regular value of f and sufficiently close to the origin

[6363]. By the ADE classification of simple singularities, the singularity f is

a 4-stabilization of the E8 surface singularity (x2 = y3 + z5 over C3) and

corresponds to a Milnor fiber FΣ4E8
– Vf, 1 »

Ž8 S6 with Milnor number

µ(Σ4E8) = µ(E8) = 8. The intersection Vf, κ X B14
ε with a 14-ball of suffi-

ciently small radius ε ą κ is a 12-manifold with boundary. The boundary

K11
Σ4E8

= B(Vf, κ X B14
ε ) = Vf, κ X S13

ε , the 4-iterated stabilization of the 5-iterated

cyclic branched covering of the trefoil knot, has reduced Alexander polynomial

∆ f (t) =
(t15 ´ 1)(t´ 1)
(t5 ´ 1)(t3 ´ 1)

(0.20a)

= 1´ t + t3
´ t4 + t5

´ t7 + t8 (0.20b)

= Φ15(t), (0.20c)

where Φn(t) is the nth-cyclotomic polynomial. According to Milnor, since

∆ f (1) = Φ15(1) = 1, then K11
Σ4E8

is a topological sphere. The quotient space
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M12
Σ4E8

= Vf, κ X B14
ε / K11

Σ4E8
is a 5-connected 12-manifold (without boundary)

with bi(M12
f ) = 0 for 1 ď i ď 5 and signature σ(M12

Σ4E8
) = ´8. As the signature

is not divisible by 62, it follows that M12
Σ4E8

is not a differentiable manifold. Al-

though K11
Σ4E8

is homeomorphic to S11, it is not diffeomorphic to it. Hence, K11
Σ4E8

is an exotic 11-sphere [6363]. This example represents one of 992 (oriented diffeo-

morphism classes of) differentiable structures on S11 — all representable by the

1-parameter family of polynomials

f = z6k´1
0 + z3

1 + z2
2 + z2

3 + z2
4 + z2

5 + z2
6 1 ď k ď 992. (0.21)

In fact, up to diffeomorphism, all exotic spheres in dimensions 4m´ 1 admit a

similar realization.

Proposition 0.6 (Brieskorn [6363]). Let Σ4m´1
k be the link of the Brieskorn-

Pham singularity f = z6k´1
0 + z3

1 +
ř2m

i=2 z2
i . Then Σ4m´1

k is a homotopy sphere with

signature σ(Σ4m´1
k ) = (´1)m8k and represents σm

8 differential structures in bP4m,

where

σm = 22m+1(22m´1
´ 1) num(4|B2m|

m ), (0.22)

that is, Σ4m´1
k P bP4m for 1 ď k ď σm

8 .

These techniques were generalized and employed by Milnor to disprove the

Smooth Poincare Conjecture in large dimensions. That is, given a homotopy

n-sphere Σn, then it is not necessarily true that Mn is diffeomorphic to Sn.
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0.6. Atiyah-Singer Index Theorem

Atiyah and Singer proved that the signature σ(M) is the Fredholm index of

an elliptic operator D = d˚ + d, the signature operator of a compact manifold

M, where d is the exterior derivative and D2 = d˚d + dd˚ = ∆ is the Laplacian

restricted to the +1-eigenspace of even forms in the complex bundle Ω˚(M) =

Ω+(M)‘Ω´(M) under a specific Z2-action involving the Hodge star ˚ modulo

a normalizing power of i [192192]. That is, the index of D is given by

ind(D) = (´1)`xch(Λ+T˚CM´Λ´T˚CM) td(TC M)
e(TM)

, [M]y (0.23a)

=

C

2k
ź

i=1

xi

tanh xi
, [M]

G

, (0.23b)

which is precisely xLk(M), [M]y, the signature of M. Compare these formulas to

the Euler characteristic χ(M) = xe(TM), [M]y and the index of the Dolbeault

operator and ind(B) = xtd(TCM), [M]y, where e, ch and td denote the Euler,

Chern and Todd classes, respectively. If M is a compact, oriented 4-manifold

with a virtual vector bundle E, the Atiyah-Singer Index Theorem states that

there is a Dirac operator D+
A corresponding the Â-genus with coefficients in E

(Chapter 2, [323323]),

ind(D+
A) = xÂ(TM) ch(E), [M]y (0.24)

= ´dim E
24 xp1(TM), [M]y+ 1

2xc1(E)2, [M]y. (0.25)

26



Combined with the Hirzebruch Signature Theorem, σ(M) = 1
3xp1(TM), [M]y,

ind(D+
A) = ´1

8 σ(M) + 1
2xc1(E)2

´ c2(E), [M]y (0.26)

In particular, if M is smooth spin 4-manifold, then the index of D+
A is even and

the term involving the Chern number is zero.

Proposition 0.7 (Rokhlin). If M is a closed, oriented, smooth spin 4-manifold,

then σ(M) is divisible by 16.

0.7. Durfee Conjecture

Recall that a complex analytic germ is a non-degenerate if and only if it

possesses and isolated critical point at the origin. Let f : (Cn+1, 0) Ñ (C, 0),

Vf, κ = f´1(κ) and F̄f, 0 –d Vf, κ X B̄ε for sufficiently small 0 ă ε ă κ denote a

non-degenerate, complex analytic germ, the corresponding hypersurface and

(closed) Milnor fiber, respectively. Denote the signature of Ff, 0 by σ( f ) and by

pg( f ) = dimC Hn´1(Ṽf, 0,OṼf, 0
) the geometric genus (or first plurigenus) of any

minimal resolution given by a proper analytic map π : (Ṽf, 0, E) Ñ (Vf, 0, 0)

with exceptional locus E = π´1(0) such that Ṽf, 0zE Ñ Vf, 0zt0u is an analytic

isomorphism and π´1(Vf, 0zt0u) is dense in Ṽf, 0 [478478]. Laufer [256256] proves the

identity

12pg( f ) = 1 + µ( f )´ χ(E)´ K2, (0.27)
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where K2 = K ¨ K is the self-intersection number of the canonical divisor on Ṽf, 0,

and χ(E) is the Euler characteristic of E. Although the Euler characteristic χ(E)

and self-intersection number K2 are topological invariants, the geometric genus

pg is not as there are homeomorphic singularities with distinct Milnor numbers,

c.f. equation (0.270.27). In [118118], Durfee conjectured that non-degenerate, weighted

homogeneous, surface singularities (n = 2) satisfy σ( f ) ď 0 and 6pg( f ) ď µ( f )

with equality of the latter inequality only in the case µ( f ) = 0. In the case that

f is non-degenerate, strict positivity of µ is known for n ě 1. In 1993, Xu and

Yau sharpen and prove the Durfee Conjecture for surface singularities.

Proposition 0.8 (Xu, Yau, [478478]). Let f : (C3, 0) Ñ (C, 0) be a non-

degenerate, weighted homogeneous germ, and Vf, 0 = f´1(0) its corresponding hyper-

surface. Let µ( f ), pg( f ), ν( f ) and σ( f ) denote the Milnor number, geometric genus,

multiplicity and signature of f , respectively. Then

6pg( f ) ď µ( f )´ ν( f ) + 1 (0.28)

with equality if and only if Vf, 0 is defined by a homogeneous polynomial. Moreover, if σ

denotes the signature of the Milnor fiber of f , then

σ( f ) ď ´1
3 µ( f )´ 2

3(ν( f )´ 1). (0.29)

Conjecture 0.9 (Yau). Given a non-degenerate, weighted homogeneous poly-

nomial f : (Cn+1, 0) Ñ (C, 0), let µ( f ), pg( f ) and ν( f ) denote the Milnor number,

28



geometric genus and multiplicity of f , respectively. The following inequality holds:

(n + 1)!pg( f ) ď µ( f )´ (ν( f )´ 1)n+1 + ν( f )(ν( f )´ 1) ¨ ¨ ¨ (ν( f )´ n) (0.30)

with equality if and only if f is homogeneous.

Conjecture 0.90.9 is true for n = 3 [478478] and n = 4 [269269]. Sȩkalski [423423] proves

that the multiplicity of a weighted homogeneous polynomial depends only on

its weights, ν( f ) = mintk P N | k ě mint 1
ωi
uu.

0.7.1. The Milnor Number as a Fredholm Index. By the Durfee equality

relating the signature σ and the Milnor number µ for n = 2, it is clear that µ

is the Fredholm index of a Dirac operator and the pairing of an elliptic genus

on the fundamental homology class of a corresponding manifold (both up to

sign). It is reasonable to suggest that these interpretations continue to hold for

n ą 2, that there is a Dirac operator and genus whose bilinear pairing yields a

Fredholm index equal to the Milnor number µ.

Proposition 0.10 (Durfee, [118118]). The signature σ = ´1
3(2µ + K2 + s + 2h).

For n = 1, σ = ´µ, so negative definite. This proves that µ is the index of a

Dirac operator for n = 1. In the next section, we extend this result to n ą 1.

The Milnor number of a weighted homogeneous polynomial and corre-

sponding algebraic variety is but one of a myriad of manifold invariants with

interpretations ranging from the differential, analytic, geometric, topological,
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K-theoretic, algebraic and the combinatorial. In this work, we add an additional

interpretation: supersymmetric quantum physical.

0.8. Quantum Field Theory and the Alexander Polynomial

Definition 0.11. A topological quantum field theory is a quantum field the-

ory that computes topological invariants.

The WZθ,φ model is an interacting topological quantum field theory defined

within the framework of constructive quantum field theory.

Definition 0.12. A complex analytic function g : Cm Ñ C satisfies the

elliptic bounds if and only if there are positive constants ε, M, ρ ă 8 such that for

any non-negative multi-index α and for all z = (z1, . . . , zm) satisfying }z} ą ρ,

one has }Bαg} ď ε}Bg}2 + M and }z}2 + }g} ď M(}Bg}2 + 1), where Bg =

(B1g, . . . , Bmg).

Remark 0.8.1. For non-degenerate, weighted homogeneous polynomials,

the latter bound is redundant. M

Proposition 0.13. Let f : (Cn+1, 0) Ñ (C, 0) be a non-degenerate, weighted

homogeneous polynomial satisfying the elliptic bounds. The elliptic genus Z f deter-

mines the reduced Alexander polynomial of the algebraic link K f , which is a complete

(cobordism and isotopy) invariant if K f Ă S3 is a knot.

Proof . Define the spacetime-twist parameters τ = σ+iβ
` P H, z = θ´τφ

2π P

C and the associated nomes q = e2πiτ and y = e2πiz. Denote the weights of
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f by ω, and define ĉ =
řn

i=0 1 ´ 2ωi, the central charge. Since f satisfies the

standard hypotheses, the corresponding elliptic genus Z f : CˆH Ñ C exists

and, assuming φ = 0, admits the following exact representation [223223],

Z f (z, τ) = yĉ/2
n
ź

i=0

ź

kě0

(1´ y´(1´ωi)qk)(1´ y(1´ωj)qk+1)

(1´ y´ωi qk)(1´ yωi qk+1)
(0.31)

= y´(n+1)/2 Sp( f ; y) + O(q), (0.32)

where the Steenbrink series

Sp( f ; y) =
n
ź

i=0

y1´ωi ´ 1
1´ y´ωi

(0.33)

=

µ
ÿ

j=1

yγj (0.34)

and µ( f ) = rank Hn(Ff, 0; Z) [436436]. The spectrum Sp( f ) = tγju1ďjďµ of

the mixed Hodge structure of a generic fiber Ff, ϑ determines the character-

istic polynomial ∆h˚(t) = det(tI ´ h˚) of the Picard-Lefschetz monodromy

h˚ : Hn(Ff, ϑ; C)Ñ Hn(Ff, ϑ+2π; C) (op. cit.), viz.,

∆h˚(t) =
µ
ź

j=1

(t´ e2πiγj), (0.35)

the reduced Alexander polynomial of K f [310310], viz.,

∆h˚(t)
.
= (t´ 1)1´δr,1∆K f (t, . . . , t), (0.36)
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the Lefschetz zeta function [352352],

ζK f (t) = exp
ÿ

kě0

Λ(h˝k) tk

k (0.37)

=
ź

lě0

det(I´ th˚,l)
(´1)l+1

, (0.38)

where h : Vf, 1 Ñ Vf, 1 is the transformation h(z) = (e2πiω0z0, . . . , e2πiωn zn), and

the Lefschetz number

Λ(h˝k) =
ÿ

lě0

(´1)l Tr(hk
˚,l : Hl(Vf, 1; Q)Ñ Hl(Vf, 1; Q)) (0.39)

equals the Euler characteristic χk = tz P Vf, 1 | h˝k(z) = zu [310310], viz.,

ζK f (t) = (´1)µn(1´ t)´1∆h˚(t). (0.40)

If n = r = 1, the diffeomorphism-type of the relative pair (S3, K f ) [257257]. We

have therefore proven the following claim. �

Remark 0.8.2. The symmetry Z f (´z, τ) = Z f (z, τ) implies the reflexivity

Sp( f ; y) = yn+1Sp( f ; 1
y ), (0.41)

the reciprocity γµ+1´j = n + 1´ γj for 1 ď j ď µ, and the functional equation

∆h˚(t) = (´1)µntµ∆h˚(
1
t ). (0.42)

M
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The iterated limit of zero twist angles, θ, φ Ñ 0, of the elliptic genus Z f

computes the Fredholm index of the corresponding supercharge operator Q+
f ,

where (Q+
f )

2 = H + f ,

ind(Q+
f ) = lim

θ,φÑ0
Z f (z, τ) (0.43a)

=
n
ź

i=1

deg Bi f
deg ϕi

(0.43b)

=
n
ź

i=1

(
1

ωi
´ 1
)

, (0.43c)

which is the multiplicity of the quantum mechanical ground state of the WZθ,φ

model. Comparing this limit to equation (0.90.9), the relation of the Milnor number

of f , namely, µ( f ) = dim ker Q+
f . Such a relation was anticipated by the Van-

ishing Theorem of Klimek and Lesniewski [239239], wherein the space ker Q+
f is re-

lated to the Koszul cohomology of f , and it was shown that dim ker (Q+
f )
˚ = 0.

See [158158], [220220], [221221] and [223223] for further details.

Remark 0.8.3. Given p, q P Ną1, the polynomial f = xp + yq has weights

t 1
p , 1

qu and corresponds to the torus link Tp,q = Vf, 0 X S3 with gcd(p, q) compo-

nents and unknotting number u(Tp,q) =
1
2(pq´ p´ q + gcd(p, q)) [247247]. Since

f satisfies the standard hypotheses,

Z f (z, τ) = y
1
p+

1
q´1

p´2
ÿ

k=0

q´2
ÿ

l=0

yk/p+l/q + O(e2πiτ). (0.44)
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Therefore, Sp( f ) = t k
p +

l
qu1ďkďp´1,1ďlďq´1 = t2´ k

p +
l
qu1ďkďp´1,1ďlďq´1. Setting

ζn = e2πi/n for n P N,

∆h˚(t) =
p´1
ź

k=1

q´1
ź

l=1

(t´ ζk
pζ l

q) (0.45)

=
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)

(tp ´ 1)(tq ´ 1)
(0.46)

= (´t)µ∆h˚(
1
t ), (0.47)

where µ( f ) = limθÑ0 Z
f (z, τ) = (p ´ 1)(q ´ 1) is the Fredholm index of the

supercharge Q+
f [223223], as above. In particular, if p and q are coprime, then Tp,q

is a knot, and the index µ( f ) = 2u(Tp,q) = 2g(Ff, ϑ), twice the genus of a corre-

sponding generic fiber [310310, 247247]. M

0.9. Geometric Genera of Weighted Homogeneous Surface Singularities

Other original contributions of this work include the exact geometric genus

and signature of an arbitrary weighted homogeneous surface singularity, q.v.,

Propositions 5.565.56 and 5.445.44, as well as an identity relating the geometric genus

and Milnor number of the t-dilate of a weighted homogeneous polynomial in
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C3, from which one can give a proof of the Durfee Conjecture for asymptoti-

cally small weights and compute the exact error term of the Durfee-Yau Theo-

rem,

pg( ft) =
1
6 µalg( ft) +

1
6

(
1

ω1ω2
´ 1

2ω2ω3
´ 1

2ω3ω1

)
t2

´ 1
6

(
1

ω1
+ 1

ω2
´ 1

2ω3
´

ω1
2ω2ω3

)
t

+ 1
6 ´

ω1
4ω3

(
1 + ω1

3ω2

)!
t

ω1

)

+ ω1
4ω3

(
1 + ω1

ω2

)!
t

ω1

)2
´

ω2
1

6ω2ω3

!

t
ω1

)3

+ ω2
2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))

´

tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

!

t´iω1´jω2
ω3

)

. (0.48)

0.10. Relating the Milnor Number, Signature and Geometric Genus

In Proposition 5.555.55, we relate the geometric genus, Milnor number and sig-

nature for an arbitrary non-degenerate, weighted homogeneous surface singu-

larity f : (C3, 0)Ñ (C, 0), namely,

4pg( f ) = σ(Ff, 0) + µalg( f ) + ς0, (0.49)

where σ0 is the number of zero eigenvalues of the intersection form of the

mixed Hodge structure of the corresponding fiber.
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0.11. Signature of Weighted Homogeneous Surface Singularities

In Proposition 5.565.56, we compute the signature σ(Ff, 0) of the Milnor fiber Ff, 0

of a non-degenerate, weighted homogeneous surface singularity f : (C3, 0) Ñ

(C, 0) with integral weights tq1, q2, q3u and weighted degree d, where ωi =
qi
d ,

namely,

σ(Ff , 0) = 1´ ς0 ´
d3

3q1q2q3
+ d2

q1q2
+
(

q1
3q2q3

´ 1
q1
´ 1

q2

)
d

´
q1
q3

(
1 + q1

3q2

)!
d
q1

)

+ q1
q3

(
1 + q1

q2

)!
d
q1

)2
´

2q2
1

3q2q3

!

d
q1

)3

+ 2q2
q3

td/q1u
ÿ

i=1

!

d´iq1
q2

)(
1´

!

d´iq1
q2

))

´ 4
td/q1u
ÿ

i=1

t(d´iq1)/q2u
ÿ

j=1

!

d´iq1´jq2
q3

)

, (0.50)

where

ς0 = d2

q1q2q3
´

ÿ

1ďiăjď3

d
lcm(qi,qj)

+
ÿ

1ďiď3

gcd(d,qi)
qi

´ 1. (0.51)

0.12. Signature of Torus Links

We compute the signature of a torus link, q.v., Proposition 6.616.61,

σ(Tp,q) =
2pq

3lcm(p,q,2)2 ´
pq
2 + 2q

3p +
2p
3q ´ 1

´ 4
(

p1s(2qτ
d , pp1τ

d ) + q1s(2pτ
d , qq1τ

d ) + rs( pqτ
d , 2rτ

d )
)

, (0.52)
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where p1 = gcd(2, q), q1 = gcd(p, 2), r = gcd(p, q) and

d
τ = gcd(p,2)gcd(p,q)gcd(2,q)

gcd(p,q,2) . (0.53)

0.13. Résumé of Volume 1

This work illustrates a method to investigate certain smooth, codimension-

two, real submanifolds of spheres of arbitrary odd dimension (with comple-

ments that fiber over the circle) using a novel supersymmetric quantum invari-

ant. Algebraic (fibered) links in S2n+1 [310310], including Brieskorn-Pham homol-

ogy spheres with exotic differentiable structure, are examples of said manifolds

with a relative diffeomorphism-type that is determined by the corresponding

(multivariate) Alexander polynomial [480480, 257257].

The twist-regularized Wess-Zumino (WZθ,φ) model on a spacetime torus

defined within the framework of Constructive Quantum Field Theory [150150]

and studied from a mathematical perspective by Jaffe et al. [222222, 221221, 223223] is a

two-dimensional, interacting, (partially broken) supersymmetric, topological

(constructive) quantum field theory on a spacetime torus which exhibits stun-

ning mathematical properties including a hidden translational-unimodular

Z2 ˙ SL2(Z)-symmetry despite having no a priori conformal structure. Given

a suitable complex analytic superpotential f , the supersymmetric partition

function or elliptic genus, Z f = Tr Γ e´βH´iσP´iθ J admits an explicit represen-

tation as a ratio of Jacobi theta functions involving only the weights of f and
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spacetime-twist parameters (op. cit.). Said genus is a weak Jacobi form and en-

joys a translational-unimodular Z2 ˙ SL(2; Z)-symmetry despite having no a

priori conformal structure.

In contrast to the closely related Landau-Ginzburg (LG) model studied by

Kawai, Vafa, Warner and Ceccotti et al., the moduli space of the WZθ,φ model

lacks rigorous classification. The purpose of this work is to illustrate how the

topological, algebraic, analytic, geometric, combinatorial and arithmetic facets

of singularity theory of complex hypersurfaces [310310] can produce a unifying

structure for, and generate further insights into, the moduli space of said model.

I propose that the elliptic genus Z f of the twist-regularized Wess-Zumino

model with superpotential f encodes the reduced Alexander polynomial of the

algebraic link K f . That is, by specializing to the Steenbrink series (of the mixed

Hodge structure of a corresponding fiber) in a certain expansion of Z f , one

may isolate the eigenvalues of the Picard-Lefschetz monodromy (acting on said

fiber) — the singularity spectrum — and thereby compute the corresponding

characteristic polynomial of which the Alexander polynomial is a factor.

Moreover, a Z2-symmetry of the elliptic genus descends to classical func-

tional equations satisfied by the Steenbrink series, Hilbert-Poincaré series of

the local algebra [310310], the Lefschetz zeta function of the infinite cyclic cover-

ing MK f ,8 of (the complement of the interior of a tubular neighborhood T(K f )

of) K f [352352], and the reduced Alexander polynomial of K f , all of which imply
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a reciprocity law for the singularity spectrum [436436]. Although comparably dif-

ferent, the proposed method complements the observation that the Jones poly-

nomial of links in S3 may be interpreted as arising from Chern-Simons (gauge)

theory [471471].

We discuss also new functional symmetries and features of the elliptic genus

Z f such as q-invariance and generalized twist positivity. These identifications

are suggestive of the relevance and essential nature of algebraic topology and

singularity theory in two-dimensional supersymmetric quantum field theories.

Finally, since algebraic knots in S3 are classified by their (univariate) Alexan-

der polynomials [257257], the corresponding moduli space of twist-regularized

Wess-Zumino models admits a similar classification of said algebraic knots by

their corresponding elliptic genera. We propose a more general classification

based on the corresponding algebraic link. Our classification scheme is not only

by simple topological type of the corresponding singularity (as done for the LG

model) but rather by subtle (co-)homological and combinatorial data codified

by the local algebraic structure (inner modality, multiplicity, geometric genus,

etc.), monodromy (characteristic polynomial), associated fiber (homotopy-type,

genus, etc.) and corresponding algebraic link invariants (Alexander polynomial,

linking and unknotting numbers, signature, etc.). These data provide a finer

taxonomic hierarchy than that given by the LG/ADE correspondence and are

generalizable to non-isolated singularities, complete intersections and polar

weighted homogeneous functions.
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This work represents the first step toward understanding this beautiful

tapestry of ideas.
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Part 1

Singularities of Complex Algebraic

Hypersurfaces



Chapter 1

Topological Structure of Isolated Singularities

Poetry should surprise by a fine excess and not by a singularity, it should
strike the reader as a wording of his own highest thoughts, and appear
almost a remembrance. — John Keats
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Following a brief review of the classical Brouwer degree theory of contin-

uous maps between real manifolds, we discuss fibrations and the Ehresmann

Fibration Theorem. Generalizing to hypersurfaces of complex analytic germs

with a critical locus in a neighborhood of the origin [310310], we then review the

Milnor Fibration Theorem and the open-book decomposition of the diffeomor-

phism class of corresponding fibers and (fibered) boundary link.
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With increasing specialization, our discussion begins with the most generic

complex analytic case where said critical locus is of arbitrary dimension and un-

specified topological density, proceeding then to those complex analytic germs

with an isolated critical point at the origin, specializing further still to weighted

homogeneous polynomials and finally concluding the introductory discussion

with singularities of the Brieskon-Pham type. We continue to the construction

of a wedge sum of spheres via CW-quotients, various morphisms acting on Mil-

nor fibers and finally the complex topological K-theory of wedge sums, carte-

sian products and smash products of spheres. We study these analytic objects

from a topological setting from the points-of-view of homology**, homotopy

and complex topological K-theory, including a thorough discussion of related

numerical invariants. Correspondingly, we define the differential, topological

and K-theoretic indices. In Chapter 33, we discuss the related notion of local mul-

tiplicities of holomorphic maps between more general complex domains and

Grothendieck residues.

Generalizations of the Milnor Fibration Theorem to complete intersections,

hypersurface singularities with non-trivial critical loci and real analytic maps,

including some recent work on the Sebastiani-Thom Equivalence, are also

briefly mentioned in the sequel.

*That is, singular homology with Z-coefficients.
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1.1. Brouwer Degree

The degree of a continuous map φ : X Ñ Y between oriented differential

manifolds (without boundary and of the same dimension), where X is compact

and Y is connected, is a classical numerical invariant of differential topology

[307307, 169169, 198198]. The theory of degrees has its origin in the nascent days of ho-

mology theory, and it’s influence in modern mathematics is quite profound

and still present [6767]. Degree theory is without doubt an indispensable tool for

computing useful invariants to distinguish certain topological spaces. In fact,

the degree formalism has also been instrumental in the development of many

classical and modern areas of mathematical research, namely, homotopy the-

ory, fixed point theory, index theory and topological/algebraic K-theory. The

mathematical province of these topics is immeasurable and their applications

are discussed at length in the vast literature of Differential Topology [307307].

Although there are various definitions of the degree of a map, we focus on

two primary and complementary formulations: cohomological and homological.

While the former is suitable for definition, the latter is more amenable to gener-

alization, which is necessary for our needs.

Consider a pair of oriented differential manifolds (X, Y) and a map φ : X Ñ

Y, as described above. After selecting a local coordinate atlas at a generic point

x P X, there is a value y = φ(x) P Y such that the map φ induces a local

pullback (differential) homomorphism ϕ˚x = (dφ)x : TxX Ñ TyY between cor-

responding local tangent manifolds. Let Ux be an open neighborhood of x P X.
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As a generalization of the Inverse Function Theorem, if (dφ)x : TxX Ñ Tφ(x)Y

is a linear isomorphism, then φ|Ux : Ux Ñ φ(Ux) is a diffeomorphism. Con-

versely, if for each x P X, the map φ|Ux : Ux Ñ φ(Ux) is a diffeomorphism, then

(dφ)x : TxX Ñ Tφ(x)Y is a linear isomorphism. In particular, if y is a regular value,

then (dφ)x is an isomorphism and the preimage φ´1(y) consists of a finite set of

points. By patching local charts, we construct a differential ϕ˚ = dφ : TX Ñ TY

between tangent bundles, as illustrated by the following commutative diagram,

TX TY

X Y
��

πX

//
φ˚

��

πY

//
φ

(1.1)

where πX and πY are canonical projections to X and Y, respectively.

Given a (normalized) top-form ω as an element of the exterior algebra
Źdim X TX, whose existence is guaranteed by construction, define the Brouwer

degree of the map φ as the pairing xφ(X), ωy, or equivalently xX, φ˚(ω)y, that is,

degB φ =

ż

φ(X)
ω (1.2a)

=

ż

X
φ˚(ω) (1.2b)

=
ÿ

x P φ´1(y)

sgn φ˚(x), (1.2c)

which is independent of the regular value y P Y so chosen arbitrarily. The inte-

gral equality is a consequence of the natural duality between (smooth) singular
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homology of chains and the de Rham cohomology of differential forms on X,

viz., xφ˚[γ], [η]y = x[γ], φ˚[η]y, where γ is a representative cycle of the homol-

ogy class [γ] and η is a representative closed differential form of the de Rham

cohomology class [η]. The integral-sum equality follows from the assumption

that the target space is both compact and that the set φ´1(y) consists of regu-

lar points, so finite. The value of sgn φ˚(x) is 1 if and only if φ˚ is orientation-

preserving and ´1 otherwise, so the integrality of the Brouwer degree of φ is

clear.

As illustrated by the following commutative diagram, the map φ induces a

push-forward homomorphism φ˚ between corresponding reduced-homology

groups,

H̃i(X; Z) H̃i(Y; Z)

X Y

//
φ˚

OO

H̃i(´; Z)

//
φ

OO

H̃i(´; Z) (1.3)

where H̃i(´; Z) denotes the ith-reduced homology functor (with Z coefficients).

If the manifolds X and Y are homology n-spheres, then the nth-reduced

homology group is infinite-cyclic, i.e., H̃n(Sn; Z) – Z, and the induced map φ˚

is therefore an endomorphism of Z. Consequently, the Brouwer degree of the

map φ is simply the image of the generator 1 P Z under said endomorphism,
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that is, degB(φ) = φ˚(1), as in the commutative diagram,

Sn H̃n(Sn; Z) Z t1u

Sn H̃n(Sn; Z) Z tdegB(φ)u
��

φ

//
H̃n(´;Z)

��

φ˚

//–
_?

oo ı

_

��

φ˚

//
H̃n(´;Z)

//– ? _oo ı

(1.4)

In fact, this homological approach to the degree of a map φ : X Ñ Y ex-

tends more generally to any pair of n-dimensional CW-spaces each possess-

ing a corresponding reduced-homology group that is infinite-cyclic, namely,

H̃i(X; Z) – H̃i(Y; Z) – Z for some common index 0 ă i ď n, though not

necessarily n.

Definition 1.1. Two continuous maps φ0, φ1 : X Ñ Y are smoothly homo-

topic, i.e., there exists a smooth Φ : X ˆ [0, 1]Ñ Y such that Φ(x, 0) = φ0(x) and

Φ(x, 1) = φ1(x), if and only if degB φ0 = degB φ1.

Definition 1.2. A map is null-homotopic if it has vanishing degree.

As shown by Hopf, the degree is a complete homotopy invariant**.

Proposition 1.3. Let X and Y be CW complexes. The following is true:

* Note the distinction between homotopy invariance and homotopy equivalence (or
homotopy-type equivalence). The former is a statement about maps; the latter concerns topo-
logical spaces.
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1. If the identity automorphism idX : X Ñ X is null-homotopic, then X is

contractible (to a point) implying the triviality of both the associated homology

and homotopy;

2. Given two continuous maps φ : X Ñ Y and ψ : Y Ñ X as above, if φ ˝ ψ and

ψ ˝ φ are smoothly homotopic to the identities idX : X Ñ X and idY : Y Ñ Y,

respectively, then the spaces X and Y have equivalent homotopy-type; and,

3. In particular, if there is a inclusion map φ : X ãÑ Y, then there is a deforma-

tion retraction from Y onto X.

For a discussion of these and related results, consult [198198] and [307307].

1.2. Ehresmann Fibration Theorem

Definition 1.4. Given a quadruple (F, E, B, φ) consisting of a fiber F, a

total space E and a connected, pointed base space (B, b) with a countable open

cover U , a (projection of a) fibration is a continuous surjection φ : E Ñ B such

that φ´1(b) = F and, for each point x P B, there is an open neighborhood

Ux Ă U such that there is a (fiber-preserving and trivializing) homeomorphism

h : φ´1(Ux) Ñ Ux ˆ F and a projection π : Ux ˆ F Ñ Ux yielding the commuta-

tive diagram

φ´1(Ux) Ux ˆ F

Ux
$$

φ

//h

��

π (1.5)
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Remark 1.2.1. A fibration may be defined universally as a surjection satis-

fying the homotopy lifting property (Chapter 7, [296296]). M

Remark 1.2.2. A fibration φ is often implied, and a fibration quadruple

(F, E, B, φ) is written simply as a sequence of maps F ãÑ E� B. M

Proposition 1.5 (Hopf, [208208]). There is a fibration S1 ãÑ S3 � S2.

A cross-section of the Hopf fibration is given in Figure 1.11.1.

Remark 1.2.3. Although the Hopf fibration is locally trivial, it is not glob-

ally trivial as S3 does not factor as the Cartesian product S2 ˆ S1. M

Figure 1.1. The Hopf Fibration (Adapted from [229229])

Definition 1.6. Given two differentiable manifolds X and Y with tangent

bundles TX =
Ť

xPX TxX and TY =
Ť

yPY TyY, respectively, a local submersion at

a point x P X is a smooth, differentiable map φ : X Ñ Y with a surjective, linear,
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local differential (dφ)x : TxX Ñ Tφ(x)Y. If φ is a local submersion everywhere on

X, then it is a submersion on X, and there is a commutative diagram,

TX TY

X Y
��

πX

//
dφ

��

πX

//
φ

Definition 1.7. A continuous map between topological spaces is proper if

any pre-image of a compact subset is compact subset.

Proposition 1.8 (Ehresmann, [121121]). A smooth, proper, surjective submersion

φ : X Ñ Y between smooth, oriented, differentiable manifolds, where X is compact and

without boundary, is a locally trivial fibration, i.e., the projection of a locally trivial fiber

bundle.

Proof . See Theorem 3.1 in [420420]. �

1.3. Milnor Fibration Theorem

Let Ux be a neighborhood of the point x P Cn+1 and write U = U0, where

0 denotes the origin. Let B2n+2
ε = t(z0, . . . , zn) P Cn+1 |

řn
i=0 z̄izi ď ε P Rą0u

denote the complex (n + 1)-dimensional ball with radius ε and centered on the

origin with boundary (sphere) S2n+1
ε .

Given a complex analytic germ** f : (U, 0) Ñ (C, 0) and a representative

function (denoted by the same symbol) f , define the parametrized family of

*The origin plays no special part other than one of convention. This analysis may take place
at any singular point of f .
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corresponding complex hypersurfaces of f ´ κ, namely, tVf, κ = f´1(κ)uκ PC.

Let Σ(Vf, κ) denote the set of singular points of Vf, κ, which corresponds to the

critical locus of f . The following classical result of Milnor is a landmark which

partially generalizes the Ehresmann Fibration Theorem to complex analytic

maps.

Proposition 1.9 (Milnor, [310310]). Let f : (U, 0) Ñ (C, 0) be a complex ana-

lytic germ. Consider the map φ f = f
} f } : S2n+1

ε zVf, 0 Ñ S1 with the image identified

with B∆̄, the standard unit circle in C. There is an ε0 ą 0 such that for all ε satisfying

0 ă ε ă ε0, the map φ f is the projection of a locally trivial fibration over S1.

Proof . See §1–§4 in [310310], Chapter 1 in [420420] and [230230]. �

The fibration map φ f induces an open-book decomposition (K f , φ f ) of S2n+1
ε ,

where the 1-parameter diffeomorphism class of fibers tFf, θ = φ´1
f (eiθ)uθPS1 con-

stitute the pages and the hypersurface intersection K f = Vf, 0 X S2n+1
ε constitutes

the binding (Figure 1.21.2).

Additionally, Milnor proves the following facts:

M1. Each page Ff, θ = Vf, κ X B2n+2
ε is a non-compact, smooth, paralleliz-

able manifold of (real) dimension 2n with the homotopy-type of an

n-dimensional, finite CW-complex;

M2. The closure F̄f, θ is a compact manifold with boundary Vf, κ X S2n+1
ε and,

for sufficiently small but non-zero κ and ε, F̄f, θ is diffeomorphic to the

intersection Vf, κ X B2n+2
ε independent of any minute variation of ε and

κ; and,
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Ff , π2

Ff , 3π
2

Ff ,π

Kf

Ff , π4

. . .

Ff, 0 = Ff, 2π

Figure 1.2. Open book (K f , φ f ) with pages tFf, θuθPS1 and binding K f
(Adapted from [310310])

M3. The relative pair (B2n+2
ε , Vf, 0 X B2n+2

ε ) is locally homeomorphic to the

cone over the relative pair (S2n+1
ε , K f ) = (S2n+1

ε , Vf, 0 X S2n+1
ε ).

Suppose the origin is an isolated critical point** of f (i.e., an isolated root of

the system B f |U = 0); therefore, it is an isolated singularity of Vf, 0 (implying

Vˆf, 0 = Vf, 0 zΣ(Vf, 0) is a non-singular, complex manifold of dimension n — in

fact, a Stein manifold, so holomorphically convex and separable) and M1-3 can

be sharpened substantially to the following:

M11. Each page Ff, θ is (n ´ 1)-connected, has trivial reduced-homology ex-

cept in (middle) dimension n and, therefore, has the homotopy-type of

a wedge sum or bouquet of n-spheres,
Žµ Sn;

M21. For n ‰ 2, the compact manifold with boundary F̄f, θ is diffeomorphic to

a handlebody obtained by adjoining a number of n-handles to B2n; and,

*In this special case, one says that the complex analytic germ f is non-degenerate at the ori-
gin, or simply non-degenerate when the context is clear.

53



M31. The binding K f = Vf, 0XS2n+1
ε (as a transversal intersection) is a smooth

(n´ 2)-connected, codimension-two (real) submanifold of S2n+1
ε mani-

fested as a possibly linked, disjoint union
š

S2n´1, a fibered link.

Remark 1.3.1. Until recently, the h-Cobordism Theorem was unproven for

n = 2, hence the restriction n ‰ 2 in M21 [259259]. Since the Poincaré Conjecture**

is true in R3, the h-Cobordism Theorem follows. M

Kf = Vf ,0 ∩ S2n+1
ε

B2n+2
ε

Vf ,0 = f−1(0)
CKf

Kf

φ f

S1

Figure 1.3. The Milnor Fibration and Corresponding Boundary Link

1.4. Milnor Fiber

As previously noted, no particular choice of page need be made as each

fiber is identical up to diffeomorphism. Henceforth, let Ff, 0 = φ´1
f (1) denote the

*A simply connected, closed 3-manifold is a topological 3-sphere, i.e., homeomorphic to S3.
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Milnor fiber of f . Correspondingly, we refer to a representative fiber Ff, θ of the

1-parameter diffeomorphism class tFf, θuθPS1 as a generic Milnor fiber of f .

Proposition 1.10 (Andreotti, Frankel, [1313]). A Stein k-manifold X Ă Cn has

the homotopy type of a CW-complex of real dimension at most k. In particular,

Hi(X; Z) – Hi(X; Z) – t0u i ą k. (1.6)

Proof . See Theorem 7.1 in §7 in [306306] for a proof of a special case. �

According to Milnor, a generic fiber Ff, θ has a trivial tangent bundle and no

compact components, so it is a parallelizable manifold. Regardless of the topolog-

ical density of the critical points of f in U, since Vˆf, 0 is a Stein manifold, Propo-

sition 1.101.10 then implies that said fiber has the homotopy-type of (at most) an n-

dimensional, finite CW-complex (Theorem 5.1, [310310]). In particular, if the origin

is either a regular or isolated singular point of Vf, 0 and and the hypersurface

Vf, 0 intersects S2n+1
ε transversally, then Ff, θ is an (n ´ 1)-connected manifold

(Lemma 6.4, op. cit.) with trivial homology in all dimensions less than n (Corol-

lary 6.3, op. cit.). Consequently, there are no cohomology classes in dimension

n + 1, so the middle (reduced) homology group H̃n(Ff, θ; Z) is torsion-free and

free abelian of finite rank by the Hurewicz Theorem.

Proposition 1.11 (Serre). Let X be a finite, (m´ 1)-connected CW complex

with m ě 2. The Hurewicz homomorphism πk(X) Ñ Hk(X; Z) is a C -isomorphism

for 0 ď k ă 2m´ 1.
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Proof . See Theorem 18.3 in [316316]. �

In addition to Whitehead’s Theorem, this uniquely specifies the homotopy-

type of a generic fiber Ff, θ, as in M11 (Figure 1.41.4).

Proposition 1.12 (Milnor, [310310]). Let f : (Cn+1, 0)Ñ (C, 0) be a complex an-

alytic germ with an isolated critical point at the origin. The homotopy-type of a generic

fiber Ff, θ is that of a wedge sum of n-spheres,
Žµ Sn.

Proof . See in Theorem 6.5 in [310310]. �

Such a homotopy type is rather pervasive and may be constructed from a

quotient of a general CW-structure, q.v., §1.9.11.9.1 and §1.9.21.9.2. Since the (reduced)

homology and homotopy of a bouquet is concentrated in the dimension of the

constituent spheres, the number of such spheres, the rank of the non-vanishing

homology group, is a topological invariant of the corresponding singularity.

⋯

⋁ Sn(Sn, {•})

!

Figure 1.4. A Bouquet of (Pointed) Spheres
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1.5. Algebraic Links

The local topological nature of the critical locus in the vicinity of the origin

leads to dramatically different isotopy and diffeomorphism types of the cor-

responding fibered link. In particular, the topology of the critical locus is key

in determining the topological type of the ambient fibers with two fundamen-

tally different cases to consider. On the one hand, if the origin is a regular or

simple point (i.e., a non-singular point) f , then Vf, 0 is a smooth manifold, Ff, θ is

contractible and the binding K f is a smooth differentiable (2n ´ 1)-manifold

diffeomorphic to the standard, unknotted codimension-two (2n´ 1)-sphere em-

bedded in S2n+1
ε . On the other hand, if the origin is an isolated singular point of

Vf, 0, i.e., an isolated root of the system B f |U = 0, then a generic fiber Ff, θ is not

contractible and the binding K f is knotted (Corollary 7.3, op. cit.) with possibly

many linked components, as in M31, e.g., the torus link Tp,q. Illustrated in Figure

1.31.3, the transverse intersection** K f = Vf, 0 X S3
ε is a pair of linked unknots, T2,2,

the Hopf link. Two fibers (Ff, 0 and Ff, π) bounding the Hopf link are shown in

Figure 1.51.5.

Remark 1.5.1. With regard to the Hopf fibration S1 ãÑ S3 � S2, fibering

over each pair of distinct points in S2, there is a Hopf link in S3. M

1.5.1. Monodromy. That S2n+1
ε zVf, 0 – S2n+1

ε zK f is fibered over S1 implies

the existence of a 1-parameter family of homomorphisms hθ1 : F̄f, θ Ñ F̄f, θ+θ1 .

*Arising from, say, f = x2 + y2 over C2.
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Figure 1.5. Milnor Fibers of the Hopf Link (Adapted from [114114])

Corresponding to a full rotation, the map h = h2π induces a non-trivial push-

forward endomorphism h˚ : H̃n(F̄f, 0; C) Ñ H̃n(F̄f, 0, C), as illustrated by the

commutative diagram

H̃n(F̄f, 0; C) H̃n(F̄f, 0; C)

F̄f, 0 F̄f, 0

//h˚

OO

H̃n(´; C)

//h

OO

H̃n(´; C)

where H̃n(´; C) denotes the reduced homology functor (with complex coeffi-

cients) and an associated Wang sequence [176176],

t0u // Hn(Ff, 0; Z)
I´h˚

// Hn(Ff, 0; Z) // H̃n´1(K f ; Z) // t0u

When the context is clear, we refer to both the fiber map h = h( f ) and its in-

duced morphism h˚ = h˚( f ) as the (Picard-Lefschetz) monodromy of f .

There is a distinguished basis of the homology group** Hn(Ff, 0; Z) – Zµ

given by the vanishing cycles t∆1, . . . , ∆µu, which allows one to compute ex-

plicitly the corresponding intersection matrix S = (∆i ˝ ∆j) and monodromy

*To simplify notation, we write Zr in place of the direct summation
Àr

i=1 Z.
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in terms of intersection numbers of said cycles, h˚ =
śn+1

i=0 h˚,i, where h˚,i =

α + (´1)n(n+1)/2(α ˝ ∆i)∆i and α P Hn(Ff, 0; Z) [2222].

Proposition 1.13. Given a non-degenerate,isolated singularity

f : (Cn+1, 0) Ñ (C, 0), the eigenvalues of the monodromy h˚ : H̃n(F̄f, 0; C) Ñ

H̃n(F̄f, 0, C) are roots of unity.

Proof . See Theorem 3.1 in [161161] and §5.C in [276276]. �

Corollary 1.14. The characteristic polynomial ∆h˚(t) = det(tI ´ h˚) of

the monodromy h˚ : H̃n(F̄f, 0; C) Ñ H̃n(F̄f, 0, C) is monic, reflexive and has constant

coefficient equal to ˘1, that is,

∆h˚(t) = tµ + bµ´1tµ´1 + ¨ ¨ ¨+ b1t1 + (´1)µn b1, . . . , bµ P Z, (1.7)

where bk = bµ´k for 1 ď k ď µ´ 1.

By carefully studying the monodromy map and associated Wang sequence,

Milnor proved the following result.

Proposition 1.15 (Milnor, [310310]). Let f : (Cn+1, 0) Ñ (C, 0) be a complex

analytic germ with an isolated critical point at the origin. For n ‰ 2, the algebraic link

K f = Vf, 0 X S2n+1
ε with r components is a topological (2n ´ 1)-sphere if and only if

the characteristic polynomial ∆h˚(t) = det(tI´ h˚) of the associated monodromy map

h˚ : H̃n(Ff, 0; C)Ñ H̃n(Ff, 0; C) coincides with the reduced Alexander polynomial

∆K f (t) = (t´ 1)1´δr,0∆K f (t1, . . . , tr) (1.8)

59



and satisfies ∆h˚(1) = ˘1. The degree of ∆h˚ is the number of spheres in the homotopy

type of the fiber, Ff, 0 »
Žµ Sn.

Proof . See Lemma 8.2 and Theorem 8.5 in [310310]. �

Remark 1.5.2. There are counter-examples to Proposition 1.151.15 for n = 2. In

this case, however, replacing topological 3-sphere with homology 3-sphere reinstates

its validity. M

We return to the discussion of algebraic links and their classification in §4.64.6.

As will be evident in the sequel, the Milnor fiber Ff, 0 does not uniquely deter-

mine the topological type of the corresponding link K f . However, there are

numerical invariants of Ff, 0 (and therefore of f ) which describe various salient

features of its boundary and vice versa. Such invariants will occupy our atten-

tion for the majority of this volume.

1.6. Weighted Homogeneous Singularities

If the complex analytic germ f : (Cn+1, 0) Ñ (C, 0) is a weighted homo-

geneous polynomial, i.e. f̃ = f (zq0
0 , . . . , zqn

n ) is a homogeneous polynomial of

degree d for some set of positive integers tq0, . . . , qn, du, then the hypersurface

Vf, κ, where κ is a regular value of f sufficiently close to the origin, completely

determines the topological type of a generic fiber Ff, θ. In terms of the reduced

weights tωi = qi
d u, the computation of the associated numerical invariants is

greatly simplified. Focusing M1-31 to the weighted homogeneous case,
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M22. If f is a non-degenerate, weighted homogeneous polynomial, then Ff, θ

diffeomorphic to Vf, 1 = f´1(1) as a deformation retraction. In this case,

one writes Ff, θ –d Vf, 1; and,

M32. If f has reduced weights tω0, . . . , ωnu Ă Q X (0, 1), then the mon-

odromy automorphism h : F̄f, 0 Ñ F̄f, 0 –d Vf, 1 is explicitly given by

the Cˆ-action

h : (z0, . . . , zn) ÞÑ (e2πiω0z0, . . . , e2πiωn zn). (1.9)

The k-orbit hk : Vf, 1 Ñ Vf, 1 has Lefschetz number equal to the Euler

characteristic χk =
ř

1ăd|k drd of the fixed-point manifold

t(z0, . . . , zn) P Vf, 1 | hk(z0, . . . , zn) = (z0, . . . , zn)u, (1.10)

where the integers trdu are encoded in the characteristic polynomial

∆h˚(t) = (t´ 1)(´1)n+1 ź

1ăd|N

(td
´ 1)(´1)nrd , (1.11)

where N denotes the period of the monodromy h, viz., hN = I, and rd is

non-zero only when d divides N. In particular, the degree of the char-

acteristic polynomial may be recovered from the exponents, namely,

µ = (´1)n+1 + (´1)n
ÿ

1ăd|N

drd = (´1)n+1(1´ χN). (1.12)
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Denote the nth-root-of-unity by ζn = e2πi/n. Writing the rational weights

in the reduced form tωi =
ri
si
u, Milnor and Orlik (Theorem 4, [315315]) prove that

the characteristic polynomial of a weighted homogeneous singularity f is deter-

mined by the divisor

div ∆h˚(t) =
n
ź

i=0

(
1
ri

Λsi ´Λ1

)
, (1.13)

where Λsi =
řn´1

k=0xζ
k
ny is the divisor of tsi ´ 1 in the group algebra ZCˆ with

product ΛaΛb = gcd(a, b)Λ
lcm(a,b) for a, b P N and identity Λ1. Here, a divisor

cΛd contributes (td ´ 1)c to the numerator if sign(c) = 1 or the denominator

if sign(c) = ´1, provided that d ě 1. In principle, the coefficients tcku may

computed in terms of the weights.

Proposition 1.16 (Milnor, Orlik, [315315]). Given div ∆h˚(t) =
ř

kě1 ck Λk,

then κ =
ř

kě1 ck and ρ =
ś

kě2 kck are non-negative integers, where κ is the greatest

power of the linear factor t´ 1 dividing ∆h˚(t) and ∆h˚(1) = ρ δ0,κ.

1.7. Numerical Invariants of the Milnor Fiber

In the sections, chapters, parts and volumes to follow, we endeavor to

deepen our understanding of the underlying differential, topological, algebraic,

analytic, geometric, combinatorial, arithmetic, categorical, real and supersym-

metric structure respecting the diffeomorphism class of generic Milnor fibers

and their boundary (algebraic) links. A central theme of this volume is how the
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Table 1.1. Invariant Indices of Isolated Singularities

Index Symbol Value Brief Description

Differential µdiff degB(φB f |U ) Brouwer Degree of the Map φB f |U
Topological µtop rank H̃n(Ff, 0; Z) Rank of the nth-Reduced Homology Group of Ff, 0

K-Theoretic µK rank K̃n(Ff, 0) Rank of the nth-Reduced Grothendieck Group of Ff, 0

Analytic µanal Res ω(B f |U) Grothendieck Residue of the Logarithmic Form ω(B f |U)
Geometric µgeom mult( f ) Local Geometric Multiplicity of f on U
Algebraic µalg dimC A f Complex Dimension of the Local Algebra of f
Cohomological µco b1(MK,8) First Betti Number of Infinite Cyclic Covering

Combinatorial µcomb MVK( f ) Mixed Volume of the Polytope K( f )
Quantum µqm ind(Q+

B f ) Multiplicity of the Ground State in the WZθ,φ Model

Arithmetic µnt ordO( f ) Number of Integral Solutions of 0 ă ωixi ă 1

associated numerical invariants are interrelated and to what extent they eluci-

date the subtle and salient features of algebraic links (Table 1.11.1). We summarize

these points in the following claim.

Proposition 1.17. If f : (Cn+1, 0) Ñ (C, 0) is a complex analytic germ with

an isolated critical point at the origin, then the following statements are true:

1. The first five indices given in Table 1.11.1 are well-defined, coincident positive

integers equal to the rank of the of the nth-reduced Grothendieck group of the

corresponding Milnor fiber;

2. If f is weighted homogeneous, then the first eight indices in said table are coin-

cident positive integers equal to the dimension of the local algebra of f ;

3. If f is weighted homogeneous and elliptic, then the first nine indices in said

table are coincident positive integers equal to the Fredholm index of a super-

charge of a two-dimensional, supersymmetric, quantum field theory with inter-

action f ; and,
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4. If f is Brieskorn-Pham (or more generally, quasi-Brieskorn-Pham and ellip-

tic), then all indices in said table are coincident positive integers equal to the

number of non-negative integral solutions of a corresponding system of Dio-

phantine inequalities.

Chapter 1111 culminates in the proof of Proposition 1.171.17. The experienced or

eager reader may choose to forgo the next few chapters and proceed directly to

Part 22, which concerns supersymmetry and the twist-regularized Wess-Zumino

model.

1.8. Local Geometric Multiplicity

Of the vast number of invariants that arise in the context of isolated singu-

larities of complex hypersurfaces, we begin our investigation with the two most

easily described, the local geometric multiplicity and Brouwer degree.

A critical point x of a function f is non-degenerate or Morse if the Hessian

(matrix) H( f ) = (B f ) evaluated at x is non-singular [306306]. A function is Morse

if it only has Morse critical points. The local geometric multiplicity multx( f ) of

f at a degenerate critical point x is the number of Morse points into which x

splits as a result of a perturbation f + εg in Ux (Figure 1.61.6), where g is a Morse

function and ε ą 0. The function fε = f + εg is the (complex) morsification of f .

If the real parameter ε is sufficiently small, the non-negative integer

multx( f ) does not depend on the Morse perturbation g. If x is the origin, we

write instead mult( f ).
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f fε
x

x

Ωx Ωx

Figure 1.6. A Morse Perturbation and Local Geometric Multiplicity equal to
3

1.8.1. Geometric Index. Define the geometric index of a complex analytic

germ f : (Cn+1, 0) Ñ (C, 0) as the local geometric multiplicity in a neighbor-

hood of the origin,

µgeom( f ) := mult( f ) = |Vf, κ X B2n+2
ε |, (1.14)

where κ P Cˆ is a regular value of f sufficiently close to the origin and ε ą 0 is

sufficiently small.

1.8.2. Differential Index. Given a complex analytic germ f : (U, 0)Ñ (C, 0),

where U Ă Cn+1 is a neighborhood of the origin, one defines a fibration φ f =

f
} f } : S2n+1

ε zVf, 0 Ñ S1, which is a map between spheres of different dimensions.

The gradient map B f |U = (B0 f , . . . , Bn f ) : (Un+1, 0)Ñ (Cn+1, 0) furnishes a map

between spheres of the same dimension, namely, φB f |U = B f |U
}B f |U}

: S2n+1
ε Ñ S2n+1

ε .

As mentioned in the preceding discussion, the case of an isolated point at

the origin t0u of the system B f |U = 0, i.e., Σ(Vf, 0) = t0u, is especially curious

and will retain our attention for majority of this work. Assume, for now, that f
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is an isolated singularity, and define the differential index of f as the Poincaré-

Hopf index indPH B f of the vector field B f : (Cn+1, 0) Ñ (Cn+1, 0) or, equiva-

lently, the degree of the map φB f |U at the origin**,

µdiff( f ) := indPH B f = degB(φB f |U). (1.15)

In the forthcoming sections we motivate and define additional numerical

invariants associated with singular points. We now shift our focus to related

topological aspects of the fiber Ff, 0 including the associated singular homology

and homotopy-type.

1.9. Homology/Homotopy Class of the Milnor Fiber

In this section we discuss a family of topological spaces central to the Mil-

nor construction, a wedge sum of spheres. We begin with the simplest, non-trivial

example involving quotient graphs and subsequently generalize to more com-

plicated quotient space constructions.

1.9.1. Spanning Tree Quotients and Roses. Let G be a non-trivial simple

graph†† with e edges, v vertices and containing a spanning tree, say ΓG, which

is guaranteed to exist by virtue of the assumption of connectedness. Recall that

the Euler characteristic of G is the difference between the number of its vertices

and edges, χ(G) = v´ e ď 0. By definition, ΓG has v vertices and v´ 1 edges

* Of course, such an invariant can be defined in a neighborhood about any singular point.

† That is, an undirected, unweighted, finite, connected, loop-free graph.
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(hence spanning), so the quotient graph G/ΓG—the resulting graph from con-

tracting ΓG to any one of its vertices —has µ(G) = e´ (v´ 1) = 1´ χ(G) edges,

as loops, connected by the aforementioned (root) vertex. The quotient graph

G/ΓG is then homotopy equivalent to a wedge sum of µ = µ(G) circles,
ŽµS1,

or rose with petals (Figure 1.71.7).

G ⋁4 S1

!

ΓG

G/ΓG

Figure 1.7. Spanning Tree Quotient and Rose with Petals

Remark 1.9.1. It is a nice exercise to prove that both the spanning tree ΓG

and the vertex of contraction can be chosen arbitrarily, and that the number of

petals µ in the resulting quotient graph G/ΓG coincides with the first Betti num-

ber and the dimension of the cycle space of G, i.e., the number of fundamental

cycles of G. M

The homotopy groups of a rose with petals are especially simple to describe.

Since G/ΓG is pathwise connected, π0(
Žµ S1) is trivial. Since G/ΓG consists of

b1 loops held together by a basepoint, then by the van Kampen Theorem and

that π1(S1) – Z, it follows that π1(
Žµ S1) – Z ˚ ¨ ¨ ¨ ˚Z – Fµ, the free group on
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µ generators. Thus, the quotient graph G/ΓG »
Žµ S1 is an Eilenberg-Maclane

space, K(Fµ, 1).

Remark 1.9.2. The above construction can be generalized to simplicial

complexes with corresponding quotients involving (contractible) spanning sub-

complexes. M

1.9.2. Skeletal Quotients and Bouquets. Since any connected graph is a

one-dimensional CW-complex, we generalize accordingly [177177]. Let X be any

non-trivial n-dimensional CW-complex with cellular (or skeletal) decomposition

X0 Ă X1 Ă ¨ ¨ ¨ Ă Xn = X, where Xk denotes the inductively defined k-skeleton

of X by appropriately attaching a number of k-cells to Xk´1. If Xn contains µ

n-cells, then there is a homotopy equivalence to a wedge sum of µ n-spheres,

X/Xn´1 »
ŽµSn. The number of spheres in the bouquet, µ, can be identified

with an alternating sum involving Betti numbers of X. In the next subsection,

we prove that µ = (´1)n χ̃(X), where the reduced Euler characteristic χ̃(X) =

χ(X)´ 1 is determined by the reduced homology H̃˚(X; Z).

Sn

!

Sn

Sn _ Sk+1

Sk+1

Sk

(Sn, Sk) Sn/Sk

Figure 1.8. Equatorial Sphere Contraction and Mixed Wedge Sum of
Spheres
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A slightly more general mixed wedge sum can be constructed by choosing

an appropriate equatorial CW structure, namely, Sn/Sk » Sn _ Sk+1 for 0 ď

k ă n (op. cit.; Figure 1.81.8). One may then inductively define the wedge sum of

n-spheres by Sn/
Žµ´1 Sn´1 »

Žµ Sn, which we call the slice construction. For

instance,
Ž3 S2 » S2/S1 _ S1 » S2/(S1/S0), as shown in Figure 1.91.9.

In contrast to K(Fµ, 1), the bouquet
ŽµSn is not — without some prior

surgery — an Eilenberg-Maclane space K(Fµ, n). However, by simply attach-

ing a (countable) number of m-cells with m ą n, we can inductively construct

a K(Fµ, n) space from
ŽµSn by ensuring the vanishing of higher homotopy

groups. Thus, πi(
ŽµSn) is trivial for 0 ď i ă n and πn(

ŽµSn) – Fµ [184184]. The

Milnor fiber Ff, 0 »
Žµ Sn is an Eilenberg-Maclane space K(Fµ, n). Moreover,

there is an isomorphism involving the relative homotopy class of based maps

[X, K(Fµ, n)] – Hn(X;Fµ), the nth-singular cohomology group of X with coef-

ficients in Fµ. In general, if a connected CW-complex X is a K(πn(X), n) space,

then the loop space ΩX is a K(πn(X), n´ 1) space [184184].

This concludes our discussion of a few standard constructions of the main

family of topological spaces at the heart of the Milnor construction, a wedge

sum of spheres, including a discussion of its known homotopy structure. We

turn our attention now to the associated monodromy and related topological

invariants. In particular, the homology of the Milnor fiber is vastly intriguing

and will be our primary focus for the remainder of the section.
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(S1, S0) ı

S1/S0 » S1 _ S1

(S2, S1 _ S1) S2/(S1 _ S1) » S2 _ S2 _ S2

S1 _ S1 ÞÑ t‚u

S0 ÞÑ t‚u

Figure 1.9. Slice Construction of a Wedge Sum of Spheres

1.9.3. Euler Characteristic of the Milnor Fiber. Recall that the Euler charac-

teristic χ(X) of a topological space X with a CW-structure tXiu is a homotopy

invariant and depends only on its singular homology by the following identity

χ(X) =
n
ÿ

i=0

(´1)i
|Xi| (1.16a)

=
n
ÿ

i=0

(´1)i bi(X), (1.16b)

where bi(X) = rank Hi(X; Z) is the ith-Betti number of Y [177177]. The homology

of the bouquet
ŽµSn is all but vanishing save H0(

ŽµSn; Z) – Z, since it is

path-connected, and

H̃n(
łµ

Sn; Z) –
µ
à

H̃n(Sn; Z) – Zµ (1.17)
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by the Hurewicz Theorem for wedge sum of spheres [9797], which states the

Hurewicz homomorphism ψi : πi(
ŽµSn) Ñ H̃i(

ŽµSn; Z) – Zm is an iso-

morphism for i ą 0 and each µ ą 0 [184184, 197197]. Thus, by considering ranks we

have derived the fundamental relation χ(Ff, 0) = 1 + (´1)nµ, where µ is non-

negative and counts the number of spheres in the bouquet. Equivalently, since

Ff, 0 »
Žµ Sn, then the identity χ(X _Y) = χ(X) + χ(Y)´ 1 for CW complexes

X and Y implies

χ(Ff, 0) = µχ(Sn)´ (µ´ 1) = (´1)nµ + 1, (1.18)

where χ(Sn) = 1 + (´1)n.

1.9.4. Topological Index. Given a complex analytic germ f : (Cn+1, 0) Ñ

(C, 0) with isolated critical point at the origin, the topological index of f is the

number of spheres in the homotopy type of the corresponding Milnor fiber,

µtop( f ) := rank H̃n(Ff, 0; Z), (1.19a)

which is, of course, equal to (´1)n χ̃(Ff, 0) = (´1)n+1(1´ χ(Ff, 0)).

1.9.4.1. Poincaré Series of the Milnor Fiber. Yet a third (equivalent) method for

computing the Euler characteristic χ(Ff, 0) of the Milnor fiber Ff, 0 involves com-

puting the Poincaré series of Ff, 0. Recall that the generating function of the se-

quence of Betti numbers tb0, b1, . . . u of a given topological space X (with finitely

generated Z-homology of finite type) is the Poincaré series, PX(t) =
ř

iě0 biti.

Since PX_Y(t) = PX(t) + PY(t) ´ 1 for CW complexes X and Y, and PSn(t) =
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tn + 1, it follows by iteration that PŽµSn(t) = µPSn(t) ´ (µ ´ 1) = µtn + 1.

Therefore, the value PFf, 0(´1) is precisely the desired Euler characteristic.

1.10. Invariance under Topological Morphisms

Given a diffeomorphism Ff, 0 –d Fg, 0 or homotopy equivalence Ff, 0 » Fg, 0,

there is an induced isomorphism between corresponding reduced-homology

groups, hence µtop( f ) = µtop(g). The converse of these implications, however, is

patently false. To see this for the latter morphism, choose n, m ą 1, n ‰ m with

f : (Cn+1, 0)Ñ (C, 0) and g : (Cm+1, 0)Ñ (C, 0) as analytic germs with isolated

critical points at the respective origins, and assume µtop( f ) = µtop(g) = µ. By

M21, Ff, 0 »
ŽµSn and Fg, 0 »

ŽµSm. Since the reduced homology differs in di-

mensions n and m, the fibers are neither homeomorphic nor weakly homotopy

equivalent, and therefore cannot be diffeomorphic.

However, there is a context in which a stronger equivalence is preserved

under continuous deformation.

Proposition 1.18 (Oka, [355355, 357357]). Let ft : (Cn+1, 0) Ñ (C, 0) be a smooth

1-parameter family of analytic functions with an isolated critical point at the origin for

0 ď t ď 1. If there is an ε1 ą 0 such that for each ε ą 0 satisfying ε ă ε1 the intersection

Vft = f´1
t (0)X S2n+1

ε is transversal for 0 ď t ď 1, then Fft, 0 is a parametrized family

of fibers within the same isomorphism class.

It is often the case that one would like to compare fibers and/or their com-

plex analytic germs through fiber morphisms or certain algebraic deformations.
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To begin to understand how such objects may be approached, we first consider

a weaker equivalence, like that of homotopy, and similar structure-preserving

operations and fiber transformations.

It is clear that the homotopy-type of the hypersurface at the origin is a local

topological invariant. Thus, any parametrized deformation of the hypersurface

preserving the local topological-type also preserves the topological index. We

close this section with a result of Lê and Ramanujam on the converse of this

invariance.

Proposition 1.19 (Lê, Ramanujam, [259259]). Let ∆ denote any open disk about

the origin, 0 P C. Let ft : (∆ ˆ Cn+1, ∆ ˆ 0) Ñ (C, 0) be a 1-parameter family of

analytic functions such that dim Σ(Vft,0) = 0 at the origin. For sufficiently small t, the

following statements are true:

1. The fiber-homotopy type of the Milnor fibrations of ft at the origin is constant;

and,

2. If n ‰ 2, the diffeomorphism-type of the Milnor fibrations of ft is constant, as

well as the local topological-type of the hypersurfaces Vft .

Proof . See [290290] for a discussion of this result with relevant citations and

a generalization to non-isolated singularities. �

In the next section we consider special cases of the Milnor fiber up to

homotopy-type (in the class of wedge sums of spheres) and some relations

satisfied by their corresponding numerical invariants.
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1.11. Topological Morphisms on the Milnor Fiber

1.11.1. Inclusion-Exclusion Property. In direct analogy with the disjoint

union \ and direct sum ‘ in the categories of sets Set and abelian groups

Ab, respectively, the wedge sum _ is the coproduct in the category of pointed

topological spaces Top‚. Since any singleton space or point t‚u is a zero ob-

ject in Top‚, a contractible Milnor fiber Ff, 0 with the homotopy-type of a point
Ž0Sn » t‚u and with Euler characteristic equal to 1, corresponds to the value

µtop( f ) = 0, consistent with equation (1.19a1.19a).

If the context is clear, we shall on occasion write µtop(Ff, 0) instead of µtop( f )

so as to illustrate a dependence on the fiber Ff, 0 of the complex analytic germ f .

Suppose X is a finite, compact CW-complex. For any closed subcomplex

Y Ă X, the Euler characteristic satisfies the Excision Property**, χ(X) = χ(Y) +

χ(X zY), which if X = Y1 YY2 (subcomplex union) and the short sequence

t0u // H̃i(X; Z) // H̃i(Y1; Z)‘ H̃i(Y2; Z) // H̃i(Y1 XY2; Z) // t0u

is exact for i ě 0, implies the Inclusion-Exclusion Property: χ(X) = χ(Y1) +

χ(Y2)´ χ(Y1 XY2). Together with equation (1.19a1.19a), the topological index satis-

fies the inequality,

µtop(Ff, 0 Y Fg, 0) = µtop(Ff, 0) + µtop(Fg, 0)´ µtop(Ff, 0 X Fg, 0) (1.20a)

ď µtop(Ff, 0) + µtop(Fg, 0), (1.20b)

*The Euler characteristic does not satisfy the Excision Property for general CW complexes.
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provided that the union and intersection of fibers can be realized through Mil-

nor’s construction. Since bouquets are closed under wedge sums, it follows

that
Žµ Sn _

Žµ1 Sn »
Žµ2 Sn if and only if µ + µ1 = µ2. Thus, one way to

achieve a strictly additive relation in equation (1.20b1.20b) is for Ff, 0Y Fg, 0 »
Žµ+µ1Sn

and Ff, 0 X Fg, 0 » t‚u (since the topological index of a point is zero) with

f , g : (Cn+1, 0) Ñ (C, 0) both non-degenerate. That is, if a composite fiber has

the homotopy-type of the wedge sum of Ff, 0 _ Fg, 0, then

µtop(Ff, 0 _ Fg, 0) = µtop(Ff, 0) + µtop(Fg, 0). (1.21)

Equation (1.211.21) also follows from the additivity over wedge sums of CW-

complexes satisfied by the reduced Euler characteristic, viz.,

χ̃(X _ Z) = χ̃(X) + χ̃(Z), (1.22)

where X and Z are arbitrary CW-complexes. From the perspective of reduced

homology, we have the following decomposition by exactness:

H̃i(
łµ+µ1

Sn; Z) – H̃i(
łµ

Sn; Z)‘ H̃i(
łµ1

Sn; Z) i ě 0 (1.23)

By considering the corresponding ranks, one concludes equation (1.211.21).
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The construction of a wedge sum of fibers on the level of their correspond-

ing complex analytic germs is not immediately obvious** for n ą 1, so we shall

endeavor to seek a more suitable structure.

1.11.2. The Join of Pham. Let Cn denote the nth-roots of unity (or cyclic

group of order n) viewed as the disjoint union of n trivial pointed spaces with

a distinguished point as a base-point, or as an edgeless graph K̄n — the graph

complement†† of the complete graph Kn — with a vertex as a distinguished base-

point. If f =
řn

i=0 zai
i , then Pham [374374] demonstrated the homotopy equivalence

Vf, 1 » Ca0 ‹ ¨ ¨ ¨ ‹ Can , where ‹ denotes the join operation (Figure 1.101.10). Such a

polynomial is referred to as Brieskorn-Pham, and the corresponding manifold

Vf, 1 is known as the Join of Pham.

Recall that the topological join of two CW complexes is defined as

X ‹Y – CX ˆY\XˆY CYˆ X, (1.24)

where CX = (X ˆ I)/(X ˆ t0u) denotes the cone over X, and I denotes the

unit interval (Figure 1.101.10). That X is a deformation retraction of CX implies

*Given a set of non-degenerate, complex analytic germs fi : (Cni+1, 0) Ñ (C, 0), denote the
corresponding fibers by Ffi

= Ffi , 0 and topological indices by µi = µtop( fi). The wedge sum
Ž

i Fi would necessarily have the homotopy-type of a wedge sum of mixed spheres,
Ž

i
Žµi Sni .

Such a homotopy-type cannot be realized by Milnor’s construction as a single composite fiber
unless, of course, the integers ni are identical or if the complex analytic germs are degenerate.

† This is not to be confused with set complement.
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constancy of both homology and homotopy when taking the cone. In fact, the

cone map C is a endofunctor of the category Top.

(Y, y)

(X, x)

X ‹ Y

Figure 1.10. Join Space X ‹Y of Pointed CW-complexes (X, x) and (Y, y)

Since Cai »
Žai´1 S0 and Sn ‹ Sm » Sn+m+1 for n, m ě 0, it follows that

Ff ,0 – Vf, 1 has the following homotopy-type of a wedge sum of spheres,

Ca0 ‹ ¨ ¨ ¨ ‹ Can »
ła0´1

S0
‹ ¨ ¨ ¨ ‹

łan´1
S0 (1.25a)

»
ła0´1

¨ ¨ ¨
łan´1

S0
‹ ¨ ¨ ¨ ‹ S0 (1.25b)

»
łµ

Sn, (1.25c)

where µ = µtop( f ) =
śn

i=0(ai ´ 1).

In particular, the fiber of f = z2 has the homotopy-type consisting of two

isolated points, since Fz2, 0 » C2 » S0, the 0-sphere. Like the trivial fiber Fz,0

discussed the previous subsection, the fiber of the square Fz2, 0 has special signif-

icance in the algebraic structure of the homotopy class of fibers.

The homotopy type of Vf ,1 can be seen directly by considering the comple-

ment of a tubular neighborhood of the graph Ca0 ‹ ¨ ¨ ¨ ‹ Can within a ball. Con-

sider the example, f = x2 + y2 and g = x3 + y2 are shown in Figure 1.111.11. Here,
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Ff, 0 » S1 and Fg, 0 » S1 _ S1. Alternatively, the homotopy type can be inferred

from the spanning-tree contraction of §1.9.11.9.1.

S1

Vf ,1

S1 ∨ S1

Vg,1

C3 ‹ C2
C2 ‹ C2

Figure 1.11. Two Joins of Pham: f = x2 + y2 and g = x3 + y2

The importance of singularities of the Brieskorn-Pham type cannot be over-

stated, and the follow classical result of Brieskorn attests to this fact.

Proposition 1.20 (Brieskorn, [6363]). For n ě 4, any homotopy (2n´ 1)-sphere

that bounds a parallelizable manifold is diffeomorphic to an algebraic link K f of the

polynomial f =
řn

i=0 zai
i for some set of positive integers ta0, . . . , anu Ă Ną1.

Proof . See Korollar 2 (Corollary 2) in [6363] and Chapter 1 in [420420]. �

Milnor generalized Brieskorn and Pham’s work to the context of non-

degenerate complex analytic germ and proved that the corresponding fibers

have the homotopy-type of a wedge sum of n-spheres, the number of which is

effectively computable. The fiber-join decomposition proposed by Pham was

further generalized by Sebastiani and Thom [421421] and recently by Massey [289289].

In summary, we have the following classical result.
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Proposition 1.21 (Milnor,[310310]). Given a complex analytic germ

f : (Cn+1, 0) Ñ (C, 0) with an isolated critical point at the origin, the fiber Ff,0 =

Vf, κ X B2n
ε is a parallelizable manifold with homotopy type of a wedge sum of spheres

Žµ Sn, where µ is a non-negative integer and zero only in the case that the origin is a

regular point of f .

Proof . See Theorem 7.2 in [420420]. �

In the next section we broaden our view of the structure of the space of

Milnor fibers up to homotopy and begin our transition toward the algebraic

aspects of the Milnor construction.

1.11.3. Sebastiani-Thom Equivalence. Now that some basic features of the

topology and construction of wedge sum of spheres have been established, we

discuss a fundamental equivalence which allows the construction of a product

Milnor fiber from constituent fibers and gives a simple means of identifying the

monodromy, homology and homotopy-type of the resulting object.

Let fα : Uα Ñ C be a complex analytic germ with domain Uα Ă Cnα . Define

the projection πα1 :
ś

α Uα Ñ Uα1 and the Sebastiani-Thom sum
Ð

α fα =
ř

α fα ˝

πα with product domain
ś

α Uα Ă C
ř

α nα such that πα1(
Ð

α fα) = fα1 . The map

f ÞÑ f ‘ g shall hereafter be referred to as an augmentation of f by g.
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Remark 1.11.1. If f = xayb and g = xcyd + xa1yb1 + xc1yd1 , then

f ‘ g = xayb + zcwd + za1wb1 + zc1wd1 (1.26a)

g ‘ f = xcyd + xa1yb1 + xc1yd1 + zawb, (1.26b)

which are equivalent up to an action of S4 on the variables. M

Proposition 1.22 (Sebastiani, Thom [421421]). Let Uα Ď Cnα be a neighborhood

of the origin. Assume that the complex analytic germ fα : (Uα, 0) Ñ (C, 0) has an

isolated critical point at the origin. The monodromy of f =
Ðs

α=1 fα : (
Śs

α=1 Uα, 0)Ñ

(C, 0) factors as the tensor product h˚( f ) =
Âs

α=1 h˚( fα), and the fiber Ff, 0 has the

homotopy-type of the iterated join space Ff1, 0 ‹ ¨ ¨ ¨ ‹ Ffs, 0.

Proof . See [421421] and [356356]. �

1.11.4. Cones and Suspensions. Recall that given any pointed space X =

(X, x0), the free suspension SX := S0 ‹ X – CX \X CX, where CX denotes

the cone (space) of X (Figures 1.121.12 and 1.131.13). Define also the reduced suspension

ΣX, which is SX with the line connecting basepoints of S0 and X contracted to

a point. Indeed, there is a homeomorphism Σ(X ‹Y) – ΣX ‹ ΣY and homotopy

equivalence ΣX » SX.

The following short exact sequence of spaces X ãÑ CX � SX induces a

corresponding long exact sequence in reduced homology,

. . . H̃i(X; Z) H̃i(CX; Z) H̃i(SX; Z) . . .// // // //
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(X, x)

CX

{•}

Figure 1.12. Cone CX of a pointed CW-complex (X, x)

Since CX is contractible, i.e., CX » t‚u, then H̃k(CX; Z) – H̃i(t‚u; Z) – t0u, and

the long exact sequence splits into short exact sequences of the form,

t0u H̃i(SX; Z) H̃i´1(X; Z) t0u// // //

which imply H̃i(SX; Z) – H̃i´1(X; Z) for i ě 1.

S0

SX

(X, x)

Figure 1.13. Free Suspension SX of a Pointed CW-complex (X, x)

To avoid cumbersome notation we shall, for the moment, write F0( f ) in

place of Ff, 0 for the Milnor fiber of f . Consider the Sebastiani-Thom sum

Σ f := f ‘ z2 where f is a non-degenerate complex analytic germ, as above.

By Proposition 1.221.22, F0(Σ f ) » F0( f ) ‹ F0(z2), but F0(z2) is diffeomorphic to
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S0 – tz P C | z2 = 1u = t˘1u. Thus, the fiber of the Sebastiani-Thom sum Σ f

has the homotopy-type of the free suspension of the Milnor fiber of f , that is,

SFf, 0 – S0 ‹ F0( f ) » S(
ŽµSn) »

ŽµSn+1. Correspondingly, one observes in

homology only a shift of indices and an invariance of the topological index. By

considering a corresponding Mayer-Vietoris sequence or simply a slight modifi-

cation of the long exact sequence above, one is led to the commutative diagram

H̃i(Ff, 0; Z) H̃i+1(SFf, 0; Z)

Ff, 0 SFf, 0

f Σ f

//S˚

OO

H̃i(´; Z)

//S

OO

H̃i+1(´; Z)

OO

F̊ , 0

//Σ

OO

F̊ , 0

for all i ě 0. The suspension functor S induces a group isomorphism between

the middle reduced-homology groups, S˚ : H̃n(Ff, 0; Z) Ñ H̃n+1(SFf, 0; Z), and

therefore

µtop(Σ f ) = µtop( f ). (1.27)

The suspension operation, as applied to wedge sum of spheres, can be inferred

and understood by the two key examples, SS1 » S2 and S(S1 _ S1) » S2 _ S2, as

illustrated in Figure 1.141.14.
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S0

S0

S1 _ S1

S1
!

!

S0 ‹ S1

S0 ‹ (S1 _ S1)
S2 _ S2

S2

Figure 1.14. Reduced Suspensions of Wedge Sums of Spheres

1.11.4.1. Suspensions of Cartesian Products. For pointed spaces tX1, . . . , Xnu,

one has the following reduced suspension [131131],

Σ
(
ąn

i=1
Xi

)
»
łn

k=1

ł

1ďi1ă¨¨¨ăikďn
(ΣXi1)^ Xi2 ^ ¨ ¨ ¨ ^ Xik . (1.28)

For CW complexes tX1, . . . , Xnu, the reduced suspension is homotopy equiva-

lent to the unreduced suspension, so

S
(
ąn

i=1
Xi

)
»
łn

k=1

ł

1ďi1ă¨¨¨ăikďn
(SXi1)^ Xi2 ^ ¨ ¨ ¨ ^ Xik . (1.29)

The iterated suspension of a mixed product of spheres is a mixed wedge sum of

spheres, namely, for N ą 0,

SN
(
ąn

i=1
Sni
)
»
łn

k=1

ł

1ďi1ă¨¨¨ăikďn
Sni1

+¨¨¨+nik
+N, (1.30)
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since Sl ^ Sm » Sl+m for l, m ě 0. In particular, if the dimensions of spheres

in the product are the same, as for the case of generalized tori, namely, Tn
m »

ąn
Sm, then one has for N ą 0,

SN(Tn
m) »

łn

k=1

ł

1ďi1ă¨¨¨ăikďn
Skm+N (1.31)

=
łn

k=1

ł(n
k)Skm+N. (1.32)

1.11.5. Joins. With regard to the wedge sum of spheres, we have the follow-

ing homotopy equivalence as a result of two homeomorphisms,

łr

i=1
Sni ‹

łs

j=1
Smj –

łr

i=1
Sni ‹r

łs

j=1
Smj (1.33a)

–
łr

i=1

łs

j=1
Sni ‹r Smj (1.33b)

»
łr

i=1

łs

j=1
Sni+mj+1, (1.33c)

where ‹r denotes reduced join. If ni = n and mj = m, as in the join of two (not

necessarily distinct) Milnor fibers, then

łr
Sn
‹
łs

Sm
»
łrs

Sn+m+1, (1.34)

and the product identity of topological indices follows as a consequence.**

By Proposition 1.221.22, consider the fiber of a Sebastiani-Thom summation

singularity Ff ‘ g,0 » Ff, 0 ‹ Fg,0. As a direct consequence of the Künneth formula

and the fact that H̃˚(Ff, 0; Z) is without torsion, the reduced-homology groups

* Moreover, PŽr
i=1 Sn‹

Žs
j=1 Sm(t) = PŽrs Sn+m+1(t) = rstn+m+1 + 1.
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factor over fiber joins [131131],

H̃k+1(Ff ‘ g, 0; Z) – H̃k+1(Ff, 0 ‹ Fg, 0; Z) k ě 0 (1.35)

–
à

i+j=k
H̃i(Ff, 0; Z)b H̃j(Fg, 0; Z). (1.36)

Since the homology is concentrated in the middle dimensions, n and m, respec-

tively, the only non-trivial group is

H̃n+m+1(Ff ‘ g, 0; Z) – H̃n(Ff, 0; Z)b H̃m(Fg, 0; Z), (1.37)

which is free abelian of rank µtop( f ) µtop(g). Thus, the topological indices sat-

isfy the multiplicative identity,

µtop( f ‘ g) = µtop( f ) µtop(g). (1.38)

1.11.6. Iterated Suspensions and Stabilization. Define the N-stabilization

of f by the recurrence ΣN f = (ΣN´1 f ) ‘ z2, where Σ0 f = f and Σ1 f = f ‘ z2

denoted Σ f . Since the suspension functor S preserves homotopy groups (by

modifying only indices), then the corresponding fibers satisfy FΣN f , 0 » SN Ff, 0

and µtop(ΣN f ) = µtop( f ) by a sequential application of the Freudenthal Sus-

pension and Hurewicz Theorems. This particular invariance of the topological

index under N-stabilization is consistent with equation (1.381.38) (choosing ai = 2

for 1 ď i ď N) and is a special case of the Sebastiani-Thom equivalence.
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1.11.7. Iterated Cone and Suppression. Define the N-suppression of f as the

recurrence CN f = (CN´1 f ) ‘ z, where C0 f = f and C1 f = f ‘ z denoted by

C f . There is a homeomorphism CSn »h Bn+1, which is contractible and, hence,

one has the homotopy equivalence CSn » t‚u. Since the cone factors through

the wedge sum, we have FC f, 0 » CFf, 0 » t‚u, including Fz,0 » t‚u. It follows that

µtop(CN f ) = δN,0 µtop( f ), (1.39)

where the Kronecker delta function δN,0 is 1 if N = 0 and 0 otherwise.

1.11.8. Iterated Cyclic and Free Suspensions. A special case of Proposition

1.221.22 implies the fiber Ff ‘ zk, 0 has the homotopy-type of a wedge sum of k ´ 1

identical copies of the free suspension of the Milnor fiber Ff, 0, that is,
Žk´1 SFf, 0.

We call this operation the k-iterated cyclic suspension or simply k-cyclic suspension

of Ff, 0 (and/or, when the context is clear, of f ). Denote the k-iterated free suspen-

sion of F by SkFf, 0 = Sk´1(SFf, 0) for k ě 0. By considering the corresponding

homology groups directly or using equation (1.381.38), we calculate

µtop(Ff ‘ zk, 0) =
k´1
ÿ

i=1

µtop(SFf, 0) (1.40a)

= (k´ 1)µtop(Ff, 0), (1.40b)

since the suspension functor preserves the topological index,

µtop(SFf, 0) = µtop(Ff, 0). (1.41)
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The case k = 1 is well-defined and consistent with Ff ‘ z, 0 » CFf, 0 » t‚u.

By the Sebastiani-Thom equivalence and an iteration of equation (1.40a1.40a), the

topological index of the Brieskorn-Pham polynomial f =
řn

i=0 zai
i with ai ą 0

is the product
śn

i=0(ai ´ 1), consistent with Pham’s construction. For any f and

g =
řN

i=1 zki
i with ki ą 0, one has Ff ‘ g, 0 »

Žk1´1
¨ ¨ ¨

ŽkN´1SN Ff, 0 and

µtop(Ff ‘ g, 0) =
k1´1
ÿ

i=1

¨ ¨ ¨

kN´1
ÿ

i=1

µtop(SN Ff, 0) (1.42a)

=

(
N
ź

i=1

(ki ´ 1)

)
µtop(Ff, 0), (1.42b)

consistent with the Sebastiani-Thom equivalence and µtop(g) =
śN

i=1(ki ´ 1).

If, however, f = 0 then, SNt‚u » SN, so one concludes that Fg, 0 is homotopy

equivalent to a µ(g) wedge sum of N-spheres, consistent with M22.

1.12. Complex Topological K-Theory of the Milnor Fiber

In this section we compute the Grothendieck groups of the Milnor fiber of

an isolated singularity and discuss its relation to the corresponding homology

introduced earlier in the chapter. In particular, we elucidate the role of Bott

periodicity in certain transformations of the corresponding monodromy.

Based on Grothendieck’s ground-breaking work on studying algebraic vari-

eties from a topological and categorical point-of-view, Hirzebruch and Atiyah
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developed topological K-theory of vector bundles and their (vector bundle) au-

tomorphisms [2727]. Swan’s Theorem, as generalized by Serre, then proves a cat-

egorical equivalence between vector bundles over a topological space X and

the finitely-generated projective modules over the ring C(X) of continuous R-

valued functions on X. Projections in matrix algebras are then related to free

modules through their direct summands, projective modules. These are the pre-

ferred objects of study in algebraic K-theory. The interested reader should con-

sult [2727] and [431431] for complementary classical and modern approaches to the

major results of algebraic K-theory. For the reader particularly interested in the

relationship between K-theory and (Fredholm) index theory, consult [192192].

1.12.1. Higher Homotopy Groups of Spheres. Hitherto we have consid-

ered only πi(Sn), or more precisely, πi(
Žµ Sn) for 0 ď i ď n. What of the case

i ą n? In contrast to the homology groups Hi(Sn; Z) which are trivial for i ‰ n,

the higher homotopy groups πi(Sn), although known to be abelian and finitely-

generated, are not completely understood for i ą n.

Hopf met this challenge with partial success by proving that π2n´1(Sn) is

non-trivial for n ě 1 and constructing the fibration S1 ãÑ S3 � S2 to prove

π3(S2) – π3(S3) ‘ π2(S1) – Z [208208, 209209]. In a landmark work, Serre proved

that the homotopy group πi(Sn) is finite for i ą n save π4k´1(S2k) – Z ‘ G,

where G is a finite group. Consider, for example, the first 12 non-trivial homo-

topy groups of S4; these are π4(S4) – Z, π7(S4) – Z‘Z12, π10(S4) – Z24 ‘Z3,

π11(S4) – Z15, π14(S4) – Z120 ‘ Z12 ‘ Z2 and π15(S4) – Z84 ‘ Z5
2,
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while πi(S4) – Zr
2, where r = 1 for i P t5, 6, 12u, r = 2 for i P t8, 9u

and r = 3 for i = 13. In general, the fibration S3 ãÑ S7 � S4 implies

πi(S4) – πi(S7) ‘ πi´1(S3) for i ą 1. This example illustrates the potentially

complicated nature of higher homotopy groups of spheres. Forming the basis of

an exciting and active research program, computing πi(Sn) for i ą n is difficult.

Aside from a few isolated cases, the relevance of higher homotopy groups of

spheres in physics remains virtually unstudied.

Although one might contend that such abstract constructions are limited

only to pure mathematics, (complex topological) Grothendieck groups of

spheres are indeed relevant to modern theoretical physics—two applications

immediately come to mind. For instance, since K̃0(Sn) – πn´1(U(k)) for n ě 1

and k ą t n+1
2 u, where U(k) denotes the Lie group of k ˆ k unitary (complex)

matrices, then K̃0(S2) – π1(U(k)) – Z, which corresponds to the charge of a

Dirac monopole, and K̃0(S4) – π3(U(k)) – Z, which corresponds to the instanton

number.

1.12.2. K-Theoretic Index. In this section, we discuss the relevance of the

groups K̃p(
Žm

i=1 Sni) and K̃p(SN ˆ
Śm

i=1 Sni) in quantum field theory. In par-

ticular, we calculate the complex topological K-theory** of the Milnor fiber Ff, 0.

Since Ff, 0 has the homotopy of a wedge sum of spheres, it suffices to compute

* We use a superscript rather than a subscript to denote the Grothendieck group Kp since it
is a cohomology group stemming from an exceptional cohomology theory.
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K̃p(
Žµ Sn) for µ, n P Zě0 and p P Z. This construction then allows for the eluci-

dation of how Bott periodicity and suspension/stabilization are related through

the Sebastiani-Thom isomorphism.

Given a complex analytic germ f : (Cn+1, 0) Ñ (C, 0) with isolated criti-

cal point at the origin, the K-theoretic index is the rank of the nth-Grothendieck

group of the corresponding Milnor fiber,

µK( f ) := rank K̃n(Ff, 0). (1.43)

1.12.3. Grothendieck Groups. We follow Sections 2.5–2.6 of [369369] closely

and make the appropriate generalizations necessary for the main result of this

section. Recall the following basic facts.

Definition 1.23. A locally compact Hausdorff space is a Hausdorff (topologi-

cal) space with a compact neighborhood about each point.

Remark 1.12.1. A proper map between locally compact Hausdorff spaces

is continuous at infinity. M

Proposition 1.24 (Park, [369369]). Let p P t´1, 0u. Let Y be a closed subspace of

a locally compact Hausdorff space X. Let ı be the inclusion map Y ãÑ X. Suppose there

is a map π : X Ñ Y, continuous at infinity, such that π ˝ ı|Y acts as the identity on Y.

Then there is a split exact sequence

t0u Kp(XzY) Kp(X) Kp(Y) t0u// // /ı˚ //o
π˚

(1.44)
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and, therefore, an isomorphism Kp(X) – Kp(Y)‘ Kp(XzY).

Proof . See Theorem 2.6.11 in [369369]. �

The following classical Grothendieck groups are indispensable for our calcu-

lation of Kn(Ff, 0),

Kp(Rn) –

$

&

%

Z p + n even

t0u p + n odd
(1.45)

for p P Z and n P N and, in particular,

K0(Sn) –

$

&

%

Z2 n even

Z n odd
and K´1(Sn) –

$

&

%

t0u n even

Z n odd.
(1.46)

More generally, for any locally compact Hausdorff spaces X and Y,

K0(X ˆY) –
(

K0(X)b K0(Y)
)
‘

(
K´1(X)b K´1(Y)

)
(1.47)

K´1(X ˆY) –
(

K0(X)b K´1(Y)
)
‘

(
K0(X)b K´1(Y)

)
(1.48)

K̃0(X ‹Y) –
(

K̃0(X)b K̃´1(Y)
)
‘

(
K̃0(X)b K̃´1(Y)

)
(1.49)

K̃´1(X ‹Y) –
(

K̃0(X)b K̃0(Y)
)
‘

(
K̃´1(X)b K̃´1(Y)

)
. (1.50)

In particular, one has

K0(X ˆ S1) – K0(X)‘ K´1(X) – K´1(X ˆ S1). (1.51)
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By induction on n, it follows that the Grothendieck groups of the n-torus Tn –

Tn´1 ˆ S1 for n P N, where T0 – t‚u, are given by

K0(Tn) –

$

&

%

Z2n´1
n ě 1

Z n = 0
and K´1(Tn) –

$

&

%

Z2n´1
n ě 1

t0u n = 0.
(1.52)

If (X, t‚u) is a pointed space, then define the reduced group K̃p(X) :=

K̃p(X, t‚u) as the kernel of the map K̃p(X) Ñ K̃p(t‚u). It follows that Kp(X) –

K̃p(X)‘ Kp(t‚u). Thus, for instance, the Grothendieck group of a point is com-

putable in terms of that of the 0-sphere S0, Kp(t‚u) – K̃p(S0). In general, one

computes

K̃p(Sn) –

$

&

%

Z p + n even

t0u p + n odd.
(1.53)

In general, for a pair (X, Y) define the relative group Kp(X, Y) = K̃p(X/Y).

To extend the definition beyond p P t´1, 0u, define Kp(X, Y) = K̃0(Σ|p|(X/Y))

for p P N, where ΣrZ = Sr ^ Z denotes the r-iterated reduced suspension of Z

and ^ denotes the smash product. In particular, Kp(X) = K̃0(Σ|p|X).

Proposition 1.25. For pointed, locally compact Hausdorff spaces X and Y,

K̃p(X ˆY) – K̃p(X ^Y)‘ K̃p(X)‘ K̃p(Y) p P Z. (1.54)

To extend the values of p to Z, we invoke Bott periodicity, which is a man-

ifestation of the periodicity of the (stable) homotopy groups of the infinite
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unitary group U = limk U(k) and infinite (complex) general linear group

GL = limk GL(k; C), namely, πn(U) – πn(GL(C)) – Z for odd n and trivial

otherwise. Equivalently, the double loop space Ω2BU of the classifying space

BU is homotopy equivalent to BUˆZ [4545].

Proposition 1.26 (Bott). Let X be a pointed, locally compact Hausdorff space.

The double suspension induces the following 2-periodic isomorphism of Grothendieck

groups,

K̃p+2(X) – K̃p(X). (1.55)

1.12.4. Grothendieck Groups of a Bouquet of Spheres.

Proposition 1.27. The reduced Grothendieck groups of a wedge sum of m n-

spheres are

K̃p
(
łm

Sn
)
–

$

&

%

Zm p + n even

t0u p + n odd.
(1.56)

Proof . Let ım denote the inclusion map
Žm´1 Sn ãÑ

Žm Sn. By identifying

two n-spheres, define the surjection πm :
Žm Sn �

Žm´1 Sn. Note that πm is

proper, so continuous at infinity. The composite map (π ˝ ı)m = πm ˝ ım acts as

the identity when restricted to the compact subspace
Žm´1 Sn.

The complement of
Žm´1 Sn in

Žm Sn is homeomorphic to Rn, so Proposi-

tion 1.241.24 implies the isomorphism Kp(
Žm Sn) – Kp(

Žm´1 Sn) ‘ Kp(Rn) for

p P t´1, 0u and m, n ě 0. By iteration of the above argument for m ě 0, we have
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the isomorphism

Kp
(
łm

Sn
)
– Kp(Sn)‘

m´1
à

i=1
Kp(Rn). (1.57)

Thus, by the isomorphisms of equations (1.451.45) and (1.461.46), we have

K0
(
łm

Sn
)
– K0(Sn)‘

m´1
à

i=1
K0(Rn) (1.58a)

–

$

&

%

Zm+1 n even

Z n odd
(1.58b)

and

K´1
(
łm

Sn
)
– K´1(Sn)‘

m´1
à

i=1
K´1(Rn) (1.59a)

–

$

&

%

t0u n even

Zm n odd.
(1.59b)

To conclude the proof, recall the isomorphism Kp(
Žm Sn) – K̃p(

Žm Sn) ‘

Kp(t‚u) and K̃p+2(
Žm Sn) – K̃p(

Žm Sn) (Bott Periodicity), which allows one to

extend the values of p to Z. �

Remark 1.12.2. In general, for pointed, locally compact Hausdorff spaces

tXiu, one has the reduced Grothendieck group isomorphism

K̃p
(
łm

i=1
Xi

)
–

m
à

i=1
K̃p(Xi) p P Z. (1.60)
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Using this identity, one proves

K̃p
(
łm

i=1
Sni
)
– Zr r = |tp + n1, . . . , p + nmu X 2Z|, (1.61)

so if p is even (resp., odd), then r counts the even (resp., odd) spheres in the

wedge sum. Thus, if n is even (resp., odd), then the rank of K̃0(Ff, 0) (resp.,

K̃´1(Ff, 0)) counts the number of even (resp. odd) spheres, q.v. Corollary 9.219.21. M

By Proposition 1.121.12, the Milnor fiber arising from a complex analytic map

f : (Cn+1, 0)Ñ (C, 0) with isolated critical point at the origin has the homotopy-

type of a wedge of spheres. We have therefore computed the Grothendieck

groups of a Milnor fiber. The next result relates these groups to those of the

corresponding homology.

Proposition 1.28. Let f : (Cn+1, 0)Ñ (C, 0) be a complex analytic germ with

an isolated critical point at the origin and denote by Ff, 0 = φ´1
f (1) the corresponding

Milnor fiber, where φ f =
f
} f } : S2n+1zVf, 0 Ñ S1. There is a group isomorphism

H̃n(Ff, 0; Z) – K̃n(Ff, 0) –

$

&

%

K̃´1(Ff, 0) n odd

K̃0(Ff, 0) n even.
(1.62)

Proof . The fiber Ff, 0 has the homotopy type of a wedge sum of spheres,
Žµ Sn. Thus, K̃n(Ff, 0) is free abelian of rank µ = µtop( f ). �
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Corollary 1.29. Given two complex analytic germs f and g,

K̃0(Ff ‘ g) –
(

K̃0(Ff )b K̃´1(Fg)
)
‘

(
K̃0(Ff )b K̃´1(Fg)

)
(1.63)

K̃´1(Ff ‘ g) –
(

K̃0(Ff )b K̃0(Fg)
)
‘

(
K̃´1(Ff )b K̃´1(Fg)

)
(1.64)

Proof 1 . Combine Proposition 1.281.28 and Bott periodicity with Künneth

formula, H̃n+m+1(Ff ‘ g, 0; Z) – H̃n(Ff, 0; Z)b H̃m(Fg, 0; Z). �

Proof 2 . Combine equations (1.491.49) and (1.501.50) with the Sebastiani-Thom

equivalence Ff ‘ g » Ff ‹ Fg. �

Remark 1.12.3. Given a complex analytic germ f : (Cn+1, 0)Ñ (C, 0) with

n even, the stabilization map f ÞÑ Σ f , Proposition 1.281.28 (as applied only to the

fundamental Grothendieck groups without recourse to the Bott isomorphism),

Freudenthal suspension theorem and the Sebastiani-Thom equivalence imply

the following Bott-like isomorphism, K̃0(FΣ2 f, 0) – K̃0(Ff, 0), since

K̃´1(FΣ f, 0) – K̃´1(SFf, 0) Sebastiani-Thom equivalence

K̃´1(SFf, 0) – H̃n+1(SFf, 0; Z) Proposition 1.281.28

H̃n+1(SFf, 0; Z) – H̃n(Ff, 0; Z) Freudenthal suspension theorem

H̃n(Ff, 0; Z) – K̃0(Ff, 0) Proposition 1.281.28.

(1.65)
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Contradistinctively, Proposition 1.281.28, the Bott isomorphism and the Sebastiani-

Thom equivalence imply the following Freudenthal suspension-like isomor-

phism, H̃n+2(S2Ff, 0; Z) – H̃n(Ff, 0; Z), since

H̃n+2(S2Ff, 0; Z) – K̃n+2(S2Ff, 0) Proposition 1.281.28

K̃n+2(S2Ff, 0) – K̃n+4(Ff, 0) Definition

K̃n+4(Ff, 0) – K̃n(Ff, 0) Bott isomorphism

K̃n(Ff, 0) – H̃n(Ff, 0; Z) Proposition 1.281.28.

(1.66)

Thus, there is a rather direct relationship between Bott periodicity and the

Sebastiani-Thom equivalence. M

Remark 1.12.4. On the level of weighted homogeneous singularities, Bott

periodicity manifests as a 2-periodic map between the characteristic polynomi-

als of Σ2N´1 f and Σ2N f for N ě 1, q.v., Corollary 2.572.57. M

Let X be a (possibly suspended) Milnor fiber. Define the maps S̄˚ : K̃p(X)Ñ

K̃p+1(SX) and ψ : K̃p(X) Ñ K̃p´1(SX). Note that S̄˚ is an induced functor by

the homology functor S˚. Let B denote the Bott bijection B : K̃p(X) Ñ K̃p+2(X).

Since X has the homotopy-type of a wedge sum of spheres, there is an iso-

morphism M˚ from the middle reduced homology group to the correspond-

ing reduced Grothendieck group, namely, M˚ : H̃˚(X; Z) Ñ K̃˚(X). Proposi-

tion 1.271.27 asserts that ψ is an isomorphism, so it follows that S̄˚ = ψ ˝ B and

B´1 ˝ S̄˚ ˝ S̄˚ ˝ B´1 are isomorphisms, too. The previous remarks above can then
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be summarized in the following commutative diagram

K̃n+2(Ff, 0) K̃n(S2Ff, 0)

K̃n(Ff, 0) K̃n+1(SFf, 0) K̃n+2(S2Ff, 0)

H̃n(Ff, 0; Z) H̃n+1(SFf, 0; Z) H̃n+2(S2Ff, 0; Z)

''

ψ

//B´1˝S̄˚˝S̄˚˝B´1

��

B

OO

B

//S̄˚

77
ψ

//S̄˚

OO

M˚

//S˚

OO

M˚

//S˚

OO

M˚

where, in particular, the Freudenthal suspension-like isomorphism holds:

H̃n(Ff, 0; Z) H̃n+1(SFf, 0; Z) H̃n+2(S2Ff, 0; Z)
S˚
//

S˚
//

–

tt

–

33

Remark 1.12.5. Recall the topological index µtop(Ff, 0) = (´1)n χ̃(Ff, 0),

where χ̃(Ff, 0) = χ(Ff, 0) ´ 1. According to Proposition 1.271.27, if n is odd, then

in terms of the (unreduced) Grothendieck groups, rank K0(Ff, 0) = 1 and

rank K´1(Ff, 0) = 1´ χ(Ff, 0) = µtop(Ff, 0). Correspondingly, if n is even, then

rank K´1(Ff, 0) = 0 and rank K0(Ff, 0) = 1+ µtop(Ff, 0) = χ(Ff, 0). These imply the

identity, true for any locally Hausdorff space,

χ̃(Ff, 0) = rank K̃0(Ff, 0)´ rank K̃´1(Ff, 0), (1.67)
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and suggests a generalization of the topological index as the difference of ranks

of Grothendieck groups of the corresponding Milnor fiber. We explore this

point more fully in §9.2.29.2.2. M

This concludes our development of the formal topological aspects of the

Milnor fibration. We now turn our attention to some related algebraic objects,

structures and operations naturally associated with complex analytic singulari-

ties.
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Chapter 2

Algebraic Structure of Isolated Singularities

Two kinds of symbol must surely be distinguished. The algebraic symbol
comes naked into the world of mathematics and is clothed with value by its
masters. A poetic symbol—like the Rose, for Love, in Guillaume de Lorris—
comes trailing clouds of glory from the real world, clouds whose shape and
colour largely determine and explain its poetic use. In an equation, x and y
will do as well as a and b; but the Romance of the Rose could not, without
loss, be re-written as the Romance of the Onion, and if a man did not see
why, we could only send him back to the real world to study roses, onions,
and love, all of them still untouched by poetry, still raw. — C. S. Lewis**
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In this chapter we develop and study the algebraic structure of complex an-

alytic germs with and without isolated critical point at the origin. In particular,

we focus our attention on a class of complex analytic polynomials with explicit

*The Personal Heresy: A Controversy (1936)
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local algebras, Hilbert-Poincaré series, monodromies, corresponding character-

istic polynomials and singularity spectra. We refer the reader to [2626] for basic

definitions and classical results of commutative algebra.

2.1. Local Algebras

Recall the space of germs of analytic functions about the origin O0,n or,

equivalently, the ring of convergent power series Ctz0, . . . , znu, equipped with

the compact-open topology is a unique factorization domain. The ideal m =

mn Ă O0,n of analytic functions which vanish at the origin is maximal in O0,n.

Let f : (Cn+1, 0) Ñ (C, 0) be a complex analytic germ, equivalently, f P m, and

define the Jacobi ideal JB f := xB0 f , . . . , Bn f y Ă O0,n, where Bi f = B f
Bzi

denotes the

ith-directional derivative of f .

Definition 2.1. The local algebra A f of f is the Artinian ring O0,n/JB f .

2.1.1. Algebraic Index. Given a complex analytic germ f : (Cn+1, 0) Ñ

(C, 0) with an isolated critical point at the origin, the algebraic index of f is the

(complex) dimension of the corresponding local algebra,

µalg( f ) := dimC A f = dimC O0,n/JB f . (2.1)

Following Milnor, if f has an isolated critical point at the origin, then A f is fi-

nite dimensional and µalg( f ) is well-defined.
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2.2. µ-Constant Deformation

To facilitate the transition from the topological structure to the algebraic

structure of isolated singularities, we quote the following algebro-topological

result. Lê proves that the algebraic index is a topological invariant with respect

to deformations of the corresponding complex hypersurface [258258].

Proposition 2.2 (Lê, [258258]). If f , g : (Cn+1, 0) Ñ (C, 0) are complex ana-

lytic germs with isolated critical points at the origin and Vf, 0 and Vg, 0 are topologically

equivalent, then µalg( f ) = µalg(g).

A partial converse to Proposition 2.22.2 also holds.

Proposition 2.3 (Lê, Ramanujam, [259259]). Any µ-constant deformation of the

hypersurface Vf, 0 of a complex analytic germ f : (Cn+1, 0) Ñ (C, 0), provided that

n ‰ 2, is topologically constant.

2.2.1. Non-Degeneracy and Łojasiewicz Inequality. By Hilbert’s Nullstel-

lensatz, the local algebra A f is finite dimensional if and only if there exists an

integer k ą 0 such that mk Ď JB f , or equivalently, that m = Rad(JB f ), the radical

of the ideal JB f . It suffices to prove that the origin is an isolated critical point of

f , which is implied by the existence of constants ε, ` ą 0 such that |B f | ě ε|z|` in

an open neighborhood of the origin, where | ¨ | denotes any norm on Cn+1. This

inequality is known in the literature as the (complex) Łojasiewicz inequality, and

`0( f ) = inft`u is the Łojasiewicz exponent of f (at the origin), as introduced by
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Teissier [454454]. In the same article, Teissier conjectures that `0( f ) is a topological

invariant, q.v., §2.7.52.7.5.

Definition 2.4. A complex analytic singularity is non-degenerate if and

only if it satisfies a Łojasiewicz inequality, that is, if and only if it has an isolated

critical point at the origin.

A closely related invariant, also studied by Teissier [454454], is the following.

Definition 2.5. The degree of topological determinacy of a complex analytic

singularity is the integer t`0( f )u + 1.

2.2.2. Biholomorphisms. Given two complex analytic germs f , g P m Ă

O0,n, a local holomorphic change of variables yields the ideal isomorphism

JB f – JBg and algebra isomorphism A f – Ag (where the latter does not imply

the former, but the former implies the latter), including the identity µalg( f ) =

µalg(g).

More generally, suppose that f and g are analytic functions of n + 1 and

m + 1 complex variables, respectively. If there are isomorphisms ψ : JB f Ñ JBg

and ψ1 : A f Ñ Ag, one can consider the following commutative diagram of

exact sequences,

0 JB f O0,n A f 0

0 JBg O0,m Ag 0

� � //

��

ψ

� � //

��

ψ1

// //

��

ψ2

// //

� � // � � // // // // //
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By the Five Lemma, there is an isomorphism ψ1 : O0,n Ñ O0,m, implying n = m.

Such isomorphisms have been classified as biholomorphisms. However, although

rather subtle, it is possible to compare singularities with domains of differing

dimension.

2.2.3. Sebastian-Thom Equivalence. A preliminary algebraic characteriza-

tion of any mathematical structure involves determining its prime or irreducible

components; complex analytic germs are no exception. Let fα : Uα Ñ C be a

complex analytic function with domain Uα Ă Cnα in a neighborhood of the

origin. Define the projection πα1 :
ś

α Uα Ñ Uα1 . Recall the Sebastiani-Thom

summation
Ð

α fα =
ř

α fα ˝ πα with product domain
Ś

α Uα Ă C
ř

α nα such

that πα1(
Ð

α fα) = fα1 . Define the N-stabilization ΣN f = ΣN´1( f ‘ z2), where

Σ f = f ‘ z2. Since Az2 = Ctzu/x2zy – C, it follows that AΣ f – A f and the

identity

µalg(Σ f ) = µalg( f ). (2.2)

Remark 2.2.1. Compare equations (1.271.27) and (2.22.2). M

Proposition 2.6. Let Uα Ď Cnα be a neighborhood of the origin. Assume that

the complex analytic map fα : (Uα, 0) Ñ (C, 0) is non-degenerate. The local algebra

A f of f =
Ð

α fα : (
Ś

α Uα, 0) Ñ (C, 0) factors as a tensor product A f1 b ¨ ¨ ¨ bA fs .
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In particular,

µalg( f ) =
s
ź

α=1

µalg( fα). (2.3)

Proof . It suffices to consider two weighted homogeneous polynomials

f : (Cn+1, 0) Ñ (C, 0) and g : (Cm+1, 0) Ñ (C, 0). The tensor product

factorization of the monodromy over Sebastiani-Thom summations, namely,

h˚( f ‘ g) – h˚( f ) b h˚(g), q.v. Proposition 1.221.22, induces an algebra isomor-

phism A f ‘ g – A f bAg by the following decomposition,

A f ‘ g = O0,(n+1)(m+1)/JB( f ‘ g) (2.4a)

– O0,n/JB f bO0,m/JBg (2.4b)

= A f bAg, (2.4c)

as summarized in the following commutative diagram

f A f

f ‘ g A f ‘ g A f bAg

g Ag

//A˚
o�

��

ı1

OO
OO

π1

��
��

π2

//A˚ //–

OO
OO

π˚1

��
��

π˚2

//A˚
/�

??

ı2
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The projections π˚1 : A f ‘ g Ñ A f and π˚2 : A f ‘ g Ñ Ag are defined through

the projections π1 : A f ‘ Ag Ñ A f and π2 : A f ‘ Ag Ñ Ag, respectively. By

construction, there is an isomorphism A f ‘ g – A f bAg and, therefore,

µalg( f ‘ g) = dimC A f bAg (2.5)

= (dimC A f )(dimC Ag) (2.6)

= µalg( f ) µalg(g). (2.7)

�

Remark 2.2.2. As the Hilbert-Poincaré series factors over tensor products,

PA f ‘ g(t) = PA f bAg(t) (2.8a)

=
ÿ

kě0

dimC(A f bAg)k tk (2.8b)

=
ÿ

kě0

dimC

(
à

k1+k2=k
A f, k1 bAg, k2

)
tk (2.8c)

=
ÿ

k1ě0

ÿ

k2ě0

dimC A f, k1 dimC Ag, k2tk1+k2 (2.8d)

= PA f (t)PAg(t), (2.8e)

which yields a second proof of the identity µalg( f ‘ g) = µalg( f )µalg(g). M
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2.3. Right, Right-Left, Contact and Stable Equivalence

Recall that O0,n – Ctz0, . . . , znu denotes the polynomial ring of convergent

power series about the origin, and Oˆ0,n denote the subset of invertible elements

of O0,n, the group of units.

Definition 2.7. Two complex analytic germs f , g : (Cn+1, 0) Ñ (C, 0) are

said to be right-equivalent, denoted by f „r g, if and only if there is a biholomor-

phism Φ P O0,n Ñ O0,n and f = g ˝Φ.

Definition 2.8. Two complex analytic germs f , g : (Cn+1, 0) Ñ (C, 0) are

said to be right-left-equivalent, denoted by f „r,l g, if and only if there are two

biholomorphisms Φ : O0,n Ñ O0,n and Ψ : O0,0 Ñ O0,0 and f = Ψ ˝ g ˝Φ.

Definition 2.9. Two complex analytic germs f , g, as above, are said to be

contact-equivalent if and only if there is an automorphism ϕ P Aut(O0,n) and unit

u P Oˆ0,n such that f = u ¨ ϕ(g). In this case, we write f „c g.

Proposition 2.10. Let f , g P O0,n. The following statements are true:

1. There is an automorphism ψ P Aut(O0,n) such that ψ( f ) = g if and only if

f „r g;

2. There is an algebra isomorphism O0,n/x f y – O0,n/xgy if and only if f „c g;

3. There is a space isomorphism (Vf, 0, 0) – (Vg, 0, 0) if and only if f „c g; and,

4. Right equivalence implies right-left equivalence.

5. Right equivalence implies contact equivalence.
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Proof . See Definition 2.9, Remark 2.9.1 and Exercise 2.1.3 in [168168]. �

Therefore, a right equivalence class corresponds to an equivalence class of

corresponding complex analytic germs up to a change of variables. Similarly, a

contact equivalence class corresponds to an isomorphism class of Milnor fibers

up to a change of variables.

Remark 2.3.1. The coefficients of polynomial singularities may be ignored

effectively in many instances, but not all. Consider two related complex analytic

germs, f and f̃ , where the latter is the former with all coefficients replaced by

1. By a rescaling of the coordinates, if there is a coordinate diffeomorphism Φ

such that f̃ = f ˝Φ, then f „r f̃ . M

Remark 2.3.2. The polynomials f = xn + y2 ´ z2 and g = xn + yz over C3

are right-equivalent for n ą 1. Consider the automorphism ψ of O0,2 given by

ψ : (x, y, z) ÞÑ (x, y´ z, y + z), which yields ψ(g) = xn + y2 ´ z2 = f . M

Contact equivalence does not imply right equivalence.

Remark 2.3.3. Consider fλ = xa + yb + zc + λxyz with 1
a +

1
b +

1
c ă 1. For

λ, λ1 ą 0, fλ „c fλ1 , but fλ „r fλ1 if and only if λ = λ1. M

We refer the reader to Appendix BB for tables of weighted homogeneous sin-

gularities with inner modality less than or equal to six (up to right and stable

equivalence). Consult [1919], [2020] for various lists of families of singularities by

type.
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Remark 2.3.4. Consider fr,s = xr + xys over C2, where r, s P N, with

weights t1
r , r´1

rs u. The following statements are true:

1. For s P N, f1,s „r x + y2 (A0-singularity);

2. For r P Ną1, fr,1 „r x2 + y2 (A1-singularity);

3. For s P N, f2,s „r x2 + y2s (A2s´1-singularity);

4. For r P Ną2, fr,2 „r x2y + yr (Dr+1-singularity);

5. f3,3 „r x3 + xy3 + y5 (E7-singularity);

6. f3,4 „r x3 + x2y2 + xy5 + y6 (J2,0-singularity);

6. f4,3 „r x4 + y4 + ax2y2, where a2 ´ 4 ‰ 0 (X9-singularity); and,

7. f4,4 „r x4 + x2y3 + xy4 + y6 (W13-singularity).

M

The local algebra A f carries a Cttu-algebra structure with pointwise multi-

plication (¨) defined by t ¨ h = f h for all h P A f [293293]. The next two important

results characterize analytic germs by their local algebras up to isomorphism.

Proposition 2.11 (Mather-Yau, [293293, 294294]). Non-degenerate, complex ana-

lytic germs f , g : (Cn+1, 0) Ñ (C, 0) are right-equivalent if and only if their corre-

sponding local algebras, A f and Ag, respectively, are isomorphic as Cttu-algebras.

Recall that we have defined a N-stabilization of a singularity by N iterations

of a Sebastiani-Thom summation with a square, viz., ΣNg = ΣN´1(g ‘ z2).
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Definition 2.12. Two non-degenerate, complex analytic germs f , g, as

above, are said to be stably-equivalent if and only if there is a non-negative inte-

ger N such that f „r ΣNg.

Right equivalence implies stable equivalence, but the converse is not true.

Proposition 2.13 (Mather). Two non-degenerate, complex analytic germs

f , g : (Cn+1, 0) Ñ (C, 0) are stably-equivalent if and only if their corresponding

local algebras are isomorphic as C-algebras.

Let » denote an isomorphism between Cttu-algebras. We illustrate the

above with the following commutative diagram,

Ah Ag

A f AΣN g

h f ΣNg

��

»

��

–

OO

–

OO

A˚

oo „r

OO

A˚

//„r

OO

A˚

Remark 2.3.5. The polynomials f = xn and g = xn + yz over C and

C3, respectively, are stably-equivalent for n ą 1, as their corresponding local

algebras are isomorphic, viz.,

Ag = Ctx, y, zu/xxn´1, y, zy – Ctxu/xxn´1
y = A f . (2.9)

M
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Remark 2.3.6. If f =
řn

i=0 za
i and g =

řm
i=0 zb

i and f „r g, then a = b = 2

or a = b and n = m. M

Remark 2.3.7. If f „r ΣNg for some N ą 0, then µalg( f ) = µalg(g), but

the converse is not true. Let n( f ) denote the dimension of the domain of f .

Varchenko proves that stable equivalence implies right equivalence in the sense

that if ΣN f „r ΣNg and n( f ) = n(g), then f „r g. M

2.3.1. Mather-Yau Algebra and Tjurina Number. Define the Tjurina ideal

Tf := x f y + JB f = x f , B0 f , . . . , Bn f y. The moduli algebra, Tjurina algebra or

Mather-Yau algebra M f of f is the quotient ring O0,n/Tf . The complex dimen-

sion τ( f ) = dimC M f is the Tjurina number of f . By the Nullstellensatz, M f is

finite dimensional if and only if there exists an integer k ą 0 such that mk Ď Tf ,

or equivalently, m = Rad(Tf ). In general, if f is non-degenerate [276276], then

τ( f ) ď µalg( f ). (2.10)

Proposition 2.14. Let f , g P O0,n. The following statements are true:

1. If f „r g, then there is an algebra isomorphism A f – Ag;

2. If f „r g or f „c g, then there is an algebra isomorphism M f –Mg; and,

3. If f „c g, then µalg( f ) = µalg(g).

Proof . See Lemma 2.10 in [168168]. �
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Thus, if f „r g, then µalg( f ) = µalg(g), but the converse is not true. Moreover,

if f „c g, then τ( f ) = τ(g), but the converse is not true. Mather and Yau prove

the following partial converse.

Proposition 2.15 (Mather, Yau). Let f , g P O0,n. Then f „c g if and only if

there is an algebra isomorphism M f –Mg.

Proof . See Theorem 2.26 in [168168]. �

Remark 2.3.8. The polynomials f = xn + y2 + z2 and g = xn + yz over C3

are contact-equivalent for n ě 2, as their corresponding Mather-Yau algebras

are isomorphic, viz.,

Mg = Ctx, y, zu/xxn + yz, xn´1, y, zy (2.11)

= Ctx, y, zu/xxn´1, y, zy (2.12)

– Ctx, y, zu/xxn + y2 + z2, xn´1, y, zy (2.13)

= M f . (2.14)

M

2.3.2. Relationships among Singularity Equivalences. Given a complex

analytic germ f : (Cn+1, 0) Ñ (C, 0), define the Yau algebras Y f = O0,n/(x f y+

mJB f ) and U f = O0,n/mJB f . Define the following sets:
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Q( f ) = tg P m |Ag – A f u (2.15)

R( f ) = tg P m | g „r f u (2.16)

RL ( f ) = tg P m | g „r,l f u (2.17)

K ( f ) = tg P m | g „c f u (2.18)

A ( f ) = tg P m |Mg –M f u (2.19)

B( f ) = tg P m |Yg – Y f u (2.20)

Yau [485485] and Benson and Yau [4949] studied various relationships among the

sets above, namely, Q-equivalence (isomorphic Milnor algebras), R-equivalence

(right equivalence) RL -equivalence (right-left equivalence), K -equivalence

(contact equivalence), A -equivalence (isomorphic Mather-Yau algebras) and

B-equivalence (isomorphic Yau algebras) as specified by the following diagram:

R( f ) RL ( f ) K ( f ) A ( f )

Q( f ) B( f )

//Ĺ //Ĺ

��

Ĺ

��

Ć

//Ĺ

��

Ă

??

Ć

Additionally, let a( f ) = tg P m | JBg Ď JB f u and

f´1m1 = tF P C[ f ] | F P Ct f u, f (0) = 0u, (2.21)
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that is, the module of convergent power series of the form
ř

kě1 ck f k which van-

ish at the origin. Define a third Yau algebra, Z f = O0,n/ f´1m1 +mJB f .

Proposition 2.16 (Mather [292292]; Benson, Yau [4949]). Given f P O0,n, let

Vf, 0 = f´1(0). The following statements are equivalent:

1. The complex algebraic variety Vf, 0 is singular only at the origin;

2. The Milnor algebra A f is finite-dimensional;

3. The Mather-Yau algebra M f is finite-dimensional;

4. The Yau algebra U f is finite dimensional;

5. The Yau algebra Y f is finite-dimensional; and,

6. The Yau algebra Z f is finite-dimensional.

Proof . See Theorem 3.2 in [4949]. �

Proposition 2.17 (Shoshitaishvili [425425]; Benson, Yau [4949]). If a complex

analytic germ f : (Cn+1, 0) Ñ (C, 0) is non-degenerate, then Q( f ) – RL ( f ) if and

only if f´1m1 +mJB f = a( f ) +mJB f .

Proof . See Theorem 3 in [485485] and Theorem 5.7 in [4949]. �

Proposition 2.18 (Mather, Yau [293293], [294294]; Yau [485485]). If a complex analytic

germ f : (Cn+1, 0)Ñ (C, 0) is non-degenerate, then K ( f ) – A ( f ) – B( f ), and the

following statements are equivalent:

1. m( f ) Ď mJB f ;

2. K ( f ) – RL ( f );
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3. f´1m1 +mJB f = x f y+mJB f .

Proof . See Theorems 2 and 7 in [485485]. �

2.4. Weighted Homogeneous Polynomials

Originally studied by Milnor and Orlik, we now consider a noteworthy class

of complex analytic polynomials that allow for the explicit evaluation of their

local algebras, corresponding Hilbert-Poincaré series and characteristic polyno-

mials of their monodromy.

Definition 2.19. A complex analytic polynomial f : Cn+1 Ñ C is weighted

homogeneous if and only if there is set tω0, . . . , ωnu Ă R such that

λ f = f (λω0z0, . . . , λωn zn) λ P Cˆ, (2.22)

where tω0, . . . , ωnu are (reduced) weights.

Remark 2.4.1. If a polynomial is weighted homogeneous, then it necessar-

ily vanishes at the origin. M

Remark 2.4.2. Consider f = xa + xyb over C, where a, b P N. Then f is

a weighted homogeneous polynomial as it satisfies λab f = f (λbx, λa´1y) for

λ P Cˆ. The weights tω1, ω2u are solutions of the following system of linear

equations, aω1 = 1 and ω1 + bω2 = 1. Indeed, this system can be solved by

simple substitution, and we find ω1 = 1
a P Q and ω2 = 1´ω1

b = a´1
ab P Q. M
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Proposition 2.20. A complex analytic, weighted homogeneous polynomial

f : (Cn+1, 0) Ñ (C, 0) with weights tω0, . . . , ωnu Ă R satisfies the weighted Euler

equation

f =
n
ÿ

i=0

ωizi Bi f . (2.23)

Proof . We defer the proof for the general case in Proposition 3.23.2. �

Remark 2.4.3. The converse of Proposition 2.202.20 is true for weighted ho-

mogeneous polynomials (Theorem 3, §4.4, [6565]). However, with a more general

notion of weighted homogeneity, converse of Proposition 2.202.20, or more gener-

ally Proposition 3.23.2, is false, q.v., §3.13.1. M

Proposition 2.21. If the weights of a weighted homogeneous polynomial are

unique, then they are rational.

Proof . Suppose f is a weighted homogeneous polynomial with unique

weights tω0, . . . , ωnu. The exponent vector, say (a0, . . . , an), of a monomial of f

provides the coefficients of a linear Diophantine equation, namely,
řn

i=0 aixi = 1,

of which the weights are a unique solution. Since the exponent vectors are inte-

gral and all monomials satisfy a similar requirement, it follows that the weights

are rationals. �

Definition 2.22. Given rational weights tω0, . . . , ωnu, let d be the smallest

positive integer such that dωi = qi P Z for 0 ď i ď n. The integers tq0, . . . , qnu

and d are the integral weights and weighted degree, respectively.
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Remark 2.4.4. While it is false that every polynomial is weighted homo-

geneous, it is true that every polynomial is a linear combination of weighted ho-

mogeneous polynomials (of possibly different weighted degrees). If, however,

the monomials of a polynomial have the same integral weights and weighted

degree, then said polynomial is weighted homogeneous with those integral

weights and weighted degree. M

Remark 2.4.5. Equivalently, a complex analytic polynomial f : (Cn+1, 0)Ñ

(C, 0) is weighted homogeneous if and only if there is a set of integers

tq0, . . . , qn, du such that f̃ = f (zq0 , . . . , zqn) is a homogeneous polynomial of

degree d. In this case, f̃ satisfies the Euler equation d f̃ =
řn

i=0 ziBi f̃ . M

Remark 2.4.6. A majority of authors in the physics community prefer the

term quasi-homogeneous (polynomial) to weighted homogeneous (polynomial). In

this work, we differentiate these terms for consistency with the mathematics

literature. The adjective quasi-homogeneous shall be reserved either for polynomi-

als that are right equivalent to weighted homogeneous polynomials (Definition

2.322.32) or for complex analytic varieties with isolated singularity at the origin and

with a Cˆ-action containing the origin in the closure of each orbit (Definition

1.1, §III.1, [420420]). M

Proposition 2.23. If f : (Cn+1, 0) Ñ (C, 0) is a weighted homogeneous

polynomial with weights tq0, . . . , qnu and weighted degree d, then any derivative of f
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satisfies a weighted Euler equation, namely, for k ě 0,

Bi1,...,ik f =

(
d´

k
ÿ

l=1

qil

)´1 n
ÿ

i=0

qiziBi,i1,...,ik f 0 ď i1, . . . , ik ď n (2.24)

=

(
1´

k
ÿ

l=1

ωil

)´1 n
ÿ

i=0

ωiziBi,i1,...,ik f , (2.25)

provided that d´
řk

l=1 qil is not zero.

Remark 2.4.7. Therefore, by the converse of Proposition 3.23.2, fi1,...,ik =

Bi1,...,ik f is weighted homogeneous and satisfies

fi1,...,ik = λ´1 fi1,...,ik(λ
ν0z0, . . . , λνn zn) λ P Cˆ, (2.26)

where νi =
ωi

1´
řk

l=1 ωil

for 0 ď i ď n. M

Corollary 2.24. If a weighted homogeneous polynomial has a non-unique or

zero weight, then it is degenerate, i.e., the origin is not an isolated critical point of said

polynomial.

Proposition 2.25 (Saito, [409409]). A complex analytic germ f defines a non-

degenerate, weighted homogeneous polynomial (hypersurface) singularity up to a

change of variables if and only if f defines a non-degenerate (hypersurface) singular-

ity and f P JB f .

Proof . See §1.4 in [276276]. �
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Proposition 2.26 (Shoshitaishvili [425425]; Mather, Yau [293293], [294294], [485485]).

If a complex analytic germ f : (Cn+1, 0) Ñ (C, 0) is non-degenerate, i.e., f has an

isolated critical point at the origin, then the following statements are equivalent:

1. f is right-equivalent to a weighted homogeneous polynomial;

2. f P mJB f ;

3. a( f ) Ď mJB f ;

4a. f´1m1 Ď mJB f ;

4b. f´1m1 – mJB f ;

5. Q( f ) – R( f );

6. mJB f – a( f ) +mJB f ;

7. mJB f – x f y+mJB f

8. K ( f ) – R( f ); and,

9. R( f ) – RL ( f ).

Proof . See Theorems 1, 3 and 6 and Propositions 4 and 5 in [485485] and The-

orems 4.2, 4.14 and 4.15 in [4949]. �

Remark 2.4.8. Yau claims that 1. ùñ 5. ùñ 3. for degenerate singulari-

ties (Theorem 6, op cit.), so the fact that JBg – JB f implies g P mJBg, where f is

weighted homogeneous (Lemma, op cit.), implies the equivalence 1. ðñ 4. ðñ

5. ðñ 9. for degenerate singularities. M

The following result is a partial converse of Proposition 2.142.14.
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Corollary 2.27 (Shoshitaishvili, [425425]). Let f and g be a non-degenerate,

weighted homogeneous polynomials with the same number of variables. Then f „r g if

and only if there is an algebra isomorphism A f – Ag.

2.4.1. Quasi-Brieskorn Pham Singularities.

Definition 2.28. A weighted homogeneous polynomial is Brieskorn-Pham

if and only if it is a summation of powers of disjoint variables, e.g., f =
řn

i=0 zai
i ,

where a0, . . . , an P N.

Remark 2.4.9. A weighted homogeneous function f of a single complex

variable satisfies the first-order ordinary differential equation f = ωz f 1, and is,

therefore, of the form f = c z1/ω with c P Cˆ. If f is a polynomial, it follows

that ω is an inverse integer, and f is necessarily Brieskorn-Pham. In general,

however, the class of Brieskorn-Pham singularities is meager in the space of

non-degenerate, weighted homogeneous singularities, which is itself meager in

the space of complex analytic singularities. M

Definition 2.29. A weighted homogeneous polynomial is quasi-Brieskorn-

Pham if and only if its reduced weights are inverse positive integers.

It is clear that every Brieskorn-Pham polynomial is quasi-Brieskorn-Pham,

but the converse is not true.

Remark 2.4.10. Consider f = xa + xyd + zc over C3 with a, c, d P N. Then f

has weights t1
a , a´1

ad , 1
c u. If there is an integer b such that 1

b +
1
ad = 1

d , that is, b =
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d + b
a , so a necessarily divides b, then f is quasi-Brieskorn-Pham with weights

t1
a , 1

b , 1
c u. Determining whether this family of singularities is quasi-Brieskorn-

Pham is therefore equivalent to computing Egyptian fractions. Additionally, if

minta, ad
a´1 , cu P N, then f is weakly quasi-Brieskorn-Pham. M

Definition 2.30. A weighted homogeneous polynomial is weakly quasi-

Brieskorn-Pham if and only if the maximum of its reduced weights is an inverse

positive integer.

2.4.2. Semi-weighted Homogeneity. Let f0, g : (Cn+1, 0) Ñ (C, 0) be

weighted homogeneous polynomials, where f0 has weights tωiu and g has

weighted degree strictly greater than that of f0. The complex analytic map

f = f0 + λg, where λ P Cˆ, is called semi-weighted homogeneous with weighted

homogeneous principal part f0. In [461461], Varchenko proved the invariance

µalg( f ) = µalg( f0). (2.27)

See Definition 2.17 and Corollary 2.18 in [168168]. Equation 2.272.27 is a special case

of the following result.

Proposition 2.31 (Varchenko, [461461]). Let ft(z) = f0(z) +
ř

α δα(t)gα(z) be

a deformation of a non-degenerate, weighted homogeneous polynomial f : (Cn+1, 0)Ñ

(C, 0), where the functions δα : (C, 0) Ñ (C, 0) are non-zero and gα : (Cn+1, 0) Ñ

(C, 0) are holomorphic. For sufficiently small values of t, the family t ftu has constant
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algebraic index µalg( ft) = µalg( f0) if and only if each monomial of gα has weighted

degree higher than or equal to that of the principal part f0.

2.4.3. Quasi-homogeneity and Almost Quasi-homogeneity. In [485485], Yau

proves a simple necessary and sufficient condition to ensure that a complex

analytic germ is right equivalent to a weighted homogeneous polynomial.

Definition 2.32. A complex analytic germ f P O0,n is quasi-homogeneous if

and only if f P mJB f and almost quasi-homogeneous if and only if m( f ) Ď mJB f .

Proposition 2.33 (Yau,[485485]). A complex analytic germ f is quasi-

homogeneous if and only if it is right-equivalent to a weighted homogeneous polyno-

mial.

Remark 2.4.11. While the quasi-Brieskorn-Pham polynomial f = x5 + y5 +

x3y2 over C2 with weights t1
5 , 1

5u is non-degenerate, the polynomial f = x5 +

y5 + x3y3 over C2 is non-degenerate and almost quasi-homogeneous, but not

quasi-homogeneous (Example 5.13, [4949]). Moreover, both f ‘ f over C4 over C2

is non-degenerate and not almost quasi-homogeneous (Examples 6.17, op. cit.).

The polynomial g = (x4 + y)(x9 + y2) over C2 is non-degenerate and not almost

quasi-homogeneous (Example 5.15, op. cit.). Moreover, g „r x3 + x2y4 + y13

(J4,1-singularity) and µalg(g) = 23. M
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2.5. Hilbert-Poincaré Series of the Local Algebra

Computing the invariants of the local algebra of weighted homogeneous

polynomials is especially straight-forward and has led to a plethora of classifica-

tion schemes [2121], [2323], [494494], [493493], [415415] and [449449]. The algebraic index µalg( f )

can be calculated explicitly in terms of the reduced weights ω = tω0, . . . , ωnu

of f . Equip the local algebra A f with the follow positive grading of the indeter-

minates, degw zi = qi for 0 ď i ď n. Define the weighted degree of a monomial

zai0
0 ¨ ¨ ¨ zain

n with said gradation to be the integer
řn

l=0 ailql. If f is weighted ho-

mogeneous with integral weights** tq0, . . . , qnu, then each monomial of f has

equal weighted degree d =
řn

l=0 ailql equal to the weighted degree of f . It fol-

lows that f = d´1 ř
i qizi Bi f and Bl f = (d´ ql)

´1 ř
i qizi Bil f for 0 ď l ď n. We

write degw f = d and degw Bi f = d´ qi for 0 ď i ď n.

2.5.1. Hilbert-Poincaré Series. We refer the reader to Chapter 4, 6 and 10 in

[8787] for basic background material in rings and modules.

Let R denote a Noetherian local ring with a maximal ideal m. Consider a

finitely-generated R-module MR with Krull dimension r. The Hilbert-Poincaré

series of MR is the generating function [7171],

PMR(t) =
ÿ

kě0

(dimR/mmk MR/mk+1MR) tk. (2.28)

*Hereafter, weights shall refer to either integral weights and weighted degree or reduced
weights depending on context or unless otherwise specified.
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Proposition 2.34 (Hilbert). Let R denote a Noetherian local ring. The Hilbert-

Poincaré series PMR(t) of a finitely-generated R-module MR with Krull dimension r is

a rational function of the form (1´ t)´rHMR(t), where HMR is a Z-polynomial.

Proposition 2.35. Let R denote a Noetherian local ring. Suppose MR is a

finitely-generated R-module. If MR is Cohen-Macaulay, then the numerator of the

Hilbert-Poincaré series, namely, HMR(t), has non-negative integral coefficients.

Proof . See Chapter 4 in [7171]. �

Remark 2.5.1. For a field F, the polynomial ring MR = F[x1, . . . , xn], where

xi is an indeterminant of degree 1, has Krull dimension n. The corresponding

Hilbert-Poincaré series is PMR(t) = (1´ t)´n. M

The following generalization holds.

Proposition 2.36 (Hilbert, Serre). Let R˚ =
À

dě0 Rd be a positively-graded,

commutative Noetherian ring, (finitely) generated as a R0-algebra by homogeneous

indeterminates of positive degrees r1, . . . , rn, respectively. If M˚ =
À

dě0 Md is a

positively graded, finitely generated R˚-module, then each homogeneous component

Md is a finitely generated R0-module. Moreover, the Hilbert-Poincaré series PM˚
is a

rational function,

PM˚
(t) =

HM˚
(t)

śn
j=1(1´ trj)

HM˚
P Z[t]. (2.29)

Proof . See Theorem 6.3.2 in [8787]. �
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2.5.2. Hilbert-Poincaré Series of Weighted Homogeneous Singularities.

Suppose f : (Cn+1, 0) Ñ (C, 0) is a weighted homogeneous polynomial. As a

consequence of the filtration A f =
À

kě0 A f, k, where A f, k is the component

generated by weighted degree k basis monomials, one can compute the Hilbert-

Poincaré series of the local algebra A f with relative ease [2323]. By the additivity

of the Hilbert-Poincaré series over direct summations, one has

PA f (t) =
ÿ

kě0

dimC A f, k tk. (2.30)

However, by eliminating those polynomials generated by the ideal JB f and

by the multiplicativity of the series over tensor products, one has

PA f (t) = (1´ tdegw Bn f ) ¨ ¨ ¨ (1´ tdegw B0 f )POn, 0(t) (2.31a)

=
n
ź

i=0

1´ td´qi

1´ tqi
. (2.31b)

Under certain conditions, including when f is non-degenerate (q.v., §2.5.32.5.3

and Remark 2.5.72.5.7), the Hilbert-Poincaré series PA f (t) is, in fact, a reflexive poly-

nomial of non-negative degree D =
řn

i=0 d ´ 2qi and satisfies the functional

identity, PA f (t) = tD PA f (
1
t ). The Arnol’d-Saito singularity index is the ratio-

nal β( f ) =
řn

i=0(
1
2 ´ ωi) = D

2d . It is clear that if f is a non-degenerate, then

0 ď 2β( f ) ă n + 1 [409409].
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Writing PA f (t) =
ř

lě0 µltl, where µl = dimC A f, l is the number of basis

monomials with weighted degree equal to l, one infers the coefficient identity

µl = µD´l for 0 ď l ď D. Therefore, since µ0 = 1, there is a unique highest

degree D basis monomial. By symmetry, the middle coefficient(s) occurs when

l = t D
2 u (and l = r D

2 s). In such case, the dimension of corresponding local al-

gebra A f admits an exceedingly simple representation in terms of the reduced

weights,

µalg( f ) =
ÿ

lě0

µl (2.32a)

= lim
tÑ1

PA f (t) (2.32b)

=
n
ź

i=0

(
1

ωi
´ 1
)

. (2.32c)

Assuming that f is non-degenerate, then µalg( f ) is a positive integer, which is

equivalent to the radical ideal condition m = Rad(JB f ). It is important to note

that although the reduced weights are rational numbers, the product above is

not a priori a non-negative integer. The fact that µalg( f ) is the (complex) dimen-

sion of a C-algebra implies both its non-negativity and integrality. We shall re-

turn to similar structure-preserving dualities in the context of the combinatorics

of polytopes in Volume 2.
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2.5.3. Non-Degeneracy, Revisited. The algebraic index does not determine

the weights, the dimension of the corresponding critical points in a neighbor-

hood of the origin, the structure of the local algebra or the form of the Hilbert-

Poincaré series. The following five examples illustrate the special character of

the weights of non-degenerate weighted homogeneous polynomials.

Remark 2.5.2. Consider f = xa + xyb + z2
2 + ¨ ¨ ¨ + z2

n over Cn+1 with

a, b P N. For a ą 1 and b ě 1, f is a non-degenerate, weighted homogeneous

with weights t1
a , a´1

ab , 1
2 , . . . , 1

2u and local algebra

A f – Ctx, yu/xaxa´1 + yb, bxyb´1
y (2.33)

with algebraic index µalg( f ) = (a´ 1)
(

ab
a´1 ´ 1

)
= ab´ a + 1. M

Remark 2.5.3. Consider f = xy + yk + z2
2 + ¨ ¨ ¨+ z2

n over Cn+1 for k ą 1

with weights t k´1
k , 1

k , 1
2 , . . . , 1

2u. Moreover, B f = (y, x + kyk´1, z2, . . . , zn), so f has

an isolated critical point at the origin for k ą 1 and n ě 1. Furthermore,

A f – Ctx, y, z1, . . . , znu/xx, y, z1, . . . , zny – C, (2.34)

so µalg( f ) = 1 for k ą 1 and n ě 1. M

Remark 2.5.4. Consider f = x5y6 + x4y9, g = x7y3 + x6y5 and h = x7 + y21

over C2. Although h is non-degenerate, f and g are degenerate, as

B f = (5x4y6 + 4x3y9, 6x5y5 + 9x4y8) (2.35)
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and

Bg = (7x6y3 + 6(xy)5, 3x7y2 + 5x6y4), (2.36)

which have continua of critical points on

t(x, 0) P C2
| x P Cu Y t(0, y) P C2

| y P Cu. (2.37)

The weights of f and h are t1
7 , 1

21u, while those of g are t 2
17 , 1

17u. By equation

(2.32c2.32c), the algebraic indices of f , g and h are identical and equal to 120. Al-

though PA f (t) = PAh(t), the corresponding Hilbert-Poincaré series of f and

g differ as deg PA f (t) = 34 and deg PAg(t) = 28. M

Remark 2.5.5. Consider f = x2y6 + x5y over C2 and h = f ‘ z4 over C3.

Here, the weights of f are t 5
28 , 3

28u, so µalg( f ) = 115
3 R N, which clearly cannot

coincide with the dimension of A f (infinite dimensional, in this case). As

B f = (xy(2y5 + 5x3), x2(6y5 + x3)), (2.38)

there is a continuum of critical points on t(0, y) P C2 | y P Cu, so f is degenerate.

Similarly,

Bh = (5x4y + 2xy6, x5 + 6x2y5, 4z3), (2.39)

then h has a continuum of critical points on t(0, y, 0) P C3 | y P Cu, so h is

also degenerate. However, the Hilbert-Poincaré series PA f (t) is not a reflexive

Zě0-polynomial (or even a polynomial at all), while that of Ah is a reflexive
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Zě0-polynomial of degree 54. By the multiplicativity of the algebraic index over

Sebastiani-Thom summation, µalg( f ‘ z4) = (115
3 )(3) = 115, which coincides

with the limit limtÑ1 PAh(t). M

Remark 2.5.6. Consider a putative weighted homogeneous polynomial

f : (C3, 0) Ñ (C, 0) with integral weights q0 = 2, q1 = 3 and q2 = 4 and

weighted degree d = 11. The corresponding Hilbert-Poincaré series is

PA f (t) =
(1´ t7)(1´ t8)(1´ t9)

(1´ t2)(1´ t3)(1´ t4)
(2.40a)

= 1 + t2 + t3 + 2t4 + t5 + 3t6 + t7 + 3t8 + t9

+ 3t10 + 3t12
´ t13 + 2t14

´ t15 . . . , (2.40b)

where µalg( f ) = limtÑ1 PA f (t) = 21. However, as µ13 = µ15 = ´1, no such

weighted homogeneous polynomial f can exist with these weights, otherwise

A f, 13 and A f, 15 would be ill-defined. M

Proposition 2.37. The following statements are true:

1. For each n ě 1, there is a non-degenerate, non-Brieskorn-Pham, quasi-

Brieskorn-Pham singularities over Cn+1;

2. For each n ě 1, there is a non-degenerate, weighted homogeneous polynomial

over Cn+1 with weights arbitrarily close to both 0 and 1;

3. Neither the algebraic index nor the dimension of the corresponding critical

locus uniquely specifies the corresponding Hilbert-Poincaré series;
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4. Given a weighted homogeneous polynomial f , if a weight ωi is identically zero,

then f has a non-compact continuum of zeros in the direction of zi through

the origin and, therefore, the local algebra A f is infinite-dimensional. However,

the converse is not true. That is, a weighted homogeneous polynomial with

positive weights less than 1
2 and a Hilbert-Poincaré series that is a reflexive

Zě0-polynomial may possess a non-compact continuum of critical points and

an infinite-dimensional local algebra; and,

5. A list of positive integers tq0, . . . , qn, du does not a priori correspond to the

integral weights and weighted degree of a non-degenerate, weighted homo-

geneous polynomial, even in the case that the corresponding reduced weights

tω0, . . . , ωnu Ă QX (0, 1
2) and the product

śn
i=0(

1
ωi
´ 1) is a positive integer.

Proof . See Remarks 2.5.22.5.2, 2.5.32.5.3, 2.5.42.5.4, 2.5.52.5.5 and 2.5.62.5.6. �

Remark 2.5.7. The aforementioned remarks serve to illustrate the unique

role a non-degenerate, weighted homogeneous singularity takes among the

space of all weighted homogeneous polynomials. To recapitulate, a weighted

homogeneous polynomial f : (Cn+1, 0)Ñ (C, 0) is non-degenerate if and only if

the following data is true:

1. The origin is an isolated critical point of f ;

2. The polynomial f satisfies the Łojasiewicz inequality;

3. The radical of the Jacobi ideal Rad(JB f ) is the maximal ideal m;

4. The local algebra A f = O0,n/JB f is finite and positive-dimensional;

5. The Hilbert-Poincaré series PA f is a monic, reflexive Zě0-polynomial;
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6. The limit limtÑ1 PA f (t) exists and is a positive integer;

7. The product
śn

i=0(
1

ωi
´ 1) is a positive integer;

8. There is a set tω0, . . . , ωnu Ă QX (0, 1) such that

f = λ´1 f (λω0z0, . . . , λωn zn) λ P Cˆ; (2.41)

and,

9. There is a set tq0, . . . , qn, du Ă N such that

d f =
n
ÿ

i=0

qiziBi f , (2.42)

where 1. ðñ 2. ðñ 3. ðñ 4. ùñ 5. ùñ 6. ùñ 7. and 1. ùñ 8. ðñ 9., and the

first four and last statements are independent of weighted homogeneity. M

2.6. Characteristic Polynomial of the Monodromy

According to Milnor, for n P Nzt2u, it is fruitful to consider the short exact

(Wang) sequence [420420],

t0u // Hn(K f ) // Hn(Ff, 0)
I´h˚

// Hn(Ff, 0) // Hn(S2n+1
ε zK f ) // t0u

and duality isomorphisms Hn(S2n+1
ε zK f ) – Hn(K f ) – Hn´1(K f ). The map

I´ h˚ is an isomorphism if and only if Hn(K f ) – Hn´1(K f ) is trivial if and only

if ∆h˚(1) = det(I´ h˚) = ˘1. In this case, the corresponding algebraic link K f is

a homotopy (2n´ 1)-sphere, therefore a topological (2n´ 1)-sphere (Theorem

8.5, [310310]).
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2.6.0.1. Characteristic Polynomial of Weighted Homogeneous Polynomials. Given

a non-degenerate, weighted homogeneous polynomial f : (Cn+1, 0) Ñ (C, 0),

the hypersurface Vf, 1 = f´1(1) admits the following explicit representation in

space [420420],

Vf, 1 =
!

(λ0e2πiω0 , . . . , λne2πiωn) P Cn+1
|λi ě 0^

ÿn

i=0
λi = 1

)

. (2.43)

As the monodromy h : (z0, . . . , zn) Ñ (e2πiω0z0, . . . , e2πiωn zn) induces a homeo-

morphism h : Vf, 1 Ñ Vf, 1 and a diffeomorphism Ff, 0 –d Vf, 1 as a deformation

retraction [310310, 420420], Milnor computes the zeta function and the characteristic

polynomial of the monodromy in the weighted homogeneous case [310310].

2.6.0.2. Companion Matrices of Monic Polynomials.

Definition 2.38. Let F be a field. The companion matrix C f of a monic

polynomial f =
řn

i=0 bkxk P F[x] is the matrix

C f =



0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
...

...
... . . . ...

0 0 0 ¨ ¨ ¨ 1

´b0 ´b1 ´b2 ¨ ¨ ¨ ´bn´1


P Fnˆn. (2.44)

Proposition 2.39. The companion matrix C f of a polynomial f P F[x] satisfies

the following:

1. f (x) = det(xI´ C f );
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2. f (C f ) = 0; and,

3. The eigenvalues of C f are the roots of f .

Proof . The first statement follows from direct computation, while the sec-

ond statement is a consequence of the Cayley-Hamilton Theorem. The third

statement is a consequence of these. �

An important result regarding companion matrices is the following decom-

position.

Proposition 2.40. Let F be a field. Suppose f P F[x] is a monic polynomial

that factors into irreducible powers, say, f = f r1
1 ¨ ¨ ¨ f rn

n , where f1, . . . , fn P F[x]

and r1, . . . , rn P N. The companion matrix C f is similar to the direct summation of

companion matrices of said irreducible powers, namely, C f „
Àn

i=1 C f
ri
i

.

Proof . See Corollary 4.7 in Chapter 7, [215215]. �

2.6.0.3. Monodromy of Brieskorn-Pham Singularities. The monodromy can be

computed explicitly for Brieskorn-Pham singularities [361361]. The monodromy

matrix h˚ of the Brieskorn-Pham singularity f =
řn

k=0 fk, where fk = zak ,

is the Kronecker (tensor) product of companion matrices of the characteristic

polynomial of fk, namely ∆zak (t) = tak´1
t´1 . In particular, h˚ =

Ân
k=0 hak , where hak
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is the (ak ´ 1)ˆ (ak ´ 1)-matrix (0,˘1)-matrix

hak =



0 1 0 ¨ ¨ ¨ 0

0 0 1 ¨ ¨ ¨ 0
...

...
... . . . ...

0 0 0 ¨ ¨ ¨ 1

´1 ´1 ´1 ¨ ¨ ¨ ´1


, (2.45)

which can be computed directly by considering the intersection matrix of the

basis of vanishing cycles on the corresponding fiber. Let ζn denote the nth-root

of unity e2πi/n. It is relatively straightforward to show that hak may be diagonal-

ized to the form

hak „


ζak 0 0 ¨ ¨ ¨ 0

0 ζ2
ak

0 ¨ ¨ ¨ 0
...

... . . . ...
...

0 0 0 ¨ ¨ ¨ ζ
ak´1
ak


, (2.46)

Defining µ =
śn

i=0(ai ´ 1), it follows that h˚ may also be diagonalized into the

µˆ µ-matrix

h˚ „


ζa0 ¨ ¨ ¨ ζan 0 0 ¨ ¨ ¨ 0

0 ζ2
a0
¨ ¨ ¨ ζan 0 ¨ ¨ ¨ 0

...
... . . . ...

...

0 0 0 ¨ ¨ ¨ ζa0´1
a0 ¨ ¨ ¨ ζan´1

an


, (2.47)
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where the entries are all possible products of the form ζk0
0 ¨ ¨ ¨ ζ

kn
n , where 1 ď ki ď

ai ´ 1 for 0 ď i ď n. It follows that

∆h˚(t) =
a0´1
ź

k0=1

¨ ¨ ¨

an´1
ź

kn=1

(t´ ζk0
a0 ¨ ¨ ¨ ζ

kn
an). (2.48)

2.6.1. Characteristic Polynomial from the Hilbert-Poincaré Series. Pos-

sessing the Hilbert-Poincaré series allows one to explicitly calculate the charac-

teristic polynomial of the corresponding monodromy. For a weighted homoge-

neous polynomial f : (Cn+1, 0) Ñ (C, 0) with weights tωiu = t
qi
d u Ă QX (0, 1),

recall that the Hilbert-Poincaré series is the product

PA f (t) =
n
ź

i=0

(
1´ td´qi

1´ tqi

)
. (2.49)

Under the map t ÞÑ t1/d, define the reduced Hilbert-Poincaré series,

P̄A f (t) = PA f (t
1/d) =

n
ź

i=0

(
1´ t1´ωi

1´ tωi

)
. (2.50)

If f is non-degenerate, then PA f (t) is a monic and reflexive Zě0-polynomial,

and P̄A f (t) is a Puiseux series satisfying P̄A f (t) = tĉ P̄A f (
1
t ), where ĉ = 2β( f ),

twice the Arnol’d-Saito index.

Proposition 2.41. Given two non-degenerate, weighted homogeneous poly-

nomials f , g : (Cn+1, 0) Ñ (C, 0), if PA f (t) = PAg(t), then f and g have identical

weights up to permutation.
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Write µ = µalg( f ) and suppose P̄A f (t) =
řµ

j=1 tαj . By Proposition 1.131.13, the

corresponding monodromy h˚ = h˚( f ) has only roots of unity as eigenvalues,

say, te2πiγ1 , . . . , e2πiγµu, where spectrum Sp( f ) = tγiu Ă Q.

Proposition 2.42. If f : (Cn+1, 0) Ñ (C, 0) is a weighted homogeneous

polynomial with weights tω0, . . . , ωnu and reduced Hilbert-Poincaré series P̄A f (t) =
řµ

j=1 tαj , then the elements of its spectrum satisfy

γj = αj +
n
ÿ

i=0

ωi 1 ď j ď µ. (2.51)

Proof . Omitted. �

Thus, the characteristic polynomial ∆ f (t) = ∆h˚(t) = det(tI´ h˚) is monic

with degree µ and constant term ˘1, namely,

∆ f (t) =
µ
ź

j=1

(t´ e2πiγj) (2.52a)

=

µ
ź

j=1

(t + (´1)ne2πi(αj´β)), (2.52b)

where β = β( f ) is the Arnol’d-Saito index of f .

Proposition 2.43. The local algebra A f determines the corresponding charac-

teristic polynomial ∆ f .

Proof . The local algebra determines a Hilbert-Poincaré series, which deter-

mines the Arnol’d-Saito index by its reflexivity. Apply Proposition 2.422.42. �
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Corollary 2.44. The local algebra A f determines the corresponding (possibly

reduced) Alexander polynomial ∆K f (t, . . . , t) of the corresponding algebraic link K f .

Remark 2.6.1. If the corresponding algebraic link is a knot, then the char-

acteristic polynomial coincides with the Alexander polynomial. M

2.6.2. Characteristic Polynomial from the Lefschetz Zeta Function. Ac-

cording to Milnor, the fixed-point manifold of the k-orbit hk : F̄f, 0 Ñ F̄f, 0,

where Ff, 0 –d Vf, 1, has Euler characteristic χk =
ř

1ăd|k drd in terms of the

exponent rd equal to the Lefschetz number Λ(h˝k), where h˝k(z0, . . . , zn) =

(ζ
kq0
d z0, . . . , ζ

kqn
d zn). If ζ

kqi
d is not unity for all 0 ď i ď n, then χk = 0. Other-

wise, for some k if there is an 0 ď i ď n such that ukqi = 1 or kωi P Z, then the

corresponding fixed point manifold of hk is non-trivial and of the form F̄f, 0 X L,

where L is a hyperplane defined by zi1 = ¨ ¨ ¨ = zij = 0 for some j P N. In these

distinguished cases, the corresponding Euler characteristic is (putatively) non-

trivial and computable. From these data, Milnor computes the zeta function in

terms of the integers rd and notes that the characteristic polynomial is a factor

of the rational form [310310], thereby proving

∆ f (t) = (t´ 1)(´1)n+1 ź

1ăd|N

(td
´ 1)(´1)nrd , (2.53)

where µ = (´1)n+1 + (´1)n ř
1ăd|N drd and N is the period of the fiber map h.
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Remark 2.6.2. If the period N is a prime p, then

∆ f (t) = (t´ 1)(´1)n+1
(tp
´ 1)(´1)nχp/p, (2.54)

where µ = (´1)n+1(1´ χp). Such a case occurs if, for example, the weighted

degree of f is a prime p. Consider f = x3 + xy2 with q0 = q1 = 1 and d = 3.

Thus, χ3 = ´3, and the characteristic polynomial is

∆ f (t) = (t´ 1)(t3
´ 1) = t4

´ t3
´ t + 1. (2.55)

M

Proposition 2.45. The exponents trdu of the characteristic polynomial satisfy

rk =
1
k

ÿ

d|k

χd µ( k
d ), (2.56)

where µ is the Möbius (arithmetic) function.

Proof . The Euler characteristic χk and factor krk are multiplicative arith-

metic functions of k. The (Möbius) inverse of the Dirichlet convolution χk =

krk ˚ 1 is krk = χk ˚ µ. �
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Remark 2.6.3. One has

r1 = χ1 (2.57)

r2 = 1
2(χ2 ´ χ1) (2.58)

r3 = 1
3(χ3 ´ χ1) (2.59)

r4 = 1
4(χ4 ´ χ2) (2.60)

r5 = 1
5(χ5 ´ χ1) (2.61)

r6 = 1
6(χ6 ´ χ3 ´ χ2 + χ1), etc. (2.62)

M

Proposition 2.46. The characteristic polynomial satisfies the identity

∆ f (t) = (´1)µntµ∆ f (
1
t ). (2.63)

Proof . By the reflexivity of the reduced Hilbert-Poincaré series,

P̄1A f
(t) = ĉtĉ´1P̄A f (

1
t ) + tĉ

(
P̄A f (

1
t )
)1

(2.64)

= ĉtĉ´1P̄A f (
1
t )´ tĉ´2P̄1A f

(1
t ), (2.65)

where P̄1A f
(t) =

řµ
j=1 αjtαj´1. Hence, P̄1A f

(1) = ĉP̄A f (1) ´ P̄1A f
(1), and, con-

sequently,
řµ

j=1 αj = µ
2
řn

i=0 1 ´ 2ωi = µ
2 (n + 1) ´ µ

řn
i=0 ωi. Thus, since

γj = αj +
řn

i=0 ωi,
řµ

j=1 γj =
řµ

j=1 αj + µ
řn

i=0 ωi = µ
2 (n + 1). By equation
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(2.52a2.52a),

∆ f (
1
t ) = t´µ

µ
ź

j=1

(1´ te2πiγj) (2.66)

= (´1)µ

 µ
ź

j=1

e2πiγj

 t´µ∆ f (t) (2.67)

= (´1)µeπiµ(n+1)t´µ∆ f (t), (2.68)

which is (´1)µnt´µ∆ f (t) and completes the proof. �

Corollary 2.47. If ∆ f (t) =
řµ

i=0 bktk, then

bk = (´1)µnbµ´k 0 ď k ď µ (2.69)

= (´1)µ´k
ÿ

1ďi1ă¨¨¨ăiµ´kďµ

cos
(

2π(γi1 + ¨ ¨ ¨+ γiµ´k)
)

. (2.70)

In particular, b0 = (´1)µn and bµ = 1.

Proof . Observe

µ
ÿ

k=0

(´1)µnbµ´ktk =

µ
ÿ

k=0

(´1)µnbktµ´k (2.71)

= (´1)µntµ∆ f (
1
t ) (2.72)

= ∆ f (t) (2.73)

=

µ
ÿ

i=0

bktk (2.74)
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Thus, bk = (´1)µnbµ´k,

b0 = ∆ f (0) =
µ
ź

j=1

(´e2πiγj) = (´1)µeπiµ(n+1) = (´1)µn (2.75)

and bµ = (´1)µnb0 = 1. Finally,

µ
ź

j=1

(t´ e2πiγj) =

µ
ÿ

k=0

(´1)µ´keµ´k(e2πiγ1 , . . . , e2πiγµ)tk, (2.76)

where ek is the kth-elementary symmetric polynomial,

ek(x1, . . . , xn) =
ÿ

1ďi1ă¨¨¨ăikďn

xi1 ¨ ¨ ¨ xik . (2.77)

It follows that

bk = (´1)µ´k
ÿ

1ďi1ă¨¨¨ăiµ´kďµ

e
2πi(γi1

+¨¨¨+γiµ´k
)
. (2.78)

However, since bk is a priori real, then only the the real part of the complex ex-

ponentials contribute to the summation. �

Proposition 2.48. Given a non-degenerate, weighted homogeneous singularity

f : (Cn+1, 0)Ñ (C, 0), for m ě 0, the characteristic polynomial ∆ f (t) satisfies

((´1)m+µn
´ 1)∆(m)

f (1) =
m´1
ÿ

k=0

(k´ µ)m´k

(
m
k

)
∆(k)

f (1) (2.79)

((´1)µ(n+1)
´ (´1)m)∆(m)

f (´1) =
m´1
ÿ

k=0

(´1)k(k´ µ)m´k

(
m
k

)
∆(k)

f (´1), (2.80)
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where (x)k = x(x + 1) ¨ ¨ ¨ (x + k´ 1). In particular,

µ
ÿ

k=0

(˘1)k(k´ µ)µ´k+1

(
µ + 1

k

)
∆(k)

f (˘1) = 0. (2.81)

Proof . By Proposition 2.462.46,

(´1)µn∆1f (t) = µtµ´1∆ f (
1
t )´ tµ´2∆1f (

1
t ). (2.82)

By repeatedly differentiating say m times,

(´1)µn∆(m)
f (t) = (´1)m

m
ÿ

k=0

(k´ µ)m´k

(
m
k

)
tµ´m´k∆(k)

f (1
t ). (2.83)

Since the degree of ∆ f (t) is µ, take m = µ + 1. Hence,

µ
ÿ

k=0

(k´ µ)µ+1´k

(
µ + 1

k

)
t´1´k∆(k)

f (1
t ) = 0. (2.84)

�

Corollary 2.49. The characteristic polynomial of a non-degenerate, weighted

homogeneous germ f : (Cn+1, 0)Ñ (C, 0) satisfies the identities:

µ∆ f (1) = (1 + (´1)µn)∆1f (1) (2.85)

µ∆ f (´1) = ´(1 + (´1)µ(n+1))∆1f (´1). (2.86)
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In particular, if µ and n are odd, then K f is not a topological sphere. If µ or n is even

and µ ą 0, then the corresponding algebraic link K f is a topological sphere if and only

if ∆1f (1) = ˘
µ
2 .

Remark 2.6.4. Assume µ ą 0. In particular, if µ and n are odd, then

∆ f (1) = 0 and ∆ f (´1) = ´ 2
µ ∆1f (´1); if µ is even, ∆ f (˘1) = ˘ 2

µ ∆1f (˘1); and,

if µ and n are even, then ∆ f (1) = 2
µ ∆1f (1) and ∆ f (´1) = 0. Additionally, if

∆1f (1) = 0, then ∆ f (1) = 0. If either µ or n are even, then ∆ f (1) = 2
µ ∆1f (1). In

particular, if n is odd, ∆ f (´1) = ´ 2
µ ∆1f (´1). M

Corollary 2.50. For a non-degenerate, weighted homogeneous singularity

f : (Cn+1, 0) Ñ (C, 0), the exponents of the characteristic polynomial of the mon-

odromy satisfy

ÿ

d|N

rd = µn mod 2. (2.87)

Proof . By equation (2.532.53),

∆ f (
1
t ) = (1

t ´ 1)(´1)n+1 ź

1ăd|N

(t´d
´ 1)(´1)nrd (2.88)

= t(´1)n
(1´ t)(´1)n+1 ź

1ăd|N

t(´1)n+1drd(1´ td)(´1)nrd (2.89)

= t(´1)n+(´1)n+1 ř
1ăd|N drd(´1)(´1)n+1+(´1)n ř

1ăd|N rd ∆ f (t). (2.90)
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Since

µ = (´1)n+1(1´ χ(Ff, 0)) = (´1)n+1 + (´1)n
ÿ

1ăd|N

drd, (2.91)

then by Proposition 2.462.46, the factor

(´1)n+1 + (´1)n
ÿ

1ăd|N

rd (2.92)

has the same parity as µn. �

Proposition 2.51. Given two non-degenerate, weighted homogeneous polyno-

mials f : (Cn+1, 0) Ñ (C, 0) and g : (Cm+1, 0) Ñ (C, 0) with weights tω0, . . . , ωnu

and tν0, . . . , νmu, respectively, and corresponding reduced Hilbert-Poincaré series,

P̄A f (t) =
µ( f )
ÿ

j=1

tαj and P̄Ag(t) =
µ(g)
ÿ

j=1

tα1j , (2.93)

if µ( f ) = µ(g) and tαj +
řn

i=0 ωiu ” tα
1
j +

řm
i=0 νiu mod 1, then ∆ f (t) = ∆g(t).

Proof . Equation (2.52a2.52a), the definition of the sequence tγju and the 2π-

periodicity of complex exponentials implies the claim. �

2.6.3. Milnor-Orlik Invariants for Weight Homogeneous Singularities.

Recall that if n ‰ 2, then the algebraic link K f of an isolated singularity is a

topological sphere if and only if ∆ f (1) = ˘1. Milnor and Orlik prove the follow-

ing result.
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Proposition 2.52 (Milnor, Orlik, [315315]). Given div ∆ f (t) =
ř

kě1 ck Λk,

then κ =
ř

kě1 ck and ρ =
ś

kě2 kck are non-negative integers, where κ is the greatest

power of the linear factor t´ 1 dividing ∆ f (t) and ∆ f (1) = ρ δ0,κ.

Proof . Consider the identities ∆ f (t) = (t´ 1)κ
ś

kě1(1 + t + ¨ ¨ ¨+ tk´1)ck ,

(t´ 1)κ =
κ
ÿ

k=0

(
κ

k

)
(´1)κ´ktk (2.94)

(1 + t + ¨ ¨ ¨+ tk´1)ck =
ÿ

i0+¨¨¨+ik´1=ck

(
ck

i0, ¨ ¨ ¨ , ik´1

)
1i0ti1 ¨ ¨ ¨ t(k´1)ik´1 . (2.95)

�

Remark 2.6.5. Hereafter, the integers κ and ρ shall be referred to as the

Milnor-Orlik invariants. M

For a non-degenerate, weighted homogeneous singularity f with weights

ω0, . . . , ωn,

div ∆ f (t) = (´1)n+1Λ1 +
n+1
ÿ

k=1

(´1)n´k+1

¨
ÿ

0ďi1ă¨¨¨ăikďn

ci1,...,ik Λ
lcm(si1

,...,sik
), (2.96a)

where ωi =
ri
si

and ci1,...,ik = (lcm(si1 , . . . , sik)ωi1 ¨ ¨ ¨ωik)
´1. The corresponding

Milnor-Orlik algebraic link invariants are given by

κ = (´1)n+1 + (´1)n(r0 + ¨ ¨ ¨+ rn) +
n+1
ÿ

k=2

(´1)n´k+1
ÿ

0ďi1ă¨¨¨ăikďn

ci1,...,ik (2.97)
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and

ρ = (r0 ¨ ¨ ¨ rn)
(´1)n

n+1
ź

k=2

ź

0ďi1ă¨¨¨ăikďn

lcm(si1 , . . . , sik)
(´1)n´k+11/ci1,...,ik . (2.98)

2.6.4. Polynomial Tensor Products. Generalizing earlier work of Brawley

and Carlitz, Glasby [143143] studied the tensor product decomposition of arbitrary

polynomials over arbitrary (commutative) polynomial rings, elucidating the

relationship between factorizations into irreducibles and tensor products de-

composition of related fields.

Definition 2.53. Let f =
řm

i=1 akxk and g =
řn

k=1 bkxk be degree m and

n polynomials over the ring Zm,n = Z[a1, . . . , am, b1, . . . , bn], respectively. Let

f = am
śm

i=1(x ´ αi) and g(x) = bn
śn

j=1(x ´ β j) be complete factorizations of

f and g in the splitting fields of f and g over the field of fractions of Zm,n. The

polynomial tensor product of f and g is the polynomial of degree mn,

( f b g)(x) = an
mbm

n

m
ź

i=1

n
ź

j=1

(x´ αiβ j). (2.99)

Recall that an integer partition of k of length m is a list (λ1, . . . , λm) such

that k = λ1 + ¨ ¨ ¨ + λm. Let Pk,m,n denote the set of integer partitions λ =

(λ1, . . . , λm) of k with n ě λ1 ě ¨ ¨ ¨ ě λm ě 0. Given λ P Pk,m,n, define the

dual partition λ1 by λ1i = |tk |λk ě iu| for 1 ď i ď n.

Proposition 2.54 (Glasby, [143143]). Given f , g P Zm,n, where f =
řm

i=1 akxk

and g =
řn

k=1 bkxk, then ( f b g)(x) =
řmn

k=0 ckxk P Zm,n, where ck =
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ř

λPPk,m,n

ř

lěλ γk
λ,laλ1bl, for some integers γk

λ,l such that γk
λ,λ = (´1)mn´k for all

λ P Pk,m,n.

Proof . See Theorem 2.1 in [143143]. �

Proposition 2.55 (Glasby, [143143]). Let R be an integral domain. The set R[x]ˆ

of non-zero polynomials forms a commutative semi-ring (with unity) with standard

multiplication as addition and tensor product as multiplication.

2.6.5. Monodromy and Sebastiani-Thom Summation.

Proposition 2.56. The characteristic polynomial of the monodromy of a

Sebastiani-Thom summation of singularities factors as the (polynomial) tensor prod-

uct of the respective characteristic polynomials of the constituent factors, viz.,

∆ f1 ‘ ¨¨¨‘ fs(t) = (∆ f1 b ¨ ¨ ¨ b ∆ fs)(t). (2.100)

Proof 1 . With regard to Sebastiani-Thom summation, recall the corre-

sponding Hilbert-Poincaré series is multiplicative over tensor products. Writing

PA f (t) =
řµ( f )

i=1 tαi and PAg(t) =
řµ( f )

i=1 tα1i , one has

PA f ‘ g(t) =
µ( f )
ÿ

i=1

µ(g)
ÿ

j=1

tαi+α1j . (2.101)
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Define γk = αk +
řn

k=1 ωk and γ1k1 = α1k1 +
řm

k1=1 νk1 . The characteristic

polynomial factors as a (polynomial) tensor product,

∆ f ‘ g(t) =
µ( f )
ź

i=1

µ(g)
ź

j=1

(
t´ e2πi(γi+γ1j)

)
(2.102)

=

µ( f )
ź

i=1

(
t´ e2πiγi

)
b

µ(g)
ź

j=1

(
t´ e2πiγ1j

)
(2.103)

= (∆ f b ∆g)(t), (2.104)

as claimed. �

Proof 2 . The Kronecker product decomposition of the monodromy matrix

of the Sebastiani-Thom summation and the factorization of the corresponding

characteristic polynomials [143143] implies

∆ f ‘ g(t) = det(t1´ h˚( f ‘ g)) (2.105a)

= det(t1´ h˚( f )b h˚(g)) (2.105b)

= det(t1´ h˚( f ))b det(t1´ h˚(g)) (2.105c)

= ∆ f (t)b ∆g(t), (2.105d)

where equations (2.105c2.105c) and (2.105d2.105d) are polynomial tensor products. �

Corollary 2.57. Let f be a non-degenerate, weighted homogeneous polynomial,

and let ΣN f denote the N-stabilization of f . The characteristic polynomial ∆ f satisfies
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the following:

∆ΣN f (t) =

$

&

%

∆ f (t) N even

(´1)µ( f )∆ f (´t) N odd.
(2.106)

Proof . The suspension map f ÞÑ Σ f is involutive on the characteristic

polynomial,

∆ f ‘ z2(t) =
µ( f )
ź

i=1

(
t´ e2πi(γi+

1
2 )
)

(2.107)

=

µ( f )
ź

i=1

(
t + e2πiγi

)
(2.108)

= (´1)µ( f )∆ f (´t). (2.109)

Thus, ∆Σ2N f (t) = ∆ f (t) and ∆Σ2N´1 f = (´1)µ( f )∆ f (´t) for N P N. �

Remark 2.6.6. Consider the local algebra of a monomial f = za with grada-

tion q = 1 and degree d = a, namely,

Aza = Ctzu/xza´1
y (2.110)

– tc0 + c1z + ¨ ¨ ¨+ ca´2za´2
| (c0, . . . , ca´2) P Ca´1

u (2.111)

– x1y ‘ xzy ‘ ¨ ¨ ¨ ‘ xza´2
y, (2.112)

so Aza, k = xzky and dimC Aza, k = 1 for 0 ď k ď a´ 2. Thus, dimC Aza = a´ 1.

The corresponding Hilbert-Poincaré series is simply PAza (t) =
řa´2

k=0 tk and,

therefore, PAza (t1/d) =
řa´1

k=1 t(k´1)/a, so αk = k´1
a and γk = αk +

1
a = k

a for
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1 ď k ď a´ 1. Thus,

∆za(t) =
a´1
ź

k=1

(t´ ζk
a) =

a´1
ÿ

k=0

tk =
ta ´ 1
t´ 1

, (2.113)

where ζn = e2πi/n. Thus, ∆za(1) = a and ∆za(´1) = 1
2(1´ (´1)a). M

Remark 2.6.7. Consider f =
řn

i=0 fi, where fi = zai
i . By Proposition 2.62.6, the

local algebra is the tensor product,

A f –
n
â

k=0
A fi –

n
â

i=0

ai´2
à

k=0
xzk
y, (2.114)

and the corresponding characteristic polynomial is the polynomial tensor prod-

uct, by Proposition 2.562.56,

∆ f (t) =
n
â

i=0
∆ fi(t) (2.115)

=
n
â

i=0

tai ´ 1
t´ 1

(2.116)

=
a1´1
ź

k0=1

¨ ¨ ¨

an´1
ź

kn=1

(t´ ζk0
a0 ¨ ¨ ¨ ζ

kn
an), (2.117)

which serves as another proof of Lemma 4 in [6363]. M

Remark 2.6.8. According to Milnor, Grothendieck proved that equation

(2.1172.117) is necessarily a product of cyclotomic polynomials [310310]. We give a proof

of this fact in Proposition 6.786.78. M
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Remark 2.6.9. If f : (C2, 0) Ñ (C, 0) is a homogeneous polynomial of

degree d, then

∆ f (t) =
d´1
ź

k0=1

d´1
ź

k1=1

(t´ ζk0+k1
d ) = (t´ 1)(td

´ 1)d´2. (2.118)

M

Remark 2.6.10. If f and g are quasi-Brieskorn-Pham singularities with

weights t1
2 , 1

3u and t1
3 , 1

3u, respectively, then the corresponding characteristic

polynomials are simply ∆ f (t) = Φ6(t) and ∆g(t) = Φ1(t)2Φ3(t), where Φn is

the nth-cyclotomic polynomial defined as the product over primitive roots-of-

unity,

Φn(t) =
ź

1ďkďn
gcd(k,n)=1

(t´ ζk
n). (2.119)

Such cases are indicative of a more general identity, q.v., §6.76.7. M

2.7. Algebraic Morphisms of the Singularity

2.7.1. Quasi-Homogeneity, Revisited. Recall Vf, 0 = f´1(0) denotes the

complex codimension-one (algebraic) hypersurface of an analytic complex germ

f . Since f is weighted homogeneous with weights ω, the hypersurface Vf, 0 is an

invariant set under the Cˆ-action of λω ¨ (z0, . . . , zn) = (λω0z0, . . . , λωn zn).
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Given a complex analytic hypersurface V, let OV denote the sheaf of (germs

of) holomorphic functions on V. Let O0,V denote the stalk of (germs of) holo-

morphic functions of OV at the origin.

Definition 2.58. A hypersurface V is quasi-homogeneous if and only if

there is a weighted homogeneous polynomial f and an algebra isomorphism

O0,V – A f .

Saito [409409] has shown that a complex analytic germ f is right equivalent to

a weighted homogeneous germ if and only if the algebraic index and Tjurina

number coincide. In fact, more is true.

Proposition 2.59 (Saito, [409409]). Let f : (Cn+1, 0) Ñ (C, 0) be a non-

degenerate, complex analytic polynomial. Then the following statements are equivalent:

1. The polynomial f is right-equivalent to a weighted homogeneous polynomial;

2. The polynomial f is contact-equivalent to a weighted homogeneous polynomial;

3. The algebraic index and Tjurina number coincide, i.e., µalg( f ) = τ( f );

4. The polynomial f is an element of the Jacobi ideal JB f ;

5. The hypersurface Vf, 0 is quasi-homogeneous for a suitable choice of variables;

and,

6. The Poincaré complex of the hypersurface Vf, 0 is exact,

0 C OV Ω1
V

. . . Ωn
V 0.� � //ı � � //ı //d //d //d // //0

Proof . For the first two statements, see Lemma 2.13 of [168168]. �
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Remark 2.7.1. The third statement of Proposition 2.592.59 furnishes a

coordinate-free characterization of weighted homogeneity. M

Remark 2.7.2. Boubakri, Greuel and Markwig have recently generalized

the third statement to germs over polynomial rings of algebraically closed fields

of positive characteristic (Proposition 2.3, [5858]). M

Proposition 2.60 (Saito, [409409]). Let f P O0,n be a non-degenerate, complex

analytic germ. The following statements are true:

1. If f is weighted homogeneous with weights 0 ă ω0 ď ¨ ¨ ¨ ď ωn ă 1 and

f P m3, then tω0, . . . , ωnu is unique and 0 ă ωi ă
1
2 ;

2. If f P JB f , then f is stably equivalent to a weighted homogeneous polynomial g,

that is, f »r Σn´kg. In particular, 0 ă ω0 ď ¨ ¨ ¨ ď ωk ă ωk+1 = ¨ ¨ ¨ = ωn =

1
2 ; and,

3. If f , g P O0,n are right equivalent and weighted homogeneous with weights

0 ă ω0 ď ¨ ¨ ¨ ď ωn ď
1
2 and 0 ă ν0 ď ¨ ¨ ¨ ď νn ď

1
2 , then ωi = νi.

2.7.2. Orlik-Saito Isomorphisms. In 1970, Orlik proved the topological

invariance of the weights of a non-degenerate, weighted homogeneous poly-

nomial in C3 [361361]. In particular, he considered relative homeomorphisms be-

tween non-degenerate weighted homogeneous hypersurfaces. In 1971, Saito

[409409] proved the weights are local analytic invariants for any non-degenerate

weighted homogeneous polynomial f and are determined uniquely by the ana-

lytic isomorphism class of the corresponding hypersurface Vf, 0.
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In 1979, Yoshinaga and Suzuki [492492] proved a similar claim for C2, and, in

1986, Nishimura [350350] provided a substantially simplified proof of the same

result. Specializing to singularities of the Brieskorn-Pham type, in 1978, Yoshi-

naga and Suzuki proved the following uniqueness result.

Proposition 2.61 (Yoshinaga, Suzuki, [491491]). Given two Brieskorn-Pham

polynomials f , g : (Cn+1) Ñ (C, 0) with ordered exponents 2 ď a0 ď ¨ ¨ ¨ ď an and

2 ď b0 ď ¨ ¨ ¨ ď bn, respectively. If the hypersurfaces Vf, 0 and Vg, 0 have identical

topological type at the origin, then ai = bi for 0 ď i ď n.

Remark 2.7.3. For Brieskorn-Pham singularities, it follows that an equiv-

alence of topological-type of hypersurfaces implies an isomorphism of local

algebras, equal algebraic indices, equivalent monodromies, equal characteristic

polynomials and diffeomorphic (and isotopic) algebraic links. In this case, one

has the following commutative diagram

A f f Vf, 0 Ff, 0 K f

Ag g Vg, 0 Fg, 0 Kg

��

–

oo A˚

��

–

//V˚

��

–

� � //

��

–

//B

��

–

oo A˚ //V˚ � � // //B

M

In 1983, Yoshinaga generalized Proposition 2.612.61 to the following.

155



Proposition 2.62 (Yoshinaga, [489489]). Let f , g : (Cn+1) Ñ (C, 0) be

Brieskorn-Pham polynomials with ordered exponents 2 ď a0 ď ¨ ¨ ¨ ď an and

2 ď b0 ď ¨ ¨ ¨ ď bn, respectively. Then the following statements are equivalent:

1. The hypersurfaces Vf, 0 and Vg, 0 have identical topological type at the origin;

2. The ordered exponents coincide, that is, ai = bi for 0 ď i ď n; and,

3. The characteristic polynomials ∆ f (t) and ∆g(t) coincide.

Remark 2.7.4. Lê proved (1.) ùñ (3.) in [258258]. Oka proved the local

topological type of a weighted homogeneous singularity is determined by its

weights, the implication (2.) ùñ (1.) in [355355]. Yoshinaga proved (3.) ùñ (2.) in

[489489]. M

As a consequence of a theorem of Lê [258258], if Vf, 0 and Vg, 0 have identical

topological type (at the origin), then the characteristic polynomials ∆ f (t) and

∆g(t) are identical and, hence, the algebraic indices coincide, µalg( f ) = µalg(g).

One concludes that the characteristic polynomial of the monodromy of an iso-

lated singularity is a topological invariant. However, this does not imply that the

corresponding algebraic links are isotopic, as there are many examples of non-

isotopic links with equal reduced Alexander polynomials (but distinct Alexan-

der polynomials), q.v., Remark 4.13.14.13.1. In fact, Proposition 2.622.62 is an immediate

corollary of the following substantially stronger result which holds for weighted

homogeneous polynomials.
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Proposition 2.63 (Yoshinaga, [489489]). Let f , g : (Cn+1, 0) Ñ (C, 0) be two

non-degenerate, weighted homogeneous polynomials with weights tω0, . . . , ωnu and

tν0, . . . , νnu. Write ωi =
ri
si

and νi =
ti
ui

(in reduced rational form). The characteristic

polynomials ∆ f (t) and ∆g(t) coincide if and only if the following is true:

1. The sets t2, s0, . . . , snu and t2, u0, . . . , unu are equal; and,

2. For any s P t2, s0, . . . , snu,
ś

si=s(1´
1

ωi
) =

ś

ui=s(1´
1
νi
),

where an empty product is indicative of a value equal 1.

2.7.3. Local Homeomorphisms. Given two complex analytic germs f and g,

the corresponding hypersurfaces Vf, 0 and Vg, 0 have identical topological type at

the origin if and only if there exists two neighborhoods (of the origin) U f and

Ug and a homeomorphism η : U f Ñ Ug such that η(0) = 0 and η(Vf, 0 XU f ) =

Vg, 0 XUg (Figure 2.12.1).

Uf

Vf
Vg

Ug

η

0 !→ 0

Figure 2.1. A Local Homeomorphism between Complex Hypersurfaces

In 1988, Saeki proved a certain invariance of singularities over C2 or C3 de-

pends only on the local topological type of the corresponding hypersurfaces in

the neighborhood of the origin.

Proposition 2.64 (Saeki, [407407]; Yoshinaga, [491491]; Nishimura [350350]).

Let n P t1, 2u. Given two non-degenerate, weighted homogeneous polynomials
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f , g : (Cn+1, 0) Ñ (C, 0) with weights ω and ν, respectively, if (Cn+1, Vf, 0) and

(Cn+1, Vg, 0) are locally homeomorphic, then the weights ω and ν are identical up to

permutation.

In this case, one has the following commutative diagram,

(Cn+1, Vf, 0) (Cn+1, Vg, 0)

f g

A f Ag

//–

OO

V˚

//–r

��

A˚

OO

V˚

��

A˚

//–

2.7.4. Multiplicity.

Definition 2.65. The multiplicity of a complex analytic singularity is the

minimum degree of the constituent monomials in its series expansion.

Conjecture 2.66 (Zariski). If f and g are complex analytic singularities and

there is a local homeomorphism (B2n
ε , Vf, 0 X B2n

ε ) – (B2n
ε , Vg, 0 X B2n

ε ), then f and g

are equimultiple, i.e., multiplicities of f and g coincide.
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The conjecture is true for weighted homogeneous polynomials [167167], [353353],

[487487]. Sȩkalski [423423] proved the multiplicity of a weighted homogeneous poly-

nomial depends only on its weights, viz.,

ν( f ) = mintk P N | k ě min
0ďiďn

t 1
ωi
uu (2.120)

=

R

min
0ďiďn

t 1
ωi
u

V

. (2.121)

Therefore, the multiplicity is a topological invariant (Lemma 6, [407407]).

Proposition 2.67 (Saeki, [407407]). Given two non-degenerate, weighted homo-

geneous polynomials, f , g : (C2, 0) Ñ (C, 0), if (C2, Vf, 0) and (C2, Vg, 0) are locally

homeomorphic, then the multiplicities of f and g coincide.

2.7.5. Łojasiewicz Exponent. For the cases of weighted homogeneous poly-

nomials over C2 and C3, Krasiński, Oleksik and Płoski give an explicit formula

for the Łojasiewicz exponent `0( f ) in terms of the weights [246246], thus proving a

topological invariance of `0( f ) for n = 1, 2.

Remark 2.7.5. Suppose f : (C3, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial with weights tω0, ω1, ω2u. Then

`0( f ) = maxt 1
ω0
´ 1, 1

ω1
´ 1, 1

ω2
´ 1u. (2.122)

Let 1
ω ´ 1 = max0ďiď2t

1
ωi
´ 1u. If tω1, ω2, ω3u does not necessarily lie in the

half-closed interval (0, 1
2 ], then `0( f ) = mint 1

ω ´ 1, µalg( f )u (Theorem 3, op. cit.).

Sȩkalski shows that the latter formula does not hold for n ą 3. M
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Proposition 2.68 (Krasiński, Oleksik and Płoski, [246246]). If f : (Cn+1, 0)Ñ

(C, 0) is a non-degenerate, weighted homogeneous polynomial, then

`0( f ) ď max
0ďiďn

t 1
ωi
´ 1u ď µalg( f ). (2.123)

Proof . See Proposition 1 in [246246]. �

Remark 2.7.6. The Łojasiewicz exponent and the corresponding algebraic

index are equal if and only if the rank of the local Hessian (Bij f ) at the origin

equals or exceeds n (Lemma 2, [246246]). M

In 2010, Tan, Yau and Zuo [452452] establish the identity

`0( f ) = max
0ďiďn

t 1
ωi
´ 1u, (2.124)

thus demonstrating the topological nature of the Łojasiewicz exponent of a non-

degenerate, weighted homogeneous polynomial over Cn+1 for n ą 1, thereby

proving the Teissier Conjecture [454454].

Proposition 2.69. Let Uα Ď Cnα be a neighborhood of the origin. Assume that

the complex analytic map fα : (Uα, 0) Ñ (C, 0) is a non-degenerate, weighted homoge-

neous polynomial with weights tωiαu. The multiplicity and Łojasiewicz exponent of the

Sebastian-Thom summation f =
Ð

α fα : (
Ś

α Uα, 0)Ñ (C, 0) satisfy

ν( f ) = min
1ďαďs

tν( fα)u (2.125)

`0( f ) = max
1ďαďs

t`0( fα)u. (2.126)
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In particular, ν(ΣN f ) = mint2, ν( f )u and `0(ΣN f ) = `0( f ) for N ě 1.

Proof . The claimed identities follow from the classical identities

maxtmaxtx1, . . . , xn´1u, xnu = maxtx1, . . . , xnu (2.127)

mintmintx1, . . . , xn´1u, xnu = mintx1, . . . , xnu (2.128)

for tx1, . . . , xnu Ă Rě0. Moreover, the multiplicity of g =
řn

i=0 z2
i is 2. �

Proposition 2.70. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial, then the multiplicity and Łojasiewicz exponent of f satisfy

ν( f ) ď

$

&

%

t`0( f )u + 1 if min0ďiďnt
1

ωi
u P N

t`0( f )u + 2 if min0ďiďnt
1

ωi
u R N.

(2.129)

In particular,

ν( f ) ď
R

n+1
b

µalg( f )
V

+ 1 ď r`0( f )s + 1. (2.130)

Proof . By the identity rxs = x´ txu+ χ+
RzZ

(x) on Rě0, one has

ν( f ) = min
0ďiďn

t 1
ωi
u ´

"

min
0ďiďn

t 1
ωi
u

*

+ χ+
RzZ

( min
0ďiďn

t 1
ωi
u) (2.131)

ď max
0ďiďn

t 1
ωi
´ 1u+ 1´

"

min
0ďiďn

t 1
ωi
u

*

+ χ+
RzZ

( min
0ďiďn

t 1
ωi
u) (2.132)

ď `0( f ) + 1´
"

min
0ďiďn

t 1
ωi
u

*

+ χ+
RzZ

( min
0ďiďn

t 1
ωi
u). (2.133)
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Since ν( f ) is an integer,

ν( f ) ď

$

&

%

t`0( f )u + 1 if min0ďiďnt
1

ωi
u P N

Y

`0( f ) +
!

min0ďiďnt
1

ωi
u

)]

+ 1 if min0ďiďnt
1

ωi
u R N,

(2.134)

and the first inequality follows. For tx1, . . . , xnu Ă Rě0,

mintx1, . . . , xnu ď

n
ź

i=1

n
?

xi ď maxtx1, . . . , xnu (2.135)

implies

min
0ďiďn

!

1
ωi
´ 1

)

ď

n
ź

i=1

(
1

ωi
´ 1
)1/n

ď max
0ďiďn

!

1
ωi
´ 1

)

, (2.136)

from which the final series of inequalities follow. �

Certain invariants uniquely determine the weights of singularities in few

complex dimensions.

Proposition 2.71. If f : (C2, 0) Ñ (C, 0) is a non-degenerate, weighted ho-

mogeneous polynomial, then the multiplicity and Łojasiewicz exponent of f satisfy the

sharp inequalities

1
ω1

+ 1
ω2
ď ν( f ) + `0( f ) + 1 (2.137)

1
ω1ω2

ď ν( f ) + `0( f ) + µalg( f ) (2.138)

with equality if and only if f is weakly quasi-Brieskorn-Pham.
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Proof . The identity maxtx, yu = x + y´mintx, yu implies

`0( f ) = maxt 1
ω1

, 1
ω2
u ´ 1 (2.139)

= 1
ω1

+ 1
ω2
´mint 1

ω1
, 1

ω2
u ´ 1 (2.140)

ě 1
ω1

+ 1
ω2
´ ν( f )´ 1 (2.141)

= 1
ω1ω2

´ µalg( f )´ ν( f ). (2.142)

�

Proposition 2.72. Let f , g : (C2, 0)Ñ (C, 0) be two non-degenerate, weighted

homogeneous polynomials. If the Łojasiewicz exponents coincide, viz., `0( f ) = `0(g),

and the algebraic indices coincide, viz., µalg( f ) = µalg(g), then f and g have identical

weights up to permutation. In particular, the multiplicities coincide, viz., ν( f ) = ν(g).

Proof . The proof is immediate once one recalls the identities

ν( f ) =
Q

mint 1
ω1

, 1
ω2
u

U

(2.143)

`0( f ) = maxt 1
ω1
´ 1, 1

ω2
´ 1u (2.144)

µalg( f ) = ( 1
ω1
´ 1)( 1

ω2
´ 1). (2.145)

The latter two equations may be combined to unique solve for the weights. �

Remark 2.7.7. If f : (C2, 0)Ñ (C, 0) is weakly quasi-Brieskorn-Pham, then

the weights t 1
ω1

, 1
ω2
u are uniquely determined by the quantities ν( f ) + `0( f ) + 1
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and µalg( f ) by solving the quadratic equation,

x2
´ (ν( f ) + `0( f ) + 1)x + ν( f ) + `0( f ) + µalg( f ) = 0. (2.146)

Therefore, in this case, the rational ν( f )+ `0( f ) is a topological invariant, which is

not obvious despite the fact that both ν( f ) and `0( f ) are topological invariants.

M

Remark 2.7.8. Proposition 2.722.72 does not hold in Cn+1 for n ą 1. Consider

f = x9 +
řn

i=1 z2
i and g = x5 + y3 +

řn
i=2 z2

i over Cn+1. For n ą 1, µalg( f ) =

µalg(g) = 8, ν( f ) = ν(g) = 2, while `0( f ) = 8 and `0(g) = 4. M

Remark 2.7.9. If, instead, the multiplicities and Łojasiewicz exponents

coincide, it does not follow that the algebraic indices necessarily coincide. Take

f = x2y + y4 with weights t3
8 , 1

4u and g = x3 + y4 with weights t1
3 , 1

4u. Clearly,

the indices differ, namely, µalg( f ) = 5 and µalg(g) = 6. M

Proposition 2.73. Let f , g : (C3, 0) Ñ (C, 0) be two non-degenerate, quasi-

Brieskorn-Pham polynomials. If `0( f ) = `0(g), ν( f ) = ν(g) and µalg( f ) = µalg(g),

then f and g have identical weights up to permutation.

Proof . Let ta1, a2, a3u and tb1, b2, b3u denote the inverse weights of f and g,

respectively. Without loss of generality, we may assume the orderings 2 ď a1 ď

a2 ď a3 and 2 ď b1 ď b2 ď b3. By assumption, a3 = `0( f ) + 1 = `g(g) + 1 = b3

and a1 = ν( f ) = ν(g) = b1. Finally, since (a1 ´ 1)(a2 ´ 1)(a3 ´ 1) = µalg( f ) =
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µalg(g) = (b1 ´ 1)(b2 ´ 1)(b3 ´ 1), it follows that a2 = b2, which completes the

proof. �

2.8. Exponent Matrices

Definition 2.74. Given a polynomial f =
řm

i=1 ciz
ai1
1 ¨ ¨ ¨ zain

n P m, where

ci P Cˆ, the mˆ n non-negative integral matrix A f = (aij) is the exponent matrix

of f defined up to an action of Sn ˆ Sm on the rows and columns.

If f : (Cn+1, 0) Ñ (C, 0) is a weighted homogeneous polynomial with m

monomials and weights** tω0, . . . , ωnu, then said weight multiset ω solves the

matrix equation A f ω = 1m, and is also defined up to an action of Sm inherited

from the Sm ˆ Sn-action on A f . If A = A f is square and non-singular, then

the weights are uniquely determined by Cramer’s Rule, ωi = (A´11n+1)i =

detA´1Ai where, in general, Ai denotes the matrix A (of size mˆ (n + 1)) with

the ith-column replaced with the vector 1m. In §9.2.19.2.1, we discuss the uniqueness

of the weights when A f is not square.

Definition 2.75. A weighted homogeneous polynomial is a square if

and only if it possesses an equal number of monomials as variables, that is, its

exponent matrix is a square matrix.

*The weight ω is not a vector or a set rather a multiset, wherein multiplicity matters but
order does not.
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Remark 2.8.1. A square, weighted homogeneous polynomial f : (C2, 0)Ñ

(C, 0) has the form (modulo coefficients),

f = xa11ya12 + xa21ya22 taiju Ă Zě0 (2.147)

and, if A f = (aij) is non-singular, has the following weights,

ω1 =
a22 ´ a12

a11a22 ´ a12a21
and ω2 =

a11 ´ a21

a11a22 ´ a12a21
. (2.148)

Similarly, a square, weighted homogeneous polynomial f : (C3, 0) Ñ (C, 0) has

the form (modulo coefficients),

f = xa11ya12za13 + xa21ya22za23 + xa31ya32za33 taiju Ă Zě0, (2.149)

and, if A f = (aij) is non-singular, has the following weights,

ω1 =
a13a22 ´ a12a23 ´ a13a32 + a23a32 + a12a33 ´ a22a33

a13a22a31 ´ a12a23a31 ´ a13a21a32 + a11a23a32 + a12a21a33 ´ a11a22a33
(2.150)

ω2 =
a21a33 ´ a11a33 ´ a23a31 + a13a31 + a11a23 ´ a13a21

a13a22a31 ´ a12a23a31 ´ a13a21a32 + a11a23a32 + a12a21a33 ´ a11a22a33
(2.151)

ω3 =
a12a21 ´ a11a22 ´ a12a31 + a22a31 + a11a32 ´ a21a32

a13a22a31 ´ a12a23a31 ´ a13a21a32 + a11a23a32 + a12a21a33 ´ a11a22a33
. (2.152)

In both cases, the algebraic index has a representation involving only the expo-

nents of the corresponding singularity, albeit unwieldy. M
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Remark 2.8.2. Consider f = xza + xby + ycz over C3, where a, b, c P N. The

corresponding matrix of exponents is the 3ˆ 3 matrix,

A f =


1 0 a

b 1 0

0 c 1

 , (2.153)

and since A f is non-singular, f has the following weights,

ω1 =
1´ a + ac

1 + abc
, ω2 =

1´ b + ab
1 + abc

and ω3 =
1´ c + bc

1 + abc
. (2.154)

The corresponding algebraic index is simply µalg( f ) = abc. M

Proposition 2.76. Let A f be the exponent matrix of a non-degenerate, square,

weighted homogeneous polynomial f : (Cn+1, 0) Ñ (C, 0). If the local algebra A f is

positive dimensional, then A f has full rank and satisfies

0 ă |detA f, i| ă |detA f | 1 ď i ď n. (2.155)

Proof . The inequality is a necessary consequence of the bounds 0 ă ω ă

1. The positive dimensionality of the local algebra A f follows from equation

(2.32c2.32c). �

Remark 2.8.3. As in Remark 2.5.52.5.5, the polynomial f = x2y6 + x5y implies

that the converse of the Proposition 2.762.76 does not hold for degenerate singular-

ities. That is, although A f has rank 2, the determinantal inequality is insufficient

to ensure positive dimensionality of the corresponding local algebra as, in this
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case, detA f = ´28, detA f, 1 = ´5 and detA f, 2 = ´3, which violate the con-

verse. M

Definition 2.77. A weighted homogeneous polynomial is reduced if and

only if its integral weights and weighted degree equal the numerators and de-

nominators of the corresponding reduced weights, respectively.

Remark 2.8.4. A quasi-Brieskorn-Pham singularity is reduced if and only

if it is a homogeneous polynomial. M

2.8.1. Kobayashi Duality. There is a natural involution on the class of

weighted homogeneous germs, namely, the transpose map which takes an ex-

ponent matrix to its transpose. Such a map then descends to a map between

weighted homogeneous polynomials. Consider

(A f )
J =



1 a2 0 0 0 ¨ ¨ ¨ 0

0 1 a3 0 0 ¨ ¨ ¨ 0

0 0 1 a4 0 ¨ ¨ ¨ 0

0 0 0 1 0 ¨ ¨ ¨ 0
...

...
...

... . . . . . . an

a1 0 0 0 ¨ ¨ ¨ 0 1


= A f̃ , (2.156)

where f̃ is the corresponding weighted homogeneous polynomial

f̃ = za1
1 zn +

n´1
ÿ

i=1

ziz
ai+1
i+1 , (2.157)
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which we shall call the Kobayashi dual of

f = z1za1
n +

n´1
ÿ

i=1

zai+1
i zi+1. (2.158)

Proposition 2.78. Let f : (C3, 0)Ñ (C, 0) be a square, weighted homogeneous

singularity with non-singular exponent matrix A f = (aij). Define the vector (ai)j =

(aij). The weights of the Kobayashi dual f̃ : (C3, 0)Ñ (C, 0) are

ω1 =
(a2 ˆ a3) ¨ 13

detA f
(2.159)

ω2 =
(a3 ˆ a1) ¨ 13

detA f
(2.160)

ω3 =
(a1 ˆ a2) ¨ 13

detA f
. (2.161)

Proof . This is an exercise is elementary linear algebra. See [120120]. �

We mention briefly that the duality map is integral to establishing a curi-

ous manifestation of Mirror Symmetry with Arnol’d’s Strange Duality relating the

Dolgachev and Gabrielov numbers of certain non-degenerate, weighted homo-

geneous singularities [2323]. For details, consult [240240], [119119] and [120120].

2.8.2. Weight Preserving Maps.

Definition 2.79. Two matrices A and B are permutation equivalent if

and only if there are permutation matrices Pr and Pc, acting on the rows and

columns, respectively, such that A = PrBPc.
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If two matrices A and B are permutation equivalent, write A » B. We define

a topologically trivial morphism on the space of singularities.

Definition 2.80. Two singularities are permutation equivalent if and only if

the corresponding exponent matrices are permutation equivalent.

Write f – g if and only if A f » Ag. The following proposition is obvious.

Proposition 2.81. Given two weighted homogeneous singularities f and g, if

f – g, then the weights of f and g coincide up to permutation.

Proof . If A f » Ag, then there are permutation matrices Pr and Pc such that

A f = PrAgPc. Thus, 1 = A f ω = (PrAgPc)ω = (PrAg)(Pcω). Since PrAg repre-

sents the exponent matrix of g (with permuted monomials but not permuted

variables), then it follows that ω is the weight multiset of g (up to permuta-

tion). �

Corollary 2.82. Permutation equivalence implies right equivalence.

Proof . The required biholomorphism is simply a permutation of variables.

�

The converse of Corollary 2.822.82 is not true, however. We shall return to this

topic in §2.9.22.9.2. In the meantime, consider the following non-linear map.

Proposition 2.83. Given a square singularity f : (C2, 0) Ñ (C, 0) with non-

singular exponent matrix A f = (aij), if there is a non-trivial, integral solution (α, β)
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satisfying the system of Diophantine inequalities,

minta11, a21u+ α ě 0 (2.162)

minta12, a22u+ β ě 0 (2.163)

(a11 ´ a21)β + (a22 ´ a12)α = 0, (2.164)

then there is a square singularity g : (C2, 0) Ñ (C, 0) with non-singular exponent

matrix Ag = (bij) and a translation map Tα,β preserving the weights,

Tα,β

a11 a12

a21 a22

 ÞÑ

b11 b12

b21 b22

 =

a11 + α a12 + β

a21 + α a22 + β

 . (2.165)

Proof . The first two inequalities ensure that the image of Tα,β is an ex-

ponent matrix. The last equality holds if and only if the Tα,β preserves the

determinant. Finally, under the same map, the following equalities hold,

a11 ´ a21 = b11 ´ b21 and a22 ´ a12 = b22 ´ b12, so the weights remain unchanged

by Cramer’s Rule. �

Consider the line ` defined by the locus

t(α, β) P R2
| (a11 ´ a21)β + (a22 ´ a12)α = 0u, (2.166)

which has slope a12´a22
a11´a21

in the (α, β)-plane. The constraints α ě ´minta11, a21u

and β ě ´minta12, a22u define a region in the plane. For finitely many so-

lutions, the line must intersect said region in at least one point. The inter-

section is defined by the extremal points αmax = a21´a11
a12´a22

minta12, a22u and
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βmax = a22´a12
a11´a21

minta11, a21u. In particular, if minta12, a22u = minta12, a22u = 0,

a11 ‰ a21 and a12 ‰ a22, the latter two yielding a finite and non-zero slope,

then there is only the trivial solution at the origin. There are positively many

solutions if and only if the slope of ` is negative and intersects the region non-

trivially. There are infinitely many solutions if and only if the slope of ` is zero,

positive or infinite and intersects the region non-trivially.

This technique does not distinguish between degenerate and non-degenerate

singularities. It conserves only the weights, as the following two remarks illus-

trate.

Remark 2.8.5. Consider the quasi-Brieskorn-Pham singularity f = x3 + xy4

over C2, which is non-degenerate and has weights t1
3 , 1

6u. There are two integral

points on the line 2β+ 4α = 0 in the planar region t(α, β) P R2 | α ě ´1^ β ě 0u,

namely, the origin and the point (´1, 2). It follows that g = x2y2 + y6 has the

same weights as those of f . However, g is degenerate, as Bg = (2xy2, 2x2y +

6y5), and there is a continuum of critical points on t(x, 0) P C2 | x P Cu. Apply-

ing the same technique to g yields f . M

Remark 2.8.6. Consider f = x10y + x5y7 over C2. There are two integral

points on the line 5β + 6α = 0 in the planar region t(α, β) P R2| α ě ´5^ β ě

´1u, namely, the origin and the point (´5, 6). It follows that g = x5y7 + y13

has the same weights as those of f , namely, t 6
65 , 1

13u. However, both f and g are

degenerate. Applying the same technique to g yields f . M
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Proposition 2.832.83 generalizes to three dimensions, where one determines

whether a plane intersects a certain solid region. The solutions of the Dio-

phantine system of inequalities correspond to lattice points of this intersection,

which is a 2-simplex. The details are similar to those of the two-dimensional

case, so we omit further discussion.

Proposition 2.84. Given a square singularity f : (C3, 0) Ñ (C, 0) with non-

singular exponent matrix A f = (aij), if there is a non-trivial, integral solution (α, β, γ)

satisfying the system of Diophantine inequalities,

minta11, a21, a31u+ α ě 0 (2.167)

minta12, a22, a32u+ β ě 0 (2.168)

minta13, a23, a33u+ γ ě 0 (2.169)

Aα + Bβ + Cγ = 0, (2.170)

where

A = a13a22 ´ a12a23 ´ a13a32 + a23a32 + a12a33 ´ a22a33 (2.171)

B = a21a33 ´ a11a33 ´ a23a31 + a13a31 + a11a23 ´ a13a21 (2.172)

C = a12a21 ´ a11a22 ´ a12a31 + a22a31 + a11a32 ´ a21a32, (2.173)
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then there is a square singularity g : (C3, 0) Ñ (C, 0) with non-singular exponent

matrix Ag = Tα,β,γA f and a translation map Tα,β,γ preserving the weights,

Tα,β,γ


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ÞÑ


a11 + α a12 + β a13 + γ

a21 + α a22 + β a23 + γ

a31 + α a32 + β a33 + γ

 . (2.174)

Proof . We defer the proof for the general case in Proposition 2.862.86. �

There is no doubt that the astute reader has recognized the coefficients of

the Diophantine system of inequalities (cf., equations (2.1502.150) through (2.1522.152)). To

proceed to the general case, we require an auxiliary result.

Proposition 2.85. Given N nˆ n matrices A1, . . . ,AN,

det

(
N
ÿ

i=1

Ai

)
=

ÿ

πP[N][n]

detAπ, (2.175)

where [N][n] = tπ : t1, . . . , nu ÞÑ t1, . . . , Nuu and (Aπ)ij = A
π(i)
ij .

Proof . The identity follows from repeatedly expanding by minors. �

Proposition 2.86. Given a square singularity f : (Cn+1, 0) Ñ (C, 0) with

non-singular exponent matrix A f = (aij), if there is a non-trivial, integral solution

174



(α0, . . . , αn) satisfying the system of Diophantine inequalities,

minta0j, . . . , anju+ αj ě 0 0 ď j ď n (2.176)

n
ÿ

i=0

(detA f, i)αi = 0, (2.177)

then there is a square singularity g : (Cn+1, 0) Ñ (C, 0) with non-singular exponent

matrix Ag and a translation map Tα preserving the weights of f such that

TαA f = Ag = A f + Jn+1α, (2.178)

where Jn denotes the nˆ n matrix of 1s and α = (α0, . . . , αn)
ᵀ.

Proof . Cramer’s rule implies

detAg,i

detAg
=

det(A f + Jnα)i

det(A f + Jnα)
(2.179)

=
det(A f, i + (Jnα)(i))

detA f +
řn

i=0(detA f, i)αi
(2.180)

=
detA f, i

detA f
, (2.181)

by two applications of equation (2.1752.175), where (Jnα)(i) is the matrix Jnα with 0s

replacing the ith-column. �

Conjecture 2.87. A square singularity over Cn+1 has at least one weight out-

side of the interval (0, 1
2 ] if and only if the corresponding Diophantine system of in-

equalities specified in Proposition 2.862.86 has infinitely many solutions. Otherwise, all
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weights are in said interval if and only if the number of solutions is finite, including the

trivial solution.

Remark 2.8.7. The conjecture makes no claim about degeneracy or the

integrality of the corresponding algebraic index. M

Remark 2.8.8. There are other transformations that preserve the weights.

For example,given a weighted homogeneous polynomial f , if there is a

weighted homogeneous polynomial g and matrix T such that Ag = TA f , where

T1 = 1, then Agω = T(A f ω) = 1, and f and g share the same weights. M

Remark 2.8.9. In §9.29.2, we generalize some of these results to weighted

homogeneous polynomials with non-square exponent matrices. M

2.9. Algebraic Morphisms on Exponent Matrices

2.9.1. Sebastiani-Thom Equivalence, Revisited. Let fα : Uα Ñ C be a com-

plex analytic function with domain Uα Ă Cnα in a neighborhood of the ori-

gin. Define the projection πα1 :
ś

α Uα Ñ Uα1 . Recall the Sebastiani-Thom sum-

mation
Ð

α fα =
ř

α fα ˝ πα with product domain
ś

α Uα Ă C
ř

α nα such that

πα1(
Ð

α fα) = fα1 .

If f P O0,n and g P O0,m are weighted homogeneous with weights

tω0, . . . , ωnu and tν0, . . . , νmu, respectively, then f ‘ g P O0,n+m+1 is weighted

homogeneous with weights tω0, . . . , ωn, ν0, . . . , νmu, which is compatible with

equation (2.32.3). With regard to the corresponding exponent matrices, one has the
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following direct sum decomposition,

A f ‘ g = A f ‘ Ag. (2.182)

If A f and Ag are non-singular, square matrices, then A f ‘ g is also non-

singular by the determinant identity det(A‘B) = (detA)(detB). The converse,

however, is not true. Moreover, if f and g are non-degenerate, then f ‘ g is non-

degenerate. The converse, however, is not true.

Remark 2.9.1. Consider f = x2y6 + x5y over C2, which is degenerate, q.v.,

Remark 2.5.52.5.5, and h = f ‘ z4 over C3 with exponent matrix

Ah =


2 6 0

5 1 0

0 0 4

 = A f ‘ (4). (2.183)

Clearly, z4 is non-degenerate. However, as Bh = (5x4y + 2xy6, x5 + 6x2y5, 4z3),

then h has a continuum of critical points on t(0, y, 0) P C3 | y P Cu. Hence, h is

also degenerate. Note that the Hilbert-Poincaré series PA f (t) is not a reflexive

Zě0-polynomial (or even a polynomial at all), while that of Ah is a reflexive

Zě0-polynomial of degree 54. By the multiplicativity of the algebraic index over

Sebastiani-Thom summation, µalg( f ‘ z4) = (115
3 )(3) = 115, which is an integer

that coincides with the limit limtÑ1 PAh(t). M
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2.9.2. Kronecker Products. In this section we discuss a tensor product act-

ing on the vector space Mat(F) of matrices over a field F of arbitrary character-

istic. We focus specifically on the (simple, associative) matrix algebra Mat(n, F)

of square matrices of size n P N. We define complementary operations on the

space of weighted homogeneous polynomials and discuss certain invariance

properties thereof. We refer the reader to [212212, 213213] and [6868] for details and rel-

evant proofs.

Definition 2.88. The Kronecker product of two matrices A P Fm,n and

B P Fr,s is the matrix

AbB =


a11B . . . a1nB

a21B . . . a2nB

... . . . ...

am1B . . . amnB


P Fmr,ns. (2.184)

The Kronecker product satisfies the following properties [213213]:

1. (Scalar Multiplication) For each λ P F, λ(AbB) = λAb B = Ab λB;

2. (Distributivity over Transpose) (AbB)ᵀ = A
ᵀ
bB

ᵀ;

3a. (Left Distributivity over Sum) Ab (B+ C) = AbB+ Ab C;

3b. (Right Distributivity over Sum) (A+ B)b C = Ab C+ Bb C; and,

4. (Associativity) (AbB)b C = Ab (Bb C),

all of which are rather simple to prove by direct calculation. If A and B are in-

vertible matrices, then so is A b B with inverse (A b B)´1 = A´1 b B´1. In
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particular, if A and B are non-singular matrices of size nˆ n and mˆm, respec-

tively, then A b B is non-singular by the determinant identity det(A b B) =

(detA)m(detB)n. The converse, however, is not true.

For matrices A,B,C and D such that the matrix products AC and BD are well-

defined, the equality (A b B)(C b D) = (AC) b (BD) holds and is known as

the mixed product identity. According to Knuth [245245], the second and last two

identities were shown by Hurwitz [216216].

Let In denote the (multiplicative) identity matrix of size n and Zr,s denote the

rˆ s matrix of zeros. A few special cases include: In b Im = Inm, Im b A =
Àm

i=1 A

with 1b A = Ab 1 = A and Ab Zr,s = Zr,s b A = Zmr,ns for any mˆ n matrix A.

In general, AbB ‰ BbA for arbitrary A,B, so the Kronecker product is not a

commutative operation on matrices. However, the following equivalence holds.

Proposition 2.89. For matrices A,B, there are two permutation matrices Pr

and Pc such that Ab B = Pr(Bb A)Pc, and the pair (Ab B,Bb A) is permutation

equivalent. In particular, if A and B have the same size, then Pc = P
ᵀ
r , and the pair

(AbB, Bb A) is permutation-similar.

Proof . The claim follows from direct computation. �

Equipped with the Kronecker product, putatively more complicated

weighted homogeneous polynomials can be generated from simpler ones.
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Definition 2.90. The Kronecker product f b g of weighted homogeneous

polynomials f and g is the weighted homogeneous polynomial with unit coeffi-

cients and exponent matrix A f b Ag.

Remark 2.9.2. If f = xayb + xcyd and g = xa1yb1 + xc1yd1 , then

f b g = xaa1yab1zba1wbb1 + xac1yad1zbc1wbd1

+ xca1ycb1zda1wdb1 + xcc1ycd1zdc1wdd1 (2.185a)

g b f = xaa1yba1zab1wbb1 + xca1yda1zcb1wdb1

+ xac1ybc1zad1wbd1 + xcc1ydc1zcd1wdd1 (2.185b)

and f b g – g b f . In particular, if f = xa + yd and g = xa1 + yd1 , then

f b g = xaa1 + yad1 + zda1 + wdd1 (2.186)

g b f = xaa1 + yda1 + zad1 + wdd1 . (2.187)

Moreover, for powers, in particular, the Kronecker product coincides with ordi-

nary exponentiation, viz., za b zb = zab. M

Remark 2.9.3. A Kronecker product need not be square. M

For an mˆ n matrix A, let Â denote any mˆ n matrix PA, where P is a per-

mutation matrix. Clearly, A » Â.

Proposition 2.91. Let Uα Ď Cnα be a neighborhood of the origin. Assume

that the complex analytic map fα : (Uα, 0) Ñ (C, 0) is a non-degenerate, weighted
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homogeneous singularity. Then f =
Òs

α=1 fα : (
Âs

α=1 Uα, 0) Ñ (C, 0) is weighted

homogeneous over
śs

α=1 nα complex variables with weights tωi1 ¨ ¨ ¨ωisu, where 1 ď

iα ď nα and 1 ď α ď s.

Proof . Consider two weighted homogeneous polynomials, f : (Cn+1, 0)Ñ

(C, 0) and g : (Cm+1, 0)Ñ (C, 0), with n1 and m1 monomials, respectively. Recall

1n denotes the vector consisting of n 1s. Since A f ω = 1n1 and Ag ν = 1m1 , then

1n1m1 = 1n1 b 1m1 (2.188a)

= (A f ω)b (Ag ν) (2.188b)

= (A f b Ag)(ωb ν) (2.188c)

= A f b g(ωb ν) (2.188d)

by the mixed product identity. It follows that f b g is a weighted homogeneous

polynomial with exponent matrix A f b Ag and weight ωb ν. In this case, f b g

satisfies the identity

( f b g)(z0, . . . , znm+n+m) = λ´1( f b g)(λω0ν0z0, . . . , λωnνm znm+n+m), (2.189)
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where λ P Cˆ. Observe that there are two permutation matrices Pr and Pc such

that

A f b g(ωb ν) = (Pr(Ag b A f )Pc)(ωb ν) (2.190a)

= (Pr(Ag b A f ))(Pc(ωb ν)) (2.190b)

= {Ag b f ({ωb ν). (2.190c)

Since the matrix Ag b f is defined up to an action of Sn1m1 ˆ S(n+1)(m+1) (by per-

muting the monomials and/or relabeling of the variables), then {Ag b f » Ag b f .

Similarly, since the weight ωb ν is a multiset, then {ωb ν » ωb ν. Thus, both

A f b g and Ag b f define the same weighted homogeneous polynomial up to an

action of Sn1m1 ˆ S(n+1)(m+1) and therefore g b f – f b g. This completes the

proof. �

Remark 2.9.4. Proposition 2.912.91 makes no claim about the critical locus of

the Kronecker product singularity f b g. M

Since the set of diagonal matrices is closed under the operation of Kronecker

product, it follows that the set of Brieskorn-Pham polynomials is closed under

b. More generally, since the Kronecker product of weight multisets preserves

inverse integrality, the set of quasi-Brieskorn-Pham polynomials is closed under

b.

Definition 2.92. Given a weighted homogeneous polynomial f , the t-

dilate of f is ft = f (zt
0, . . . , zt

n), where t P N.
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Remark 2.9.5. It follows that ft = f b zt. In fact, the numerical invariants

of ft are related to those of f and many have combinatorial interpretations in

terms of t-dilates of the Newton and weight polytopes of f , q.v., Chapter 55. M

Given two weighted homogeneous polynomials f : (Cn+1, 0) Ñ (C, 0) and

g : (Cm+1, 0) Ñ (C, 0) with local algebras A f and Ag, respectively, define the

Kronecker product A f b Ag of the corresponding local algebras as

A f b Ag = O0,n/JB f b O0,n/JBg (2.191)

= O0,nm+n+m/JB( f b g) (2.192)

with the corresponding commutative diagram

f A f

f b g A f b g A f b Ag

g Ag

//A˚
o�

��

ı1

OO
OO

π1

��
��

π2

//A˚ //–

OO
OO

π˚1

��
��

π˚2

//A˚
/�

??

ı2

The projections π˚1 : A f b g Ñ A f and π˚2 : A f b g Ñ Ag are defined through

the projections π1 : A f b Ag Ñ A f and π2 : A f b Ag Ñ Ag, respectively. By
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construction, there is an isomorphism A f b g – A f b Ag and, therefore,

µalg( f b g) = dimC A f b Ag. (2.193)

We proceed to the computation of the algebraic index of a Kronecker prod-

uct of weighted homogeneous polynomials.

Proposition 2.93. Let Uα Ď Cnα be a neighborhood of the origin. Assume that

the complex analytic map fα : (Uα, 0)Ñ (C, 0) is a non-degenerate, square singularity.

The algebraic index of the Kronecker product f =
Òs

α=1 fα : (
Âs

α=1 Uα, 0)Ñ (C, 0) is

the product

µalg( f ) =
n1
ź

i1=1

¨ ¨ ¨

ns
ź

is=1

(
1

ωi1 ¨ ¨ ¨ωis
´ 1
)

. (2.194)

Remark 2.9.6. Define ık =
řk

i=1 zi for k ě 1. The exponent matrix of ık is

Aık = Ik. The identities Ik b A =
Àk

i=1 A and f b ık » ık b f and equation (2.32.3)

imply

µalg( f b ık) = µalg(Σk´1
f f ) (2.195a)

= µalg( f ‘ ¨ ¨ ¨‘ f ) (2.195b)

= µalg( f )k. (2.195c)

M
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Corollary 2.94. If f and g are two non-degenerate, weighted homogeneous

polynomials, then the following identity holds:

µalg( f b g) = µalg(g b f ). (2.196)

Proof . The weight multisets of f b g and g b f are identical up to permu-

tation. �

Remark 2.9.7. If µalg( f ) and µalg(g) are non-negative integers, it does

not necessarily imply that µalg( f b g) is a non-negative integer. Consider

f = x2y10 + x3y5 over C2 with weights t1
4 , 1

20u, g = x6y10 + x8y over C2 with

weights t 9
74 , 1

37u and

f b g = x12y20z60w100 + x16y2z80w10 + x18(yz)30w50 + x24y3z40w5 (2.197)

over C4 with weights t 9
296 , 1

148 , 9
1480 , 1

740u. Then µalg( f ) = 57, µalg(g) = 260 and

µalg( f b g) = 15287451347
27 . Note that f , g and f b g are degenerate. M

Remark 2.9.8. If µalg( f b g) is a non-negative integer, then it does not nec-

essarily imply that µalg( f ) and µalg(g) are each non-negative integers. Consider

f = x6y9 + x2y8 over C2 with weights t´ 1
30 , 2

15u, g = x10y4 + x6y8 over C2 with

weights t 1
14 , 1

14u and

f b g = x60y24z90w36 + x36y48z54w72 + x20y8z80w32 + x12y16z48w64 (2.198)
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over C4 with weights t´ 1
420 ,´ 1

420 , 1
105 , 1

105u. Then µalg( f ) = ´403
2 , µalg(g) = 169

and µalg( f b g) = 1917038656. Note that f , g and f b g are degenerate. M

Remark 2.9.9. If either µalg( f ) or µalg(g) is zero, it does not necessarily

imply that µalg( f b g) is zero. Consider f = x9 + y over C2 with weights t1
9 , 1u,

g = x3y3 + y9 over C2 with weights t2
9 , 1

9u and f b g = (xy)27 + y81 + (zw)3 + w9

over C4 with weights t 2
81 , 1

81 , 2
9 , 1

9u. Then µalg( f ) = 0, µalg(g) = 28 and µalg( f b

g) = 88480. Note that f has no critical points at the origin, and g and f b g are

degenerate. M

The Kronecker product factors over direct summations from the right but not

from the left. The proof is simple yet instructive. Observe

(Ab C)‘ (Bb C) =

Ab C 0

0 Bb C

 (2.199a)

=

Ab C 0b C

0b C Bb C

 = (A‘B)b C, (2.199b)

which corrects a typographical error and generalizes Proposition 28 in [6868]. In

general, however,

Ab (B‘ C) =


a11B‘ C . . . a1nB‘ C

a21B‘ C . . . a2nB‘ C

... . . . ...

am1B‘ C . . . amnB‘ C


‰

AbB 0

0 Ab C

 , (2.200)
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the right side being (AbB)‘ (Ab C). However, Ab (B‘ C) » (B‘ C)b A.

Proposition 2.95. Let f , g and h be weighted homogeneous polynomials. Then

the following statements are true:

1. (g ‘ h) b f = (g b f ) ‘ (h b f );

2. f b (g ‘ h) ‰ ( f b g) ‘ ( f b h); however,

3. f b (g ‘ h) – ( f b g) ‘ ( f b h).

Therefore, f b (g ‘ h) – (g ‘ h) b f – (h ‘ g) b f .

Proof . The claim follows from the distributive identity of Kronecker prod-

ucts over Kronecker summations from the right, (A f ‘ Ag)b Ah = (A f b Ah)‘

(Ag b Ah) and the preceding discussion. �

Remark 2.9.10. Consider f = xa + yb and g = xa1 + yb1 over C2. Over C4,

f b g = (xa ‘ xb) b (xa1 ‘ xb1) (2.201a)

= (xa b (xa1 ‘ xb1)) ‘ (xb b (xa1 ‘ xb1)) (2.201b)

= ((xa b xa1) ‘ (xa b xb1)) ‘ ((xb b xa1) ‘ (xb b xb1)) (2.201c)

= xaa1 ‘ xab1 ‘ xba1 ‘ xbb1 (2.201d)

= xaa1 + yab1 + zba1 + wbb1 . (2.201e)

M
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Corollary 2.96. If f , g and h are non-degenerate, square singularities, then the

corresponding algebraic indices satisfy the following identity,

µalg( f b (g ‘ h)) = µalg( f b g)µalg( f b h). (2.202)

Proof . The claim is a consequence of Proposition 2.952.95 and the multiplica-

tivity of the algebraic index over Sebastiani-Thom summations, q.v., equation

(2.32.3). �

Corollary 2.97. Let Uα Ď Cnα be a neighborhood of the origin. Assume

that the complex analytic map fα : (Uα, 0) Ñ (C, 0) is quasi-Brieskorn-Pham

polynomials with inverse weights taiαu. The algebraic index of Kronecker product

f =
Òs

α=1 fα : (
Âs

α=1 Uα, 0)Ñ (C, 0) is the product

µalg( f ) =
n1
ź

i1=1

¨ ¨ ¨

ns
ź

is=1

(
ai1 ¨ ¨ ¨ ais ´ 1

)
, (2.203)

which is zero if and only if µalg( fα) = 0 for 1 ď α ď s.

Remark 2.9.11. Consider the power f Nb =
ÒN

i=1 f and denote the set of

consecutive positive integers t1, . . . , nu by the symbol [n]. It follows that

µalg( f Nb) =
n
ź

i1=1

¨ ¨ ¨

n
ź

iN=1

(
1

ωi1 ¨ ¨ ¨ωiN

´ 1
)

(2.204a)

=
ź

i1,...,iNP[n]

(
1

ωi1 ¨ ¨ ¨ωiN

´ 1
)

. (2.204b)
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In particular, if f =
řn

i=1 zai
i , then

µalg( f Nb) =
ź

i1,...,iNP[n]

(ai1 ¨ ¨ ¨ aiN ´ 1), (2.205)

which is a priori a non-negative integer. M

2.9.3. Kronecker Summation. The Kronecker sum** of two square matrices

A P Cn,n and B P Cm,m is the square matrix Ad B = Ab Im + In b B P Cnm,nm,

where b denotes the Kronecker product. In general, the Kronecker summation

is not commutative.

Definition 2.98. The Kronecker summation f d g of square, weighted ho-

mogeneous polynomials f and g is the square, weighted homogeneous polyno-

mial with unit coefficients and exponent matrix A f d Ag.

Remark 2.9.12. A Kronecker summation is necessarily square. M

Equipped with the Kronecker sum, potentially more complicated weighted

homogeneous polynomials can be generated from simpler ones.

Remark 2.9.13. Consider f = xayb + xcyd and g = xa1yb1 + xc1yd1 , then

f d g = xa+a1yb1zb + xc1ya+d1wb + xczd+a1wb1 + yczc1wd+d1 (2.206a)

g d f = xa+a1ybzb1 + xcyd+a1wb1 + xc1za+d1wb + yc1zcwd+d1 , (2.206b)

*The Kronecker summation of matrices is not to be confused with the standard matrix
direct summation that invariably takes a block diagonal form.
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where f d g – g d f . If f = xa + yd and g = xa1 + yd1 , then

f d g = xa+a1 + ya+d1 + zd+a1 + wd+d1 (2.207)

g d f = xa+a1 + yd+a1 + za+d1 + wd+d1 . (2.208)

Moreover, for powers, in particular, the direct summation coincides with ordi-

nary multiplication, viz., za d zb = za+b. M

Since the set of diagonal matrices is closed under the operation of Kronecker

summation, it follows that the set of Brieskorn-Pham polynomials is closed

under d. However, the set of quasi-Brieskorn-Pham polynomials is not closed

under the operation Kronecker summation, nor is the set of non-degenerate

square singularities.

Remark 2.9.14. Consider f = x2 + xy4 over C2, which is non-degenerate,

as B f = (2x + y4, 3xy3), and has weights t1
2 , 1

8u. Consider the Kronecker summa-

tion of f with itself, namely,

f d f = x4 + xy6 + xz6 + yzw8, (2.209)

which is degenerate, as

B( f d f ) = (4x3 + y6 + z6, 6xy5 + zw8, 6xz5 + w8y, 8yzw7), (2.210)

and f d f has a continuum of critical points on t(0, 0, 0, w) P C4 |w P Cu. More-

over, f d f has weights t1
4 , 1

8 , 1
8 , 3

32u, so it is not quasi-Brieskorn-Pham. M
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Remark 2.9.15. If f and g are square singularities with weights

tω0, . . . , ωnu and tν0, . . . , νnu, respectively, then it is not necessarily true that

µalg( f d g) =
n
ź

i=1

m
ź

j=1

(
1

ωi
+

1
νj
´ 1

)
, (2.211)

despite an analogous identity for Kronecker products, i.e., equation (2.1942.194).

From initial studies, disentangling µalg( f d g) as a function of the weights of f

and g seems rather unlikely, perhaps even impossible, except for a few isolated

families of singularities. M

Proposition 2.99. Let Uα Ď Cnα be a neighborhood of the origin. Assume

that the complex analytic map fα : (Uα, 0) Ñ (C, 0) is a Brieskorn-Pham poly-

nomial with exponents taiαu Ă N. The algebraic index of Kronecker summation

f =
Ôs

α=1 fα : (
Âs

α=1 Uα, 0)Ñ (C, 0) is the product

µalg( f ) =
n1
ź

i1=1

¨ ¨ ¨

ns
ź

is=1

(
ai1 + ¨ ¨ ¨+ ais ´ 1

)
. (2.212)

Remark 2.9.16. If f is Brieskorn-Pham with exponents ta1, . . . , anu Ă N,

then for any positive integer m,

µalg

(
f d

ôm
i=1z

)
=

n
ź

i=1

(ai + m´ 1), (2.213)

which is necessarily a positive integer. M
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Remark 2.9.17. Consider the additive power f Nd =
ÔN

i=1 f . By Proposi-

tion 2.992.99, if f =
řn

i=1 zai
i , then

µalg( f Nd) =
ź

i1,...,iNP[n]

(ai1 + ¨ ¨ ¨+ aiN ´ 1), (2.214)

which is necessarily a positive integer. M

Define the Kronecker summation A f d Ag of the corresponding local alge-

bras of two weighted homogeneous polynomials f : (Cn+1, 0) Ñ (C, 0) and

g : (Cm+1, 0)Ñ (C, 0),

A f d Ag = O0,n/JB f d O0,n/JBg (2.215)

= O0,nm+n+m/JB( f d g) (2.216)

with the corresponding commutative diagram

f A f

f d g A f d g A f d Ag

g Ag

//A˚
o�

��

ı1

OO
OO

π1

��
��

π2

//A˚ //–

OO
OO

π˚1

��
��

π˚2

//A˚
/�

??

ı2
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The projections π˚1 : A f d g Ñ A f and π˚2 : A f d g Ñ Ag are defined through

the projections π1 : A f d Ag Ñ A f and π2 : A f d Ag Ñ Ag, respectively. By

construction, there is an isomorphism A f d g – A f d Ag and, therefore,

µalg( f d g) = dimC A f d Ag. (2.217)

2.9.4. Representative Graphs.

Definition 2.100. Let G = (V, E) be a weighted, directed graph with

vertex set V, edge set E Ă V ˆV and edge weights teiju Ă Zě0. The adjacency

matrix A(G) = (aij) of G is defined as follows:

aij =

$

&

%

eij if (i, j) P E

0 if (i, j) R E.
(2.218)

Definition 2.101. Two graphs are graph isomorphic if and only if there is

a permutation matrix P such that the corresponding adjacency matrices are P-

similar, viz., A1 = PAP´1. Two graphs are permutation equivalent if and only there

are two permutation matrices P and Q such that the corresponding adjacency

matrices are (P,Q)-similar, viz., A1 = PAQ´1.

Remark 2.9.18. Isomorphic graphs are permutation equivalent, but the

converse is not true. M

Recall that two nˆ n matrices are permutation equivalent if and only if they

equal up to an action of Sn ˆ Sn. Let [A] denote the equivalence class of graphs

up to permutation equivalence with representative adjacency matrix A. Since
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adjacency matrices are necessarily square, we shall allow the addition of rows

to ensure squareness.

Definition 2.102. The representative graph G f of a square singularity f is

the most connected graph corresponding to the equivalence class of adjacency

matrices [A f ], where A f is the exponent matrix of f (up to the addition of rows).

Remark 2.9.19. As permutation matrices have unit determinant and the de-

terminant is multiplicative over matrix products, the determinant is an invariant

on permutation equivalence classes of exponent matrices. M

We discuss now a selection of typical representative graphs (Figure 2.22.2).

P5 C8 S9

Figure 2.2. Five Connected Graphs

2.9.4.1. Path Graph. The representative graph of the weighted homogeneous

polynomial f = z2 +
řn´2

i=1 zizi+2 + zn´1 for n ą 1 is the path graph Pn with
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(tri-diagonal) adjacency matrix

A(Pn) =



0 1 0 0 ¨ ¨ ¨ 0 0

1 0 1 0 ¨ ¨ ¨ 0 0

0 1 0 1 ¨ ¨ ¨ 0 0
...

... . . . . . . . . . ...
...

0 0 ¨ ¨ ¨ 1 0 1 0

0 0 ¨ ¨ ¨ 0 1 0 1

0 0 ¨ ¨ ¨ 0 0 1 0


. (2.219)

In this case the polynomial f is degenerate for n ą 1, singular for n ” 1 mod 4,

or has at least one zero weight for n ą 3 and n ı 1 mod 4. The first few polyno-

mials are

P2 : f = z1 + z2 (2.220)

P3 : f = z2 + z1z3 + z2 (2.221)

P4 : f = z2 + z1z3 + z2z4 + z3, (2.222)

where the red text denotes a graph that cannot be realized from a square adja-

cency matrix due to a repetition of monomials.

2.9.4.2. Cycle Graph. The representative graph of the weighted homogeneous

polynomial f = z2zn + z1z3 + ¨ ¨ ¨+ zn´2zn + z1zn´1 is a cycle graph Cn with
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adjacency matrix

A(Cn) =



0 1 0 0 ¨ ¨ ¨ 0 1

1 0 1 0 ¨ ¨ ¨ 0 0

0 1 0 1 ¨ ¨ ¨ 0 0
...

... . . . . . . . . . ...
...

0 0 ¨ ¨ ¨ 1 0 1 0

0 0 ¨ ¨ ¨ 0 1 0 1

1 0 ¨ ¨ ¨ 0 0 1 0


. (2.223)

In this case the n weights of f are t1
2 , . . . , 1

2u if n ı 0 mod 4. See for example,

[9191]. The first few polynomials are

C2 : f = z2
1 + z2

2 (2.224)

C3 : f = z2z3 + z1z3 + z1z2 (2.225)

C4 : f = z2z4 + z1z3 + z2z4 + z1z3. (2.226)

Remark 2.9.20. These quasi-Brieskorn-Pham singularities are right equiv-

alent to simple A1-singularities (e.g., f „r
řn

i=1 z2
i ) and have trivial Hilbert-

Poincaré series, i.e., PA f (t) = 1. M

2.9.4.3. Star Graph. The representative graph of the weighted homogeneous

polynomial f = z2 ¨ ¨ ¨ zn + (n´ 1)z1 = z2 ¨ ¨ ¨ zn + z1 + ¨ ¨ ¨+ z1 is the star graph
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Sn+1 with adjacency matrix

A(Sn+1) =

 0 1ᵀn´1

1n´1 Zn´1

 , (2.227)

where 1n denotes a column vector of n 1s, and Zn denotes the nˆ n matrix of 0s.

In this case the polynomial f is degenerate for n ą 1. By the repetition of mono-

mials, the star graphs cannot be realized by a square, weighted homogeneous

singularity for n ą 2.

2.9.4.4. Complete Graph. The representative graph of the weighted homoge-

neous polynomial f =
řn

i=1 z1 ¨ ¨ ¨ ẑi ¨ ¨ ¨ zn, where the circumflex denotes omis-

sion, is the complete graph Kn with adjacency matrix

A(Kn) =



0 1 1 1 ¨ ¨ ¨ 1 1

1 0 1 1 ¨ ¨ ¨ 1 1

1 1 0 1 ¨ ¨ ¨ 1 1
...

... . . . . . . . . . ...
...

1 1 ¨ ¨ ¨ 1 0 1 1

1 1 ¨ ¨ ¨ 1 1 0 1

1 1 ¨ ¨ ¨ 1 1 1 0


, (2.228)

that is, Jn´ In, where Jn denote the nˆ n matrix of 1s. In this case, the n weights

of f are t 1
n´1 , . . . 1

n´1u for n ą 2. For n = 2, f = z1 + z2 „r z1 + z2
2 (A0-

singularity). For n ą 2, f is degenerate.
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2.9.4.5. Weighted and Directed Edges. By allowing weighted and directed edges,

one may enlarge the families of permissible representative graphs to include the

adjacency matrices/exponent matrices of a myriad of square, weighted homoge-

neous polynomials.

Remark 2.9.21. Consider f =
řn

i=1(z1 ¨ ¨ ¨ ẑi ¨ ¨ ¨ zn)m with n ą 1 and m ě 1.

Then f is degenerate for n ą 3. Moreover, f has weights t 1
m(n´1) , . . . , 1

m(n´1)u,

and G f is the complete weighted graph mKn (that is, Kn with all edge weights

equal to m). M

To what extent does a representative graph determine the invariants of a

singularity is an intriguing question. Recall that the characteristic polynomial of

a graph is that of its adjacency matrix, pG(λ) = det(λI´ AG). The following is

one such example.

Proposition 2.103. If f is a Brieskorn-Pham polynomial with representative

graph G f , then

pG f (1) = µalg( f ). (2.229)

Proof . The characteristic polynomial of an nˆ n diagonal matrix D = (dii)

evaluated at λ = 1 is the product
śn

i=1(λi ´ 1), where λi = dii. �

2.9.4.6. Graph Morphisms. Using the exponent matrix approach and its

graphical interpretation, it is now possible to create new singularities from

old in a compatible, consistent and visual manner. For example, it is relatively
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Table 2.1. Various Closed Operations on Singularities

Singularity Exponent Matrix Local Algebra Representative Graph

f ‘ g A f ‘Ag A f bAg G f \ Gg

f b g A f bAg A f b Ag G f l Gg

f d g A f dAg A f d Ag G f ˆ Gg

straightforward to demonstrate that the Sebastiani-Thom summation of two

weighted homogeneous polynomials corresponds to the graph disjoint union

of the respective representative graphs. Similar structures arise in an equally

simple way.

Proposition 2.104. Let \, l and ˆ denote the graph (disjoint) union, graph

cartesian product and graph tensor product, respectively. The following identities hold:

G f ‘ g = G f \ Gg (2.230)

G f d g = G f l Gg (2.231)

G f b g = G f ˆ Gg. (2.232)

Proof . The graph identities follow immediately from the following adja-

cency matrix identities A f ‘ g = A f ‘ Ag, A f d g = A f d Ag and A f b g = A f b Ag,

respectively, where ‘ denotes Sebastiani-Thom summation, ‘ denotes (matrix)

direct summation,d denotes (matrix) Kronecker summation and b denotes

(matrix) Kronecker product. �
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Remark 2.9.22. Consider f =
řn

i=1 zai
i . Then G f = Gza1 \ ¨ ¨ ¨ \ Gzan , the

disjoint union of loops with edge weights taiu. M

Remark 2.9.23. Consider f dn =
ř2n+1

i=1 zn+1
i . Then G f – P2 – K2, the edge

graph, and G f dn = G f l ¨ ¨ ¨l G f – Qn+1, the (n + 1)-cube graph. M

We summarize the three operations on singularities, exponent matrices, local

algebras and representative graphs discussed in this section in Table 2.12.1.

This concludes our analysis of some of the algebraic structure that lies at the

heart of complex analytic singularities. We turn our attention to more analytical

aspects.
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Chapter 3

Analytic Structure of Isolated Singularities

A commodity appears at first sight an extremely obvious, trivial thing. But
its analysis brings out that it is a very strange thing, abounding in meta-
physical subtleties and theological niceties. — Karl Marx

Contents
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In this chapter we generalize the notion of weighted homogeneity to mero-

morphic functions and derive a new analytic criterion for weighted homoge-

neous polynomials. We discuss also the Grothendieck residue and define the

analytic index of a singularity. Finally, we make some remarks on the mixed

Hodge structure of weighted homogeneous singularities.

3.1. Generalized Weighted Homogeneity

Definition 3.1. Let U Ă Cn+1 be a domain. A meromorphic function

f : U Ñ C is weighted homogeneous on U if and only if there is a real m and a set
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tω0, . . . , ωnu Ă R such that

λm f = f (λω0z0, . . . , λωn zn) λ P Cˆ, (z0, . . . , zn) P U, (3.1)

where the m is the co-degree and tω0, . . . , ωnu are (reduced) weights.

Remark 3.1.1. Although it may seem prudent to absorb the co-degree into

the weights, it is not always possible to do so. M

Remark 3.1.2. A function with rational weights need not be a polynomial.

Consider two complex analytic, homogeneous polynomials f and g of degree d

and d1, respectively, then the rational function f
g is weighted homogeneous over

Cn+1zVg,0 with co-degree d´ d1 and reduced weights t1, . . . , 1u. M

Remark 3.1.3. A weighted homogeneous function with non-zero co-degree

m and (possibly non-unique) weights tω0, . . . , ωnu is a weighted homogeneous

function with co-degree 1 and weights tω0
m , . . . , ωn

m u. M

Proposition 3.2. Let U Ă Cn+1 be a domain. A meromorphic, weighted

homogeneous function f : U Ñ C with co-degree m P R and weights tω0, . . . , ωnu Ă

R satisfies the weighted Euler equation

m f =
n
ÿ

i=0

ωizi Bi f (z0, . . . , zn) P U. (3.2)

Proof . To show the claimed implication, let

f λ = λω
¨ f := f (λω0z0, . . . , λωn zn) (3.3)
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and consider the total differential d f λ,

d f λ =
n
ÿ

i=0

B f λ

B(λωi zi)
d(λωi zi) (3.4a)

=
n
ÿ

i=0

ωiλ
ωi´1zi

B f λ

B(λωi zi)
dλ (3.4b)

= λ´1
n
ÿ

i=0

ωi zi
B f λ

Bzi
dλ. (3.4c)

By definition, f λ = λ f for λ P Cˆ, since f is weighted homogeneous. It follows

that d f λ = mλm´1 f dλ and, therefore, m f =
řn

i=0 ωi zi Bi f , as claimed. �

Remark 3.1.4. The finite Puiseux series f =
řn

i=0 ciz
1/ai
i , where ci P Cˆ and

ai P Qˆ
ą0, is weighted homogeneous with co-degree 1 and weights ta0, . . . , anu Ă

N and satisfies the weighted Euler equation f =
řn

i=0 aiziBi f . M

Corollary 3.3. Let U Ă Cn+1 be a domain. If a meromorphic, weighted homo-

geneous function f : U Ñ C with non-zero co-degree and non-zero weights has any

critical points on U, then it also vanishes at those points.

Corollary 3.4. Let U Ă Cn+1 be a domain. If a meromorphic, weighted homo-

geneous function f : U Ñ C with non-zero co-degree has any critical points on U and

any zero weights in some directions, then it has a continuum of critical points in the

corresponding directions.

Denote by WH(ω) the equivalence class of weighted homogeneous func-

tions with weight ω and domain extended to the generalized Riemann torus
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Ĉn+1. Denote by WH(ω; m) Ă WH(ω) the subclass of those functions with

co-degree m. Define 0 and 1 to be the unique constant weighted homogeneous

functions of arbitrary co-degree and the zero co-degree, respectively.

Proposition 3.5. For any ω P Rn+1, the equivalence class WH(ω) is a group.

For m P R, the subclass WH(ω; m) is a vector space over C. In particular, the subclass

WH(ω; 0) is a unital associative algebra over C.

Proof . Given f P WH(ω; m) and g P WH(ω; m1), the product f g is also

weighted homogeneous with the same weights and satisfies

n
ÿ

i=0

ωiziBi( f g) = g
n
ÿ

i=0

ωiziBi f + f
n
ÿ

i=0

ωiziBig (3.5)

= (m + m1) f g, (3.6)

illustrating the fact that the f g has co-degree m + m1, so f g P WH(ω; m + m1).

Similarly, the ratio f
g is weighted homogeneous with the same weights and

satisfies

g2
n
ÿ

i=0

ωiziBi

(
f
g

)
= g

n
ÿ

i=0

ωiziBi f ´ f
n
ÿ

i=0

ωiziBig (3.7)

= (m´m1) f g, (3.8)

illustrating the fact that f
g has co-degree m´m1, so f

g P WH(ω; m´m1). Note

that the pointwise product is closed, commutative and associative on WH(ω).
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Since inverses exist and there is a multiplicative identity, namely, 1, it follows

that WH(ω) is a group.

Given f , g P WH(ω; m), consider the linear combination α f + βg, where

α, β P C. For any λ P Cˆ,

λm(α f + βg) = αλm f + βλmg (3.9)

= α f (λω
¨ z) + βg(λω

¨ z) (3.10)

= (α f + βg)(λω
¨ z), (3.11)

so α f + βg P WH(ω; m). Given f P WH(ω; m) with m P R, for any g P

WH(ω; 0), one has f g, f
g P WH(ω, m). Thus, the summation and product are

closed, commutative and associative operations on WH(ω; 0) with identities 0

and 1, respectively. Inverses also exist for all non-zero elements. �

Let m( f ) denote the co-degree of f .

Corollary 3.6. For s P N, r1, . . . , rs P Z and f1, . . . , fs PWH(ω),

m( f r1
1 ¨ ¨ ¨ f rs

s ) =
s
ÿ

i=1

rim( fi). (3.12)

Proof . By Proposition 3.53.5, one has m( f g) = m( f ) + m(g) and m( f
g ) =

m( f )´m(g). Therefore, for any integer a, one has m( f a) = a m( f ). The claim

now follows. �

Definition 3.7. If an entire function is weighted homogeneous on its

domain with non-zero co-degree, then it is simply weighted homogeneous.
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Remark 3.1.5. If f : (Cn+1, 0) Ñ (C, 0) is a complex analytic function

(so differentiable), weighted homogeneous with co-degree 1 and weights

tω0, . . . , ωnu, then for k ě 0,

f =
ÿ

0ďi1,...,ikďn

ωi1 ¨ ¨ ¨ωik Di1 ¨ ¨ ¨Dik f , (3.13)

where Di = ziBi. Let [λ1, ¨ ¨ ¨ , λm] denote the number of subset partitions of the

sequence [λ1 + ¨ ¨ ¨+ λm] = t1, 2, . . . , λ1 + ¨ ¨ ¨+ λmu into tλ1, . . . , λmu-parts with

canonical ordering (increasing in each part) (A036040A036040). For example, [2, 2] = 3

and [2, 1, 1] = 6, since t1, 2, 3, 4u may be partitioned into t2, 2u-parts as 12|34,

13|24 and 14|23, and into t2, 1, 1u-parts as follows 12|3|4, 13|2|4, 14|2|3, 23|1|4,

24|1|3 and 34|1|2, respectively. By expanding equation (3.133.13),

f =
ÿ

(λ1,...,λm)$k

[λ1, . . . , λm]
ÿ

0ďi1,...,imďn

ωλ1
i1
¨ ¨ ¨ωλm

im zi1 ¨ ¨ ¨ zikBi1,...,im f . (3.14)

For instance, if k = 2, then

f =
n
ÿ

i=0

ωizi Bi

 n
ÿ

j=0

ωjzj Bj f

 (3.15)

=
n
ÿ

i,j=0

ωiωjzi Bi(zj Bj f ) (3.16)

=
n
ÿ

i=0

ω2
i zi Bi f +

n
ÿ

i,j=0

ωiωjzizj Bij f , (3.17)
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from which one may deduce the identity

n
ÿ

i,j=0

ωiωjzizj Bij f =
n
ÿ

i=0

ωi(1´ωi)ziBi f , (3.18)

while if k = 3 or k = 4, one has

f =
n
ÿ

i=0

ω3
i zi Bi f + 3

n
ÿ

i,j=0

ω2
i ωjzizj Bij f +

n
ÿ

i,j,k=0

ωiωjωkzizjzk Bijk f (3.19)

and

f =
n
ÿ

i=0

ω4
i zi Bi f + 4

n
ÿ

i,j=0

ω3
i ωjzizj Bij f + 3

n
ÿ

i,j=0

ω2
i ω2

j zizj Bij f

+ 6
n
ÿ

i,j,k=0

ω2
i ωjωkzizjzk Bijk f +

n
ÿ

i,j,k,l=0

ωiωjωkωlzizjzkzl Bijkl f , (3.20)

respectively. M

Definition 3.8. A weighted homogeneous polynomial is a complex analytic

polynomial that is weighted homogeneous on its domain with co-degree 1.

Let U Ă Rn denote a convex neighborhood of the origin. The following

result is indispensable in Morse Theory [306306].

Proposition 3.9 (Milnor, [306306]). If f : (U, 0) Ñ (R, 0) is a smooth function,

then there are smooth functions tg1, . . . , gnu : Rn Ñ R defined on U such that

f =
n
ÿ

i=1

xi gi and gi(0) = Bi f (0). (3.21)
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Proof . Define the R-action t ¨ (x1, . . . , xn) = (tx1, . . . , txn). Let

f 1(tx1, . . . , txn) denote the derivative of the composite function

( f ˝ t)(x1, . . . , xn) = f (tx1, . . . , txn). (3.22)

Similarly, let

(Bi f ˝ t)(x1, . . . , xn) = (Bi f )(tx1, . . . , txn) (3.23)

denote the ith-directional derivative of f (x1, . . . , xn) subsequently evaluated at

the point (tx1, . . . , txn). Observe that

f (x1, . . . , xn) =

ż 1

0
f 1(tx1, . . . , txn) dt (3.24)

=

ż 1

0

n
ÿ

i=1

xi (Bi f )(tx1, . . . , txn) dt (3.25)

=
n
ÿ

i=1

xi gi(x1, . . . , xn), (3.26)

where

gi(x1, . . . , xn) =

ż 1

0
(Bi f )(tx1, . . . , txn) dt. (3.27)

Since f is smooth and vanishes at the origin, it follows that gi is smooth and

vanishes at the origin, as claimed. �

Remark 3.1.6. Given a set of functions th1(t, x), . . . , hn(t, x)u : Rn+1 Ñ

R2, differentiable in both variables, the function (Bi f )(h1(t, x), . . . , hn(t, x))
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denotes the directional derivative of f (x1, . . . , xn) subsequently evalu-

ated at the point (h0(t, x), . . . , hn(t, x)). Contradistinctively, the function

Bi f (h1(t, x), . . . , hn(t, x)) denotes the directional derivative of the composite

function f (h1(t, x), . . . , hn(t, x)). M

3.2. Weighted Homogeneous Polynomials, Revisited

Proposition 3.10. A complex analytic polynomial f : (Cn+1, 0) Ñ (C, 0) is

weighted homogeneous if and only if there are unique, positive reals tω0, . . . , ωnu such

that

f (z0, . . . , zn) =

ż 1

0
f (tω0z0, . . . , tωn zn) dˆt. (3.28)

In particular, tω0, . . . , ωnu are the corresponding weights.

Proof . For any complex analytic polynomial f : Cn+1 Ñ C (and therefore

any polynomial over Rn+1) and any tω0, . . . , ωnu Ă Rą0, the Fundamental

Theorem of Calculus [346346] implies the identity

f (z0, . . . , zn)´ f (0) =
ż 1

0
f 1(tω0z0, . . . , tωn zn) dt (3.29)

=
n
ÿ

i=0

ωizi

ż 1

0
Bi f (tω0z0, . . . , tωn zn) dˆt, (3.30)
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since

f 1(tω0z0, . . . , tωn zn) =
n
ÿ

i=0

(
d(tωi zi)

dt

)´1
B f

B(tωi zi)
(3.31)

= t´1
n
ÿ

i=0

ωizi Bi f (tω0z0, . . . , tωn zn). (3.32)

See Lemma 4.1 in [4949]. Thus, if f vanishes at the origin and there are unique,

positive reals tω0, . . . , ωnu such that

f (z0, . . . , zn) =

ż 1

0
f (tω0z0, . . . , tωn zn) dˆt, (3.33)

then each directional derivative of f satisfies a similar identity, namely,

Bi f (z0, . . . , zn) = Bi

ż 1

0
f (tω0z0, . . . , tωn zn) dˆt (3.34)

=

ż 1

0
Bi f (tω0z0, . . . , tωn zn) dˆt, (3.35)

which when combined with equation (3.303.30) yields the following weighted Euler

equation,

f =
n
ÿ

i=0

ωiziBi f . (3.36)

Thus, by the converse of Proposition 3.23.2, f is weighted homogeneous with

weights tω0, . . . , ωnu. Conversely, suppose f is weighted homogeneous with
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said weights. The identity λ f (z0, . . . , zn) = f (λω0z0, . . . , λωn zn) implies

ż 1

0
f (tω0z0, . . . , tωn zn) dˆt = f (z0, . . . , zn)

ż 1

0
t dˆt (3.37)

= f (z0, . . . , zn), (3.38)

which completes the proof of the equivalence. �

Remark 3.2.1. More generally, for any point a = (a0, . . . , an) P C,

f (z0 + a0, . . . , zn + an)´ f (a) =
ż 1

0
f 1(tω0z0 + a0, . . . , tωn zn + an) dt (3.39)

=
n
ÿ

i=0

ωizi

ż 1

0
Bi f (tω0z0 + a0, . . . , tωn zn + an) dˆt.

M

Remark 3.2.2. If ωi = 1 for 0 ď i ď n, then

Bi f (tz0, . . . , tzn) = t(Bi f )(tz0, . . . , tzn) 0 ď i ď n, (3.40)

so equation (3.253.25) is a special case of equation (3.303.30). M

Remark 3.2.3. The integral of equation (3.303.30) is not well-defined if the

weights are non-positive or if f is a non-polynomial, rational function. M

Corollary 3.11. If a complex analytic polynomial f : (Cn+1, 0) Ñ (C, 0)

satisfies the system of integro-differential equalities,

ωi Bi f =

ż 1

0
Bi f (tz0, . . . , tzn) dˆt 0 ď i ď n, (3.41)
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for some set of rationals tω0, . . . , ωnu, then f is weighted homogeneous.

Proof . By the Fundamental Theorem of Calculus, any complex analytic

polynomial f : Cn+1 Ñ C satisfies the identity

f (z0, . . . , zn)´ f (0) =
n
ÿ

i=0

zi

ż 1

0
Bi f (tz0, . . . , tzn) dˆt. (3.42)

If f vanishes at the origin and satisfies equation 3.413.41, then equation 3.423.42 implies

that f satisfies a weighted Euler equation. Thus, by a similar argument used in

the proof of Proposition 3.103.10, f is a weighted homogeneous polynomial with

weights tω0, . . . , ωnu. �

Remark 3.2.4. The converse of Corollary 3.113.11 holds for Brieskorn-Pham

polynomials. M

Remark 3.2.5. The converse of Corollary 3.113.11 is not true in general. Con-

sider the non-degerate, weighted homogeneous polynomial f = x2 + xy2 over

C2, which has weights t1
2 , 1

4u. While Bx f = 2x + y2 and By f = 2xy,

ż 1

0
Bx f (tx, ty) dˆt = x + 1

3 y3 and
ż 1

0
Bx f (tx, ty) dˆt = 2

3 xy. (3.43)

M

Corollary 3.12. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial, then the putative weights can be determined by the equations

ż 1

0

Bi f (tz0, . . . , tzn)

Bi f (z0, . . . , zn)
dˆt = ωi 0 ď i ď n. (3.44)
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Remark 3.2.6. If there are functions h(λ) and tg0(λ), . . . , gn(λ)u with loga-

rithmic derivatives on Cˆ such that f satisfies the transformation law

h(λ) f = f (g0(λ)z0, . . . , gn(λ)zn) λ P Cˆ, (3.45)

then f satisfies the weighted Euler equation

(log h(λ))1 f =
n
ÿ

i=0

(log gi(λ))
1ziBi f . (3.46)

Taking gi(λ) = λωi and h(λ) = λm yields the case in the statement of Proposi-

tion 3.23.2. Alternatively, the choice gi(λ) = ωiλ
ωi and h(λ) = λ yields the trans-

formation law λ f = f (ω0λω0z0, . . . , ωnλωn zn) for λ P Cˆ with the weighted

Euler equation f =
řn

i=0 ωiziBi f . M

Using Proposition 2.602.60 among other related results, Hertling and Kurbel

have recently begun the classification of non-degenerate, weighted homoge-

neous singularities [206206], complete up to 4 variables and with algebraic in-

dex less than or equal to 2000. The number of equivalence classes Nn of non-

degenerate, weighted homogeneous polynomials over Cn+1 is given in Table

3.13.1.

Remark 3.2.7. For n P t1, 2, 3, 4u, the number of equivalence classes Nn of

non-degenerate, weighted homogeneous polynomials over Cn+1 coincides with

the number of endofunctions of n + 1 points (A001372A001372). M

Their classification includes the following result.
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Table 3.1. Number of Equivalence Classes of Non-degenerate Weighted
Homogeneous Singularities over Cn+1 for 1 ď n ď 5

n 1 2 3 4 5

Nn 3 7 19 47 128

Proposition 3.13 (Hertling, Kurbel, [206206]). Let f : (Cn+1, 0) Ñ (C, 0) be

a non-degenerate weighted homogeneous polynomial with weights tω0, . . . , ωnu and

weighted degree d. Let pi denote the (i + 1)th prime. Then

d ď µalg( f ) ¨

$

&

%

śn
i=0

pi
pi´1 0 ă ωi ď

1
2

śn´1
i=0

pi
pi´1 0 ă ωi ă

1
2 , n ą 1.

(3.47)

Remark 3.2.8. Merten’s Third Theorem (Theorem 429, [178178]) is the limit

lim
nÑ8

(log n)
ź

pďn

(
1´

1
p

)
= e´γ, (3.48)

which follows from the effective bound

ź

pďn

p
p´ 1

= eγ(log n)(1 + o(1)). (3.49)

Consequently, by Proposition 3.133.13, one has

d = µalg( f )eγ(1 + o(1))

$

&

%

log(n + 1) 0 ă ωi ď
1
2

log n 0 ă ωi ă
1
2 , n ą 1.

(3.50)

M
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3.3. Flat Directions and Elliptic Bounds

As will become apparent in the sequel, it is of interest to determine whether

a given complex analytic function, say f , grows sufficiently quickly (at infinity).

Said function has no flat directions if and only if there exists two fixed, positive

constants ε, M ă 8 such that for any non-negative multi-index α and for all

|z| ą r, where r ą 0 is sufficiently large,

|B
α f | ď ε|B f |2 + M and |z|2 + | f | ď M

(
|B f |2 + 1

)
, (3.51)

where z = (z0, . . . , zn) and |B f |2 =
řn

j=0 |Bi f |2, the squared-magnitude of the

gradient of the B f . Although a function satisfying the elliptic bounds is some-

times referred to as elliptic, we shall not have occasion for such terminology as

it conflicts with conventional mathematical use of the adjective.

If a singularity has an isolated critical point at the origin, then it cannot have

flat directions (in a neighborhood of the origin), otherwise there would be a

continuum of zeros in all neighborhoods of the origin. Hence, non-degenerate,

complex analytic functions are de facto elliptic, at least near the origin. We dis-

cuss now the Łojasiewicz inequality as it relates to the elliptic bounds for a

suitable class of complex-valued functions.

Proposition 3.14. If a weighted homogeneous polynomial f : (Cn+1, 0) Ñ

(C, 0) satisfies a weighted Euler equation with unique weights tω0, . . . , ωnu, has a

Łojasiewicz exponent `0( f ) greater than or equal to unity, and for any non-negative
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multi-index α there are non-negative constants A, B, C ă 8 not all zero such that

|B
α f | ď A|B f |2 + B| f |+ C|z|2 |z| ą r, (3.52)

where r ą 0 is sufficiently large, then f satisfies the elliptic bounds.

Proof . By assumption, f satisfies a weighted Euler equation, so

| f | ď
(

max
0ďiďn

|ωi|

) ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i=0

|zi||Bi f |

ˇ

ˇ

ˇ

ˇ

ˇ

(3.53)

ď

(
max
0ďiďn

|ωi|

)( n
ÿ

i=0

|zi|
2

)1/2( n
ÿ

i=0

|Bi f |2
)1/2

(3.54)

=

(
max
0ďiďn

|ωi|

)
|z||B f | (3.55)

by the Cauchy-Schwartz Inequality. By assumption, f satisfies the

Łojasiewicz inequality, |B f | ě ε|z|`, where ε ą 0 and ` = `0( f ) ě 1. Thus,

|z|2 + | f | ď |z|2 +
(

max
0ďiďn

|ωi|

)
|z||B f | (3.56)

ď

(
|B f |

ε

)2/`

+

(
max
0ďiďn

|ωi|

)(
|B f |

ε

)1/`

|B f | (3.57)

ď

((
1
ε

)2/`

+

(
max
0ďiďn

|ωi|

)(
1
ε

)1/`
)
|B f |2 (3.58)

ď M f

(
|B f |2 + 1

)
, (3.59)
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where M f = ε´2/` + (max0ďiďn |ωi|)ε
´1/` ą 0. By assumption, for each

non-negative multi-index α, there are non-negative constants A, B, C ă 8 not all

zero such that

|B
α f | ď A|B f |2 + B| f |+ C|z|2 (3.60)

ď A|B f |2 + B
(

max
0ďiďn

|ωi|

)
|z||B f |+ C

(
|B f |

ε

)2/`

(3.61)

ď A|B f |2 + B
(

max
0ďiďn

|ωi|

)(
|B f |

ε

)1/`

|B f |+ C
(
|B f |

ε

)2/`

(3.62)

ď

(
A + B

(
max
0ďiďn

|ωi|

)(
1
ε

)1/`

+ C
(

1
ε

)2/`
)
|B f |2 (3.63)

ď ε1|B f |2 + M f (3.64)

by equation (3.553.55), where ε1 = A + B(max0ďiďn |ωi|)ε
´1/` + Cε´2/` ą 0. �

Proposition 3.15. If a non-degenerate, weighted homogeneous polynomial has

unique weights in (0, 1
2 ], then it satisfies the latter of the elliptic bounds.

Proof . By assumption, since f is non-degenerate, it satisfies a Łojasiewicz

inequality with exponent `0( f ), and its weights tω0, . . . , ωnu Ă Q are unique

and confined to the interval (0, 1
2 ]. Moreover, `0( f ) = max0ďiďnt

1
ωi
´ 1u, and it

follows that `0( f ) ě 1. The bound | f | ď (max0ďiďn ωi)|z||B f | also follows, as

does the existence of a fixed positive M f ă 8 such that | f | ď M f (|B f |2 + 1). �
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Proposition 3.16. Any Brieskorn-Pham polynomial with exponents not less

than 2 satisfies the elliptic bounds. Any polynomial of the form f = xa + xyb +
řn

i=2 zci
i , where ta, b, c2, . . . , cnu Ă Ną1, satisfies the elliptic bounds.

3.4. Grothendieck Residue

The Brouwer degree is a proper generalization of the winding number w(γ)

of a closed Jordan curve γ, viewed as an endomorphism of Cˆ » S1. A gener-

alization of the degree to complex maps between higher dimensional complex

domains is achieved by the Grothendieck residue [428428], which we now intro-

duce.

Recall that Ux is a neighborhood of a point x P Cn+1, and Ox,n is the

space of complex analytic germs over Ux. Consider a complex analytic map

f |Ux = ( f0, . . . , fn) : (Ux, x) Ñ (Cn+1, 0), where x is an isolated root of the sys-

tem f |Ux = 0. Given any h P Ox,n, define the logarithmic meromorphic form

ωh( f ) = h
Źn

i=0
dzi
fi

, and choose the cycle γ f,x = tz P Ux | } fi} = εu centered

at x and oriented by the non-negativity of
Źn

i=1 d arg fi for sufficiently small

but positive ε [368368], [162162]. The cycle γ f,x is an oriented compact submanifold of

Ux zVf , where Vf =
Şn

i=1 fi|
´1
Ux
(0) is the complex algebraic variety defined by

the common locus of zeros of the system f |Ux = 0. The Grothendieck residue of

the meromorphic form ωh = ωh( f ) at the point x is defined as the pairing

Resx

ωh

f

 :=
1

(2πi)n+1

ż

γ f,x

ωh( f ) P Z, (3.65)
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equivalent to x[γ f,x], [ωh( f )]y up to a multiplicative constant. The latter implies

that the Grothendieck residue depends only on the homology/cohomology

class of γ f,x and ωh( f ), respectively. When h coincides with the Jacobian matrix

of f , B f
Bz = B( f0,..., fn)

B(z0,...,zn)
, we write ω( f ) =

Źn
i=0

d fi
fi

for the logarithmic meromorphic

form ωB f ( f ) and Res ω( f ) for the Grothendieck residue of ω( f ) at the origin.

3.4.1. Analytic Index. Given a complex analytic germ f : (Cn+1, 0)Ñ (C, 0),

define the related logarithmic meromorphic form ω(B f |U) =
Źn

i=0
d fi
fi

, where

fi = Bi f . Define the cycle γ f = t(z0, . . . , zn) P U | | fi(z0, . . . , zn)| = εu centered

at the origin with orientation induced by the argument of the local complex

exponential parametrization of fi. Define the analytic index of the complex ana-

lytic germ f at the origin as the residue of the logarithmic meromorphic form

ω(B f |U),

µanal( f ) := Res ω(B f |U). (3.66)

3.5. Mixed Hodge Structure

In this section, we discuss some facets of the mixed Hodge structure of the

Milnor fiber of a non-degenerate weighted homogeneous polynomial [373373]. We

refer the reader to [436436], [438438] and [439439] for basic definitions and notation.

For a non-degenerate, weighted homogeneous singularity f : (Cn+1, 0) Ñ

(C, 0), let I denote the exponent vectors of the monomials comprising a mono-

mial basis tza = za0
0 ¨ ¨ ¨ z

an
n | a = (a0, . . . , an) P I Ă Zn+1

ě0 u of the local alge-

bra A f . For each a = (a0, . . . , an) P I, define l(a) =
řn

i=0(ai + 1)ωi, where
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tω0, . . . , ωnu Ă QX (0, 1) are the weights of f . The rationals tl(a)uaPI are the

eigenvalues of the Gauss-Manin connection, ∇za = l(a)za [250250].

Proposition 3.17 (Arnol’d, [1919]; Steenbrink, [436436]). For even n, the diag-

onalized intersection form S on Hn(Ff, 0; R) has ς+ positive, ς0 zero and ς´ negative

eigenvalues, respectively, where

ς+ = |ta P I | l(a) R Z ^ tl(a)u is evenu| (3.67)

ς0 = |ta P I | l(a) P Zu| (3.68)

ς´ = |ta P I | l(a) R Z ^ tl(a)u is oddu|. (3.69)

Define the Arnol’d-Steenbrink series [437437],

Sp( f ; t) = t
řn

i=0 ωi P̄A f (t) (3.70)

=
n
ź

i=0

tωi ´ t
1´ tωi

(3.71)

=

µ
ÿ

j=1

tγj , (3.72)

and denote the spectrum of f by Sp( f ) = tγju.

Proposition 3.18 (Steenbrink, [437437]). If f : (Cn+1, 0) Ñ (C, 0) is a non-

degenerate, weighted homogeneous polynomial, then the local algebra A f determines the

spectrum of f , namely, Sp( f ) = tl(a)uaPI .
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Proposition 3.19. Let Uα Ď Cnα be a neighborhood of the origin. Assume that

the complex analytic map fα : (Uα, 0)Ñ (C, 0) is non-degenerate. Then

Sp( f ; t) =
s
ź

i=1

Sp( fi; t) (3.73)

and, therefore,

Sp( f ) =
s
à

i=1
Sp( fi) = tγ1,i1 + ¨ ¨ ¨+ γs,isu1ďiαďµ( fα). (3.74)

Proof . Suppose f and g are non-degenerate weighted homogeneous poly-

nomials with weights ω1, . . . , ωn and ν1, . . . , νm, respectively. Then f ‘ g has

weights tω1, . . . , ωn, ν1, . . . , νmu. By Proposition 2.62.6, the local algebra A f ‘ g –

A f bAg, so PA f ‘ g(t) = PA f (t)PAg(t). Thus,

Sp( f ‘ g; t) = t
řn

i=1 ωi+
řn

j=1 νj PA f ‘ g(t) (3.75)

=
(

t
řn

i=1 ωi PA f (t)
) (

t
řn

j=1 νj PAg(t)
)

(3.76)

= Sp( f ; t) Sp(g; t) (3.77)

=

µ( f )
ÿ

i=1

µ(g)
ÿ

j=1

tγ1,i+γ2,j , (3.78)

which implies the claimed spectrum decomposition. �
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Corollary 3.20. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighed homo-

geneous polynomial, then Sp(ΣN f ; t) = tN/2Sp( f ; t) and, therefore,

Sp(ΣN f ) = Sp( f )‘ tN
2 u = tγi +

N
2 u. (3.79)

According to Steenbrink, it is useful to consider the weight filtration

GrW
k+1Hk(Ff, 0) of the cohomology group Hk(Ff, 0) (with compact support

Hk
c (Ff, 0)), where

GrW
n Hn

c (Ff, 0; C) =
à

p+q=n
Hp,q(Ff, 0). (3.80)

Define the corresponding intersection form S by S(α, β) = xα, j(β)y, α and β are

cycles and j : Hk
c (Ff, 0)Ñ Hk(Ff, 0) according to the commutative diagram

Hn
c (Ff, 0) Hn

c (F̄f, 0)

Hn(Ff, 0) Hn(F̄f, 0)
��

j

//i˚

��

–

oo i˚

The number of eigenvalues of S according to sign can be counted by the mixed

Hodge structure and rational cohomology of the fiber Ff, 0.

Proposition 3.21 (Steenbrink [436436], Arnol’d [1919]). Let f : (Cn+1, 0) Ñ

(C, 0) be a non-degenerate, weighted homogeneous polynomial. Assume n is even, and
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the intersection form S is diagonal on some basis of Hk
c (Ff, 0; Q). Then S has ς+ posi-

tive, ς0 zero and ς´ negative eigenvalues, respectively, where

ς+ =
ÿ

p+q=k
q even

hp,q (3.81)

ς0 = dim GrW
n+1Hk(Ff, 0; Q) (3.82)

ς´ =
ÿ

p+q=k
q odd

hp,q, (3.83)

where hp,q denotes the (p, q)-Hodge number of Ff, 0. Moreover, these integers depend

only the spectrum of f through the following identities:

ς+ = |tγ P Sp( f ) | sin(πγ) ą 0u| (3.84)

ς0 = |tγ P Sp( f ) | sin(πγ) = 0u| (3.85)

ς´ = |tγ P Sp( f ) | sin(πγ) ă 0u|. (3.86)

Proposition 3.22. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial with weights tωiu and spectrum Sp( f ) = tγju, then the

following identities hold:

1. A spectral reciprocity relation, γµ+1´j = n + 1´ γj, for 1 ď j ď µ;

2.
řµ

j=1 γj =
µ
2 (n + 1); and,

3.
ř

γPSp( f ) eπiγ = eπi(n+1)/2 śn
i=0 cot(πωi

2 ).
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Proof . By virtue of the identity,

tn+1Sp( f ; 1
t ) = tn+1

n
ź

i=0

t´ωi ´ t´1

1´ t´ωi
(3.87)

=
n
ź

i=0

t1´ωi ´ 1
1´ t´ωi

(3.88)

= Sp( f ; t), (3.89)

the first identity holds. Consequently,
řµ

j=1 γj = µ(n + 1) ´
řµ

j=1 γj, which

implies the second identity. Finally,

Sp( f ; eπi) =
n
ź

i=0

eπiωi ´ eπi

1´ eπiωi
(3.90)

=
n
ź

i=0

´
eπiωi + 1
eπiωi ´ 1

(3.91)

=
n
ź

i=0

ieπi/2 eπiωi + 1
eπiωi ´ 1

(3.92)

= eπi(n+1)/2
n
ź

i=0

cot(πωi
2 ). (3.93)

�

Corollary 3.23. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial with weights tωiu and spectrum Sp( f ) = tγju, then the
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following identities hold:

ÿ

γPSp( f )

cos(πγ) =

$

’

’

’

&

’

’

’

%

´
śn

i=0 cot(πωi
2 ) n ” 1 mod 4

śn
i=0 cot(πωi

2 ) n ” 3 mod 4

0 n is even

(3.94)

and

ÿ

γPSp( f )

sin(πγ) =

$

’

’

’

&

’

’

’

%

śn
i=0 cot(πωi

2 ) n ” 1 mod 4

´
śn

i=0 cot(πωi
2 ) n ” 3 mod 4

0 n is odd.

(3.95)

In particular, if n is even,

ÿ

γPSp( f )
cos(πγ)ą0

cos(πγ) =
ÿ

γPSp( f )
cos(πγ)ă0

cos(πγ), (3.96)

while if n is odd,

ÿ

γPSp( f )
sin(πγ)ą0

sin(πγ) =
ÿ

γPSp( f )
sin(πγ)ă0

sin(πγ). (3.97)

3.5.1. Signature of the Milnor Fiber.

Definition 3.24. The signature of the Milnor fiber Ff, 0 is the signature of

the intersection form S, namely,

σ(Ff, 0) = ς+ ´ ς´. (3.98)
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Corollary 3.25. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial, then the signature of the Milnor fiber FΣN f, 0 satisfies

σ(FΣN f, 0) =

$

&

%

(´1)N/2σ(Ff, 0) n + N is even

0 n + N is odd.
(3.99)

Proof . If N ” 3 mod 4, then

ς+(ΣN f ) = |tγ P Sp( f ) | Im eπiγ+πiN/2
ą 0u| (3.100)

= |tγ P Sp( f ) | Im eπiγ
ă 0u| (3.101)

= ς´( f ) (3.102)

ς´(ΣN f ) = |tγ P Sp( f ) | Im eπiγ+πiN/2
ă 0u| (3.103)

= |tγ P Sp( f ) | Im eπiγ
ą 0u| (3.104)

= ς+( f ). (3.105)

Alternatively, if N ” 1 mod 4 or even, there is no overall sign change to the

imaginary parts of the exponentials, so ς˘(ΣN f ) = ς˘( f ). However, if n is

odd, then ς+( f ) = ς´( f ), so σ(FΣN f, 0) = 0. Thus, if n is odd and N is even,

σ(FΣN f, 0) = 0. Since µalg(ΣN f ) = µalg( f ), it follows that ς0(ΣN f ) = ς0(Σ f ) if N

is odd and ς0( f ) otherwise. The other cases are handled similarly. �
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3.5.1.1. Dual Steenbrink Numbers. Define the following integers,

v+ = |tγ P Sp( f ) | cos(πγ) ą 0u| (3.106)

v0 = |tγ P Sp( f ) | cos(πγ) = 0u| (3.107)

v´ = |tγ P Sp( f ) | cos(πγ) ă 0u|. (3.108)

Remark 3.5.1. As the total number of eigenvalues equals the size of S,

µalg( f ) = ς+ + ς0 + ς´ = v+ + v0 + v´. (3.109)

M

Remark 3.5.2. The shift map γ Ñ γ + 1
2 lifts to a involution between

tϕ+, ϕ0, ϕ´u and tv+, v0, v´u. M

Define sgn˘(x) to 1 if and only if ˘x ą 0 and 0 otherwise. Define sgn0(x) =

δx,0. Observe sgn(x) = sgn+(x)´ sgn´(x).

Conjecture 3.26. For a0, . . . , an P N,

ς+ =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sgn+ sin
(

π
ÿn

i=0
ki
ai

)
(3.110)

ς0 =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sgn0 sin
(

π
ÿn

i=0
ki
ai

)
(3.111)

ς´ =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sgn´ sin
(

π
ÿn

i=0
ki
ai

)
. (3.112)
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Conjecture 3.27. For a0, . . . , an P N,

v+ =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sgn+ cos
(

π
ÿn

i=0
ki
ai

)
(3.113)

v0 =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sgn0 cos
(

π
ÿn

i=0
ki
ai

)
(3.114)

v´ =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sgn´ cos
(

π
ÿn

i=0
ki
ai

)
. (3.115)

Conjecture 3.28. Given a non-degenerate, weighted homogeneous germ

f : (Cn+1, 0) Ñ (C, 0), the integers (ς+, ς0, ς´) and (v+, v0, v´) can be computed

from counting certain lattice points of the corresponding weight polytope W( f ).

This concludes our remarks on the analytic structure of complex analytic

singularities. We proceed now with a discussion of more geometric aspects.
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Chapter 4

Geometric Structure of Isolated Singularities

Children and lunatics cut the Gordian knot which the poet spends his life
patiently trying to untie. — Jean Cocteau
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In this chapter we review elementary features of links including some well-

known link invariants. The algebraic link of an isolated singularity will take an

central role. We discuss a number of important geometric features of the alge-

braic links and pay particular attention to those of Brieskorn-Pham singularities.

While many topics are covered in this chapter, they are done so expeditiously.
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We refer the reader to [403403], [335335] and [274274] for beautiful and elucidating intro-

ductions to the mathematical theory of links.

4.1. Links

Recall that a link** is a compact, oriented 1-submanifold without boundary,

possibly with multiple components and smoothly embedded in S3 (or R3). A

knot is a link of one (connected) component. Higher-dimensional links are de-

fined analogously as compact, oriented codimension-two submanifolds without

boundary, possibly with multiple components and smoothly embedded in Sn

(or Rn). A link projection or diagram is a static representation of a link. One often

conflates a link with its projections.

Two links L =
š

Ki Ă Sn and L1 =
š

K1i Ă Sn are link equivalent if and

only if there is an orientation-preserving homeomorphism ϕ : Sn Ñ Sn which

descends to an orientation-preserving homeomorphism between the connected

components ϕ̃ : Ki Ñ K1i, that is,

S2n+1
ε S2n+1

ε1

Ki K1i
��

//
ϕ

��
//

ϕ̃

Two links L =
š

Ki Ă Rn and L1 =
š

K1i Ă Rn are ambient isotopic if

and only if there is an orientation-preserving homeomorphism ϕ : Rn Ñ Rn

*We consider only tame links.
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Figure 4.1. A Medley of Links [418418]

which descends to an orientation-preserving homeomorphism between the

connected components ϕ̃ : Li Ñ L1i. In particular, two links L =
š

Ki Ă S3 and

L1 =
š

K1i Ă S3 are planar isotopic if and only if there is a finite sequence of

Reidemeister moves applied to one yielding the other. The Reidemeister moves

(types I, II and III) are shown in Figure 4.24.2. The latter two notions coincide if
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L, L1 Ă S3. For this section, unless explicitly stated otherwise, we consider only

links in S3.

ðñ ðñ ðñ

Figure 4.2. Reidemeister Moves (Types I, II and III) [418418]

Eight inequivalent links with two and three components are shown in Fig-

ures 4.34.3 and 4.224.22.

Figure 4.3. Four Inequivalent Links with Two Components (22
1, 42

1, 52
1 and

62
1) [418418]

4.1.1. Link Orientation and Chirality. As each knot has exactly two canon-

ical orientations, namely, the two orientations in any of its projections K and

´K. Each link of r components has 2r orientations resulting from those of its

constituents. Chirality, in the context of knots, refers to the asymmetry of orien-

tation between a knot K and its reflected image or mirror K˚ through a transver-

sal plane. Including the asymmetric case, the following symmetries exhaust the

possible knot types with respect to orientation and chirality [9393],

2. (Reversible) K = ´K;
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3. ((+)-Amphichiral) K = K˚;

4. ((´)-Amphichiral) K = ´K˚; and,

5. (Strongly Amphichiral) K = ´K = K˚ = ´K˚.

Remark 4.1.1. Figure 4.44.4 depicts two enantiomorphs of the trefoil knot. In

fact, all torus knots are chiral. The figure-eight knot is equivalent to its reverse

and mirror image, so it is strongly amphichiral. M

Figure 4.4. Enantiomorphs of the Trefoil Knot (31 and 3˚1 ) [389389]

4.1.2. Prime Knots. The connected sum of two n-manifolds involves remov-

ing the interiors of two Bn from each and gluing the resulting two Sn´1. In par-

ticular, the connected sum of knots in S3 (or R3) involves removing two open

intervals (B1) and gluing the resulting two endpoints (S0).

Table 4.1. Number of Prime Knots by Crossing Number

c(K) 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N(K) 1 1 2 3 7 21 49 165 552 2176 9988 46972 253293 1388705

The initial orientations of link connected-summands is relevant for the ori-

entation of the connected summation. For example, the granny knot 31# 31 is the
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connected sum of two trefoil knots with the same orientation, while the square

knot 31# 3˚1 is the connected sum of two trefoil knots with its mirror image (Fig-

ure 4.54.5).

Definition 4.1. A knot is prime if it cannot be decomposed into a con-

nected sum of knots. A knot that is not prime is composite.

Figure 4.5. Two Connected Sums of Two Trefoil Knots (31#31 and 31#3˚1 )
[389389]

Proposition 4.2. The following statements are true:

1. The connected sum of any knot with the unknot is ambient isotopic to the (for-

mer) knot; and,

2. No non-trivial connected sum is ambient isotopic to the unknot.

Proof . See §G, Chapter 2 in [403403]. �

Proposition 4.3 (Schubert, 1949). The set of oriented knots equipped with

the operation of connected sum is a monoid with unique prime factorization (up to a

permutation of knot summands).
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Figure 4.6. Prime Links Ordered by Increasing Crossing Number [418418]

4.1.3. Link Crossing Number. The crossing number of a link L is the mini-

mum number of crossings in any link diagram of L. The crossing number is a

link invariant. For example, there are only three inequivalent prime knots with
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six crossings, namely, 61, 62 and 63 (Figure 4.74.7). The number N(K) of prime

knots with crossing number c(K) ď 16 is known (Table 4.14.1).

Figure 4.7. Three Prime Knots with Six Crossings (61, 62 and 63) [389389]

The crossing number of the torus link Tp,q and twist knot Tn, where n de-

notes the number of half-twists, is known, namely, c(Tp,q) = mintp(q´ 1), q(p´

1)u and c(Tn) = n + 2, respectively. Conversely, the number of torus links Cn

with crossing number n is given by the formula [333333] (A051764A051764),

Cn =
ÿ

?
năkďn

gcd(k,1+n
k )=1

1. (4.1)

4.1.4. Link Unknotting Number. Let K = K0 be a finite, tame knot. By

considering a sequence of stepwise crossing changes, for any K there is a finite

unknotting sequence K = tK0, K1, . . . , Knu, where Ki+1 and Ki differ by the sign

of a single crossing, and Kn is isotopic to the unknot.

Definition 4.4. The unknotting number u(K) = infKt|K|u is the fewest

number of crossing changes to unknot K.
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Figure 4.8. Six Twist Knots (31, 41, 52, 61, 72 and 81) [389389]

For links, an analogous unknotting number is defined as the fewest number

of crossings across all projections to completely disentangle a given link into a

disjoint union of unknots (Figure 4.114.11).

Proposition 4.5 (Scharlemann, Thompson, [419419]). Every knot with unknot-

ting number equal to 1 is prime.

Proof . See [419419] and [496496]. �

The converse of Proposition 4.54.5, however, is not true; not all prime knots

have unknotting number equal to 1. For instance, a twist knot Tn has unknot-

ting number 1 for n ě 1, since it is equivalent to the unknot with n half-twists

and single-linked ends (Figure 4.84.8). Since each prime knot has unknotting at

least 1, it follows that every composite knot has unknotting number at least 2.
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4.1.5. Linking Number. Consider an oriented link L with at least two dis-

joint, oriented components K and K1 with Seifert surfaces FK and FK1 , respec-

tively. Without loss of generality, one may assume that K intersects FK1 transver-

sally with a finite number of points K X FK1 = tp1, . . . , pnu by appropriately

perturbing FK1 . By considering the tangent vector of a point of intersection with

respect to the direction K through FK1 , one may assign a value ε(p) equal 1 or

´1 with the right-hand-rule.

Definition 4.6. The linking number lk(K, K1) of two disjoint, oriented

knots K and K1 is the integer

lk(K, K1) =
ÿ

pPKXFK1

ε(p). (4.2)

If the sum is empty, then the corresponding linking number is 0.

Remark 4.1.2. Milnor invariants generalize the linking number to crossings

involving more than two components [304304] (also Chapter 8 in [324324]). M

Proposition 4.7. Let K and K1 be two disjoint, oriented knots. Let c+(K, K1)

and c´(K, K1) denote the total number of positive and negative crossings between K

and K1. The linking number lk(K, K1) admits the equivalent representation the summa-

tion

lk(K, K1) = 1
2

ÿ

K[K1
c+(K, K1)´ c´(K, K1). (4.3)
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+ −

Figure 4.9. Linking Number at Each Crossing Type

Proof . This is an exercise in combinatorics, so we omit further details. �

Remark 4.1.3. Figure 4.94.9 illustrates the four crossing types. M

Remark 4.1.4. Proposition 4.74.7 implies lk(K, K1) = lk(K1, K). M

Definition 4.8. The total linking number lk(L) of an oriented link L is

one-half of the sum of the linking numbers over all crossings in any projection,

viz.,

lk(L) =
ÿ

1ďiăjďr

lk(Ki, Kj). (4.4)

The total linking number of the torus link is known, namely, lk(Tp,q) = pq.

Figure 4.104.10 depicts four torus knots. A closely related invariant of the linking

number is the writhe.
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Figure 4.10. Four Torus Knots (01, 31, 51 and 71) [389389]

Definition 4.9. The writhe w(L) of an oriented link L is the sum of its

linking numbers over all crossings in any projection, viz.,

w(L) =
ÿ

K[K1ĂL

lk(K, K1). (4.5)

Remark 4.1.5. The writhe of the Hopf link (with similarly oriented compo-

nents) is 2, an oriented trefoil is 3 and Borromean rings (with similarly oriented

components) is 0. M

4.1.6. Knot and Link Groups. A knot group π(K) of a knot K Ă S3 is the

fundamental group of the knot complement, π1(S3zK). In any given projection,

there is a finite number of crossings which divides said knot into p arcs labeled

tγ1, . . . , γpu. Using any orientation of K, order the labels of the arcs such that

arcs with consecutive labels meet a crossing (assuming, of course, γp meets γ1).

Underneath each crossing γi Ñ γj (incoming) and γi+1 Ñ γj+1 (outgoing),

place a sufficiently small oriented loop in the form of a square with sides la-

beled (clockwise from the top) xj, xi+1, xj and xi (coinciding with the closest

arc) with a side orientation that yields a positive crossing at each crossing of the
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square sides and arcs. The square represents concatenated loops surrounding

each arc with positive orientation that extend to infinity, from which one com-

putes directly the fundamental group of the complement. This analysis can be

summarized by the Wirtinger presentation,

π(K) – xx1, . . . , xp | r1, . . . , rpy (4.6)

with relations only of the form xixjx´1
i+1x´1

j (positive crossing) or xix´1
j x´1

i+1xj

(negative crossing). We refer the reader to Chapter 2 in [324324] for a detailed con-

struction of this brief discussion.

Remark 4.1.6. The knot group is a knot invariant. Equivalent knots have

isomorphic knot groups, but the converse is not true. M

The link group π(L) is a distinguished quotient group of π1(S3zL), where

components are considered up to link homotopy (each component is allowed

to pass through itself but not any other component) [304304]. Let Lr be an r-

component link in S3. The fundamental group of the complement π1(S3zLr)

is an Eilenberg-Maclane space, K(π, 1) only for r = 1. However, for r ą 1, the

homology groups are known,

Hk(S3
zLr) –

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Z k = 0

Zr k = 1

Zr´1 k = 2

t0u k ě 3,

(4.7)
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and, in particular, H1(S3zLr) – π1(S3zLr)ab, the abelianization of the fundamen-

tal group (Chapter 2, [111111]).

Remark 4.1.7. Equivalent links have isomorphic links groups, but the con-

verse is not true. M

Remark 4.1.8. Since the fundamental group of the complement of a dis-

joint union of unknots is the free product of those of each unknot, namely, Z, it

follows that for the trivial link with r components, π(0r
1) – Fr, the free group

on r generators. M

Figure 4.11. Unlink with Five Components [418418]

Remark 4.1.9. Define the Braid Group

Bn = xσ1, . . . , σn´1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσiy1ďiďn´2, |i´j|ě2. (4.8)

The Wirtinger presentation of the knot group of the trefoil is precisely

π(T2,3) – xx, y, z | yxz´1x´1, zyx´1y´1, xzy´1z´1
y (4.9)

– xx, y | xyx = yxyy, (4.10)

244



which is the braid group B3, since z = yxy´1, and the various relations can

be simplified accordingly. A similar, but substantially more involved analysis

proves that for any coprime, positive integers p and q,

π(Tp,q) – xx, y | xp = yq
y. (4.11)

M

Picantin computed the link group of the torus link.

Proposition 4.10 (Picantin, [375375]). The link group of the torus link Tp,q is a

group with p generators tx1, . . . , xpu satisfying the relations

xi(x1 ¨ ¨ ¨ xp)
t

q´i
p u+1

= (x1 ¨ ¨ ¨ xp)
t

q´i
p u+1xp(t q´i

p u+1)´q+i 1 ď i ď p.

Proof . See Lemma 2.1 in [375375]. �

Proposition 4.11 (Neuwirth, Burde, Zeischang). A knot is the unknot or a

torus knot if and only if its knot group admits a non-trivial center.

4.1.7. Seifert Surfaces.

Definition 4.12. A Seifert surface F of an oriented link L Ă S3 is a com-

pact, connected, orientable surface embedded in S3 with boundary BF = L.

Proposition 4.13 (Frankl, Pontrjagin; Seifert). Each link has a Seifert sur-

face, as well as an algorithm to construct it.
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Figure 4.12. A Seifert Surface of the Trefoil Knot (Adapted from [114114])

Proof . See [133133] and [422422]. �

Remark 4.1.10. Figure 4.124.12 illustrates a Seifert surface of the trefoil with

three levels of transparency. M

4.1.8. Alexander Polynomials. For this section, we refer the reader unfamil-

iar with the theory of knots and links to the fine book [403403].

Given an oriented knot K Ă S3 with a tubular neighborhood T(K), define

MK as the complement S3zT(K)˝. Let MK,r and ΣK,r denote the r-cyclic cover-

ing and r-cyclic branched covering of MK, respectively, where the former can be

constructed by gluing r copies of a Seifert surface of K. The homology group

H1(MK,r; R), where the ring R being infinite cyclic or rational, is a finitely-

generated R[t, 1
t ]-module, where t is the generator of the cyclic group Zr acting

on H1(MK,r; Z). In particular, H1(MK,r; Z) – H1(ΣK,r; Z)‘Z (§D, [403403]). The

infinite-cyclic covering MK,8, and consider the homology group H1(MK,8; R)

with coefficients R analogously.

Definition 4.14. The kth-Alexander ideal Λk of K is the kth-elementary

ideal of H1(MK,8; Z).
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Definition 4.15. The kth-Alexander polynomial ∆K,k(t) of K is a generator

of the minimal principal ideal of Z[t, 1
t ] containing Λk. The Alexander polyno-

mial of a knot is ∆K(t) = ∆K,0(t), where in particular ∆01(t) = 1.

Definition 4.16. The kth-Alexander matrix of K is any presentation matrix

of H1(MK,8; Z) corresponding to the kth-Alexander ideal.

Proposition 4.17. Given a knot K with (zeroth) Alexander polynomial ∆K(t),

H1(MK,8; Z) – Z[t, 1
t ]/∆K(t). (4.12)

Proof . See Chapters 7 and 8 in [403403]. �

Remark 4.1.11. The Alexander ideals, polynomials and matrices are knot

invariants. M

Remark 4.1.12. All Alexander polynomials of K are defined only up to

products by units in the corresponding ideal Z[t, 1
t ], namely t,´t, 1

t and ´1
t . M

Proposition 4.18. Let SK,k denote the Seifert matrix corresponding to the kth-

Alexander module of a knot K. The matrix tSK,k ´ Sᵀ
K,k is an Alexander matrix for (the

kth-Alexander module of) K. The following statements are true:

1. The Alexander polynomial ∆K,k(t) is the determinant det(tSK,k ´ Sᵀ
K,k) up to

a unit in Z[t, 1
t ], ∆K,k(t)

.
= det(tSK,k ´ Sᵀ

K,k);

2. deg ∆K,k(t) is even;

3. ∆K,k(t)
.
= ∆K,k(

1
t );
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4. ∆K,k(1) = ˘1;

5. ∆K,k(t) is factor of ∆K,k´1(t);

In particular, if K is a connected sum K1#K2, then ∆K#K1,k(t) = ∆K1,k(t)∆K2,k(t).

Proof . The proof of the third statement follows from the fact that there

is an integer m such that det(tSK,k ´ Sᵀ
K,k) = ˘tm det(1

t SK,k ´ Sᵀ
K,k). The fourth

statement follows from the specific form of the Seifert matrix. The last state-

ment follows from the fact that SK,k = SK1,k ‘ SK2,k and the determinant identity

det(tSK,k ´ Sᵀ
K,k) = det(tSK1,k ‘ SK2,k ´ (SK1,k ‘ SK2,k)

ᵀ
) (4.13)

.
= det

(
(tSK1,k ´ Sᵀ

K1,k)‘ (tSK2,k ´ Sᵀ
K2,k)

)
(4.14)

.
= det(tSK1,k ´ Sᵀ

K1,k)det(tSK2,k ´ Sᵀ
K2,k). (4.15)

For proofs of the remaining statements, see Propositions 8.11, 8.12 and 8.14 in

[7474] and also Theorem 3, §C, Chapter 8 in [403403]. �

Remark 4.1.13. Principal Seifert matrices for the prime knots 31, 41 and 51

are the following:

S31 =

´1 ´1

0 ´1

 , S41 =

 1 0

´1 ´1

 , (4.16)
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and

S51 =


´1 ´1 0 ´1

0 ´1 0 0

´1 ´1 ´1 ´1

0 ´1 0 ´1


, (4.17)

from which one computes the following Alexander polynomials,

∆31(t)
.
= det(tS31 ´ Sᵀ

31
) = 1´ t + t2 (4.18)

∆41(t)
.
= det(tS41 ´ Sᵀ

41
) = ´(1´ 3t + t2) (4.19)

∆51(t)
.
= det(tS51 ´ Sᵀ

51
) = 1´ t + t2

´ t3 + t4. (4.20)

For the convenience of the reader, the (zeroth) Alexander polynomials of all

prime knots up to seven crossings is given in the Appendix. M

Definition 4.19. The knot determinant det K is the value |∆K(´1)|.

Remark 4.1.14. The knot determinant is a knot invariant. M

Remark 4.1.15. One has det 31 = 3 and det 41 = det 51 = 5. M

Proposition 4.20. Let ΣK,r denote an r-cyclic branched covering of a knot

K Ă S3. The order of the homology group H1(ΣK,2) is equal to det K, which is an odd

integer.

Proof . See Theorem 1, Corollary 3 and Exercise 2 in §D, Chapter 8 in [403403].

�
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Remark 4.1.16. The isomorphism H1(MK,r) – H1(ΣK,r) ‘Z implies the

evenness of |H1(MK,2)|. M

Proposition 4.21 (Fox, [132132]; Weber [469469]). If MK,r is an r-fold cyclic cov-

ering over K Ă S3, then the order of the first integral homology group of MK,r is the

following product

|H1(MK,r; Z)| =
r´1
ź

k=0

∆K(ζ
k
r ), (4.21)

where a zero product signifies an infinite order.

Remark 4.1.17. Consider the trefoil 31 with Alexander polynomial

∆31(t) = t2 ´ t + 1. By Proposition 4.214.21,

|H1(M31,r; Z)| =
r´1
ź

k=0

(ζ2k
r ´ ζk

r + 1) (4.22)

= 2´ 2 cos(πr
3 ) (4.23)

=

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 r ” 0 mod 6

1 r ” t1, 5u mod 6

3 r ” t2, 4u mod 6

4 r ” 3 mod 6.

(4.24)

M

Proposition 4.22 (Jensen). If f : C Ñ C is analytic in a region that con-

tains the circle B∆ε centered at the origin, f (0) ‰ 0 and has (possibly some) zeros
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tα1, . . . , αnu Ă ∆˝ε , then

log | f (0)| =
n
ÿ

i=0

log
|αi|

ε
+

1
2π

ż 2π

0
log | f (reiθ)| dθ. (4.25)

Proof . See Theorem 9.1.2 in [166166]. �

Proposition 4.23 (González-Acuña, Short, [155155]). If the Alexander polyno-

mial ∆K(t) of a knot K does not vanish on the circle, then the first homology group of

an r-cyclic covering MK,r satisfies the following limit,

lim
rÑ8

1
r log |H1(MK,r; Z)| = log m(∆K), (4.26)

where m(∆K) denotes the Mahler measure of ∆K.

Proof . We sketch briefly Theorem 11.4 in [324324]. The Mahler measure of a

monic polynomial f (z) =
śn

i=1(z´ αi) is defined as

m( f ) = exp

(
1

2π

ż 2π

0
log | f (eiθ)| dθ

)
(4.27)

=
n
ź

i=1

maxt|αi|, 1u ě 1. (4.28)
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By Proposition 4.224.22, it follows that

log m(∆K) =

ż 2π

0
log |∆K(eiθ)| dθ (4.29)

=

ż 1

0
log |∆K(e2πiτ)| dτ (4.30)

= lim
rÑ8

1
r

r´1
ź

k=0

|∆K(e2πik/r)|. (4.31)

Finally, apply Proposition 4.214.21. �

Remark 4.1.18. Consider the figure-eight (41) and Stevedore (61) knots

with Alexander polynomials ∆41(t) = 1 ´ 3t + t2, which has roots t1
2(3 ´

?
5), 1

2(3 +
?

5)u, and ∆61(t) = 2´ 5t + 2t2, which has roots t1
2 , 2u, respectively.

By Proposition 4.234.23,

lim
rÑ8

1
r log |H1(M41,r; Z)| = log

(
1
2(3 +

?
5)
)

(4.32)

lim
rÑ8

1
r log |H1(M61,r; Z)| = log 2. (4.33)

M

For a discussion of the Mahler measure of the Alexander polynomial and

its relation to homology of the corresponding knot within the context of p-adic

number theory and dynamical systems, see [351351].

4.1.9. Zeta Function of a Knot. The zeta function of a knot provides an

explicit link between topology, geometry, analysis and number theory. Recall

there is a map h : MK,8 Ñ MK,8 and its push-forward h˚ : H1(MK,8; Q) Ñ
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H1(MK,8; Q), where xhy – Z acts on H1(MK,8; Z). The Lefschetz zeta function of

a knot K Ă S3 is that of h, equal to the product and (finite) rational function

ζK(t) = exp

(
ÿ

ně1

Λ(hn)
tn

n

)
(4.34)

=

dim MK,8
ź

l=0

det(I´ th˚,i)
(´1)l+1

, (4.35)

where Λ(h) =
řdim MK,8

l=0 (´1)lTr (h˚,l : Hi(MK,8; Q) Ñ Hi(MK,8; Q)) is the

Lefschetz number of h. In particular, for knots in S3, Hi(MK,8; Z) – t0u for

i ą 1 (Proposition 8.9, [7474]). Thus,

Λ(h) = Tr (h˚,0 : H0(MK,8; Q)Ñ H0(MK,8; Q))

´ Tr (h˚,1 : H1(MK,8; Q)Ñ H1(MK,8; Q)). (4.36)

Proposition 4.24 (Noguchi, [352352]). The Lefschetz zeta function ζK of a knot

K Ă S3 is determined by the corresponding (suitably normalized) Alexander polynomial

∆K(t) and satisfies

ζK(t) =
∆K(t)

∆K(0)(1´ t)
. (4.37)

Remark 4.1.19. According to Noguchi, a functional equation satisfied by

the zeta function (cf., Weil Conjectures) implies a similar functional equation

for the Alexander polynomial, viz., ∆K(
1
t ) = tb1∆K(t), where b1 is the first betti

number MK,8. M
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Remark 4.1.20. In [310310], Milnor computes the zeta function of an algebraic

link. M

4.1.9.1. Multivariate Alexander Polynomials of Links. Each link L of r compo-

nents has a polynomial invariant which partially encodes the homology of its

complement known as the kth-Alexander polynomial ∆L,k(t1, . . . , tr), with one

variable corresponding to each connected component. These are defined in a

similar fashion as its one-component counterpart, so we leave the discussion for

standard treatments of the subject. Define the reduced Alexander polynomial of a

link L as (t´ 1)1´δr,1∆L(t, . . . , t).

Remark 4.1.21. It is conventional to normalize all Alexander polynomials to

have the term with lowest degree be the constant term. M

Remark 4.1.22. For a torus links Tp,q, the reduced Alexander polynomial

admits the representation

∆Tp,q(t, . . . , t) .
=

(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)
(tp ´ 1)(tq ´ 1)

,

where r = gcd(p, q). Thus, if tp, qu ‰ tp1, q1u, then Tp,q fi Tp1,q1 . M

4.1.10. Link Signature.

Definition 4.25. The signature σ(L) of a link L is the signature of the

Seifert matrix SL + Sᵀ
L , that is, the difference of the number of positive and neg-

ative eigenvalues.
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Proposition 4.26. Let L be a link. The signature σ(L) satisfies the following:

1. The signature is additive over connected sums of links, i.e., if L = L1#L2, then

σ(L) = σ(L1) + σ(L2); (4.38)

2. If L˚ and ´L denote the mirror and reverse-orientations of L, respectively, then

σ(L˚) = ´σ(L) = ´σ(´L). (4.39)

In particular, if L is amphichiral, then σ(L) = 0;

3a. If u(L) denotes the unknotting number of L, then |σ(L)| ď 2u(L);

3b. If L is a link with non-zero reduced Alexander polynomial ∆L(t), then

|σ(L)| ď deg ∆L(t); (4.40)

4a. If L is a knot, then σ(L) is even;

4b. If L is a link with r components such that ∆L(´1) ‰ 0, then σ(L) has the

opposite parity of r;

5. If L is a knot and ∆L(t) denotes its Alexander polynomial, then

sign ∆L(´1) = (´1)σ(L)/2 and |∆L(´1)| ” (´1)σ(L)/2 mod 4.

6. If L is an oriented link with r components K1, . . . , Kr, and L1 is obtained from

L by reversing the orientation of one component, then

σ(L) + lk(L) = σ(L1) + lk(L1). (4.41)
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Proof . For Statements 1., 2., 3a., 4a., 5. and 6. consult Chapters 5 and 6 in

[335335]. Statements 3b. and 4b. can be found in [424424]. �

Remark 4.1.23. The signature is a link invariant. M

4.1.11. Link Genera.

Definition 4.27. The link genus g(L) of a link L as the infimum genus of

the Seifert surfaces of L.

Remark 4.1.24. The link genus is a link invariant. M

Proposition 4.28. The genus of a connected sum of links L#L1 satisfies

g(L#L1) = g(L) + g(L1).

Proof . The connected sum of two Riemann surfaces with genera g and g1,

respectively, is a Riemann surface of genus g + g1. While for links, one works

with Seifert surfaces, the proof of the claim is entirely analogous. �

Proposition 4.29. A knot K is equivalent to the unknot if and only if the knot

group π(K) – Z if and only if the knot genus g(K) = 0. A link L is trivial (a disjoint

union of unknots) if and only if the link group π(L) is a free group.

Proof . See [335335] or [7474]. �
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Proposition 4.30 (Crowell, [9494]). The genus of a non-split link L with r com-

ponents satisfies the following inequality,

deg ∆L(t) ě 2g(L) + r´ 1.

If L is an alternating link, then the inequality is an equality.

Proof . See Theorem 3.5 in [9494]. �

Remark 4.1.25. By definition, twist knots are alternating. M

Remark 4.1.26. The only alternating torus links are the elementary torus

links, e.g., Tp,2 and T2,q, respectively. For torus knots (with a single component)

[310310], the Seifert surface is a singly-punctured Riemann surface with genus

g(Tp,q) =
1
2 deg ∆Tp,q(t) =

1
2(p´ 1)(q´ 1).

M

Definition 4.31. The slice genus (or 4-ball genus) g˚(L) of a link L as

the infimum of the genera of all orientable surfaces G which admit a smooth,

proper embedding in B4 taking BG to L.

Remark 4.1.27. One has g(L) ě g˚(L) [142142]. M

Proposition 4.32 (Murasugi, [330330]). The slice genus g˚(Lr) of an r-

component link Lr with signature σ(Lr) and unknotting number u(Lr) satisfies the
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bound

1
2 (|σ(Lr)| ´ r + 1) ď g˚(Lr) ď u(Lr). (4.42)

Now that we’ve established a number of link invariants, we turn to a few

important families of links.

4.2. Fourier Links

A knot is Fourier-(nx, ny, nz) if and only if admits the following parametriza-

tion (x(t), y(t), z(t)) Ă R3 [234234],

x(t) =
nx
ÿ

i=1

Ax,i cos(nx,iθ + ϕx,i) (4.43)

y(t) =
ny
ÿ

i=1

Ay,i cos(ny,iθ + ϕy,i) (4.44)

z(t) =
nz
ÿ

i=1

Az,i cos(nz,iθ + ϕz,i), (4.45)

where θ P [0, 2π), tnx, ny, nzu Ă N, tnx,i, ny,i, nz,iu Ă Z, and

tAx,i, Ay,i, Az,i, ϕx,i, ϕy,i, ϕz,iu Ă R.

A link is Fourier if and only if each of its components is a Fourier knot. By

elementary Fourier analysis, it follows that every knot in 3-space is a Fourier-

(1, 1, n) knot for some positive integer n [254254]. Hence, every link is Fourier. We

refer the reader to §1.6, Chapter 1 in [9393] for more details.
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Figure 4.13. Four Lissajous Knots (52, 61, 82 and 31# 3˚1 ) [389389]

4.2.1. Lissajous Knots. The Lissajous knots are Fourier-(1, 1, 1) knots (Figure

4.134.13). To avoid self-intersection, one requires certain conditions on the coeffi-

cients, namely, nx,1, ny,1, nz,1 be mutually coprime and nj,1φj ´ ni,1φi R πZ for

i, j P tx, y, zu. Depending on the parity of the integral frequencies nx,1, ny,1 and

nz,1, Lissajous knots are invariant under certain Euclidean symmetries such as

a reflection or rotation in the coordinate axes. The former symmetry implies

that said knot is strongly amphichiral, while the latter symmetry implies that

said knot is 2-periodic. Such symmetries imply further that the corresponding

Alexander polynomial is a perfect square modulo 2 and has Arf-Kervaire invari-

ant zero [183183], [332332], which excludes most knots from being Lissajous.

4.3. Torus Links

A torus link Tp,q is a link composed of closed orbits on a torus, where each

orbit wraps about the meridian p times and about the longitude q times. In gen-

eral, Tp,q » Tq,p, Tp,q » T´p,´q » ´Tp,q, Tp,´q » T˚p,q, so torus links are invertible.

Figure 4.144.14 shows the first sixty-four of the family of torus links arranged by

increasing crossing number.
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Figure 4.14. Torus Links Ordered by Increasing Crossing Number [418418]

If gcd(p, q) = 1, then the torus link Tp,q has only one component and is,

therefore, a torus knot. Four torus links are shown in Figure 4.104.10.
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As shown in [214214], the torus knot Tp,q admits the following parametrization

(x(t), y(t), z(t)) Ă R3,

x(t) = cos(pθ) (4.46)

y(t) = cos(qθ + π
2p ) (4.47)

z(t) = cos(pθ + π
2 + cos((q´ p)θ + π

2p ´
π
4q ), (4.48)

where θ P [0, 2π). Thus torus knots are Fourier-(1, 1, 2) knots. Although all

torus knots are Fourier knots, there are some torus knots that are not Lissajous

knots [254254].

Figure 4.15. Eight Trivial Torus Knots (T1,q and Tp,1 for 2 ď p, q ď 5) [418418]

Torus knots of the form T1,q or Tp,1 are isotopic to the unknot for p, q ě 1

and consist of a single curve wrapping q-times about the meridian or p-times

about the longitude along a torus, respective, as shown in Figure 4.154.15. Similarly,

torus links of the form Tp,p consist of p interlinked unknots, as shown in Figure

4.184.18. Notable examples of proper torus links are the Hopf Link T2,2, Solomon’s
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Knot** T2,4 and the Hopf Link T3,3 » 63
3. Some torus links of the type T2,q and

Tp,2 are shown in Figure 4.164.16, while those of type T3,q and Tp,3 are shown in

Figure 4.174.17.

Figure 4.16. Six Torus Links (T2,q and Tp,2 for p, q P t3, 4, 5u) [418418]

Figure 4.17. Six Torus Links (T3,q and Tp,3 for p, q P t4, 5, 6u) [418418]

* Solomon’s Knot is technically a link.
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4.4. Hopf Links

Hopf links are isotopic to torus links of the form Tp,p. Figure 4.184.18 illustrates

a few examples of Hopf links.

Figure 4.18. Six Hopf Links (Tp,p for 2 ď p ď 6) [418418]

4.5. Fibered Links

Definition 4.33. A link L Ă R3 is fibered** if and only if there is a S1-

parametrized family of Seifert surfaces Sθ such that L = tSθ X Sθ1 | θ ‰ θ1 P S1u.

Remark 4.5.1. Torus links, including the Hopf links, are fibered. M

Neuwirth and Stallings proved the following result.

Proposition 4.34 (Neuwirth 1962; Stallings 1963). For a knot K Ă S3, the

following are equivalent:

*A fibered knot is also called Neuwirth-Stallings knot.
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1. The complement S3zK is the total space of a fiber bundle over the circle, the

fiber F being a connected surface (In particular, K is fibered);

2. The commutator subgroup π(K)ab is free; and,

3. The commutator subgroup π(K)ab is finitely-generated.

If a knot K satisfies any one of the previous conditions, then the following is also true:

1. The Alexander polynomial ∆K(t) is monic (up to sign) and

rank π(K)ab = 1
2 deg ∆K(t); (4.49)

2. The fiber F is diffeomorphic to a compact, orientable surface with one point

removed and with genus 1
2 deg ∆K(t); and,

3. The knot genus equals g(K) = 1
2 deg ∆K(t).

As a corollary, one has the following result.

Corollary 4.35 (Saveliev, [416416]). If K is a fibered knot with Seifert surface F,

then the closure F̄ is a Seifert surface of K with (minimal) genus g(K).

Proof . See Corollary 8.3 in [416416]. �

Remark 4.5.2. A twist knot Tn with more than two half-twists n is not

fibered, as

∆Tn(t)
.
=

$

&

%

n+1
2 t2 ´ nt + n+1

2 n odd

n
2 t2 ´ (n + 1)t + n

2 n even.
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In particular, as ∆T4(t)
.
= 2t2 ´ 5t + 2 (also shared by 946), the Stevedore knot

T4 » 61 is not fibered. M

Figure 4.19. Fibered Knots of Genus 1 (31 and 41) [389389]

Proposition 4.36 (Stallings, Rolfsen, [403403]). If a link L Ă S3 is fibered, then

the commutator subgroup π(L)ab is finitely generated, in which case said subgroup is

free with rank equal to 2g(L), the link genus of L. If L is a knot, then the converse is

true.

Proof . See Chapter 10, §H, Proposition 3 in [403403]. �

Proposition 4.37 (Burde, Zieschang, [7474]). The only fibered knots of genus

one are the trefoil knot 31 and the figure-eight knot 41.

Remark 4.5.3. Although it is spanned by a Seifert surface with minimal

genus, the 3-twist knot 52 is not fibered [7474]. M

4.6. Algebraic Links

Given a complex analytic germ f : (Cn+1, 0) Ñ (C, 0) with an isolated criti-

cal point at the origin, Milnor defines the map φ f =
f
} f } : S2n+1

ε zVf, 0 Ñ S1 with
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ε P Rą0. He proves that there is an ε0 ą 0 such that for all ε satisfying 0 ă ε ă ε0,

the map φ f is the projection of a locally smooth, trivial fibration over S1. In fact,

the map φ f induces an open-book decomposition (K f , φ f ) of S2n+1
ε , where the

intersection K f = Vf, 0 X S2n+1
ε .

Definition 4.38. A link L Ă R2n´1 is algebraic if and only if there is a

complex analytic map f : (Cn+1, 0) Ñ (C, 0) with isolated critical point at the

origin and whose generic Milnor fiber Ff, θ bounds L.

The boundary link K f of the Milnor fiber Ff, 0 is algebraic since it is the

boundary of an open-book decomposition arising from (the isolated singularity

of) a complex analytic map f by construction [310310]. Moreover, K f is fibered,

as the generic Milnor fibers Ff, θ form the S1-parametrized family of Seifert

surfaces of K f . It follows that every algebraic link is fibered. The complement

S2n+1
ε zK f fibers over S1 with fiber Ff, 0, as in the diagram below,

K f S2n+1
ε zK f

S1
��

//

��

Two fibers of the trefoil knot (Ff, 0 and Ff, π) are shown in Figure 4.204.20.

However, not all links are algebraic and, in particular, not all fibered links

are algebraic. Durfee proves a bijection between the equivalence classes of

fibered links up to isotopy and integral unimodular bilinear forms, the Seifert
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forms of said links [116116], [232232]. Such bilinear forms are necessarily upper trian-

gular, a condition that excludes many fibered knots from being algebraic. For

example, the figure-eight knot is prime, alternating, hyperbolic and fibered but

not algebraic, and the Stevedore knot (or double figure-eight) is neither fibered

nor algebraic (Figure 4.194.19) but is prime, alternating, hyperbolic, ribbon and slice

[403403]. For a review of knots and links, see [335335].

Figure 4.20. Milnor Fibers of the Trefoil Knot (Adapted from [114114])

In general, the class of algebraic links forms a subclass of iterated torus links,

which are iterative cables a torus link. In particular, much is known about alge-

braic links in S3 (i.e., n = 1), including their complete classification [257257, 258258].

According to Lê, the isotopy class of an algebraic link is determined by its

Puiseux pairs [257257]. When n = 2, certain surface singularities can be realized as

well-known homology spheres [125125]. If n ě 3, then K f is simply connected (only

connected for n = 2) and may have exotic differential structure [6363].

Milnor’s work allows one to determine a significant amount of the topology

of an algebraic link from studying certain maps of corresponding fiber.
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Proposition 4.39 (Milnor, [310310]). Let f : (Cn+1, 0) Ñ (C, 0) be a complex

analytic germ with an isolated critical point at the origin. For n ‰ 2, the algebraic link

K f = Vf, 0 X S2n+1
ε with r components is a topological (2n ´ 1)-sphere if and only

if the characteristic polynomial ∆h˚(t) = det(tI´ h˚) of the associated monodromy

map h˚ : H̃n(Ff, 0; C) Ñ H̃n(Ff, 0; C) coincides with the reduced Alexander polynomial

∆K f (t)
.
= (t´ 1)1´δr,0∆K f (t1, . . . , tr) and satisfies ∆h˚(1) = ˘1. The degree of ∆h˚ is

the number of spheres in the homotopy type of the fiber, Ff, 0 »
Žµ Sn.

Proof . See Lemma 8.2, Theorem 8.5 and Lemma 10.1 in [310310]. �

Remark 4.6.1. There are counter-examples to Proposition 4.394.39 for n = 2. In

this case, however, replacing topological 3-sphere with homology 3-sphere reinstates

its validity. M

Remark 4.6.2. Consider f = xp + ypr. Since gcd(p, pr) = p and

lcm(p, pr) = pr, the characteristic polynomial of Tp,q can be used to compute

that of Tp,pr,

∆ f (t) =
(tpr ´ 1)p´1(t´ 1)

(tp ´ 1)
. (4.50)

The Alexander multivariate polynomial of Tp,pr is given by

∆Tp,pr(t1, . . . , tp) =
((t1 ¨ ¨ ¨ tp)r ´ 1)p´1

t1 ¨ ¨ ¨ tp ´ 1
. (4.51)

It is clear that ∆ f (t) = (t´ 1)∆Tp,pr(t, . . . , t). M
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Remark 4.6.3. In general, the Hosokawa polynomial [235235] of Tp,q is

∆̂Tp,q(t) = (t´ 1)2´gcd(p,q) (t
lcm(p,q) ´ 1)gcd(p,q)

(tp ´ 1)(tq ´ 1)
(4.52)

= (t´ 1)2´gcd(p,q)∆Tp,q(t, . . . , t). (4.53)

It follows that ∆ f (t) = (t´ 1)1´δr,1∆Tp,q(t, . . . , t). M

Figure 4.21. Non-Algebraic Knots (41 and 61) [389389]

Remark 4.6.4. The Alexander (and characteristic) polynomials of the

figure-eight and Stevedore knots are ∆41(t) = t2 ´ 3t + 1 and ∆61(t) =

2t2 ´ 5t + 2 , respectively. While the Alexander polynomial of the former is

monic, its roots are 1
2(3˘

?
5). Similarly, ∆61(t) is neither monic nor has constant

coefficient ˘1. These facts violate Proposition 1.141.14 and Corollary 1.131.13. Conse-

quently, neither the figure-eight knot nor the Stevedore knot (and 946) can be

algebraic. M

Remark 4.6.5. Perron [371371] proved that the figure-eight knot does arise

as the boundary link of the Milnor fiber of the real polynomial map f : (R4, 0) Ñ
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(R2, 0) given by f (x, y, z, w) = ( f1(x, y, z2 ´ w2, 2zw), f2(x, y, z2 ´ w2, 2zw)),

where

f1(x, y, z, w) = 2x f3(x, y, z, w) + z f3(
?

3x, iy, iz, iw) (4.54)

f2(x, y, z, w) = 2y f3(x, y, z, w) +
?

2xw (4.55)

f3(x, y, z, w) = 3x2
´ y2

´ z2
´w2. (4.56)

M

Remark 4.6.6. It is not known if all fibered links arise from the open-book

decomposition of Milnor fibers of real** polynomial maps. A result of Akbulut

and King [99] states that each link in S3 arises from a polynomial map with a

weakly isolated singularity at the origin, defining the notion of a weakly algebraic

link. M

Corollary 4.40. If, in particular, n = 1 and Vf, 0 has a single analytic branch

through the origin, then π(K f ) is free with rank equal to deg ∆ f , and the genera of K f

and F̄f,θ for any θ P S1 are equal to 1
2 deg ∆ f .

Proof . See Corollary 10.2 in [310310]. �

4.6.1. Cohomological Index. Given a complex analytic germ

f : (Cn+1, 0) Ñ (C, 0), define the cohomology index to be the first betti num-

ber of the infinite cyclic covering MK f ,8 of the corresponding algebraic link K f ,

*A complex analytic map f : (Cn+1, 0)Ñ (C, 0) is a real map f : (R2n+2, 0)Ñ (R2, 0).
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namely,

µco( f ) = b1(MK f ,8). (4.57)

4.7. Torus Links, Revisited

A complex analytic germ f : (C2, 0) Ñ (C, 0) defines a complex algebraic

plane curve Vf, 0 = f´1(0), and the corresponding algebraic link K f = Vf, 0 X S3
ε

is a (possibly-knotted) disjoint union
š

S1 with components depending on

the local analytic and topological structure of Vf, 0 at the origin. One notable

example of such algebraic links is that of the torus type, Tp,q, as mentioned in

the Prologue. For the convenience of the reader, we revisit the aforementioned

discussion now.

Given two integers p, q ą 1 consider the complex plane curve f = xp + yq

over C2. The origin is an isolated critical point of f and, therefore, the com-

plex algebraic hypersurface Vf, 0 is singular only at the origin. In [6161], Brauner

proved that the intersection of Vf, 0 with a sufficiently small 3-sphere, namely,

K f = Vf X S3
ε , is a (p, q)-torus link Tp,q consisting of gcd(p, q) connected

components explicitly defined by the system tx = reiθ, y = ρeiφ, rpeipθ =

ρqei(qφ+π), r2 + ρ2 = ε2u with fixed and positive ε and pθ ” qϕ + π mod 2π.

That is, Tp,q = t(reiqϕ, ρei(pϕ+π/q)) | ϕ P [0, 2π)u (Proposition 2.18, [7474]) or, in

an equivalent but normalized form, as the locus t(x, y) P C |xp = ´yq, x =

eimϕ/p, y = ei(m+n)ϕ/q+πi/q, ϕ P [0, 2π)u intersecting a torus of radius
?

2, where

1 ď n ď gcd(p, q) and 0 ď m ď lcm(p, q) [312312].
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4.7.1. Torus Links with Core. Under Milnor’s construction, the link of the

singularity f = x2 ´ xy2 is isotopic to T2,4, while that of the singularity f = x3 ´

xy2 is isotopic to the (triple) Hopf link T3,3. In general, the link of the singularity

f = x2 ´ xyq, where q ě 1, is isotopic to the torus link T2,2q. More generally, still,

the singularity f = xp´ xyq = x(xp´1´ yq), where p ą 1 and q ě 1, corresponds

to the torus link Tp´1,q linked with an unknot (as the core of a torus on which

the torus link wraps) in an alternating fashion, which we denote by OTp,q. The

two sets of algebraic links tTp,qu and tOTr,su are not isomorphic up to isotopy.

Although OTr,1 » T2,2 for r ě 2, T2,3 fi OTr,s for any (r, s) P N2. Only in the

case that p divides q (up to sign) does there exist an isotopy Tp,q » OTr,s for

r = p and s = q
p (p´ 1). That is, if rs does not divide r´ 1, then OTr,s will not be

isotopic to any torus link.

4.7.2. Multilinks. If a complex analytic map f : (C2, 0) Ñ (C, 0) factors**

into a product of irreducible, analytic maps f =
śr

i=1 f ri
i , where ri P N, then the

algebraic link K f is a multilink K f =
Ťr

i=1 riK fi , where K fi is the link of fi [420420].

According to Hillman (§5, [196196]), given two irreducible, coprime polynomials f

and g with algebraic links L f and Lg, respectively, the linking number of these

components within the algebraic link L f g is the algebraic invariant

lk(L f , Lg) = dimC O0,1/x f , gy. (4.58)

*Presumably, there is a higher-dimensional generalization of this claim. However, the author
is not aware of a such a generalization at the time of writing.
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Definition 4.41. The center and core of a torus link are the center and core

of the enveloping torus, respectively.

Definition 4.42. A torus link is said to be centrally linked by a second

torus link if and only if the core of the latter link passes through the center of

the former link with no further linking.

Remark 4.7.1. The Hopf link consists of an unknot centrally linked by an

unknot. M

Remark 4.7.2. Consider f = (x + y2)(x2 + y5) over C2, which is right-

equivalent to a J2,1-singularity x3 + x2y2 + y7 [2020]. The algebraic link K f consists

of T2,1 centrally linking (the core of) T2,5 [117117]. M

Remark 4.7.3. Consider f =
śr

i=1(aixpi + biyqi) over C2 with ai, bi P Cˆ.

The algebraic link K f consists of r linked torus links
Ťr

i=1 Tpi,qi , each centrally

linking the other r´ 1 torus links. M

Remark 4.7.4. Consider f = xp ´ yq =
śr´1

k=0(xp/r ´ ζk
pyq/r) over C2

with p, q ě 1 and r = gcd(p, q). The link K f consists of r linked torus links
Ťr

k=1 Tp/r,q/r, each centrally linking the other r ´ 1 torus links. If p and q are

coprime, then f = xp ´ yq is irreducible over C[x, y], so K f » Tp,q. If p = q, the

algebraic link K f consists of p linked unknots, each centrally linking the other

p´ 1 unknots. M

4.7.3. Alexander Polynomial of the Torus Link.
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4.7.3.1. Method I. The Brieskorn-Pham singularity** f = xp + yq is a non-

degenerate, weighted homogeneous polynomial with weights t 1
p , 1

qu, and the

corresponding algebraic link K f = Vf X S3
ε is the torus link Tp,q with gcd(p, q)

linked components. The corresponding divisor is computed by

div ∆ f (t) = div ∆zp(t) ¨ div ∆zq(t) (4.59a)

= (Λp ´Λ1)(Λq ´Λ1) (4.59b)

= gcd(p, q)Λ
lcm(p,q) ´Λp ´Λq + Λ1. (4.59c)

Since a divisor aΛb contributes (tb ´ 1)a to the numerator if sign(a) = 1 or the

denominator if sign(a) = ´1, provided that b ě 1, the corresponding character-

istic polynomial is the rational function

∆ f (t) =
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)

(tp ´ 1)(tq ´ 1)
, (4.60)

which is precisely the Alexander polynomial ∆Tp,q of the torus link Tp,q (up to a

multiplicative power of t) when p and q are coprime, in which case,

∆Tp,q(t) = gcd

(
tpq ´ 1
tp ´ 1

,
tpq ´ 1
tq ´ 1

)
. (4.61)

*It is important to recall that there are non-Brieskorn-Pham singularities with the same
weight set, t 1

p , 1
q u. Such polynomials are quasi-Brieskorn-Pham since their weights are inverse

integers. If p divides q and 0 ď a, c ď p, then f = xayb + xcyd is one such example provided
that b = q

p (p´ a) and d = q
p (p´ c). For instance, f = x2 + xy2 is non-degenerate with weights

t 1
2 , 1

4u.
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This identity follows from computing (the Jacobian of) the knot group π(Tp,q),

a crucial step in proving cyclicity of the Alexander module (Proposition 9.14 and

Example 9.15 in [7474]).

Remark 4.7.5. Consider f = xp ´ xyq with weights t 1
p , p´1

pq u. Then K f =

OTp,q and

div ∆ f (t) =
(
Λp ´Λ1

) ( 1
p´1 Λpq ´Λ1

)
(4.62)

= gcd(p,pq)
p´1 Λ

lcm(p,pq) ´Λp ´
1

p´1 Λpq + Λ1 (4.63)

= Λpq ´Λp + Λ1, (4.64)

since gcd(p, pq) = p and lcm(p, pq) = pq. Thus, the corresponding character-

istic polynomial is the rational function

∆ f (t) =
(tpq ´ 1)(t´ 1)

(tp ´ 1)
. (4.65)

M

4.7.3.2. Method II. A second way to compute the same reduced Alexander

polynomial is by first computing the reduced Hilbert-Poincaré series of f , then
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using equation (2.52a2.52a). Here, one has

P̄A f (t) =

(
1´ t1´1/p

1´ t1/p

)(
1´ t1´1/q

1´ t1/q

)
(4.66a)

=

p´2
ÿ

k=0

tk/p

q´2
ÿ

l=0

tl/q

 (4.66b)

=

p´2
ÿ

k=0

q´2
ÿ

l=0

tk/p+l/q. (4.66c)

Writing P̄A f (t) =
ř(p´1)(q´1)

j=1 tαj , where tαjuj = t k
p + l

qu(l,k)Pt(0,0),...,(p´2,q´2)u, de-

fine the shifted exponents γj = αj +
1
p +

1
q . One then computes the characteristic

polynomial

∆ f (t) =
(p´1)(q´1)

ź

j=1

(t´ e2πiγj) (4.67a)

=

p´1
ź

k=1

q´1
ź

l=1

(t´ ζk
pζ l

q) (4.67b)

=
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)

(tp ´ 1)(tq ´ 1)
, (4.67c)

where we have used the following identities:
śn´1

k=0(t´ ζk
n) = tn ´ 1 for n P N

and

p´1
ź

k=0

(t´ ζk
p)b

q´1
ź

l=0

(t´ ζ l
q) =

p´1
ź

k=0

q´1
ź

l=0

(t´ ζk
pζ l

q) (4.68a)

= (tlcm(p,q)
´ 1)gcd(p,q). (4.68b)
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We generalize these methods in §4.84.8.

4.7.3.3. Method III. A third way to compute the reduced Alexander polyno-

mial for the torus link Tp,q is to compute the exponents trdud|N and the euler

characteristics χk =
ř

d|k drd of the fixed point manifolds under the iterated

orbits, hk. Here, N = lcm(p, q). We compute

(rd, d) P t(1, 1), (´1, p), (´1, q), (gcd(p, q), lcm(p, q))u. (4.69)

Thus,

∆ f (t) = (t´ 1)
ź

1ăd|N

(td
´ 1)´rd (4.70)

=
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)

(tp ´ 1)(tq ´ 1)
, (4.71)

The degree of the characteristic polynomial is the algebraic index,

µ = 1´
ÿ

1ăd|N

drd (4.72)

= 1´ p´ q + gcd(p, q)lcm(p, q) (4.73)

= (p´ 1)(q´ 1), (4.74)

since gcd(p, q)lcm(p, q) = pq. In light of Proposition 4.394.39, one has the follow-

ing result.
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Remark 4.7.6. The associated characteristic polynomials of a few torus

links are as follows,

∆T2,2(t) = t´ 1 = Φ1(t)

∆T2,3(t) = t2
´ t + 1 = Φ6(t)

∆T2,4(t) = t3
´ t2 + t´ 1 = Φ1(t)Φ4(t)

∆T3,3(t) = t4
´ t3

´ t + 1 = Φ1(t)2Φ3(t)

∆T3,4(t) = t6
´ t5 + t3

´ t + 1 = Φ6(t)Φ12(t)

∆T3,5(t) = t8
´ t7 + t5

´ t4 + t3
´ t + 1 = Φ15(t)

∆T4,4(t) = t9
´ t8

´ 2t5 + 2t4 + t´ 1 = Φ1(t)3Φ2(t)2Φ4(t)2,

where the cyclotomic polynomial Φn(t) is defined as the product,

Φn(t) =
ź

1ďkďn
gcd(k,n)=1

(t´ ζk
n).

For the convenience of the reader, the characteristic polynomial of the torus link

Tp,q for 2 ď p, q ď 10 (up to isotopy) is given in the Appendix. M

Proposition 4.43. A torus link is a homotopy sphere if and only if it is a knot.

Proof 1 . Writing div ∆ f (t) =
ř

kě1 εkΛk, from equation (4.59c4.59c) one infers

the only non-zero coefficients, ε1 = 1, εp = εq = ´1 and ε
lcm(p,q) = gcd(p, q).

Thus, the Milnor-Orlik algebraic link invariants are κ = gcd(p, q) ´ 1 and
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ρ = 1
pq lcm(p, q)gcd(p,q). By Proposition 2.522.52,

∆ f (1) = 1
pq lcm(p, q)gcd(p,q) δ1,gcd(p,q) = δ1,gcd(p,q), (4.75)

as lcm(p, q) = pq if and only if gcd(p, q) = 1. �

Proof 2 . By applying the Residue Theorem to equation (4.67c4.67c), one proves

lim
tÑ1

∆ f (t) = Res

(
(tlcm(p,q) ´ 1)gcd(p,q)

(tp ´ 1)(tq ´ 1)

)ˇ
ˇ

ˇ

ˇ

ˇ

t=1

= δ1, gcd(p,q). (4.76)

�

Remark 4.7.7. The choice tp, qu = t2, 3u yields the trefoil knot T2,3 »

T3,2 and the corresponding characteristic and reduced Alexander polynomials

coincide, namely,

∆ f (t) = ∆T2,3(t) = 1´ t + t2. (4.77)

As ∆T2,3(1) = 1, it follows that T2,3 is a topological sphere. M

Remark 4.7.8. The choice p = q = 3 yields the (triple) Hopf link T3,3 and

the corresponding characteristic polynomial

∆ f (t) = (t´ 1)(t3
´ 1) = 1´ t´ t3 + t4, (4.78)

while the Alexander (multivariate) polynomial of Tp,pr is

∆Tp,pr(t1, . . . , tp) =
((t1 ¨ ¨ ¨ tp)r ´ 1)p´1

t1 ¨ ¨ ¨ tp ´ 1
p ě 2, r ě 1. (4.79)
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As ∆T3,3(1) = 0, it follows that T3,3 is not a topological sphere. Note that for

p = 3 and r = 1, ∆T3,3(t, t, t) = t3 ´ 1 = (t´ 1)´1∆ f (t). M

Corollary 4.44. The following identities hold:

∆Tp,q(0) =

$

&

%

1 p or q is odd

´1 otherwise
∆Tp,q(1) =

$

&

%

1 gcd(p, q) ą 1

0 otherwise.
(4.80)

Remark 4.7.9. Figure 4.224.22 shows the striking resemblance of the Bor-

romean rings 63
2 (left) and the Triple Hopf link T3,3 » 63

3. The multivariate

Alexander polynomial of the Borromean rings is

∆63
2
(t1, t2, t3) = (t1 ´ 1)(t2 ´ 1)(t3 ´ 1). (4.81)

However, there is no integer k such that (t´ 1)(t3 ´ 1) = tk(t´ 1)∆63
2
(t, t, t), so

one concludes that T3,3 is not isotopy equivalent to the Borromean rings, q.v.,

Proposition 4.394.39. M

Figure 4.22. Four Prime Links with Three Components (63
1, 63

2, 63
3 and 73

1)
[418418]

Corollary 4.45. The link OTp,q is not a homotopy sphere for p, q ě 1.

Proof . The value of equation (4.654.65) at unity is 0 for p, q ě 1. �
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4.8. Triangle Groups and Brieskorn-Pham 3-Manifolds

Figure 4.23. Five Constructible Regular n-gons (n = 3, 4, 5, 6, 8).

4.8.1. Regular Polyhedra. Denote the regular n-gon by the Schläfli symbol

tnu. A regular polyhedron tp, qu is a connected subspace of R3 with f tpu-faces

and q meeting at each of the v (regular) vertices (i.e., tqu vertex figure), and e

edges joining exactly two vertices and exactly two faces, where

v =
1

q
2p ´

q
4 +

1
2

(4.82)

e =
1

1
p +

1
q ´

1
2

(4.83)

f =
1

p
2q ´

p
4 + 1

2

. (4.84)

For every regular polyhedron tp, qu with v vertices, e edges and f faces, there is

a (regular) dual polyhedron tq, pu with f vertices, e edges and v faces. In particu-

lar, both tp, qu and tq, pu have Euler characteristic v´ e + f = 2.

Definition 4.46. A polyhedron is finite and/or convex if and only if it is

not an infinite and/or convex subspace of R3.
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Table 4.2. Face Data of the Five Platonic Solids

tp, qu v e f

t4, 3u 8 12 6
t3, 4u 6 12 8
t3, 3u 4 6 4
t3, 5u 12 30 20
t5, 3u 20 30 12

Proposition 4.47. There are exactly five closed and convex polyhedra, namely,

the Platonic solids: hexahedron (cube) t4, 3u, octahedron t3, 4u, tetrahedron t3, 3u, icosa-

hedron t3, 5u and dodecahedron t5, 3u.

Figure 4.24. The Platonic Solids and their Boundary Complexes: The Hex-
ahedron (Cube), Octahedron, Tetrahedron, Icosahedron and
Dodecahedron [7373]

Let Sn denote the symmetric group on n letters of order n!, An ă Sn denote

the alternating group on n letters of order n!
2 , Dn denote the dihedral group of or-

der 2n, and Zn ă Dn denote the cyclic group of order n.

For the next few sections, we refer the reader to [420420] and [312312].
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4.8.2. Triangle Groups. Consider a generalized triangle 4a,b,c (a triangle

on the sphere, plane or pseudo-sphere) with internal angles π
a , π

b and π
c . Con-

sider all Euclidean transformations generated by reflections through the edges

of 4a,b,c. Any reflection is involutive, and any composition of two reflections

through adjacent edges is equivalent to a rotation by the angle 2π
a , 2π

b or 2π
c ,

respectively. For fixed (a, b, c) P N3
ą1, these Euclidean operations generate a

Triangle Group ∆(a, b, c) defined by the presentation,

∆(a, b, c) = xx, y, z | x2 = y2 = z2 = (xy)a = (yz)b = (zx)c = ey, (4.85)

where e denotes the identity element. For any π P S3,

∆(a, b, c) – ∆(π(a), π(b), π(c)). (4.86)

4.8.3. von Dyck Groups. The unique normal subgroup of index 2 of the

triangle group ∆(a, b, c) is the von Dyck group D(a, b, c) defined by the presenta-

tion,

D(a, b, c) = xr, s, t | ra = sb = tc = rst = ey, (4.87)

where r = xy, s = yz and t = zx. The order of a von Dyck group D(a, b, c) is as

follows:

|D(a, b, c)| =

$

’

&

’

%

2
1
a+

1
b+

1
c´1

1
a +

1
b +

1
c ą 1

8 otherwise.
(4.88)
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Note that D(a, b, c) – D(π(a), π(b), π(c)) for any π P S3. The von Dyck groups

are partitioned into three families depending on the value of the parameter

κ =
1
a
+

1
b
+

1
c

, (4.89)

namely, the spherical (κ ą 1), euclidean (κ = 1) and hyperbolic (κ ă 1).

Proposition 4.48. The von Dyck groups are partitioned as follows:

1. (Spherical) D(2, 2, n), D(2, 3, 3), D(2, 3, 4) and D(2, 3, 5);

2. (Euclidean) D(2, 3, 6), D(2, 4, 4) and D(3, 3, 3); and,

3. (Hyperbolic) Infinitely many groups tD(a, b, c)u such that 1
a +

1
b +

1
c ă 1.

Proof . Simply determine those integers (a, b, c) which satisfy the three

cases κ ą 1, κ = 1 and κ ă 1, respectively. �

For certain parameter values [420420], the group D(a, b, c) and the natural geo-

metric object on which it acts is well known, for it pertains to a finite subgroups

of SO(3). For example, for n ě 1,

D(1, n, n) – Zn ă SO(2) (acting on tnu)

D(2, 2, n) – Dn ă O(2) (acting on tnu)

D(2, 3, 3) – A4 ă SO(3) (acting on t3, 3u)

D(2, 3, 4) – S4 ă SO(3) (acting on t3, 4u or t4, 3u)

D(2, 3, 5) – A5 ă SO(3) (acting on t3, 5u or t5, 3u).

(4.90)
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In general, the abelianization of the von Dyck group is the cartesian product

of cyclic groups, that is, D(a, b, c)ab – Zm ˆZn, where m = gcd(a, b, c) and

n = lcm(gcd(a, b), gcd(b, c), gcd(c, a)) and mn = abc
lcm(a,b,c) .

4.8.4. Binary von Dyck Groups. The binary von Dyck group or centrally ex-

tended triangle group is defined by the presentation,

Γ(a, b, c) = xr, s, t | ra = sb = tc = rsty (4.91)

and satisfies the quotient D(a, b, c) – Γ(a, b, c)/xrsty, where xrsty has order 2.

The order of the binary von Dyck group Γ(a, b, c) is as follows:

|Γ(a, b, c)| =

$

’

&

’

%

4
1
a+

1
b+

1
c´1

1
a +

1
b +

1
c ą 1

8 otherwise.
(4.92)

with group exponent 2 lcm(a, b, c) and number of conjugacy classes a + b + c´

1. The commutator subgroup Π(a, b, c) = [Γ(a, b, c), Γ(a, b, c)] has order

|Π(a, b, c)| =

$

’

&

’

%

= 4
abc( 1

a+
1
b+

1
c´1)2

1
a +

1
b +

1
c ą 1

8 otherwise.
(4.93)

Thus, the abelianization Γ(a, b, c)ab – Γ(a, b, c)/Π(a, b, c) has order |ab + bc +

ca´ abc| (Corollary 3.2, [312312]).

Proposition 4.49 (Milnor, [312312]). Let P denote either the Euclidean, spherical

or hyperbolic planes. Let Ḡ denote the connected Lie group of orientation preserving
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isometries of P. The fundamental group of the coset space Ḡ/D(a, b, c) is isomorphic to

Γ(a, b, c).

Remark 4.8.1. Consider the following binary von Dyck groups:

1. Let Q = xi, j, k |i2 = j2 = k2 = ijky be the quaternion group;

2. Let T̃ = xr, s, t | r2 = s3 = t3 = rsty be binary tetrahedral group (with

r = st, s = 1
2(1 + i + j + k) and t = 1

2(1 + i + j´ k));

3. Let Õ = xr, s, t | r2 = s3 = t4 = rsty be the binary octahedral group (with

r = st, s = ´1
2(1 + i + j + k) and t = 1?

2
(1 + i); and,

4. Let Ĩ = xr, s, t | r2 = s3 = t5 = rsty be the binary icosahedral group (with

r = st, s = 1
2(1 + i + j + k), t = 1

2(φ + φ´1i + j) and φ = 1
2(1 +

?
5)).

Observe T̃ – SL(2, Z3) – Q¸Z3, Õ – 2 ¨ S´4 , the Schur cover of S4 of (´)-type,

and Ĩ – SL(2, Z5) – 2 ¨ A5, the Schur cover of A5 [165165]. M

Proposition 4.50. The following group isomorphisms hold:

1. Π(2, 2, r) – Zr for r P Ną1;

2. Π(2, 3, 3) – Γ(2, 2, 2);

3. Π(2, 3, 4) – Γ(2, 3, 3); and,

4. Π(2, 3, 5) – Γ(2, 3, 5).

Proof . See Chapter 2 in [420420]. �

Remark 4.8.2. A group is perfect if and only if it is isomorphic to its com-

mutator subgroup. For instance, the alternating group A5, the binary von Dyck
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group Γ(2, 3, 5), any non-abelian simple group and any quasi-simple group are

perfect. M

4.8.5. Lens Spaces. For this section, we refer the reader to [308308]. Given

d, q0, . . . , qn P Z, such that gcd(d, qi) = 1 for 0 ď i ď n, the orbit space

of the (free) Zd-action (z0, . . . , zn) ÞÑ (ζ
q0
d z0, . . . , ζ

qn
d zn) on the unit sphere

S2n+1 Ă Cn+1 is the Lens space L(d; q0, . . . , qn), which is a compact, connected,

orientable (2n + 1)-manifold. The quotient map S2n+1 Ñ L(d; q0, . . . , qn) is a

d-fold covering. Note that L(d, q0 . . . , qn) – L(d; qπ(0), . . . , qπ(n)) for any permu-

tation π P Sn+1. Lens spaces enjoy the following homotopy** groups

πi(L(d; q0, . . . , qn)) –

$

&

%

Zd i = 1

πi(S2d´1) i ě 2
(4.94)

and homology groups

Hi(L(d; q0, . . . , qn)) –

$

’

’

’

&

’

’

’

%

Z i P t0, 2n´ 1u

Zd i = 2k´ 1, k P t1, . . . , n´ 1u

t0u else.

(4.95)

Proposition 4.51. Given two Lens spaces L(d; q0, . . . , qn) and

L(d1; q10, . . . , q1n), the following statements are true:

*Recall that a weak homotopy equivalence of (path-connected, pointed) spaces (i.e., πi(X) –
πi(Y) for i ě 0) does not imply homotopy equivalence (i.e., X » Y) of said spaces, although the
converse is true.
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1. (Homotopy Equivalence) L(d; q0, . . . , qn) » L(d1; q10, . . . , q1n) if and only if

q0 ¨ ¨ ¨ qn ” ˘knq10 ¨ ¨ ¨ q
1
n mod d for some k P Zd;

2. (Topological Equivalence) L(d; q0, . . . , qn) – L(d1; q10, . . . , q1n) if and only if

there is a permutation π P Sn+1 and k P Zd such that qi ” ˘kq1
π(i) mod d

for 0 ď i ď n; and,

3. (h-Cobordism Equivalence) L(d; q0, . . . , qn) –h-c L(d1; q10, . . . , q1n) if and only

if L(d; q0, . . . , qn) – L(d1; q10, . . . , q1n).

Proof . See [2525], [6666], [308308] and [359359]. �

4.8.6. Brieskorn-Pham 3-Manifolds.

Definition 4.52. A spherical 3-manifold is a 3-manifold isomorphic to a

quotient S3/Γ, where Γ is a finite subgroup of SO(4) which acts freely by rota-

tions.

Remark 4.8.3. The Poincaré homology sphere or dodecahedral space is a spher-

ical 3-manifold and homology 3-sphere isomorphic to S3/ Ĩ, where Ĩ ă SU(2)

is the binary icosahedral group, and S3 is realized as the 3-dimensional quater-

nionic Lie group Spin(3) – Sp(1) – SU(2), the double cover of SO(3). How-

ever, it is not a topological 3-sphere as its fundamental group is Ĩ, and it is the

only non-trivial homology 3-sphere (excluding S3) with a finite fundamental

group. M
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Proposition 4.53 (Milnor, [312312]). The Brieskorn-Pham 3-manifold Σ(p, q, r)

is homeomorphic to the r-fold cyclic branched covering of S3, branched along the torus

link Tp,q.

The classification of the triangle groups implies the following result.

Proposition 4.54 (Milnor, [312312]). Let N ă SL(3, R) denote the Heisenberg

(matrix) group of upper triangular 3ˆ 3-matrices of the form
1 a c

0 1 b

0 0 1

 a, b, c P R. (4.96)

and ČSL(2, R) denotes the universal cover of SL(2, R). The following is true:

1. If κ ą 0, then Σ(a, b, c) is diffeomorphic to SU(2)/Π, where Π is a finite

subgroup;

2. If κ = 0, then Σ(a, b, c) is diffeomorphic to N/Π, where Π is a discrete and

uniform subgroup; and,

3. If κ ă 0, then Σ(a, b, c) is diffeomorphic to ČSL(2, R)/Π, where Π is a cocom-

pact subgroup.

Corollary 4.55 (Milnor, [312312]). Given three positive integers a, b and c satis-

fying 1
a +

1
b +

1
c ą 1, the Brieskorn-Pham 3-manifold Σ(a, b, c) is diffeomorphic to the

quotient manifold S3/Π(a, b, c), where Π(a, b, c) is the commutator subgroup of the

binary von Dyck group Γ(a, b, c).
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Proof . See Theorem 4.5 in [312312]. �

Remark 4.8.4. The Brieskorn-Pham 3-manifold Σ(a, b, c) with relatively

coprime integers ta, b, cu Ă N is a Seifert 3-manifold, where in particular,

Σ(a, b, 1), Σ(a, 1, c) and Σ(1, b, c) are topological 3-spheres, Σ(2, 2, n) is diffeo-

morphic to the Lens space L(n; n´ 1), Σ(2, 3, 3), Σ(2, 3, 4) and Σ(2, 3, 5) are dif-

feomorphic to the spherical 3-manifolds S3/Q, S3/Õ and S3/ Ĩ, respectively. M

4.8.7. Seifert Invariants. For this section, we refer the reader to [342342]. Let

A = (αij) be an (n´ 1)ˆ (n + 1) matrix such that no (n´ 1)ˆ (n´ 1) subdeter-

minant vanishes. Define n Brieskorn-Pham polynomials Cn+1 with coefficients

from the rows of A, say, fi = αi0za0
0 + ¨ ¨ ¨ + αinzan

n , for 0 ď i ď n ´ 1, where

a0, . . . , an P N. Consider the complete intersection

VA(a0, . . . , an) =
n´1
č

i=0

f´1
i (0), (4.97)

which admits a Cˆ-action λ ¨ (z0, . . . , zn) = (λq0z0, . . . , λqn zn), where qi = N
ai

and N = lcm(a0, . . . , an), that restricts to a fixed-point free Cˆ-action on the

Brieskorn-Pham 3-manifold Σ(a0, . . . , an) = VA(a0, . . . , an)X S2n´1. For any permu-

tation π P Sn+1, Σ(a0, . . . , an) – Σ(aπ(0), . . . , aπ(n)). Said manifold is therefore a

Seifert 3-manifold, which is characterized up to (equivariant) diffeomorphism by
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its Seifert invariants tg; d0(c0, β0), . . . , dn(cn, βn)u (Theorem 2.1, [342342]), where

ci =
N

lcm(a0, . . . , âi, . . . , an)
ě 1 (4.98)

di =
a0 ¨ ¨ ¨ âi ¨ ¨ ¨ an

lcm(a0, . . . , âi, . . . , an)
ě 1 (4.99)

g = 1 + 1
2(n´ 1)

a0 ¨ ¨ ¨ an

N
´ 1

2

n
ÿ

i=0

di ě 0 (4.100)

χ = ´
a0 ¨ ¨ ¨ an

N2 , (4.101)

which satisfy gcd(ci, βi) = 1 and
řn

i=0 βi
di
ci
= ´χ or equivalently

řn
i=0 βiqi = 1.

The integer g = g(Σ(a0, . . . , an)/S1) is the genus of the Seifert surface (or base

orbifold) Σ(a0, . . . , an)/S1 and χ = χ(Σ(a0, . . . , an)) is the Euler number of the

fiber, respectively. In particular, for a Brieskorn-Pham 3-manifold Σ = Σ(a, b, c),

one has

g(Σ/S1) = abc
2 lcm(a,b,c) ´

1
2 (gcd(a, b) + gcd(b, c) + gcd(a, c)) + 1 (4.102)

χ(Σ) = ´ abc
lcm(a,b,c)2 . (4.103)

Proposition 4.56 (Milnor, [312312]). For positive integers a, b and c, if

m = lcm(a, b) = lcm(a, c) = lcm(b, c), (4.104)

then the Brieskorn-Pham 3-manifold Σ(a, b, c) fibers smoothly as a smooth S1-bundle

with Chern number ´ abc
m2 = ´gcd(a, b, c) over a Riemann surface of Euler character-

istic abc
m κ, where κ = 1

a +
1
b +

1
c ´ 1, and genus 1´ abc

2m κ.
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Proof . See Lemmata 7.1 and 7.2 and Theorem 7.3 in [312312]. �

4.8.8. Homeomorphic Brieskorn-Pham 3-Manifolds.

Proposition 4.57. Given a, b, c, a1, b1, c1 P N, there is a homemorphism

Σ(a, b, c) – Σ(a1, b1, c1) if

gcd(a, b, c) = gcd(a1, b1, c1) (4.105)

m = lcm(a, b) = lcm(b, c) = lcm(a, c) (4.106)

m1 = lcm(a1, b1) = lcm(b1, c1) = lcm(a1, c1) (4.107)

abc
m

(
1
a
+

1
b
+

1
c
´ 1
)
=

a1b1c1

m1

(
1
a1
+

1
b1
+

1
c1
´ 1
)

, (4.108)

the latter equality being equivalent to g(Σ(a, b, c)/S1) = g(Σ(a1, b1, c1)/S1).

Proof . For positive integers a, b and c, if m = lcm(a, b) = lcm(a, c) =

lcm(b, c), then according to Proposition 4.564.56, the Chern number ´ abc
m2 and and

Euler characteristic abc
m κ, where κ = 1

a +
1
b +

1
c ´ 1, are diffeomorphism invari-

ants. That is, if Σ(a, b, c) and Σ(a1, b1, c1) fiber as S1-bundles with equal Chern

numbers over surfaces of equal (base-orbifold) genera, then there is a home-

omorhism Σ(a, b, c) – Σ(a1, b1, c1) as well as a diffeomorphism Σ(a, b, c) –d

Σ(a1, b1, c1), since the notion of homeomorphism and diffeomorphism coincide
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for smooth 3-manifolds. The assumption on m implies

abc
m2 = τ = gcd(a, b, c) (4.109)

abc
m

κ = l1 ´
d
τ
= 2´ 2g(Σ(a, b, c)/S1) (4.110)

where l1 = gcd(a, b) + gcd(b, c) + gcd(a, c) and d
τ = gcd(a,b)gcd(b,c)gcd(a,c)

gcd(a,b,c) .

�

4.9. Brieskorn-Pham Manifolds as Homotopy Spheres

The fibered link K f consists of a linked, disjoint union
š

S2n´1 embedded

in S2n+1
ε and, for n ‰ 2, is a homotopy sphere if and only if the characteristic

polynomial ∆h˚(t) = det(tI´ h˚) of the associated monodromy map h˚ satis-

fies ∆h˚(1) = ˘1. The degree of ∆h˚ is precisely the number of spheres in the

bouquet,
Žµ Sn.

Let f =
řn

i=0 zai
i and define the hypersurface Vf, 0 = f´1(0). The alge-

braic link of the Brieskorn-Pham singularity f is the Brieskorn-Pham (2n´ 1)-

manifold Σ(a0, . . . , an) = Vf, 0 X S2n+1. The following is a simple set of graphical

criteria which imply when the manifold Σ(a0, . . . , an) is a homotopy sphere.

Proposition 4.58 (Milnor, Brieskorn, [6363]). Let f =
řn

i=0 zai
i and ∆ f = ∆h˚

denote the associated characteristic polynomial of the monodromy h˚ of f . Define the

following graph Γa on n + 1 vertices labelled by the exponents taiu and containing the

edge eij = xai, ajy if and only if gcd(ai, aj) ą 1 (with loops ignored). The manifold
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K f = Σ(a0, . . . , an) is a homotopy sphere if and only if ∆ f (1) = ˘1 if and only if the

following is true:

1. The graph Γa contains at least two isolated vertices; or,

2. The graph Γa contains at least one isolated vertex and a connected subgraph on

an odd set of vertices such that gcd(ai, aj) = 2 for any two distinct vertices

therein.

Proof . See Bedingung B (Condition B) and Satz 1 (Theorem 1) in [6363]. �

2

3

4

56

Figure 4.25. The Brieskorn Graph Γ(2,3,4,5,6)

Remark 4.9.1. The Brieskorn-Pham manifold Σ(2, 3, 4, 5, 6) is not a homo-

topy sphere, as Brieskorn graph Γ(2,3,4,5,6) (Figure 4.254.25) does not satisfy the crite-

ria of Proposition 4.584.58. However, this fact can be verified directly by computing
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the characteristic polynomial, namely,

∆h˚(t) = Φ5(t)2Φ10(t)2Φ15(t)Φ20(t)4Φ30(t)2Φ60(t)3

=
(

1 + t + t2
´ t5 + t8

´ t11 + t14 + t15 + t16
)2 (

1´ t2 + t4
´ t6 + t8

)4

¨

(
1 + t2

´ t6
´ t8

´ t10 + t14 + t16
)3 (

1´ t + t3
´ t4 + t5

´ t7 + t8
)

,

so ∆h˚(1) = (5)2(1)4(1)3(1) = 25. M

4.10. Brieskorn-Pham Manifolds as Stiefel Manifolds

Let Vk(R
d) = tv P Rdˆk | vᵀv = 1u denote the Stiefel manifold of or-

thonormal k-frames in Rd. Viewed as a homogeneous space, one has Vk(R
d) –

O(d)/O(d ´ k), hence dim Vk(R
d) = kd ´ (k+1

2 ). In particular, V2(R
d) can be

identified with the unit tangent bundle to Sd´1, where each point on Sd´1 has

Sd´2 as a fiber.

Proposition 4.59 (Durfee, [116116]). The algebraic link K f Ă S2n+1 of the Morse

function f = z2
0 + ¨ ¨ ¨+ z2

n over Cn+1 is diffeomorphic to the tangent Sn´1-bundle of

Sn with Seifert form (´1)n(n+1)/2.

Proof . See Proposition 2.2 in [116116]. �

The next result generalizes Proposition 4.594.59.

Proposition 4.60 (Davis, [100100, 101101]). For n ‰ 2,

1. If n is even, the link K f = Vf, 0 X S2n+1
ε is homeomorphic to V2(R

n+1) if and

only if ∆h˚(1) = ˘2; or,
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2. If n is odd, the link K f = Vf, 0 X S2n+1
ε is homeomorphic to V2(R

n+1) or

Sn ˆ Sn´1 if and only if ∆h˚(1) = 0 and (t´ 1)2 - ∆h˚(t).

Remark 4.10.1. Observe that for f = z2
0 + ¨ ¨ ¨+ z2

n over Cn+1, one has the

characteristic polynomial ∆h˚(t) = t + (´1)n. By Proposition 4.604.60, K f = Σ(2n+1)

is homeomorphic to V2(R
n+1) for n ą 2, which is the content of Proposition

4.594.59. M

Remark 4.10.2. Davis [100100] proves that any Brieskorn-Pham singularity

over Cn+1 with even n and ∆h˚(1) = ˘2 is necessary the example in Remark

4.10.14.10.1. M

Remark 4.10.3. Observe that for f = z4
0 + z2

1 + ¨ ¨ ¨ + z2
n over Cn+1, one

has the characteristic polynomial ∆h˚(t) = (t2 + 1)(t + (´1)n). By Proposition

4.604.60, K f = Σ(4, 2n) is homeomorphic to either V2(R
n+1) or Sn ˆ Sn´1 for odd

n ą 2. M

Remark 4.10.4. Observe that for f = z4
0 + z4

1 + z2
2 + ¨ ¨ ¨+ z2

n over Cn+1, one

has the characteristic polynomial

∆h˚(t) = (t2 + 1)2(t + 1)
5
2+(´1)n 1

2 (t´ 1)
5
2´(´1)n 1

2 . (4.111)

By Proposition 4.604.60, K f = Σ(4, 4, 2n´1) is not homeomorphic to V2(R
n+1) for

n ą 2. M
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4.11. Brieskorn-Pham Manifolds as Exotic Spheres

4.11.1. Hirzebruch Signature Theorem. Let M4k denote a closed, oriented,

4k-manifold. Consider the self-cup product map B : x ÞÑ x ! x, which is a

quadratic form of type (p, q), where x is an element of the middle cohomology

group H2k(M4k; Z)/T, where T is the corresponding torsion, mapping to an

element in the top cohomology group H4k(M4k; Z) – Z.

Definition 4.61. The Thom signature σ(M4k) is defined as the signature of

the quadratic form B, that is, p´ q.

Thom proved that the signature σ(M4k) is a homomorphism from the cobor-

dism class Ω4k to the integers, therefore a cobordism invariant, and is a Q-linear

combination of the Pontryagin numbers [203203].

Hirzebruch related the Thom signature to the L-genus [203203]. In particular,

the Hirzebruch-Thom signature σ(Mn) is defined for any compact, smooth, ori-

ented differential manifold Mn of positive dimension, and is the value of the

pairing of the L-genus with the fundamental homology class [Mn],

σ(Mn) =

$

&

%

0 n ı 0 mod 4

xLk, [Mn]y n = 4k
(4.112)

where Lk = Lk(p1, . . . , pk) is a Q-polynomial of degree at most k over ori-

ented cobordism invariants, namely, the Pontryagin classes pk = pk(TMn) P

H4k(Mn; Z). In general, Lk is given in terms of the complexified tangent bundle

of Mn, Lk =
ś2k

i=1
xi

tanh xi
, where xi = ci(Mn) are the Chern roots of Mn. The fact
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that σ(Mn) is an integer imposes strict divisibility criteria on the Pontryagin

classes of Mn. For 4, 8 and 12-manifolds, the signature relations are

σ(M4) = 1
3xp1, [M4]y (4.113)

σ(M8) = 1
32¨5x7p2 ´ p2

1, [M8]y (4.114)

σ(M12) = 1
33¨5¨7x2p3

1 + (2 ¨ 31)p3 ´ 13p1p2, [M12]y, (4.115)

respectively. The signature often has curious divisibility properties. According

to Hirzebruch [202202], if b4(M12) = 0 (the fourth betti number), then

x2p3
1 ´ 13p1p2, [M12]y = 0, (4.116)

so the corresponding signature satisfies

945σ(M12) = 62xp3, [M12]y (4.117)

and is therefore divisible by 62 as xp3, [M12]y P Z and gcd(945, 62) = 1.

4.11.2. Homology, Homotopy, Topological and Exotic Spheres.

Definition 4.62. A topological n-sphere is a smooth, closed, oriented n-

manifold that is homeomorphic to the n-sphere. A homology n-sphere is a n-

manifold that is homology equivalent to the n-sphere, sharing the same homol-

ogy groups. A homotopy n-sphere is a n-manifold that is homotopy equivalent to

the n-sphere, sharing the same homology and homotopy groups, so, in particu-

lar, a homology n-sphere.
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Definition 4.63. A homology n-sphere is an n-manifold possessing the

same homology groups as those of an n-sphere, i.e., Hi(X; Z) – t0u for

1 ď i ď n ´ 1 and H0(X; Z) – Hn(X; Z) – Z. A homotopy n-sphere is an n-

manifold homotopy equivalent to Sn. A topological n-sphere is an n-manifold

homeomorphic to Sn. An exotic n-sphere is a topological n-sphere not diffeomor-

phic to Sn.

Remark 4.11.1. Every homotopy n-sphere is a homology n-sphere. Every

topological n-sphere is a homotopy n-sphere. M

According to the combined work of Smale (n ě 5), Freedman (n = 4), Perel-

man (n = 3) and Möbius, von Dyck, Dehn, Heegaard and Rado (n = 1, 2), a

smooth homotopy n-sphere is a topological n-sphere provided that n ě 1. Their

work is summarized in the following landmark result.

Proposition 4.64 (Poincaré Conjecture). For n ě 2, every homotopy n-sphere

is homeomorphic to an n-sphere, i.e., a topological n-sphere.

It is natural then to consider whether a differential analogue of the Poincaré

Conjecture holds for spheres.

Conjecture 4.65 (Smooth Poincaré Conjecture). For n ě 2, every homotopy

n-sphere is diffeomorphic to Sn.

The case n = 2 is classical. Perelman proved the case n = 3. The case n = 4

remains open. In 1956, Milnor gave a counter-example for n = 7 [305305]. Milnor
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and Kervaire proved that it holds for n P t5, 6u and produced counter-examples

for n ą 7 [313313].

4.11.3. Milnor 7-Sphere. While investigating S3-bundles over S4 with rota-

tion and structural group SO(4), in 1956, Milnor discovered that the 7-sphere

has several differentiable structures [305305]. In particular, Milnor constructs a

Thom space T with boundary M and signature σ(T) = 1 and xp2
1, [T]y = k2 for

some integer k congruent to 2 modulo 4. However, by equation (4.1144.114),

xp2, [T]y = 1
7(45σ(T) + xp2

1, [T]y) = 1
7(45 + k2), (4.118)

which is not an integer if k is not congruent to ˘2 modulo 7. Therefore, M is not

diffeomorphic to S7 in the excluded cases.

Proposition 4.66 (Reeb). Given a compact n-manifold M and a Morse func-

tion f : M Ñ R with exactly two critical points, then M is homeomorphic to Sn.

Proof . See Theorem 4.1 in [306306]. �

Milnor proves that M is a compact, oriented smooth 7-dimensional mani-

fold satisfying the assumptions of Reeb’s Sphere Theorem, so M is homeomor-

phic to S7. For a detailed discussion of this intriguing topic, see [306306], [311311] and

Chapter 20 in [316316].

4.11.4. Homotopy Spheres. Let Σn, [Σn] and Θn = t[Σn] |Σn » Snu de-

note a homotopy n-sphere, an equivalence class of n-spheres up to oriented h-

cobordism, and the additive abelian group of such classes under the operation
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of connected sum, with inverse given by reversing orientation [237237, 311311]. By

the work of Smale, Freedman, Perelman and others, the h-Cobordism Theorem

implies that the elements of Θn are in fact oriented diffeomorphism classes. In

particular, every homotopy n-sphere is a topological n-sphere for n ě 0. There

is a cyclic subgroup bPn+1 ă Θn consisting of the homotopy spheres which

bound (n+1)-dimensional parallelizable (smooth) manifolds. The groups Θn

and bPn+1 are the Milnor-Kervaire groups. For 2 ď n ď 6, Θn and bPn+1 are trivial.

For m ě 2,

|bP4m| = 22m´2(22m´1
´ 1) num(4|B2m|

m ), (4.119)

where Bm is the mth-Bernoulli number. Milnor and Kervaire prove that bP2m+1

is trivial for m ě 1. Recent work by Hill, Hopkins and Ravenel concerning the

Kervaire Invariant One problem implies bP2l´2 – Z2 for l ě 8 [210210]. Essential

to the complete understanding of bP4m+2 is the computation of the Kervaire

Invariant. Based on the work of Kervaire, et al., the current state of knowledge of

the order of these groups is the following:

|bP4m+2| =

$

’

’

’

&

’

’

’

%

1 m P t1, 3, 7, 15u

1 or 2 m = 31

2 otherwise,

(4.120)

where the group bP126 is hitherto still not completely understood. The number

of exotic spheres in dimension n is inferred from a careful study of the group
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Θn, and its order |Θn|, that is, the number of h-cobordism classes of smooth

homotopy n-spheres as a function of n ě 1 [237237] (A001676A001676).

In higher dimensions, an algebraic link K f may have curious differen-

tial structure, quite different from that of the ordinary (2n ´ 1)-sphere. If

f =
řn

i=0 zai
i with ai ě 1, one often writes Σ(a0, . . . , an) in place of K f , not to

be confused for the Brieskorn-Pham 3-manifold arising from a complete inter-

section in §4.8.74.8.7. Again, Σ(a0, . . . , an) – Σ(aπ(0), . . . , aπ(n)) for any permutation

π P Sn+1. Let ab denote a repeated b times as in ‘a, . . . , a’.

Proposition 4.67 (Brieskorn, Milnor [310310]). If a0, . . . , an P N are pairwise

coprime, then the manifold Σ(a0, . . . , an) is an integral homology (2n´ 1)-sphere. If,

in addition, n ą 2, then Σ(a0, . . . , an) is a topological (2n´ 1)-sphere.

4.11.5. Brieskorn-Pham Manifolds as Exotic Spheres. Consider the poly-

nomial f = z5
0 + z3

1 +
ř6

i=2 z2
i over C7, and define the 1-parameter family

of complex hypersurfaces Vf, κ = f´1(κ) with κ P C sufficiently close to

the origin [6363]. By the ADE classification of simple singularities, the singu-

larity f is a 4-stabilization of the E8 surface singularity (x2 = y3 + z5 over

C3) and corresponds to a Milnor fiber FΣ4E8
»

Ž8 S6 with topological index

µtop(Σ4 f ) = µtop( f ) = 8. The intersection Vf, κ X B14
ε , where κ P C is a regular

value of f sufficiently close to the origin and ε ą 0 is sufficiently small, is a

12-manifold with boundary

K11
Σ4E8

= B(Vf, κ X B14
ε ) = Vf, κ X S13

ε . (4.121)

302

http://oeis.org/A001676


This algebraic link is the 4-iterated stabilization of the 5-iterated cyclic branched

covering of the trefoil knot and has reduced Alexander polynomial

∆ f (t) =
(t15 ´ 1)(t´ 1)
(t5 ´ 1)(t3 ´ 1)

(4.122a)

= 1´ t + t3
´ t4 + t5

´ t7 + t8 (4.122b)

= Φ15(t), (4.122c)

where Φn(t) is the nth-cyclotomic polynomial. According to Milnor, since

∆ f (1) = Φ15(1) = 1, then K11
Σ4E8

is a topological sphere. The quotient space

M12
Σ4E8

= Vf, κ X B14
ε / K11

Σ4E8
is a 5-connected 12-manifold (without boundary)

with bi(M12
f ) = 0 for 1 ď i ď 5 and signature σ(M12

Σ4E8
) = ´8 [202202]. As the signa-

ture is not divisible by 62, it follows that M12
Σ4E8

is not a differentiable manifold.

In particular, although K11
Σ4E8

is homeomorphic to S11, it cannot be diffeomorphic

to it. Hence, K11
Σ4E8

is an exotic 11-sphere [6363]. This example represents one of

992 (oriented diffeomorphism classes of) differentiable structures on S11 — all

representable by the 1-parameter family of polynomials f = z6k´1
0 + z3

1 +
ř6

i=2 z2
i

for 1 ď k ď 992. In fact, up to diffeomorphism, all exotic spheres in dimensions

4m´ 1 admit a similar realization.

Proposition 4.68 (Hirzebruch, Brieskorn [6363]). Let Σ4m´1
k be the link of the

Brieskorn-Pham singularity f = z6k´1
0 + z3

1 +
ř2m

i=2 z2
i . Then Σ4m´1

k is a homotopy

sphere with signature σ(Σ4m´1
k ) = (´1)m8k and represents σm

8 differential structures
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in bP4m, where

σm = 22m+1(22m´1
´ 1) num(4|B2m|

m ), (4.123)

that is, Σ4m´1
k P bP4m for 1 ď k ď σm

8 .

4.11.5.1. Arf-Kervaire Invariant. The differentiable structure of an algebraic

link K f is determined by certain values of the characteristic polynomial, namely,

∆ f (˘1), and certain invariants of the corresponding fiber, namely, the signature

σ(Ff, 0) (for even n ą 2) and Arf-Kervaire invariant c(Ff, 0) (for odd n) [310310],

[420420]. For certain values of n, it is determined completely by the characteristic

polynomial.

Proposition 4.69 (Levine, [268268]). If a fibered link L is a topological (2n´ 1)-

sphere for some odd n, then the Arf-Kervaire invariant of the fiber F is determined by

the characteristic polynomial,

c(F) =

$

&

%

0 ∆L(´1) ” ˘1 mod 8

1 ∆L(´1) ” ˘3 mod 8.

The link L is diffeomorphic to S2n´1 if and only if c(F) = 0.

Proof . See also [331331]. �

Thus, for odd n, if the algebraic link K f is a topological sphere, then its dif-

feomorphism structure is determined by the monodromy through the value

∆ f (´1). Using this result, Brieskorn proves the following.
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Proposition 4.70 (Brieskorn, [6363]). The manifold Σ(d, 2n) is an exotic (2n´

1)-sphere for odd d, n ą 2 if and only if d ” ˘3 mod 8.

4.12. Characteristic Polynomial of Brieskorn-Pham Manifolds

Proposition 4.71. For positive integers a0, . . . , an,

n
â

i=0
(tai ´ 1) = (tlcm(a0,...,an) ´ 1)N(a0,...,an), (4.124)

where

N(a0, . . . , an) =
a0 ¨ ¨ ¨ an

lcm(a0, . . . , an)
(4.125a)

=
n
ź

l=2

ź

ti1,...,iluĎta0,...,anu

gcd(i1, . . . , il)
(´1)l

. (4.125b)

Proof . We prove the identity by induction on n. The identity is true for

n = 1 by the classical result,

(ta
´ 1)b (tb

´ 1) = (tlcm(a,b)
´ 1)ab/lcm(a,b). (4.126)

Assume the claim holds for some auxiliary index k ą 1. Then it holds for k + 1,

as

k+1
â

i=0
(tai ´ 1) = (tlcm(a0,...,ak) ´ 1)N(a0,...,ak) b (tak+1 ´ 1) (4.127)

=
(
(tlcm(a0,...,ak) ´ 1)b (tak+1 ´ 1)

)N(a0,...,ak)
(4.128)

= (tlcm(a0,...,ak+1) ´ 1)N(a0,...,ak+1), (4.129)
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since

N(a0, . . . , ak+1) =
N(a0, . . . , ak)lcm(a0, . . . , ak)ak+1

lcm(lcm(a0, . . . , ak), ak+1)
(4.130)

=
k+1
ź

l=2

ź

ti1,...,iluĎta0,...,ak+1u

gcd(i1, . . . , il)
(´1)l

, (4.131)

which follows from the following arithmetic identity: For 1 ă l ă k,

lcm(a1, . . . , ak) = lcm(a1, . . . , ak´l, lcm(ak´l+1, . . . , ak)) (4.132)

gcd(a1, . . . , ak) = gcd(a1, . . . , ak´l, gcd(ak´l+1, . . . , ak)). (4.133)

This proves the inductive hypothesis and completes the proof of the claim. �

Remark 4.12.1. The classical identity tn ´ 1 =
śn´1

k=0(t´ ζk
n), where ζn =

e2πi/n, combined with Proposition 4.714.71 implies the factorization,

(tlcm(a0,...,an) ´ 1)N(a0,...,an) =
a0´1
ź

k0=0

¨ ¨ ¨

an´1
ź

kn=0

(t´ ζk0
a0 ¨ ¨ ¨ ζ

kn
an). (4.134)

M

For a Brieskorn-Pham polynomial f with exponents ta0, . . . , anu, the alge-

braic link K f is the Brieskorn-Pham manifold Σ(a0, . . . , an). One way to deter-

mine if Σ(a0, . . . , an) is an integral homology sphere (n = 2) or topological

sphere (n ą 2) is to evaluate the corresponding characteristic polynomial ∆ f (t)

at unity.
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Proposition 4.72. The characteristic polynomial of a non-degenerate, quasi-

Brieskorn-Pham singularity with inverse weights ta0, . . . , anu is the alternating prod-

uct

∆ f (t) =
a0´1
ź

k0=1

¨ ¨ ¨

an´1
ź

kn=1

(t´ ζk0
a0 ¨ ¨ ¨ ζ

kn
an) (4.135)

= (t´ 1)(´1)n+1
n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

(tlcm(ai1
,...,aik

)
´ 1)(´1)n´k+1N(ai1

,...,aik
),

where N(a0, . . . , an) is defined in Proposition 4.714.71.

Proof 1 . The reduced Poincaré series of the local algebra of f is given by

the iterated summation,

P̄A(t) =
n
ź

i=0

1´ t1´1/ai

1´ t1/ai
(4.136a)

=
a0´2
ÿ

k0=0

¨ ¨ ¨

an´2
ÿ

kn=0

tk0/a0+¨¨¨+kn/an , (4.136b)

which is a specialization of the weighted Ehrhart function of the minimal

(n + 1)-orthotope l enclosing the simplicial (n + 1)-polytope convt0, (a0 ´

2)e1, . . . , (an ´ 2)en+1u, namely,

Ll(1; x0, . . . , xn) =
a0´2
ÿ

i0=0

¨ ¨ ¨

an´2
ÿ

in=0

xi0
0 ¨ ¨ ¨ x

in
n , (4.137)

where xi = t1/ai , q.v., Volume 2. Define the set I of intersection lattice points

lXZn+1 = t(0, . . . , 0), . . . , (a0´ 2, . . . , an´ 2)u. Writing P̄A(t) =
řµ

j=1 tαj , where
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µ = µalg( f ) =
śn

i=0(ai ´ 1) and tαju
µ
j=0 is the list t

řn
i=0

ki
ai
u(k0,...,kn)PI reordered,

define the shifted exponents γj = αj +
řn

i=0
1
ai

. As a consequence of Proposition

4.714.71, noting the indices of the product of linear terms involving roots-of-unity,

one then computes the characteristic polynomial as a rational function in Z(t),

∆ f (t) =
µ
ź

j=0

(t´ e2πiγj) (4.138a)

=
a0´1
ź

k0=1

¨ ¨ ¨

an´1
ź

kn=1

(t´ ζk0
a0 ¨ ¨ ¨ ζ

kn
an) (4.138b)

= (t´ 1)(´1)n+1
n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

(tlcm(ai1
,...,aik

)
´ 1)(´1)n´k+1N(ai1

,...,aik
)

with
řn+1

k=0 (
n+1

k ) = 2n+1 terms. �

Remark 4.12.2. Therefore, tlcm(ai1 , . . . , aik)u0ďi1ă¨¨¨ăikďn forms the set of

divisors of the period N = lcm(a0, . . . , an) with corresponding exponents of

the form

r
lcm(ai1

,...,aik
) = (´1)k ai1 ¨ ¨ ¨ aik

lcm(ai1 , . . . , aik)
(4.139)
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and, hence, the degree of the characteristic polynomial ∆ f (t) is

µalg( f ) = (´1)n+1 +
n+1
ÿ

k=1

(´1)n+1´k
ÿ

0ďi1ă¨¨¨ăikďn

ai1 ¨ ¨ ¨ aik (4.140)

=
n+1
ÿ

k=0

(´1)n+1´kek(a0, . . . , an) (4.141)

=
n
ź

i=0

(ai ´ 1). (4.142)

M

Proof 2 . For a non-degenerate, quasi-Brieskorn-Pham singularity with

inverse weights ta0, . . . , anu, the aforementioned representation of the character-

istic polynomial follows directly from the divisor identity

div ∆ f (t) =
n
ź

i=0

(Λai ´Λ1) (4.143a)

=
n+1
ÿ

k=0

(´1)n+1´kek(Λa0 , . . . , Λan), (4.143b)
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where ek is the kth-elementary symmetric polynomial,

e0(Λa0 , . . . , Λan) = Λ1 (4.144a)

e1(Λa0 , . . . , Λan) =
n
ÿ

i=0

Λai (4.144b)

ek(Λa0 , . . . , Λan) =
ÿ

0ďi1ă¨¨¨ăikďn

Λai1
¨ ¨ ¨Λaik

k ą 1 (4.144c)

=
ÿ

0ďi1ă¨¨¨ăikďn

ai1
¨¨¨aik

lcm(ai1
,...,aik

)
Λ

lcm(ai1
,...,aik

), (4.144d)

using the following identity: For 1 ă l ă k,

lcm(ai1 , . . . , aik) = lcm(ai1 , . . . , aik´l , lcm(aik´l+1 , . . . , aik)) (4.145)

gcd(ai1 , . . . , aik) = gcd(ai1 , . . . , aik´l , gcd(aik´l+1 , . . . , aik)). (4.146)

�

4.12.0.2. Milnor-Orlik Invariants. Recall that if div ∆ f (t) =
ř

kě1 ckΛk, the

Milnor-Orlik invariants are the non-negative integers

κ =
ÿ

kě1

ck and ρ =
ź

kě2

kck , (4.147)

Milnor and Orlik [315315] prove ∆ f (1) = δκ,0 ρ, where κ is higher power of t ´ 1

which divides ∆ f (t), q.v., Proposition 2.522.52.
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Corollary 4.73. The Milnor-Orlik invariants for a non-degenerate, quasi-

Brieskorn-Pham singularity with inverse weights ta0, . . . , anu are

κ = (´1)n+1 + (´1)n(n + 1) +
n+1
ÿ

k=2

(´1)n´k+1
ÿ

0ďi1ă¨¨¨ăikďn

ai1
¨¨¨aik

lcm(ai1
,...,aik

)
(4.148)

and

ρ = (a0 ¨ ¨ ¨ an)
(´1)n

n+1
ź

k=2

ź

0ďi1ă¨¨¨ăikďn

lcm(ai1 , . . . , aik)
(´1)n´k+1ai1

¨¨¨aik
/lcm(ai1

,...,aik
).

Corollary 4.74. Given a non-degenerate, quasi-Brieskorn-Pham polynomial f

with pairwise coprime inverse weights ta0, . . . , anu Ă N, the corresponding character-

istic polynomial is the product

∆ f (t) = (t´ 1)(´1)n+1 ź

d|N

(td
´ 1)m(d), (4.149)

where N = a0 ¨ ¨ ¨ an and m(d) is 1 if d is a product of l + 1 elements from ta0, . . . , anu

and l + n is even and ´1 otherwise. Moreover,

µalg( f ) = (´1)n+1 +
ÿ

d|N

dm(d). (4.150)

Proof . If ta1, . . . , anu is pairwise coprime, then by Proposition 4.724.72,

∆ f (t) = (t´ 1)(´1)n+1
n
ź

i=0

(ta0¨¨¨ai ´ 1)(´1)i+n
. (4.151)

�
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Remark 4.12.3. Define the q-integer [n]q = qn´1
q´1 . If f : (Cn+1, 0) Ñ (C, 0)

is a homogeneous polynomial of degree d, then the characteristic polynomial is

the product of two terms, namely,

∆ f (t) = (t´ 1)(´1)n+1
n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

(td
´ 1)(´1)n´k+1dk´1

(4.152)

= (t´ 1)(´1)n+1
n+1
ź

k=1

(td
´ 1)(´1)n´k+1dk´1(n+1

k ) (4.153)

= (t´ 1)(´1)n+1
(td
´ 1)(´1)n(1´(1´d)n+1)/d (4.154)

= (t´ 1)(´1)n+1
(td
´ 1)(´1)n[n+1]1´d (4.155)

with degree

µalg( f ) = (´1)n+1 + (´1)nd[n + 1]1´d (4.156)

= (´1)n+1 + (´1)n(1´ (1´ d)n+1) (4.157)

= (d´ 1)n+1. (4.158)
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Moreover, the Milnor-Orlik invariants are simply

κ = (´1)n+1 + (´1)n(n + 1) +
n+1
ÿ

k=2

(´1)n´k+1
(

n + 1
k

)
dk´1 (4.159)

= (´1)n 1
d ((1´ d)n

´ 1)(d´ 1) (4.160)

= (´1)n[n]1´d(1´ d) (4.161)

= (´1)n+1 + (´1)n[n + 1]1´d (4.162)

and

ρ = d(´1)n(n+1)+
řn+1

k=2 (´1)n´k+1(n+1
k )dk´1

= d(´1)n 1
d (1´(1´d)n+1)

= d(´1)n[n+1]1´d .

Furthermore, for n ě 0 and d ě 1,

∆ f (1) =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 d = 1

1 + (´1)n d = 2

d n = 0

0 d ą 2, n ą 0

(4.163)
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and

∆ f (´1) =

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 d = 1 or n = 0

(´1)n ´ 1 d = 2

0 even d ě 4

(´2)(´1)n+1
((´1)d ´ 1)(´1)n[n+1]1´d otherwise.

(4.164)

M

Remark 4.12.4. In §6.86.8, we discuss the fundamental relationship between

the characteristic polynomials of quasi-Brieskorn-Pham singularities and cy-

clotomic polynomials in the setting of abstract arithmetic and combinatorial

number theory. M

Remark 4.12.5. As in Remark 4.13.14.13.1, non-degenerate, quasi-Brieskorn-

Pham singularities with equal weights have equal Hilbert-Poincaré series, mon-

odromies, corresponding characteristic polynomials and algebraic indices but

may have different local algebras and not necessarily isotopic algebraic links.

For example, the algebraic link of a quasi-Brieskorn-Pham singularity is not

necessarily isotopic to a Brieskorn-Pham manifold. M

4.12.1. Topological Spheres. We proceed now to the explicit computation a

few families of Brieskorn-Pham manifolds which are topological spheres.

Proposition 4.75. For n ą 2, the following statements are true:
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1. Given a set of pairwise coprime integers ta0, . . . , anu Ă Ną1, the Brieskorn-

Pham manifold Σ(a0, . . . , an) is a topological sphere;

2. For a ą 1, the Brieskorn-Pham manifold Σ(a, . . . , a) is not a topological

sphere; and,

3. For a, b ą 1 such that gcd(a, b) = 1, the Brieksorn-Pham manifold

Σ(a, . . . , a, b) is a topological sphere only for odd n and a = 2.

Proof . If ta0, . . . , anu is pairwise coprime, then lcm(ai1 , . . . , aik) =

ai1 ¨ ¨ ¨ aik for 0 ď i1 ă ¨ ¨ ¨ ă ik ď n, and

ÿ

0ďi1ă¨¨¨ăikďn

ai1 ¨ ¨ ¨ aik
lcm(ai1 , . . . , aik)

=
ÿ

0ďi1ă¨¨¨ăikďn

1 (4.165)

=

(
n + 1

k

)
(4.166)

for k, n ě 1. Thus, the corresponding Milnor-Orlik invariants are simply

κ = (´1)n+1 +
n+1
ÿ

k=1

(´1)n´k+1
(

n + 1
k

)
(4.167)

= (1´ 1)n+1 = 0 (4.168)

and

∆ f (1) = δ0,κ

n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

(ai1 ¨ ¨ ¨ aik)
(´1)n´k+1

, (4.169)
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which equals 1 if n ą 0 and a0 if n = 0, which proves the first statement. If

ai = a for 0 ď i ď n, then lcm(ai1 , . . . , aik) = a for 0 ď i1 ă ¨ ¨ ¨ ă ik ď n, and

ÿ

0ďi1ă¨¨¨ăikďn

ai1 ¨ ¨ ¨ aik
lcm(ai1 , . . . , aik)

= ak´1
(

n + 1
k

)
(4.170)

for k, n ě 1. Thus, the corresponding Milnor-Orlik invariants are simply

κ = (´1)n+1 +
n+1
ÿ

k=1

(´1)n´k+1ak´1
(

n + 1
k

)
(4.171)

= (a´ 1)n+1, (4.172)

and

ρ = a(n+1)(an+1+(´1)n)/(a+1). (4.173)

Since κ does not vanish unless a = 1, it follows that ∆ f (1) = δ0,κ for any value

of κ, which implies the second statement. Finally, given ai = a for 0 ď i ď n and

an+1 = b, one computes

κ = (´1)nn +
n+1
ÿ

k=2

(´1)n´k+1
[

ak´1
(

n
k

)
+ ak´2

((
n + 1

k

)
´

(
n
k

))]
(4.174a)

= (´1)nn + (´1)n+1n = 0 (4.174b)
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and

ρ = (anb)(´1)n
n+1
ź

k=2

a(´1)n´k+1ak´1(n
k)(ab)(´1)n´k+1ak´2((n+1

k )´(n
k)) (4.175a)

= b(´1)n+
řn+1

k=2 (´1)n´k+1ak´2((n+1
k )´(n

k)). (4.175b)

For positive integers a and n,

n+1
ÿ

k=2

(´1)n´k+1ak´2
((

n + 1
k

)
´

(
n
k

))
= (´1)n (1´ a)n ´ 1

a
, (4.176)

which follows from the binomial expansions,

n+1
ÿ

k=2

(´1)kak
(

n
k

)
= na + (1´ a)n

´ 1 (4.177)

and

n+1
ÿ

k=2

(´1)kak
(

n + 1
k

)
= (n + 1)a + (1´ a)n+1

´ 1. (4.178)

Hence, there is a positive integer mn,a = (´1)n( (1´a)n´1
a + 1) such that

∆ f (1) =

$

’

’

’

&

’

’

’

%

1 n = 1 or n is odd and a = 2

b n is even and a = 2

bmn,a a ą 2.

(4.179)

This concludes the proof of the third statement. �
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Remark 4.12.6. The Brieskorn-Pham manifold Σ(3, 2n) generalizes the

trefoil knot and has the corresponding characteristic polynomial

∆Σ(3,2n)(t) =

$

&

%

t2 ´ t + 1 n is odd

t2 + t + 1 n is even.
(4.180)

Therefore, since ∆Σ(3,2n)(1) = 1 for odd n and ∆Σ(3,2n)(1) = 3 for even n, it

follows that Σ(3, 2n) is a topological (2n ´ 1)-sphere for odd n. This result is

consistent with Proposition 4.754.75. M

For n = 2 and p, q, r P N,

p´1
ź

k=0

q´1
ź

l=0

r´1
ź

m=0

(t´ ζk
pζ l

qζm
r ) =

p´1
ź

k=0

(t´ ζk
p)b

q´1
ź

l=0

(t´ ζ l
q)b

r´1
ź

m=0

(t´ ζm
r ) (4.181a)

= (tlcm(p,q,r)
´ 1)pqr/lcm(p,q,r) (4.181b)

= (tlcm(p,q,r)
´ 1)gcd(p,q)gcd(q,r)gcd(r,p)/gcd(p,q,r),

which, when combined with previous computations, implies

∆(p,q,r)(t) =
(tlcm(p,q,r) ´ 1)G(p,q,r)

(tlcm(p,q) ´ 1)G(p,q)(tlcm(q,r) ´ 1)G(q,r)

¨
(tp ´ 1)(tq ´ 1)(tr ´ 1)

(tlcm(r,p) ´ 1)G(r,p)(t´ 1)
, (4.182)

where G(a, b) = gcd(a, b) and

G(p, q, r) =
G(p, q)G(q, r)G(r, p)

gcd(p, q, r)
. (4.183)
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Equivalently, for p, q, r P N, the divisor formula yields

div ∆(p,q,r)(t) = (Λp ´Λ1)(Λq ´Λ1)(Λr ´Λ1) (4.184a)

= gcd(p, q)gcd(lcm(p, q), r)Λ
lcm(lcm(p,q),r)

´ gcd(p, q)Λ
lcm(p,q) ´ gcd(q, r)Λ

lcm(q,r)

´ gcd(r, p)Λ
lcm(r,p) + Λp + Λq + Λr ´Λ1. (4.184b)

One then uses the arithmetic identities

lcm(lcm(p, q), r) = lcm(p, q, r) (4.185)

and

gcd(lcm(p, q), r) =
gcd(q, r)gcd(r, p)

gcd(p, q, r)
(4.186)

and derives equation (4.1824.182). Thus, for pairwise coprime p, q, r P N,

∆(p,q,r)(t) =
p´1
ź

k=1

q´1
ź

l=1

r´1
ź

m=1

(t´ ζk
pζ l

qζm
r ) (4.187a)

=
(tpqr ´ 1)(tp ´ 1)(tq ´ 1)(tr ´ 1)
(tpq ´ 1)(tqr ´ 1)(trp ´ 1)(t´ 1)

. (4.187b)
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Remark 4.12.7. Writing ∆(p,q,r) in place of ∆ f , where f is quasi-Brieskorn-

Pham with inverse weights tp, q, ru Ă N, we compute

∆(2,3,5)(t) = 1 + t´ t3
´ t4

´ t5 + t7 + t8 (4.188)

∆(2,3,7)(t) = 1 + t´ t3
´ t4 + t6

´ t8
´ t9 + t11 + t12 (4.189)

∆(2,5,7)(t) = 1 + t´ t5
´ t6

´ t7
´ t8 + t10 + t11 + t12 + t13 + t14

´ t16
´ t17

´ t18
´ t19 + t23 + t24, (4.190)

which are the cyclotomic polynomials Φ30(t), Φ42(t) and Φ70(t), respectively.

Observe the factorizations 30 = 2 ¨ 3 ¨ 5, 42 = 2 ¨ 3 ¨ 7 and 70 = 2 ¨ 5 ¨ 7. Moreover,

∆(2,3,5)(˘1) = ∆(2,3,7)(˘1) = ∆(2,5,7)(˘1) = 1, (4.191)

so, in particular, the corresponding Brieskorn-Pham 3-manifolds are homology

3-spheres. Recall Σ(2, 3, 5) is the Poincaré (integral) homology 3-sphere. M

It is apparent that the complexity of the representation of the characteristic

polynomial given in Proposition 4.724.72 exceeds the reasonable even for rather

small values of n. In the next chapter, we give a simpler representation of the

characteristic polynomial in terms of (polynomial tensor) products of cyclotomic

polynomials.
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4.13. Algebra Links by Topological Type

As before, let K f = Vf, 0 X S2n+1
ε denote the algebraic link of the singular-

ity f . The topological type of a non-degenerate analytic map f is the oriented

homeomorphism class of (Bn+1
ε , f´1(0) X Bn+1

ε ). In fact, the (oriented) diffeo-

morphism class of (S2n+1
ε , K f ), where K f = f´1(0) X S2n+1

ε , determines the

topological type of f and vice-versa. In particular, the link K f is homeomorphic

to the sphere S2n´1 if and only if K has the homology of S2n´1. If f is weighted

homogeneous, more can be said. By a theorem of Oka [355355, 357357], the weights of

a weighted homogeneous polynomial f determine the topological type of the

singularity of Vf for n ě 0. However, according to Orlik [361361] only for n = 2

does the topology of the corresponding algebraic link K f determine the weights

of f ; there are counter-examples for all other dimensions.

Remark 4.13.1. An equality of characteristic polynomials does not neces-

sarily imply correspondingly isotopic algebraic links, while the converse may

be true. Consider f = x3 + y3, g = x3 + xy2 and h = x3 + y3 + z2 + w2, which

are non-degenerate, quasi-Brieskorn-Pham polynomials with weights t1
3 , 1

3u,

t1
3 , 1

3u and t1
3 , 1

3 , 1
2 , 1

2u, respectively. The corresponding Hilbert-Poincaré series

are equal, namely, P̄A f (t) = P̄Ag(t) = P̄Ah(t) = 1 + 2t1/3 + t2/3, and, therefore,

so, too, are the characteristic series, ∆ f (t) = ∆g(t) = ∆h(t) = t4 ´ t3 ´ t + 1

by Proposition 2.512.51 and Corollary 2.572.57. However, K f » T3,3 » OT3,2 » Kg, but

Kh » Σ(3, 3, 2, 2) fi Kg. M
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Definition 4.76. A map h : (X, A) Ñ (Y, B) is a relative homeomorphism if

and only if h maps XzA homeomorphically onto YzB.

Proposition 4.77 (Saeki, [407407]). Let f , g : (C2, 0) Ñ (C, 0) be polynomials

with isolated critical points at the origin. If (C2, Vf ) and (C2, Vg) are locally homeo-

morphic, then (S3
ε , K f ) and (S3

ε , Kg) are relatively homeomorphic.

Proof . See Lemma 5 in [407407]. �

Let π(K f ) = π1(S2n+1
ε zK f ) denote the link group of K f .

Proposition 4.78 (Saeki, [407407]). Given non-degenerate weighted homogeneous

polynomials f , g : (C3, 0) Ñ (C, 0), if π(K f ) – π(Kg) and ∆ f (t) = ∆g(t), then f

and g have identical weights up to permutation.

Proof . See Theorem 3 in [407407]. �

Remark 4.13.2. Saeki remarks that Proposition 4.784.78 does not hold in gen-

eral. Consider f = z2
0z1 + z0z6

1 + z3
2 + z13

3 and g = z3
0z1 + z0z4

1 + z3
2 + z13

3

over C4. Although the singularities Σn´3 f and Σn´3g have different weights,

namely, t 5
11 , 1

11 , 1
3 , 1

13 , 1
2 , . . . , 1

2u and t 3
11 , 2

11 , 1
3 , 1

13 , 1
2 , . . . , 1

2u, respectively, their links

are homeomorphic and corresponding characteristic polynomials are equal for

n ě 3. However, (Cn+1, VΣn´3 f ) and (Cn+1, VΣn´3g) are not locally homeomor-

phic at the origin for n ě 3. M

Proposition 4.79 (Saeki,[407407]; Lê,[258258]; Perron,[372372]). Let

f , g : (Cn, 0) Ñ (C, 0) be polynomials with isolated critical points at the origin.
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If (Cn, Vf ) and (Cn, Vg) are locally homeomorphic, then π(K f ) – π(Kg) and

∆ f (t) = ∆g(t).

Proof . See Lemma 2 in [407407]. �

4.13.1. Lê’s Classification. Let C be a complex plane algebraic curve and VC

denote the corresponding hypersurface. The problem of classifying algebraic

knots of the form KC = VC X S3
ε was solved by Lê.

Proposition 4.80 (Lê, [257257]). Let K = KC be the algebraic knot corresponding

to a plane curve singularity C with Puiseux pairs P(C) = t(m1, n1), . . . , (ms, ns)u.

Define νi = ni ¨ ¨ ¨ ns for 1 ď i ď s and νs+1 = 1, λ1 = m1 and λi =

mi ´ (mi´1ni + λi´1nini´1) for 2 ď i ď s. The Alexander polynomial ∆K(t) is

the product
śs

i=1 Pλi,ni(t
νi+1), where

Pλ,n(t) =
(tλn ´ 1)(t´ 1)
(tλ ´ 1)(tn ´ 1)

. (4.192)

Proof . See [257257]. �

Remark 4.13.3. The Puiseux pairs t(pi, qi)u are coprime positive integers

which satisfy the recurrence inequality piqi pi+1 ă qi+1 for 1 ď i ă n. An iter-

ated torus knot of type t(p1, q1), . . . , (pn, qn)u is an inductively defined (pi, qi)-

cabling beginning with a torus knot Tp1,q1 . It is known that the connected com-

ponents of any algebraic link are iterated torus knots. Recall, for example, that

the plane curve f = zp
0 + zq

1, where p and q are coprime, with hypersurface

Cp,q = f´1(0) and Puiseux pairs P(Cp,q) = t(p, q)u corresponds to the torus
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knot Tp,q. By Lê’s formula, then

Pp,q(t) =
(tpq ´ 1)(t´ 1)
(tp ´ 1)(tq ´ 1)

= ∆Tp,q(t). (4.193)

M

Since Puiseux pairs are unique up to (permutation and) topological type, the

classification of algebraic knots in S3 is complete.

Corollary 4.81 (Lê, [257257]). Two algebraic knots K and K1 are equivalent if and

only if the corresponding Alexander polynomials are equal, i.e., ∆K(t) = ∆K1(t).

According to Lê, in the classical case n = 2, the monodromy (hence the

Alexander polynomial) determines the topological type of the corresponding

knot. The case n = 3 is open and n ě 4, it is known that the Alexander poly-

nomial does not determine the topological type of the corresponding knot. Lê

proves that if two knots are cobordant, then their Alexander polynomials are in

the same cobordism class, which means that there is a polynomial p such that

∆K(t)∆K1(t) =̇ p(t)p(t´1) (up to a power of t). He proves also that the Alexan-

der polynomial of an irreducible plane curve determines the cobordism type of

the corresponding knot.

4.13.2. Yamamoto’s Classification. In 1984, Yamamoto [480480] proves that al-

gebraic links in S3 are classified (up to ambient isotopy) by their characteristic

polynomials. He proves also for algebraic links in S2n+1 for any n ą 1, by way

of explicitly constructing counter-examples, that there are distinct links (up to
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isotopy) with identical characteristic polynomials. Therefore, the characteristic

polynomial is insufficient to provide a complete classification of higher dimen-

sional algebraic links up to ambient isotopy.

This concludes our discussion of some interesting geometric aspects of com-

plex analytic singularities. We proceed now to some combinatorial structures.
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Chapter 5

Combinatorial Structure of Isolated Singularities

Man is fond of counting his troubles, but he does not count his joys. If he
counted them up as he ought to, he would see that every lot has enough
happiness provided for it. — Fyodor Dostoevsky
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In this chapter we study some combinatorics related to isolated singularities,

particularly the weighted-homogeneous type introduced in a previous chapter.

We define the Newton and Weight polytopes and compute some of their geo-

metric and combinatorial attributes. We relate these to the algebraic invariants

of non-degenerate weighted homogeneous singularities—the algebraic, combi-

natorial, lattice and arithmetic indices among them—and pay special attention

to the Brieskorn-Pham type or related singularities.
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By enumerating lattice points in rational simplicial polytopes, we derive

exact representations of the delta invariant and branch number of a weighted

homogeneous plane curve in terms of the weights. By a similar technique, we

compute the geometric genus of a weighted homogeneous singularity in C3. As

a result of these novel representations, we derive new congruences and a three-

term reciprocity law for the Dedekind sum generalizing the corresponding

classical results of Dedekind and Rademacher.

As a further consequence of our analysis of the geometric genus for C3, we

prove a few special cases and develop sharper inequalities of the Durfee-Yau-

Zhang Theorem. We discuss a new method of proving the original Durfee Con-

jecture.

In volume 2 we discuss techniques for the enumeration of lattice points

in polytopes. For the convenience of the reader, we reproduce some of these

results and give a brief introduction to the necessary tools to understand this

chapter. In particular, we include here some relevant passages from chapter 1 of

volume 2.

For a detailed introduction to the foundation of these and related topics, see

[4343], [435435] and [434434].

5.1. Classical Ehrhart-Macdonald Theory

For t P Rą0, we define the solid n-polytope P = convtv1, . . . , vmu in two

equivalent ways — as the closure of the convex hull tP = convttv1, . . . , tvmu or

the locus t(tx1, . . . , txn) P Rn | (x1, . . . , xn) P Pu. If P = convt0, a1e1, . . . , anenu is
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orthotopal simplicial, then the t-dilation**, admits an explicit algebraic descrip-

tion, tP = t(x1, . . . , xn) P Rn |
řn

i=1
xi
ai
ď t ^ xi ě 0u.

For a fixed polytope P , define the enumerative function LP : Rě0 Ñ Zě0

by LP (t) = |tP XZn|, the number of Zn-lattice points intersecting tP . Denote

by `P = LP |Z the restriction of LP on Zě0. Define the order of P , denoted by

ord(P), as the integer `P (1), the number of Zn-lattice points in P .

It is useful to define the generating function EP (z) =
ř

kě1 `P (k) zk.

We refer to LP , EP and t`P (k)ukě1 as the Ehrhart function, Ehrhart series and

Ehrhart sequence of the n-polytope P , respectively. Similarly, define the enu-

merative functions for the interior†† and boundary, LP˝(t) = |tP˝ X Zn|,

EP˝(z) =
ř

kě1 `P˝(k) zk and LBP (t) = |t(BP)XZn|, EBP (z) =
ř

kě1 `BP (k) zk,

respectively.

Proposition 5.1 (Stanley, [434434]). Let f : Zě0 Ñ C be an arithmetic function.

The following statements are equivalent:

1. There are periodic functions tc1, . . . , cnu with least common period d such that

f (k) =
řn

l=1 cl(k) kl.

2. There is an integer d and polynomials t f0, . . . , fd´1u such that f (k) = fl(k) if

k ” l mod d.

3. There are polynomials tg1, . . . , gmu such that f (k) =
řm

i=1 gi(k) ζk
i , where

ζd
i = 1, that is, ζi is a dth-roots of unity.

*Of course, if 0 ă t ă 1, then one uses “t-contraction” rather than “t-dilation”.

†The Ehrhart series EP˝ of the interior P˝ is defined with lower summation index k = 1.
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4. The generating function
ř

kě0 f (k) zk is a rational function P
Q P C(z), where

deg P ă deg Q (in reduced form) and the roots of Q are dth-roots of unity.

Proof . See Theorem 1.1, Proposition 1.2 and Corollaries 1.3 and 1.5 in

[434434]. �

An arithmetic function f : Zě0 Ñ C satisfying any of the equivalent state-

ments in Proposition 5.15.1 is called a quasi-polynomial of degree n and period N.

It is known that if P is a rational convex n-polytope (not necessarily simple,

simplicial or orthotopal), then `P is a quasi-polynomial of degree dimP = n

on Zě0 [122122, 123123]. That is, there are n + 1 periodic functions cl : Zě0 Ñ Q, each

with finite period per(cl) ě 1, such that `P (t) =
řn

l=0 cl(t)tl and n! cl(t) P Z[t]

for 0 ď l ď n. Moreover, the leading coefficient function cn(t) = cn has pe-

riod 1 and equals voln(P), the (continuous) n-content of P relative to the affine

span aff(P)XZn, and cn´1(0) = 1
2voln´1(BP) = 1

2
ř

FĂBP voln´1(F) (as a sum

over facets, each normalized with respect to aff(F)XZn). Furthermore, the pe-

riod N = N(P) equal to lcm(per(c0), . . . , per(cn)) divides the denominator

d = d(P).

Stanley proves that under certain conditions, HP (z) = (1 ´ z)´n´1EP (z)

is the Hilbert polynomial of a Cohen-Macaulay Ring corresponding to P and

therefore has non-negative coefficients [434434].

If, in particular, P is integral, then both the period and denominator of P
are 1 (i.e., the coefficient functions cl are constant) and `P (t) =

ř

l=0 cl tl P Q[t]
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for t P Zě0 (See [299299] and [435435])**. In this case, three coefficients are known to

carry (continuous) geometric/topological information††, namely, cn = voln(P),

cn´1 = 1
2voln´1(BP) and c0 = χ(P). The other coefficients, which had un-

til recently lacked a similar satisfactory interpretation, also contain geomet-

ric and/or topological information. We shall refer to tc0, . . . , cnu as the (set of)

Ehrhart coefficients of P .

A polytope is pseudo-integral if and only if its Ehrhart function is a polyno-

mial on the restricted domain Zě0. All integral simplicial polytopes are pseudo-

integral, but the converse is not true.

Proposition 5.2. Let LP (t), LP˝(t) and LBP (t) denote the Ehrhart functions

of an orthopic simplicial n-polytope P = convt0, a1e1, . . . , anenu, its interior P˝ and

boundary BP , respectively. Then LBP (t) = LP (t)´LP˝(t), where

LP (t) =
ta1tu
ÿ

i1=0

¨ ¨ ¨

tan(t´
řn´1

k=1 ik/ak)u
ÿ

in=0

1 (5.1)

LP˝(t) =
ra1ts´1
ÿ

i1=1

¨ ¨ ¨

ran(t´
řn´1

k=1 ik/ak)s´1
ÿ

in=1

1 t P Rě0. (5.2)

Proof . See Volume 2. �

*For an elementary proof for lattice polytopes, see Theorem 5.1 in [3030].

†This work was anticipated by Reeve as early as 1957 with his study of the volume of lattice
3-polytopes. He proved an explicit formula to compute the corresponding volume depending
only on `P (1), `P˝(1), `P (2) and `P˝(2), thereby generalizing Pick’s Theorem (1899) of the
lattice polygons.
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Corollary 5.3. The number of positive lattice points intersecting the t-dilate of

the orthotopal simplicial n-polytope P = convt0, a1e1, . . . , anenu is given by

LP (t; N) =
ta1tu
ÿ

i1=1

¨ ¨ ¨

tan(t´
řn´1

k=1 ik/ak)u
ÿ

in=1

1. (5.3)

Proof . See Volume 2. �

5.1.1. Enumerating Square Weighted Homogeneous Polynomials. Given

a set of rational weights ω = tω1, . . . , ωnu, the number N = N(ω) of non-

negative integral solutions of the equation
řn

i=1 ωiai = 1, or of the equivalent

Diophantine equation
řn

i=1 qiai = d, gives the number of weighted homoge-

neous monomials za1
1 ¨ ¨ ¨ z

an
n with weighted degree d and integral weights or

gradation tq1, . . . , qnu, where qi = deg zi.

Proposition 5.4. The most general weighted homogeneous polynomial with

weight ω (modulo coefficients) is given by the difference

L4(P)(z; 1) =
t1/ω1u
ÿ

i1=0

¨ ¨ ¨

t(1´
řn´1

k=1 ikωk)/ωnu
ÿ

in=0

zi1
1 ¨ ¨ ¨ z

in
n

´

r1/ω1s´1
ÿ

i1=0

¨ ¨ ¨

r(1´
řn´1

k=1 ikωk)/ωns´1
ÿ

in=0

zi1
1 ¨ ¨ ¨ z

in
n . (5.4)

Proof . The integer N also counts the non-negative lattice points intersect-

ing the (n´ 1)-polytope 4(P) = convt e1
ω1

, . . . , en
ωn
u, which is a facet of the sim-

plicial orthotopal n-polytope P = convt0, e1
ω1

, . . . , en
ωn
u. By first enumerating the
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non-negative lattice points intersecting P , that is, the order LP (1) = |P XZn
ě0|,

and discounting those lattice points on the orthogonal boundaries as well as

those in the interior P˝, one computes the number of lattice points intersecting

4(P). Add a monomial weight zi1
1 ¨ ¨ ¨ z

in
in to each lattice point (i1, . . . , in) P Zn

ě0.

By Proposition 5.25.2, the most general weighted homogeneous polynomial (mod-

ulo coefficients) in n complex variables with weights ω = tω1, . . . , ωnu is the

difference of the corresponding generalized Ehrhart functions. This concludes

the proof. �

Let W(ω) denote the set of the monomials comprising the counting polyno-

mial L4(P)(z; 1). Setting z1 = ¨ ¨ ¨ = zn = 1 gives the number N of lattice points

on 4(P) which are correspondingly bijective with said monomials.

Remark 5.1.1. To include all permutations of variables, then consider in-

stead

L4(P)(z; 1) =
ÿ

πPSn

t1/ω1u
ÿ

i1=0

¨ ¨ ¨

t(1´
řn´1

k=1 ikωk)/ωnu
ÿ

in=0

zi1
π1 ¨ ¨ ¨ z

in
πn

´
ÿ

πPSn

r1/ω1s´1
ÿ

i1=0

¨ ¨ ¨

r(1´
řn´1

k=1 ikωk)/ωns´1
ÿ

in=0

zi1
π1 ¨ ¨ ¨ z

in
πn . (5.5)

M
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Corollary 5.5. The number of weighted homogeneous monomials with weight

ω (modulo coefficients and permutations of variables) is the integer

|W(ω)| = L4(P)(1; 1). (5.6)

Remark 5.1.2. Neither Proposition 5.45.4 nor Corollary 5.55.5 differentiate non-

degenerate from degenerate weighted homogeneous polynomials. M

Recall that a weighted homogeneous polynomial is square if and only if the

number of its variables equals that of its constituent monomials.

Corollary 5.6. The number of square weighted homogeneous polynomials with

weight ω = tω1, . . . , ωnu (modulo coefficients and permutations of variables) is the

integer (
|W(ω)|

|ω|

)
=

(
N
n

)
. (5.7)

Proof . The number of weighted homogeneous polynomials with weight ω

consisting of k distinct monomials is the binomial coefficient (|W(ω)|
k ). �

5.2. Inner Modality and Restricted Integer Compositions

5.2.1. Inner Modality. Recall D =
řn

i=0 d´ 2qi. Define the inner modality**

µ̄0 as the number of basis monomials in the local algebra A f with weighted

*The standard notation for the inner modality is µ0, but we use µ̄0 to avoid conflict with the
0th-coefficient of the Hilbert-Poincaré series of a local algebra, µ0 = dimC C = 1.
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degree greater than or equal to d. By the reflexive symmetry of the Hilbert-

Poincaré series, one computes

µ̄0 =
ÿ

lěd

µl (5.8a)

=
ÿ

D´lěd´D

µD´l (5.8b)

=
ÿ

lďD´d

µl, (5.8c)

where µl is the number of basis monomials in A f with weighted degree equal

to l.

Proposition 5.7. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate weighted

homogeneous polynomial with weights tq0, . . . , qnu, weighted degree d and local algebra

A f =
À

lě0 A f ,l, then

dimC A f, l = (´1)l
D
ÿ

k=0

(´1)k

 D
ÿ

j=maxtk,lu

|s(j, l)|
(j´ k)!

 1
k!

n
ź

i=0

kd´qi ´ 1
kqi ´ 1

, (5.9)

where D =
řn

i=0 d´ 2qi and |s(j, l)| is the unsigned (j, l)-Stirling Number of the First

Kind.

Proof . Based on the calculus of finite differences, a formula to compute

any coefficient of a finite polynomial is given in Volume 2. As applied to the
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Hilbert-Poincaré series of the corresponding weighted homogeneous polyno-

mial, one computes

µl = (´1)l
D
ÿ

k=0

(´1)k

 D
ÿ

j=maxtk,lu

|s(j, l)|
(j´ k)!

 PA f (k)

k!
. (5.10)

�

Remark 5.2.1. Consider the homogeneous polynomial f =
řn

i=0 zd
i . Thus,

D = (n + 1)(d´ 2) and, by equation (5.8c5.8c), one computes

µl = (´1)l
(n+1)(d´2)

ÿ

k=0

(´1)k

(n+1)(d´2)
ÿ

j=maxtk,lu

|s(j, l)|
(j´ k)!

 1
k!

(
d´2
ÿ

r=0

kr

)n+1

. (5.11)

If n = 1, then the summation simplifies,

µl = (d´ |l ´ d + 2| ´ 1)Θ(l)Θ(2d´ l ´ 4) (5.12)

and, in particular,

µ
t D

2 u
= (d´ 1)Θ(d´ 2), (5.13)

where Θ is the Heaviside function. M
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Corollary 5.8. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted homo-

geneous polynomial with weights tq0, . . . , qnu and weighted degree d, the inner modal-

ity is given by

µ̄0 =
ÿ

lďD´d

(´1)l
D
ÿ

k=0

(´1)k

 D
ÿ

j=maxtk,lu

|s(j, l)|
(j´ k)!

 1
k!

n
ź

i=0

kd´qi ´ 1
kqi ´ 1

, (5.14)

where D =
řn

i=0 d´ 2qi and |s(j, l)| is the unsigned (j, l)-Stirling Number of the First

Kind.

5.2.2. Integer Compositions. Considering Remark 5.2.15.2.1, for n = 2, µ
t D

2 u
is

the number of compositions of t3d
2 u into 3 (possibly repeated) positive integers

no greater than d´ 1 (A077043A077043). For n = 3,

µ
t D

2 u
= 1

3(d´ 1)(2(d´ 1)2 + 1)Θ(d´ 2), (5.15)

which is the (d ´ 1)th-octahedral number (A005900A005900), and is a reflexive sum of

squares 12 + ¨ ¨ ¨+ (d ´ 1)2 + . . . 12. For n = 4, µ
t D

2 u
is the number of composi-

tions of t5d
2 u into 5 (possibly repeated) positive integers no greater than d ´ 1

(A077044A077044). These examples illustrate a general phenomenon of counting integer

compositions, which bear a similarity to integer partitions but differ in that the

order of the summands is relevant.

Proposition 5.9. Suppose f is a homogeneous polynomial of degree d in n + 1

complex indeterminates. For d ě 2 and n ě 0, the coefficient µ
t D

2 u
is the number of
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positive compositions of td
2 (n + 1)u into n + 1 (possibly repeated) positive integers no

greater than d´ 1.

Proof . Let f be a homogeneous polynomial of (homogeneous) degree d

in n + 1 complex indeterminates. Let ck(N; [a, b]) denote the number of compo-

sitions of N into k parts, where each part is restricted to the interval [a, b], e.g.,

N =
řk

i=1 si with a ď si ď b. The generating function of ck(N; [a, b]) is

G(ck(N; [a, b]); t) = tka

(
1´ tb´a+1

1´ t

)k

, (5.16)

hence ck(N; [a, b]) = [tN]G(ck(N; [a, b]); t), that is, the coefficient of tN of the

generating function G (as a series in t) is ck. Setting k = n + 1, a = 1 and

b = d´ 1, one finds

G(cn+1(N; [1, d´ 1]); t) = tn+1

(
1´ td´1

1´ t

)n+1

(5.17a)

= tn+1PA f (t), (5.17b)

where PA f is the Hilbert-Poincaré series of f . Since

td
2 (n + 1)u + (n + 1) = t1

2(n + 1)(d´ 2)u, (5.18)
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one concludes that for N = t d
2 (n + 1)u,

cn+1(t
1
2(n + 1)du; [1, d´ 1]) = [tt d

2 (n+1)u]tn+1PA f (t) (5.19a)

= [tt 1
2 (n+1)(d´2)u]PA f (t) (5.19b)

= µ
t D

2 u
, (5.19c)

as claimed. �

Remark 5.2.2. Suppose d = 4 and n = 3. The number of positive composi-

tions of t d
2 (n + 1)u = 8 into n + 1 = 4 parts no greater than d´ 1 = 3 is 19: That

is, 2 + 2 + 2 + 2, as well as the eighteen compositions:

1 + 1 + 3 + 3, 1 + 3 + 1 + 3, 1 + 3 + 3 + 1,

1 + 2 + 2 + 3, 1 + 2 + 3 + 2, 1 + 3 + 2 + 2,

2 + 1 + 2 + 3, 2 + 1 + 3 + 2, 2 + 2 + 1 + 3,

2 + 2 + 3 + 1, 2 + 3 + 1 + 2, 2 + 3 + 2 + 1,

3 + 1 + 2 + 2, 3 + 2 + 1 + 2, 3 + 2 + 2 + 1,

3 + 1 + 1 + 3, 3 + 3 + 1 + 1, 3 + 1 + 3 + 1.

The third octahedral number is 1
3(4´ 1)(2(4´ 1)2 + 1) = 19, which coincides

with the coefficient µ4 (as D = 8) in the Hilbert-Poincaré series

PA f (t) = 1 + 4t + 10t2 + 16t3 + 19t4 + 16t5 + 10t6 + 4t7 + t8. (5.20)
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M

Remark 5.2.3. By similar reasoning, for 0 ď l ď D, by setting k = n + 1,

a = 0 and b = d´ 2,

µl = [tl]PA f (t) (5.21)

= cn+1(l; [0, d´ 2]). (5.22)

In particular, if (n + 1)a ď l ď D for some integer a ě 0, then

µl = cn+1(l ´ (n´ 1)a; [a, a + d´ 2]). (5.23)

M

Let (i2, . . . , ib) be the frequency vector of N, where ij is the frequency the in-

teger j occurs in each positive composition of N. For 2 ď j ď b, define the

following quantities

αj = N ´ k(j´ 1)´
b
ÿ

`=j+1

(`´ j + 1)i` (5.24)

β j = k´
b
ÿ

`=j+1

i` (5.25)

γj =

—

—

—

–

1
j´ 1

N ´ k´
b
ÿ

`=j+1

(`´ 1)i`

ffi

ffi

ffi

fl . (5.26)
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According to Theorem 2.1, [227227],

ck(N; [a, b]) = ck(N ´ k(a´ 1); [1, b´ (a´ 1)]) (5.27)

and

ck(N; [1, b]) =
ÿ

i2=α2,i3,...,ib
maxt0,αjuďijďmaxtβ j,γju

b
ź

`=2

(
k´

ř`´1
j=2 ij

i`

)
. (5.28)

In particular, if kb´n
k´1 P N and ka+(b´a)´n

k´1 P Zě0, then

ck(N; [a, b]) =
(

N ´ k(a´ 1)´ 1
k´ 1

)
. (5.29)

Corollary 5.10. Suppose f is a homogeneous polynomial of (homogeneous)

degree d in n + 1 complex indeterminates. For d ě 2 and n ě 0,

µ
t D

2 u
=

ÿ

i2=α2,i3,...,id´1
maxt0,αjuďijďmaxtβ j,γju

d´1
ź

`=2

(
n + 1´

ř`´1
j=2 ij

i`

)
, (5.30)
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where

αj = td
2 (n + 1)u´ (n + 1)(j´ 1)´

d´1
ÿ

`=j+1

(`´ j + 1)i` (5.31a)

β j = n + 1´
d´1
ÿ

`=j+1

i` (5.31b)

γj =

—

—

—

–

1
j´ 1

t d
2 (n + 1)u´ (n + 1)´

d´1
ÿ

`=j+1

(`´ 1)i`

ffi

ffi

ffi

fl . (5.31c)

In particular, if n = 1, then µd´2 = d´ 1.

Proof . The claimed representation follows immediately from previous

discussion. The integers (d, n) solving the integrality constraints d´ 1 + 1
n (d´

1´ td
2 (n + 1)u) P N and 1 + 1

n (d ´ 1´ t d
2 (n + 1)u) P Zě0 pertain to the cases

n = 1 or d = 2. Equation (5.295.29) yields µd´2 = d ´ 1 if n = 1 and µ0 = 1 if

d = 2. �

Remark 5.2.4. Since cn+1(l; [0, d´ 2]) = cn+1(l + n + 1; [1, d´ 1]), then all

of the coefficients admit a similar interpretation. That is,

µl = cn+1(l + n + 1; [1, d´ 1]) (5.32)

=
ÿ

i2=α2,i3,...,id´1
maxt0,αjuďijďmaxtβ j,γju

d´1
ź

`=2

(
n + 1´

ř`´1
j=2 ij

i`

)
, (5.33)
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where αj = l ´ (n + 1)j´
řd´1

`=j+1(`´ j + 1)i`, β j = n + 1´
řd´1

`=j+1 i` and

γj =

—

—

—

–

1
j´ 1

l ´
d´1
ÿ

`=j+1

(`´ 1)i`

ffi

ffi

ffi

fl . (5.34)

In particular, if (d, n, l) satisfy the integrality constraints d´ 2 + d´l´2
n P N and

d´l´2
n P Zě0, then

µl =

(
n + l

n

)
. (5.35)

M

5.2.3. Hilbert-Poincaré Series Coefficients and Lattice Points. Yoshinaga

and Suzuki (Lemma 3.1, [493493]) prove that the coefficient µl counts the number

of non-negative integer solutions of the Diophantine equation
řn

i=0 qixi = l, pro-

vided l ď D´ d, tωiu Ă QX (0, 1
2) and

řn
i=0 ωi ě

2n´1
4 . By our previous lattice

point enumeration analysis, we give the following closed form expression.

Proposition 5.11. Suppose f is a weighted homogeneous polynomial of

weighted degree d and integral weights tq0, . . . , qnu, or equivalently reduced weights

tω0, . . . , ωnu. If l ď D´ d, ωi P (0, 1
2) and

řn
i=0 ωi ě

2n´1
4 , then PA f (t) =

řD
l=0 µltl,
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where µl = µD´l and

µl =

tl/q0u
ÿ

i0=0

¨ ¨ ¨

t(l´
řn´1

k=0 qkik)/qnu
ÿ

in=0

1´
rl/q0s´1
ÿ

i0=0

¨ ¨ ¨

r(l´
řn´1

k=0 qkik)/qns´1
ÿ

in=0

1 (5.36a)

=
tdl/ω1u
ÿ

i0=0

¨ ¨ ¨

t(dl´
řn´1

k=0 ωkik)/ωnu
ÿ

in=0

1´
rdl/ω1s´1

ÿ

i0=0

¨ ¨ ¨

r(dl´
řn´1

k=0 ωkik)/ωns´1
ÿ

in=0

1, (5.36b)

which is the difference of two quasi-polynomials of degree n in the variable dl.

Proof . Count the non-negative integral solutions of the Diophantine equa-

tion
ř

i=0
qi
l xi = 1 and use Proposition 5.25.2. �

If l ď D´ d, then

µl =
ˇ

ˇ

ˇ
t(x1, . . . , xn) P Nn

|
ÿn

i=1
qixi = lu

ˇ

ˇ

ˇ
. (5.37)

In general, for 0 ď l ď t D
2 u,

µl ď
ˇ

ˇ

ˇ
t(x0, . . . , xn) P Zn

ě0 |
ÿn

i=0
qixi = lu

ˇ

ˇ

ˇ
. (5.38)

In certain cases, the inner modality admits a Diophantine representation

similar to that of the geometric genus. If
řn

i=1 ωi ě
3
4 , then

µ̄0 =
ˇ

ˇ

ˇ
t(x1, . . . , xn) P Zn

ě0 |
ÿn

i=1
qixi ď 2d´ 2

ÿn

i=1
qiu

ˇ

ˇ

ˇ
(5.39a)

=
ˇ

ˇ

ˇ
t(x1, . . . , xn) P Nn

|
ÿn

i=1
qixi ď 2d´

ÿn

i=1
qiu

ˇ

ˇ

ˇ
(5.39b)

=
ˇ

ˇ

ˇ
t(x1, . . . , xn) P Nn

ą1 |
ÿn

i=1
qixi ď 2du

ˇ

ˇ

ˇ
. (5.39c)
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For weighted homogeneous polynomials over C2, we propose the following

sharp upper bound for the coefficients of the corresponding Hilbert-Poincaré

series.

Proposition 5.12. If f : (C2, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial with integral weights tq1, q2u and weighted degree d, then

PA f (t) =
řD

l=0 µltl, where D = 2(d´ q1 ´ q2),

µl ď min
"Z

l
q1

^

+ 1,
Z

l
q2

^

+ 1
*

0 ď l ď D´ d (5.40)

and

µl ď min
"Z

D´ l
q1

^

+ 1,
Z

D´ l
q2

^

+ 1
*

d ď l ď D. (5.41)

Proof . In Volume 2, we compute the exact number of non-negative lattice

points on the hypotenuse of the t-dilate of a rational 2-polytope, convt0, e1
a1

, e2
a2
u,

namely,

L
[

te1
a1

, te2
a2

]
(1) = 1 +

Z

t
a1

^

´

tt/a1u
ÿ

i=0

χ+
RzZ

(
t´ a1i

a2

)
(5.42)

= 1 +
Z

t
a2

^

´

tt/a2u
ÿ

i=0

χ+
RzZ

(
t´ a2i

a1

)
, (5.43)

where χ+
X is the characteristic function of the intersection X XRě0. Since µl

is bounded from above by the number of non-negative lattice points on the

hypotenuse of the l-dilate of a rational 2-polytope convt0, e1
q1

, e2
q2
u, the first upper
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bound now follows. The reflexivity property, namely, µl = µD´l, implies the

second upper bound. �

Remark 5.2.5. Consider f = x2 + y3 with q1 = 3, q2 = 2 and d = 6. Thus,

D = 2, µalg( f ) = 2 and Proposition 5.125.12 implies µl ď 1 for 0 ď l ď 2. Since

PA f (t) is reflexive, these data uniquely specify PA f (t) = 1 + t2, without having

to first compute the local algebra A f . This example illustrates the usefulness of

the upper bounds. M

5.3. Sebastiani-Thom Factorization

Even on the level of singularities, do we find elementary combinatorics.

Definition 5.13. The constituent singularities of a Sebastiani-Thom sum-

mation singularity are factors.

Definition 5.14. A non-degenerate, square singularity is Sebastiani-

Thom irreducible if and only if it is not permutation equivalent to a non-trivial

Sebastiani-Thom summation of non-degenerate factors. Equivalently, the corre-

sponding exponent matrix is not permutation equivalent to a direct summation

of exponent matrices of non-degenerate singularities.

Definition 5.15. A non-degenerate singularity is Sebastiani-Thom reducible

if and only if it is not Sebastiani-Thom irreducible.
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A non-degenerate, Sebastiani-Thom reducible singularity f – f1 ‘ ¨ ¨ ¨‘ fs

satisfies equation 2.32.3, which is a factorization of a positive integer into a prod-

uct of divisors. In contrast to a standard non-degenerate Sebastiani-Thom sum-

mation, however, Remark 2.9.12.9.1 illustrates what might occur if one relaxes the

condition of non-degeneracy of the factors, namely, the aforementioned product

is a non-unique factorization into rationals.

Definition 5.16. A non-degenerate, Sebastiani-Thom reducible singular-

ity is factored if and only if it is permutation equivalent to a Sebastiani-Thom

summation of non-degenerate, Sebastiani-Thom irreducible factors.

Any Brieskorn-Pham singularity over Cn+1 is Sebastiani-Thom reducible

and factored for n ě 1, as it is trivially and canonically permutation equivalent

to a Sebastian-Thom summation of its constituent monomials, each of which

is non-degenerate. Clearly, this factorization is unique up to a permutation of

factors.

Problem 5.3.1. Determine whether or not the factorization of a non-

degenerate, Sebastiani-Thom reducible singularity is unique up to a permu-

tation of factors.

Problem 5.3.2. Determine whether or not Sebastiani-Thom factorization is

well-defined in the more generalized context of right, contact or stable equiva-

lence.
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The number of possible factorizations of a square singularity is bounded

from above by the number of integer compositions of the number of variables

and the number of integer factorizations of the algebraic index into products

of divisors, including order and those non-degenerate factors with algebraic

index 1. In particular, the number of distinct, non-trivial Sebastiani-Thom sums

forming a Brieskorn-Pham polynomial of n + 1 variables is one less than the

number of positive integer compositions of n + 1 summed over k possible non-zero

parts, which is
řn+1

k=1 (
n

k´1)´ 1 = 2n ´ 1 (Figure 5.15.1).

Figure 5.1. Sixteen Compositions of a Set with Five Elements

5.4. Newton and Weight Polytopes

5.4.1. Newton Polytope. Given a polynomial f =
řm

i=1 ciz
ai1
1 ¨ ¨ ¨ zain

n , de-

fine the Newton Polytope N ( f ) as the convex hull convta1, . . . , anu, where

ai = (ai1, . . . , ain)
ᵀ. Define the t-dilate ft = f (zt

1, . . . , zt
n). It follows that the

Newton polytope of ft coincides with the t-dilate of that of f . Note, however,

that it is not guaranteed that ft be non-degenerate for t ě 1, or even that the

corresponding algebraic index is integral for t ě 1.
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Remark 5.4.1. Consider g = x7y3 + x6y5 over C2, which is degenerate.

Here, the weights of gt are t 2
17t ,

1
17tu and, therefore, µalg(gt) = 289

2 t2 ´ 51
2 t + 1.

It is a simple matter to prove that the polynomial p(t) = 289
2 t2 ´ 51

2 t + 1 takes

positive integral values for t ě 1 by induction, which follows from p(1) = 120

and the identity p(k + 1) = p(k) + 289k2 + 238k + 119. M

We invite the reader to consult [129129] for a historical development of the sub-

ject of plane algebraic curves.

5.4.2. Combinatorial Index. Let FKk denote a k-dimensional face of the

Newton polytope N which intersects the coordinate axes. For any finite poly-

tope P , define the normalized n-content voln(P) = n! voln(P). The 0-face FK0 is

the point at the origin and vol0(FK0 ) = vol10(FK0 ) = 1. Given a complex analytic

series f P O0,n with Newton Polytope N ( f ), Kushnirenko considers the poly-

tope K( f ) = convt0YN ( f )u, the cone over N ( f ), and computes the following

mixed volume (§10, [362362]),

MVK( f ) =
n+1
ÿ

k=0

(´1)k
ÿ

FKn´kĂK( f )

vol1n´k(FKn´k) (5.44)

= (n + 1)! voln+1FKn+1 ´ n! volnFKn + ¨ ¨ ¨+ (´1)nFK1 + (´1)n+1, (5.45)

which we shall refer to as the Kushnirenko-Newton number (Proposition 2.16,

[168168]). Let f : (Cn, 0) Ñ (C, 0) be a semi-weighted homogeneous polynomial,

349



q.v., §2.4.22.4.2. Define the combinatorial index of f as the Kushnirenko-Newton num-

ber of the cone K( f ),

µcomb( f ) := MVK( f ). (5.46)

Proposition 5.17 (Kushnirenko, [251251]). Let f be a weighted homogeneous

polynomial. The following inequality holds,

µcomb( f ) ď µalg( f ) (5.47)

with equality when the principal part of f is non-degenerate.

5.4.3. Weight Polytope. Given a weighted homogeneous polynomial

f : (Cn+1, 0) Ñ (C, 0) with reduced weights tω1, . . . , ωnu, define the Weight

Polytope

W( f ) = convt0, e1
ω1

, . . . , en
ωn
u. (5.48)

Remark 5.4.2. It is clear that the weight polytope of a quasi-Brieskorn-

Pham polynomial is an integral polytope. M

Proposition 5.18. If f is quasi-Brieskorn-Pham, then N ( f ) = W( f ).

Proof . The identification follows from the equality of the convex hulls

defining the respective polytopes. �

Remark 5.4.3. Consider the r-dilate f b zr = xpr ´ yqr which equals the

product
śr´1

k=0(xp ´ ζk
r yq) and shows that the map f ÞÑ f b zr induces a map
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of algebraic links Tp,q ÞÑ Tpr,qr –
Ťr

k=1 Tp,q and a map of polytopes W( f ) ÞÑ

rW( f ). M

Figure 5.2. A Newton and Weight Polytope

Proposition 5.19. The algebraic index of the Kronecker sum f d z, where f is

Brieskorn-Pham with exponents ta1, . . . , anu, is equal to the normalized n-content of

W( f ),

µalg( f d z) = n! voln W( f ). (5.49)

Proof . The proof is a consequence of equation (2.2132.213). �

5.4.4. Lattice Index. Let f : (Cn, 0) Ñ (C, 0) be a non-degenerate weighted

homogeneous polynomial. Provide a weight of 2 to the interior points and a

weight of 1 to the boundary points of the polytope W( f ). Define the lattice
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index of f as the weighted lattice point summation

µlat( f ) =
ÿ

pPW( f )˝
2 +

ÿ

pPBW( f )XNn

1 (5.50a)

=
ÿ

pPW( f )

w(p), (5.50b)

where the lattice point weight is defined succinctly as

w(p) =

$

’

’

’

&

’

’

’

%

2 iff p PW˝( f )

1 iff p P BW( f )XNn

0 iff p RW( f )XNn.

(5.51)

Since the lattice index depends only on the weights of a weighted homoge-

neous singularity, it is a topological invariant of said singularity.

5.4.5. Arithmetic Index. Define the arithmetic index µnt( f ) of a weighted ho-

mogeneous polynomial f with weights tω0, . . . , ωnu as the number of positive

integer solutions of the system of Diophantine inequalities, 0 ă ωixi ă 1,

µnt( f ) :=
ˇ

ˇ

ˇ
t(x0, . . . , xn) P Nn+1

|0 ă ωixi ă 1u
ˇ

ˇ

ˇ
. (5.52)

Let O( f ) denote the unique minimal (n + 1)-orthotope which encloses

the weight polytope of f . The Ehrhart function of the interior O˝ of the

unique minimal (n + 1)-orthotope O enclosing the convex hull of the vertices

t0, b1e1, . . . , bn+1en+1u, where tb1, . . . , bn+1u Ă Rą0, is the product LO˝(t) =
śn+1

i=1 (rbits´ 1). An inductive argument proves that this integer is equal to the
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order of O˝( f ), that is,

µnt( f ) =
n
ź

i=0

(Q
1

ωi

U

´ 1
)

. (5.53)

Since the arithmetic Milnor depends only on the weights of a weighted homo-

geneous singularity, it is a topological invariant of said singularity. In light of

equation (2.32c2.32c), the following inequality holds:

µalg( f ) ď µnt( f ). (5.54)

Proposition 5.20. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate weighted

homogeneous polynomial, then one has the sharp upper bound

µalg( f ) ď

—

—

—

–

(
n+1
b

µnt( f )´
n
ź

i=0

n+1
b

χ+
RzZ

( 1
ωi
)´ t 1

ωi
u

)n+1
ffi

ffi

ffi

fl (5.55)

with equality, µalg( f ) = µnt( f ), in the case that f is quasi-Brieskorn-Pham.

Proof . For any two non-negative sequences tx0, . . . , xnu and ty0, . . . , ynu, a

refinement of the Arithmetic-Geometric Inequality** is the following,

n
ź

i=0

n+1
?

xi +
n
ź

i=0

n+1
?

yi ď

n
ź

i=0

n+1
a

xi + yi ď
1

n+1

n
ÿ

i=0

xi +
1

n+1

n
ÿ

i=0

yi. (5.56)

*See Chapter 2 of Volume 2 for a proof of this relation.
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Write the Ehrhart function of O˝( f ) as

LO˝( f )(t) =
n
ź

i=0

(raits´ 1) (5.57)

=
n
ź

i=0

(
ait´ taitu+ χ+

RzZ
(ait)´ 1

)
. (5.58)

Thus, setting xi = 1
ωi
´ 1 and yi = χ+

RzZ
( 1

ωi
) ´ t 1

ωi
u and noting that both are

non-negative**, the aforementioned inequality yields(
n+1
b

µalg( f ) +
n
ź

i=0

n+1
b

χ+
RzZ

( 1
ωi
)´ t 1

ωi
u

)n+1

ď LO˝( f )(1). (5.59)

If one weight ωi is an inverse integer, then χ+
RzZ

( 1
ωi
) = t 1

ωi
u = 0 and the prod-

uct vanishes. In such case,

µalg( f ) ď LO˝( f )(1) = µnt( f ). (5.60)

Otherwise, one has the refined bound

µalg( f ) ď

—

—

—

–

(
n+1
b

µnt( f )´
n
ź

i=0

n+1
b

1´ t 1
ωi
u

)n+1
ffi

ffi

ffi

fl . (5.61)

In the case that f is a quasi-Brieskorn-Pham polynomial, the weights satisfy the

identity r t
ωi

s = t
ωi

for integral t, so equation (5.545.54) is an equality. This concludes

the proof. �

* Here, t¨u is used to denote the fractional part function and the delimiters of a set. The con-
text should clearly differentiate the two.
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Remark 5.4.4. For any positive integer t, the inequality generalizes,

µalg( ft) ď µnt( ft), (5.62)

where ft is the t-dilate of f , q.v., Remark 2.9.52.9.5. M

5.5. Milnor-Jung Formula

5.5.0.1. Dimension 1. To motivate the ensuing discussion we state the fol-

lowing trivial result for completeness. If f : (C, 0) Ñ (C, 0) is a non-degenerate

weighted homogeneous polynomial with weight 1
p where p P N, then µalg( f ) =

µnt( f ) = p ´ 1, where p is the number of positive integer solutions (x) of the

Diophantine inequality 0 ă x
p ă 1. Observe that the number of interior lattice

points of the line [0, p] on Z is the integer p´ 1. We generalize.

5.5.0.2. Dimension 2.

Proposition 5.21. If f is quasi-Brieskorn-Pham with weights t 1
p , 1

qu, where

p, q P N, then µalg( ft) = 2Nt ´ gcd(p, q)t + 1, where Nt is the number of positive

integer solutions (x, y) of the Diophantine inequality x
p +

y
q ď t.

Proof 1 . In Volume 2, we prove that the number NR of non-negative in-

teger solutions of the Diophantine equation px + qy ď R is given by double

summation

NR =

tR/pu
ÿ

i=0

t(R´ip)/qu
ÿ

j=0

1. (5.63)
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A classical result of Milnor and Orlik gives µalg( f ) = (p ´ 1)(q ´ 1). Let R =

pq´ p´ q. Thus, the result follows from the series of identities

2NR = 2
tq´1´q/pu

ÿ

i=0

tp´1´(i+1)p/qu
ÿ

j=0

1 (5.64a)

= 2
q´1
ÿ

i=0

Z

ip
q

^

= (p´ 1)(q´ 1) + gcd(p, q)´ 1. (5.64b)

�

Proof 2 . If f is quasi-Brieskorn-Pham, then LO˝( f )(t) = µalg( ft). Since the

number of interior lattice points along the hypotenuse of the t-dilate of W( f ) is

gcd(p, q)t ´ 1, by symmetry and comparison to O˝( f ), this leaves only twice

the positive lattice points of the t-dilate of W( f ). This completes the proof of

the identity. �

Definition 5.22. Let R be a polynomial ring over a field of characteris-

tic zero. A polynomial f P R is square-free if and only if its factorization into

irreducibles f =
śr

i=1 f ri
i implies that ri = 1 for 1 ď i ď r.

A square-free, weighted homogeneous polynomial has no repeated factors

vanishing at 0 if and only if the origin is an isolated critical point. Each analyti-

cally irreducible factor fi corresponds to an analytically irreducible component

or branch of Vf, 0 at the origin. Milnor proves the following assertion.

Proposition 5.23 (Milnor, [310310]). Let f : (C2, 0) Ñ (C, 0) be a square-free

polynomial (i.e., corresponding to a reduced plane curve) with delta invariant δ( f ) and

356



branch number r( f ). The algebraic index satisfies the identity

µalg( f ) = 2δ( f )´ r( f ) + 1. (5.65)

Proof . See Theorem 10.5 in [310310] and Proposition 3.35 in [168168]. �

Remark 5.5.1. The branch number r( f ) counts the number of connected

components of the corresponding link, K f . In particular, if r( f ) = 1, then by a

corollary (§10, Corollary 10.2 in [310310]) of Milnor based on the work of Neuwirth

and Stallings, the delta invariant δ coincides with the genus of the algebraic

knot K f , which is the minimum genus of all Seifert surfaces of K f , q.v., Proposi-

tion 4.394.39. M

Proposition 5.24. If f : (C2, 0) Ñ (C, 0) is a square-free, non-degenerate

weighted homogeneous polynomial, then

µalg( f ) = µlat( f ). (5.66)

Proof . Combine the Milnor-Jung formula with Proposition 5.265.26. �

Definition 5.25. The generalized delta invariant δ( f ) and generalized branch

number r( f ) of a possibly degenerate, weighted homogeneous polynomial

f : (C2, 0) Ñ (C, 0) is the number of positive lattice points and one more than

the number of interior lattice points of the hypotenuse of the corresponding
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weight polytope W( f ), respectively. That is,

δ( f ) = |W( f )XN2
| and r( f ) = |BW( f )XN2

|. (5.67)

Proposition 5.26. The generalized delta invariant δ( f ) and generalized

branch number r( f ) of a non-degenerate, square-free, weighted homogeneous polyno-

mial f : (C2, 0) Ñ (C, 0) coincide with the delta invariant and branch number of f ,

respectively.

Proof . See Chapter 6 of [467467]. �

Given a weighted homogeneous polynomial f : (C2, 0) Ñ (C, 0), we derive

explicit formulas for δ( f ) and r( f ) in terms of the weights.

5.5.1. Delta Invariant. Recall the delta invariant counts the number of dou-

ble points of the plane curve f . When f is non-degenerate and square-free, this

integer coincides with the number of positive lattice points in the right triangle

W( f ) = convt0, e1
ω1

, e2
ω2
u and can be computed explicitly in terms of the weights.

Accordingly, one has

δ( ft) =
tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

1 (5.68a)

=
1

2ω2

Z

t
ω1

^(
2t´ω1 ´ω1

Z

t
ω1

^)
´

tt/ω1u
ÿ

i=1

"

t´ iω1

ω2

*

(5.68b)

=
t2

2ω1ω2
´

t
2ω2

+
ω1

2ω2

(
"

t
ω1

*

´

"

t
ω1

*2
)
´

tt/ω1u
ÿ

i=1

"

t´ iω1

ω2

*

, (5.68c)
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where t ¨ u denotes the fractional part function. By interchanging the roles of the

two weights, we have for t = 1,

δ( f ) =
1´ω1

2ω1ω2
+

ω1

2ω2

(
"

1
ω1

*

´

"

1
ω1

*2
)
´

t1/ω1u
ÿ

i=1

"

1´ iω1

ω2

*

(5.69a)

=
1´ω2

2ω1ω2
+

ω2

2ω1

(
"

1
ω2

*

´

"

1
ω2

*2
)
´

t1/ω2u
ÿ

i=1

"

1´ iω2

ω1

*

. (5.69b)

In symmetrized form,

δ( f ) = 2´ω1´ω2
4ω1ω2

´ 1
2

(
ω1
ω2

(
t 1

ω1
u

2

)
+ ω2

ω1

(
t 1

ω2
u

2

)

+
t1/ω1u
ÿ

i=1

!

1´iω1
ω2

)

+
t1/ω2u
ÿ

i=1

!

1´iω2
ω1

)

 ,

where we use the notation (x
2) =

1
2 x(x´ 1) for x ą 0.

Remark 5.5.2. Suppose f is quasi-Brieskorn-Pham with weights ω1 = 1
a

and ω2 = 1
b , where a, b P N. One computes µalg( ft) = (at´ 1)(bt´ 1) and

δ( ft) =
ab
2 t2

´ b
2 t´

at
ÿ

i=1

!

b(t´ i
a )
)

(5.70a)

= ab
2 t2

´ 1
2(a + b´ gcd(a, b))t (5.70b)

= δ( f )
(

t
1

)
+ ab

(
t
2

)
, (5.70c)
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since

at
ÿ

i=1

!

b(t´ i
a )
)

= 1
2(a´ gcd(a, b))t a, b, t P N. (5.71)

Correspondingly, the generalized branch number is easily computed r( ft) =

gcd(a, b)t, which establishes the Milnor-Jung formula for t-dilates of quasi-

Brieskorn-Pham polynomials with weights t1
a , 1

bu, namely,

µalg( ft) = 2δ( ft) + r( ft)´ 1. (5.72)

M

Remark 5.5.3. With a = b = d P Ną1, we recover the classical formula for

the delta invariant of a homogeneous plane curve of degree d, namely,

δ( f ) = 1
2 d(d´ 1) =

(
d
2

)
. (5.73)

M

Remark 5.5.4. Consider f = xa + xyb over Cn+1 with a, b P N, which is not

quasi-Brieskorn-Pham. For a ą 1 and b ě 1, f is a non-degenerate, weighted

homogeneous with weights t1
a , a´1

ab u. Since ω1 = 1
a is an inverse integer, we use

equation (5.68c5.68c) to compute δ( ft), namely,

δ( ft) =
a2b

2(a´ 1)
t2
´

ab
2(a´ 1)

t´
at
ÿ

i=1

"

ab
a´ 1

(
t´

i
a

)*
. (5.74)

M
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We establish elementary bounds for the delta invariant in terms of the

weights.

Proposition 5.27. If f : (C2, 0) Ñ (C, 0) is a weighted homogeneous polyno-

mial, then the generalized delta invariant δ( f ) satisfies the elementary sharp bounds

0 ď δ( f ) ď min
"Z

(2´ω1)
2

8ω1ω2

^

,
Z

(2´ω2)
2

8ω1ω2

^*

. (5.75)

If f is non-degenerate, then δ( f ) ě 1.

Proof . Equations (5.69a5.69a) and (5.69b5.69b) and the fractional part difference

bound, 0 ď txu ´ txu2 ď 1
4 for 0 ď x ď 1, imply the upper bound. Thus,

δ( f ) ď min
"

1´ω1

2ω1ω2
+

ω1

8ω2
,

1´ω2

2ω1ω2
+

ω2

8ω1

*

, (5.76)

which is the inequality. If f is homogeneous of degree d ą 1,

δ( f ) ď
Y

1
2 d(d´ 1) + 1

8

]

= 1
2 d(d´ 1), (5.77)

proving the claimed sharpness of the bounds. If f is non-degenerate, then each

weight ωi satisfies the bound 0 ă ωi ď
1
2 . Since 4 = convt0, 2e1, 2e2u has one

positive lattice point at (1, 1) and 4 ĂW( f ), then δ( f ) ě 1. �

5.5.2. Branch Number. Recall the branch number r( f ) is the number of an-

alytically irreducible branches of Vf ,0 passing through the origin. As a conse-

quence of the Milnor-Jung formula and the fact that the delta invariant and al-

gebraic index can be computed explicitly in terms of the corresponding weights,
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the generalized branch number also admits such an explicit representation. We

compute

r( ft) =
t

ω1
+

ω1

ω2

(
"

t
ω1

*

´

"

t
ω1

*2
)
´ 2

tt/ω1u
ÿ

i=1

"

t´ iω1

ω2

*

. (5.78)

In particular, for t = 1,

r( f ) =
1

ω1
+

ω1

ω2

(
"

1
ω1

*

´

"

1
ω1

*2
)
´ 2

t1/ω1u
ÿ

i=1

"

1´ iω1

ω2

*

(5.79)

=
1

ω2
+

ω2

ω1

(
"

1
ω2

*

´

"

1
ω2

*2
)
´ 2

t1/ω2u
ÿ

i=1

"

1´ iω2

ω1

*

. (5.80)

In symmetrized form,

r( f ) = 1
2

(
1

ω1
+ 1

ω2

)
+ ω1

2ω2

(
!

1
ω1

)

´

!

1
ω1

)2
)
+ ω2

2ω1

(
!

1
ω2

)

´

!

1
ω2

)2
)

´

t1/ω1u
ÿ

i=1

!

1´iω1
ω2

)

´

t1/ω2u
ÿ

i=1

!

1´iω2
ω1

)

(5.81a)

= 1
2

(
1

ω1
+ 1

ω2

)
´

ω1
ω2

(
t 1

ω1
u

2

)
´

ω2
ω1

(
t 1

ω2
u

2

)
´

t1/ω1u
ÿ

i=1

!

1´iω1
ω2

)

´

t1/ω2u
ÿ

i=1

!

1´iω2
ω1

)

. (5.81b)

If f is a non-degenerate, weighted homogeneous polynomial and µalg( f ) is a

non-negative integer, then r( f ) is a positive integer, which is not obvious from

its representation involving only the weights.

362



Remark 5.5.5. Suppose f is quasi-Brieskorn-Pham with inverse weights

a, b P N. Then the generalized branch number of the corresponding t-dilate is

given by

r( ft) =
1
2 (a + b) t´

at
ÿ

i=1

!

b(t´ i
a )
)

´

bt
ÿ

i=1

!

a(t´ i
b )
)

(5.82a)

=
(

1
2 (a + b)´ 1

2(a´ gcd(a, b))´ 1
2(b´ gcd(a, b))

)
t (5.82b)

= gcd(a, b)t. (5.82c)

M

Remark 5.5.6. With a = b = d P Ną1, we recover the classical formula for

the branch number of a homogeneous plane curve of degree d, namely, r( f ) =

d, which is consistent with the values µ( f ) = (d´ 1)2 and δ( f ) = (d
2). M

Remark 5.5.7. Consider f = xa + xyb over Cn+1 with a, b P N, which is not

quasi-Brieskorn-Pham. For a ą 1 and b ě 1, f is a non-degenerate, weighted

homogeneous with weights t1
a , a´1

ab u. Since ω1 = 1
a is an inverse integer, we use

equation (5.785.78) to compute r( ft), namely,

r( ft) = at´ 2
at
ÿ

i=1

"

ab
a´ 1

(
t´

i
a

)*
, (5.83)

which may be verified directly using equation 5.68c5.68c and the algebraic index,

µalg( ft) = (at´ 1)
(

abt
a´ 1

´ 1
)

. (5.84)
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M

As done previously for the delta invariant, we establish bounds for the

branch number in terms of the weights.

Proposition 5.28. If f : (C2, 0) Ñ (C, 0) is a weighted homogeneous polyno-

mial, then the generalized branch number r( f ) satisfies the elementary sharp bounds

0 ď r( f ) ď min
"Z

1
ω1

+
ω1

4ω2

^

,
Z

1
ω2

+
ω2

4ω1

^*

. (5.85)

If f is non-degenerate, then r( f ) ě 1.

Proof . The proof of the bounds is similar to that given for Proposition

5.275.27, so the details are omitted. To establish sharpness, take f to be a homoge-

neous polynomial of degree d ą 1. Then

d = r( f ) ď
Y

d + 1
4

]

= d, (5.86)

as claimed. �

Corollary 5.29. If f : (C2, 0)Ñ (C, 0) is a weighted homogeneous polynomial

with 0 ă ω1 ď ω2, then `0( f ) = 1
ω1
´ 1 and 1 ď r( f ) ď t 1

ω2
+ ω2

4ω1
u.

Proof . If ω1 ď ω2, then 1
ω2
ď 1

ω1
and 4ω1 + (ω1ω2)

2 ď 4ω2 + (ω1ω2)
2,

which implies 1
ω2

+ ω2
4ω1

ď 1
ω1

+ ω1
4ω2

and the bound of Proposition 5.285.28 simplifies

to the claimed upper bound for the branch number. �
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The next result relates the generalized branch number with the number of

positive lattice points intersecting the hypotenuse of the corresponding weight

polytope. Define the reflected triangle Wᵀ = convt e1
ω1

, e2
ω2

, e1
ω1

+ e2
ω2
u.

Proposition 5.30. If f : (C2, 0) Ñ (C, 0) is a non-degenerate weighted homo-

geneous polynomial, then the generalized branch number satisfies the identity

r( f ) = ord(H˝) + 1 + ∆(ω), (5.87)

where H is the hypotenuse of W( f ) and

∆(ω) = F(ω)´ Fᵀ
(ω) + X(ω)´ Xᵀ

(ω)

+ ( 1
ω1
´ 1)(χ+

RzZ
( 1

ω2
)´ t 1

ω2
u)

+ ( 1
ω2
´ 1)(χ+

RzZ
( 1

ω1
)´ t 1

ω1
u)

+ (χ+
RzZ

( 1
ω1
)´ t 1

ω1
u)(χ+

RzZ
( 1

ω2
)´ t 1

ω2
u).

where

F(ω) = ´( ω1
2ω2

´ 1)t 1
ω1
u ´

ω1
2ω2
t 1

ω1
u

2
´

r1/ω1s´1
ÿ

i=1

"

1´ iω1

ω2

*

(5.88)

Fᵀ
(ω) = t 1

ω1
u(1´ 1

ω2
´

3ω1
ω2

) + t 1
ω2
u(1´ 1

ω1
) + ω1

2ω2
t 1

ω1
u

2 + t 1
ω1
ut 1

ω2
u

+ 2
t1/ω1u
ÿ

i=1

"

1´ iω1

ω2

*

´

r1/ω1s´1
ÿ

i=1

"

1´ iω1

ω2

*

(5.89)
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and

X(ω) = ´χ+
RzZ

( 1
ω1
) + ω1

ω2
χ+

RzZ
( 1

ω1
)t 1

ω1
u+

r1/ω1s´1
ÿ

i=1

χ+
RzZ

(1´iω1
ω2

) (5.90)

Xᵀ
(ω) = χ+

RzZ
( 1

ω1
)(´1 + 1

ω2
+ ω1

ω2
t 1

ω1
u ´ t 1

ω2
u)

+ χ+
RzZ

( 1
ω2
)(´1 + 1

ω1
´ t 1

ω1
u) + χ+

RzZ
( 1

ω1
)χ+

RzZ
( 1

ω2
). (5.91)

In particular, ∆(ω) is small compared to ord(H˝).

Proof . By splitting O into three sections, one has

ordO˝ = ord(W˝) + ord(H˝) + ord(Wᵀ˝), (5.92)

where

ord(O˝) =
r1/ω1s´1

ÿ

i=1

r1/ω2s´1
ÿ

j=1

1 (5.93)

=

(R
1

ω1

V

´ 1
)(R

1
ω2

V

´ 1
)

, (5.94)
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and number of interior lattice points of W˝ (see Volume 2),

ord(W˝) =
r1/ω1s´1

ÿ

i=1

r(1´iω1)/ω2s´1
ÿ

j=1

1 (5.95)

= (ω1´1)(2ω2´1)
2ω1ω2

´ ( ω1
2ω2

´ 1´ ω1
ω2

χ+
RzZ

( 1
ω1
))t 1

ω1
u ´ χ+

RzZ
( 1

ω1
)

´
ω1

2ω2
t 1

ω1
u

2
´

r1/ω1s´1
ÿ

i=1

t
1´iω1

ω2
u+

r1/ω1s´1
ÿ

i=1

χ+
RzZ

(1´iω1
ω2

) (5.96)

= (ω1´1)(2ω2´1)
2ω1ω2

+ F(ω) + X(ω), (5.97)

while that of the transpose is given by

ord(Wᵀ˝) =
r1/ω1s´1

ÿ

i=1

r1/ω2s´1
ÿ

j=t(1´iω1)/ω2u+1

1 (5.98)

= (ω1´1)(2ω2´1)
2ω1ω2

+ Fᵀ
(ω) + Xᵀ

(ω) (5.99)

and that of the hypotenuse is given by

ord(H˝) =

R

1
ω1

V

´ 1´
r1/ω1s´1

ÿ

i=1

χ+
R/Z

(
1´ iω1

ω2

)
. (5.100)

Also, observe µnt( f ) = ord(W˝) + ord(H˝) + ord(Wᵀ˝) and δ( f ) = ord(W˝) +

ord(H˝). By virtue of the shape and location of O in the plane, the number of

interior lattice points of W and Wᵀ satisfy the inequality ord(W˝) ď ord(Wᵀ˝).

The Milnor-Jung formula implies µalg( f ) = 2(ord(W˝) + ord(H˝))´ r( f ) + 1.
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In two dimensions, for any positive weights,

µnt( f ) = µalg( f ) + ( 1
ω1
´ 1)(χ+

RzZ
( 1

ω2
)´ t 1

ω2
u) + ( 1

ω2
´ 1)(χ+

RzZ
( 1

ω1
)´ t 1

ω1
u)

+ (χ+
RzZ

( 1
ω1
)´ t 1

ω1
u)(χ+

RzZ
( 1

ω2
)´ t 1

ω2
u). (5.101)

Thus,

r( f ) = ord(W˝)´ ord(Wᵀ˝) + ord(H˝) + 1

+ ( 1
ω1
´ 1)(χ+

RzZ
( 1

ω2
)´ t 1

ω2
u) + ( 1

ω2
´ 1)(χ+

RzZ
( 1

ω1
)´ t 1

ω1
u)

+ (χ+
RzZ

( 1
ω1
)´ t 1

ω1
u)(χ+

RzZ
( 1

ω2
)´ t 1

ω2
u), (5.102)

which is the claimed identity. �

Corollary 5.31. If f : (C2, 0) Ñ (C, 0) is a non-degenerate, quasi-Brieskorn-

Pham polynomial, then the generalized branch number satisfies

r( f ) = ord(H˝) + 1. (5.103)

Proof . In this case, µalg( f ) = µnt( f ) and the orthotopal n-polytope O( f ) is

integral, so ord(W˝) = ord(Wᵀ˝) and ∆(ω) = 0. Alternatively, by Proposition

5.205.20, the following difference implies the claim:

0 = µnt( f )´ µalg( f ) (5.104)

=
(
ord(Wᵀ˝)´ ord(W˝)

)
´ ord(H˝) + r( f )´ 1. (5.105)

�

368



Remark 5.5.8. The equality µalg( f ) = µnt( f ) is sufficient but not necessary

to ensure r( f ) = ord(H˝) + 1. For instance, with the weights t2
7 , 1

15u, µalg( f ) =

35 and µnt( f ) = 42, while r( f ) = 2 and ord(H˝) = 1. M

Remark 5.5.9. Consider the T6,4 link. Equations (5.70b5.70b) and (5.82c5.82c) with

ta, bu = t6, 4u yield u(T6,4) = 10´
ř6

i=1t4(1´
i
6)u = 8, which coincides with

the 8 positive lattice points of W( f ), and r( f ) = gcd(6, 4) = 2, the number

of components of T6,4, which is one more than the number of positive lattice

points on the hypotenuse H( f ) (see Figure 5.35.3). M

Figure 5.3. The Positive Lattice Points in an Integral Weight Polytope

Corollary 5.32. For positive integers a and b,

a´1
ÿ

i=1

χ+
R/Z

(
b
(

1´
i
a

))
= a´ gcd(a, b). (5.106)
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Proof . Suppose f is quasi-Brieskorn-Pham with inverse exponents a and

b. Then r( f ) = ord(H˝) + 1, which implies

a´1
ÿ

i=1

χ+
R/Z

(
b
(

1´
i
a

))
= 2

a
ÿ

i=1

"

b
(

1´
i
a

)*
(5.107)

= a´ gcd(a, b). (5.108)

�

5.5.3. Topological Determinacy, Revisited. Recall that if f : (Cn, 0)Ñ (C, 0)

is a weighted homogeneous polynomial with an isolated critical point at the

origin, then in the neighborhood of the origin there is a positive constant ε and

smallest, positive exponent, the Łojasiewicz exponent, ` = `0( f ), such that

|B f | ě ε|z|`. In 2010, Tan, Yau and Zuo [452452] prove that `0( f ) depends only

on the weights and is given by maxt 1
ω1
´ 1, . . . , 1

ωn
´ 1u. Teissier proves that

`0( f ) + 1 is the maximal polar invariant of f and depends only on its topological

type [454454]. The integer t`0( f )u + 1 is known as the topological determinacy order

of f .

Proposition 5.33. If f : (C2, 0)Ñ (C, 0) is a non-degenerate, weighted homo-

geneous polynomial with weights satisfying

ω1

ω2

(
"

1
ω1

*

´

"

1
ω1

*2
)
ď 2

t1/ω1u
ÿ

i=1

"

1´ iω1

ω2

*

(5.109)
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and

ω2

ω1

(
"

1
ω2

*

´

"

1
ω2

*2
)
ď 2

t1/ω2u
ÿ

i=1

"

1´ iω2

ω1

*

, (5.110)

then the generalized branch number bounds the topological determinacy order,

r( f ) ď t`0( f )u + 1. (5.111)

Proof . The inequalities imply r( f ) ď mint 1
ω1

, 1
ω2
u. By the Proposition 5.285.28,

r( f )´ 1 ď min
"

1
ω1

,
1

ω2

*

´ 1 (5.112)

ď max
"

1
ω1

,
1

ω2

*

´ 1 (5.113)

= `0( f ), (5.114)

as claimed. Since r( f ) is an integer, the claimed inequality follows. �

The aforementioned bound is sharp.

Corollary 5.34. If f : (C2, 0) Ñ (C, 0) is a non-degenerate, quasi-Brieskorn-

Pham polynomial, then the generalized branch number bounds the topological determi-

nacy order,

r( f ) ď t`0( f )u + 1. (5.115)

Proof . In the case that the weights of f are inverse integers, then inequal-

ities above imply non-negativity of two fractional part summations, which is
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trivially true by the non-negativity of the fractional part function on the non-

negative real axis, that is, txu ě 0 for x ě 0. �

5.5.4. Milnor Conjecture. In §10 in [310310], Milnor proves a relation between

the dimension of the local algebra and the number of double points and branch-

ing number of a complex plane curve. Recall that a square-free polynomial is

a polynomial with no repeated roots. Let f be a square-free polynomial of two

complex variables. Let C = f´1(0) denote the corresponding hypersurface

with δ = δC double points at the origin and r = rC number of local analytic

branches passing through the origin. Then

µalg( f ) = 2δ´ r + 1. (5.116)

Equation (5.1165.116) is also known as the Milnor-Jung formula. In the same chapter,

Milnor conjectures that δ is the unknotting number of the corresponding alge-

braic link and, therefore, also the genus of the associated Milnor fiber.

In 1992, Kronheimer and Mrowka succeeded in proving the Milnor Conjec-

ture as a consequence of proving the genus minimizing property of complex

curves in a K3 surface using Donaldson invariants [247247, 248248]. Subsequently,

in 1994, Kronheimer and Mrowka proved the Thom Conjecture on genus-

minimizing complex curves in the projective plane using Seiberg-Witten theory.

It follows that if K f is a knot, i.e., r = 1, then

u(K f ) = δ( f ) = 1
2 µ = 1

2 deg ∆h˚(t) = g(K f ) = g(Ff, 0). (5.117)
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If K f is a link, i.e., r ą 1, then

u(K f ) = δ( f ) = 1
2(µ + r´ 1) (5.118)

g(K f ) ě
1
2 µ = 1

2 deg ∆h˚(t). (5.119)

Remark 5.5.10. With regard to torus link invariants, the branch number

of the Brieskorn-Pham singularity f = xp + yq is precisely gcd(p, q), which

coincides with the number of components of the corresponding torus link Tp,q.

Equation (5.70b5.70b) implies

u(Tp,q) =
1
2(pq´ p´ q + gcd(p, q)), (5.120)

while, in particular, if p and q are coprime,

u(Tp,q) = g(Tp,q) =
1
2(p´ 1)(q´ 1), (5.121)

which is one-half of the corresponding algebraic index or, equivalently, one-half

of the degree of the corresponding Alexander polynomial ∆Tp,q(t). M

Remark 5.5.11. In Example 2 following Theorem 7.3 of [312312], Milnor gives

two complex analytic germs over C3 which have isotopic links (hence equal

link invariants) but different algebraic indices (hence non-diffeomorphic fibers),

namely, f = x2 + y9 + z18 (which corresponds to the 2-fold cyclic branched

covering over the torus link T9,18) and g = x3 + y5 + z15 (which corresponds

to the 3-fold cyclic branched covering over the torus link T5,15) with µ( f ) =

23 ¨ 17 = 136 and µ(g) = 24 ¨ 7 = 112, respectively. M
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5.6. Arithmetic and Geometric Genera

5.6.1. Arithmetic Genus. Let V Ă Pn be a non-singular, irreducible, pro-

jective algebraic variety of dimension n defined by an ideal I(V) of polynomi-

als which vanish on V. Let PV(t) denote the Hilbert polynomial of the coordi-

nate ring C[z0, . . . , zn]/I(V). Hilbert proved that if C is a non-singular, complex

plane curve, then g(C) = PC(0)´ 1, where PC(t) is the Hilbert polynomial of C

[11], [193193], [194194]. The arithmetic genus pa(V) is the normalized constant term of

PV(0), namely, pa(V) = (´1)n(PV(0)´ 1) [11], [162162], [177177]. The arithmetic genus

does not depend on the projective embedding of V.

Remark 5.6.1. Given a projective hypersurface V Ă Pn of degree d, the

Hilbert polynomial of V is PV(t) = (t+n
n ) ´ (t´d+n

n ) [11]. Thus, the arithmetic

genus pa(V) = (´1)n(PV(0) ´ 1) = (d´1
n ), which coincides with the genus

g(V). M

Remark 5.6.2. Given a projective complete intersection V Ă Pn defined by

the ideal I(V) = ( f1, . . . , fm), where deg fi = ai P N, the Hilbert polynomial of

V is

PV(t) =
(

t + n
n

)
+

m
ÿ

k=1

(´1)k
ÿ

1ďi1ă¨¨¨ăikďm

(
t´ (ai + ¨ ¨ ¨+ ak) + n

n

)
. (5.122)

Thus, the arithmetic genus is the alternating summation

pa(V) =
m
ÿ

k=1

(´1)n´k
ÿ

1ďi1ă¨¨¨ăikďm

(
´(ai + ¨ ¨ ¨+ ak) + n

n

)
, (5.123)
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where (´n
k ) = (´1)k(n+k´1

k ) for n P Z and k P Zě0. Taking m = 1 and deg f1 = d

yields the arithmetic genus computed in Remark (5.6.15.6.1). M

Let (X,OX) denote a topological space X with a structure sheaf OX of rings.

Suppose X be a compact complex manifold of (complex) dimension n, and let

χ(X,OX) denote the Euler characteristic (in the coherent cohomology) of the

structure sheaf OX, which is equal to the holomorphic Euler characteristic of

the trivial line bundle of X. Let hp,q = dimC Hp(X,OX) denote the (p, q)-Hodge

number of X. The (Severi-Kodaira-Spencer) arithmetic genus pa(X) is the alternat-

ing summation of hodge numbers,

pa(X) =
n
ÿ

k=1

(´1)n´khk,0 (5.124)

= (´1)nχ̃(X,OX), (5.125)

which generalizes the arithmetic genus** for non-singular, irreducible, projective

algebraic varieties. Since χ̃(X,OX) is a birational invariant, so is pa(X). See [162162]

for related details.

5.6.2. Geometric Genus. Let Ωq denote the sheaf of holomorphic q forms

on X. Define the geometric genus pg(X) as the hodge number hn,0, i.e., the com-

plex dimension of the sheaf cohomology group H0(X, Ωn) – Hn(X, Ω), the

number of linearly independent holomorphic (top) n-forms on X.

*In his book [203203], Hirzebruch defines χ(X,OX) as the arithmetic genus.
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The geometric genus is the first of the series of plurigenera and is closely

related to the arithmetic genus. However, while the arithmetic and geometric

genera are both integers, only the geometric genus is a priori non-negative.

Proposition 5.35. If X is a smooth, projective algebraic complex curve, then

the arithmetic and geometric genera coincide,

pa(X) = pg(X). (5.126)

Remark 5.6.3. The identity of Proposition 5.355.35 holds even for smooth,

projective algebraic curve over any algebraically closed field. M

Remark 5.6.4. For a projective plane curve C with singular points Σ(C),

the aforementioned genera are related by the following formula,

pg(C) = pa(C)´
ÿ

pPΣ(C)

δp(C), (5.127)

where δp(C) = dim R̃p/Rp denotes the local delta invariant of C at p, where Rp

is the local ring of C at p and R̃p is its normalization [104104]. M

In the context of complex analytic germs in C3 with isolated critical points

at the origin and small arithmetic genera, Yau proves an invariance of the corre-

sponding multiplicities [487487].

Proposition 5.36 (Yau, [487487]). If f , g : (C3, 0) Ñ (C, 0) are non-degenerate

complex analytic germs such that (C3, Vf, 0) and (C3, Vg, 0) are locally homeomorphic at

the origin and pa( f ) ď 2, then the multiplicities of f and g coincide, i.e., ν( f ) = ν(g).
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5.6.2.1. Genera of Quasihomogeneous Hypersurfaces. Let f : (Cn+1, 0) Ñ (C, 0)

be a non-degenerate, weighted homogeneous polynomial with weights tωiu Ă

QX (0, 1). Suppose n ą 2 and consider the quasihomogeneous hypersurface

Vf, 0 = f´1(0) and an arbitrary resolution π : Ṽf, 0 Ñ Vf, 0. The arithmetic genus

pa( f ) = pa(Ṽf, 0) and geometric genus pg( f ) = pg(Ṽf, 0) = dimC Hn´1(Ṽf, 0, Ω)

do not depend on the resolution.

Merle and Teissier [301301] (and perhaps also Watanabe) gave the following for-

mula for the geometric genus pg( f ) of a weighted homogeneous hypersurface

Vf, 0 as the size of the solution set of a Diophantine inequality determined by

the integral weights tqiu and weighted degree d,

pg( f ) =
ˇ

ˇ

ˇ
t(x0, . . . , xn) P Zn+1

ě0 |
ÿn

i=0
qixi ď d´

ÿn

i=0
qiu

ˇ

ˇ

ˇ
(5.128)

=
ˇ

ˇ

ˇ
t(x0, . . . , xn) P Nn+1

|
ÿn

i=0
qixi ď du

ˇ

ˇ

ˇ
. (5.129)

Proposition 5.37. Let f : (Cn+1, 0) Ñ (C, 0) be a non-degenerate weighted

homogeneous polynomial with integral weights tq0, . . . , qnu and weighted degree d.

Consider the rational polytope P = convt0, a0e0, . . . , anenu, where ai satisfies

qiai = d ´
řn

k=0 qk. The geometric genus pg( ft) of the t-dilate ft is equal to the

Ehrhart function LP (t) = |tP XZn+1
ě0 | of the t-dilate of P .

Proof . The polytope P admits the equivalent definition as the locus

!

(x0, . . . , xn) P Rn+1
ě0 |

ÿn

i=0
xi
ai
ď 1

)

. (5.130)
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Thus, the Ehrhart function LP (t) counts the cardinality of the set t(x0, . . . , xn) P

Zn+1
ě0 |

řn
i=0

xi
ai
ď tu. Compare this to equation (5.1285.128). �

5.6.2.2. A Linear Diophantine Inequality and the Geometric Genus. A closed

analytic form of the number Na(R) of non-negative integral solutions of the

Diophantine inequality 0 ď a1x1 + ¨ ¨ ¨+ anxn ď R with relatively prime, positive

integral coefficients taiu and positive bounding integer R has recently been

proposed by Mahmoudvand, Hassani, Farzaneh and Howell [282282].

The essential step in their proof is to introduce an additional variable xn+1,

transform the inequality into the equality a1x1 + ¨ ¨ ¨+ anxn + xn+1 = R and sim-

ply enumerate the non-negative solutions of the transformed equation induc-

tively as a function of n, as the number of solutions of the equality is bijective

with those of the inequality. The number of said solutions is computed using

the iterated summation,

Na(R) =
tR/a1u
ÿ

i1=0

t(R´a1i1)/a2u
ÿ

i2=0

¨ ¨ ¨

t(R´
řn´1

k=1 akik)/anu
ÿ

in=0

1, (5.131)

where t¨u denotes the floor function. In Volume 2, we generalize this formula

to positive real coefficients. Combining this result with that of Merle, Teissier and

Watanabe [301301], we determine an explicit formula for the geometric genus in

terms of the weights.

Proposition 5.38. Let f : (Cn+1, 0) Ñ (C, 0) be a non-degenerate, weighted

homogeneous polynomial with integral weights tq0, . . . , qnu and weighted degree d.
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Define the Gorenstein parameter R = d ´
řn

i=0 qi. The geometric genus pg( f ) =

pg(Vf, 0) is given by the iterated summation

pg( f ) =
tR/q0u
ÿ

i0=0

¨ ¨ ¨

t(R´
řn´1

k=0 qkik)/qnu
ÿ

in=0

1. (5.132)

Proof . Apply equation (5.1315.131) to equation (5.1285.128). �

Remark 5.6.5. If W is an elementary 3-simplex, then the number of posi-

tive lattice points is LW (t; N3) = (t
3). More generally, if given a homogeneous

polynomial f =
řn

i=0 zd
i of degree d, then the corresponding polytope is the

d-dilate of an (n + 1)-simplex, and the geometric genus is

pg( ft) =
1

(n + 1)!

n+1
ÿ

k=0

s(n + 1, k)(dt)k =

(
dt

n + 1

)
. (5.133)

M

Remark 5.6.6. To determine the asymptotic behavior of the geometric

genus of a weighted homogeneous polynomial of n + 1 indeterminates, we

employ the Euler-Maclaurin summation formula,

pg( f ) =
tR/q0u
ÿ

i0=0

¨ ¨ ¨

t(R´
řn´1

k=0 ik/qk)/qnu
ÿ

in=0

1 (5.134)

=
Rn+1

(n + 1)! q0 ¨ ¨ ¨ qn
+ O(Rn), (5.135)

which indicates that pg( f ) = O(dn+1). M
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Proposition 5.39 (Steenbrink, [437437]). If f : (Cn+1, 0)Ñ (C, 0) is a weighted

homogeneous polynomial with spectrum Sp( f ), then

pg( f ) = |Sp( f )XQď1|. (5.136)

Define the generalized geometric genus

pg( f ) =

$

&

%

dimC Rn´1ρ˚OṼf, 0
n ě 2

dimC ρ˚OṼf, 0
/OVf, 0 n = 1,

(5.137)

where, for n = 1, pg( f ) = δ( f ), the delta invariant [410410]. The definitions of the

ordinary and generalized geometric genus coincide for n ě 2.

Proposition 5.40 (Durfee, [118118]; Saito, [410410]). If f : (Cn+1, 0) Ñ (C, 0) is

a non-degenerate, weighted homogeneous singularity, then the generalized geometric

genus of f satisfies

2pg( f ) =

$

&

%

ς+ + ς0 n = 2

ς+ + 2ς0 + ς´ n = 1,
(5.138)

where ς+, ς0 and ς´ are the number of positive, zero and negative eigenvalues of the

corresponding intersection form S.

Remark 5.6.7. For n = 1, since pg( f ) = δ( f ) and µalg( f ) = ς+ + ς0 + ς´,

it follows by the Milnor-Jung formula that the branch number satisfies r( f ) =

ς0 + 1. M
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The previous remark, Proposition 5.305.30 and Corollary 5.315.31 imply the follow-

ing result.

Corollary 5.41. If f : (C2, 0)Ñ (C, 0) is a non-degenerate, weighted homoge-

neous polynomial with reduced weights ω = tω1, ω2u, then

ς0 = ord(H˝) + ∆(ω), (5.139)

where H˝ is the interior of the hypotenuse of the weight polytope W( f ) and ∆(ω) is

defined in Proposition 5.305.30. In particular, if f is a quasi-Brieskorn-Pham polynomial,

then

ς0 = ord(H˝). (5.140)

Thus, for n = 1, the eigenvalue signature (ς+, ς0, ς´) of the corresponding

intersection form S admits the following exact representation in terms of the

weights,

ς0 =
1

ω1
´ 1 +

ω1

ω2

(
"

1
ω1

*

´

"

1
ω1

*2
)
´ 2

t1/ω1u
ÿ

i=1

"

1´ iω1

ω2

*

(5.141)

=
1

ω2
´ 1 +

ω2

ω1

(
"

1
ω2

*

´

"

1
ω2

*2
)
´ 2

t1/ω2u
ÿ

i=1

"

1´ iω2

ω1

*

(5.142)
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and, since the signature is zero, ς+ = ς´, so

ς˘ = 1´
1

ω1
´

1
2ω2

+
1

2ω1ω2
´

ω1

2ω2

(
"

1
ω1

*

+

"

1
ω1

*2
)

+
t1/ω1u
ÿ

i=1

"

1´ iω1

ω2

*

(5.143)

= 1´
1

ω2
´

1
2ω1

+
1

2ω1ω2
´

ω2

2ω1

(
"

1
ω2

*

+

"

1
ω2

*2
)

+
t1/ω2u
ÿ

i=1

"

1´ iω2

ω1

*

. (5.144)

Remark 5.6.8. Suppose f is a quasi-Brieskorn-Pham singularity with in-

verse weights tp, qu. Then ς0 = gcd(p, q)´ 1 and

ς˘ = 1´ p´
q
2
+

pq
2

+

p
ÿ

i=1

"

q´
iq
p

*

(5.145)

= 1´ q´
p
2
+

pq
2

+

q
ÿ

i=1

"

p´
ip
q

*

(5.146)

= 1
2 (pq´ p´ q´ gcd(p, q)) + 1. (5.147)

M
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Corollary 5.42. For p, q P N,

p´1
ÿ

i=1

q´1
ÿ

j=1

sgn˘ sin
(

π( i
p +

j
q )
)
= 1

2 (pq´ p´ q´ gcd(p, q)) + 1 (5.148)

p´1
ÿ

i=1

q´1
ÿ

j=1

sgn0 sin
(

π( i
p +

j
q )
)
= gcd(p, q)´ 1. (5.149)

In particular, for d P N,

d´1
ÿ

i=1

d´1
ÿ

j=1

sgn˘ sin
(

π( i+j
d )
)
=

(
d
2

)
(5.150)

d´1
ÿ

i=1

d´1
ÿ

j=1

sgn0 sin
(

π( i+j
d )
)
= d´ 1. (5.151)

5.7. Geometric Genus of Weighted Homogeneous Surface Singularities

Although equation (5.1325.132) gives an effective means of computing the geo-

metric genus, it does little to illustrate the curious behavior of the geometric

genus as a function of the weights. In short, while this formula is interesting, it

is nevertheless useless.

An equivalent way to compute the geometric genus is to count the number

of positive integer solutions (x0, . . . , xn) of
řn

i=0 ωi xi ď 1 with rational weights

tωiu, that is, the Ehrhart function of the positive part of the weight polytope

W( f ). It follows that the geometric genus is a higher dimensional analogue of

the delta invariant of a complex plane curve.
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By simplifying the Ehrhart function counting the positive lattice points of

the weight polytope, the geometric genus is expressible exactly in terms of the

weights as a quasi-polynomial of degree n + 1 in the dilation variable t. That is,

after simplifying the iterated summation, repeatedly using the identity txu =

x´ txu for x P Rě0 and using elementary summation identities, one arrives at

an expression of the form pg( ft) =
řn+1

k=0 ck(t) tk, where ck(t) are lattice-periodic

Q-valued functions.

Proposition 5.43. If f : (Cn+1, 0) Ñ (C, 0) is a non-degenerate, weighted

homogeneous polynomial with weight polytope W( f ) = convt0, e0
ω0

, . . . , en
ωn
u, then

pg( ft) is a quasi-polynomial of degree n + 1 in the variable t and satisfies

lim
tÑ8

t´n´1pg( ft) =
1

(n+1)!

n
ź

i=0

1
ωi

. (5.152)

Proof . The claim follows from the representation

pg( ft) = |tW( f )XNn+1
| (5.153)

=
tt/ω0u
ÿ

i0=1

¨ ¨ ¨

t(t´
řn´1

k=0 ikωk)/ωnu
ÿ

in=1

1, (5.154)

which is a quasi-polynomial of degree n + 1 in t with leading coefficient equal

to the (n + 1)-content of the weight polytope, viz., voln+1 W( f ) = 1
(n+1)!

śn
i=0

1
ωi

.

�

In Volume 2, we compute the Ehrhart function LP (t, N3) = |tP XN3|,

where P = convt0, a1e1, a2e2, a3e3u, a real trirectangular tetrahedron. As a
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consequence, we prove an exact expression for the geometric genus of non-

degenerate, weighted homogeneous surface singularities.

Proposition 5.44. The geometric genus pg( ft) of the (positive integral) t-dilate

of a non-degenerate, weighted homogeneous surface singularity f : (C3, 0) Ñ (C, 0)

with weights tω1, ω2, ω3u admits the following representation,

pg( ft) =
tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

t(t´iω1´jω2)/ω3u
ÿ

k=1

1 (5.155a)

=
(

1
6ω1ω2ω3

)
t3
´ 1

4ω3

(
1

ω1
+ 1

ω2

)
t2 + 1

4ω3

(
1 + ω1

3ω2

)
t

´
ω1

4ω3

(
1 + ω1

3ω2

)!
t

ω1

)

+ ω1
4ω3

(
1 + ω1

ω2

)!
t

ω1

)2
´

ω2
1

6ω2ω3

!

t
ω1

)3

+ ω2
2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))

´

tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

!

t´iω1´jω2
ω3

)

, (5.155b)

Remark 5.7.1. As the corresponding Ehrhart function is defined on a

larger domain, equation (5.155b5.155b) holds for any permutation of the weights and

for real t-dilates of weighted homogeneous, finite Puiseux series.

Alternatively, the geometric genus pg( ft) may be defined by equation

(5.155b5.155b) for all real t ě 0. In fact, any singularity invariant which depends ex-

plicitly on an Ehrhart function of the weight polytope admits a similar general-

ization. M
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Proposition 5.45. A non-degenerate, weighted homogeneous polynomial over

Cn+1 with weights that the sum greater unity has vanishing geometric genus.

Proof . If the Gorenstein parameter R ă 0, then there are no solutions for

the Diophantine inequality
řn

i=0 qixi ď R. Since R = d´
řn

i=0 qi, the negativity

of R is equivalent to the
řn

i=0 qi ą d, that is,
řn

i=0 ωi ą 1. Therefore, W =

convt0, e0
ω0

, . . . , en
ωn
u is a rational, orthotopal simplicial polytope that does not

intersect any positive lattice points. �

Remark 5.7.2. The converse of Proposition 5.455.45 for n = 2 was shown

by Yoshinaga and Watanabe [494494]. More generally, a normal two-dimensional

singularity has zero geometric genus if and only if it is rational [482482]. M

Recall that the generalized geometric genus is well-defined for weighted

homogeneous, finite Puiseux series.

Proposition 5.46. Given a square-free, non-degenerate weighted homogeneous

polynomial f : (C2, 0)Ñ (C, 0) with weights tω1, ω2u, let f̃ : (C3, 0)Ñ (C, 0) be any

weighted homogeneous polynomial with weights tω1, ω2, ω3u. The geometric genus of

f̃ and the delta invariant of f satisfy the identity,

pg( f̃t+ω3) = pg( f̃t) + δ( ft). (5.156)

In particular, if ω3 = 1, then

pg( f̃t+1) =
t
ÿ

l=1

δ( fl). (5.157)
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Proof . Write δ(t) = δ( ft) and p̃g(t) = pg( f̃t). Observe the recurrence

relation

p̃g(t) =
tt/ω3u
ÿ

i=1

δ(t´ iω3), (5.158)

which implies the difference and telescoping summation

p̃g(t + ω3)´ p̃g(t) =
tt/ω3u+1
ÿ

i=1

δ(t´ (i´ 1)ω3)´
tt/ω3u
ÿ

i=1

δ(t´ iω3) (5.159a)

=
tt/ω3u
ÿ

i=2

δ(t´ iω3)´
tt/ω3u
ÿ

i=1

δ(t´ iω3) (5.159b)

= δ(t). (5.159c)

If ω3 = 1, then pg(1) = 0, as the geometric genus of any weighted homoge-

neous polynomial with weights that sum greater than unity vanishes by Propo-

sition 5.455.45. Moreover,

p̃g(t + 1) = p̃g(t) + δ(t) (5.160)

= p̃g(1) +
t
ÿ

l=1

δ(l), (5.161)

which implies the claimed identity. �

Remark 5.7.3. Consider f = x3 + xy3 over C2 and f̃ = Σ f = x3 + xy3 + z2

over C3. The weights of f̃ are t1
3 , 2

9 , 1
2u, so f̃3/2 = x9/2 + x3/2y9/2 + z3. One
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computes pg( f̃ ) = 0 and pg( f̃3/2) = 4. By equation (5.745.74),

δ( ft) =
27
4 t2

´ 3
2 t´

3t
ÿ

i=1

!

9
2

(
t´ i

3

))
, (5.162)

so δ( f ) = 27
4 ´

9
4 ´

1
2 = 4. M

Remark 5.7.4. Consider two quasi-Brieskorn-Pham polynomials f̃ and f

with inverse weights tka, kb, ku Ă N and ta, bu, respectively. Equations (5.70b5.70b)

and (5.1575.157) imply

pg( f ) =
k´1
ÿ

l=1

δ( fl) (5.163a)

=
1
2

k´1
ÿ

l=1

l2ab´ la´ lb + lgcd(a, b) (5.163b)

= ab
6 k3

´ 1
4 (ab + a + b´ gcd(a, b)) k2

+ 1
4

(
ab
3 + a + b´ gcd(a, b)

)
k, (5.163c)

where the quadratic coefficient is precisely ´1
2 δ( f ). M

5.8. Durfee Conjecture

Recall that a complex analytic germ is a non-degenerate if and only if it

possesses and isolated critical point at the origin. Let f : (Cn+1, 0) Ñ (C, 0),

Vf, κ = f´1(κ) and F̄f, 0 –d Vf, κ X B̄ε for sufficiently small 0 ă ε ă κ denote a

non-degenerate, complex analytic germ, the corresponding hypersurface and

(closed) Milnor fiber, respectively. Denote by σ(Ff, 0) the signature of Ff, 0 and
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by pg( f ) = dimC Hn´1(Ṽf, 0,OṼf, 0
) the geometric genus (or first plurigenus) of

any minimal resolution Ṽf, 0. In [118118], Durfee conjectured that non-degenerate,

weighted homogeneous, surface singularities (n = 2) satisfy

σ(Ff, 0) ď 0 and 6pg( f ) ď µalg( f ), (5.164)

with equality of the latter inequality only in the case µalg( f ) = 0. In the case

that f is non-degenerate, strict positivity of µ is known for n ě 0. In 1993, Xu

and Yau sharpen and prove the Durfee Conjecture for surface singularities.

Proposition 5.47 (Xu, Yau, [478478]). Let f : (C3, 0) Ñ (C, 0) be a non-

degenerate, weighted homogeneous germ, and Vf, 0 = f´1(0) its corresponding hy-

persurface. Let µalg( f ), τ( f ), pg( f ), ν( f ) denote the algebraic index and Tjurina num-

bers, geometric genus and multiplicity of f , respectively. Then

6pg( f ) ď µalg( f )´ ν( f ) + 1 (5.165)

with equality if and only if Vf, 0 is defined by a homogeneous polynomial. Moreover, if

σ(Ff, 0) denotes the signature of the Milnor fiber of f , then

σ(Ff, 0) ď ´
1
3 µalg( f )´ 2

3(ν( f )´ 1). (5.166)

Furthermore, if f is simply a two-dimensional surface singularity with iso-

lated critical point at the origin, Xu and Yau (based on prior work of Saito) give

a coordinate-free characterization of homogeneity. That is, if µalg( f ) = τ( f )
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and 6pg( f ) = µalg( f )´ ν( f ) + 1, then f is a homogeneous polynomial after a

biholomorphic change of variables.

In the same paper, Durfee conjectures the following generalization for non-

degenerate, weighted homogeneous singularities over Cn+1,

(n + 1)!pg( f ) ď µalg( f ) (5.167)

with equality if and only if µalg( f ) = 0. Yau later sharpened the conjecture.

Conjecture 5.48 (Durfee, Yau). Let f : (Cn+1, 0) Ñ (C, 0) be a non-

degenerate, weighted homogeneous polynomial. Let µ( f ), pg( f ) and ν( f ) denote the

algebraic index, geometric genus and multiplicity of f , respectively. Then

(n + 1)!pg( f ) ď µalg( f )´ (ν( f )´ 1)n+1 + ν( f )(ν( f )´ 1) ¨ ¨ ¨ (ν( f )´ n) (5.168)

with equality if and only if f is homogeneous.

Conjecture 5.485.48 is true for n = 2 [478478] and n = 3 [269269]. Sȩkalski [423423] proves

that the multiplicity of a weighted homogeneous polynomial depends only on

its weights, ν( f ) = mintk P N | k ě mint 1
ωi
uu.

Building upon earlier work [476476], Yau and Zhang [488488] estimate the number

of non-negative and positive lattice points in simplicial n-polytopes and estab-

lish equation (5.1675.167). Conjecture 5.485.48 remains open for n ą 3. Based on the Dur-

fee and Yau Conjectures, Lin and Yau (and independently by Granville) [270270]

conjectured rough and sharp upper bounds on the number of non-negative and

positive lattice points in simplicial (n + 1)-polytopes.
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Conjecture 5.49 (Granville, Lin, Yau). Let Pn denote the number of positive

lattice points in the real tetrahedron Tn = convt0, a1e1, . . . , anenu, and let s(n, k) be

the (n, k)th-Stirling number of the first kind. Then, for n ě 3, the following is true:

1. (Rough GLY Estimate) For a1 ě ¨ ¨ ¨ ě an ě 1,

n!Pn ď

n
ź

i=1

(ai ´ 1); (5.169)

2. (Sharp GLY Estimate) For a1 ě ¨ ¨ ¨ ě an ě 1,

n!Pn ď An
0 +

s(n, n´ 1)
n

An
1 +

n´2
ÿ

k=1

s(n, n´ k´ 1)

(n´1
k )

An´1
k , (5.170)

where An
k = an An´1

k + An´1
k´1 and

An
k =

(
n
ź

i=1

ai

) ÿ

1ďi1ď¨¨¨ďikďn

(ai1 ¨ ¨ ¨ aik)
´1

 . (5.171)

The rough GLY estimate was proven by Yau and Zhang [488488]. The sharp

GLY estimate is true for 3 ď n ď 6 [270270, 271271, 476476, 479479]. However, the GLY

Conjecture is not true in general; Wang and Yau [468468] exhibit a counter-example

to the sharp GLY estimate for n = 7.

Proposition 5.50. The Durfee Conjecture is true for any non-degenerate, non-

homogeneous, weighted homogeneous polynomial f : (C3, 0)Ñ (C, 0) with sufficiently

small weights.
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Proof . The exact expression of the geometric genus in terms of the re-

duced weights of f and the corresponding algebraic index is simply

pg( ft) =
1
6 µalg( ft) +

1
6

(
1

ω1ω2
´ 1

2ω2ω3
´ 1

2ω3ω1

)
t2

´ 1
6

(
1

ω1
+ 1

ω2
´ 1

2ω3
´

ω1
2ω2ω3

)
t

+ 1
6 ´

ω1
4ω3

(
1 + ω1

3ω2

)!
t

ω1

)

+ ω1
4ω3

(
1 + ω1

ω2

)!
t

ω1

)2
´

ω2
1

6ω2ω3

!

t
ω1

)3

+ ω2
2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))

´

tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

!

t´iω1´jω2
ω3

)

. (5.172)

The conjecture is equivalent to the following fractional part summation inequal-

ity,

tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

!

t´iω1´jω2
ω3

)

ě 1
6

(
1

ω1ω2
´ 1

2ω2ω3
´ 1

2ω3ω1

)
t2

´ 1
6

(
1

ω1
+ 1

ω2
´ 1

2ω3
´

ω1
2ω2ω3

)
t

+ 1
6 ´

ω1
4ω3

(
1 + ω1

3ω2

)!
t

ω1

)

+ ω1
4ω3

(
1 + ω1

ω2

)!
t

ω1

)2
´

ω2
1

6ω2ω3

!

t
ω1

)3

+ ω2
2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))
. (5.173)

392



Without loss of generality, one may assume 0 ă ω3 ď ω2 ď ω1 ď
1
2 . Assuming

the ordered weights are not identical (which occurs only in the homogeneous

case, c.f. Proposition 5.515.51), one has ω1 + ω2 ą 2ω3 and the coefficient of the

quadratic power of t in the inequality (5.1735.173) is negative definite. Proving that

this term dominates the right side for t ě 1 would imply the conjecture since

the left side is non-negative for t ě 1. It is therefore sufficient to prove the

inequality

ω2
2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))
ď ´1

6

(
1

ω1ω2
´ 1

2ω2ω3
´ 1

2ω3ω1

)
t2

+ 1
6

(
1

ω1
+ 1

ω2
´ 1

2ω3
´

ω1
2ω2ω3

)
t

´ 1
6 +

ω1
4ω3

(
1 + ω1

3ω2

)!
t

ω1

)

´
ω1

4ω3

(
1 + ω1

ω2

)!
t

ω1

)2
+

ω2
1

6ω2ω3

!

t
ω1

)3
. (5.174)

Note that ´1
6(

1
ω1ω2

´ 1
2ω2ω3

´ 1
2ω3ω1

) ą 0. The left side is bounded from above by

ω2
2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))
ď

ω2
8ω3

t t
ω1

u (5.175)

= ω2
8ω1ω3

t´ ω2
8ω3

!

t
ω1

)

, (5.176)

which proves the conjecture for sufficiently large t. �
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Remark 5.8.1. If ω1 = ω2 = 1
2 , then the fractional part summation vanishes

at t = 1 and the Durfee Conjecture is equivalent to

0 ď ´1
6

(
4´ 2

ω3

)
+ 1

6

(
4´ 1

ω3

)
´ 1

6 (5.177)

= 1
6

(
1

ω3
´ 1
)

, (5.178)

which is true for 0 ă ω3 ď 1. More generally, if 1
ω1

= a, 1
ω2

= b P N, a ď b and a

divides b, then all fractional parts vanish, and we have

0 ď ´1
6

(
ab´ b

2ω3
´ a

2ω3

)
+1

6

(
a + b´ 1

2ω3
´ b

2aω3

)
´ 1

6 , (5.179)

which simplifies to the bound a+b
2a(b´1) ě ω3. However, by assumption ω3 ď ω2 =

1
b ď

a+b
2a(b´1) , since a ď b, so the Durfee conjecture is also true for this case. M

We treat now the homogeneous case.

Proposition 5.51. The Durfee Conjecture is true for homogeneous polynomials

of degree d ě 1 over C3.

Proof . Consider the homogeneous case ω1 = ω2 = ω3 = 1
d , where d ě 2.

Equation (5.1735.173) reduces to

tdtu
ÿ

i=1

tdt´iu
ÿ

j=1

tdt´ i´ ju ě ´1
6(dt) + 1

6 ´
1
3 tdtu+ 1

2 tdtu2
´ 1

6 tdtu3

+ 1
2

tdtu
ÿ

i=1

tdt´ iu (1´ tdt´ iu) , (5.180)
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and since the fractional part summations vanish, the Durfee Conjecture is equiv-

alent to

0 ď 1
6(dt)´ 1

12 ă
1
6(dt)´ 1

6 +
1
3 tdtu ´ 1

2 tdtu2 + 1
6 tdtu3 , (5.181)

which is (trivially) true for t ě 1. �

Precise estimates of iterated fractional-part summations would, of course,

yield even sharper bounds than that which the Durfee Conjecture suggests. To

apply some of the other identities that we develop in Volume 2, we give a proof

of a special case.

Proposition 5.52. Let f : (C3, 0) Ñ (C, 0) be a non-degenerate weighted

homogeneous polynomial. If f has weights t1
a , 1

b , ω3u such that a and b are coprime

integers (each greater than or equal to 2) and ω3 ď
a+b+1

2ab , then f satisfies the Durfee

Conjecture.
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Proof . If ω1 = 1
a and ω2 = 1

b are inverse integers, then

pg( ft)´
1
6 µalg( ft) =

1
6

(
ab´ b

2ω3
´ a

2ω3

)
t2
´ 1

6

(
a + b´ 1

2ω3
´ b

2aω3

)
t

+ 1
6 +

1
2bω3

at
ÿ

i=1

!

b
(

t´ i
a

))(
1´

!

b
(

t´ i
a

)))

´

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

t´i/a´j/b
ω3

)

(5.182)

= 1
6

(
ab´ b

2ω3
´ a

2ω3

)
t2
´ 1

6

(
a + b´ 1

2ω3
´ b

2aω3

)
t + 1

6

+ gcd(a,b)2

2abω3

a/gcd(a,b)´1
ÿ

l=0

l

´ gcd(a,b)
a

a/gcd(a,b)´1
ÿ

l=0

l2

 t

´

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

t´i/a´j/b
ω3

)

, (5.183)

since

at
ÿ

i=1

"

b
(

t´
i
a

)*k
=

at
ÿ

i=1

"

bi
a

*k
(5.184)

=
gcd(a, b)k+1

ak

a/gcd(a,b)´1
ÿ

l=0

lk

 t, (5.185)
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as shown in Volume 2. If a and b are coprime integers, then

pg( ft)´
1
6 µalg( ft) =

1
6

(
ab´ b

2ω3
´ a

2ω3

)
t2
´ 1

6

(
a + b´ 1

2ω3
´ b

2aω3

)
t + 1

6

+ 1
2abω3

(
a
2(a´ 1)´ 1

6(a´ 1)(2a´ 1)
)

t

´

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

t´i/a´j/b
ω3

)

. (5.186)

For t = 1, the right side simplifies to

pg( f )´ 1
6 µalg( f ) = 1

6(a´ 1)(b´ 1)
(

1´ a+b+1
2abω3

)
´

a
ÿ

i=1

tb(1´i/a)u
ÿ

j=1

!

1´i/a´j/b
ω3

)

. (5.187)

If ω3 = c
d is in reduced form, then the Durfee Conjecture is equivalent to the

following fractional part summation inequality,

a
ÿ

i=1

tb(1´i/a)u
ÿ

j=1

!

d(1´i/a´j/b)
c

)

ě 1
6(a´ 1)(b´ 1)

(
1´ d(a+b+1)

2abc

)
. (5.188)

By assumption c
d ď

a+b+1
2ab , so the right side is non-positive. The fractional part

summation is non-negative, zero only in the case that a, b and c divide d, so the

claimed inequality is (trivially) true. �

Remark 5.8.2. In particular, if ta, bu P tt2, 2u, t2, 3uu, then one requires

ω3 ď
5
8 or ω3 ď

1
2 , respectively, both of which are true by non-degeneracy.
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Hence, the Durfee Conjecture is true for non-degenerate, weighted homoge-

neous polynomials with weights t1
2 , 1

2 , 1
c u for c P Ną1 or t1

2 , 1
3 , 2

du for d P Ną3.

The former has trivial geometric genus, while the latter does not, q.v., Proposi-

tion 6.196.19. M

Proposition 5.53. Provided that the summation of the reduced weights is less

than unity, there are positive constants A and B, depending only on n, such that

Apg ď µalg( f ) ď Bpg. (5.189)

Proof . See Volume 3. �

5.9. Signature of Weighted Homogeneous Surface Singularities

Proposition 5.54. Let f : (C2, 0) Ñ (C, 0) be a square-free, weighted homoge-

neous polynomial. The following identity holds,

δ( f ) = ς+ = ς´ and r( f ) = ς0 + 1, (5.190)

where ς+, ς´ and ς0 are the number of positive, negative and zero eigenvalues of the

intersection form S, respectively.

Proof . Since n is odd, the signature of the corresponding Milnor fiber

vanishes, i.e., σ(Ff, 0) = ς+ ´ ς´ = 0, so ς+ = ς´. Therefore, µalg( f ) = 2ς+ + ς0.

The Milnor-Jung formula implies 2ς+ + ς0 = 2δ( f ) ´ r( f ) + 1. By counting
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lattice points,

ς+ =
t1/ω1u
ÿ

i=1

t(1´iω1)/ω2u
ÿ

j=1

1 = δ( f ), (5.191)

which completes the proof. �

Proposition 5.55. Given a weighted homogeneous surface singularity

f : (C3, 0) Ñ (C, 0) with weights tω1, ω2, ω3u, intersection form invariants

tς+, ς0, ς´u, geometric genus pg( f ), signature σ(Ff, 0) and algebraic index µalg( f ),

4pg( f ) = σ(Ff, 0) + µalg( f ) + ς0. (5.192)

Proof . The claimed identity follows from the following identities:

µalg( f ) = ς+ + ς0 + ς´ (5.193)

2pg( f ) = ς+ + ς0 (5.194)

σ(Ff, 0) = ς+ ´ ς´. (5.195)

�

Proposition 5.56. The signature σ(Ff, 0) of the Milnor fiber Ff, 0 of a weighted

homogeneous surface singularity f : (C3, 0)Ñ (C, 0) with integral weights tq1, q2, q3u,
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weighted degree d and intersection form invariants tς+, ς0, ς´u is given by

σ(Ff , 0) = 1´ ς0 ´
d3

3q1q2q3
+ d2

q1q2
+
(

q1
3q2q3

´ 1
q1
´ 1

q2

)
d

´
q1
q3

(
1 + q1

3q2

)!
d
q1

)

+ q1
q3

(
1 + q1

q2

)!
d
q1

)2
´

2q2
1

3q2q3

!

d
q1

)3

+ 2q2
q3

td/q1u
ÿ

i=1

!

d´iq1
q2

)(
1´

!

d´iq1
q2

))

´ 4
td/q1u
ÿ

i=1

t(d´iq1)/q2u
ÿ

j=1

!

d´iq1´jq2
q3

)

, (5.196)

where ς0 = d2

q1q2q3
´
ř

1ďiăjď3
d

lcm(qi,qj)
+
ř

1ďiď3
gcd(d,qi)

qi
´ 1.

Proof . If f has reduced weights tω1, ω2, ω3u, then

pg( ft) =
(

1
6ω1ω2ω3

)
t3
´ 1

4ω3

(
1

ω1
+ 1

ω2

)
t2 + 1

4ω3

(
1 + ω1

3ω2

)
t

´
ω1

4ω3

(
1 + ω1

3ω2

)!
t

ω1

)

+ ω1
4ω3

(
1 + ω1

ω2

)!
t

ω1

)2

´
ω2

1
6ω2ω3

!

t
ω1

)3
+ ω2

2ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))

´

tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

!

t´iω1´jω2
ω3

)

. (5.197)
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By Proposition 5.555.55,

σ(Fft, 0) = 1´ ς0 ´
1

3ω1ω2ω3
t3 + 1

ω1ω2
t2 +

(
ω1

3ω2ω3
´ 1

ω1
´ 1

ω2

)
t

´
ω1
ω3

(
1 + ω1

3ω2

)!
t

ω1

)

+ ω1
ω3

(
1 + ω1

ω2

)!
t

ω1

)2
´

2ω2
1

3ω2ω3

!

t
ω1

)3

+ 2ω2
ω3

tt/ω1u
ÿ

i=1

!

t´iω1
ω2

)(
1´

!

t´iω1
ω2

))

´ 4
tt/ω1u
ÿ

i=1

t(t´iω1)/ω2u
ÿ

j=1

!

t´iω1´jω2
ω3

)

. (5.198)

According to Durfee, H1(E) – H1(K f ) and ς0 = rank H1(K f ) [118118]. Orlik

and Wagreich compute the (arithmetic) genus of an arbitrary weighted ho-

mogeneous surface singularity (Corollary 5.4, [363363]; Proposition 3, [364364]; also

[362362]). Given integral weights tq1, q2, q3u and weighted degree d, the genus of

Vˆf, 0/Cˆ » Vˆf, 0/S1, equal to the base-orbifold, is given by

g =
1
2

 d2

q1q2q3
´

ÿ

1ďiăjď3

d
lcm(qi, qj)

+
ÿ

1ďiď3

gcd(d, qi)

qi
´ 1

 . (5.199)

Finally, ς0 = 2g. �
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Remark 5.9.1. In terms of the reduced weights,

σ(Ff , 0) = 1´ ς0 ´
1

3ω1ω2ω3
+ 1

ω1ω2
+
(

ω1
3ω2ω3

´ 1
ω1
´ 1

ω2

)
´

ω1
ω3

(
1 + ω1

3ω2

)!
1

ω1

)

+ ω1
ω3

(
1 + ω1

ω2

)!
1

ω1

)2
´

2ω2
1

3ω2ω3

!

1
ω1

)3
+ 2ω2

ω3

t1/ω1u
ÿ

i=1

!

1´iω1
ω2

)(
1´

!

1´iω1
ω2

))

´ 4
t1/ω1u
ÿ

i=1

t(1´iω1)/ω2u
ÿ

j=1

!

1´iω1´jω2
ω3

)

. (5.200)

M

Remark 5.9.2. Suppose f is a homogeneous surface singularity with de-

gree d. A straightforward computation shows that ς0 = (d´ 1)(d´ 2) and

σ(Ff , 0) = ´1
3(d´ 1)(d2 + d´ 3), (5.201)

which is divisible by 8 if and only if d ” 1 mod 8. M

This concludes our remarks on some combinatorial structures at the founda-

tion of singularities of complex analytic germs. We proceed to a discussion of

some arithmetic facets.
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Chapter 6

Arithmetic Structure of Isolated Singularities

Die Mathematik ist die Königin der Wissenschaften und die Zahlentheorie
ist die Königin der Mathematik.** — C. F. Gauss
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In this chapter we compute the signature, geometric genus and other related

invariants of Brieskorn-Pham 3-manifolds. In particular, we compute the signa-

ture of a torus link.

*Mathematics is the Queen of Sciences and Number Theory is the Queen of Mathematics.
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6.1. Signature of Torus Links

The reader is encouraged to consult [235235, 335335] or any similar reference on

the fundamentals of knot and links and related numerical invariants.

Much is known of the signature of torus links. For instance, Tp,q for p, q ą 1

is not amphichiral and therefore σ(Tp,q) does not vanish (Theorem 7.4.2, [335335]).

In particular, if p and q are coprime and odd, then σ(Tp,q) ” 0 mod 8. More

generally, for a torus knot Tp,q if ∆Tp,q(´1) = 1, then said congruence is true

[335335].

Proposition 6.1. The signature of the torus links satisfies the following:

1. σ(Tq,p) = σ(Tp,q);

2. σ(T´p,q) = σ(Tp,´q) = ´σ(Tp,q); and,

3. σ(T´p,´q) = σ(Tp,q).

Proof . For p, q P N, Tp,q » Tq,p, Tp,q » T´p,´q » ´Tp,q, Tp,´q » T˚p,q [7474]. �

Murasugi computed the signature of various families of torus links.

Proposition 6.2 (Murasugi, [334334]). For m P N,

1. σ(T3,3m) = ´4m;

2. σ(T3,6m+1) = ´8m;

3. σ(T3,6m+2) = ´8m´ 2;

4. σ(T3,6m+4) = ´8m´ 6;

5. σ(T3,6m+5) = ´8m´ 8;

6. σ(T4,4m+1) = ´8m;
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7. σ(T4,4m+3) = ´8m´ 6; and,

8. σ(T4,2m) = ´4m + 1.

Proof . See Propositions 9.1 and 9.2 in [334334]. �

Gordon, Litherland and Murasugi gave an algorithm to compute the signa-

ture of an arbitrary torus link.

Proposition 6.3 (Gordon, Litherland, Murasugi, [156156]). Let σ(p, q) =

´σ(Tp,q) for p, q P N. The following algorithm computes σ(p, q) recursively:

1. If 0 ă 2q ă p, then

if q ą 0 is odd, then σ(p, q) = σ(p´ 2q, q) + q2 ´ 1; or,

if q ą 0 is even, then σ(p, q) = σ(p´ 2q, q) + q2;

2. σ(2q, q) = q2 ´ 1;

3. If 0 ă q ď p ă 2q, then

if q ą 0 is odd, then σ(p, q) + σ(2q´ p, q) = q2 ´ 1; or,

if q ą 0 is even, then σ(p, q) + σ(2q´ p, q) = q2 ´ 2; and,

4. σ(p, q) = σ(q, p), σ(p, 1) = 0 and σ(p, 2) = p´ 1.

Figure 6.1. The Hopf Link (T2,2)

Remark 6.1.1. Suppose p = q is even. With the stated algorithm, one

computes σ(p, p) + σ(2p´ p, p) = p2 ´ 2. That is, ´σ(Tp,p) = σ(p, p) = 1
2 p2 ´
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1. Thus, for example, the Hopf link T2,2 (Figure 6.16.1) has signature σ(T2,2) =

´1. M

Based on work of Brieskorn, the Hirzebruch signature of the closure of the

Milnor fiber F̄f, 0 of the stabilized, Brieskorn-Pham singularity f = zp
0 + zq

1 +
řn

i=2 z2
i , where p and q odd and coprime and n is even, coincides with the sig-

nature of the torus knot Tp,q up to sign (´1)n/2+1 [201201, 202202]. In particular, for p

and q odd and coprime, Hirzebruch computes

σ(Tp,q) = ´1
2(p´ 1)(q´ 1)´ 2(Np,q + Nq,p), (6.1)

where Np,q is the number of lattice points intersecting the wedge,

|t(x, y) P N | 1 ď x ď 1
2(p´ 1), 1 ď y ď 1

2(q´ 1), ´ 1
2q ă

x
p ´

y
q ă 0u|. (6.2)

Litherland [273273] computes the signature as the difference σ(Tp,q) = ς+ ´ ς´,

where

ς+ = |t(x, y) P N2
| 0 ă x ă p, 0 ă y ă q, 0 ă x

p +
y
q ă

1
2u|

+ |t(x, y) P N2
| 0 ă x ă p, 0 ă y ă q, 3

2 ă
x
p +

y
q ă 2u| (6.3)

ς´ = |t(x, y) P N2
| 0 ă x ă p, 0 ă y ă q, 1

2 ă
x
p +

y
q ă

3
2u|. (6.4)

Based on these formulas, Ait Nouh and Yasuhara [88] provide the following

summatory representation which they use to compute a simple upper bound

on the signature.
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Proposition 6.4 (Ait Nouh, Yasuhara, [88]). For positive integers p and q

with p ă q, the signature of the torus link Tp,q is given by

σ(Tp,q) = (p´ 1´ 2t
p
2 u)(q´ 1)

+ 2
t(p´1)/2u

ÿ

k=1

Z

(p´ 2k)q
2p

^

´

[

(3p´ 2t
p
2 u´ 2k)q

2p

_

. (6.5)

Proof . See Proposition 2.1 in [88]. �

Remark 6.1.2. Equation (6.56.5) holds also if p ě q. M

Corollary 6.5 (Ait Nouh, Yasuhara, [88]). For positive integers p and q with

p ă q, the signature of the torus link Tp,q satisfies the bound,

σ(Tp,q) ď ´2
Y p

2

] Yq
2

]

. (6.6)

Proof . See Corollary 2.2 in [88]. �

Corollary 6.6 (Ait Nouh, Yasuhara, [88]). For an odd integer p and even

integer r with 2 ď r ă p, the signature of the torus knot Tp,p+r is given by

σ(Tp,p+r) = ´1
2(p´ 1)(p + r + 1)

+ 2
r/2
ÿ

k=1

Z

(2k´ 1)p
2r

^

´

Z

(2k´ 1)p + r
2r

^

. (6.7)

Proof . See Proposition 2.3 in [88]. �
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Lemma 6.7. For any positive integer m, the following quasi-polynomial

f (m) = ´2m(m + 2)´ 1 + (´1)m (6.8)

is divisible by 8.

Proof . We prove the claim by induction. It is clear that the claim is true

for m = 1. Suppose it true for some for some auxiliary integer l ą 1. We show

that it remains true for l + 1,

f (l + 1) = ´2l2
´ 8l ´ 7 + (´1)l+1 (6.9)

= f (l)´ 4l ´ 6´ 2(´1)l (6.10)

=

$

&

%

4l + 4 mod 8 l odd

4l mod 8 l even.
(6.11)

which implies the claim for m ě 1. �

Remark 6.1.3. Using the identity txu = x´ txu for x P Rě0, equation (6.76.7)

may be written as

σ(Tp,p+r) = ´1
2(p´ 1)(p + r + 1)´

r
2

+ 2
r/2
ÿ

k=1

"

1
2
´

p
2r

+
kp
r

*

´

"

´
p
2r

+
kp
r

*

. (6.12)
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In particular, if r = 2, a closed form expression is given by

σ(Tp,p+2) = ´1
2(p´ 1)(p + 3)´ 1 + 2

"

1
2
+

p
4

*

´ 2
! p

4

)

(6.13)

= ´1
2(p´ 1)(p + 3)´ 1 + (´1)(

p
2), (6.14)

which is a quasi-polynomial of degree 2 in p. For example, σ(T3,5) = ´8,

σ(T5,7) = ´32 and σ(T7,9) = ´64. Since p is assumed odd, in general, for

p = 2m + 1,

σ(T2m+1,2m+3) = ´2m(m + 2)´ 1 + (´1)m
” 0 mod 8 (6.15)

by Lemma 6.76.7. M

6.1.1. Dedekind Sum Function. The Dedekind sum function s : N2 Ñ Q is

defined on coprime positive integers by

s(p, q) = 1
4q

q´1
ÿ

k=1

cot(πk
q ) cot(πkp

q ) (6.16)

= 1
4 ´

1
4q ´

1
q

ÿ

ζq=1
ζ‰1

1
(1´ζ p)(1´ζ)

, (6.17)

where the summation is performed over the non-trivial qth-roots of unity.

Remark 6.1.4. The Dedekind Reciprocity Law [1616] states

s(p, q) + s(q, p) = 1
12(

p
q +

1
pq +

q
p )´

1
4 , (6.18)
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which implies the congruence

12pq (s(p, q) + s(q, p)) ” p2 + q2 + 1 mod pq. (6.19)

M

We refer the reader to Volume 2 for a detailed treatment of the Dedekind

sum functions in the context of lattice point enumeration in trirectangular tetra-

hedra. For a general reference on Dedekind sum functions, see [392392].

Also using lattice point enumeration methods, Borodzik and Oleszkiewic

[5656] compute the signature of certain torus knots in terms of Dedekind sum

functions. We generalize their work to all torus links in §6.66.6.

Proposition 6.8 (Borodzik, Oleszkiewic, [5656]). For odd and coprime integers

p, q ą 0,

σ(Tp,q) =
1

6pq +
2p
3q +

2q
3p ´

pq
2 ´ 4(s(2p, q) + s(2q, p))´ 1, (6.20)

while for p odd and q ą 2 even,

σ(Tp,q) = ´
pq
2 + 1 + 4s(2p, q)´ 8s(p, q). (6.21)

Proof . See Proposition 4.1 in [5656]. �

Utilizing the Dedekind sum representation, we prove the following upper

and lower bounds, the former of which is often superior to Corollary 6.56.5.
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Proposition 6.9. For odd and coprime integers p, q ą 0,

σ(Tp,q) ď
Y

´
pq
2 + 1

6pq +
2p+2

3q + 2q+2
3p + p+q

3 ´ 3
]

(6.22)

σ(Tp,q) ě
Q

´
pq
2 + 1

6pq +
2p´2

3q + 2q´2
3p ´

p+q
3 + 1

U

, (6.23)

while for p odd and q ą 2 even,

Q

´
pq
2 ´ q´ 2

q + 4
U

ď σ(Tp,q) ď
Y

´
pq
2 + q + 2

q ´ 2
]

. (6.24)

Proof . Combine Proposition 6.86.8 with the elementary sharp bounds,

´s(1, q) ď s(p, q) ď s(1, q) = q
12 +

1
6q ´

1
4 . (6.25)

�

Remark 6.1.5. The bounds of equation (6.226.22) are sharp. Consider the

torus knots T3,5 and T3,7. Corollary 6.56.5 gives σ(T3,5) ď ´4 and σ(T3,7) ď ´6,

while Proposition 6.96.9, yields the lower and upper bounds ´8 ď σ(T3,5) ď ´6

and ´11 ď σ(T3,7) ď ´8. Since the signatures must be even, it follows that

σ(T3,5) P t´8,´6u and σ(T3,7) P t´10,´8u. Moreover, since the signatures must

be divisible by 8, it follows that σ(T3,5) = σ(T3,7) = ´8. This value may be

verified by Proposition 6.36.3. M

Remark 6.1.6. The upper bound of equation (6.246.24) appears to be weaker

than that of Corollary 6.56.5. Consider the torus knot T1001,1160. Corollary 6.56.5

yields the upper bound σ(T1001,1160) ď ´580000, while Proposition 6.96.9 yields
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the lower and upper bounds ´581496 ď σ(T1001,1160) ď ´579502. Proposition

6.36.3 yields the value σ(T1001,1160) = ´580496. M

6.1.2. Exact Representation of the Signature. Since the validity of these for-

mulas extends to all pairs of positive integers (p, q), the signature of infinitely

many torus (multi-component) links may be computed in closed form.

First, we correct** and generalize a classical result on fractional part summa-

tions.

Proposition 6.10. For α P R, m P N and n P Z,

m´1
ÿ

k=0

"

α +
kn
m

*

= 1
2(m´ gcd(m, n))´

m´1
ÿ

k=0

χ´
RzZ

(
α +

kn
m

)

+ gcd(m, n)
("

αm
gcd(m, n)

*

+ χ´
RzZ

(
αm

gcd(m, n)

))
, (6.26)

where χ´
RzZ

denotes the characteristic function of the punctured half-line Rď0zZ.

Proof . We follow the proof of Theorem 1 in [140140] rather closely and mod-

ify it as needed. Begin with the classical identity

l´1
ÿ

k=0

Z

α +
k
l

^

= tαlu. (6.27)

*Theorem 1 in [140140] claims the fractional part sum identity,
m´1
ÿ

k=0

"

α +
kn
m

*

= 1
2 (m´ gcd(m, n)) + gcd(m, n)

"

αm
gcd(m, n)

*

,

where α P R, m P Ną1 and n P Z. Perhaps some other definition of the fractional part was used.
Assuming the identity t´|x|u = ´t|x|u for R, counter-examples abound show that this identity
is not correct when α P Ră0.
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where α P R and l P N. The floor function can be written in terms of the frac-

tional part, but care must be taken when the argument is potentially negative,

viz., txu = x´ txu ´ χ´
RzZ

(x). One then derives the identity

l´1
ÿ

k=0

"

α +
k
l

*

+ χ´
RzZ

(
α +

k
l

)
= 1

2(l ´ 1) + tαlu+ χ´
RzZ

(αl). (6.28)

For any integer c coprime to k, the map k Ñ ck is a bijection on the complete

residue set of non-negative integers t0, . . . , k´ 1u modulo k. Thus,

l´1
ÿ

k=0

"

α +
kc
l

*

+ χ´
RzZ

(
α +

kc
l

)
= 1

2(l ´ 1) + tαlu+ χ´
RzZ

(αl). (6.29)

Taking c = n
gcd(m,n) and l = m

gcd(m,n) ,

m/gcd(m,n)´1
ÿ

k=0

"

α +
kn
m

*

+ χ´
RzZ

(
α +

kn
m

)
= 1

2

(
m

gcd(m, n)
´ 1
)
+
!

αm
gcd(m,n)

)

+ χ´
RzZ

(
αm

gcd(m, n)

)
. (6.30)

However, by the periodicity of the fractional part function,

m´1
ÿ

k=0

"

α +
kn
m

*

+ χ´
RzZ

(
α +

kn
m

)
= d

m/d´1
ÿ

k=0

"

α +
kn
m

*

+ χ´
RzZ

(
α +

kn
m

)
, (6.31)

where d = gcd(m, n). Substituting this identity into equation (6.306.30) completes

the proof of the claim. �
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To better understand the scope of the ensuing discussion, we characterize

the set of integers t(p, q) P N2 |p ă q ^ q
p (t

p´1
2 u + 1) P Nu, which we shall

hereafter refer to as the admissible set of indices.

In Proposition 5.1 in [5656], it is shown that σ(Tp,q) is not a rational function

of p and q in the case that p and q are odd and coprime integers. We generalize

this result.

Lemma 6.11. Given positive integers p and q with p ď q, the rational q
p (t

p´1
2 u +

1) is integral if and only if p divides q or both p and q are even.

Proof . Clearly, if p divides q (including the case p = 1), then the

integrality condition is satisfied. If p is even (and does not divide q), then
q
p (t

p´1
2 u + 1) = q

2 , so if q is even, then the integrality condition is satisfied;

otherwise, if q is odd, it is violated. If p is odd (and does not divide q), then
q
p (t

p´1
2 u + 1) = (p+1)q

2p , so the integrality condition is violated regardless of the

parity of q. �

Proposition 6.12. For positive integers p and q such that p ď q, if p divides q

or if p and q are even, then the signature of the torus link Tp,q is given by

σ(Tp,q) = (q´ 1)(p´ 1´ 2t
p
2 u)´ 2q

p t
p´1

2 u(p´ t
p
2 u). (6.32)
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Equivalently, for any admissible pair of indices,

mp,q´1
ÿ

k=0

(
χ´

RzZ

(
αp,q +

knp,q

mp,q

)
´ χ´

RzZ

(
α1p,q +

knp,q

mp,q

))

= tα1p,qu ´ tαp,qu ´ γp,q

(#
α1p,qmp,q

γp,q

+

´

"

αp,qmp,q

γp,q

*

)

´ γp,q

(
χ´

RzZ

(
α1p,qmp,q

γp,q

)
´ χ´

RzZ

(
αp,qmp,q

γp,q

))
, (6.33)

where αp,q = q
2 ´ np,q, α1p,q = 3q

2 ´
q
p t

p
2 u´ np,q, np,q = q

p mp,q, mp,q = t
p´1

2 u + 1 and

γp,q = gcd(mp,q, np,q).

Proof . For positive integers p and q with p ď q, the signature may be

written in terms of fractional part summations,

σ(Tp,q) = (p´ 1´ 2t
p
2 u)(q´ 1)

+ 2
t(p´1)/2u

ÿ

k=1

Z

(p´ 2k)q
2p

^

´

[

(3p´ 2t
p
2 u´ 2k)q

2p

_

(6.34)

= (q´ 1)(p´ 1´ 2t
p
2 u)´ 2q

p t
p´1

2 u(p´ t
p
2 u)

+ 2
t(p´1)/2u

ÿ

k=1

#

(3p´ 2t
p
2 u´ 2k)q

2p

+

´

"

(p´ 2k)q
2p

*

. (6.35)
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Suppose p divides q(t p´1
2 u + 1). By Proposition 6.106.10,

t(p´1)/2u
ÿ

k=1

"

(p´ 2k)q
2p

*

=

t(p´1)/2u
ÿ

k=1

"

q
2
´

q
p

(Z
p´ 1

2

^

+ 1
)
+

kq
p

*

(6.36)

=

mp,q´1
ÿ

k=1

"

αp,q +
knp,q

mp,q

*

(6.37)

= 1
2(mp,q ´ γp,q)´ tαp,qu

+ γp,q

("
αp,qmp,q

γp,q

*

+ χ´
RzZ

(
αp,qmp,q

γp,q

))

´

mp,q´1
ÿ

k=0

χ´
RzZ

(
αp,q +

knp,q

mp,q

)
, (6.38)

where αp,q = q
2 ´

q
p (t

p´1
2 u + 1), mp,q = t

p´1
2 u + 1, np,q = q

p (t
p´1

2 u + 1) and

γp,q = gcd(mp,q, np,q). Similarly,

t(p´1)/2u
ÿ

k=1

#

(3p´ 2t
p
2 u´ 2k)q

2p

+

=

t(p´1)/2u
ÿ

k=1

"

3q
2
´

q
p

(Z
p´ 1

2

^

+
Y p

2

]

+ 1
)
+

kq
p

*

=

mp,q´1
ÿ

k=1

"

α1p,q +
knp,q

mp,q

*

(6.39)

= 1
2(mp,q ´ γp,q)´ tα

1
p,qu

+ γp,q

(#
α1p,qmp,q

γp,q

+

+ χ´
RzZ

(
α1p,qmp,q

γp,q

))

´

mp,q´1
ÿ

k=0

χ´
RzZ

(
α1p,q +

knp,q

mp,q

)
, (6.40)
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where α1p,q = 3q
2 ´

q
p (t

p´1
2 u + t

p
2 u + 1). Note that αp,q and α1p,q may assume nega-

tive values for certain indices. Combining terms, therefore,

σ(Tp,q) = (q´ 1)(p´ 1´ 2t
p
2 u)´ 2q

p t
p´1

2 u(p´ t
p
2 u) + 2tαp,qu ´ 2tα1p,qu

+ 2 γp,q

(#
α1p,qmp,q

γp,q

+

´

"

αp,qmp,q

γp,q

*

)

+ 2 γp,q

(
χ´

RzZ

(
α1p,qmp,q

γp,q

)
´ χ´

RzZ

(
αp,qmp,q

γp,q

))

+ 2
mp,q´1
ÿ

k=0

(
χ´

RzZ

(
αp,q +

knp,q

mp,q

)
´ χ´

RzZ

(
α1p,q +

knp,q

mp,q

))
, (6.41)

holds for positive integers p and q such that p ď q, if q
p (t

p´1
2 u + 1) is an inte-

ger. By Lemma 6.116.11, these values of p and q are precisely the admissible set of

indices.

Consider the two fractional part summations

t(p´1)/2u
ÿ

k=1

#

(3p´ 2t
p
2 u´ 2k)q

2p

+

and
t(p´1)/2u

ÿ

k=1

"

(p´ 2k)q
2p

*

. (6.42)

There are two cases. In the first case, when p divides q, the two lists of frac-

tional parts are identical and in the same order. Given that

(3p´ 2t
p
2 u´ 2k)q

2p
=

3q
2
´

q
p

Y p
2

]

´
kq
p

and
(p´ 2k)q

2p
=

q
2
´

kq
p

, (6.43)

it is clear that if p divides q and q is even, then the arguments of the fractional

parts are integers, and the summands vanish identically. If p divides q and q is
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odd, then the difference of fractional parts summands vanishes by the periodic-

ity of the fractional part function and the identity t3q
2 u = t

q
2u.

In the second case, when p and q are even, the two lists of fractional parts

are identical but in reverse order. For this case, let p = 2a and q = 2b. Then

t(p´1)/2u
ÿ

k=1

"

(p´ 2k)q
2p

*

=
a´1
ÿ

k=1

"

b
(

1´
k
a

)*
(6.44)

= 1
2 (a´ gcd(a, b)) . (6.45)

However,

t(p´1)/2u
ÿ

k=1

#

(3p´ 2t
p
2 u´ 2k)q

2p

+

=
a´1
ÿ

k=1

"

b
(

2 +
k
a

)*
(6.46)

=
a´1
ÿ

k=1

"

b
(

2 +
(a´ 1 + 1´ k)

a

)*
(6.47)

=
a´1
ÿ

k=1

"

b
(

1´
k
a

)*
, (6.48)

so the difference of fractional parts cancels. �

Remark 6.1.7. Although they do not satisfy the requisite divisibility, there

are many sporadic pairs of indices with which Proposition 6.126.12 correctly com-

putes the corresponding signature. For example, equation (6.326.32) computes the

signature of elementary torus links, namely, σ(T2,q) = 1´ q, for q ě 1. M
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Corollary 6.13. For positive integers 1 ă p ď q, if p and q are even, then the

signature of the torus link Tp,q is odd. If p is odd and divides q, then the signature of

the torus link Tp,q is even.

Proof . On any admissible set of indices with p and q even, the integer

´
2q
p t

p´1
2 u(p ´ t

p
2 u) is even, and the integer (q ´ 1)(p ´ 1 ´ 2t

p
2 u) is odd. On

any admissible set of indices with p odd and dividing q, then both the integers

´
2q
p t

p´1
2 u(p´ t

p
2 u) and (q´ 1)(p´ 1´ 2t

p
2 u) are even. �

Remark 6.1.8. The remaining case is p ď q odd and 1 ă gcd(p, q) ă p,

which requires new methods and will be handled in the sequel. M

Remark 6.1.9. As in Proposition 6.26.2, consider the torus links T3,3m and

T4,2m, where m ě 1. By equation (6.326.32),

σ(T3,3m) = (3m´ 1)(2´ 2)´ 6m
3 t3´1

2 u(3´ t3
2u) (6.49)

= ´4m (6.50)

and

σ(T4,2m) = (2m´ 1)(4´ 1´ 2t4
2u)´ 4m

4 t4´1
2 u(4´ t4

2u) (6.51)

= 1´ 4m. (6.52)

M
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Corollary 6.14. For positive integers p and r,

σ(Tp,rp) =

$

&

%

1´ r
2 p2 p even

´ r
2(p´ 1)(p + 1) p odd

(6.53)

”

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 r even, p odd or r odd, p ” t1, 7u mod 8

1 p ” 0 mod 4 or r ” 0 mod 4, p ” 2 mod 4

3 r ” 3 mod 4, p ” 2 mod 4

4 r odd, p ” t3, 5u mod 8

5 r ” p ” 2 mod 4

7 r ” 1 mod 4, p ” 2 mod 4.

,

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

-

mod 8. (6.54)

Proof . By Proposition 6.126.12,

σ(Tp,rp) = (rp´ 1)(p´ 1´ 2t
p
2 u)´ 2rt

p´1
2 u(p´ t

p
2 u) (6.55)

= (rp´ 1)(2t p
2u ´ 1)´ 2rt

p´1
2 u( p

2 + t p
2u) (6.56)

=

$

&

%

1´ r
2 p2 p even

´ r
2(p´ 1)(p + 1) p odd,

(6.57)

as txu = x ´ txu for real x ě 0 and t
p´1

2 u = p
2 ´ 1 for any even integer p. By a

case-by-case analysis, it is straightforward to show that 1´ r
2 p2 is not divisible

by 8 for any values of r or even p. However, ´ r
2(p´ 1)(p + 1) is divisible by 8

if r = 2s and p = 2l ´ 1 with s, l P N, as ´ r
2(p´ 1)(p + 1) = ´4sl(l ´ 1) and
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l(l ´ 1) is even. Suppose r = 2s´ 1 and p = 8l + m with s, l, m P N. Then

´ r
2(p´ 1)(p + 1) ” (s´ 1

2)(1´m2) mod 8, (6.58)

which is congruent to 0 mod 8 if and only if m P t1, 7u. All other cases are

handled similarly, so the details are omitted. �

Remark 6.1.10. The signature of the torus link Tp,rp was computed in [151151].

M

Corollary 6.15. For positive integers p and q,

σ(T2p,2q) = 1´ 2pq. (6.59)

In particular, σ(T2p,2q) is not divisible by 8.

Proof . Observe

σ(T2p,2q) = (2q´ 1)(2p´ 1´ 2tpu)´ 2q
p t

2p´1
2 u(2p´ tpu) (6.60)

= 1´ 2q´ 2qt
2p´1

2 u (6.61)

= 1´ 2pq. (6.62)

�

Remark 6.1.11. Observe σ(T2,2r) = 1´ 2r. Although it is generally true

that σ(Tp,q) = σ(Tq,p) for any positive integers p and q, equation (6.326.32) is not a

priori symmetric in p and q in general. However, equation (6.326.32) does compute
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the correct signature for a number of cases, namely,

σ(T2r,2) = (2r´ 1´ 2t2r
2 u)´ 4

2r t2r´1
2 u(2r´ t2r

2 u) (6.63)

= ´2
Y

r´ 1
2

]

´ 1 (6.64)

= 1´ 2r, (6.65)

both consistent with the last statement of Proposition 6.36.3. Similarly,

σ(Tp,2p) = (2p´ 1)(p´ 1´ 2t
p
2 u)´ 4t

p´1
2 u(p´ t

p
2 u) (6.66)

= 1´ p2, (6.67)

consistent with the second statement of Proposition 6.36.3. Finally, for p-fold Hopf

links,

σ(Tp,p) = (p´ 1)(p´ 1´ 2t
p
2 u)´ 2t

p´1
2 u(p´ p

2 ) (6.68)

= ´1
2 p2 + 3

4 +
1
4(´1)p (6.69)

”

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

0 mod 8 p ” t1, 7u mod 8

1 mod 8 p ” 0 mod 4

4 mod 8 p ” t3, 5u mod 8

7 mod 8 p ” 2 mod 4,

(6.70)

consistent with the third statement of Proposition 6.36.3. M
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In order to complete our study of the signature of torus links, we require an

invariant of quasi-Brieskorn-Pham singularities, namely, the geometric genus, as

introduced in §5.65.6.

6.2. Geometric Genus of Quasi-Brieskorn-Pham Singularities

Definition 6.16. Let (a0, . . . , an) denote the equivalence class of quasi-

Brieskorn-Pham singularities with inverse weights ta0, . . . , anu Ă N. Define

BPn,m = t(a0, . . . , an) P Nn+1
| pg(a0, . . . , an) = mu (6.71)

as the class of quasi-Brieskorn-Pham polynomials in n + 1 complex variables

with corresponding geometric genus equal to m.

6.2.1. Zero Geometric Genus.

Proposition 6.17. The class BP2,0 can be partitioned into five subclasses,

two of which are infinite in size, corresponding to the five simple singularities, namely,

Ak, Dk, E6, E7 and E8.

Proof . The Diophantine inequality 1
a +

1
b +

1
c ą 1 has only five integral

solutions classes (up to permutation). These are (1, b, c) for b, c P N, (2, 2, c) for

c P N, (2, 3, 3), (2, 3, 4) and (2, 3, 5). Without loss of generality, we may order

the integers a ď b ď c. If a = 1, then 1
b +

1
c ą 0, which has any positive integral

pair (b, c) as a solution. If a = b = 2, then 1
c ą 0, which has any positive integer

c as a solution. If 2 = a ă b ď c, then 1
b +

1
c ą

1
2 , which has only three solutions

(3, 3), (3, 4) and (3, 5). �
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6.2.2. Non-zero Geometric Genus.

Proposition 6.18. The class BP2,m is finite for all m ě 1.

Proof . For any m ě 1, suppose on the contrary that BP2,m is countably in-

finite. This would then imply that there are infinitely many integral tetrahedra

with a fixed number m of positive lattice points, which is absurd. �

Remark 6.2.1. The finiteness above is special to BP2,m, as BPn,m is count-

ably infinite for any n ą 2 and m ě 1. M

The next result proves that the set BP2,ě1 of quasi-Brieskorn-Pham singu-

larities with geometric genus at least equal to 1 has at least 3 infinite families of

singularities.

Proposition 6.19. The following quasi-Brieskorn-Pham surface singularities

1. (2, 3, 6k1 + `1) with `1 = 0, . . . , 5 and k1 ě 1;

2. (2, 4, 4k2 + `2) with `2 = 0, . . . , 3 and k2 ě 1; and,

3. (3, 3, 3k3 + `3) with `3 = 0, . . . , 2 and k3 ě 1

have geometric genera k1, k2, k3, respectively.

Proof . The first case is the most straight-forward, and the proof for it is

similar to those for the last two cases. The equation for the number of non-

negative solutions of the Diophantine inequality enjoys a permutation sym-

metry under the coefficients, so tq1, q2, q3u ÞÑ tqπ(1), qπ(2), qπ(3)u is a symmetry
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of the closed form solution for the geometric genus of quasi-Brieskorn-Pham

surface singularities (a1, a2, a3).

Define d = a1a2a3, qi =
d
ai

and R = d´
ř

i qi. Without loss of generality, we

may choose the ordering q3 ď q2 ď q1. For the first statement, we can choose

d = 6(6k1 + `1), q1 = 3(6k1 + `1), q2 = 2(6k1 + `1) and q3 = 6. Then R =

6(6k1 + `1)´ 5(6k1 + `1)´ 6 = 6(k1 ´ 1) + `1. Since t R
q1

u = 6(k1´1)+`1
3(6k1+`1)

= 0 and

t
(R´q1i1)

q2
u = 6(k1´1)+`1

2(6k1+`1)
= 0 for k1, `1 ě 1, the only summation that does not

collapse is the innermost one:

pg(t2, 3, 6k1 + `1u) =

tR/q1u
ÿ

i1=0

t(R´q1i1)/q2u
ÿ

i2=0

t(R´q1i1´q2i2)/q3u
ÿ

i3=0

1 (6.72a)

=

tR/q3u
ÿ

i3=0

1 =

Z

R
q3

^

+ 1 =

Z

6(k1 ´ 1) + `1

6

^

+ 1 (6.72b)

= k1, (6.72c)

for `1 P t0, 1, 2, 3, 4, 5u, which implies the claim of the first statement. Similarly,

for the second statement we have d = 8(4k2 + `2), q1 = 4(4k2 + `2), q2 =

2(4k2 + `2), q3 = 8 and R = 8(k2 ´ 1) + 2`2. Hence,

pg(t2, 4, 4k2 + `2u) =

tR/q1u
ÿ

i1=0

t(R´q1i1)/q2u
ÿ

i2=0

t(R´q1i1´q2i2)/q3u
ÿ

i3=0

1 (6.73a)

=

tR/q3u
ÿ

i3=0

1 =

Z

R
q3

^

+ 1 =

Z

4(k2 ´ 1) + `2

4

^

+ 1 (6.73b)

= k2, (6.73c)
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for `2 P t0, 1, 2, 3u. Finally, for the last statement, we have d = 9(3k3 + `3),

q1 = q2 = 3(3k3 + `3), q3 = 9 and R = 9(k3 ´ 1) + 3`3. Hence,

pg(t3, 3, 3k3 + `3u) =

tR/q1u
ÿ

i1=0

t(R´q1i1)/q2u
ÿ

i2=0

t(R´q1i1´q2i2)/q3u
ÿ

i3=0

1 (6.74a)

=

tR/q3u
ÿ

i3=0

1 =

Z

R
q3

^

+ 1 =

Z

9(k3 ´ 1) + `3

9

^

+ 1 (6.74b)

= k3, (6.74c)

for `3 P t0, 1, 2u. This completes the proof. �

The next result includes divisibility as a criterion.

Proposition 6.20. For a given non-degenerate, quasi-Brieskorn-Pham surface

singularity f : (C3, 0)Ñ (C, 0) with integral weights tq1, q2, q3u and weighted degree

d satisfying gcd(q2, q3) = 1, d ă 2q1 + q2 + q3, t R
q2

u = q3 ´ 1, where R = d ´
ř3

i=1 qi and q3 | q1 + q2, then

pg( f ) = d + 1´ q1 ´
1
2(q2 + 1)(q3 + 1). (6.75)

Proof . The second assumption implies

pg( f ) =

t R
q2

u
ÿ

k=0

(Z
R´ kq2

q3

^

+ 1
)

(6.76)

=

q3

(
R
q3

)
´

q3´1
ÿ

k=0

R

kq2

q3

V

+ q3 (6.77)
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by the third and last assumptions (which implies q3 | R). Finally,

pg( f ) = R + q3 ´

q3´1
ÿ

k=0

R

kq2

q3

V

(6.78a)

= R + q3 ´

q3´1
ÿ

k=1

(Z
kq2

q3

^

+ 1
)

(6.78b)

= R + 1´ 1
2(q2 ´ 1)(q3 ´ 1) (6.78c)

by the identity 2
řq´1

k=0t
kp
q u = (p ´ 1)(q ´ 1), assuming gcd(p, q) = 1, which

is ensured by the first assumption. To conclude the proof, simply substitute

R = d´
ř3

i=1 qi. �

The next few results are applicable to special classes of quasi-Brieskorn-

Pham singularities satisfying certain arithmetic constraints.

Proposition 6.21. If a quasi-Brieskorn-Pham surface singularity f : (C3, 0)Ñ

(C, 0) with inverse weights ta1, a2, a3u satisfies

1 ă
2
a1

+
1
a2

+
1
a3

and 1 ă
1
a1

+
2
a2

+
1
a3

, (6.79)

then the geometric genus is

pg( f ) =
Z

a3

(
1´

1
a1
´

1
a2

)^
. (6.80)

In particular, pg( f ) ă a3.
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Proof . The proof is obvious once one notices that all summations are triv-

ial save the innermost one, since the assumptions imply R = d´ q1 ´ q2 ´ q3 ă

q1 and R ă q2. Hence, t R
q1

u = t R
q2

u = 0 and therefore

pg( f ) =
tR/q1u
ÿ

i1=0

t(R´q1i1)/q2u
ÿ

i2=0

t(R´q1i1´q2i2)/q3u
ÿ

i3=0

1 (6.81)

=

tR/q3u
ÿ

i3=0

1 =

Z

R
q3

^

+ 1. (6.82)

Finally, substitute R = lcm(a1, a2, a3)(1´
ř3

i=1
1
ai
) and q3 = 1

a3
lcm(a1, a2, a3).

�

Remark 6.2.2. There are infinitely many triples (a1, a2, a3) which satisfy the

criteria of Proposition 6.216.21. For instance, the class (2, 2, a3) has zero geometric

genus, while that of the class (2, 3, a3) is t
a3
6 u. M

Proposition 6.22. If a quasi-Brieskorn-Pham surface singularity f : (C3, 0)Ñ

(C, 0) with inverse weights ta1, a2, a3u satisfies

1 ă
2
a1

+
1
a2

+
1
a3

and
2
a2
ď 1´

1
a1
´

1
a3
ă

3
a2

, (6.83)

then the corresponding geometric genus is

pg( f ) =
Z

a3

(
1´

1
a1
´

1
a2

)^
+

Z

a3

(
1´

1
a1
´

2
a2

)^
. (6.84)

In particular, pg( f ) ă 2a3.
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Proof . The result follows from the identity pg( f ) = t R
q3

u + t
R´q2

q3
u + 2. �

Remark 6.2.3. Numerical experiments suggest the following:

1. There are no quasi-Brieskorn-Pham polynomials in C3 which satisfy

the two inequalities and are of the form 2 = a1 = a2 ď a3;

2. There are no quasi-Brieskorn-Pham polynomials in C3 which satisfy

the two inequalities and are of the form a1 = 2, a2 = 3 ď a3;

3. There are no quasi-Brieskorn-Pham polynomials in C3 which satisfy

the two inequalities and are of the form a1 = 2, a2 = 4 ď a3;

4. There are infinitely many quasi-Brieskorn-Pham polynomials in C3

which satisfy the two inequalities and are of the form a1 = 2, a2 = 5 ď

a3 or a1 = 2, a2 = 6 ď a3;

5. There are 7 quasi-Brieskorn-Pham polynomials in C3 which satisfy the

two inequalities and are of the form a1 = 2, a2 = 7 ď a3. These are

(2, 7, k) with k P t7, 8, 9, 10, 11, 12, 13u;

6. There are no quasi-Brieskorn-Pham polynomials in C3 which satisfy

the two inequalities and are of the form a1 = 2, 8 ď a2 ď a3;

7. There are 9 quasi-Brieskorn-Pham polynomials in C3 which satisfy the

two inequalities and are of the form 3 ď a1 ď a2 ď a3 are the following

9: (3, 4, l) with l P t6, 7, 8, 9, 10, 11u and (3, 5, k) with k P t5, 6, 7u;

8. There are no quasi-Brieskorn-Pham polynomials in C3 which satisfy

the two inequalities and are of the form a1 = 3, 6 ď a2 ď a3; and,
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9. There are no quasi-Brieskorn-Pham polynomials in C3 which satisfy

the two inequalities above and are of the form 4 ď a1 ď a2 ď a3.

M

These nine cases cover all possibilities and are special cases of the following

result.

Proposition 6.23. If a quasi-Brieskorn-Pham surface singularity f : (C3, 0)Ñ

(C, 0) with inverse weights ta1, a2, a3u satisfies

1 ă
2
a1

+
1
a2

+
1
a3

, (6.85)

then the corresponding geometric genus is

pg( f ) = 1 +
Z

R
q2

^

+

t R
q2

u
ÿ

k=0

Z

R´ kq2

q3

^

. (6.86)

Proof . The assumption implies d ă 2q1 + q2 + q3, hence t R
q1

u = 0. The

outer sum collapses and the inner sums simplify. �

In Appendix DD, we tabulate those quasi-Brieskorn-Pham singularities by

geometric genera no greater than 25.

6.2.3. Geometric Genus of Quasi-Brieskorn-Pham Singularities. Recall

that a polynomial is Brieskorn-Pham if and only if it is of the form f =
řn

i=0 zai
i

with exponents ta0, . . . , anu Ă N, and quasi-Brieskorn-Pham if and only if it is a

non-degenerate weighted homogeneous with an integral weight polytope.
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If f : (C3, 0) Ñ (C, 0) is quasi-Brieskorn-Pham, then the corresponding

weight polytope W( f ) is an integral trirectangular tetrahedron, and the geo-

metric genus pg( ft), counting the number of positive lattice points intersecting

W( f ), then coincides with the Ehrhart quasi-polynomial LW (t; N3), namely,

for t P N,

pg( ft) =
at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

tc(t´i/a´j/b)u
ÿ

k=1

1 (6.87a)

= abc
6 t3

´
(a+b)c

4 t2 +
(

c
4 +

bc
12a

)
t + c

2b

at
ÿ

i=1

!

b
(

t´ i
a

))

´ c
2b

at
ÿ

i=1

!

b
(

t´ i
a

))2
´

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

c
(

t´ i
a ´

j
b

))
. (6.87b)

Let a, b and c be positive integers with no common factor, i.e., gcd(a, b, c) =

1. Define a1 = gcd(b, c), b1 = gcd(c, a), c1 = gcd(a, b), d = a1b1c1, l = a + b + c

and l1 = a1 + b1 + c1. In Volume 2 of this work, we prove that the number of

positive lattice points in the (integral) t-dilate of the lattice tetrahedron W =

convt0, ae1, be2, ce3u simplifies

LW (t; N3) = abc
6 t3

´
(a+b)c

4 t2 +
(

c
4 +

bc
12a +

c(a+c1)(a´c1)
12ab

)
t

´

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

c
(

t´ i
a ´

j
b

))
. (6.88)

Although not at all obvious, equation (6.886.88) is a polynomial of degree 3.
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Remark 6.2.4. A simple and sharp upper bound for the geometric genus

of quasi-Brieskorn-Pham surface singularities is given by utilizing the non-

negativity of the fractional part summation, namely,

pg( ft) ď
Y

abc
6 t3

´
(a+b)c

4 t2 +
(

c
4 +

bc
12a +

c(a+c1)(a´c1)
12ab

)
t
]

, (6.89)

which is an equality if a and b divide c (and therefore stronger than the classical

Durfee-Yau Inequality, 6pg ď µalg). The exponents (2, 3, 6), (2, 4, 4) and (3, 3, 3)

are such examples. Any weighted homogeneous polynomial with weight sum

equal to unity is exactly one of these three cases [361361]. M

Define the symmetric, three-term Dedekind sum S(a, b, c; d) as

S(a, b, c; d) = a1s( bc
d , aa1

d ) + b1s( ac
d , bb1

d ) + c1s( ab
d , cc1

d ) (6.90)

= a1s( bc
d , a

b1c1 ) + b1s( ac
d , b

a1c1 ) + c1s( ab
d , c

a1b1 ). (6.91)

In Volume 2, we prove that the fractional part summation in equation (6.886.88)

admits the following exact representation in terms of Dedekind sum functions,

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

c
(

t´ i
a ´

j
b

))
= ab´d

4 t2 + (S(a, b, c; d) + γ) t, (6.92)

where γ = 1
4(a1 + b1 + c1 ´ a´ b)´ a2b2+c2(c1)2+d2

12abc .

Proposition 6.24. Given a, b, c, t P N with gcd(a, b, c) = 1, the geometric

genus of the (positive integral) t-dilate of the quasi-Brieskorn-Pham polynomial f with
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weights t1
a , 1

b , 1
c u is the degree 3 polynomial

pg( ft) =
abc
6 t3

´ 1
4(ab + bc + ca´ d)t2

+
(

1
4(l ´ l1) + 1

12(
ab
c + bc

a + ca
b + d2

abc )´S(a, b, c; d)
)

t, (6.93)

where l = a+ b+ c, a1 = gcd(b, c), b1 = gcd(a, c), c1 = gcd(a, b), l1 = a1+ b1+ c1

and d = a1b1c1.

Proof . See Volume 2. �

Remark 6.2.5. Suppose f is a quasi-Brieskorn Pham polynomial with

inverse weights ta, b, 2u, where a and b are odd and coprime. By Proposition

6.246.24,

pg( f ) = 1
24ab +

1
6

(
a
b +

b
a

)
´ a+b

4 + ab
8 ´ s(2a, b)´ s(2b, a), (6.94)

which yields a reciprocity law (unlike that of Dedekind),

s(2a, b) + s(2b, a) = ´pg( f ) + 1
24ab +

1
6

(
a
b +

b
a

)
´ a+b

4 + ab
8 (6.95)

= 1
24ab +

1
6

(
a
b +

b
a

)
´ a+b

4 + ab
8 ´

ta/2u
ÿ

i=1

Y

b
2 ´

bi
a

]

. (6.96)

See the proof of Proposition 6.566.56 for a simplification of pg( f ) into the stated

summation of floor functions. M

However, one need not only restrict attention to those integral triples that

have no factor in common.
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Proposition 6.25. Given a, b, c, t P N, the geometric genus of the t-dilate of

the quasi-Brieskorn-Pham polynomial f with inverse weights t1
a , 1

b , 1
c u is the degree 3

polynomial

pg( ft) =
abc
6 t3

´ 1
4(ab + bc + ca´ d

τ )t
2

+
(

1
4(l ´ l1) + 1

12(
ab
c + bc

a + ca
b + d2

abcτ2 )´S(a, b, c; d
τ )
)

t, (6.97)

where τ = gcd(a, b, c), l = a + b + c, a1 = gcd(b, c), b1 = gcd(a, c), c1 =

gcd(a, b), l1 = a1 + b1 + c1 and d = a1b1c1.

Proof . Define f̃ to be the quasi-Brieskorn-Pham polynomial with inverse

weights tã, b̃, c̃u, where ã = a
τ , b̃ = b

τ and c̃ = c
τ . Since gcd(ã, b̃, c̃) = 1, it follows

that

pg( f ) = pg( f̃τ) (6.98)

= ãb̃c̃
6 τ3

´ 1
4(ãb̃ + b̃c̃ + c̃ã´ d̃)τ2

+
(

1
4(l̃ ´ l̃1) + 1

12(
ãb̃
c̃ + b̃c̃

ã + c̃ã
b̃
+ d̃2

ãb̃c̃
)´S(ã, b̃, c̃; d̃)

)
τ (6.99)

= abc
6 ´ 1

4(ab + bc + ca´ d̃τ2)

+ 1
4(l ´ l̃1τ) + 1

12(
ab
c + bc

a + ca
b + d̃2τ

ãb̃c̃
)´ τS(ã, b̃, c̃; d̃) (6.100)

= abc
6 ´ 1

4(ab + bc + ca´ d
τ )

+ 1
4(l ´ l1) + 1

12(
ab
c + bc

a + ca
b + d2

abcτ2 )´S(a, b, c; d
τ ), (6.101)
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by Proposition 6.246.24, where ã1 = gcd(b̃, c̃), b̃1 = gcd(c̃, ã), c̃1 = gcd(ã, b̃),

d̃ = ã1b̃1c̃1, l̃ = ã + b̃ + c̃ and l̃1 = ã1 + b̃1 + c̃1 and

S(a, b, c; d
τ ) = a1s( bcτ

d , aa1τ
d ) + b1s( acτ

d , bb1τ
d ) + c1s( abτ

d , cc1τ
d ). (6.102)

The last equality follows from the identity gcd(pr, qr) = r gcd(p, q). Finally,

take a˚ = at, b˚ = bt and c˚ = ct and simplify. �

Remark 6.2.6. Suppose f is a quasi-Brieskorn Pham polynomial with

inverse weights ta, b, 2u, where a, b P N. Then

pg( f ) = ab
3 ´

1
4(ab + 2a + 2b´ d

τ )

+ 1
4(a + b + 2´ l1) + 1

12(
ab
2 + 2a

b + 2b
a + d2

2abτ2 )´S(a, b, 2; d
τ ) (6.103)

= d2

24abτ2 +
1
6

(
a
b +

b
a

)
´ 1

4

(
a + b + l1 ´ d

τ

)
+ 1

2 +
ab
8 ´S(a, b, 2; d

τ ). (6.104)

M

6.2.4. Bounds for the Geometric Genus.

Proposition 6.26. Given a, b, c, t P N with gcd(a, b, c) = 1, the geometric

genus of the t-dilate of the quasi-Brieskorn-Pham polynomial f with weights t1
a , 1

b , 1
c u

satisfies the sharp lower and upper bounds:

Q

abc
6 t3

´ 1
4κt2 + η´t

U

ď pg( ft) ď
Y

abc
6 t3

´ 1
4κt2 + η+t

]

, (6.105)
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where κ = ab + bc + ca´ d and the linear coefficients η+ and η´ are given by

η´ = 1
12(

ab
c + bc

a + ac
b + d2

abc )´
1

12d (a(a1)2 + b(b1)2 + c(c1)2)

´ d
6 (

1
a +

1
b +

1
c ) +

1
4 l (6.106)

η+ = 1
12(

ab
c + bc

a + ac
b + d2

abc ) +
1

12d (a(a1)2 + b(b1)2 + c(c1)2)

+ d
6 (

1
a +

1
b +

1
c ) +

1
4 l ´ 1

2 l1, (6.107)

respectively.

Proof . The Dedekind sum function admits the following sharp lower and

upper bounds [390390],

´s(1, q) ď s(p, q) ď s(1, q) = q
12 +

1
6q ´

1
4 , (6.108)

provided that p and q are coprime. From this one infers the bounds

´R(a, b, c; d) ď S(a, b, c; d) ď R(a, b, c; d), (6.109)

where

R(a, b, c; d) = 1
12d

(
a(a1)2 + b(b1)2 + c(c1)2

)
+ d

6

(
1
a +

1
b +

1
c

)
´ 1

4 l1, (6.110)

where l1 = a1 + b1 + c1. The lower and upper bounds now follow by substituting

R(a, b, c; d) (with appropriate sign) in place of S(a, b, c; d) in equation (6.936.93). �
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For weighted homogeneous surface singularities, the Durfee-Yau Conjecture

asserts 6pg( f ) ď µalg( f )´ ν( f ) + 1, where ν( f ) = rmin0ďiďnt
1

ωi
us.

Proposition 6.27. The Durfee-Yau Conjecture is true for quasi-Brieskorn-

Pham singularities with pairwise coprime exponents with multiplicity greater than or

equal to 3. In particular, the following stronger bound is true

6pg( f ) ď µalg( f )´ 6. (6.111)

Proof . First, assume that a, b, c ě 2 and gcd(a, b, c) = 1. Recall that

µalg( ft) = (at´ 1)(bt´ 1)(ct´ 1). (6.112)

Consider the following difference polynomial

P(t) = 1
6(at´ 1)(bt´ 1)(ct´ 1)´ λ

´

(
abc
6 t3

´ 1
4 (ab + bc + ca´ d) t2 + η+t

)
(6.113)

= αt2 + βt´ (λ + 1
6), (6.114)

where α = 1
12(ab + bc + ca´ d) and

β = 1
2 l1 ´ 1

12

(
l + ab

c + bc
a + ca

b + d2

abc

)
´ 1

12d

(
a(a1)2 + b(b1)2 + c(c1)2

)
+ d

6

(
1
a +

1
b +

1
c

)
. (6.115)
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Proposition 6.266.26 implies the inequality 6(pg( f ) + λ) ď µalg( f ) if and only if

P(1) = α + β´ λ´ 1
6 ě 0, or

(ab + bc + ca) + 6(a1 + b1 + c1) ě
(

a + b + c + 3d + ab
c + bc

a + ca
b + d2

abc

)
+ 1

d

(
a(a1)2 + b(b1)2 + c(c1)2

)
+ 2d

(
1
a +

1
b +

1
c

)
+ 12λ + 2. (6.116)

Now suppose further that a, b and c are pairwise coprime and each not less

than 3. Thus, µ( f ) ě 3 [423423]. Then a1 = b1 = c1 = d = 1, and the inequality of

equation (6.1166.116) simplifies to

(ab + bc + ca) + 13 ě
(

ab
c + bc

a + ca
b + 1

abc

)
+ 2

(
a + b + c + 1

a +
1
b +

1
c

)
+ 12λ, (6.117)

which we now prove. Observe that

0 ď (2
3 b´ 2)a + (2

3 c´ 2)b + (2
3 a´ 2)c + 296

27 ´ 12λ. (6.118)

provided that λ ď 74
81 . Upon separating the signed terms,

ab + bc + ca + 13 ě
(

ab
3 + bc

3 + ca
3 + 1

27

)
+ 2 (a + b + c + 1) + 12λ (6.119a)

ě

(
ab
c + bc

a + ca
b + 1

abc

)
+ 2

(
a + b + c + 1

a +
1
b +

1
c

)
+ 12λ, (6.119b)

439



which proves the inequality. Finally, since pg( f ) and µalg( f ) are positive inte-

gers, then one has the slightly improved bound 6pg( f ) ď µalg( f ) ´ 6 since

rλs = 1. �

Remark 6.2.7. Using similar methods, one can prove the even stronger

inequality

6pg( f ) ď µalg( f )´
Q

1
2(a + b + c) + 735

128

U

, (6.120)

provided that a, b and c are pairwise coprime and each not less than 4. For ex-

ample, for weights t1
3 , 1

4 , 1
5u, the first bound gives 18 ď 24 versus 12 ď 24 for

the standard conjecture. For weights t1
4 , 1

5 , 1
7u, the second bound gives 62 ď 72

versus 48 ď 72 for the standard conjecture. M

Though not nearly as elementary as the previous upper bound, a substan-

tially stronger upper bound is the following.

Proposition 6.28. Given a, b, c, t P N with gcd(a, b, c) = 1, the geometric

genus of the t-dilate of the quasi-Brieskorn-Pham polynomial f with weights t1
a , 1

b , 1
c u

satisfies the following identity,

6pg( f ) ď µalg( f )´ 1
2 (ab + bc + ca) + 3

2 d + 6η+ ´ l + 1, (6.121)

where η+ is given by equation (6.1076.107).
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Proof . This is, of course, a special case of the polynomial inequality

6pg( ft) ď µalg( ft)´
1
2 (ab + bc + ca´ 3d) t2 + (6η+ ´ l)t + 1 t P N. (6.122)

To prove the Durfee Conjecture, we need to the prove the following inequality:

(ab + bc + ca) + 2l ě 3d + 12η+ + 2, (6.123)

where

η+ = 1
12(

ab
c + bc

a + ac
b + d2

abc ) +
1

12d (a(a1)2 + b(b1)2 + c(c1)2)

+ d
6 (

1
a +

1
b +

1
c ) +

1
4 l ´ 1

2 l1 (6.124a)

ď 1
24(ab + bc + ac + d2

4 ) +
1
12(aa1 + bb1 + cc1)

+ 1
4(a + b + c + d)´ 1

2(a1 + b1 + c1). (6.124b)

It is now a trivial matter to prove the Durfee Conjecture for pairwise coprime

integers a, b, c ě 2 such that gcd(a, b, c) = 1. We need only to the prove the

following inequality

´1
2 (ab + bc + ca) + 6η+ ´ l + 5

2 ď 0. (6.125)
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Suppose a, b, c are pairwise coprime and recall that l = a + b + c. Then a1 = b1 =

c1 = d = 1 and

12η+ + 5 = ( ab
c + bc

a + ca
b + 1

abc ) + 4l + 2(1
a +

1
b +

1
c )´ 13 (6.126a)

ď 1
2(ab + bc + ca) + 4l ´ 79

8 . (6.126b)

Finally, the desired inequality

1
2(ab + bc + ca) + 4l ´ 79

8 ă (ab + bc + ca) + 2l (6.127)

or, equivalently, (ab + bc + ca)´ 4(a + b + c) ą ´79
4 = ´193

4 which is true and

follows from the following fact: The inhomogeneous quadratic form

Q(a, b, c) = (ab + bc + ca)´ 4(a + b + c) (6.128)

achieves a minimum value of Q(2, 2, 2) = ´12 on N3
ą1. �

6.2.4.1. Geometric Genus of Quasi-Brieskorn-Pham Singularities. In this section,

we prove an identity relating the algebraic index and geometric genus of a quasi-

Brieskorn-Pham singularity with pairwise coprime inverse weights.

Proposition 6.29. Given a, b, c P N with gcd(a, b, c) = 1, the geometric

genus pg( f ) and algebraic index µalg( f ) of the quasi-Brieskorn-Pham polynomial f
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with weights t1
a , 1

b , 1
c u satisfy the following identity

6pg( f ) = µalg( f )´ 3
2(l

1
´ d) + 1

2(l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abc )

´ 6S(a, b, c; d) + 1, (6.129)

where l = a + b + c, l1 = a1 + b1 + c1, d = a1b1c1 and

S(a, b, c; d) = a1s( bc
d , aa1

d ) + b1s( ac
d , bb1

d ) + c1s( ab
d , cc1

d ). (6.130)

Proof . The claim follows from Proposition 6.246.24 and the identity

µalg( f ) = (a´ 1)(b´ 1)(c´ 1). (6.131)

�

6.3. Delta Invariant and Geometric Genus

Corollary 6.30. Given a non-degenerate, square-free quasi-Brieskorn-Pham

polynomial f : (C2, 0)Ñ (C, 0) with inverse weights ta, bu, then

δ( f ) = pg(Σ f2). (6.132)

Proof . Let f̃ : (C3, 0) Ñ (C, 0) be any quasi-Brieskorn-Pham surface sin-

gularity with inverse weights ta, b, 1u. By Proposition 5.465.46, one has δ( ft) =

pg( f̃t+1)´ pg( f̃t). For t = 1, pg( f̃ ) = 0 and f̃2 » Σ f2. The claim now follows. �

Remark 6.3.1. Let f be a quasi-Brieskorn-Pham singularity with inverse

weights ta, bu. Then Σ f2 is a quasi-Brieskorn-Pham singularity with inverse
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weights t2a, 2b, 2u. Since the geometric genus of the latter singularity coincides

with the delta invariant of the former singularity,

δ( f ) = (gcd(a,b))2

6ab + 1
6

(
a
b +

b
a

)
+ 1

2 (ab´ a´ b + gcd(a, b)´ 1)

´ 2
(
s( b

gcd(a,b) , a
gcd(a,b)) + s( a

gcd(a,b) , b
gcd(a,b))

)
, (6.133)

and, together with the identity δ( f ) = 1
2(ab ´ a ´ b + gcd(a, b)), implies the

Dedekind Reciprocity Law, q.v. Remark 6.1.46.1.4,

s( b
gcd(a,b) , a

gcd(a,b)) + s( a
gcd(a,b) , b

gcd(a,b)) =
1

12

(
a
b +

(gcd(a,b))2

ab + b
a

)
´ 1

4 . (6.134)

M

Corollary 6.31. Let f : (C4, 0)Ñ (C, 0) be a quasi-Brieskorn-Pham singular-

ity with inverse weights tka, kb, kc, ku Ă N4. Then the geometric genus pg( f ) is given

by pg( f ) = Ak4 + Bk3 + Ck2 + Dk, where A = abc
24 ,

B = ´ 1
12(ab + bc + ca´ d

τ )´
abc
12 (6.135)

C = abc
24 + 1

8(ab + bc + ca´ d
τ ) + E (6.136)

D = ´ 1
24(ab + bc + ca´ d

τ )´ E (6.137)

E = 1
2

(
1
4(l ´ l1) + 1

12(
ab
c + bc

a + ca
b + d2

abcτ2 )´S(a, b, c; d
τ )
)

. (6.138)

Proof . Let h : (C3, 0) Ñ (C, 0) denote the quasi-Brieskorn-Pham surface

singularity with inverse exponents ta, b, cu and geometric genus pg(t) = pg(ht).

The claim follows from the relation pg( f ) =
řk

i=1 pg(k´ i). �
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6.4. Three-Term Symmetric Dedekind Sum Function

With the computation of the geometric genus of a quasi-Brieskorn-Pham

polynomial, the Durfee conjecture implies and is implied by the inequality

S(a, b, c; d) ě ´1
4(l

1
´ d) + 1

12(l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abc ) +
1
6 . (6.139)

Therefore, any improvement upon the original Durfee conjecture would yield a

sharper lower bound for the Dedekind sum S(a, b, c; d) and vice versa.

Corollary 6.32. If a, b and c are pairwise coprime integers with no factor in

common, then the Dedekind sum S(a, b, c; d) is bounded from below,

S(a, b, c; d) ě 1
12(a + b + c´ ab´ bc´ ca + ab

c + bc
a + ca

b + 1
abc )´

1
3 . (6.140)

Remark 6.4.1. The bound of Corollary 6.326.32 is sharp. If any of the integers

a, b or c is equal to 1, then

S(a, b, 1; 1) ě 1
12(1 +

b
a +

a
b +

1
ab )´

1
3 (6.141)

= 1
12(

b
a +

a
b +

1
ab )´

1
4 , (6.142)

which is an equality by the classical Dedekind Reciprocity Law. M

Remark 6.4.2. Corollary 6.326.32 is often weaker than the bound

S(a, b, c; d) ě ´s(1, a)´ s(1, b)´ s(1, c) (6.143)

= ´ 1
12 (a + b + c)´ 1

6

(
1
a +

1
b +

1
c

)
+ 3

4 . (6.144)
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6.4.1. Three-Term Dedekind Reciprocity Law. Let NT denote the number

of positive lattice points in the tetrahedron T = convt0, ae1, be2, ce3u.

Corollary 6.33. For pairwise coprime positive integers a, b and c with no

factor in common,

S(a, b, c; d) = 1
6 abc´ 1

4(ab + bc + ca) + 1
4(a + b + c)

+ 1
12(

ab
c + bc

a + ac
b + 1

abc )´ NT ´ 1
2 . (6.145)

Proof . Clearly, pg( f ) = NT . Observe

6pg( f ) = µalg( f ) + 1
2(l ´ ab´ bc´ ca + ab

c + bc
a + ca

b + 1
abc )

´ 6S(a, b, c; d)´ 2, (6.146)

which can be rearranged to yield the claimed identity. �

6.4.2. New Integrality of the Dedekind Sum. We can now state a few re-

sults which are of interest in Number Theory. Given the integrality of µ and pg,

we have the following Dedekind sum integrality.

Proposition 6.34. For a, b, c P N with gcd(a, b, c) = 1,

6S(a, b, c; d)´ 1
2 L + 3

2(l
1
´ d) P Z, (6.147)

where L = l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abc .
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6.4.3. New Congruences for the Dedekind Sum. Recall that for coprime

positive integer b and c, the Dedekind Reciprocity Law states

s(b, c) + s(c, b) = 1
12(

b
c +

1
bc +

c
b )´

1
4 , (6.148)

which implies the congruence

12bc (s(b, c) + s(c, b)) ” 1 + b2 + c2 + 1 mod bc. (6.149)

As one might have already anticipated, a generalized three-term reciprocity

law satisfied by the Dedekind sum is precisely the identity proved in Proposi-

tion 6.296.29,

S(a, b, c; d) = 1
12(l ´ ab´ bc´ ca + ab

c + bc
a + ca

b + d2

abc )´
1
4(l

1
´ d)

+ 1
6(µalg( f )´ pg( f ) + 1) (6.150a)

= 1
12

(
ab
c + bc

a + ca
b + d2

abc

)
+ 1

4 (l ´ l1 ´ ab´ bc´ ca)

+ 1
6

(
abc´ pg( f )´ 1

)
. (6.150b)

Remark 6.4.3. Suppose a = 1. Then µalg( f ) = pg( f ) = 0, d = gcd(b, c),

l1 = gcd(b, c) + 2 and equation (6.150a6.150a) simplifies

s( b
d , c

d ) + s( c
d , b

d ) = S(1, b, c; d) = 1
12(

b
c +

d2

bc +
c
b )´

1
4 , (6.151)

which is equivalent to the classical reciprocity law as applied to coprime inte-

gers b
d and c

d . In §6.56.5, we prove another reciprocity law. M
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Proposition 6.35. For a, b, c P N with no factor in common,

12abcS(a, b, c; d) ” (ab)2 + (bc)2 + (ca)2 + d2 mod abc. (6.152)

Proof . Multiply equation (6.1296.129) by 2abc and the residue modulo abc. �

Remark 6.4.4. For b, c P N with b and c odd and coprime,

24bcS(2, b, c) ” (b´ 1)(b´ 5) + (c´ 1)(c´ 5) mod 24. (6.153)

For example**, taking c = 3, it follows that

72cS(2, 3, c) + 4 ” (c´ 1)(c´ 5) mod 24. (6.154)

and, therefore,

72cS(2, 3, c) mod 24 ”

$

&

%

20 c ” t1, 5u mod 12

8 c ” t7, 11u mod 12.
(6.155)

M

*Explicitly in terms of a sum of cotangents,

2
?

3c csc( 4πc
3 ) + 18

c´1
ÿ

k=1

cot(πk
c ) cot( 6πk

c ) + 4 ” (c´ 1)(c´ 5) mod 24.
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Corollary 6.36. For a, b, c P N with no factor in common,

12abcS(a, b, c; d) ” (bc)2 + (ca)2 + d2 mod ab (6.156a)

” (ab)2 + (ca)2 + d2 mod bc (6.156b)

” (ab)2 + (bc)2 + d2 mod ca. (6.156c)

Corollary 6.37. For a, b, c P N with no factor in common,

12abcS(a, b, c; d) ” (bc)2 + d2 mod a (6.157a)

” (ca)2 + d2 mod b (6.157b)

” (ab)2 + d2 mod c. (6.157c)

In fact, infinitely many higher congruences are known.**

6.4.3.1. Higher Congruences. For a1, . . . , an P N such that gcd(a1, . . . , an) = 1,

let a1i = gcd(a1, . . . , âi, . . . , an) and an+1 = a11 ¨ ¨ ¨ a
1
n. Define the symmetric

summation

S(a1, . . . , an; an+1) =
n
ÿ

i=1

a1i s(
a1¨¨¨âi¨¨¨an

an+1
, ai

a11¨¨¨â
1
i¨¨¨a

1
n
). (6.158)

*Define a1 = gcd(b, c, d), b1 = gcd(a, c, d), c1 = gcd(a, b, d), d1 = gcd(a, b, c) and
e = a1b1c1d1. Similarly, define the 4-term summation

S(a, b, c, d; e) = a1s( bcd
e , a

b1c1d1 ) + b1s( acd
e , b

a1c1d1 ) + c1s( abd
e , c

a1b1d1 ) + d1s( abc
e , d

a1b1c1 ).

Given the unique form of the 3-term congruence, it is reasonable to conjecture the following
4-term congruence:

12abcdS(a, b, c, d) ” (abc)2 + (abd)2 + (acd)2 + (bcd)2 + e2 mod abcd.

However, as stated, this congruence does not hold. It is true for pairwise coprime integers
a, b, c, d such that a1 = b1 = c1 = d1 = e = 1.
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Proposition 6.38. For pairwise coprime ta1, . . . , anu Ă N,

12a1 ¨ ¨ ¨ an S(a1, . . . , an; an+1) ” 1 +
n
ÿ

i=1

(a1 ¨ ¨ ¨ âi ¨ ¨ ¨ an)
2 mod a1 ¨ ¨ ¨ an. (6.159)

We defer the proof of Proposition 6.386.38.

6.5. Signature of Brieskorn-Pham Manifolds

Consider a Brieskorn-Pham fiber Ff, 0 –d t(z0, . . . , zn) P Cn+1 |
řn

i=0 zai
i = 1u.

The signature σ(Ff , 0) can be computed in a number of equivalent ways. Firstly,

Brieskorn [6363] proves σ(Ff , 0) = ς+ ´ ς´, where

ς+ =
ˇ

ˇ

ˇ

!

(x0, . . . , xn) P Nn+1
| 0 ă xi ă ai ^ 0 ă

ÿn

i=0
xi
ai
ă 1 mod 2

)ˇ

ˇ

ˇ

ς´ =
ˇ

ˇ

ˇ

!

(x0, . . . , xn) P Nn+1
| 0 ă xi ă ai ^ 1 ă

ÿn

i=0
xi
ai
ă 2 mod 2

)ˇ

ˇ

ˇ
,

which generalizes the signature of the torus link Tp,q. Secondly, Hirzebruch

[201201] gives the identity

σ(Ff, 0) = 2
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

((
1
2 +

ÿn

i=0
ki

2ai

))
´

((
ÿn

i=0
ki

2ai

))
, (6.160)

where ((x)) = x ´ txu´ 1
2 if x R Z and 0 otherwise. Thirdly, Zagier gives the

identity

σ(Ff, 0) =
(´1)n/2

N

N´1
ÿ

j=0

cot(π(2j+1)
2N )

n+1
ź

i=0

cot(π(2j+1)
2ai

), (6.161)
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where N = lcm(a0, . . . , an). As Hirzebruch mentions, an identity attributed

to Eisenstein (p. 276, [391391]) can be used to prove the equivalence of the last two

forms,

((
p
q

))
= i

2q

q´1
ÿ

k=1

cot(πk
q ) e2πikp/q. (6.162)

Lastly, Hirzebruch and Zagier [204204] prove the identity

σ(Ff, 0) =
ÿ

kě0

(´1)k
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

kă
řn

i=0
ki
ai
ăk+1

1. (6.163)

Proposition 6.39. Let Ff, 0 –d f´1(1) denote the fiber of the Brieskorn-Pham

singularity f with exponents ta0, . . . , anu. The signature of the manifold Ff, 0 is identi-

cally zero if n is odd or if ai = 1 for some 0 ď i ď n and otherwise bounded by

|σ(Ff, 0)| ď µalg( f ). (6.164)

Proof . The signature is zero for smooth manifolds whose dimension is

not a multiple of 4. The Brieskorn-Pham fiber Ff, 0 is a smooth 2n-dimensional

manifold. Thus, the signature σ(Ff , 0) is possibly non-zero if and only if n is

even.

For x P R, one has the fractional part identity

((
x + 1

2

))
= ((x)) + 1

2sign sin (2πx) , (6.165)
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which implies the identity

σ(Ff, 0) =
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

sign sin
(

π
ÿn

i=0
ki
ai

)
, (6.166)

by equation (6.1606.160) and the bound

|σ(Ff, 0)| ď
a0´1
ÿ

k0=1

¨ ¨ ¨

an´1
ÿ

kn=1

1 (6.167)

=
n
ź

i=0

(ai ´ 1). (6.168)

If ai = 1 for any 0 ď i ď n, then it follows that σ(Ff, 0) = 0. �

6.5.0.2. Signature and Dedekind Sums. Recall the Dedekind sum

s(a, b) =
1
4b

b´1
ÿ

k=1

cot(πk
b ) cot(πak

b ) (6.169)

for coprime a, b P N. For pairwise coprime ta0, . . . , anu, then the signature

admits the following representation [343343],

σ(Ff, 0) = ´1 +
1

3N

(
1´ (n´ 1)N2 +

n
ÿ

k=0

b2
k

)
´ 4

n
ÿ

k=0

s(bk, ak), (6.170)

where N = a0 ¨ ¨ ¨ an and bk =
N
ak

.

Proposition 6.40. Given a Brieskorn-Pham surface singularity f : (C3, 0) Ñ

(C, 0) with pairwise coprime exponents ta, b, cu Ă N and fiber Ff, 0, the signature of
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Ff, 0 and the geometric genus and algebraic index of f satisfy

4pg( f ) = σ(Ff, 0) + µalg( f ). (6.171)

Proof . By Proposition 6.296.29,

6pg( f ) = µalg( f ) + 1
2(l ´ ab´ bc´ ca + ab

c + bc
a + ca

b + 1
abc )

´ 6S(a, b, c; d)´ 2, (6.172)

where l = a + b + c and S(a, b, c; 1) = s(bc, a) + s(ac, b) + s(ab, c). By equation

(6.1706.170),

σ(Ff, 0) = ´1 + 1
3abc (1´ (abc)2 + (ab)2 + (bc)2 + (ca)2)

´ 4S(a, b, c; d). (6.173)

Combining the two expressions yields the claimed identity. �

Remark 6.5.1. Equation (6.1716.171) holds if K f is a rational homology

sphere [343343]. and, more generally, for any weighted homogeneous polyno-

mial f : (C3, 0) Ñ (C, 0) with intersection form invariants tς+, ς0, ς´u, where

ς0 = 0. M

Corollary 6.41. If a Brieskorn-Pham singularity f has pairwise coprime expo-

nents, then the signature of its fiber is divisible by 4.

Proof . At most one exponent is even, so µalg( f ) is divisible by 4. Equation

(6.1716.171) implies the claimed divisibility. �
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Corollary 6.42. If a Brieskorn-Pham singularity f has pairwise coprime ex-

ponents ta, b, cu Ă N, then the corresponding geometric genus and algebraic index

satisfy

pg( f ) ” 1
4 µalg( f ) mod 2. (6.174)

Proof . Since σ(Ff, 0) = 8λ(Σ(a, b, c)), then pg( f ) = 2λ(Σ(a, b, c)) + 1
4 µalg( f )

by equation (6.1716.171). At most one exponent is even, so µalg( f ) is divisible by 4.

�

6.5.0.3. Quadratic Reciprocity Law. The Law of Quadratic Reciprocity states

that given two odd, distinct primes, p and q, the congruence quadratic equation

x2 ” p mod q is solvable in Z if and only if x2 ” εq mod p is solvable in Z,

where ε is the sign of the congruence class of q modulo 4. Whether said congru-

ence quadratic equations have solutions or not is encoded within the Legendre

symbols (
p
q) and (

q
p). The Law of Quadratic Reciprocity is succinctly written(p

q

)(q
p

)
= (´1)(p´1)(q´1)/4. (6.175)

Jacobi generalized the Law of Quadratic Reciprocity to odd, coprime integers.

In §6.2.36.2.3, the geometric genus of quasi-Brieskorn-Pham singularities is com-

puted in terms of Dedekind sums by counting positive lattice points intersect-

ing certain integral trirectangular tetrahedra, the corresponding weight poly-

topes. The next result relates these two objects.
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Corollary 6.43. If p and q are odd and coprime positive integers, then the Law

of Quadratic Reciprocity (of Jacobi symbols) is equivalent to the following identity,(p
q

)(q
p

)
= (´1)pg( f ), (6.176)

where pg( f ) is the geometric genus of the Brieskorn-Pham surface singularity

f = xp + yq + z2, (6.177)

where

pg( f ) = 1
24pq +

1
6

(
p
q +

q
p

)
´

p+q
4 + pq

8 ´ s(2p, q)´ s(2q, p). (6.178)

Proof . Corollary 6.426.42, the identity µalg( f ) = (p ´ 1)(q ´ 1) and the qua-

dratic reciprocity law (
p
q)(

q
p) = (´1)(p´1)(q´1)/4 imply the claim. �

Remark 6.5.2. As shown in [324324], if p and q are distinct odd prime con-

gruent to 1 mod 4, then one facet of the prime-knot analogy is the fascinating

identity (p˚

q

)
= (´1)lk(p,q) p˚ = (´1)(p´1)/2 p, (6.179)

where lk(p, q) is to be regarded as the linking number of the knots arising from

the primes p and q. One recognizes that the primes are, in fact, nothing other

than the exponents of a Brieskorn-Pham polynomial, f = xp + yq + z2. It is plau-

sible that the prime-knot analogy gives rise to an integer-link generalization by

this observation. M
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6.5.1. Casson Invariant for Brieskorn-Pham 3-Manifolds. The signature

of certain Brieskorn-Pham manifolds is divisible by 8 and depends only on a

related invariant, the Casson Invariant. For relevant definitions, see Chapter 1 in

[417417].

For pairwise coprime ta0, . . . , anu, the Casson invariant of the 3-manifold

Σ(a0, . . . , an) is computed in terms of Dedekind sums,

λ(Σ(a0, . . . , an)) = ´
1
8
+

1
24N

(
1´ (n´ 1)N2 +

n
ÿ

k=0

b2
k

)

´
1
2

n
ÿ

k=0

s(bk, ak), (6.180)

where N = a0 ¨ ¨ ¨ an and bk = N
ak

. Specializing to integral homology 3-spheres,

we have the following characterization of the Casson invariant [417417]:

1. λ(S3) = 0;

2. λ(Σ) = ´λ(Σ), where ´Σ denotes Σ with the opposite orientation;

3. λ(Σ # Σ1) = λ(Σ) + λ(Σ1);

4. Let K be a knot in Σ. Let Σ + 1
n K be the 1

n -surgery on K. The difference

λ(Σ + 1
n K)´ λ(Σ + 1

n+1 K) does not depend on n; and,

5. If Σ is the boundary of a spin 4-manifold F with signature σ(F), then

4λ(Σ) ” σ(F) mod 16. (6.181)

Remark 6.5.3. If λ(Σ) ‰ 0, then Σ # Σ and Σ #(´Σ) are not homeomorphic.

M

456



Proposition 6.44 (Neumann, Wall, [343343]). Let Σ(a0, . . . , an) denote a

Brieskorn-Pham 3-manifold, the link of the Brieskorn-Pham singularity f : (C3, 0) Ñ

(C, 0) with Milnor fiber Ff, 0 and pairwise coprime exponents ta0, . . . , anu. The Casson

invariant of Σ(a0, . . . , an) is determined by the signature of Ff, 0, namely,

λ(Σ(a0, . . . , an)) =
1
8 σ(Ff, 0). (6.182)

In particular, σ(Ff, 0) is divisible by 8.

6.5.1.1. Laufer’s Formula. In [256256], Laufer relates the algebraic index and

geometric genus to certain invariants of the minimal resolution of a complex

hypersurface.

Proposition 6.45 (Laufer,[256256]). Given a complex analytic germ

f : (Cn+1, 0) Ñ (C, 0) with hypersurface Vf, 0 = f´1(0) and any minimal resolution

given by a proper, analytic, surjective map π : (Ṽf, 0, E) Ñ (Vf, 0, 0) with exceptional

locus E = π´1(0) such that Ṽf, 0zE Ñ Vˆf, 0 is an analytic isomorphism and π´1(Vˆf, 0)

is dense in Ṽf, 0. Then

µalg( f ) = 12pg( f ) + χ̃(E) + K2, (6.183)

where χ̃(E) = χ(E)´ 1 is the reduced (topological) Euler characteristic of E and K2 is

the self-intersection number of the canonical divisor on Ṽf, 0.

Proof . See Chapter IV in [420420]. �
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Remark 6.5.4. As a consequence of Proposition 6.456.45,

χ̃(E) + K2
” µalg( f ) mod 12. (6.184)

M

Remark 6.5.5. As a consequence of Propositions 6.406.40 and 6.456.45, the signa-

ture of the fiber Ff, 0 of a Brieskorn-Pham surface singularity satisfies the follow-

ing identity

3σ(Ff, 0) + χ̃(E) + K2 + 2µalg( f ) = 0. (6.185)

By Proposition 6.446.44, for pairwise coprime a, b, c P N, the Casson invariant

λ(Σ(a, b, c)) satisfies the identity

24λ(Σ(a, b, c)) + χ̃(E) + K2 + 2µalg( f ) = 0, (6.186)

which implies the stronger congruence

χ̃(E) + K2
” 22µalg( f ) mod 24. (6.187)

M

Remark 6.5.6. Consider the family of surface singularities specified by fl =

x6l+5 + y3 + z2 for l ě 0. Observe µalg( fl) = 12l + 8 and g(Σ(6l + 5, 3, 2)) = 0

for l ě 0, since the exponents are pairwise coprime. Yau computes K2 = ´l for
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l ě 0 [483483], [484484]. By Proposition 6.196.19, pg( fl) = l for l ě 0. By Proposition 6.466.46,

σ(Ffl , 0) = 4pg( fl)´ µalg( fl) (6.188)

= 4l ´ (12l + 8) (6.189)

= ´8l ´ 8, (6.190)

which is divisible by 8 for l ě 0. Hence, λ(Σ(6l + 11, 3, 2)) = ´l ´ 1. Moreover,

χ̃(E) = µalg( fl)´ 12pg( fl)´ K2 (6.191)

= 12l + 8´ 12l + l (6.192)

= l + 8. (6.193)

Thus, the factor χ̃(E) + K2 = 8, which is independent of l, satisfies the congru-

ence in equation (6.1876.187), as 22(12l + 8) ” 8 mod 24 for l ě 0. M

Proposition 6.46. Given a Brieskorn-Pham surface singularity f : (C3, 0) Ñ

(C, 0) with exponents ta, b, cu Ă N and fiber Ff, 0, the signature of Ff, 0 and the geomet-

ric genus and algebraic index of f satisfy

4pg( f ) = σ(Ff, 0) + µalg( f ) + 2g(Σ(a, b, c)/S1), (6.194)

where g(Σ(a, b, c)/S1) is the (base-orbifold) genus of the Seifert fibration on Σ(a, b, c).
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Proof . As above, let N = lcm(a, b, c),

b0 =
lcm(a, b, c)

a
c0 =

lcm(a, b, c)
lcm(b, c)

d0 =
bc

lcm(b, c)
= gcd(b, c) (6.195)

b1 =
lcm(a, b, c)

b
c1 =

lcm(a, b, c)
lcm(a, c)

d1 =
ac

lcm(a, c)
= gcd(a, c) (6.196)

b2 =
lcm(a, b, c)

c
c2 =

lcm(a, b, c)
lcm(a, b)

d2 =
ab

lcm(a, b)
= gcd(a, b). (6.197)

Thus, the corresponding signature is simply

σ(Ff, 0) = ´1 +
abc
3N2

(
1´ N2 + b2

0 + b2
1 + b2

2

)
´ 4 (d0 s(b0, c0) + d1 s(b1, c1) + d2 s(b2, c2)) . (6.198)

Let l = a + b + c, l1 = gcd(a, b) + gcd(b, c) + gcd(a, c) and

d
τ
=

gcd(a, b)gcd(b, c)gcd(a, c)
gcd(a, b, c)

. (6.199)

For a, b, c P N with τ = gcd(a, b, c),

6pg( f ) = µalg( f )´ 3
2(l

1
´ d

τ ) +
1
2(l ´ ab´ bc´ ca + ab

c + bc
a + ca

b + d2

abcτ2 )

´ 6S(a, b, c; d
τ ) + 1. (6.200)
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Since S(a, b, c, d
τ ) = d0 s(b0, c0) + d1 s(b1, c1) + d2 s(b2, c2),

3σ(Ff, 0) = 12pg( f )´ 2µalg( f )´ 5 +
abc
N2

(
1´ N2 + b2

0 + b2
1 + b2

2

)
+ 3(l1 ´ d

τ )´ (l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abcτ2 ) (6.201)

= 12pg( f )´ 2µalg( f )´ 5 +
abc
N2 +

(
bc
a
+

ac
b
+

ab
c
´ abc

)
+ 3(l1 ´ d

τ )´ (l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abcτ2 ) (6.202)

= 12pg( f )´ 2µalg( f )´ 5 +
abc
N2 ´

d2

abcτ2 + 3(l1 ´ d
τ )

´ a´ b´ c + ab + bc + ca´ abc. (6.203)

= 12pg( f )´ 3µalg( f )´ 6 +
abc
N2 ´

d2

abcτ2 + 3(l1 ´ d
τ ). (6.204)

Collecting the various terms and simplifying yields

σ(Ff, 0) + µalg( f ) = 4pg( f ) +
1
3

(
abc
N2 ´

d2

abcτ2

)
+ l1 ´

d
τ
´ 2 (6.205)

= 4pg( f ) + l1 ´
d
τ
´ 2, (6.206)

since

abc
lcm(a, b, c)

=
gcd(a, b)gcd(a, c)gcd(b, c)

gcd(a, b, c)
. (6.207)

Finally, for the Brieskorn-Pham manifold Σ(a, b, c), one has

g(Σ(a, b, c)/S1) =
1
2

(
d
τ
´ l1
)
+ 1. (6.208)
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Hence, ´2g(Σ(a, b, c)/S1) = l1 ´ d
τ ´ 2. �

Remark 6.5.7. Consider the surface singularity fl = x6l+3 + y3 + z2 for l ě

0. Observe µalg( fl) = 12l + 4 and g(Σ(6l + 3, 3, 2)) = 1
2 (3´ 3´ 1´ 1) + 1 = 0

for l ě 0, while the exponents are not pairwise coprime. Yau computes K2 = ´l

and χ̃(E) = l + 4 for l ě 0 [483483], [484484]. By Proposition 6.196.19, pg( fl) = l for l ě 0.

By Proposition 6.466.46,

σ(Ffl , 0) = 4pg( fl)´ µalg( fl)´ 2g(Σ(6l + 3, 3, 2)) (6.209)

= 4l ´ (12l + 4) (6.210)

= ´8l ´ 4, (6.211)

which is divisible by 4 (but not 8) for l ě 0. M

Remark 6.5.8. Consider the surface singularity fl,k = x3l+k + y3 + z3 for l ě

1 and k P t0, 1, 2u. Observe µalg( fl,k) = 12l + 4k´ 4 and g(Σ(3l + k, 3, 3)/S1) =

δk,0. By Proposition 6.196.19, pg( fl,k) = l. By Proposition 6.466.46,

σ(Ffl,k, 0) = 4pg( fl,k)´ µalg( fl,k)´ 2g(Σ(3l + k, 3, 3)) (6.212)

= 4l ´ (12l + 4k´ 4)´ 2δk,0 (6.213)

= ´8l ´ 4k´ 2δk,0 + 4, (6.214)
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which is divisible by 2, 8 and 4 for k = 0, 1 and 2, respectively. Moreover,

χ̃(El,k) + K2
l,k = µalg( fl,k)´ 12pg( fl,k) (6.215)

= (12l + 4k´ 4)´ 12l (6.216)

= 4k´ 4, (6.217)

which is independent of l. Yau computes K2
l,1 = ´3l ´ 1 and K2

l,2 = ´3l [483483],

[484484]. Thus, χ̃(El,1) = 3l + 1 and χ̃(El,2) = 3l + 4. M

Problem 6.5.1. Compute χ̃(E1,0) and K2
l,0 as functions of l.

Remark 6.5.9. For a homogeneous, Brieskorn-Pham surface singularity

f : (C3, 0) Ñ (C, 0) with exponents td, d, du, one has pg( f ) = (d
3), µalg( f ) =

(d´ 1)3 and g(Σ(d, d, d)/S1) = (d´1
2 ). By Proposition 6.466.46,

σ(Ff, 0) = 4
(

d
3

)
´ (d´ 1)3

´ 2
(

d´ 1
2

)
(6.218)

= ´1
3(d´ 1)(d2 + d´ 3), (6.219)

which establishes the existence of a Brieskorn-Pham manifold with a signa-

ture that is divisible by any positive integer. In particular, if d ě 3 is odd, then

2λ(d´2) divides σ(Ff, 0), where λ(n) =
ř

odd d|n µ(d)τ(n
d ) is the 2-adic valuation

of 2n (A001511A001511).
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In fact, for certain values of d, the signature is divisible by any power of 2.

That is, if d = 2m + 1 ě 3 for m P N,

σ(Ff, 0) = ´1
32m(4m + 3 ¨ 2m

´ 1). (6.220)

In contrast to Example 2.6 in [118118], this calculation does not require a minimal

resolution of the singularity. M

Proposition 6.47. For Brieskorn-Pham surface singularity f : (C3, 0) Ñ

(C, 0) with exponents ta, b, cu Ă N, the following signature inequality holds,

σ(Ff, 0) ď ´
1
3 µalg( f )´ 2

3 minta´ 1, b´ 1, c´ 1u ´ 2g(Σ(a, b, c)/S1). (6.221)

Proof . The Durfee-Yau Theorem (Proposition 5.485.48) is true for Brieskorn-

Pham surface singularities. When combined with Proposition 6.466.46, the follow-

ing signature inequality holds,

σ(Ff, 0) ď ´
1
3 µalg( f )´ 2

3(ν( f )´ 1)´ 2g(Σ(a, b, c)/S1), (6.222)

where ν( f ) = minta, b, cu, which improves the inequality of equation (5.1665.166) by

a strictly non-positive factor ´2g(Σ(a, b, c)/S1). �

Remark 6.5.10. Proposition 6.476.47 is strict if and only if f is not homoge-

neous. M
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Proposition 6.48. If the signature of the Milnor fiber of a Brieskorn-Pham

surface singularity f : (C3, 0)Ñ (C, 0) with exponents ta, b, cu Ă N satisfies

σ(Ff, 0) = ´1
3 µalg( f )´ 2

3 minta´ 1, b´ 1, c´ 1u ´ 2g(Σ(a, b, c)/S1), (6.223)

then f is a homogeneous polynomial of degree a = b = c = d and

σ(Ff, 0) = ´1
3(d´ 1)(d2 + d´ 3). (6.224)

Proof . Recall that if µalg( f ) = τ( f ) and 6pg( f ) = µalg( f ) ´ ν( f ) + 1,

then f is a homogeneous polynomial after a biholomorphic change of variables

by Proposition 5.475.47. Since f is Brieskorn-Pham, it is also weighted homoge-

neous, so the first identity is satisfied. Combining the latter equation with that

of Proposition 6.466.46 yields

σ(Ff, 0) = ´1
3 µalg( f )´ 2

3(ν( f )´ 1)´ 2g(Σ(a, b, c)/S1), (6.225)

where ν( f ) = minta, b, cu. Finally, the signature of a homogeneous surface

singularity of degree d is computed in Remark 6.5.96.5.9. �

Remark 6.5.11. Proposition 6.486.48 proves that equation (6.2216.221) is sharp. M

Corollary 6.49. For any Brieskorn-Pham surface singularity f : (C3, 0) Ñ

(C, 0) with exponents ta, b, cu Ă N, the signature of the Milnor fiber Ff, 0 and algebraic

index of f satisfy the congruence

σ(Ff, 0) ” µalg( f ) mod 2. (6.226)
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In particular, σ(Ff, 0) is odd if and only if a, b and c are even.

Corollary 6.50. If a, b and c are even, then λ(Σ(a, b, c)) ‰ 1
8 σ(Ff, 0). In

particular, the Milnor fiber Ff, 0 is not a spin 4-manifold.

Combining Laufer’s formula with Proposition 6.466.46 yields the following

identity.

Corollary 6.51. For any Brieskorn-Pham surface singularity f : (C3, 0) Ñ

(C, 0) with exponents ta, b, cu Ă N, the following identity holds:

3σ(Ff, 0) + χ̃(E) + K2 + 2µalg( f ) + 6g(Σ(a, b, c)/S1) = 0. (6.227)

Proposition 6.52 (Yau, [481481]). Let f : (C3, 0)Ñ (C, 0) be a complex analytic

function with an isolated singularity at the origin. Let π : Ṽ Ñ V be a resolution of V

and E = π´1(0) have s components and topological Euler characteristic χ(E). Let K2

be the canonical divisor on Ṽ, and let Ω1 be the sheaf of germs of holomorphic 1-forms

on Ṽ. Then the following bounds hold:

σ(Ff, 0) ď ´s + 2pg( f ) + dim H1(Ṽ, Ω1) (6.228)

µalg( f ) ě χ̃(E) + 2pg( f )´ dim H1(Ṽ, Ω1), (6.229)

and the following identities hold:

µalg( f ) = χ̃(E)´ σ(Ff, 0)´ s + 4pg( f ) (6.230)

σ(Ff, 0) = ´K2
´ s´ 8pg( f ). (6.231)
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Proof . See Theorems 3.1 and 3.2 in [481481]. �

Corollary 6.53. Let f : (C3, 0) Ñ (C, 0) be a Brieskorn-Pham surface singu-

larity. Let π : Ṽ Ñ V be a resolution of V and E = π´1(0) have s components and

topological Euler characteristic χ(E). Let K2 be the canonical divisor on Ṽ, and let Ω1

be the sheaf of germs of holomorphic 1-forms on Ṽ. Then the following identity holds:

χ̃(E) = s´ 2g(Σ(a, b, c)/S1) (6.232)

´K2 = s + 12pg( f )´ µalg( f )´ 2g(Σ(a, b, c)/S1) (6.233)

and the following bound holds:

dim H1(Ṽ, Ω1) ě ´K2
´ 10pg( f ). (6.234)

Remark 6.5.12. Compare equation (6.2326.232) to the identity χ(Ff, 0) = r ´ 2δ,

where f is a squarefree, non-degenerate weighted homogeneous singularity

with r branches and δ double points. M

Remark 6.5.13. The integer s is invariant under homeomorphisms. It is

also known that σ(Ṽ) = ´s [118118]. Thus, σ(Ṽ) = 2g(Σ(a, b, c)/S1)´ χ̃(E), which

implies the congruence

σ(Ṽ) ” χ̃(E) mod 2. (6.235)

M
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Remark 6.5.14. Explicitly, one has

χ̃(E) = s + l1 ´ d
τ ´ 2

´K2 = s + 2(a´ 1)(b´ 1)(c´ 1)´ abc + ab
c + bc

a + ca
b

+ 2d
τ ´ 2l1 + d2

abcτ2 ´ 12S(a, b, c; d
τ ) + 1,

where l1 = gcd(a, b) + gcd(b, c) + gcd(a, c) and d
τ = gcd(a,b)gcd(b,c)gcd(a,c)

gcd(a,b,c) .

For odd, coprime p and q,

´K2 = s + 2(p´ 1)(q´ 1)´ 2pq + 2p
q + pq

2 + 2q
p

+ 2d
τ ´ 2l1 + d2

2pqτ2 ´ 12S(p, q, 2; d
τ ) + 1,

where l1 = gcd(p, 2) + gcd(p, q) + gcd(2, q) and d
τ = gcd(p,2)gcd(p,q)gcd(2,q)

gcd(p,q,2) .

M

Remark 6.5.15. As in Remark 6.5.76.5.7, if f = x6l+3 + y3 + z2 over C3 for l ě 0,

then K2 = ´l. By equation (6.2336.233), K2 = 4´ s, so s = l + 4. M

Remark 6.5.16. As in Remark 6.5.86.5.8, if f = x3l+k + y3 + z3 over C3 for

l ě 1, then K2
l,1 = ´3l ´ 1 and K2

l,2 = ´3l. By equation (6.2336.233), K2
l,1 = ´sl,1,

so sl,1 = 3l + 1. Similarly, K2
l,2 = 4 ´ sl,2, so sl,2 = 3l + 4. We compute also

K2
l,0 = ´2´ sl,0 and χ(Ẽl,0) = sl,0 ´ 2. M

Problem 6.5.2. Compute sl,0 as a function of l.
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Proposition 6.54 (Yau, [487487]). Let f : (C3, 0) Ñ (C, 0) be a non-degenerate

surface singularity with hypersurface Vf and with multiplicity ν( f ). Let K be the

canonical divisor on a minimal resolution of Vf at the origin. Then

´K2
ě ν( f )(ν( f )´ 1)(ν( f )´ 3) + 2. (6.236)

Remark 6.5.17. For a homogeneous polynomial f : (C3, 0) Ñ (C, 0) with

exponents td, d, du, one has

χ̃(E) + K2 = ´d3 + 3d2
´ d´ 1. (6.237)

As g(Σ(d, d, d)/S1) = (d´1
2 ), so χ̃(E) = s´ (d´ 1)(d´ 2) and K2 = d(d´ 2)2 +

1´ s. By Proposition 6.546.54,

s´ d(d´ 2)2
´ 1 = ´K2

ě d(d´ 1)(d´ 3) + 2 (6.238)

and, therefore, s ě 2d3 ´ 8d2 + 7d + 3. M

Proposition 6.55. Let f and g be Brieskorn-Pham surface singularities. If

the corresponding Brieskorn-Pham manifolds Σ f and Σg are homeomorphic, then the
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following equalities hold:

µalg( f )´ 12pg( f ) = µalg(g)´ 12pg(g) (6.239)

4pg( f )´ σ(Ff, 0)´ µalg( f ) = 4pg(g)´ σ(Fg, 0)´ µalg(g) (6.240)

3σ(Ff, 0) + 2µalg( f ) = 3σ(Fg, 0) + 2µalg(g) (6.241)

σ(Ff, 0) + 8pg( f ) = σ(Fg, 0) + 8pg(g). (6.242)

from which one infers µalg( f ) = µalg(g) if and only if pg( f ) = pg(g) if and only if

σ(Ff, 0) = σ(Fg, 0). Otherwise, the following congruences hold:

µalg( f ) ” µalg(g) mod 12 (6.243)

4pg( f )´ σ(Ff, 0) ” 4pg(g)´ σ(Fg, 0) mod 12 (6.244)

σ(Ff, 0) ” σ(Fg, 0) mod 8. (6.245)

Proof . Proposition 6.456.45 implies the first identity. The second and third

identities follow from Proposition 6.466.46 and Corollary 6.516.51, respectively. Com-

bining the first and second or third identities yields the last identity. The other

congruences follow similarly. �

Remark 6.5.18. The topology of Vf, 0 does not determine the geometric

genus, the algebraic index or the signature. For example, the hypersurfaces

defined by f = x3 + y5 + z15 and g = x2 + y9 + z18 are homeomorphic and

have different algebraic indices, namely, µalg( f ) = 112 and µalg(g) = 136,

both even. It follows from equation (6.1836.183) that the corresponding geometric
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genera must also differ, as the combination χ̃(E) + K2 is invariant under home-

omorphisms, in this case, equal to ´56. Observe that ´56 ” 112 ” 136 ” 4

mod 12. By Proposition 6.976.97, pg( f ) = 14 and pg(g) = 16. By equation (6.2086.208),

g(Σ(3, 5, 15)/S1) = g(Σ(2, 9, 18)/S1) = 4. By Proposition 6.466.46, σ(Ff, 0) = ´64

and σ(Fg, 0) = ´80, both even.

Consider h = x2 + y10 + z10 and r = x2 + y10 + z20. Although the correspond-

ing base-orbifold genera are equal to 4, Vh, 0 is not homeomorphic to Vf, 0 – Vg, 0

or Vr, 0 as µalg(h) = 81, µalg(r) = 171, pg(h) = 10, pg(r) = 20, σ(Fh, 0) = ´49 and

σ(Fr, 0) = ´99 and the required congruences do not hold. M

6.6. Signature of Torus Links, Revisited

Proposition 6.56. For p, q P N, the signature of a torus link Tp,q is given by

σ(Tp,q) = ´(p´ 1)(q´ 1) + 2q
p (p´ 1´ t

p
2 u)t p

2 u + l1 ´
d
τ
´ 2

´ 4
tp/2u
ÿ

i=1

"

q
2
´

qi
p

*

, (6.246)

where l1 = gcd(p, 2) + gcd(p, q) + gcd(2, q) and d
τ = gcd(p,2)gcd(p,q)gcd(2,q)

gcd(p,q,2) .
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Proof . If f has exponents t2, p, qu, then Σ(p, q, 2) is the 2-fold branched

cyclic covering over the torus link Tp,q. In particular, σ(Ff, 0) = σ(Tp,q). More-

over, the geometric genus pg( f ) can be computed by the iterated summation

pg( f ) =
2
ÿ

i=1

tp(1´i/2)u
ÿ

j=1

tq(1´i/2´j/p)u
ÿ

k=1

1 (6.247)

=

tp/2u
ÿ

i=1

tq(1/2´i/p)u
ÿ

j=1

1 (6.248)

=

tp/2u
ÿ

i=1

Z

q
2
´

qi
p

^

(6.249)

= q
2p (p´ 1´ t

p
2 u)t p

2 u´

tp/2u
ÿ

i=1

"

q
2
´

qi
p

*

. (6.250)

�

Remark 6.6.1. Let f = xp + yq and f̃ = x2p + y2q + z2. By equations (5.70b5.70b),

σ(T2p,2q) = 4δ( f )´ µalg( f )´ 2g(Σ(2p, 2q, 2)/S1) (6.251)

= 2(pq´ p´ q + gcd(p, q))

´ (2p´ 1)(2q´ 1)´ 2gcd(p, q) + 2 (6.252)

= 1´ 2pq. (6.253)
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Thus,

rank H1(T2p,2q) = 4δ( f )´ σ(T2p,2q)´ µalg( f ) (6.254)

= 2(pq´ p´ q + gcd(p, q))

´ (1´ 2pq)´ (p´ 1)(q´ 1) (6.255)

= 3pq´ p´ q + 2 gcd(p, q)´ 2. (6.256)

In particular, rank H1(T2p,2p) = 3p2 ´ 2. M

Corollary 6.57. The parity of the signature of a torus link is opposite that of

the number of its components. In particular, the signature of a torus knot is even.

Proof . Let f = xp + yq with p, q P N. The Milnor-Jung formula implies

4pg(Σ f ) = σ(FΣ f , 0) + µalg(Σ f ) + 2g(Σ(p, q, 2)/S1) (6.257)

= σ(Tp,q) + 2δ( f )´ gcd(p, q) + 1 + 2g(Σ(p, q, 2)/S1), (6.258)

where µalg(Σ f ) = µalg( f ) = (p ´ 1)(q ´ 1) and σ(FΣ f , 0) = σ(Tp,q). Thus, for

p, q P N, the signature of a torus link Tp,q satisfies

σ(Tp,q) ” (p´ 1)(q´ 1) ” gcd(p, q)´ 1 mod 2. (6.259)

�
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Corollary 6.58. If p and q are coprime positive integers, then

σ(Tp,q) = ´(p´ 1)(q´ 1) + 2q
p (p´ 1´ t

p
2 u)t p

2 u´ 4
tp/2u
ÿ

i=1

"

q
2
´

qi
p

*

. (6.260)

Moreover, σ(Tp,1) = σ(T1,q) = 0, σ(Tp,2) = 1´ p and σ(T2,q) = 1´ q for p, q P

Ną1.

Proof . Equation (6.1716.171) implies

σ(Tp,q) = ´(p´ 1)(q´ 1) + 4
tp/2u
ÿ

i=1

tq(1/2´i/p)u
ÿ

j=1

1, (6.261)

= ´(p´ 1)(q´ 1) + 4
tp/2u
ÿ

i=1

Z

q
2
´

qi
p

^

, (6.262)

which simplifies to the the claimed identities upon use of the identity txu =

x´ txu. �

Corollary 6.59. If p and q are odd and coprime positive integers, then the

signature σ(Tp,q) is divisible by 4.

Proof . Since p and q are odd, then (p ´ 1)(q ´ 1) is divisible by 4. Equa-

tion (6.2616.261) then implies the claim. �
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Remark 6.6.2. For coprime positive integers p and q, the identity

tp/2u
ÿ

i=1

tq(1/2´i/p)u
ÿ

j=1

1 +
tp/2u
ÿ

i=1

tq(1/2+i/p)u
ÿ

j=1

1 (6.263)

=

$

&

%

1
2(p´ 1)(q´ 1) p, q odd or p odd, q even

1
2 p(q´ 1) + 1 p even, q odd

(6.264)

and a symmetry argument imply the identity

σ(Tp,q) = ´4
tp/2u
ÿ

i=1

tqi/p+1/2u
ÿ

j=1

1, (6.265)

which implies that σ(Tp,q) is non-positive and divisible by 4. M

Corollary 6.60. For coprime positive integers p and q,

t(p´1)/2u
ÿ

k=1

#

(3p´ 2t
p
2 u´ 2k)q

2p

+

+

tp/2u
ÿ

k=1

"

(p´ 2k)q
2p

*

= (6.266)

1
p

(
qt

p´1
2 u(p´ t

p
2 u)´ (p´ 1´ t

p
2 u)(p(q´ 1)´ qt

p
2 u)
)

. (6.267)

Proof . The claimed identity follows by equating two equivalent expres-

sions for the signature of the torus knot Tp,q, namely,

σ(Tp,q) = (q´ 1)(p´ 1´ 2t
p
2 u)´ 2q

p t
p´1

2 u(p´ t
p
2 u)

+ 2
t(p´1)/2u

ÿ

k=1

#

(3p´ 2t
p
2 u´ 2k)q

2p

+

´

"

(p´ 2k)q
2p

*

(6.268)
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and

σ(Tp,q) = ´(p´ 1)(q´ 1) + 2q
p (p´ 1´ t

p
2 u)t p

2 u´ 4
tp/2u
ÿ

i=1

"

q
2
´

qi
p

*

, (6.269)

and using the fact that t
p´1

2 u + 1 ě t
p
2 u with equality when p is even. �

Since the geometric genus of the Brieskorn-Pham singularity f = xp + yq +

z2 has a representation in terms of Dedekind sum functions, a closed form ex-

pression of the signature of torus links may be given. The following results

generalize the related results in [341341] and [5656].

Proposition 6.61. For p, q P N, the signature of a torus link Tp,q is given by

σ(Tp,q) =
2pq

3lcm(p,q,2)2 ´
pq
2 + 2q

3p +
2p
3q ´ 1

´ 4
(

p1s(2qτ
d , pp1τ

d ) + q1s(2pτ
d , qq1τ

d ) + rs( pqτ
d , 2rτ

d )
)

, (6.270)

where p1 = gcd(2, q), q1 = gcd(p, 2), r = gcd(p, q) and

d
τ
=

gcd(p, 2)gcd(p, q)gcd(2, q)
gcd(p, q, 2)

. (6.271)

Proof . The representation of σ(Tp,q) in terms of Dedekind sum functions

follows from Proposition 6.466.46. �

Corollary 6.62. The signature σ(Tp,q) is not a rational function of p and q.
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Proof . Proposition 5.1 in [5656] is the claim for p and q odd and coprime.

Proposition (6.126.12) implies the claim when p and q are even or p divides q.

Proposition 6.616.61 implies the claim for all other cases. �

Corollary 6.63. For odd coprime p and q,

σ(Tp,q) =
1

6pq +
2q
3p +

2p
3q ´

pq
2 ´ 4 (s(2q, p) + s(2p, q))´ 1. (6.272)

Remark 6.6.3. Hirzebruch and Zagier prove equations (6.2726.272) and (6.2616.261)

using different methods (Chapter II, §5, Theorem 2 and Theorem 3, [204204]). M

6.6.0.2. Bounds on the Signature of Torus Links.

Proposition 6.64. For p, q P Ną1, the signature of the torus link Tp,q satisfies

the sharp bounds

σ(Tp,q) ď
Y

2pq
3lcm(p,q,2)2 ´

pq
2 + 2q

3p +
2p
3q ´ 1

+ τ
3d (p(p1)2 + q(q1)2 + 2r2) + 2d

3τ

(
1
p +

1
q +

1
2

)
´ l1

]

. (6.273)

and

σ(Tp,q) ě
Q

2pq
3lcm(p,q,2)2 ´

pq
2 + 2q

3p +
2p
3q ´ 1

´ τ
3d (p(p1)2 + q(q1)2 + 2r2)´ 2d

3τ

(
1
p +

1
q +

1
2

)
+ l1

U

, (6.274)

where p1 = gcd(2, q), q1 = gcd(p, 2), r = gcd(p, q), l1 = p1 + q1 + r and

d
τ
=

gcd(p, 2)gcd(p, q)gcd(2, q)
gcd(p, q, 2)

. (6.275)
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Proof . For coprime integers b and c, the following bounds hold:

´s(1, c) ď s(b, c) ď s(1, c) = c
12 +

1
6c ´

1
4 . (6.276)

Since gcd(2qτ
d , pp1τ

d ) = gcd(2pτ
d , qq1τ

d ) = gcd( pqτ
d , 2rτ

d ) = 1, then for p, q P N,

S(p, q, 2; d
τ ) ď p1s(1, pp1τ

d ) + q1s(1, qq1τ
d ) + rs(1, 2rτ

d ) (6.277)

= p1
(

pp1τ
12d + d

6pp1τ ´
1
4

)
+ q1

(
qq1τ
12d + d

6qq1τ ´
1
4

)
+ r

(
rτ
6d +

d
12rτ ´

1
4

)
and

S(p, q, 2; d
τ ) ě ´p1s(1, pp1τ

d )´ q1s(1, qq1τ
d )´ rs(1, 2rτ

d ) (6.278)

= ´p1
(

pp1τ
12d + d

6pp1τ ´
1
4

)
´ q1

(
qq1τ
12d + d

6qq1τ ´
1
4

)
´ r
(

rτ
6d +

d
12rτ ´

1
4

)
.

�

Remark 6.6.4. The bounds are sharp. For odd p, σ(Tp,p) = 1
2(1 ´ p2).

However,

σ(Tp,p) ď
Y

1
2 ´

p2

2 + 1
3p (2p + 2p2) + 2p

3

(
2
p +

1
2

)
´ p´ 2

]

(6.279)

= 1
2(1´ p2). (6.280)

Similarly,

σ(Tp,p) ě
Q

1
2 ´

p2

2 ´
1

3p (2p + 2p2)´ 2p
3

(
2
p +

1
2

)
+ p + 2

U

(6.281)

= 1
2(1´ p2). (6.282)
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A similar phenomenon occurs when p is even, but it is not limited to this par-

ticular family of torus links. For example, the signatures σ(T69,92) = ´3174,

σ(T35,7) = ´120, σ(T47,47) = ´1104 achieve the corresponding lower and upper

bounds. M

A simple, but weaker, inequality follows from Proposition 6.476.47.

Corollary 6.65. For p, q P N, the signature of the torus link Tp,q satisfies the

upper bound

σ(Tp,q) ď
Y

´1
3(p´ 1)(q´ 1)´ 8

3 ´
d
τ + l1

]

, (6.283)

where l1 = gcd(p, 2) + gcd(p, q) + gcd(2, q) and d
τ = gcd(p,2)gcd(p,q)gcd(2,q)

gcd(p,q,2) .

Proof . The inequality of equation (6.2216.221) implies the bound. �

Remark 6.6.5. In particular, the inequality is an equality only for T2,2; oth-

erwise, it is a strict inequality. M

Remark 6.6.6. Since 3 ď l1 ď 4 + gcd(p, q) and gcd(p,q)
2 ď d

τ ď 4 gcd(p, q),

σ(Tp,q) ď
Y

´2
3(u(Tp,q)´ 2) + 1

2 gcd(p, q)
]

. (6.284)

M

Corollary 6.66. If p and q are coprime and of different parity, then

σ(Tp,q) =
2

3pq ´
pq
2 + 2q

3p +
2p
3q ´ 1´ 4 ¨

$

&

%

s(q, p
2 ) + 2s(p, q) p even

s(p, q
2) + 2s(q, p) q even.

(6.285)

479



Proposition 6.67. For a weighted homogeneous surface singularity

f : (C3, 0)Ñ (C, 0) with Milnor fiber Ff, 0 and (boundary) algebraic link K f = BFf, 0,

rank H1(K f ) = 4pg( f )´ σ(Ff, 0)´ µalg( f ). (6.286)

Proof . By Propositions 3.213.21 and 5.405.40,

σ(Ff, 0) = ς+ ´ ς´ (6.287)

µalg( f ) = ς+ + ς0 + ς´ (6.288)

2pg( f ) = ς+ + ς0, (6.289)

and one computes 4pg( f ) ´ σ(Ff, 0) ´ µalg( f ) = ς0, which is the rank of the

homology group H1(E) – H1(K f ) [118118]. �

Corollary 6.68. The following identities hold:

2g(Σ(a, b, c)/S1) = ς0 (6.290)

χ̃(E) = s´ ς0 (6.291)

´K2 = s + 5ς+ + 4ς0 ´ ς´, (6.292)

which imply the congruences

χ̃(E) ” s mod 2 (6.293)

´K2
” s + σ(Ff, 0) mod 4. (6.294)
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Proof . Applying Proposition 6.466.46 yields the first two identities. Corol-

lary 6.536.53 yields the last identity. The congruences follow immediately, and the

details are omitted. �

Corollary 6.69. For a, b, c P N, the number of zero and positive eigenvalues

of the intersection form S corresponding to a Brieskorn-Pham 3-manifold Σ(a, b, c) are

both even. Moreover,

rank H1(E) = rank H1(Σ(a, b, c)) = 2g(Σ(a, b, c)/S1), (6.295)

In particular, the fundamental group π1(Σ(a, b, c)) is not infinite solvable and may be

finite or nilpotent.

Proof . Let M be a Seifert manifold with invariants tg; (αi, βi)u. According

to Neumann and Raymond, Seifert proved H1(M) – Z2g ‘ coker S (Theorem

4.1, [342342]), where S is the matrix

S =



1 1 1 ¨ ¨ ¨ 1 0

α1 0 0 ¨ ¨ ¨ 0 β1

0 α2 0 ¨ ¨ ¨ 0 β2

0 0 . . . ¨ ¨ ¨ 0
...

0 0 0 ¨ ¨ ¨ αm βm


. (6.296)

If M = Σ(a, b, c), then coker S is trivial. Thus, rank H1(Σ(a, b, c)) = 2g.

The evenness of ς+ + ς0 follows from Proposition 4.14 in [437437] (proving a

conjecture of Arnol’d). The evenness of ς0 follows from Corollary 6.686.68, which
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implies the evenness of ς+ and the claimed identity. In particular, rank H1(E) =

rank H1(Σ(a, b, c)) is even. Finally, the equivalence ς0 = ς+ = 1 if and only if

π1(Vˆf, 0) – π1(Σ(a, b, c)) is infinite solvable and not nilpotent (Proposition 3.3,

[118118]). As both ς+ and ς0 must be even, this fundamental group type does not

occur for any Brieskorn-Pham 3-manifold. �

Remark 6.6.7. Milnor classified the fundamental group π1(Σ(a, b, c)) ac-

cording to the sign of 1
a +

1
b +

1
c ´ 1 [312312], q.v., Proposition 4.554.55. M

Proposition 6.70. Given a quasi-Brieskorn-Pham surface singularity

f : (C3, 0) Ñ (C, 0) with inverse exponents ta, b, cu Ă N, then the eigenvalue sig-

nature (ς+, ς0, ς´) of the corresponding intersection form S satisfies

ς+ = abc
3 + 1

2(l + l1 ´ ab´ bc´ ca´ d
τ )

+ 1
6(

ab
c + bc

a + ca
b + d2

abcτ2 )´ 2S(a, b, c; d
τ )´ 2 (6.297)

ς0 = d
τ ´ l1 + 2 (6.298)

ς´ = 2abc
3 + 1

2(l + l1 ´ ab´ bc´ ca´ d
τ )

´ 1
6(

ab
c + ac

b + bc
a + d2

abcτ2 ) + 2S(a, b, c; d
τ )´ 1. (6.299)

Proof . The general formula for the geometric genus corresponding to a

quasi-Brieskorn-Pham polynomial with inverse weights ta, b, cu implies the
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identity

ς+ = 2pg( f )´ ς0 (6.300)

= abc
3 + 1

2(l + l1 ´ ab´ bc´ ca´ d
τ )

+ 1
6(

ab
c + bc

a + ca
b + d2

abcτ2 )´ 2S(a, b, c; d
τ )´ 2. (6.301)

Since µalg( f ) = ς+ + ς0 + ς´, by equation (6.2006.200),

ς´ = µalg( f )´ 2pg( f ) (6.302)

= 2abc
3 + 1

2(l + l1 ´ ab´ bc´ ca´ d
τ )

´ 1
6(

ab
c + ac

b + bc
a + d2

abcτ2 ) + 2S(a, b, c; d
τ )´ 1. (6.303)

�

Remark 6.6.8. Thus, for example,

ς+ + ς´ = abc + (l + l1 ´ ab´ bc´ ca´ d
τ )´ 3 (6.304)

ς´ + ς0 = 2abc
3 + 1

2(l ´ l1 ´ ab´ bc´ ca + d
τ )

´ 1
6(

ab
c + ac

b + bc
a + d2

abcτ2 ) + 2S(a, b, c; d
τ ) + 1. (6.305)

M
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Corollary 6.71. Given a quasi-Brieskorn-Pham surface singularity

f : (C3, 0)Ñ (C, 0) with inverse exponents ta, b, cu Ă N, then

ς0 = 2 ord4˝(W), (6.306)

where 4˝(W) is the interior of the 2-simplex opposite the origin of the weight polytope

W( f ). In particular,

g(Σ(a, b, c)/S1) = ord4˝(W). (6.307)

Proof . The number of lattice points intersecting 4˝(tW) is equal to the

number of positive integral solutions of the Diophantine equation x
a +

y
b +

z
c =

t, which is 1
2(

d
τ t2 ´ l1t) + 1. This integer also coincides with the genus of the

corresponding base-orbifold, g(Σ(at, bt, ct)/S1). Taking t = 1 yields the claim.

�

Conjecture 6.72. Given a quasi-Brieskorn-Pham singularity f : (Cn+1, 0) Ñ

(C, 0), for n ą 2, there is an rational Nn depending only on n, such that

ς0 = Nn ord4˝(W), (6.308)

where 4˝(W) is the interior of the n-simplex opposite the origin of the weight polytope

W( f ).

Problem 6.6.1. Determine Nn as a function of n.

6.6.1. Dedekind Sum Identities.
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Proposition 6.73. For p, q P N,

S(p, q, 2; d
τ ) =

pq
6 lcm(p,q,2)2 ´

p+q
4 + pq

8 + 1
6

(
q
p +

p
q

)
´

q
2p (p´ 1´ t

p
2 u)t p

2 u´ 1
4

(
l1 ´ d

τ

)
+ 1

2

+

tp/2u
ÿ

i=1

"

q
2
´

qi
p

*

, (6.309)

where l1 = gcd(p, 2) + gcd(p, q) + gcd(2, q) and d
τ = gcd(p,2)gcd(p,q)gcd(2,q)

gcd(p,q,2) .

Proof . Combine the two equivalent representations of the signature of the

torus link Tp,q, namely,

σ(Tp,q) = ´(p´ 1)(q´ 1) + 2q
p (p´ 1´ t

p
2 u)t p

2 u + l1 ´
d
τ
´ 2

´ 4
tp/2u
ÿ

i=1

"

q
2
´

qi
p

*

(6.310)

= 2pq
3lcm(p,q,2)2 ´

pq
2 + 2q

3p +
2p
3q ´ 1´ 4S(p, q, 2; d

τ ). (6.311)

�

Corollary 6.74. If p ď q and p divides q or if p and q are even, then

S(p, q, 2; d
τ ) = ´1

2 +
p+q

4 + 1
6(

p
q +

q
p )´

3pq
8 + pq

6 lcm(p,q,2)2

+ q
2p t

p´1
2 u(p´ t

p
2 u) + 1

2(q´ 1)t p
2 u. (6.312)
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Proof . Combining Corollary 6.126.12 and Proposition 6.566.56 yields

S(p, q, 2; d
τ ) = ´1

4(q´ 1)(p´ 1´ 2t
p
2 u) + q

2p t
p´1

2 u(p´ t
p
2 u) + pq

6 lcm(p,q,2)2

´
pq
8 + q

6p +
p

6q ´
1
4 , (6.313)

which simplifies to the claimed identity. �

6.6.2. Generalized Dedekind Reciprocity Law, Revisited. We now make a

few remarks concerning the Dedekind sum function. In general, for a, b, c P N,

we have shown

S(a, b, c; d
τ ) =

abc
6 ´ 1

4(ab + bc + ca´ d
τ )

+ 1
4(l ´ l1) + 1

12(
ab
c + bc

a + ca
b + d2

abcτ2 ) (6.314)

´

a
ÿ

i=1

tb(1´i/a)u
ÿ

j=1

tc(1´i/a´j/b)u
ÿ

k=1

1. (6.315)

Corollary 6.75. For a, b, c P N,

12S(a, b, c; d
τ )´

ab
c ´

ac
b ´

bc
a ´

d2

abcτ2 P Z. (6.316)

In particular,

12S(a, b, c; d
τ )´

ab
c ´

ac
b ´

bc
a + abc´ d2

abcτ2 P 3Z. (6.317)
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Proof . Proposition 6.466.46 and Laufer’s formula imply

χ̃(E) + K2 = ´µalg( f ) + 6(1´ g)´ (l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abcτ2 )

+ 12S(a, b, c; d
τ )´ 2, (6.318)

where g = g(Σ(a, b, c)/S1). Hence, the factor

L(a, b, c) = χ̃(E) + K2 + 2µalg( f ) + 6g´ 6 (6.319)

= µalg( f )´ (l ´ ab´ bc´ ca + ab
c + bc

a + ca
b + d2

abcτ2 )

+ 12S(a, b, c; d
τ )´ 2

= 12S(a, b, c; d
τ )´

ab
c ´

ac
b ´

bc
a + abc´ d2

abcτ2 ´ 3 (6.320)

is an integer divisible by 3 by Corollary 6.516.51. �

Remark 6.6.9. Taking c = 1 yields

12S(a, b, 1; gcd(a, b))´ a
b ´

b
a ´

gcd(a,b)
lcm(a,b) P 3Z, (6.321)

which is very nearly the Dedekind Reciprocity Law. Equivalently, for coprime,

positive integers a and b, there is an integer 3k such that

s(a, b) + s(b, a) = 1
12

(
a
b +

1
ab +

b
a

)
+ k

4 . (6.322)

The Dedekind Reciprocity Law is equivalent is recovered by taking k = 1. M

We generalize.
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Proposition 6.76. The Dedekind sum function satisfies

S(a, b, c; d
τ ) =

area(4a,b,c)
2

18 vol(Ta,b,c)
´

χ(Σ(a,b,c))
12 ´ 1

4

´ pg( f ) + 1
4 µalg( f ) + 1

2 g(Σ(a, b, c)/S1)´ 1
2vol(Ta,b,c), (6.323)

where Ta,b,c = convt0, ae1, be2, ce3u and 4a,b,c is the face opposite the origin.

Proof . Let f be a quasi-Brieskorn-Pham surface singularity with inverse

weights ta, b, cu Ă N. Recall χ(Σ(a, b, c)) = ´ d2

abcτ2 . By Proposition 6.466.46,

S(a, b, c; d
τ ) =

1
12

(
ab
c + bc

a + ca
b ´ χ(Σ(a, b, c))

)
´ 1

4

´ pg( f ) + 1
4 µalg( f ) + 1

2 g(Σ(a, b, c)/S1)´ 1
2vol(Ta,b,c) (6.324)

=
area(4a,b,c)

2

18 vol(Ta,b,c)
´

χ(Σ(a,b,c))
12 ´ 1

4

1
4 µalg( f ) + 1

2 g(Σ(a, b, c)/S1)´ 1
2vol(Ta,b,c)´ pg( f ), (6.325)

where Ta,b,c is the weight polytope of f with volume vol(Ta,b,c) =
abc
6 and 4a,b,c

is the face opposite the origin with area satisfying de Gua’s Theorem,

area(4a,b,c)
2 = 1

4(a2b2 + b2c2 + c2a2). (6.326)

�

Remark 6.6.10. Equation (6.3236.323) involves ingredients from geometry (area

and volume), algebra (dimension of the local algebra), combinatorics (geometric

genus) and topology (genus and Euler characteristic). M
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6.6.3. Generalized Dedekind Sum Congruences. In this section, we gener-

alize classical congruences satisfied by the Dedekind sum function.

Proposition 6.77. For a0, . . . , an P N, let N1 = a0 ¨ ¨ ¨ an,

N = lcm(a0, . . . , an) (6.327)

bk =
lcm(a0, . . . , an)

ak
(6.328)

ck =
lcm(a0, . . . , an)

lcm(a0, . . . , âk, . . . , an)
(6.329)

dk =
a0 ¨ ¨ ¨ âk ¨ ¨ ¨ an

lcm(a0, . . . , âk, . . . , an)
. (6.330)

Then

12N
n
ÿ

k=0

dk s(bk, ck) ”
N1

N

(
1 +

n
ÿ

k=0

b2
k

)
mod N. (6.331)

Proof . According to [343343], the signature of the Milnor fiber of a Brieskorn-

Pham 3-manifold Σ(a0, . . . , an) is computed as

σ(Ff, 0) = ´1 +
N1

3N2

(
1´ (n´ 1)N2 +

n
ÿ

k=0

b2
k

)

´ 4
n
ÿ

k=0

dk s(bk, ck). (6.332)
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Therefore,

3Nσ(Ff, 0) = ´3N +
N1

N

(
1´ (n´ 1)N2 +

n
ÿ

k=0

b2
k

)
ς0

´ 12N
n
ÿ

k=0

dk s(bk, ck). (6.333)

Since the signature is an integer, the following congruence follows,

12N
n
ÿ

k=0

dk s(bk, ck) ”
N1

N

(
1 +

n
ÿ

k=0

b2
k

)
mod N, (6.334)

�

Proof of Proposition 6 .386 .38 . Observe

3Nσ(Ff, 0) = ´3N +

(
1´ (n´ 1)N2 +

n
ÿ

k=0

b2
k

)
´ 12N

n
ÿ

k=0

s(bk, ak). (6.335)

Hence, since the signature is an integer,

12N
n
ÿ

k=0

s(bk, ak) ” 1 +
n
ÿ

k=0

b2
k mod N, (6.336)

which is the claimed congruence. �

6.7. Characteristic and Cyclotomic Polynomials

In §4 of [143143], Glasby studied cyclotomic field extensions of Q and (poly-

nomial) tensor products of cyclotomic polynomials. We use this analysis to
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compute the characteristic polynomial of the quasi-Brieskorn-Pham singularity

as a product of cyclotomic polynomials.

Proposition 6.78. The characteristic polynomial of a non-degenerate, quasi-

Brieskorn-Pham singularity f : (Cn+1, 0) Ñ (C, 0) with inverse weights ta0, . . . , anu

is the following product of cyclotomic polynomials,

∆ f (t) = Φ1(t)(´1)n+1

¨

n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

ź

d|lcm(ai1
,...,aik

)

Φd(t)
(´1)n´k+1N(ai1

,...,aik
), (6.337)

where N(a0, . . . , an) is defined in Proposition 4.714.71. In particular, if f is Brieskorn-

Pham with exponents ta0, . . . , anu, then

∆ f (t) =
n
â

i=0

ź

1ăd|ai

Φd(t) (6.338)

=
ź

1ăd0|a0

¨ ¨ ¨
ź

1ădn|an

Φd0(t) ¨ ¨ ¨Φdn(t). (6.339)
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Proof . Recall the identities (tm ´ 1) b (tn ´ 1) = (tlcm(m,n) ´ 1)gcd(m,n)

and tn ´ 1 =
ś

d|n Φd(t). Combining these, we find

ź

d|lcm(m,n)

Φd(t)gcd(m,n) = (tlcm(m,n)
´ 1)gcd(m,n) (6.340)

=
ź

d|m

Φd(t)b
ź

d1|n

Φd1(t) (6.341)

=
ź

d|m

ź

d1|n

Φd(t)bΦd1(t). (6.342)

Thus, by Proposition 4.724.72,

∆ f (t) = (t´ 1)(´1)n+1
n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

(tlcm(ai1
,...,aik

)
´ 1)(´1)n´k+1N(ai1

,...,aik
)

(6.343)

= Φ1(t)(´1)n+1
n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

ź

d|lcm(ai1
,...,aik

)

Φd(t)
(´1)n´k+1N(ai1

,...,aik
),

(6.344)

which implies the claim. With f = za for some a P N,

∆(a)(t) =
ź

1ăd|a

Φd(t). (6.345)
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Thus, if f =
Ðn

i=0 fi, where fi = zai , then

∆ f (t) =
n
â

i=0
∆ fi(t) (6.346)

=
n
â

i=0

ź

1ăd|ai

Φd(t) (6.347)

by the Sebastiani-Thom equivalence. �

The following result is classical; our proof is new.

Corollary 6.79. The Euler totient function satisfies the identity

k =
ÿ

d|k

ϕ(k). (6.348)

In particular, ϕ(k) ď k´ 1 with equality if and only if k is prime.

Proof . Consider the singularity f = zk with k P N. The characteristic

polynomial is the product ∆ f (t) =
ś

1ăd|k Φd(t), and the algebraic index is

k ´ 1. Thus, since µalg( f ) = deg ∆ f (t) and ϕ(d) = deg Φd(t), one has k ´ 1 =
ř

1ăd|k ϕ(d), which implies the claim. �

Define the q-integer [n]q =
qn´1
q´1 .

Corollary 6.80. If f : (Cn+1, 0) Ñ (C, 0) is a homogeneous polynomial

of degree D, then the characteristic polynomial is the following product of cyclotomic
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polynomials

∆ f (t) =
ź

d|D

Φd(t)(´1)n([n+1]1´D´δd,1) (6.349)

with degree µalg( f ) = (D´ 1)n+1.

Proof . By Proposition 6.786.78,

∆ f (t) = Φ1(t)(´1)n+1
¨

n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

ź

d|D

Φd(t)(´1)n´k+1Dk´1
(6.350)

= Φ1(t)(´1)n+1
¨
ź

d|D

Φd(t)
řn+1

k=1 (´1)n´k+1(n+1
k )Dk´1

(6.351)

=
ź

d|D

Φd(t)(´1)n(1´(1´D)n+1)/D+(´1)n+1δd,1 (6.352)

=
ź

d|D

Φd(t)(´1)n([n+1]1´D´δd,1), (6.353)

where the exponent an+1,D = (´1)n

D (1 ´ (1 ´ D)n+1), and, for n ě 0, may be

written as an+1,D = (´1)n[n + 1]1´D. Moreover, since ϕ(n) = deg Φn(t), one has

µalg( f ) = deg ∆ f (t) (6.354)

= (´1)n
ÿ

d|D

([n + 1]1´D ´ δd,1)ϕ(d) (6.355)

= (´1)n([n + 1]1´DD´ 1) (6.356)

= (D´ 1)n+1, (6.357)

as claimed. �
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Remark 6.7.1. As a function of D ě 2, an+1,D =
řn

k=0(´1)k+n(D ´ 1)k,

and tan+1,DuDě2 counts the number of walks of length n + 1 between two dis-

tinct vertices on the complete graph KD (e.g., A001477A001477, A002061A002061, A062158A062158 and

A060884A060884). Figure 6.26.2 illustrates seven walks of length three (n = 2) on the com-

plete graph K4 (D = 4). M

12421212 1232

1312 1342

1412 1432

Figure 6.2. Seven Walks of Length Three on the Complete Graph K4

Remark 6.7.2. As a function of n, the exponent an+1,D satisfies the second-

order, linear recurrence relation an,D = (D ´ 2)an´1,D + (D ´ 1)an´2,D with

a0,D = 0 and a1,D = 1. For example, tan,3uně0 enumerates the Jacobsthal sequence,

which counts the number of perfect matchings of a 2ˆ n modified grid graph

with squares, i.e., C4 graphs, replaced by tetrahedra, i.e., K4 graphs (A001045A001045).

M

495

http://oeis.org/A001477
http://oeis.org/A002061
http://oeis.org/A062158
http://oeis.org/A060884
http://oeis.org/A001045


Corollary 6.81. For a non-degenerate, quasi-Brieskorn-Pham singularity

f with distinct prime inverse weights tp0, . . . , pnu, the corresponding characteris-

tic polynomial ∆ f (t) is the cyclotomic polynomial ΦN(t), where N = p0 ¨ ¨ ¨ pn. In

particular, µalg( f ) = ϕ(N), the Euler totient function. If f is Brieskorn-Pham, then

K f » Σ(p0, . . . , pn) is a topological sphere if and only if N is not prime.

Proof . Let µ and ϕ = id ˚ µ denote the standard Möbius function and

Euler totient function, respectively. If B is a finite basis of distinct primes P with

conductor N =
ś

pPP p, then µB = µ on the set of divisors of the squarefree

integer N. Since the P-divisors of N coincide with ordinary (unitary) divisors,

∆ f (t) =
ź

d|N

(td
´ 1)µ(N/d) =

ź

d|N

(tN/d
´ 1)µ(d) = ΦN(t), (6.358)

which is the Nth-cyclotomic polynomial. The degree of ∆ f (t) follows from con-

volution identity

µalg( f ) = deg ∆ f (t) =
ÿ

d|N

dµ(N
d ) =

ÿ

d|N

N
d µ(d) = ϕ(N). (6.359)

By Proposition ??, if f is Brieskorn-Pham, then K f is the Brieskorn-Pham mani-

fold Σ(p0, . . . , pn), which is a topological sphere if and only if ∆ f (1) = ˘1. The

classical identity n =
ś

1ăd|n Φn(1) for n P N implies Φn(1) = p if and only if

n is a power of a prime p, and Φn(1) = 1 if and only if ω(n) ą 1, where ω(n)

denotes the number of prime factors of n. That is, Φn(1) = gcdtpup|n. �
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One infers that the algebraic index of a quasi-Brieskorn-Pham polynomial

generalizes the Euler totient function, and is not, in the conventional sense, a

multiplicative arithmetic function. However, by the Sebastiani-Thom equiva-

lence, the algebraic index does satisfy a multiplicative identity.

6.8. Abstract Arithmetic

Let D(k) denote the set of divisors of k P N. Denote by MD(k1, . . . , km)

the set of mixed divisors of the integer k1 ¨ ¨ ¨ km such that each divisors has at

least one prime divisor from each of the integers tk1, . . . , kmu. In particular, if

k = pr1
1 ¨ ¨ ¨ prm

n , then MD(pr1
1 , . . . , prm

n ) = D(k).

Remark 6.8.1. Consider three coprime integers, say, 20 = 22 ¨ 5, 3 and 7.

Since τ(20) = 6 and τ(3) = τ(7) = 2, there are five mixed divisors of the

product 420, namely, 42 = 2 ¨ 3 ¨ 7, 84 = 22 ¨ 3 ¨ 7, 105 = 5 ¨ 3 ¨ 7, 210 = (2 ¨ 5) ¨ 3 ¨ 7

and 420 = (22 ¨ 5) ¨ 3 ¨ 7. Thus, MD(20, 3, 7) = t42, 84, 105, 210, 420u. M

Recall the Dirichlet convolution of the arithmetic functions f , g : N Ñ C is

the sum ( f ˚ g)(k) =
ř

d|k f (d)g( k
d ), which is associative and commutative. For

example, id ˚ µ = ϕ and ϕ ˚ 1 = id. The set of arithmetic functions D equipped

with pointwise addition and Dirichlet convolution is a commutative ring.

Define the arithmetic function µB(k) to be (´1)l if k can be factored into a

B-squarefree product of l elements of an integral basis B Ă Ną1 and 0 other-

wise. Define the generalized Euler totient function ϕB with respect to the basis

B as ϕ(k) =
ř

d|Bk dµB(
k
d ), where d |B k denotes a restricted divisor of k with
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respect to the basis B. The reader is referred to Volume 3 for a discussion of

arithmetic and analytic number theory with finite integral bases.

Remark 6.8.2. Consider the example given in Remark 6.8.76.8.7. An elementary

computation yields MD(3, 4, 5) = t30, 60u, so ∆(3,4,5)(t) = Φ30(t)Φ60(t). The

t3, 4, 5u-divisors of 60 are t1, 3, 4, 5, 12, 15, 20, 60u and, therefore,

ϕt3,4,5u(60) = ´1 + 3 + 4 + 5´ 12´ 15´ 20 + 60 = 24, (6.360)

which coincides with deg ∆(3,4,5)(t). M

The previous remark suggests some general structure.

Proposition 6.82. For a quasi-Brieskorn-Pham singularity f with pairwise

coprime inverse weights ta0, . . . , anu Ă N, the corresponding characteristic polynomial

is the product

∆ f (t) = Φ1(t)(´1)n+1
n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

ź

d|ai1
¨¨¨aik

Φd(t)(´1)n´k+1
(6.361)

=
ź

dPMD(a0,...,an)

Φd(t) (6.362)

with degree

µalg( f ) =
ÿ

dPMD(a0,...,an)

ϕ(d) = ϕB(N), (6.363)

where ϕ is the Euler totient function, ϕB is the generalized Euler totient function with

respect to the basis B = ta0, . . . , anu and N = a0 ¨ ¨ ¨ an.
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Proof . For a basis of pairwise coprime exponents B = ta0, . . . , anu, the

characteristic polynomial is especially simple to compute since the least com-

mon multiple is the standard product and all greatest common divisors are

equal to 1. By Corollary 4.744.74,

∆ f (t) =
ź

d |B N

(td
´ 1)µB(N/d), (6.364)

where the conductor of B is N = a0 ¨ ¨ ¨ an. Observe the identity

µalg( f ) = deg ∆ f (t) =
ÿ

d|BN

dµB(
N
d ) = ϕB(N). (6.365)

�

Remark 6.8.3. If any of the integers a0, . . . , an is equal to 1, then the numer-

ator and denominator of equation(6.3616.361) cancel, thereby yielding ∆(a0,...,an)(t) =

1. Equivalently, MD(a0, . . . , an) = H if and only if ai = 1 for some 0 ď i ď n. M

Remark 6.8.4. For coprime integers p, q P N,

∆Tp,q(t) =

ś

1ăd|pq Φd(t)
ś

1ăd|p Φd(t)
ś

1ăd|q Φd(t)
(6.366)

=
ź

dPMD(p,q)

Φd(t). (6.367)

Since each cyclotomic polynomial is irreducible, this product is a complete factor-

ization of the reduced Alexander polynomial of the torus link. M
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Remark 6.8.5. Consider a Brieskorn-Pham polynomial f with inverse

weights a = 7 and b = 247 = 13 ¨ 19. By Proposition 6.826.82,

∆T7,247(t) = Φ91(t)Φ133(t)Φ1729(t), (6.368)

as MD(7, 247) = t91, 133, 1729u, and

µalg( f ) = ϕ(91) + ϕ(133) + ϕ(1729) (6.369)

= 72 + 108 + 1296 (6.370)

= 1476 (6.371)

= (7´ 1)(13 ¨ 19´ 1). (6.372)

The reduced Alexander polynomials of the torus links Tp,q for 2 ď p ď q ď 10 is

tabulated in Appendix AA (Table A.13A.13). M

Remark 6.8.6. For coprime integers ta, b, cu P N,

∆(a,b,c)(t) =

ś

1ăd|a Φd(t)
ś

1ăd|b Φd(t)
ś

1ăd|c Φd(t)
ś

1ăd|abc Φd(t)
ś

1ăd|ab Φd(t)
ś

1ăd|bc Φd(t)
ś

1ăd|ca Φd(t)
(6.373)

=
ź

dPMD(a,b,c)

Φd(t). (6.374)

M
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Corollary 6.83. For a non-degenerate, quasi-Brieskorn-Pham singularity f

with distinct prime-power, inverse weights tpr0
0 , . . . , prn

n u, the corresponding character-

istic polynomial is the product of cyclotomic polynomials,

∆ f (t) =
ź

1ďi0ďr0

¨ ¨ ¨
ź

1ďinďrn

Φ
pi0

0 ¨¨¨p
in
n
(t) (6.375)

=

$

&

%

Φ1(t) N = 1
ś

dPψ˝(N;tp0,...,pnu)
Φd(t) N = pr0

0 ¨ ¨ ¨ prn
n ą 1

(6.376)

with Ωω(N)(N) =
śn

i=0 ri terms in the product and degree µalg( f ) = ϕ˚(N),

where ϕ˚ is the unitary Euler totient function. If f is Brieskorn-Pham, then K f »

Σ(pr0
0 , . . . , prn

n ) is a topological (2n´ 1)-sphere if n ą 2.

Proof . We merely mention that Φk(1) equals 1 unless the k is a prime

power. �

Remark 6.8.7. Consider a non-degenerate, quasi-Brieskorn-Pham polyno-

mial with inverse weights t3, 4, 5u. By equation (4.1824.182),

∆(3,4,5)(t) =
(t60 ´ 1)(t3 ´ 1)(t4 ´ 1)(t5 ´ 1)
(t12 ´ 1)(t20 ´ 1)(t15 ´ 1)(t´ 1)

(6.377)

= 1 + t + t2
´ t4

´ 2t5
´ 2t6

´ t7 + t9 + t10 + t11 + t12

+ t13 + t14 + t15
´ t17

´ 2t18
´ 2t19

´ t20 + t22 + t23 + t24. (6.378)

By Corollary 6.836.83, N = 60, and ψ˝(60; t2, 3, 5u) = t1, 30, 60u. Hence, the

product of cyclotomic polynomials consists of Ω3(60) = 2 terms, namely,
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∆(3,4,5)(t) = Φ30(t)Φ60(t), where Φ30(t) = 1 + t ´ t3 ´ t4 ´ t5 + t7 + t8 and

Φ60(t) = Φ30(t2). Moreover, ϕ˚(60) = (4´ 1)(3´ 1)(5´ 1) = 24, which co-

incides with deg ∆(3,4,5)(t). Thus, ∆(3,4,5)(1) = Φ30(1)2 = 1, so Σ(3, 4, 5) is a

integral homology 3-sphere. Furthermore, ∆(3,4,5)(´1) = Φ30(´1)Φ60(1) = 1, so

the Arf-Kervaire invariant of Σ(3, 4, 5) is 0 and, therefore, Σ(3, 4, 5) is diffeomor-

phic to S3. M

Remark 6.8.8. Suppose k = 2r pk1 ¨ ¨ ¨ pkn , where r P N and pki = 22ki + 1 is

a Fermat prime. Corollary 6.836.83 implies

∆ f (t) =
ź

1ďiďr

Φ2i pk1
¨¨¨pkn

(t) (6.379)

and

µalg( f ) =
r
ÿ

i=1

ϕ(2i pk1 ¨ ¨ ¨ pkn) (6.380)

=

(
r
ÿ

i=1

2i´1

)
2
řn

i=1 2ki (6.381)

= 2
řn

i=1 2ki (2r
´ 1). (6.382)

At present, five Fermat primes are known, namely, 3, 5, 17, 257 and 65537. M

Corollary 6.84. For coprime integers ta0, . . . , anu Ă N,

n
â

i=0

ÿ

1ăd|ai

Φd(t) =
ź

dPMD(a0,...,an)

Φd(t). (6.383)
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In particular, for distinct primes tp0, . . . , pnu Ă P,

n
â

i=0
Φpi(t) = Φp0¨¨¨pn(t). (6.384)

Proposition 6.85. Let f : N Ñ N be a multiplicative arithmetic function. For

any set of pairwise coprime integers ta0, . . . , anu Ă N, the following identity holds,

ÿ

dPMD(a0,...,an)

f (d) =
n
ź

i=0

(( f ˚ 1)(ai)´ 1). (6.385)

or, equivalently,

ÿ

dPMD(a0,...,an)

( f ˚ µ)(d) =
n
ź

i=0

( f (ai)´ 1). (6.386)

Proof . Expand the right side, use the multiplicativity of f ˚ 1 and the Prin-

ciple of Inclusion-Exclusion. To prove the second identity from the first, observe

that f ˚ µ is a multiplicative arithmetic function and apply the identity

( f ˚ µ) ˚ 1 = f ˚ (µ ˚ 1) = f ˚ ε = f . (6.387)

�

Corollary 6.86. For coprime integers ta0, . . . , anu Ă N,

ÿ

dPMD(a0,...,an)

ϕ(d) =
n
ź

i=0

(ai ´ 1) (6.388)

ÿ

dPMD(a0,...,an)

1 =
n
ź

i=0

(τ(ai)´ 1). (6.389)
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Proof 1 . By Proposition 6.826.82,

µalg( f ) = deg ∆ f (t) =
ÿ

dPMD(a0,...,an)

ϕ(d), (6.390)

as deg Φn(t) = ϕ(n) for n P N.

To compute the cardinality of MD(a0, . . . , an), observe the recurrence rela-

tion MD(a0, . . . , an) = MD(a0, . . . , an´1) ¨ (D(an)zt1u), where the product of

sets is the set of the implied product of their corresponding elements. Since

there τ(a)´ 1 elements in D(a)zt1u, where τ(a) =
ś

p|a orda(p) is the number

of divisors function, it follows that

ÿ

dPMD(a0,...,an)

1 = |MD(a0, . . . , an)| =
n
ź

i=0

(τ(ai)´ 1) . (6.391)

Since the weights of f are t 1
a0

, . . . , 1
an
u, one has µalg( f ) =

śn
i=0(ai ´ 1). �
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Proof 2 . The proof of the second identity is identical to that given in the

first proof. As for the first identity, one has

ÿ

dPMD(a0,...,an)

ϕ(d) =
n
ÿ

k=0

(´1)n+1´k
ÿ

0ďi1ă¨¨¨ăikďn

ÿ

d|D(ai1
¨¨¨aik

)

ϕ(d) (6.392)

=
n
ÿ

k=0

(´1)n+1´k
ÿ

0ďi1ă¨¨¨ăikďn

ai1 ¨ ¨ ¨ aik (6.393)

=
n
ÿ

k=0

(´1)n+1´kek(a0, . . . , an) (6.394)

=
n
ź

k=0

(ak ´ 1), (6.395)

since ϕ ˚ 1 = id. �

Remark 6.8.9. Taking f = 1 and f = id ˚ µ = ϕ in Proposition 6.856.85

yields the identities of Corollary 6.866.86, since τ = 1 ˚ 1 and ε = µ ˚ 1, respectively.

Similarly, consider f = µ, the Möbius function. Since ε = µ ˚ 1, then

ÿ

dPMD(a0,...,an)

µ(d) =
n
ź

i=0

(ε(ai)´ 1) (6.396)

=

$

&

%

(´1)n+1 ta0, . . . , anu Ă Ną1

0 ai = 1 for some 0 ď i ď n.
(6.397)

Finally, consider f = id`, the identity power function. Since σ` = id` ˚ 1, then

ÿ

dPMD(a0,...,an)

d` =
n
ź

i=0

(σ`(ai)´ 1) ` P N. (6.398)
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M

Corollary 6.87. Let f be a quasi-Brieskorn-Pham singularity with pairwise

coprime inverse weights ta0, . . . , anu Ă N. The number of irreducible polynomials in

the factorization of ∆ f (t) depends only on the signature of the prime factorization of the

conductor N = a0 ¨ ¨ ¨ an.

Proof . The characteristic polynomial ∆ f (t) is a product of cyclotomic

polynomials, which are irreducible. By Corollary 6.866.86, the number of said ir-

reducible polynomials is the product
śn

i=0(τ(ai)´ 1), which depends only on

the signature of N. �

Corollary 6.88. For any set of positive integers ta0, . . . , anu Ă Ną1, there is a

set of non-negative integers tcdu, not all zero, such that

ÿ

d|lcm(a0,¨¨¨ ,an)

cd ϕ(d) =
n
ź

i=0

(ai ´ 1). (6.399)

In particular, if ta0, . . . , anu is a set of pairwise coprime integers, then cd = 1 if and

only if d P MD(a0, . . . , an) and zero otherwise.

Remark 6.8.10. Corollary 6.886.88 generalizes Corollary 6.796.79. M

The question then arises whether or not other arithmetic functions can be

represented in a similar manner, that is, as the algebraic index of a singularity.

Corollary 6.89. Given a multiplicative arithmetic function f : N Ñ N

and a positive integer k = pr0
0 ¨ ¨ ¨ prn

n P N, where pi is the ith-prime factor of k, let
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fk : (Cn+1, 0) Ñ (C, 0) be a non-degenerate, quasi-Brieskorn-Pham singularity with

inverse weights t f (pri
i ) + 1un

i=0. Then the algebraic index of fk is precisely the value

f (k).

Proof . The formula for the algebraic index of a quasi-Brieskorn-Pham

singularity in terms of the weights implies

µalg( fk) =
n
ź

i=0

( f (pri
i ) + 1´ 1) = f (k), (6.400)

by the multiplicativity of f . �

Remark 6.8.11. More generally, write k = d0 ¨ ¨ ¨ dm, where the divi-

sors d0, . . . , dm are pairwise coprime, and let fk : (Cm+1, 0) Ñ (C, 0) be a

quasi-Brieskorn-Pham singularity with inverse weights t f (di) + 1um
i=0. Then

µalg( fk) = f (k). M

Remark 6.8.12. Let f = ϕ ˚ id = (id ˚ id) ˚ µ = (id ¨ τ) ˚ µ. Then

µalg( fk) = (ϕ ˚ id)(k) =
k
ÿ

l=1

gcd(l, k). (6.401)

M

Associate to each multiplicative arithmetic function f : N Ñ N a family of

rational functions tΦ( f )
n (t)unPN such that

t f (n)
´ 1 =

ź

d|n

Φ( f )
d (t). (6.402)
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By Möbius inversion,

Φ( f )
n (t) =

ź

d|n

(t f (d)
´ 1)µ(n/d)

P Z(t). (6.403)

Recall that the degree of a rational function as the difference of the degrees of

the numerator and denominator polynomials. Thus,

deg Φ( f )
n (t) =

ÿ

d|n

f (d)µ(n
d ) = ( f ˚ µ)(n). (6.404)

Taking f = id, the identity function, yields Φid
n (t) = Φn(t), the nth-cyclotomic

polynomial. More generally, since

Φ( f )
n (t)

ź

d|n

f (d)
ź

k=1

(t´ ζk
f (d))

µ(n/d) (6.405)

=

f (d)
ź

k=1

ź

d|n

(t´ ζk
f (d))

µ(n/d), (6.406)

if there is an n P N such that f (d) = d for each divisor of n, then Φ( f )
n (t) =

Φn(t).
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Proposition 6.90. Let f : N Ñ N be a multiplicative arithmetic function.

Given pairwise coprime integers ta0, . . . , anu Ă N, the rational function

∆( f )(t) =
f (a0)´1
ź

k0=1

¨ ¨ ¨

f (an)´1
ź

kn=1

(t´ ζk0
f (a0)

¨ ¨ ¨ ζkn
f (an)

) (6.407)

= Φ( f )
1 (t)(´1)n+1

n+1
ź

k=1

ź

0ďi1ă¨¨¨ăikďn

ź

d|ai1
¨¨¨aik

Φ( f )
d (t)(´1)n´k+1

(6.408)

=
ÿ

dPMD(a0,...,an)

Φ( f )
d (t) (6.409)

with degree

deg ∆( f )(t) =
n
ź

i=0

( f (ai)´ 1) =
ÿ

dPMD(a0,...,an)

( f ˚ µ)(d). (6.410)

Corollary 6.91. Let f : N Ñ N be a multiplicative arithmetic function. If

ta0, . . . , anu Ă N and t f (a0), . . . , f (an)u are each sets of pairwise coprime integers,

then

ÿ

dPMD(a0,...,an)

( f ˚ µ)(d) =
ÿ

dPMD( f (a0),..., f (an))

ϕ(d). (6.411)

Proof . For a quasi-Brieskorn-Pham singularity g with pairwise coprime

inverse weights t f (a0), . . . , f (an)u Ă N, the corresponding characteristic polyno-

mial is the product

∆g(t) =
ź

dPMD( f (a0),..., f (an))

Φd(t) (6.412)
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with degree

µalg(g) =
ÿ

dPMD( f (a0),..., f (an))

ϕ(d). (6.413)

Proposition 6.906.90 implies the claim. �

6.9. Zeta Function of an Algebraic Link

Corollary 6.92. Given odd, coprime, positive integers p and q, the Lefschetz

zeta function ζTp,q of the torus knot Tp,q is a ratio of cyclotomic polynomials,

ζTp,q(t) = ´

ś

d|pq Φd(t)
ś

d|p Φd(t)
ś

d|q Φd(t)
(6.414)

= ´Φ1(t)´1
ź

dPM(p,q)

Φd(t). (6.415)

If Proposition 4.244.24 extends to torus links without modification, then the

following conjecture is true.

Proposition 6.93. Given positive integers p and q, the Lefschetz zeta function

ζTp,q of the torus link Tp,q is a ratio of cyclotomic polynomials,

ζTp,q(t) = (´1)µ+1

ś

d|pq Φd(t)
ś

d|p Φd(t)
ś

d|q Φd(t)
(6.416)

= (´1)pq´p´q Φ1(t)´1
ź

dPM(p,q)

Φd(t), (6.417)

where µ = (p´ 1)(q´ 1).

One wonders if a similar result holds for any link in S3.
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Remark 6.9.1. The zeta function of the r-Hopf link is straightforward to

compute,

ζTr,r(t) = (´1)(r´1)2+1
ź

d|r

Φd(t)´[2]1´r (6.418)

= (1´ tr)r´2. (6.419)

M

6.10. Primes and Knots

Remark 6.10.1. We mention only briefly a rather deep and beautiful con-

nection between knots and primes [298298, 324324]. The fundamental observation is

that the analogue of the embedding K : S1 ãÑ R3, which represents a knot in

space, in an arithmetic setting is P : Spec Fp ãÑ Spec Z, where p is a prime and

Fp is a Galois field. The homotopy groups of S1, namely,

πk(S1) –

$

&

%

t0u k ě 2

Z k = 1
(6.420)

are dual to the étale homotopy groups

πet
k (Spec Fp)

$

&

%

t0u k ě 2

Ẑ k = 1,
(6.421)

where Ẑ = lim
ÐÝ

Zn is the profinite completion of Z. The knot group π(K) =

π1(S3zK) is dual to the etale (fundamental) group πet
1 (Zztpu). Similarly, if
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NK,r denotes the Fox completion of MK,r, the first homology group H1(NK,r) –

H1(MK,8)/(tr ´ 1)H1(MK,8) is analogous to a class group, and the Alexander

polynomial ∆K is analogous to an Iwasawa polynomial, which can used to com-

pute the order of said homology group, q.v., Proposition 4.214.21. M

6.11. Algebraic Roots

Let Q and Q̄ denote the field of rationals and complex algebraics, that is, the

set of roots of all Z-polynomials with finite degree, respectively.

The minimal polynomial P(ϑ; x) of an algebraic ϑ is the unique, irreducible Q-

polynomial of minimal-degree with said algebraic as a root. An algebraic integer

is an algebraic with a monic minimal polynomial. An algebraic unit is an alge-

braic integer whose inverse is also an algebraic integer. The degree deg ϑ, abso-

lute norm N(ϑ) and absolute trace Tr(ϑ) is the degree of the minimal polynomial

of ϑ, and the product and sum of the algebraic conjugates of ϑ, respectively.

Let K = Q(ϑ) be the field extension of Q obtained by adjoining an algebraic

ϑ. Denote the ring of (algebraic) integers by OK, which is a free Z-module with

an integral basis BK = tb1, . . . , bdu, where d = deg ϑ. That is, any α P OK can be

written as a Z-linear combination of basis elements.

Definition 6.94. The algebraic root ϑ( f ) of a weighted homogeneous

singularity f : (Cn+1, 0) Ñ (C) with non-zero weights tωiu and spectrum

Sp( f ) = tγju is the algebraic number Sp( f ; eπi) = eπi(n+1)/2 śn
i=0 cot(πωi

2 ).

When the context is clear, we write ϑ instead of ϑ( f ).
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Remark 6.11.1. If ω0, . . . , ωn P QX (0, 1), then e´πi(n+1)/2ϑ( f ) is a positive,

real algebraic. For example, ϑ(z) = 0, ϑ(z4) = i(1 +
?

2) and ϑ(z6) = i(2 +
?

3). M

Proposition 6.95. Let Uα Ď Cnα be a neighborhood of the origin. Assume that

the complex analytic map fα : (Uα, 0) Ñ (C, 0) is non-degenerate. Then the algebraic

root of the Sebastiani-Thom sum f1 ‘ ¨ ¨ ¨‘ fs is the product of the algebraic roots of

each summand,

ϑ( f1 ‘ ¨ ¨ ¨‘ fs) =
s
ź

i=1

ϑ( fi). (6.422)

Corollary 6.96. Let f : (Cn+1, 0) Ñ (C, 0) be a weighted homogeneous

polynomial with algebraic root ϑ( f ). Then, for N P N,

ϑ(ΣN f ) = iNϑ( f ). (6.423)

In particular, ϑ(ΣN f ) = ϑ( f ) if and only if 4 | N.

Proof . Observe the identities cot(π
4 ) = 1 and in+4 = in for n P Z. �

Definition 6.97. The minimal polynomial, absolute norm and absolute trace

of a weighted homogeneous singularity is the minimal polynomial, absolute

norm and absolute trace of its algebraic root.

The signature of Q(ϑ) is the pair (p, q), where p is the number of real roots

and q is the number of pairs of conjugate roots of the minimal polynomial of ϑ.
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The discriminant D(ϑ) of a number field Q(ϑ) is the determinant of the matrix

(TrQ(ϑ) bibj), where tb1, . . . , bdu is an integral basis of Q(ϑ). The discriminant

does not depend on the integral basis.

Definition 6.98. The signature,discriminant and class number of a

weighted homogeneous singularity is the signature, discriminant and class

number of the number field of its algebraic root.

Proposition 6.99. Let Uα Ď Cnα be a neighborhood of the origin. Assume that

the complex analytic map fα : (Uα, 0) Ñ (C, 0) is non-degenerate. Then the minimal

polynomial of the Sebastiani-Thom sum f1 ‘ ¨ ¨ ¨ ‘ fs divides the tensor product of

the minimal polynomials of the summands. That is, there is an integer m P N and a

(possibly trivial) polynomial F(x) P Z[x] such that

s
â

i=1
P(ϑ( fi); x) = F(x)P(ϑ( f1 ‘ ¨ ¨ ¨‘ fs); x)m. (6.424)

In particular, if 4 | N, then P(ϑ(ΣN f ); x) = P(ϑ( f ); x).

Proof . The claim follows immediately from Proposition 6.956.95, the fact

that the product of algebraic roots is a root of both the minimal polynomial

of the Sebastiani-Thom summation and of the tensor product of the minimal

polynomials of the summands, and the fact that minimal polynomials are irre-

ducible. �

Remark 6.11.2. For example, ϑ(z2) = i, ϑ(z3) = i
?

3 and ϑ(z5) =

i
a

5 + 2
?

5 with minimal polynomials P(ϑ(z2); x) = x2 + 1, P(ϑ(z3); x) = x2 + 3
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and P(ϑ(z5); x) = x4 + 10x2 + 5, respectively. Moreover,

ϑ(x2 + y3 + z5) = ϑ(z2)ϑ(z3)ϑ(z5) (6.425)

= ´i
?

3
b

5 + 2
?

5. (6.426)

However, P(ϑ(z2)ϑ(z3)ϑ(z5); x) = x4 + 30x2 + 45, so the minimal polynomial

is not multiplicative over Sebastiani-Thom summations. The polynomial tensor

product of the minimal polynomial of the summands is the degree-16 polyno-

mial

P(ϑ(z2); x)b P(ϑ(z3); x)b P(ϑ(z5); x) =
ź

i,j,k

(x´ αiβ jγk) (6.427)

= (x4 + 30x2 + 45)4, (6.428)

where tαiu, tβ ju and tγku are the roots of P(ϑ(z2); x),P(ϑ(z3); x) and

P(ϑ(z5); x), respectively. Similarly, P(ϑ(z4); x) = 1 + 6x2 + x4 and P(ϑ(x2 +

y3 + z4); x) = x4 + 18x2 + 9, while P(ϑ(z2); x) b P(ϑ(z3); x) b P(ϑ(z4); x) =

(x4 + 18x2 + 9)4. M

Define the odd von Mangoldt function,

Λodd(n) =

$

&

%

log p if n is an odd prime power

0 otherwise.
(6.429)
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Recall the Euler totient function, ϕ(n) =
ś

p|n(1´
1
p ), which satisfies the identi-

ties

ϕ(nm) =
ϕ(n)ϕ(m)gcd(n, m)

ϕ(gcd(n, m))
n, m P N. (6.430)

Conjecture 6.100. For n P N,

eΛodd(n) = δn,1 +
2n
ź

k=1
gcd(k,2n)=1

(
i cot(πk

2n )
)

(6.431)

= δn,1 + iϕ(2n)
2n
ź

k=1
gcd(k,2n)=1

cot(πk
2n ) (6.432)

=
lcm(1, 3, 5, . . . , n)

lcm(1, 3, 5, . . . , n´ 1)
. (6.433)

Proof . The first identity is left as an exercise for the reader. The following

identity is straightforward to prove:

eΛodd(n) =

$

&

%

lcm(1,2,3,...,n)
lcm(1,2,3,...,n´1) n odd

1 otherwise
(6.434)

=
lcm(1, 3, 5, . . . , n)

lcm(1, 3, 5, . . . , n´ 1)
. (6.435)

�

Proposition 6.101. Let ϑ = i cot( π
2n ), where n P N. The following statements

are true:

1. The real ϑ is an algebraic integer;
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2. The degree of ϑ is ϕ(2n);

3. The absolute trace of ϑ is zero;

4. The absolute norm of ϑ is equal to p if and only if n is a power of an odd prime

p and 1 otherwise, that is, N(ϑ) = eΛodd(n);

5. The algebraic ϑ is an algebraic unit if and only if n is not an odd prime power;

6. The signature of Q(ϑ) is trivial or purely complex,namely,t0, 1
2(1 ´

δn,1)ϕ(2n)u; and,

7. The discriminant of Q(ϑ) is the product

D(ϑ) =
(´1)(1´δn,1)ϕ(2n)/2nϕ(2n)

ś

p|n pϕ(2n)/(p´1)
¨

$

&

%

1 n is odd

2ϕ(2n) n is even
(6.436)

= iϕ(2n)´δn,1

(
n

ś

2ăp|n
p´1
?p

)ϕ(2n)

. (6.437)

Proof . For r P Q, observe that 2 cos(πr) = eπir + e´πir and 2i sin(πr) =

eπir ´ e´πir are algebraic integers. Since the algebraics are closed under multi-

plication, it follows that for r P QzZ, the real i cot(πr) is algebraic. Statement

6. implies statement 3. That is, since ϑ is purely imaginary, except for n = 1

which corresponds to the minimal polynomial x, the conjugates of ϑ come in

complex conjugate pairs. Thus, its absolute trace, the sum of roots of the mini-

mal polynomial P(ϑ; z) is zero. Statement 4. implies statement 5., since units are

characterized by their absolute norms, namely, N(ϑ) = ˘1.

To prove statement 2., write r = 2k
n for some k, n P N such that gcd(k, n) =

1. Let ζn = e2πi/n and ηn,k = (ζk
n + ζ´k

n )(ζk
n ´ ζk

n)
´1. Since cot(2πk

n ) = iηn,k, the
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corresponding tower of field extensions from Q is as follows:

Q(ζn, i)

Q(ζn) Q(ηn,k, i)

Q(ηn,k) Q(cot(2kπ
n ))

Q

?? OO

OO ?? OO

OO ??

(6.438)

Since [Q(ζn) : Q] = ϕ(n) and [Q(ζn) : Q(ηn,k)] = 2δ4|n [7676], then it follows that

[Q(cot(2πk
n )) : Q] =

$

’

’

’

&

’

’

’

%

ϕ(n) 4 - n
1
4 ϕ(n) 8 | n
1
2 ϕ(n) n ” 4 mod 8.

(6.439)

Thus, deg ϑ = 2[Q(cot( π
2n )) : Q] = ϕ(2n). The other statements are left as

exercises for the reader. �

Corollary 6.102. The discriminant D(ϑ) is divisible by 2ϕ(2n)ord2(n) for even

n. In particular, the discriminant D(ϑ) is divisible by 16 if n is even and not equal to 2

and by 256 if a is even and not equal to 2 or 6.
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Conjecture 6.103. The minimal polynomial of the algebraic ϑ = i cot( π
2n ),

where n P Ną1, is the product

P(ϑ; x) =
2n
ź

k=1
gcd(k,2n)=1

(
x´ i cot(πk

2n )
)

. (6.440)

Hence, the degree of ϑ is the summation,

2n
ÿ

k=1
gcd(k,2n)=1

1 = ϕ(2n). (6.441)

If n = 1, then P(ϑ; x) = x.

Remark 6.11.3. It is most likely true that for odd coprime n, m P N, the

minimal polynomial of the algebraic ϑ = i cot(πm
2n ) is the product

P(ϑ; x) =
2n
ź

k=1
gcd(k,2n)=1

(
x´ i cot(πkm

2n )
)

. (6.442)

M

Based on computational evidence, we conjecture the following explicit forms

of the aforementioned minimal polynomials.
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Conjecture 6.104. The minimal polynomial of the algebraic ϑ = i cot( π
2n ),

where n is an odd prime or a power of two, is

P(ϑ; x) =
ϕ(2n)
ÿ

k=0

(
n
2k

)
xϕ(2n)´2k. (6.443)

If n ą 1 is not an odd prime power, then P(ϑ) is a reflexive monic polynomial of degree

ϕ(2n) whose value at ˘1 is a power of 2.

Conjecture 6.105. The minimal polynomial of the algebraic ϑ =

´ cot( π
2n ) cot( π

2m ), where n, m P Ną1, is the product

P(ϑ; x) =
lcm(n,m)

ź

k=1
gcd(k,2nm)=1

(
x + cot(πk

2n ) cot( πk
2m )
)

. (6.444)

Hence, the degree of ϑ is the summation,

lcm(n,m)
ÿ

k=1
gcd(k,2nm)=1

1 =
ϕ(2nm)

2 gcd(n, m)
. (6.445)

In particular, if m = 2, then deg ϑ = ϕ(n). If either n or m equals 1, then P(ϑ; x) =

x.

Remark 6.11.4. The final claim of Conjecture 6.1056.105, in case m = 2, follows

from the identity ϕ(gcd(n, 4)) = gcd(n,4)
gcd(n,2) , which can be proved as follows. For
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n, k P N,

1
gcd(n, 2)

=
ź

p|gcd(n,2k)

(
1´

1
p

)
, (6.446)

since the product is either equal to 1 or 1
2 depending on whether n is odd or

even, respectively. Thus,

ϕ(gcd(n, 2k)) = gcd(n, 2k)
ź

p|gcd(n,2k)

(
1´

1
p

)
(6.447)

=
gcd(n, 2k)

gcd(n, 2)
(6.448)

and, if m = 2k´1,

ϕ(2nm)

2 gcd(n, m)
=

ϕ(n)ϕ(2k´1)gcd(n, 2)
2 gcd(n, 2k´1)

(6.449)

= ϕ(n)2k´2 gcd(n, 2)
gcd(n, 2k´1)

. (6.450)

M

Problem 6.11.1. Compute the minimal polynomial and degree of the alge-

braic eπi(n+1)/2 śn
i=0 cot( π

2ai
), where ta0, . . . , anu Ă Ną1.

Weighted homogeneous singularities may be partitioned into equivalence

classes by the number of complex variables and the degree of the correspond-

ing algebraic root. For example, consider f = za over C with a P N. Since

weight of f is 1
a , then ϑ(za) = i cot( π

2a ). Thus, by Proposition 6.1016.101, one may

partition such singularities into equivalence classes based on the value ϕ(2a),
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namely,

t1u, t2, 3u, t4, 5, 6u, t7, 9u, t8, 10, 12, 15u, t11u, t13, 14, 18, 21u, t16, 17, 20, 24, 30u,

t19, 27u, t22, 25, 33u, t23u, t26, 28, 35, 36, 39, 42, 45u, t29u, t31u, t32, 34, 40, 48, 51, 60u

and so on, where the red text denotes those exponents corresponding to an

algebraic unit. Note that there are equivalence classes consisting of either only

algebraic units or algebraic non-units or a mixture of the two. The following

integers represent singleton equivalence classes for 1 ď a ď 1000:

1, 11, 23, 29, 31, 47, 53, 59, 67, 71, 79, 81, 83, 103, 107, 121, 127,

131, 137, 139, 149, 151, 167, 173, 179, 191, 197, 199, 211, 223, 227,

229, 239, 251, 263, 269, 271, 283, 293, 307, 311, 317, 331, 343, 347,

359, 361, 367, 373, 379, 383, 389, 419, 431, 439, 443, 463, 467, 479,

491, 499, 503, 509, 523, 529, 547, 557, 563, 569, 571, 587, 599, 607,

619, 631, 643, 647, 649, 653, 659, 677, 683, 691, 709, 719, 727, 739,

743, 751, 773, 787, 797, 809, 811, 823, 827, 839, 841, 853, 857, 859,

863, 883, 887, 907, 911, 919, 941, 947, 961, 967, 971, 977, 983, 991

All of the integers above are odd. Most are odd primes or proper powers of odd

primes (in green text). The smallest non-prime power is 649 = 11 ¨ 59.

Conjecture 6.106. The following statements are true:

522



1. There are no even exponents representing singleton equivalence classes; that

is, each equivalence class t[ϑ(z2a)]uaPN has at least two members;

2. There are infinitely many odd prime exponents representing singleton equiva-

lence classes;

3. There are infinitely many proper odd-prime power exponents representing

singleton equivalence classes.

A related conjecture is the following.

Conjecture 6.107 (Carmichael, [7878], [7979]). For each integer n, there is a dis-

tinct integer m such that ϕ(n) = ϕ(m).

Remark 6.11.5. As the Euler totient function satisfies ϕ(2n) = ϕ(n) for n

odd and similar relations, it suffices to consider those integers n ” 4 mod 8. M

Remark 6.11.6. Ford gives a lower bound of n ě 101010
for any violation of

the Carmichael Conjecture [130130]. M

This concludes our discussion of some arithmetic aspects of complex ana-

lytic singularities. We proceed to some foundational structures.
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Chapter 7

Categorical Structure of Isolated Singularities

Nothing is more fruitful than these obscure analogies, these indistinct re-
flections of one theory into another, these furtive caresses, these inexplicable
disagreements; also nothing gives the researcher greater pleasure.... The day
dawns when the illusion vanishes; intuition turns to certitude; the twin the-
ories reveal their common source before disappearing; as the Gita teaches us,
knowledge and indifference are attained at the same moment. Metaphysics
has become mathematics, ready to form the material for a treatise whose icy
beauty no longer has the power to move us. — Andre Weil
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In previous chapters we have defined an array of numerical invariants of

non-degenerate, complex analytic germs, namely, various indices involving a

differential, geometric, topological, algebraic, analytic, combinatorial and arith-

metic character (Table 1.11.1). In this chapter, we unify these invariants into a uni-

versal quantity, the Milnor number, and discuss the categorical structure of the

homotopy space of singularities, Milnor fibers and their algebraic links. In par-

ticular, we prove a natural monoidal categorical structure of the homotopy class

of said fibers.
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7.1. Indices of an Isolated Singularity

Given a complex analytic germ f : (Cn+1, 0) Ñ (C, 0) with isolated critical

point at the origin, we have defined the following numerical invariants:

1. The geometric index is the local geometric multiplicity of f in a neighbor-

hood of the origin, namely, µgeom( f ) = |Vf, κ X B2n+2
ε |, where κ P Cˆ is a

regular value of f sufficiently close to the origin and ε ą 0 is sufficiently

small;

2. The differential index is the Poincaré-Hopf index of the vector field B f ,

namely, µdiff( f ) = degB φB f ;

3. The topological index is number of spheres in the homotopy type of the

corresponding Milnor fiber, namely, µtop( f ) = rank H̃n(Ff, 0; Z);

4. The K-theoretic index is the rank of the nth-Grothendieck group of the

corresponding Milnor fiber, namely, µK( f ) = rank K̃n(Ff, 0);

5. The algebraic index is the (complex) dimension of the corresponding

local algebra, namely, µalg( f ) = dimC A f ;

6. The analytic index is the residue of the logarithmic meromorphic

form ω(B f |Ω) of the complex analytic germ f at the origin, namely,

µanal( f ) = Res ω(B f |Ω);

7. The combinatorial index is the mixed volume of the Kushnirenko poly-

tope K( f ), namely, µcomb( f ) = MVK( f );

8. The cohomological index is the first betti number of the infinite cyclic

covering of the algebraic link K f , namely, µco( f ) = b1(MK f ,8);
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9. The arithmetic index is the number of positive integer solutions of a sys-

tem of Diophantine inequalities, namely,

µnt( f ) =
ˇ

ˇ

ˇ
t(x0, . . . , xn) P Nn+1

|0 ă ωixi ă 1u
ˇ

ˇ

ˇ
; (7.1)

10. The lattice index is the weighted lattice point summation, namely,

µlat( f ) =
ÿ

pPW( f )˝
2 +

ÿ

pPBW( f )XNn+1

1. (7.2)

7.2. The Milnor Number

Before we proceed to the main proposition of this section, we quote the

following theorem without proof. First, define ω( f , g) = g ω( f ) where g is

a holomorphic function on some domain U Ă Cn.

Proposition 7.1 (Griffiths, Harris, [162162]). Let Ux be a neighborhood of a point

x P Cn. Given a complex analytic map f : Ux Ñ Cn, where x is an isolated root of the

system B f |Ωx = 0, and any holomorphic function g with domain U Ă Cn, then one has

the identity

Resx ω( f , g) =
1

(2πi)n

ż

γ f,x

ω( f , g) (7.3a)

=
ÿ

xP f´1(0)XU

multx( f ) g(x). (7.3b)
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This implies, in particular, that the Grothendieck residue of ω( f ) and geo-

metric multiplicity mult( f ) coincide. See [459459] or the papers [185185, 186186, 187187] for

a nice discussion of this and related results.

By the combined effort of a number of works, we have the following fact (a

partial proof of Lemma 1.171.17).

Proposition 7.2. Given a non-degenerate, quasi-Brieskorn-Pham singularity

f : (Cn+1, 0)Ñ (C, 0), the various indices of f , namely,

1. (Geometric) µgeom( f );

2. (Differential) µdiff( f );

3. (Topological) µtop( f );

4. (K-Theoretic) µK( f );

5. (Algebraic) µalg( f );

6. (Analytic) µanal( f );

7. (Combinatorial) µcomb( f );

8. (Cohomological) µco( f );

9. (Arithmetic) µarith( f ); and,

10. (Lattice) µlatt( f )

coincide.

Proof . In [310310], if given a complex analytic germ f : (Cn+1, 0) Ñ (C, 0)

with isolated critical point at the origin, then µtop( f ) = µgeom( f ) = µalg( f )

is a positive integer. By Theorem 7.17.1, the local geometric multiplicity and the
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Grothendieck residue of B f |Ω coincide, so µanal( f ) = µgeom( f ). By Proposi-

tion 1.6 in [259259], µdiff( f ) = µalg( f ). By a theorem of Grothendieck, we have

µanal( f ) = µalg( f ) (See [428428] or Chapter 5 of [2121]). By Corollary 1.281.28, we have

the isomorphism H̃n(Ff, 0; Z) – K̃n
top(Ff, 0) for any n ě 0, so µtop( f ) = µK( f ).

A theorem of Klimek and Lesniewski [239239] on the Koszul cohomology of A f

implies µalg( f ) = µtop( f ). The fact that the local geometric multiplicity is

a positive integer implies that the other Milnor numbers are also. To prove

µalg( f ) = µco( f ) simply appeal to Proposition 4.244.24. The remaining equiva-

lences follow from work in previous chapters, so we omit the details. �

Remark 7.2.1. Most of the previous result easily generalizes to arbitrary

non-degenerate, complex analytic germs. M

Define the Milnor number µ = µ( f ) of f as any one of the indices discussed,

or the most convenient for the purpose at hand.

7.3. Monoidal Structure of the Homotopy Class of Fibers

Now that we have shown that the various indices coincide, we now discuss

a natural monoidal structure of the space of fibers.

It is useful to define the exponent matrix of the only constant weighted ho-

mogeneous function, 0. Here, A0 = (0), f b 0 = 0 b f = 0 and f d 0 = 0 d f = f ,

which illustrates the role of 0 as an annihilator in a putative monoid of weighted
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homogeneous polynomials under the Kronecker product and as an identity el-

ement in a putative monoid of weighted homogeneous polynomials under the

Kronecker sum. Note, also, that f b z = z b f = f .

Since the set of diagonal matrices is closed under the operation of Kronecker

sum, it follows that the set of Brieskorn-Pham polynomials equipped with d is

a monoid (with a two-sided identity element 0).

7.3.1. The Milnor Monoid. By the preceding discussion and the fact that

the wedge sum is associative over pointed spaces, we conclude that the space of

the homotopy classes of Milnor fibers forms a countably-infinite, abelian, additive

monoid under wedge sums, with the class of trivial fibers — those homotopy

equivalent to a point — forming the identity.

Recall that a semigroup is a closed set under an associative binary operation.

Proposition 7.3. The class of complex analytic function germs about the origin

forms a semigroup under the Sebastiani-Thom sum ‘.

Proof . Omitted. �

Proposition 7.4. The morphism µtop : (Mil, ‘) Ñ (Zě0,ˆ) is a semigroup

homomorphism.

Proof . The set of Milnor fibers Mil forms an ordered, abelian semigroup

(or associative magma**) under the Sebastiani-Thom sum ‘. The non-negative

* A magma is a closed set under a binary operation.
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integers Zě0 forms a monoid or semigroup with identity under multiplication

with identity 1. �

Let miso
n Ă mn Ă O0,n denote the ideal of holomorphic functions (of n + 1

variables) which vanish at the origin and possess an isolated critical point there

as well. Define the direct limits O0 = lim
ÝÑ

O0,n and correspondingly miso =

lim
ÝÑ

miso
n under the standard ordering of N. Let [ f ] denote the equivalence class

of functions in miso whose fibers have isomorphic middle reduced-homology

group of finite rank, or equivalently have equal (and finite) Milnor number. This

choice of equivalence classes provides a partition on the space of fibers. Denote

this space of equivalence classes by F = t[ f ] | f P misou.

Proposition 7.5. The triple F‘ = (F, ‘ , [z2]) is an abelian homotopy monoid.

Proof . By the Sebastiani-Thom equivalence [ f ] = [ f ‘ z2] = [ f ] ‘ [z2] =

[z2] ‘ [ f ] for all f P F. It now follows that the Sebastiani-Thom operation ‘

induces an abelian monoidal structure on the space F with identity element [z2].

Categorify. �

The set of Milnor fibers Mil forms a countable, ordered, abelian semigroup

under the Sebastiani-Thom sum ‘. However, the subset of weighted homoge-

neous Milnor fibers Milw Ă Mil forms an ordered, abelian monoid under the

Kronecker product b with Fz,0 » t‚u acting as the identity. Since µalg(Fz,0) = 0,

the morphism µalg : (Milw, b) Ñ (Zě0,+) is a monoid homomorphism. It is clear
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that the space of weighted homogeneous polynomials is closed under the Kro-

necker product with the identity f b z = z b f = f .

Proposition 7.6. The subset of weighted homogeneous Milnor fibers Milw

forms a monoid under b with Fz,0 » t‚u as the identity.

Proof . The claim follows from closure of weighted homogeneous polyno-

mials under b, the identity f b z = z b f = f and associativity ( f b g) b h =

f b (g b h) for all weighted homogeneous polynomials f , g and h. �

With these structures in hand, we need only categorify. We leave the details

to the reader.
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Chapter 8

Real Structure of Isolated Singularities

Everything we call real is made of things that cannot be regarded as real.
— Niels Bohr
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In this chapter we study isolated singularities arising from certain real ana-

lytic maps.

8.1. Real Isolated Singularities

8.1.1. Twisted Brieskorn-Pham Singularities. We close this chapter with

some new and exciting results generalizing Milnor’s work to real analytic maps.

Proposition 8.1 (Milnor, [310310]). If a real analytic germ f : (Rn+k, 0) Ñ

(Rk, 0) has an isolated critical point at the origin, then there is an ε0 ą 0 such that for

any 0 ă ε ă ε0, the complement of the intersection K f = Vf, 0 X Sn+k´1
ε fibers over S1.

Seade [420420] considers the real analytic map f = zp
1 z̄2 + zq

2z̄1 over (R4, 0) »

(C2, 0) and proves that the map φ f = f
} f } defines a fibration. Ruas, Seade and

Verjovsky [429429] prove that this singularity is topologically equivalent to that of

534



the Brieskorn-Pham polynomial f = zp´1
1 + zq´1

2 and therefore has algebraic

link isotopic to the torus link Tp´1,q´1. Such maps are twisted Brieskorn-Pham.

The following generalization of the Join of Pham holds.

Proposition 8.2 (Ruas, Seade and Verjovsky, [429429]). Suppose f =
řn

i=0 zai
i z̄bi

i with integer exponents ai ą bi ě 1. The fiber Ff, 0 » Vf, 1 has a defor-

mation retract homeomorphic to the join Ca0´b0 ‹ ¨ ¨ ¨ ‹ Can´bn and the homotopy-type of

a wedge sum of
śn

i=0(ai ´ bi ´ 1) n-spheres.

For related discussion of singularities arising from real polynomial maps,

consult §11 in [310310], Chapter VIII in [420420], and [378378].

Remark 8.1.1. In these examples, one may write zj = rjeiθj , where

r0, . . . , rn P Rě0 and θ0, . . . , θn P R, so

f =
n
ÿ

j=0

z
aj
j z̄

bj
j =

n
ÿ

j=0

r2
j ei(aj´bj)θj –

n
ÿ

j=0

x
aj´bj
j , (8.1)

where xj = eiθj . Extending the values of each of the new coordinates from S1

to C, the function f̃ = f (x0, . . . , xn) is a Laurent polynomial in the variables

tx0, . . . , xnu, complex analytic if and only if aj ´ bj ě 0 and weighted homoge-

neous if and only if aj ´ bj ě 1. M

8.2. A Conjecture on Ehrhart Reciprocity

A rather curious phenomenon takes place under complex conjugation of

the singularity. In this case, the multiplicity and Łojasiewicz exponent satisfy
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a reciprocity relation. Let f̄ be the conjugate singularity of a weighted homoge-

neous singularity f with negative corresponding weights. Given the identity

mint´x1, . . . ,´xnu = ´maxtx1, . . . , xnu for tx1, . . . , xnu Ă Rě0, one has

´ν( f̄ ) = ´

R

min
0ďiďn

t´ 1
ωi
u

V

(8.2)

= ´

R

´ max
0ďiďn

t 1
ωi
´ 1u ´ 1

V

(8.3)

= t`0( f )u + 1, (8.4)

which is the degree of topological determinacy of f , q.v., Definition 2.52.5.

Conjecture 8.3. The complex conjugation map of weighted homogeneous singu-

larities is in some sense equivalent to the Ehrhart map tW Ñ (´t)W yielding Ehrhart

Reciprocity LW (t) = (´1)dimWLW˝(´t), where LW (t) = |tW XZn+1|.

See Volumes 2.

8.3. Polar Weighted Homogeneity

In general, if f =
řm

i=1 zai1
i1 z̄bi1

i1 ¨ ¨ ¨ z
ain
in z̄bin

in , then the associated Laurent polyno-

mial is f̃ =
řm

i=1 xai1´bi1
i1 ¨ ¨ ¨ xain´bin

in . If f̃ is weighted homogeneous on Cn+1, then

f is said to be twisted weighted homogeneous on Cn+1. A related generalization

which subsumes twisted weighted homogeneity is polar weighted homogeneity

[358358].

Proposition 8.4 (Oka, [358358]). Given a twisted, weighted homogeneous polyno-

mial f : (R2n+2, 0) Ñ (R2, 0) such that f̃ : (Cn+1, 0) Ñ (C, 0) is a complex analytic,
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weighted homogeneous polynomial with an isolated critical point at the origin, then

there are diffeomorphisms Ff, 0 –d Ff̃, 0 and K f –d K f̃ .

Proof . See Theorem 10 in [358358]. �

In closing, we remark on some recent work on mixed singularities. Based on

earlier work of Rudolph [405405], Pichon proves the following general result on a

family of real polynomial maps.

Proposition 8.5 (Pichon,[377377]). If two complex analytic maps

f , g : (C2, 0) Ñ (C, 0) have no branch in common, then the real analytic map

f ḡ : (R4, 0) Ñ (R2, 0) has an isolated critical point at the origin if and only if

K f ḡ = K f Y´Kg is fibered.

Proof . See Theorem 5.1 in [377377]. �

Remark 8.3.1. Recall that ´K denotes K with opposite orientation. M

Proposition 8.6 (Gusein-Zade, et al., [171171]; Pichon, Seade, [378378]). Given

two complex analytic germs f , g : (Cn+1, 0) Ñ (C, 0) and a punctured neighborhood

of the origin U = Ωzg´1(0), where the meromorphic function f
g is regular on U, the

map φ f /g = f /g
} f /g} : S2n+1

ε zL f g Ñ S1, where L f g = ( f ¨ g)´1(0) X S2n+1
ε , is the

projection of a smooth, locally trivial fiber bundle. A generic fiber Ff /g, θ = φ´1(eiθ) is

diffeomorphic to the complex manifold ( f
g )
´1(κ)X (B2n+2

ε )˝, where κ P C is a regular

value of f
g . In particular, each fiber is a parallelizable manifold with the homotopy type

of a CW-complex of dimension n.
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Proof . See Theorem 1 in [378378]. �

Remark 8.3.2. Since f ḡ
} f ḡ} =

f /g
} f /g} , L f ḡ = L f g as links without orientation.

M

This concludes our brief discussion on certain generalizations of complex an-

alytic singularities to the real case. We consider now some general topological

aspects of certain non-isolated singularities.
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Chapter 9

Topological Structure of Non-Isolated Singularities

No man is an island, entire of itself; every man is a piece of the continent, a
part of the main. If a clod be washed away by the sea, Europe is the less, as
well as if a promontory were, as well as if a manor of thy friend’s or of thine
own were: any man’s death diminishes me, because I am involved in
mankind, and therefore never send to know for whom the bells tolls; it tolls
for thee. — John Donne, Meditation XVII

Contents
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In this chapter we study non-isolated singularities of certain complex hyper-

surfaces and generalize the corresponding topological, algebraic and K-theoretic

indices. We briefly review the Kato-Matsumoto Theorem and Massey’s general-

ization of the Sebastiani-Thom equivalence to the derived category.

9.1. Non-Isolated Singularities

In this section we discuss briefly a few generalizations of the classical theory

of complex singularities to those with higher-dimensional critical loci.

9.1.1. Higher-Dimensional Critical Loci. Recall that Σ(Vf, κ) denotes the

singular locus of the hypersurface Vf, κ = f´1(κ). Kato and Matsumoto prove
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the following generalization of Milnor’s construction for non-isolated singulari-

ties.

Proposition 9.1 (Kato, Matsumoto, [233233]). Let f : (Cn+1, 0) Ñ (C, 0) be

a complex analytic germ with hypersurface Vf, 0 = f´1(0) and Milnor fiber Ff, 0 =

ϕ´1
f (1). If dim Σ(Vf, 0) = k, then the Milnor fiber Ff, 0 is (n´ k´ 1)-connected, that

is, πi(Ff, 0) and Hi(Ff, 0; Z) are trivial for 1 ď i ď n´ k´ 1.

Remark 9.1.1. If Σ(Vf, 0) is a discrete, then one recovers M11. M

Remark 9.1.2. The Kato-Matsumoto Theorem is sharp. The singularity

f = z0 ¨ ¨ ¨ zk+1 + z2
k+2 + ¨ ¨ ¨+ z2

n has dim Σ(Vf, 0) = k and the fiber homotopy

type,

Ff, 0 » Sn´k´1Tk+1
»
łk+1

l=1

ł(k+1
l )

Sl+n´k´1 n ě k + 1 (9.1)

by equation (1.321.32). There are k + 1 distinct wedge sums of spheres of the same

dimension, whose lowest dimension is n ´ k, totaling
řk+1

l=1 (k+1
l ) = 2k+1 ´ 1

spheres,

rank Hi(Ff, 0) =

$

&

%

řk+1
l=1 (k+1

l )δi,l+n´k´1 1 ď i ď n

1 i = 0
(9.2)

=

$

’

’

’

&

’

’

’

%

(k+1
i ) n´ k ď i ď n

0 1 ď i ď n´ k´ 1

1 i = 0.

(9.3)
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M

Although there has been substantial progress in generalizing Milnor’s con-

struction, few results exist concerning the case of complex hypersurfaces with

higher-dimensional singular sets. A few notable examples include the work of

Nemethi, Dimca, Lê and Massey.

9.1.2. Sebastiani-Thom Equivalence in the Derived Category. The

Sebastiani-Thom isomorphism is a specialization of a rather general natural

transformation (of vanishing cycles) in the derived category of bounded, con-

structible complexes of sheaves of product domains of complex analytic germs

(Proposition 1.4, [289289]). As a consequence, the join factorization holds for Mil-

nor fibers of the Sebastiani-Thom summation f ‘ g of degenerate singularities

with arbitrary singular sets Σ(Vf ‘ g,0) about the origin [411411]. This work allows

for a simple generalization of Pham’s formula for the Milnor number of isolated

singularities of Brieskorn-Pham type, which we now describe.

According to Massey, consider the Brieskorn-Pham singularities f =
řn

i=1 fi,

fi = zai
i with a collection of local systems tLiu on Cˆ each of rank tdiu with

monodromy isomorphisms th˚,iu. The vanishing cycles Φ fi(IC
˚
C(Li)), functors

between the derived categories of the total space and singular fiber, have non-

trivial degree only in degree 0 and dimension equal to that of the nearby cycles

with a correction factor accounting for the dimension of the stalk at the origin
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[289289], namely,

dimC Φ fi(IC
˚
C(Li)) = aidi ´ dimC ker (I´ h˚,i) (9.4)

By the aforementioned natural transformation and the fact that intersection

cohomology complexes are closed under external products, there is a natural

transformation Φ f (IC
˚
Cn(‘n

i=1Li))Ñ
Ân

i=1 Φ fi(IC
˚
C(Li)) and, therefore,

dimC Φ f (IC
˚
Cn(‘n

i=1Li)) =
n
ź

i=1

(aidi ´ dimC ker(I´ h˚,i)) , (9.5)

where, 1 ď dimC ker(I´ h˚,i) ď di. For di ą 1 and h˚,i = I for 1 ď i ď n, Massey

computes** the identity

dimC Φ f (IC
˚
Cn(‘n

i=1Li)) =
n
ź

i=1

di(ai ´ 1), (9.6)

which generalizes Pham’s formula.

9.2. Exponent Matrices, Revisited

9.2.1. Moore-Penrose Pseudo-Inverse. Let F be a field of characteristic 0,

e.g., R, C, etc. In case that a matrix A P Fm,n is not square or does not have full

rank, then one typically introduces a pseudo-inverse in attempt to solve the ma-

trix equation Ax = b [322322], [370370]. For this section, we refer the reader to [154154]

and [4848].

* Here, one is essentially computing the homology of the fiber with coefficients in Zd.
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Remark 9.2.1. A necessary and sufficient condition for the matrix equation

Ax = b to be soluble is that the rank of the augmented matrix (A|b) be equal to

that of A. M

Let A and A˚ = (A)ᵀ denote the (entry-wise) conjugate and Hermitian con-

jugate of A in Fm,n and Fn,m, respectively.

Definition 9.2. Given A P Fm,n, a Moore-Penrose pseudo-inverse A+ P Fn,m

satisfies the following:

1. AA+A = A;

2. A+AA+ = A+;

3. (AA+)˚ = AA+; and,

4. (A+A)˚ = A+A.

Proposition 9.3. Given any matrix A P Fm,n, then a Moore-Penrose pseudo-

inverse A+ exists and is unique.

Proof . See [154154]. �

Remark 9.2.2. Consider the matrix A = (a1 . . . an) P C1,n. If A is a zero

vector, then A+ = A
ᵀ, otherwise

A+ =
1

řn
i=1 |ai|

2


a1
...

an

 = A˚(AA˚)´1. (9.7)

M
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Definition 9.4. A matrix A has full row (resp., column) rank if m ă n (resp.,

m ą n) and rankA = m (resp., rankA = n). If rankA = m = n, then A has full

rank**.

Proposition 9.5. If A P Fm,n, then the following statements are true:

1. (Zm,n)+ = Zn,m;

2. (A+)+ = A;

3. (A˚)+ = (A+)˚;

4. kerA+ – kerA˚ and imA+ – imA˚;

5. A+ = limλÑ0+(λI+ A˚A)´1A˚ = limλÑ0+ A˚(λI+ AA˚)´1;

6a. If A has full row rank, then AA+ is non-singular and A+ = A˚(AA˚)´1;

6b. If A has full column rank, then A+A is non-singular and A+ = (A˚A)´1A˚;

6c. If A has full column rank, then A+A = I; and,

7. If A has full rank, then A+ = A´1.

Proof . See [4848]. �

A computationally fast means of computing the Moore-Penrose pseudo-

inverse involves singular value decompositions.

Proposition 9.6. Given any matrix A P Fm,n with singular value decomposi-

tion A = UΣV˚, where U P Fm,m is real or unitary, Σ P Fm,n is real and rectangular

diagonal, and V P Fn,n is real or unitary, then A+ = UΣ+V˚, where the corresponding

*A classical result states that the row and column ranks are equal for any matrix. We use
the terminology full row/column rank simply to distinguish the proper rectangular matrices from
the square matrices.
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non-zero diagonal entries of Σ and Σ+ are inverses and the corresponding zero diagonal

entries are identical.

Proof . See [154154] and [4848]. �

Proposition 9.7. All solutions of the (possibly under-constrained) matrix

equation Ax = b are given by the Moore-Penrose solutions, namely, x = A+b + (I´

A+A)v, where v is an arbitrary vector in Rm. Moreover, if x is a solution of said matrix

equation, then }A+b}2 ď }x}2, and x is unique if and only if m ď n and rankA = m,

i.e., A has full column rank or full rank, in which case x = A+b.

Definition 9.8. If x solves the matrix equation Ax = b, then the vectors

A+b and (I´ A+A)v are the minimal part and free part of x, respectively.

The column rank of the exponent matrix determines the number of weights.

Proposition 9.9. If f : (Cn+1, 0)Ñ (C, 0) is a weighted homogeneous polyno-

mial with an exponent matrix A f , then the corresponding weights of f are the compo-

nents of the vector A+
f 1m + (I´ A+

f A f )v, where v is an arbitrary vector in Rn+1. If A f

is column rank deficient, then f has a continuum of real weights whose minimal part

is rational and equal to the row sums of the matrix A+
f . If A f has full column rank or

full rank, then the weights are unique, rational and equal to the aforementioned minimal

part.

Proof . By considering the constituent monomials zai = zai0
0 ¨ ¨ ¨ zain

n

comprising a weighted homogeneous polynomial, equation (3.13.1) implies that
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ω = tω0, . . . , ωnu forms a solution of a system of linear equations tai ¨ω = 1u or

equivalent matrix equation A f ω = 1m, where A f = (ai) P Z
m,n
ě0 is the matrix of

exponents of f . By Proposition 9.79.7, then ω = A+
f 1m + (I´A+

f A f )v, where v is an

arbitrary vector in Rn+1, the minimal part given by A+
f 1m. If, however, A f has

full column rank or full rank, then by Proposition 9.59.5, A+
f A f = I, so ω = A+

f 1m,

which implies the rationality of ω. �

Remark 9.2.3. Consider f = x4 + x3y2 + x2y4 + xy6 + y8 over C2. Observe

that

λω
¨ f = λ4ω1 x4 + λ3ω1+2ω2 x3y2 + λ2ω1+4ω2 x2y4 + λω1+6ω2 xy6 + λ8ω2y8

equals λ f (x, y) if and only if the following (over-determined) matrix equation

4 0

3 2

2 4

1 6

0 8



ω0

ω1

 =



1

1

1

1

1


(9.8)

547



is soluble in R2. Indeed, there is a unique solution, as A f has full column rank,

so A+
f = (Aᵀ

f A f )
´1A

ᵀ
f , A+

f A f = I, and the Moore-Penrose solution is given by

ω =

 3
20

1
10

1
20 0 ´ 1

20

´ 1
40 0 1

40
1
20

3
40





1

1

1

1

1


=

1
4

1
8

 . (9.9)

Thus, f is weighted homogeneous with reduced weights ω0 = 1
4 and ω2 = 1

8 .

In fact, any Cˆ-linear combination of monomials of f is also weighted homoge-

neous with the same weight system. M

Remark 9.2.4. Consider f = x4 + x2yz2 over C3. Observe that

λω
¨ f = λ4ω1 x4 + λ2ω1+ω2+2ω2 x2yz2, (9.10)

equals λ f (x, y) if and only if the following (under-determined) matrix equation

4 0 0

2 1 2




ω1

ω2

ω3

 =

1

1

 (9.11)
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is soluble in R3. Alas, there is no unique solution, as A f is column rank defi-

cient. The Moore-Penrose pseudo-inverse of A f is

A+
f =


1
4 0

´ 1
10

1
5

´1
5

2
5

 (9.12)

so the Moore-Penrose solution is given by

ω =


1
4

1
10

1
5

+


0

2
5(2v2 ´ v3)

´1
5(2v2 ´ v3)

 , (9.13)

where v2, v3 P R. The minimal part of ω is t1
4 , 1

10 , 1
5u, while the free part

is t0, 2
5(2v2 ´ v3),´1

5(2v2 ´ v3)u. Equivalently, the weights may be written

t1
4 , 1

2 ´ 2v, vu, where v = 1
5(1´ 2v2 + v3) P R. M

Proposition 9.10. A weighted homogeneous polynomial f has a zero weight

in some direction if and only if the corresponding row sum of A+
f is zero and the corre-

sponding row of I´ A+
f A f is the zero vector.

Proof . The ith weight is fixed and given by the ith-entry of the minimal

part A+
f 1m if and only if the ith entry of the free part vanishes. Since v is arbi-

trary, said vanishing occurs if and only if the ith row of I ´ A+
f A f is the zero

vector 0n. �
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Remark 9.2.5. The polynomial f = y + xz + z = y + z(1 + x) over C3 has

no critical points, but it is weighted homogeneous with weights t0, 1, 1u. The

corresponding exponent matrix has full rank. M

Remark 9.2.6. The polynomial f = x2y3 + x2y2 = (xy)2(1 + y) over C2

has two continua of critical points along both axes. It is weighted homogeneous

with weights t1
2 , 0u. The corresponding exponent matrix has full rank. M

Unlike Brieskorn-Pham singularities, quasi-Brieskorn-Pham singularities

may be degenerate. However, a degenerate weighted homogeneous polynomial

does not necessarily have at least one zero weight.

Remark 9.2.7. The polynomial f = x2y3 + x3y2 = (xy)2(x + y) over C2 has

two continua of critical points along both axes. It is quasi-Brieskorn-Pham with

weights t1
5 , 1

5u. The corresponding exponent matrix has full rank. M

Corollary 9.11. If a weighted homogeneous polynomial has more than one

weight, then it has a continuum of weights all of which have the same minimal part.

Proof . Suppose that ω and ω1 are distinct weights of a weighted homoge-

neous polynomial f with exponent matrix A f . Form the convex linear combina-

tion ν = λω + (1´ λ)ω1, where λ P [0, 1]. Observe

A f ν = λA f ω + (1´ λ)A f ω1 (9.14)

= λ1m + (1´ λ)1m (9.15)

= 1m. (9.16)
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Moreover, the convex linear combination affects only the free part,

ν = λ(A+
f 1m + (I´ A+

f A f )v) + (1´ λ)(A+
f 1m + (I´ A+

f A f )v1) (9.17)

= A+
f 1m + (I´ A+

f A f )(λv + (1´ λ)v1), (9.18)

since A+
f is unique. This completes the proof. �

Corollary 9.119.11 implies that a minimal weight is well-defined and unique for

a weighted homogeneous polynomial.

Conjecture 9.12. The minimal weight is a topological invariant for weighted

homogeneous polynomials.

9.2.2. Topological, K-Theoretic and Algebraic Indices, Revisited. The fol-

lowing remarks concern weighted homogeneous singularities with no assumed

density or dimension of their putative critical points in any neighborhood of the ori-

gin. For non-isolated singularities, the fiber Ff, 0 is not necessarily a wedge sum

of spheres of the same dimension, the Grothendieck groups may not coincide

with the corresponding homology groups, or the local algebra may be infinite

dimensional. With no special regard for the middle homology group of the cor-

responding fiber or the dimension of the local algebra, we define the generalized

topological index of a weighted homogeneous polynomial f : (Cn+1, 0) Ñ (C, 0)

by the reduced Euler characteristic of the fiber (up to a sign depending only on
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the dimension),

µ̄top( f ) = (´1)nχ̃(Ff, 0), (9.19)

the generalized K-theoretic index by the difference of ranks of the two fundamen-

tal Grothendieck groups,

µ̄K( f ) = (´1)n(rank K̃0(Ff, 0)´ rank K̃´1(Ff, 0)), (9.20)

and the generalized algebraic index by the product of the (possibly non-unique)

weights,

µ̄alg( f ) =
n
ź

i=0

(
1

ωi
´ 1
)

. (9.21)

When f is non-degenerate, we have shown that these definitions coincide. Oth-

erwise, these invariants generalize those previously defined.

Let ω˚ denote fixed weights or fixed part of the weight ω, that is, those

weights which do not depend on any free parameters. Although ω˚ Ă A+
f 1m, it

does not necessarily coincide** with the minimal part of f . Define µ̄˚alg( f ) to be

the constant term in the expansion

µ̄alg( f ) = µ̄˚alg( f ) + g(v), (9.22)

where g is a non-constant function in the field of rational fractions

Z(v0, . . . , vn).

*The polynomial of Remark 9.2.49.2.4 has minimal part t 1
4 , 1

10 , 1
5u and fixed part t 1

4u.
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Proposition 9.13. Given a weighted homogeneous polynomial f : (Cn+1, 0)Ñ

(C, 0), the constant µ̄˚alg( f ) satisfies

µ̄˚alg( f ) =

$

&

%

(´1)n´|ω˚|+1 ś
ωPω˚

(
1
ω ´ 1

)
ω˚ is not empty

(´1)n+1 otherwise.
(9.23)

In particular, if A f has full column rank or full rank, then µ̄˚alg( f ) = µ̄alg( f ).

Proof . The non-fixed weights are each of the form ri
si

gi(v), where ri
si
P Qˆ

and gi P Z[v0, . . . , vn], so

µ̄alg( f ) =
ź

ωPω˚

(
1
ω
´ 1
)

ź

ωRω˚

(
1
ω
´ 1
)

(9.24)

=
ź

ωPω˚

(
1
ω
´ 1
)n´|ω˚|´1

ÿ

k=0

(´1)k+n´|ω˚|´1ek

(
1

ω1
, . . . , 1

ωn´|ω˚|´1

) (9.25)

= (´1)n´|ω˚|´1
ź

ωPω˚

(
1
ω
´ 1
)
+ g(v), (9.26)

where ek is the kth-elementary symmetric polynomial, which vanishes at the

origin for k ą 0, and g P Z(v0, . . . , vn) is not constant. Finally, if A f has full

column rank or full rank, then A+
f A f = I, and the free part cancels, i.e., g(v) =

0. �

Proposition 9.14. Let Uα Ď Cnα be a set of neighborhoods of the origin. Given

(possibly degenerate) complex analytic maps fα : (Uα, 0) Ñ (C, 0) such that f =
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f1 ‘ ¨ ¨ ¨‘ fs, then

µ̄˚alg( f ) =
s
ź

i=1

µ̄˚alg( fi). (9.27)

Proof . The identity follows from the identity µ̄alg( f ) =
śs

i=1 µ̄alg( f ) and

the definition of µ̄˚alg( f ). �

Conjecture 9.15. Given two weighted homogeneous polynomials f and g with

homotopy equivalent Milnor fibers, then µ̄˚alg( f ) = µ̄˚alg(g). In particular, µ̄˚alg is a

topological invariant.

Remark 9.2.8. Consider the trivial weighted homogeneous polynomial, the

constant function f = 0, over Cn+1. The fiber Ff, 0 is empty, so χ(Ff, 0) = 0 for

n ě 0. Thus, µ̄top( f ) = (´1)n+1(1´ 0) = (´1)n+1. The exponent matrix A f

is the zero vector 0n+1, so it is column rank deficient. The weights of f are the

elements of the free vector v = (v0, . . . , vn) P Rn+1. Thus, the algebraic index is

the product

µ̄alg( f ) =
n
ź

i=0

(
1
vi
´ 1
)
= (´1)n+1 + g(v0, . . . , vn), (9.28)

where g P Z(v0, . . . , vn) has no constant term, and µ̄˚alg( f ) = (´1)n+1. M

Remark 9.2.9. Consider f = x over Cn+1. The fiber Ff, 0 is a point, so

χ(Ff, 0) = 1 for n ě 0. Thus, µ̄top( f ) = (´1)n+1(1´ 1) = 0. The exponent matrix

A f is the vector (1 0n), so it is column rank deficient for n ą 0. The weights of f
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are t1, v1, . . . , vnu, where v1, . . . , vn P R. Thus, the algebraic index vanishes, and

so does µ̄˚alg( f ). M

Remark 9.2.10. Consider f = z0 ¨ ¨ ¨ zn. There are (n+1
2 ) continua of criti-

cal points along orthogonal hyperplanes defined by the vanishing of any two

variables. The fiber Ff, 0 is diffeomorphic to the locus

t(z0, . . . , zn´1, 1
z0¨¨¨zn´1

) P Cn+1
| z0 ¨ ¨ ¨ zn´1 ‰ 0u (9.29)

that is, Ff, 0 – (Cˆ)n and has the homotopy-type of an n-torus Tn = S1 ˆ ¨ ¨ ¨ ˆ

S1, which has non-trivial homology in all dimensions up to and including n. In

fact, the kth-homology group of Tn is free-abelian of rank (n
k), i.e., Hk(T

n; Z) –

Z(n
k) for 0 ď k ď n, and the Euler characteristic is simply

χ(Ff, 0) = χ(Tn) =
n
ÿ

k=0

(´1)k
(

n
k

)
= δn, 0, (9.30)

which implies a generalized topological index, µ̄top( f ) = (´1)n+1(1 ´ δn, 0).

Recall the Grothendieck groups of the n-torus,

K̃p(Tn) –

$

’

’

’

&

’

’

’

%

Z2n´1´1 p even, n ě 1

Z2n´1
p odd, n ě 1

t0u n = 0.

(9.31)
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If Ff, 0 » Tn, then

µ̄K( f ) = (´1)n(rank K̃0(Ff, 0)´ rank K̃´1(Ff, 0)) (9.32)

= (´1)n+1(1´ δn,0). (9.33)

The weights are not unique, however, instead given by

t 1
n+1(1 + nv0 ´ v2 ´ ¨ ¨ ¨ ´ vn), . . . , 1

n+1(1´ v0 ´ ¨ ¨ ¨ ´ vn´1 + nvn)u, (9.34)

where v0, . . . , vn P R. Thus, µ̄˚alg( f ) = (´1)n+1(1´ δn,0). M

Remark 9.2.11. Consider f = w2x + y3 + z2 over C4. By the Sebastiani-

Thom equivalence, the fiber Ff, 0 is homotopy equivalent to the iterated join

space Fw2x, 0 ‹ Fy3, 0 ‹ Fz2, 0, where Fw2x, 0 » S2, Fy3, 0 » S0 _ S0 and Fz2, 0 » S0,

which has the homotopy-type (of the suspension of a join) of a wedge sum of

spheres,

S(S2
‹ (S0

_ S0)) » (S2
‹ S0)_ (S2

‹ S0) » S3
_ S3, (9.35)

so χ(S3 _ S3) = 2χ(S3)´ 1 = ´1 and µ̄top( f ) = (´1)3+1(1´ (´1)) = 2. Then

B f = (w2, 3y2, 2z, 2wx), so f has a continuum of critical points t(x, 0, 0, 0) P

C4 | x P Cu and therefore is degenerate. Moreover, the rank of the exponent

matrix A f is 3, so A f is column rank deficient. The weights are not unique, how-

ever, instead given by

t1
5(1 + 4v0 ´ 2v3), 1

3 , 1
2 , 1

5(2´ 2v0 + v3)u v0, v3 P R, (9.36)
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and the corresponding generalized algebraic index is simply

µ̄alg( f ) = 2 +
10

1 + 4v0 ´ 2v3
v0, v3 P R, (9.37)

and µ̄˚alg( f ) = 2. M

Remark 9.2.12. Consider f = xyz + w2 over C4. Then, by the Sebastiani-

Thom equivalence, the fiber Ff, 0 is homotopy equivalent to the suspension

S(T2) – S(S1 ˆ S1). By equation (1.291.29), for two pointed spaces X and Y,

S(X ˆ Y) » (SX ^ Y) _ SX _ SY, so the fiber Ff, 0 is homotopy equivalent to

the suspension of a 2-torus,

S(S1
ˆ S1) » (S2

^ S1)_ S2
_ S2

– S3
_ S2

_ S2, (9.38)

since Sn ^ Sm – Sn+m for n, m ě 0. Moreover, χ(Ff, 0) = 2χ(S2) + χ(S3)´ 2 = 2,

so µ̄top( f ) = (´1)3+1(1´ 2) = ´1. The weights of f are not unique, however,

instead given by

t1
3(1 + 2v0 ´ v1 ´ v2), 1

3(1´ v0 + 2v1 ´ v2), 1
3(1´ v0 ´ v1 + 2v2), 1

2u, (9.39)

where v0, v1, v2 P R. Thus, µ̄˚alg( f ) = ´1. M

Remark 9.2.13. The examples above are special cases of the following.

Consider f = za0
0 ¨ ¨ ¨ z

an
n over Cn+1, where a0, . . . , an P Zě0. Define m =

gcd(a0, . . . , an) and f̃ = za0/m
0 ¨ ¨ ¨ zan/m

0 . As above, the fiber Ff̃, 0 –d Vf̃ ,0(1) –d

(Cˆ)n which has the homotopy type of Tn. Thus, since there are m mth-roots
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of unity, one has Ff, 0 –d
Ům(Cˆ)n »

Ům
Tn. Now consider Σl f = f ‘ zl,

where l P N. The fiber Ff ‘ zl ,0 is the l-fold cyclic suspension over Ff, 0, namely,

Ff ‘ zl ,0 »
Žl´1 S(Ff, 0), where

S(Ff, 0) = S
(
ğm

Tn
)

(9.40)

»
łm´1

S1
_
łm

S(Tn) (9.41)

»
łm´1

S1
_
łm

(
łn

k=1

ł(n
k)Sk+1

)
. (9.42)

For m ě 1,

Ff ‘ zl ,0 »
łl´1

(
łm´1

S1
_
łm

(
łn

k=1

ł(n
k)Sk+1

))
(9.43)

»
ł(l´1)(m´1)

S1
_
ł(l´1)m

(
łn

k=1

ł(n
k)Sk+1

)
. (9.44)

For the special case l = 2, then Σl f = Σ f , so

FΣ f, 0 »
łm´1

S1
_
łm

(
łn

k=1

ł(n
k)Sk+1

)
. (9.45)
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and, therefore,

χ(FΣ f, 0) = χ
(
łm´1

S1
)
+ χ

(
łm

(
łn

k=1

ł(n
k)Sk+1

))
´ 1 (9.46)

= (m´ 1)χ(S1)´ (m´ 2) + mχ

(
łn

k=1

ł(n
k)Sk+1

)
´ (m´ 1)´ 1

(9.47)

= ´(m´ 2) + m
n
ÿ

k=1

χ

(
ł(n

k)Sk+1
)
´m(n´ 1)´ (m´ 1)´ 1 (9.48)

= m
n
ÿ

k=1

(
n
k

)
χ(Sk+1)´ 2nm + 2 (9.49)

= 2m
n
ÿ

k=1
k odd

(
n
k

)
´ 2nm + 2 (9.50)

= 2´mδn,0. (9.51)

Equivalently, the identities χ(
Ům

Tn) = mχ(Tn) = mδn,0 and χ(S
Ům

Tn) =

2´ χ(
Ům

Tn) imply χ(FΣ f , 0) = 2´mδn,0. Hence, µ̄top( f ) = (´1)n(mδn,0 ´ 1),

where Σ f has n + 2 variables.

For n ą 0, only one weight will be fixed, namely, ωn+2 = 1
2 , so µ̄˚alg(Σ f ) =

(´1)n+1. For n = 0, we recover Pham’s result, µ̄˚alg(Σ f ) = m´ 1. Thus, in gen-

eral, µ̄˚alg(Σ f ) = (´1)n(mδn,0 ´ 1). M

The invariant µ̄˚alg can assume all values in Z.

Remark 9.2.14. Consider f = zd ´ xyd´1 over C3 with d P N. If d = 1, then

f has no critical point at the origin, and the weights are t1, v1, 1u, where v1 P R.
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If d ą 1, then the weights are given by

t 1
(d´1)2+1(1 + (d´ 1)2v0 ´ (d´ 1)v1), 1

(d´1)2+1((d´ 1)´ (d´ 1)v0 + v1), 1
du,

(9.52)

and f is non-degenerate only for d = 2. In all cases µ̄˚alg( f ) = (´1)2´1´1(d ´

1) = d´ 1. Stabilizing f with m new variables adds the fixed weights t1
2 , . . . , 1

2u,

which yields µ̄˚alg(Σ
m f ) = (´1)m(d´ 1). M

Degeneracy does not necessarily imply a non-trivial free part.

Remark 9.2.15. Consider f = xd + yd + xyzd´2 over C3 with d P Ną1.

If d = 2, then f is degenerate, the weights are t1
2 , 1

2 , v2u, where v2 P R, and

µ̄˚alg( f ) = ´1. If d ą 2, then f is degenerate and the weights are t1
d , 1

d , 1
du and

µ̄alg( f ) = µ̄˚alg( f ) = (d´ 1)3. M

The identity µ̄alg = µ̄˚alg does not imply that the weights are fixed.

Remark 9.2.16. Consider f = xy+ z2 over C3, which has an isolated critical

point at the origin. The fiber Ff, 0 » S(S1) » S2. Thus, µ̄top( f ) = (´1)3(1´ 2) =

1. The rank of the exponent matrix A f is 2, so it is column rank deficient. The

weights of f are

t1
2(1 + v0 ´ v1), 1

2(1´ v0 + v1), 1
2u v0, v1 P R. (9.53)
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However, the generalized algebraic index is constant

µ̄alg( f ) =
(

2
1 + v0 ´ v1

´ 1
)(

2
1´ v0 + v1

´ 1
)
= 1, (9.54)

so µ̄˚alg( f ) = 1. M

Definition 9.16. A strongly degenerate, weighted homogeneous polyno-

mial is a weighted homogeneous polynomial with at least one zero weight.

Conjecture 9.17. Given a weighted homogeneous polynomial f that is not

strongly degenerate, then the generalized topological, K-theoretic and fixed algebraic

indices coincide, i.e.,

µ̄top( f ) = µ̄K( f ) = µ̄˚alg( f ). (9.55)

Remark 9.2.17. Conjecture 9.179.17 makes no claim about the dimension of the

singular set of f at the origin. In general, it is not true that µ̄top( f ) is the rank

of the middle homology group of Ff, 0 (which may not be homotopy equivalent

to a wedge sum of spheres of the same dimension) or the rank of the middle

Grothendieck group. M

Corollary 9.18. If Conjecture 9.179.17 is true, then Conjecture 9.159.15 is true.
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Proposition 9.19. Let Uα Ď Cnα be a set of neighborhoods of the origin. If

given weighted homogeneous polynomials fα : (Uα, 0)Ñ (C, 0) none strongly degener-

ate, then f = f1 ‘ ¨ ¨ ¨‘ fm satisfies

µ̄˚top( f ) =
m
ź

i=1

µ̄top( fi). (9.56)

Proof . The identity follows from Massey’s generalization of the Sebastiani-

Thom equivalence to non-isolated singularities of arbitrary dimension, q.v., §9.19.1,

and the multiplicative identity χ̃(X ‹Y) = χ̃(X)χ̃(Y) for any two pointed CW

complexes X and Y. �

Corollary 9.20. Given a weighted homogeneous polynomial f : (Cn+1, 0) Ñ

(C, 0) that is not strongly degenerate, then

µ̄top(Σ f ) = µ̄top( f ). (9.57)

Proposition 9.21. Given a (possibly degenerate) weighted homogeneous polyno-

mial f : (Cn+1, 0)Ñ (C, 0) that is not strongly degenerate such that the corresponding

fiber Ff, 0 is homotopy equivalent to a wedge sum of M spheres of arbitrary odd dimen-

sion and N spheres of arbitrary even dimension, then

µ̄top( f ) = (´1)n(N ´M). (9.58)

Proof . The Euler characteristic of Sn is 2 if n is even and 0 otherwise.

Since the reduced Euler characteristic is additive over wedge sums, one has

χ(
Žm

i=1 Sni) = 2N ´ (m´ 1) = N ´ M + 1, where m = N + M, and N (resp., M)
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counts the even (resp., odd) spheres in the wedge sum. Thus,

µ̄top( f ) = (´1)n+1(1´ χ(Ff, 0)) = (´1)n+1(1´ (N ´M + 1)), (9.59)

as claimed. �

Remark 9.2.18. In the isolated singularity case, the fiber Ff, 0 is a wedge

sum of spheres whose common dimension (and therefore parity) is determined

by n. That is, if n is even, then Ff 0 is homotopy equivalent to a wedge sum

of only even spheres, while if n is odd, then Ff 0 is homotopy equivalent to a

wedge sum of only odd spheres. In the former case, one has µ̄alg( f ) = (´1)nN,

while in the latter, µ̄alg( f ) = (´1)n+1M by Corollary 1.281.28. It follows that

µ̄˚alg generalizes µ̄alg, which supports the claim that µ̄˚alg is a topological invari-

ant. M

Proposition 9.22. If fi = zai0
0 ¨ ¨ ¨ z

aini
ni , then the Milnor fiber Ff, 0 of f = f1 ‘

¨ ¨ ¨‘ fs has the homotopy type of the iterated join space Ff1,0 ‹ ¨ ¨ ¨ ‹ Ffr,0, where Ffi,0 »

Ůmi Tni , mi = gcd(ai0, . . . , ain).

9.3. Non-Weighted Homogeneous Polynomials

It is a rather curious, but nonetheless potentially useful, fact that one may

assign weights to any complex analytic polynomial, whether weighted homoge-

neous or not, that vanishes at the origin.

Definition 9.23. Given a complex analytic polynomial f : (Cn+1, 0) Ñ

(C, 0) with exponent matrix A f , the generalized weights tω0, . . . , ωnu of f are
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the elements of the vector A+
f 1m + (I´A+

f A f )v, where v is an arbitrary vector in

Rn+1.

Remark 9.3.1. The polynomial f = x5 + y5 + x3y3 over C2 is almost quasi-

homogeneous and not quasihomogeneous and, therefore, not weighted homoge-

neous, q.v., Remark 2.4.112.4.11. As (I´ A+
f A f ) = Z2, the 2ˆ 2 zero matrix, it follows

that

ω = A+
f 13 (9.60)

=

 34
215 ´ 9

215
3
43

´ 9
215

34
215

3
43




1

1

1

 (9.61)

=

 8
43

8
43

 . (9.62)

Therefore, the generalized weights of f are t 8
43 , 8

43u. Similarly, g = (x4 +

y)(x9 + y2) over C2 is neither almost quasihomogeneous nor quasihomoge-

neous and, therefore, not weighted homogeneous. The generalized weights of

g are t 262
3435 , 1154

3435u. Note that neither f and g satisfy a weighted homogeneous

transformation law or a weighted Euler equation with these or any weights. M

Problem 9.3.1. Determine whether or not the generalized weights of an

arbitrary complex analytic polynomial which vanishes at the origin have any

analytic, algebraic, geometric, combinatorial or topological significance.
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This concludes our review and analysis of complex analytic singularities

and certain generalizations thereof. We proceed now to surprisingly similar

structures in supersymmetric quantum field theory.
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Part 2

Supersymmetry and Quantum Field Theory



Chapter 10

Supersymmetry

Tiger! Tiger! burning bright
In the forest of the night,
What immortal hand or eye
Could frame thy fearful symmetry?

— William Blake

Contents

10.1. The Standard Model10.1. The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
10.2. Supersymmetry10.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

10.1. The Standard Model

According to the Standard Model (SM) with gauge group SU(3)ˆ SU(2)ˆ

U(1), eight massless, spin-0 bosons (the gluons, tgu), three massive, spin-1 vec-

tor bosons (the two charged and neutral weak bosons, W+, W´ and Z) and a

massless, spin-1 scalar boson (the photon, γ) mediate three fundamental interac-

tions in the observable universe**: the strong force, the electroweak force and the

electromagnetic force, respectively. Predicted in 1968 by the Glashow-Weinberg-

Salam Model (GWSM) with gauge group SU(2)ˆU(1) and observed indirectly

*A conjectured spin-2 massless boson, the graviton, may mediate the gravitational force, and
dark matter and weakly interacting massive particles (WIMPS) may account for the remaining
unobserved mass in the universe.
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in 1973 (Gargamelle Bubble Chamber) and directly in 1983 (UA1/2) at CERN

[207207], the mediators of the short-range weak nuclear force, the intermediate vec-

tor bosons, W˘ (mW = 80.385 GeV) and Z (mZ = 91.1876 GeV), are responsible

for the stability of all interacting matter via nuclear transmutation by beta de-

cay and electron capture. While the gluons and photon are massless by local

gauge invariance, an unbroken SU(2)ˆU(1) gauge symmetry requires massless

vector bosons. The GWSM** solves this mass discrepancy and preserves renor-

malizability by invoking the Higgs mechanism [126126, 190190, 191191], which purports

the existence of a precursor quantum field, the elusive Higgs field, that sponta-

neously breaks SU(2) ˆ U(1) and manifests as a massless scalar, the photon,

three asymmetrically massive vector bosons, W˘ and Z, and a massive scalar,

the Higgs boson. The resulting bosons are then available to couple with elemen-

tary fermionic particles or leptons, such as the electron e´, muon µ´, tauon τ´

and their corresponding neutrinos νe´ , νµ´ and ντ´ .

The GWSM alone is insufficient to predict a light Higgs boson mass, in con-

trast to that of the photon and the ratio of those of the weak bosons. Instead the

GWSM implies that it be directly proportional to an unconstrained variable, the

Higgs boson self-coupling parameter, λ, by the relation mh =
?

2λvh, where vh

*More precisely, the GWSM postulates an SU(2)L ˆU(1)Y invariant Lagrangian containing
four massless (precursor) scalar fields A1, A2, A3 and B and a single complex (Higgs) doublet
Φ. The Higgs field is a left-handed doublet with weak isospin + 1

2 and hypercharge +1 that
preserves U(1)EM but spontaneous breaks SU(2)L ˆU(1)Y, resulting in a non-zero vacuum ex-
pectation value of the Higgs field vh, two charged, massive vector bosons, W+ and W´ (from
linear combinations of A1 and A2) and a neutral, massive vector boson, Z (from linear combina-
tions of A3 and B), a massless photon, γ (from linear combinations of A3 and B), and a massive
scalar h, the Higgs boson.
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is the vacuum expectation value of the Higgs boson. Precise muon lifetime ex-

periments incorporating two-loop, Quantum Electrodynamic (QED) corrections

yield a Fermi coupling GF « 1.166364(5)ˆ 10´5 GeV´2 (CODATA 2010), from

which one infers the value vh = 1
4?2
?

GF
« 246.221 GeV. By imposing (renormal-

ization group-improved) unitarity bounds on the corresponding elastic scatter-

ing amplitudes, one derives the upper bound mh ď 2 4
?

2
b

π
3GF

« 712.664 GeV

[260260, 283283]. Enhancing further the GWSM with a Yang Mills SU(3)-gauge theory,

Quantum Chromodynamics (QCD), yields the SM with an additional six mas-

sive, color-charged spin-1
2 fermions or quarks (up u, down d, strange s, charm c,

top t and bottom b) and, with their antiparticles, conspire in pairs to form the

meson families (e.g., π, η, K, D and B) and in triplets** to form the baryon fami-

lies (e.g., nucleons, Λ, ∆, Σ, Ξ, and Ω) through the strong interaction. However,

isolated quarks or anti-quarks are believed to be essentially unobservable due

to their low-energy confinement [164164, 384384] and high-energy asymptotic freedom

[163163] which allows only a rather weak coupling with gluons. In total, there are

eighteen parameters†† which determine the SM: three gauge coupling parame-

ters, three charged lepton masses, six quark masses, three flavor mixing angles,

one charge-parity (CP)-violating phase, the Higgs boson mass and vacuum

*Exotic baryons (e.g., tetraquark and pentaquark bound states) should exist but have not yet
been definitively observed.

†The representation theory of the Poincaré (spacetime symmetry) group and the internal
symmetry groups (isospin, flavor, etc.) including their Lie algebras, govern transformations and
mass spectra of the SM.
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expectation value (determined by the masses of the W˘ and Z vector bosons)

[396396].

While the literature is rich with theoretical proposals that engage elec-

troweak symmetry-breaking and the Higgs mechanism** in more appeal-

ing ways, the SM is most likely the simplest and definitely the most well-

understood. According to the SM, the three neutrinos (νe, νµ and ντ) and their

antiparticles are massless spin-1
2 fermions. However, experimental evidence sug-

gest neutrino oscillations between flavor types, which a priori require massive

neutrinos [102102]. Coupling parameter unification (e.g., grand unification), baryon

asymmetry, hierarchy problem, dark matter, naturalness, etc., are additional

issues which are not addressed by SM, per se. Therefore, if one is to properly

model the universe (sans gravity), the SM must be modified, extended and/or

subsumed accordingly.

10.2. Supersymmetry

10.2.1. Coleman-Mandula Theorem. In 1967, Coleman and Mandula

proved a remarkable theorem which greatly restricts the local symmetries pos-

sessed by a quantum field theory with a mass gap.

Theorem 10.1 (Coleman, Mandula, [8888]). Let G be an arcwise-connected

symmetry group of the S-matrix (in the weak operator topology), where S = 1 ´

i(2π)4δ(Pµ ´ P1µ)T such that the following conditions hold:

*By enhancing further still the SM to a Two-Higgs-Doublet Model (THDM) [5959], the Lee-
Quigg-Thacker bound of the lightest Higgs boson can be improved to mh ď 411 GeV [238238].
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1. (Lorentz Invariance) G contains a subgroup locally isomorphic to the Poincaré

group;

2. (Particle Finiteness) All particle types correspond to positive-energy represen-

tations of the Poincaré group. For any positive real M, there are finitely many

particle types of mass less than M;

3. (Weak Elastic Analyticity) Elastic-scattering amplitudes are analytic functions

of the center-of-mass energy s and invariant momentum transfer t in some

neighborhood of the physical region, except at normal thresholds;

4. (Occurrence of Scattering) Let |py and |p1y be any two one-particle momentum

eigenstates, and let |p, p1y be the two-particle state created from these. Then

T|p, p1y does not vanish except perhaps for certain isolated values of s; and

5. (An Ugly Technical Assumption) The generators of G, written as integral

operators in momentum space, have distributions for their kernels.

Then, G is necessarily locally isomorphic to the direct product of an internal symmetry

group and the Poincaré group.

10.2.2. Supersymmetry. Supersymmetry (SUSY) is a conjectured symme-

try of nature between integer-spin particles, the mediators of the fundamental

forces, and half-integer-spin particles, the constituents of matter. In dimensions

three and greater, a given Lagrangian represents a supersymmetric quantum the-

ory if and only if there exists an infinitesimal field transformation interchanging
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the integer and half-integer spin fields and admitting an equivalent representa-

tion as a graded Lie algebra of field operators.**

Given a boson b P B and fermion f P F, where B and F are suitable Fock

spaces, the images b̂ = Qb and f̂ = Q f of a supersymmetric charge Q are

the corresponding super-partners—the former a super-fermion, the latter a super-

boson. In theories with unbroken supersymmetry, the mass of super-partners

is identical to their partners, while in those with broken supersymmetry, the

mass of super-partners is comparatively larger, and may explain why no super-

partners have yet been observed.

Although SUSY may have first been anticipated in the mathematical work

of Frölicher and Nijenhuis [137137, 138138] and perhaps rediscovered by Miyazawa

[318318, 319319], it is generally believed to have been introduced independently in the

physics literature by Golfand and Likhtman [152152], Volkov and Akulov [464464],

and Wess and Zumino [470470]. In particular, Wess and Zumino introduced a renor-

malizable four-dimensional supersymmetric quantum field theory with cubic

interaction.

Haag, Lopuszanski and Sohnius [175175] generalized the Coleman-Mandula

Theorem to formally include SUSY as a space-time symmetry by consider-

ing Lie super-algebras containing both commuting (even degree) and anti-

commuting (odd degree) generators. As a direct consequence of the addition

of odd generators, certain quantum field theories circumvent the restriction of

*As there is no notion of spin in less than three dimensions, the existence of a graded Lie al-
gebra of field operators suffices to define a two-dimensional, supersymmetric quantum theory.
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the Coleman-Mandula Theorem and may therefore exhibit surprisingly larger

spacetime symmetry groups. In this way, it was shown that supersymmetry

is the most general (local) symmetry allowed in four-dimensional Minkowski

space-time.

10.2.3. Supersymmetry and the Standard Model. In a supersymmetric ex-

tension of the SM, namely, the Minimally Supersymmetric Standard Model

(MSSM), a type III THDM proposed by Dimopoulos and Georgi [112112], the

squared-mass of the light, CP even, scalar component of the Higgs field, the

Higgs boson, is independently quadratically and logarithmically divergent in a

sharp momentum cut-off [113113]. However, certain quark-squark** interactions pro-

vide perturbative counter-terms that dramatically suppress such divergences,

which is one of the many appealing features of SUSY. In particular, the MSSM

with soft SUSY-breaking (near the electroweak scale) postulates two Higgs dou-

blets leading to five potentially observable Higgs particles: two vector bosons,

H+ and H´, two CP even scalars, h and H, and a CP odd scalar, A, satisfying

the following mass inequalities at tree level††: mW˘ ď mH˘ ď mH, mh ď mZ ď mH

and mh ď mA ď mH˘ , respectively [170170]. At one-loop level, the MSSM predicts

an explicit upper bound on the light Higgs boson mass mh within the decoupling

*In the MSSM, superpartners also share gauge numbers (viz., color charge, weak isospin
charge, hypercharge).

†This is the lowest order in perturbation theory and considers only interactions with loopless
Feynman diagrams, hence the name.
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limit** through the quartic coupling contributions from the aforementioned vec-

tor bosons and (broken supersymmetric) radiative corrections from the top-stop

quark sector with mixing parameter α,

m2
h ď m2

Z +
3GF
?

2π2

(
m4

t,1 log
mt̃

mt,1
+ m4

t,2α2(6´ 3α2)

)
,

where (in natural units) the pole top quark mass mt = 172.9 GeV and is given

at two different energy scales, mt,1 = 157 GeV and mt,2 = 150. GeV [115115]. At

maximal mixing (α = 1) and conjecturing mt̃ « 1 TeV, one computes mh ď 132

GeV [172172]. However, neglecting stop mixing, one computes the upper bound

mh ď 110 GeV [115115], which violates the LEP exclusion mh ą 114.4 GeV [265265].

10.2.4. Recent Discovery of a New Boson. By early 2010, groups at the

Tevatron at Fermilab and the Large Hadron Collider (LHC) working indepen-

dently observed curious activity in pp-collisions in the range 115–130 GeV. As

of 2011, the CMS and ATLAS experiments at CERN improved known bounds

for a light Higgs boson by exclusion to the interval 114 GeV ď mh ď 157 GeV

(at 90–95% confidence), consistent with a TeV-scale stop mass, maximal mixing

in the decoupling limit and the MSSM upper bound. By mid 2012, CERN an-

nounced the observation of a new boson with a mass of approximately 125.3††

GeV and decay channels consistent with those of a light Higgs boson predicted

*The mass of the CP-odd Higgs A is assumed to be significantly larger than that of Z.

†By late 2012, CERN measurements had been improved to 126.0 ˘ 0.4 (stat) ˘ 0.4 (syst)
GeV.
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by the SM [2424]. While many anticipate a full resolution of the experimental

search for a Higgs boson in the very near future, a complete physical model

predicting precisely its mass remains hitherto undiscovered.
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Chapter 11

Twist-Regularized Wess-Zumino Model

Arguments are to be avoided; they are always vulgar and often convincing.
— Oscar Wilde
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In this chapter we consider operator-valued distributions on loop space S1

with twisted boundary conditions. The twist acts as an infrared-regulator and

allows for a careful study of the massless sector of a generalized Wess-Zumino

model, the WZθ,φ model.

11.1. Supersymmetry, Revisited

Let B and F denote Fock spaces of all interacting bosonic and fermionic ele-

mentary particles comprising the universe, respectively. The bosons include the

photon, gluon, W, Z and Higgs bosons, their anti-particles and super-fermions.

The fermions include the up, down, charm, strange, top and bottom quarks

and electron, muon and tau including their corresponding neutrinos, their anti-

particles and super-bosons. From a mathematical perspective, supersymmetry
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is a conjectured symmetry that purports the existence of a fundamental map

between particles of integral (bosons) and half-integral (fermions) spin.

Conjecture 11.1 (Supersymmetry). There is an involution σ : BÑ F.

11.1.1. Graded Fock Space. Let F = F b b F f denote the bosonic-

fermionic, product Fock-Hilbert space, which is the tensor product Hilbert

space of the symmetric tensor C-algebra over the even component, the bosonic

Hilbert space,

H b
–

n
à

j=1
L2(T, dx)‘ L2(T, dx) (11.1)

–

n
à

j=1
`2(T̂, dx)‘ `2(T̂, dx), (11.2)

and the exterior tensor C-algebra over the odd component, the fermionic Hilbert

space,

H f
–

n
à

j=1
L2(T, dx)‘ L2(T, dx) (11.3)

–

n
à

j=1
`2(T̂, dx)‘ `2(T̂, dx). (11.4)
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In particular, we write**

F b := Sym(H b) =
à

kě0
(H b)bsk (11.5)

F f :=
ľ

(H f ) =
à

kě0
(H f )^k, (11.6)

where (H b)bsk := Symk
j=1H

b and (H f )^k :=
Źk

j=1 H f , respectively. Here,

we define the zero-particle Hilbert spaces (H b)bs0 := C and (H f )^0 := C,

respectively.

Define the space of even-degree elements F 0 and odd-degree elements F 1.

In contrast to the tensor product space F , the direct sum decomposition F =

F 0|1 := F 0 ‘F 1 is a Z2-graded Fock-Hilbert space. In particular, H 0|1 :=

H 0‘H 1 is a Z2-graded one-particle Hilbert space, a Hilbert super-space. Such

spaces are natural ambient spaces in which to study supersymmetry.

Remark 11.1.1. Although H 0 – H b and H 1 – H f , in general, F 0 fl F b

and F 1 fl F f . M

11.1.2. Superalgebra. Let k be a field and G be a monoid. A k-algebra A
is G-graded if it has the direct sum decomposition A =

À

dPG Ad such that for

each f P Ad1 and g P Ad2 , then f g P Ad1+d2 . A Z2-graded algebra g = g0 ‘ g1

with an involution Γ is a (Lie) superalgebra if there is a bilinear bracket [¨, ¨] :

gˆ gÑ g which respects the grading and satisfies a Z2-graded Jacobi identity.

*We do not write F b = expbs
H b and F b = exp^H f because the coefficients in the formal

series expansion of the two tensor product exponentials suggest a normalization of the inner
product in each of the tensor product Hilbert spaces that is inconsistent with our definitions.
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Consider f P g and define the conjugation f Γ = Γ´1 f Γ. If f Γ = f , then f

is said to be even. If f Γ = ´ f , then f is said to be odd. These equalities can be

restated in terms of commutator and anticommutator relations, [ f , Γ] = 0 and

t f , Γu = 0, respectively.

11.1.3. Z2-Graded Lie Algebras. Define the Z2-graded commutator [¨, ¨]Γ as

the Z2-graded skew-symmetric Lie bracket,

[ f , g]Γ = f g´ (´1)(deg f )(deg g)g f (11.7)

=

$

&

%

[ f , g] = f g´ g f if (deg f )(deg g) = 0

t f , gu = f g + g f if (deg f )(deg g) = 1,
(11.8)

satisfying [ f , g]Γ = ´(´1)(deg f )(deg g)[g, f ]Γ. We will call the odd Lie bracket

[ f , g] the commutator and the even Lie bracket t f , gu the anti-commutator of f

and g, respectively.

Definition 11.2. A Z2-graded Lie algebra gΓ is a finitely-generated Z2-

graded algebra over a (unital) commutative ring R equipped with a Z2-graded

skew symmetric endomorphism [¨, ¨]Γ : gΓ ˆ gΓ Ñ gΓ satisfying the Z2-graded

Jacobi identity,

0 = (´1)(deg h)(deg f )[ f , [g, h]] + (´1)(deg f )(deg g)[g, [h, f ]]

+ (´1)(deg g)(deg h)[h, [ f , g]],
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for all f , g, h P gΓ. In particular, [ f , f ]Γ = 0 for all even elements f (i.e., degree 0)

and [[g, g]Γ, g]Γ = 0 for all odd g elements (i.e., degree 1) in gΓ.

We now explicitly construct a set of operators which generate a (1, 1)-

spacetime supersymmetry algebra.

11.1.4. (1, 1)-Spacetime Supersymmetry. Supersymmetry in (1, 1)-space-

time consists of the following data: Five degree-zero operators H, P, K, Z and I

and three degree-one operators Q+, Q´ and Γ, each acting on F and satisfying

the following relations: [Q+, Q´]Γ = 2Z, [Γ, Γ]Γ = 2I,

[Q+, Q+]Γ = 2[K, H + P]Γ = 4[K, Q+]Γ = 2(H + P) (11.9)

[Q´, Q´]Γ = 2[H ´ P, K]Γ = 4[Q´, K]Γ = 2(H ´ P). (11.10)

Specifically, there are two supersymmetric charges, or supercharges, Q+ and

Q´ such that Q2
+ = H + P and Q2

´ = H ´ P, the anti-linear involution or

odd-parity operator Γ (i.e., Z2-grading), the generator of temporal translations

H (i.e., Hamiltonian operator), the generator of spatial translations P (i.e., mo-

mentum operator), the generator of boosts K, a central (charge) operator Z, and

even-parity operator I (i.e., the identity operator).

11.2. Supersymmetric Quantum Mechanics

In [219219], Jaffe, Lesniewski and Lewenstein construct a Wess-Zumino (Holo-

morphic, Supersymmetric) Quantum Mechanics with an explicit supersymme-

try algebra, which we now describe. Consider the following four generators of
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a Clifford algebra,

γ0 =

0 I

I 0

 and γj =

 0 iσj

´iσj 0

 1 ď j ď 3, (11.11)

where σj is a Pauli matrix. Define the Z2-grading operator

Γ = γ0γ1γ2γ3 =

 I 0

0 ´I

 . (11.12)

Note that Γ has eigenvalues ˘1 (each with multiplicity 2) and that Γ2 is the 4ˆ 4

identity matrix. Define two time-zero fermions: ψ1 = 1
2(γ0 ´ iγ3) and ψ2 =

1
2(γ1 ´ iγ2) with adjoints ψ̄1 = 1

2(γ1 + iγ2) = ψ˚2 and ψ̄2 = 1
2(γ0 + iγ3) = ψ˚1 ,

which satisfy the following canonical anticommutation relations, tψ̄1, ψ2u =

tψ̄2, ψ1u = 1 and tψi, ψju = tψ̄i, ψ̄ju = 0. Consider one complex boson ϕ (which

may be viewed as a simple complex variable z), and define a bosonic potential

V(ϕ) = ϕn with n P Ną1. The Wess-Zumino Lagrangian is

L = |ϕ̇|2 + i(ψ˚1 ψ̇1 + ψ˚2 ψ̇2) + ψ˚2 ψ1B
2V + ψ˚1 ψ2(B

2V)˚ ´ |BV|2. (11.13)
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The action is invariant under the following infinitesimal SUSY transformation,

δϕ = ψ˚2 θ (11.14)

δϕ̄ = θ̄ψ2 (11.15)

δψ1 = ´(BV)˚θ (11.16)

δψ˚1 = (BV)θ (11.17)

δψ2 = iϕ̇θ (11.18)

δψ˚2 = i ˙̄ϕθ̄, (11.19)

where θ is an arbitrary Grassman number, with corresponding conserved

charges,

Q1 = iψ˚2B ´ iψ˚1(BV)˚ (11.20)

Q2 = iψ2B̄ + iψ1(BV). (11.21)

Consider the sum Q = Q1 + Q2. Then, upon squaring,

Q2 = ´B̄B ´ ψ˚2 ψ1B
2V ´ ψ˚1 ψ2(B

2V)˚ + |B2V|2 (11.22)

= H. (11.23)
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To yield another representation, define the projection operator,

Q´ = i(σ+B + σ´B̄) +
1
2 [(1 + σ3)(BV)´ (1´ σ3)(BV)˚] (11.24)

=

BV iB

iB̄ ´(BV)˚

 , (11.25)

where σ˘ = 1
2(σ1 ˘ iσ2) and similarly

Q+ =

(BV)˚ iB

iB̄ ´BV

 = Q˚´. (11.26)

Note that since tQ, Γu = 0, we have the decomposition

Q =

 0 Q´

Q+ 0

 . (11.27)

Define h+ = Q´Q+ and h´ = Q+Q´. Since H = Q2, then we have the decom-

position

H =

h+ 0

0 h´

 (11.28)

=

Q˚+Q+ 0

0 Q˚´Q´

 . (11.29)

Thus, [H, Γ] = 0 and we have a superalgebra.
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Denote E = inf spec H, where H = Q2 is a Hamiltonian in an existing su-

peralgebra with a self-adjoint supercharge, Q. A supersymmetry is unbroken if

E = 0 and broken if E ą 0. If a supersymmetry is broken, then the correspond-

ing ground state is degenerate. However, the converse is not true; the ground

state may be degenerate and the corresponding supersymmetry may be unbro-

ken. To measure supersymmetry breaking, Witten computes the Atiyah-Singer

index of the supercharge Q+ [474474],

ind(Q+) = dim ker Q+ ´ dim ker Q˚+ = TrH Γ e´βH, (11.30)

which is the difference of the number of bosonic and fermionic ground states.

11.3. The WZθ,φ Model

In the same paper [219219], Jaffe, Lesniewski and Lewenstein studied the vac-

uum structure of said supersymmetric model of holomorphic quantum mechan-

ics with a polynomial superpotential V and calculated the Fredholm (or Witten)

index** of the supercharge Q+ (satisfying Q2
+ = H + P),

ind(Q+) = lim
βÑ8

TrH b Γe´βH (11.31a)

= n+ ´ n´ (11.31b)

= deg BV, (11.31c)

* The equality above suggests that the Witten index depends on the singularity structure of
f = BV at infinity, since deg f = lim suprÑ8

log f (r)
log r , where f (r) = maxt| f (z)| | |z| = ru.
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where n+ = ker Q+ is the number of bosonic ground states and n´ = ker Q˚+

is the number of fermionic ground states. In particular, they proved a vanishing

theorem of no fermionic ground states (that is, n´ = 0), i.e., Q˚+ is injective, thus

proving the non-negativity of the Witten index for this model.

Their reasoning can be summarized as follows. Consider a fermionic ground

state Ω´ P H f which satisfies Q´Ω´ = h´Ω´ = 0. Since h´ = (´BB̄ + |BV|2)I,

then (BV)Ω´ = B̄Ω´ = 0. Hence, Ω´ = 0 and there are no fermionic ground

states, i.e., n´ = dim ker Q´ = 0. By proving that there are exactly n´ 1 linearly

independent solutions of the equation Q+Ω+ = 0, it follows that dim ker Q+ =

n´ 1. Thus, ind(Q+) = n´ 1 = deg BV [219219].

Remark 11.3.1. Note that ind(Q+) ‰ 0 is a sufficient condition for unbro-

ken supersymmetry. Moreover, if n˘ = 0, then ind(Q+) ‰ 0 is both a necessary

and sufficient condition for unbroken supersymmetry. M

11.3.1. The WZθ,φ Model. In 1999, Jaffe [222222] studied a twist-regularized

bosonic field theory with twisted bosonic partition function

Zb
g(β) = TrH bU(g´1) e´βH, (11.32)

where U(g) is a unitary representation of a group G and H is a U(g)-invariant,

self-adjoint Hamiltonian H (with interaction) on a bosonic Hilbert space H b.
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Here, he proved twist positivity,

Zb
γ(θ, σ, β) = TrH b e´βH´iσP´iθ J (11.33a)

=
n
ź

i=1

ź

k P T̂d

|1´ γi(k)|´2
ą 0, (11.33b)

which holds for fixed θ, σ, β ą 0 and any g P G, thus implying the existence of a

twisted Feynman-Kac representation of the interacting Hamiltonian, H = H0 + V.

In 2000, Jaffe [223223] studied a particular version of the aforementioned

bosonic field theory, as a twist-regularized, supersymmetric, generalized Wess-

Zumino model (WZθ, φ) on a (1, 1)-space-time torus T = S1 ˆ S1 of circumfer-

ence `. Within constructive quantum field theory, the WZθ,φ model remains to

date the only interacting two-dimensional supersymmetric quantum field the-

ory that satisfies a weaker, finite-volume version of the Osterwalder-Schrader

Axioms and wherein the ground-state structure is computable.

Given a weighted homogeneous potential V of the scalar fields with weights

ω1, . . . , ωn P (0, 1
2 ], which satisfies the condition of ellipticity, Jaffe com-

putes the twist, boson-fermion elliptic genus** (or Z2-graded partition function)

ZV : CˆH Ñ C of complex twist z = 1
2π (θ ´ φτ) and space-time τ = 1

` (σ + iβ)

* The elliptic genus is a graded invariant arising from the categorification of the WZθ,φ model
in much the same way that the Jones polynomial is regarded as the graded Euler characteristic
Khovanov Homology of the corresponding knot.
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parameters,

ZV(z, τ) = TrF Γe´βH´iσP´iθ J (11.34a)

= eiθĉ/2
n
ź

i=1

ź

kě0

(1´ y´(1´ωi)qk)(1´ y(1´ωj)qk+1)

(1´ y´ωi qk)(1´ yωi qk+1)
(11.34b)

= y´ĉ/2
n
ź

i=1

ϑ1((1´ωi) z, τ)

ϑ1(ωi z, τ)
, (11.34c)

where ĉ = n ´ 2
řn

i=1 ωi, y = e2πiz and q = e2πiτ. This is possible since the

elliptic genus ZλV is constant in λ P [0, 1], and ZλV is evaluated in the limit

λ Ñ 0. As a result of the representation as a ratio Jacobi theta functions, the

elliptic genus ZV is a weak Jacobi form and satisfies the following Z2 ˙ SL2(Z)-

symmetry: For γδ = ((m, n), (a b
c d)) P Z2 ˙ SL2(Z) and (z, τ) P CˆH, one has the

transformation law

ZV
|γδ

(z, τ) = yĉ/2 eĉ[cz2´(2m+1)z´a1τ´b1]
c,d ZV(z, τ), (11.35)

where a1 = ma + nc and b1 = mb + nd and ez
c,d = eπiz/(cτ+d).
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A fundamental problem with quantum field theory on a torus is the mass-

less or zero momentum divergences.

12.1. Infrared Problem on T

Consider a circle of length `, that is, the quotient space T = R/`Z. Define

ω(k) = (k2 + m2)1/2 and set K0 = 2π
` Z. Consider the free bosonic Hamiltonian

H0 =
ÿ

kPK0

ω(k) a(k)˚a(k) (12.1)

=
ÿ

kPK0

ω(k) N(k). (12.2)
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The trace of the heat kernel is given by

TrH e´βH0 =
ÿ

ně0

e´
ř

kPK0
nω(k) (12.3)

=
ź

kPK0

(
1´ e´ω(k)

)´1
, (12.4)

which is ill-defined for m = k = 0. Therefore, one must introduce a regular-

ization in order to study the massless or zero momentum sector of a quantum

field theory on T.

12.2. Harmonic Analysis on T

Consider a 1-torus T = R/`Z with fixed circumference ` P Rą0 and its

(symmetric) reciprocal lattice T̂ = 2π
` Z. As an element of the Schwartz space

S 1(T), recall that the Dirac measure δ on T has the following Fourier represen-

tation,

δ(x) =
1
`

ÿ

kPT̂

e´ikx = δ(´x), (12.5)

where the sums converge in the sense of tempered distributions.

12.3. Sharp Regularization

For N P N, let κ = 2π
` N. Define the finite reciprocal lattice T̂κ = tk P

T̂ | |k| ă κu and note that T̂ = lim supκÑ8 T̂κ. In a similar fashion, define a

corresponding finite lattice ZN = tn P Z | |n| ă Nu. Clearly, |T̂κ| = |ZN| =

2N ´ 1. Denote D̃κ(k) = θ(κ ´ |k|) = χT̂κ
(k), the characteristic function of
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T̂κ, and observe that limκÑ8 D̃κ = 1. Define the Dirichlet kernel on T as the

corresponding tempered distribution

Dκ(x) =
1
`

ÿ

kPT̂

D̃κ(k) e´ikx (12.6)

=
1
`

ÿ

kPT̂κ

eikx (12.7)

=
sin((2N ´ 1)πx

` )

` sin(πx
` )

(12.8)

= Dκ(´x). (12.9)

That δ = w-limκÑ8 Dκ is self-evident. Moreover, given a test function f in S(T)

or tempered distribution in S 1(T) with Fourier representation

f (x) =
1
?
`

ÿ

kPT̂

f̃ (k) e´ikx, (12.10)

we have the convolution

(Dκ ˚ f )(x) = ( f ˚Dκ)(x) =
ż `

0
f (x) Dκ(x´ y) dx = fκ(x), (12.11)

where fκ is the sharply-regularized test function or tempered distribution corre-

sponding to f in the limit κ Ñ 8 with Fourier representation

fκ(x) =
1
?
`

ÿ

kPT̂

D̃κ(k) f̃ (k) e´ikx (12.12)

=
1
?
`

ÿ

kPT̂κ

f̃ (k) e´ikx. (12.13)
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12.4. Smooth Regularization

For Λ P Rą0, define µ̃Λ(k) = (1 + k2

Λ2 )
´1/2 and observe that limΛÑ8 µ̃Λ = 1.

Fix ε ą 0. If κ ą Λ, then µ̃Λ(κ)
´ε ď µ̃Λ(k)´ε ď µ̃κ(k)´ε ď 1 for k ă |κ|. In the

limit κ Ñ 8, we have µ̃Λ(κ) = O(κ´ε). Define the corresponding mollifier, or

slow-decrease at infinity (tempered) distribution,

µε,Λ(x) =
1
`

ÿ

kPT̂

µ̃Λ(k)´ε e´ikx, (12.14)

also known as the JLO (Jaffe-Lesniewinski-Osterwalder) kernel. Observe that

µε,Λ is an approximate identity in two ways as δ = limεÑ0+ µε,Λ and

lim
ΛÑ8

µε,Λ(x) = lim
ΛÑ8

1
`

ÿ

kPT̂

µ̃Λ(k)´ε e´ikx (12.15)

= lim
ΛÑ8

lim
κÑ8

1
`

ÿ

kPT̂κ

µ̃Λ(k)´ε e´ikx (12.16)

= lim
κÑ8

lim
ΛÑ8

1
`

ÿ

kPT̂κ

µ̃Λ(k)´ε e´ikx (12.17)

= lim
κÑ8

1
`

ÿ

kPT̂κ

e´ikx (12.18)

= δ(x). (12.19)
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Since limεÑ8 µ̃Λ(k)´ε = δk,0, it follows that limεÑ8 µε,Λ = `´1. Also, note that

µε,Λ is even, real and `-periodic

µε,Λ(x) =
1
`

ÿ

kP´T̂

µ̃Λ(k)´ε e´ikx =
1
`

ÿ

kPT̂

µ̃Λ(k)´ε eikx = µε,Λ(´x) (12.20)

=
1
`

ÿ

kPT̂

µ̃Λ(k)´ε e´ik(´x) = µε,Λ(x)˚ (12.21)

=
1
`

ÿ

nPZ

µ̃`Λ/2π(n)´ε e´2πinx/`e´2πin (12.22)

= µε,Λ(x + `). (12.23)

Define a second mollifier as the convolution

vε,Λ(x) = (µε,Λ ˚ µε,Λ)(x) = µ2ε,Λ(x). (12.24)

12.4.1. Lp-norms on T. Denote a circle S1 of circumference `, or the 1-torus

T, by the quotient space T = R/`Z. For each positive integer p, define the

p-norm of a function f : T Ñ C by

} f }p = } f (x)}Lp(T) =

(
1
`

ż `

0
| f (x)|p dx

)1/p

. (12.25)

Also, define } f }8 = supxPT | f (x)|. Denote the space of complex-valued, measur-

able functions with finite p-norm by Lp(T).
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12.5. Dirichlet Kernels and Characteristic Functions

Define the Dirichlet kernel DN on T

DN(x) =
1
`

N´1
ÿ

n=´N+1

e2πinx/` =
sin(2N ´ 1)πx

`

sin πx
`

. (12.26)

the property that convolution with a `-periodic function f produces the Nth-

partial trigonometric sum,

(DN ˚ f )(x) =
1
`

ż `

0
dy DN(x´ y) f (y) =

N
ÿ

n=´N

f̃ (k) eikx. (12.27)

12.6. Dirac Measure

Define the Dirac measure (or Shah distribution) δ`Z on T as the doubly infi-

nite summation of evenly-spaced Dirac delta (generalized) functions,

δ`Z(x) =
ÿ

nP`Z

δ(x´ n) = δ`Z(´x), (12.28)

which satisfies the sampling and replicating identities

(δ`Z ¨ f )(x) := δ`Z(x) f (x) =
ÿ

nP`Z

δ(x´ n) f (n) (12.29)

and

(δ`Z ˚ g)(x) =
ÿ

nP`Z

g(x´ n), (12.30)
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where f and g are well-behaved test functions. In the sense of tempered distri-

butions, δ`Z(x) vanishes unless x P `Z and satisfies δ`Z(x + `) = δ`Z(x) for all

x P T. Since δ`Z is an `-periodic tempered distribution, we have the following

Fourier representation

δ`Z(x) =
1
?
`

ÿ

nPZ

cn e2πinx/`, (12.31)

which is convergent in the sense of tempered distributions. For each n P Z, the

Fourier coefficient cn has a simple form, which we calculate

cn =
1
?
`

ż `

0
δ`Z(x) e´2πikx/`dx (12.32)

=
1
?
`

ż `/2

´`/2
δ(x) e´2πikx/`dx (12.33)

=
1
?
`

. (12.34)

Introduce the 1-dimensional simple cubic Bravais lattice K` = 2π
` Z = x`Z, the

dual (Bravais) lattice `Z. Then it follows that

δK`
(x) =

1
`

ÿ

kPK`

eikx = δ`Z(x) and δ1K`
(x) =

i
`

ÿ

kPK`

k eikx. (12.35)

Relate the Dirac measure δ`Z to the ordinary delta distribution δ on R by re-

calling the identity

(δ ˝ f )(x) =
ÿ

txjPR | f (xj)=0u

δ(x´ xj)

| f 1(xj)|
, (12.36)
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Thus,

δ`Z(x) =
ÿ

nP`Z

δ(x´ n) (12.37)

=
ÿ

nP`Z

δ(x´ n)
| cos πn

` |
(12.38)

= (δ ˝ sin)
(πx

`

)
. (12.39)

12.7. Translated Lattices and Twisted Dirac Measures

For χ P Rz2πZ, define the twisted Dirac measure

δKχ
`
(x) =

1
`

ÿ

kPKχ
`

eikx = δK`
(x) e´iχx/`, (12.40)

where Kχ
` = tk P R | `k + χ P 2πZu or, equivalently, K`´

χ
` = tk´ χ

` P R | k P K`u,

a χ
` -translate of the dual lattice K` = K0

` . Without loss of generality, we may

restrict the domain of values of χ to (0, π) by symmetry of the translate Kχ
` . By

virtue of the sampling identity in equation (12.2912.29),

δKχ
`
(x) =

ÿ

nP`Z

δ(x´ n) e´inχ/`. (12.41)

Thus, we interpret the tempered distribution δKχ
`
(x) as an `Z-sampling of the

function e´iχx/`.
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12.8. Finite, Twisted Dirac Measure

Denote κm,χ = πm
` ´

χ
` for m P N and set κ = κ2N,χ for some distinguished

integer N ą 0. Consider the finite set Kχ
`,κ = tk P Kχ

` | |k| ă κ P Rą0u. Then

define the finite Dirac measure on [0, `) by the finite sum

δKχ
`,κ
(x) =

e´iχx/`

`

N
ÿ

n=´N

e2πinx/` (12.42)

=
e´iχx/`

`

(
sin (2N + 1)πx

`

sin πx
`

)
(12.43)

=
e´iχx/`

`
DN

(
2πx
`

)
. (12.44)

Define the projection operator PKχ
`,κ

acting on the space of tempered distribu-

tions D1(R), where

(PKχ
`,κ

f )(x) =
ż `

0
dx1 δKχ

`,κ
(x´ x1) f (x1) dx = ( f ˚ δKχ

`,κ
)(x), (12.45)

which is interpreted as a convolution over [0, `] or a distribution on T. Set

PKχ
`
= limκÑ8 PKχ

`,κ
. Although it is generally true that formally δK`

(´x) =

δK`
(x), since χb

j ‰ 0, it follows that δKχ
`
(´x) ‰ δKχ

`
(x). We now explore this

curious asymmetry.
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Proposition 12.1. Let f˘ be a tempered distribution possessing the Fourier

representation

f˘(x) = lim
κÑ8

1
?
`

ÿ

kPKχ
`,κ

f̃˘(k) e˘ikx =
1
?
`

ÿ

kPKχ
`

f̃˘(k) e˘ikx, (12.46)

where the Fourier coefficient f̃˘(k) is given by

f̃˘(k) =
1
?
`

ż `

0
dx1 f˘(x1) e¯ikx1 . (12.47)

Then f˘ satisfies the convolution identity f˘ = P
˘Kχ

`
f˘.

Proof . We calculate the convolution (P
˘Kχ

`
f˘)(x),

ż `

0
dx1 δ

˘Kχ
`
(x´ x1) f˘(x1) =

1
`

ż `

0
dx1

ÿ

kPKχ
`

e˘ik(x´x1) f˘(x1) (12.48)

= lim
κÑ8

1
`

ż `

0
dx1

ÿ

kPKχ
`,κ

e˘ik(x´x1) f˘(x1) (12.49)

= lim
κÑ8

1
?
`

ÿ

kPKχ
`,κ

(
1
?
`

ż `

0
dx1 f˘(x1) e¯ikx1

)
e˘ikx (12.50)

= lim
κÑ8

1
?
`

ÿ

kPKχ
`,κ

f̃˘(k) e˘ikx (12.51)

= f˘(x), (12.52)

where the interchange of the summation and integration symbols is justified for

finite summations. �
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Thus, δKχ
`
(x) is the natural Dirac measure for f+, whereas δ

´Kχ
`
(x) =

δKχ
j
(´x) is the Dirac measure more suitable for f´. The tempered distributions

f˘ satisfy χ-twist-`-periodic boundary conditions

f˘(x˘ `) =
1
?
`

ÿ

kPKχ
`

f̃˘(k) e˘ik(x˘`) (12.53)

=
1
?
`

ÿ

kPKχ
`

f̃˘(k) e˘ikxeik` (12.54)

= eiχ f˘(x). (12.55)

This identity is called a twist relation.

12.8.1. Dirac Measure, Revisited. Fix `, Λ P Rą0 and N P N, let κ = 2π
` N

and define the symmetric reciprocal lattice Ẑ = 2π
` Z and its cut-off counterpart

Ẑκ = tk P Ẑ | |k| ă κu. Note that Ẑ =
Ť

NPN Ẑκ and we may write without ado

Ẑ = limκÑ8 Ẑκ. Define the corresponding cut-off lattice ZN = tn P Z | |n| ă

Nu. Clearly, |Ẑκ| = |ZN| = 2N ´ 1. Recall the Dirac measure δẐ on T = R/`Z

is defined as the fourier series

δẐ(x) =
1
`

ÿ

kPẐ

e´ikx, (12.56)

where the sum converges in the sense of tempered distributions.
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12.9. Sharp Regularization

Define χ̃κ(k) = θ(κ ´ |k|), and observe that limκÑ8 χ̃κ(k) = 1. Define the

approximate identity χẐκ
on T as the partial summation

χẐκ
(x) =

1
`

ÿ

kPẐ

χ̃κ(k) e´ikx =
1
`

ÿ

kPẐκ

e´ikx = δẐκ
(x). (12.57)

Hence, limκÑ8 χẐκ
= δẐ.

12.10. Smooth Regularization

Define the following mollifier, or slow-decrease at infinity distribution,

µε,Λ(x) =
1
`

ÿ

kPẐ

µ̃Λ(k)´ε e´ikx (12.58)

=
1
`

ÿ

kPẐ

(
1 +

k2

Λ2

)´ε/2

e´ikx, (12.59)
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where ε P Rě0. Observe that µε,Λ is an approximate identity as limεÑ0+ µε,Λ =

δẐ and

lim
ΛÑ8

µε,Λ(x) = lim
ΛÑ8

1
`

ÿ

kPẐ

(
1 +

k2

Λ2

)´ε/2

e´ikx (12.60)

= lim
ΛÑ8

lim
κÑ8

1
`

ÿ

kPẐκ

(
1 +

k2

Λ2

)´ε/2

e´ikx (12.61)

= lim
κÑ8

lim
ΛÑ8

1
`

ÿ

kPẐκ

(
1 +

k2

Λ2

)´ε/2

e´ikx (12.62)

= lim
κÑ8

1
`

ÿ

kPẐκ

e´ikx (12.63)

= δẐ(x). (12.64)

Also, note that µε,Λ is even, real and `-periodic

µε,Λ(x) =
1
`

ÿ

kP´Ẑ

µ̃Λ(k)´ε e´ikx =
1
`

ÿ

kPẐ

µ̃Λ(k)´ε eikx = µε,Λ(´x) (12.65)

=
1
`

ÿ

kPẐ

µ̃Λ(k)´ε eikx =
1
`

ÿ

kPẐ

µ̃Λ(k)´ε e´ik(´x) = µε,Λ(x)˚ (12.66)

=
1
`

ÿ

nPZ

µ̃`Λ/2π(n)´ε e´2πinx/`e´2πin = µε,Λ(x + `). (12.67)
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Since limεÑ8 µ̃Λ(k)´ε = δk,0, it follows that limεÑ8 µε,Λ = `´1. Consider the

closure satisfied under convolution on T,

(µε,Λ ˚ µε1,Λ)(x) =
ż `

0
µε,Λ(x´ y) µε1,Λ(y) dy (12.68)

=
1
`

ÿ

kPẐ

µ̃Λ(k)´(ε+ε1) e´ikx (12.69)

= µε+ε1,Λ(x). (12.70)

Define a total order µε,Λ ď µε1,Λ if and only if ε ď ε1. Note that ď is translation

invariant, i.e., µε,Λ ď µε1,Λ implies µε+δ,Λ ď µε1+δ,Λ for each ε, ε1, δ P Rě0 and

positive in the sense that δẐ ď µε,Λ for each ε P Rą0.

The next chapter defines the standard operators in the WZθ,φ model.
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Chapter 13

Twist Field Operators
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It is rather curious that a (partial) Z2-graded Lie algebra of physical oper-

ators naturally arises from considering quantum fields with twist boundary

conditions on T. We describe the construction of these fields and operators

from first principles and elucidate some of their properties. The ensuing dis-

cussion pertains mainly to the author’s critical reading of the manuscript [226226],

although many of the details can be found in [158158], [222222], [223223] and [225225].

13.1. Translated Momentum Lattices

For Nj, Nα,j P N, introduce the bosonic cutoffs κj = 2π
` Nj and fermionic

cutoffs κα,j =
2π
` Nα,j. Define n bosonic translated lattices Kb

j = T̂´
φ
` Ωb

j and

606



their cutoff analogues Kb
j,κ = T̂κ ´

φ
` Ωb

j , i.e.,

Kb
j,κ = tk P Kb

j | `k + Ωjφ P 2πZ, |k| ă κju. (13.1)

Similarly, define 2n translated fermionic lattices K f
α,j,κ = T̂´

φ
` Ω f

α,j and their

finite analogues K f
α,κ = T̂κ ´

φ
` Ω f

α,j, i.e.,

K f
α,j,κ = tk P K f

α,j | `k + Ω f
α,jφ P 2πZ, |k| ă κα,ju (13.2)

for 1 ď α ď 2. With the above choices for cutoffs, |Kb
j,κ| = 2Nj and |K f

α,j,κ| = 2Nα,j

for 1 ď j ď n and 1 ď α ď 2.

Define the momentum-dependent weight Ωj(k) = θ(˘k)Ωj + θ(¯k)(1´Ωj)

and momentum-dependent cutoff κ˘,j(k) = θ(˘k)κ1,j + θ(¯k)κ2,j. Introduce two

more cutoff fermionic lattices,

K f
˘,j,κ = tk | `k + Ωj(k)φ P 2πZ , |k| ă κ˘,j(k)u. (13.3)

Finally, define the constant ĉ =
řn

j=1(1´ 2Ωj) = n´ 2
řn

j=1 Ωj.

13.2. Sharply and Strongly-Regularized Twist Fields

Consider n independent, time-zero, massless bosonic fields of the form

ϕj(x) =
1
?
`

ÿ

kPKb
j

ϕ̃j(k) e´ikx (13.4)

=
1
?

2`

ÿ

kPKb
j

|k|´1/2 (a+,j(k)˚ + a´,j(´k)) e´ikx (13.5)
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for 1 ď j ď n. Define the function

uα,j(k) =

a

|k|+ k
a

2|k|
=

c

1
2
+

sgn(k)
2

=

$

’

’

’

&

’

’

’

%

1 k ą 0

1?
2

k = 0

0 k ă 0.

(13.6)

Consider 2n independent, time-zero fermionic fields with Fourier representa-

tion

ψ1,j(x) =
1
?
`

ÿ

kPK f
1,j

ψ̃1,j(k) e´ikx (13.7)

=
1
?
`

ÿ

kPK f
1,j

(
u1,j(k)b+,j(k)˚ + u1,j(´k)b´,j(´k)

)
e´ikx (13.8)

and

ψ2,j(x) =
1
?
`

ÿ

kPK f
2,j

ψ̃2,j(k) e´ikx (13.9)

= ´
i
?
`

ÿ

kPK f
2,j

(
u2,j(´k)b+,j(k)˚ ´ u2,j(k)b´,j(´k)

)
e´ikx. (13.10)
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Define the 4n twisted mollifiers

Db
κ(x) = eiΩjφx/`Dκ(x) (13.11)

D f
α,κ(x) = eiΩα,jφx/`Dκ(x) (13.12)

µ
f
1,j,ε,Λ(x) = µb

j,ε,Λ(x) (13.13)

= eiΩjφx/`µε,Λ(x) (13.14)

µ
f
2,j,ε,Λ(x) = ei(1´Ωj)φx/`µε,Λ(x). (13.15)

Set vj,Λ(x) = e´i(1´Ωj)φx/`vΛ(x). Introduce n sharply-regularized bosonic fields

ϕj,κ = Db
κ ˚ ϕj and 2n sharply-regularized fermionic fields ψα,j,κ = D f

α,κ ˚ ψα,j

both defined on their corresponding cut-off dual lattices. Introduce n strongly-

regularized bosonic fields and 2n strongly-regularized fermionic fields,

ϕj,Λ,κ = µb
j,Λ ˚ ϕj,κ (13.16)

ψα,j,Λ,κ = µ
f
α,j,Λ ˚ ψα,j,κ. (13.17)

13.3. Supercharges Q1 and Q2

13.3.1. Translation Invariance of D1 and D2. Define the following free

derivations

D1 =

ż `

0
dx D1(x) =

ż `

0
dx D1,0(x) + λD1,I(x) (13.18)

D2 =

ż `

0
dx D2(x) =

ż `

0
dx D2,0(x) + λD2,I(x), (13.19)
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where the free densities are given by

D1,0(x) = i
n
ÿ

j=1

ψ1,j(x)[πj(x)´ Bx ϕj(x)˚] (13.20)

D2,0(x) = i
n
ÿ

j=1

ψ2,j(x)[πj(x)˚ + Bx ϕj(x)] e´iφx/` (13.21)

and the interaction densities are given by

D1,I(x) =
n
ÿ

j=1

ψ2,j(x) (Vj ˝ ϕ)(x)˚ (13.22)

D2,I(x) =
n
ÿ

j=1

ψ1,j(x) (Vj ˝ ϕ)(x) e´iφx/`, (13.23)

respectively, where we denote (Vj ˝ ϕ)(x) = BjV(ϕ1, . . . , ϕn). The exponen-

tial factor e´iφx/` in D2,0(x) is introduced to ensure its `-periodicity, as will be

shown. After a translation along a length `,

D1,0(x + `) = i
n
ÿ

j=1

ψ1,j(x + `)[πj(x + `)´ Bx ϕj(x + `)˚] (13.24)

= i
n
ÿ

j=1

eiχ f
1,jφψ1,j(x)[e´iχb

j φ
πj(x)´ e´iχb

j φ
Bx ϕj(x)˚] (13.25)

= i
n
ÿ

j=1

ei(χ f
1,j´χb

j )φψ1,j(x)[πj(x)´ Bx ϕj(x)˚]. (13.26)
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For D1,0(x) to be translation invariant, i.e., `-periodic, require that χ
f
1,j = χb

j for

1 ď j ď n. Similarly,

D1,I(x + `) =
n
ÿ

j=1

ψ2,j(x + `) (Vj ˝ ϕ)(x + `)˚ (13.27)

=
n
ÿ

j=1

eiχ f
2,jφ ψ2,j(x)Vj(eiχb

1φ ϕ1, . . . , eiχb
nφ ϕn)

˚. (13.28)

Thus, to ensure that D1(x) is translation invariant require that V satisfy the

relation

Vj(eiχb
1φ ϕ1, . . . , eiχb

nφ ϕn)
˚ = ei(χ f

1,j´χ
f
2,j´χb

j )φ Vj(ϕ1, . . . , ϕn)
˚ (13.29)

= e´iχ f
2,jφ Vj(ϕ1, . . . , ϕn)

˚ (13.30)

or, equivalently, Vj(eiχb
1φ ϕ1, . . . , eiχb

nφ ϕn) = eiχ f
2,jφ Vj(ϕ1, . . . , ϕn). Now impose the

translation invariance on D2,0(x),

D2,0(x + `) = i
n
ÿ

j=1

ψ2,j(x + `)[πj(x + `)˚ + Bx ϕj(x + `)] e´iφ(x+`)/` (13.31)

= i
n
ÿ

j=1

eiχ f
2,jφψ2,j(x)[eiχb

j φ
πj(x)˚ + eiχb

j φ
Bx ϕj(x)]e´iφ/`e´iφx/` (13.32)

= i
n
ÿ

j=1

ei(χ f
2,j+χb

j´1)φ
ψ2,j(x)[πj(x)˚ + Bx ϕj(x)] e´iφx/`. (13.33)
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To ensure that D2,0(x) is `-periodic, we must have χ
f
2,j + χb

j = 1 for 1 ď j ď n.

Similarly,

D2,I(x + `) =
n
ÿ

j=1

ψ1,j(x + `) (Vj ˝ ϕ)(x + `) e´iφ(x+`)/` (13.34)

=
n
ÿ

j=1

ei(χ f
1,j´1)φ

ψ1,j(x)Vj(eiχb
1φ ϕ1, . . . , eiχb

nφ ϕn) e´iφx/` (13.35)

=
n
ÿ

j=1

ei(χ f
1,j+χ

f
2,j´1)φ

ψ1,j(x)Vj(ϕ1, . . . , ϕn) = D2,I(x). (13.36)

Let ζ = eiχb
j φ

= eiχ f
2,jφ, then Vj satisfies the identity,

ζ Vj(ϕ1, . . . , ϕn) = Vj(ζ
ν1 ϕ1, . . . , ζνn ϕn), (13.37)

where νj = χb
j /χ

f
2,j = χ

f
1,j/χ

f
2,j and, therefore, Vj is a weighted homogeneous

polynomial with weights tν1, . . . , νnu. Hence,

χ
f
2,j =

1
1 + νj

and χ
f
1,j = χb

j = 1´
1

1 + νj
=

νj

1 + νj
. (13.38)

Define the rational Ωj =
νj

1+νj
and note that Ωj P (0, 1) for 1 ď j ď n.

One may write χ
f
1,j = χb

j = Ωj and χ
f
2,j = 1 ´ Ωj for 1 ď j ď n. Sup-

pose V is a weighted homogeneous polynomial with weight tΩ1, . . . , Ωnu, i.e.,

λV(ϕ1, . . . , ϕn) = V(λΩ1 ϕ1, . . . , λΩn ϕn) for any λ P Cˆ, then it must also satisfy
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the weighted Euler equation

(V ˝ ϕ)(x) =
n
ÿ

i=1

Ωi ϕi(x) (Vi ˝ ϕ)(x), (13.39)

as shown in previous chapter. It follows that the directional derivative BjV = Vj

satisfies a similar weighted Euler equation,

(Vj ˝ ϕ)(x) =
n
ÿ

i=1

(
Ωi

1´Ωj

)
ϕi(x) (Vji ˝ ϕ)(x) (13.40)

=
n
ÿ

i=1

νi ϕi(x) (Vij ˝ ϕ)(x). (13.41)

In order for both densities D1(x) and D2(x) to be translation invariant, we

must assume the following:

1a. (Weak Version) BjV is weighted homogeneous with weights tν1, . . . , νnu

for 1 ď j ď n;

1b. (Strong Version ùñ Weak Version) V is weighted homogeneous with

weights tΩ1, . . . , Ωnu;

2. χ
f
1,j = χb

j for 1 ď j ď n;

3. χb
j = Ωj for 1 ď j ď n; and,

4. χ
f
2,j = 1´Ωj for 1 ď j ď n.
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In the case that χ
f
1,j = χ

f
2,j, then Ωj = 1´Ωj and Ωj =

1
2 for 1 ď j ď n. We shall

refer to this as a mass-shift, i.e., when V is a Morse polynomial of the form

V(ϕ) =
n
ÿ

j=1

cj ϕj(x)2 cj P Cˆ. (13.42)

13.3.2. Nilpotence of D1 and D2. To show that D2
α(x) = 0 for α P t1, 2u,

it suffices to prove that Dα,0(x) and Dα,I(x) are each nilpotent and mutually

independent.

13.3.3. Nilpotence of D1,0 and D2,0. Recall that

D1,0(x) = i
n
ÿ

j=1

ψ1,j(x)[πj(x)´ Bx ϕj(x)˚] (13.43)

D2,0(x) = i
n
ÿ

j=1

ψ2,j(x)[πj(x)˚ + Bx ϕj(x)] e´iφx/`. (13.44)

Define the following densities

d(1)1,0 (x) = i
n
ÿ

j=1

ψ1,j(x)πj(x) (13.45)

d(2)1,0 (x) = ´i
n
ÿ

j=1

ψ1,j(x) Bx ϕj(x)˚ (13.46)

d(1)2,0 (x) = i
n
ÿ

j=1

ψ2,j(x)πj(x)˚ (13.47)

d(2)2,0 (x) = ´i
n
ÿ

j=1

ψ2,j(x) Bx ϕj(x). (13.48)
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Succinctly,

D1,0(x) = d(1)1,0 (x) + d(2)1,0 (x) (13.49)

D2,0(x) = (d(1)2,0 (x) + d(2)2,0 (x)) e´iφx/`. (13.50)

We now show that d(α
1)

α,0 (x) for α, α1 P t1, 2u is nilpotent. To do so we need the

following result.

Proposition 13.1. Suppose A, B, C and D are operators on some common

domain. If [A, D] = 0 = [B, C], then tAB, CDu = tA, Cu BD´ CA [B, D].

Proof . Observe that

tAB, CDu = ABCD + CDAB (13.51)

= ACBD + A[B, C]D + CADB + C[D, A]B (13.52)

= ACBD + (CABD´ CABD) + CADB (13.53)

= tA, CuBD + CA[D, B], (13.54)

as claimed. �

615



Consider the anti-commutator

td(1)1,0 (x), d(1)1,0 (x1)u = ´

n
ÿ

j,j1=1

tψ1,j(x)πj(x), ψ1,j1(x1)πj1(x1)u (13.55)

=
n
ÿ

j,j1=1

ψ1,j1(x1)ψ1,j(x)[πj1(x1), πj(x)] (13.56)

´ tψ1,j(x), ψ1,j1(x1)uπj(x)πj1(x1) (13.57)

= 0, (13.58)

since [πj(x), πj1(x1)] = 0 = tψ1,j(x), ψ1,j1(x1)u. Similarly, consider the anti-

commutator

td(2)1,0 (x), d(2)1,0 (x1)u = ´

n
ÿ

j,j1=1

tψ1,j(x) Bx ϕj(x)˚, ψ1,j1(x1) Bx1ϕj1(x1)˚u (13.59)

=
n
ÿ

j,j1=1

ψ1,j1(x1)ψ1,j(x)[Bx1ϕj1(x1)˚, Bx ϕj(x)˚] (13.60)

= 0, (13.61)
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since [Bx ϕj(x)˚, Bx1ϕj1(x1)˚] = 0. Finally, consider

td(1)1,0 (x), d(2)1,0 (x1)u =
n
ÿ

j,j1=1

tψ1,j(x)πj(x), ψ1,j1(x1) Bx1ϕj1(x1)˚u (13.62)

=
n
ÿ

j,j1=1

tψ1,j(x), ψ1,j1(x1)uπj(x) Bx1ϕj1(x1)˚ (13.63)

´ ψ1,j1(x1)ψ1,j(x)[πj(x), Bx1ϕj1(x1)˚]

= 0, (13.64)

since [πj(x), Bx1ϕj1(x1)˚] = 0. Thus, td(2)1,0 (x), d(1)1,0 (x1)u = 0 and therefore

tD1,0(x), D1,0(x1)u = td(1)1,0 (x) + d(2)1,0 (x), d(1)1,0 (x1) + d(2)1,0 (x1)u (13.65)

= td(1)1,0 (x), d(1)1,0 (x1)u+ td(2)1,0 (x), d(2)1,0 (x1)u

+ td(1)1,0 (x), d(2)1,0 (x1)u+ td(2)1,0 (x), d(1)1,0 (x1)u (13.66)

= 0. (13.67)
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As a corollary, we have tD1,0(x)˚, D1,0(x1)˚u = 0. Hence, D1,0(x)2 = 0, as

claimed. Now consider

td(1)2,0 (x), d(1)2,0 (x1)u = ´

n
ÿ

j,j1=1

tψ2,j(x)πj(x)˚, ψ2,j1(x1)πj1(x1)˚u (13.68)

=
n
ÿ

j,j1=1

ψ2,j1(x1)ψ2,j(x)[πj1(x1)˚, πj(x)˚]

´ tψ2,j(x), ψ2,j1(x1)uπj(x)˚ πj1(x1)˚ (13.69)

= 0, (13.70)

since [πj(x)˚, πj1(x1)˚] = 0 = tψ2,j(x), ψ2,j1(x1)u. Similarly, consider the anti-

commutator

td(2)2,0 (x), d(2)2,0 (x1)u = ´

n
ÿ

j,j1=1

tψ2,j(x) Bx1ϕj(x), ψ2,j1(x1) Bx1ϕj1(x1)u (13.71)

=
n
ÿ

j,j1=1

ψ2,j1(x1)ψ2,j(x)[Bx1ϕj1(x1), Bx ϕj(x)] (13.72)

= 0, (13.73)
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since [Bx ϕj(x), Bx1ϕj1(x1)] = 0. Finally, consider

td(1)2,0 (x), d(2)2,0 (x1)u =
n
ÿ

j,j1=1

tψ2,j(x)πj(x)˚, ψ2,j1(x1)Bx1ϕj1(x1)u (13.74)

=
n
ÿ

j,j1=1

tψ2,j(x), ψ2,j1(x1)uπj(x)˚Bx1ϕj1(x1)

´ ψ2,j1(x1)ψ2,j(x)[πj(x)˚, Bx1ϕj1(x1)] (13.75)

= 0. (13.76)

Similarly, td(2)2,0 (x), d(1)2,0 (x1)u = 0. After summing the four anti-commutators

above,

tD2,0(x), D2,0(x1)u ei(x+x1)φ/` = td(1)2,0 (x) + d(2)2,0 (x), d(1)2,0 (x1) + d(2)2,0 (x1)u (13.77)

= td(1)2,0 (x), d(1)2,0 (x1)u+ td(2)2,0 (x), d(1)2,0 (x1)u

+ td(1)2,0 (x), d(2)2,0 (x1)u+ td(2)2,0 (x), d(2)2,0 (x1)u (13.78)

= 0. (13.79)

As a corollary, we have tD2,0(x)˚, D2,0(x1)˚u = 0. Hence D2,0(x)2 = 0, as

claimed.
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13.3.4. Independence of D1,0 and D2,0. We calculate

tD1,0(x), D2,0(x1)u eix1φ/` = td(1)1,0 (x) + d(2)1,0 (x), d(1)2,0 (x1) + d(2)2,0 (x1)u (13.80)

= td(1)1,0 (x), d(1)2,0 (x1)u+ td(2)1,0 (x), d(2)2,0 (x1)u

+ td(1)1,0 (x), d(2)2,0 (x1)u+ td(2)1,0 (x), d(1)2,0 (x1)u (13.81)

= 0. (13.82)

Thus, D1,0(x) and D2,0(x1) are independent.

13.3.5. Translation Invariance of Q1,0 and Q2,0. Define the free super-

charge densities

Q1,0(x) = D1,0(x) + D1,0(x)˚ (13.83)

Q2,0(x) = D2,0(x) + D2,0(x)˚. (13.84)

Since D1,0(x) and D2,0(x) are `-periodic, then so are Q1,0(x) and Q2,0(x).

13.3.6. Calculation of Q2
1,0 and Q2

2,0. In this section, we show how the

squares Q2
1,0 and Q2

2,0 are related to the free Hamiltonian H0 and momentum P.
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Observe that the supercharges satisfy the following anti-commutator relations

tQ1,0(x), Q1,0(x1)u = tD1,0(x) + D˚1,0(x), D1,0(x1) + D˚1,0(x1)u (13.85)

= tD1,0(x), D1,0(x1)u+ tD1,0(x)˚, D1,0(x1)u (13.86)

+ tD1,0(x), D1,0(x1)˚u+ tD1,0(x)˚, D1,0(x1)˚u

= tD1,0(x)˚, D1,0(x1)u+ tD1,0(x), D1,0(x1)˚u. (13.87)

We calculate this in steps. First consider

tD1,0(x), D1,0(x1)˚u = td(1)1,0 (x) + d(2)1,0 (x), d(1)1,0 (x1)˚ + d(2)1,0 (x1)˚u (13.88)

= td(1)1,0 (x), d(1)1,0 (x1)˚u+ td(1)1,0 (x), d(2)1,0 (x1)˚u

+ td(2)1,0 (x), d(1)1,0 (x1)˚u+ td(2)1,0 (x), d(2)1,0 (x1)˚u (13.89)

We calculate the four anti-commutators:

td(1)1,0 (x), d(1)1,0 (x1)˚u =
n
ÿ

j,j1=1

tψ1,j(x)πj(x), ψ1,j1(x1)˚ πj1(x1)˚u (13.90)

=
n
ÿ

j,j1=1

tψ1,j(x), ψ1,j1(x1)˚uπj(x)πj1(x1)˚

´ ψ1,j1(x1)˚ψ1,j(x)[πj(x), πj1(x1)˚] (13.91)

=
n
ÿ

j=1

δ
K f

1,j
(x´ x1)πj(x)πj(x1)˚ (13.92)
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since tψ1,j(x), ψ1,j1(x1)˚u = δjj1δK f
1,j
(x´ x1) and [πj(x), πj1(x1)˚] = 0.

td(2)1,0 (x), d(2)1,0 (x1)˚u =
n
ÿ

j,j1=1

tψ1,j(x) Bx ϕj(x)˚, ψ1,j1(x1)˚ Bx1ϕj1(x1)u (13.93)

=
n
ÿ

j,j1=1

tψ1,j(x), ψ1,j1(x1)˚uBx ϕj(x)˚ Bx1ϕj1(x1)

´ ψ1,j1(x1)˚ ψ1,j(x)[Bx ϕj(x)˚, Bx ϕj1(x1)]

=
n
ÿ

j=1

δ
K f

1,j
(x´ x1) Bx ϕj(x)˚Bx ϕj(x1) (13.94)

since [Bx ϕj(x), Bx ϕj1(x1)˚] = δjj1δKb
j
(x´ x1).

td(1)1,0 (x), d(2)1,0 (x1)˚u =
n
ÿ

j,j1=1

tψ1,j(x)πj(x), ψ1,j1(x1)˚ Bx1ϕj1(x1)u (13.95)

=
n
ÿ

j,j1=1

tψ1,j(x), ψ1,j1(x1)˚uπj(x) Bx ϕj1(x1)

´ ψ1,j1(x1)˚ ψ1,j(x)[πj(x), Bx ϕj1(x1)]

=
n
ÿ

j=1

δ
K f

1,j
(x´ x1)πj(x) Bx1ϕj(x1)

´ iδ1Kb
j
(x´ x1)ψ1,j(x1)˚ ψ1,j(x). (13.96)
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since [πj(x), Bx1ϕj1(x1)] = iδjj1δ
1

Kb
j
(x´ x1). Finally, consider

td(2)1,0 (x), d(1)1,0 (x1)˚u =
n
ÿ

j,j1=1

tψ1,j(x)Bx ϕj(x)˚, ψ1,j1(x1)˚ πj1(x1)˚u (13.97)

=
n
ÿ

j,j1=1

tψ1,j(x), ψ1,j1(x1)˚u Bx ϕj(x)˚πj1(x1)˚

´ ψ1,j1(x1)˚ψ1,j(x)[Bx ϕj(x)˚, πj1(x1)˚] (13.98)

=
n
ÿ

j=1

δ
K f

1,j
(x´ x1) Bx ϕj(x)˚πj(x1)˚

+ iδ1Kb
j
(x1 ´ x)ψ1,j(x1)˚ψ1,j(x), (13.99)

since [πj(x)˚, Bx1ϕj1(x1)˚] = iδjj1δ
1

Kb
j
(x1 ´ x). Summing the four anti-commutators,

Q2
1,0 =

ż `

0

ż `

0
dx dx1 (D1,0(x) + D1,0(x1)˚)2 (13.100)

=

ż `

0

ż `

0
dx dx1 tD1,0(x), D1,0(x1)˚u (13.101)

=

ż `

0

ż `

0
dx dx1

n
ÿ

j=1

δ
K f

1,j
(x´ x1)πj(x)πj(x1)˚ + δ

K f
1,j
(x´ x1) Bx ϕj(x)˚Bx ϕj(x1)

+ δ
K f

1,j
(x´ x1)πj(x) Bx1ϕj(x1)´ iδ1Kb

j
(x´ x1)ψ1,j(x1)˚ ψ1,j(x)

+ δ
K f

1,j
(x´ x1) Bx ϕj(x)˚πj(x1)˚ + iδ1Kb

j
(x1 ´ x)ψ1,j(x1)˚ψ1,j(x). (13.102)
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After an integration over x1 and an integration by parts, we find that

Q2
1,0 =

ż `

0
dx

n
ÿ

j=1

πj(x)πj(x)˚ + Bx ϕj(x)˚Bx ϕj(x)

+

ż `

0
dx

n
ÿ

j=1

πj(x) Bx ϕj(x) + Bx ϕj(x)˚πj(x)˚

´ 2i
ż `

0
dx

n
ÿ

j=1

ψ1,j(x)˚ Bxψ1,j(x1) (13.103)

= Hb
0 + Pb

0 + (H f
0 + P f

0 ) = H0 + P0. (13.104)

Similarly,

Q2
2,0 =

ż `

0

ż `

0
dx dx1(D2,0(x) + D˚2,0(x1))2 (13.105)

=

ż `

0

ż `

0
dx dx1tD2,0(x), D2,0(x1)˚u (13.106)

Define the following supercharges

Qα(x) =
ż `

0
dx Dα(x) + Dα(x)˚ (13.107)

= Qα,0 + λQα,I . (13.108)

Since Dα,0(x) is nilpotent for α P t1, 2u, we have

Qα,0(x)2 =

ż `

0
dx (Dα,0(x) + Dα,0(x)˚)2 (13.109)

=

ż `

0
dx tDα,0(x), Dα,0(x)˚u. (13.110)

624



Problem 13.3.1. Prove the nilpotence of D1,I and D2,I , the independence

of D1,I and D2,I , the translation Invariance of Q1,0 and Q2,0, and finally compute

of Q2
1,I and Q2

2,I .

13.4. Supercharge Regularization

Define Q+(λ) = D1(λ) + D1(λ)
˚ (not to be confused with the Dirichlet

kernel Dκ), where

D1(λ) =

ż `

0
D1,0(x) + D1,I(x) dx (13.111)

= i
ż `

0

n
ÿ

j=1

ψ1,j(x)[Bx ϕj(x)˚ ´ πj(x)] dx

+ λ

ż `

0

n
ÿ

j=1

ψ2,j(x) (Vj ˝ ϕ)(x)˚ dx. (13.112)

Since D1 = D1(λ) is nilpotent, Q2
+ = (D1 + D˚1)

2 = tD1, D˚1u and

tD1, D˚1u = tD1,0, D˚1,0u+ tD1,0, D˚1,Iu+ tD
˚
1,0, D1,Iu+ tD1,I , D˚1,Iu. (13.113)
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We will show that Q+(λ)2 = H(λ) + P. We calculate

tD1,I , D˚1,Iu =
ż `

0

ż `

0
tD1,I(x), D1,I(x1)˚u dx dx1 (13.114)

= λ2
n
ÿ

j,j1=1

ż `

0

ż `

0
tψ2,j(x) (Vj ˝ ϕ)(x)˚, ψ2,j1(x1)˚ (Vj1 ˝ ϕ)(x1)u dx dx1

= λ2
n
ÿ

j,j1=1

ż `

0

ż `

0
tψ2,j(x), ψ2,j1(x1)˚u (Vj ˝ ϕ)(x)˚(Vj1 ˝ ϕ)(x1) dx dx1

+ λ2
n
ÿ

j,j1=1

ż `

0

ż `

0
ψ2,j1(x1)˚ψ2,j(x)[(Vj1 ˝ ϕ)(x1), (Vj ˝ ϕ)(x)˚] dx dx1

= λ2
n
ÿ

j=1

ż `

0

ż `

0
δ

K f
2,j
(x´ x1) (Vj ˝ ϕ)(x)˚(Vj ˝ ϕ)(x1) dx dx1 (13.115)

= λ2
n
ÿ

j=1

ż `

0
|(Vj ˝ ϕ)(x)|2 dx, (13.116)

626



since the bosonic fields commute with their adjoints. We calculate

tD1,0, D˚1,Iu =
ż `

0

ż `

0
tD1,0(x), D1,I(x1)˚u dx dx1 (13.117)

= iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
tψ1,j(x)[Bx ϕj(x)˚ ´ πj(x)], ψ2,j1(x1)˚ (Vj1 ˝ ϕ)(x1)u dx dx1

= iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
tψ1,j(x), ψ2,j1(x1)˚u(Bx ϕj(x)˚ ´ πj(x)) (Vj1 ˝ ϕ)(x1) dx dx1

+ iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
ψ2,j1(x1)˚ψ1,j(x)[(Vj1 ˝ ϕ)(x1), Bx ϕj(x)˚ ´ πj(x)] dx dx1

= iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
ψ2,j1(x1)˚ψ1,j(x)[(Vj1 ˝ ϕ)(x1), Bx ϕj(x)˚ ´ πj(x)] dx dx1

= λ
n
ÿ

j,j1=1

ż `

0
ψ2,j1(x)˚ψ1,j(x)(Vjj1 ˝ ϕ)(x) dx, (13.118)

since

[ϕ
rj
j (x), πj1(x1)] = ϕ

rj´1
j (x)[ϕj(x), πj1(x1)] + [ϕ

rj´1
j (x), πj1(x1)]ϕj(x) (13.119)

= iδjj1 rj ϕ
rj´1
j (x) δKb

j
(x´ x1) (13.120)

by induction and, as a result,

n
ÿ

j1=1

[(Vj1 ˝ ϕ)(x1), πj(x)] = i
n
ÿ

j,j1=1

(Vjj1 ˝ ϕ)(x1) δKb
j
(x1 ´ x). (13.121)

Recall that the bosonic interaction is simply

Hb
I (λ) = λ2

n
ÿ

j=1

ż `

0
|(Vj ˝ ϕ)(x)|2 dx (13.122)

627



and the boson-fermion interaction is given by

Hb f
I (λ) = λ

n
ÿ

j,j1=1

ż `

0
ψ1,j(x)ψ2,j1(x)˚(Vjj1 ˝ ϕ)(x)

+ ψ1,j1(x)˚ ψ2,j(x)(Vjj1 ˝ ϕ)(x)˚ dx. (13.123)

It follows, then, that

H(λ) = H0 + Hb
I (λ) + Hb f

I (λ) (13.124)

= Q+(λ)
2
´ P. (13.125)

Jaffe proves that Q´(λ) does not satisfy the dual relation, namely, Q´(λ)2 =

H(λ)´ P, but rather has an error term proportional to φ. Thus, said supersym-

metry (algebra) is broken.

13.5. Three Regularization Procedures

We now consider three regularization procedures in order of decreasing de-

gree. The first, the most naive, is to cutoff all fields, both bosonic and fermionic,

in H(λ). The second, one that seems more reasonable, is to cutoff the fields in

interaction derivation D1,I . The third is to cutoff only those bosonic fields in

D1,I , namely, through the gradient (BV ˝ ϕ)(x). We will concern ourselves with

the last two procedures, since these are non-trivial.
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Consider the fourier representation of fermions on the unshifted lattice T̂,

ψα,j(x) =
eiΩα,jφx/`
?
`

ÿ

kPT̂

f̃α,j(k) e´ikx. (13.126)

Set f̃α,j,κ(k) = D̃κ(k) f̃α,j(k) and denote the corresponding regularized fermionic

field ψα,j,κ. We apply a sharp cutoff to the fields in D1,I ,

D1,I,κ(λ) = λ

ż `

0

n
ÿ

j=1

ψ2,j,κ(x) (Vj ˝ ϕκ)(x)˚ dx. (13.127)

It is easy to see that

tD1,I,κ, D˚1,I,κu = λ2
n
ÿ

j=1

ż `

0
|(Vj ˝ ϕκ)(x)|2 dx (13.128)

= Hb
I,κ(λ) (13.129)

and

tD1,0, D˚1,I,κu = iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
tψ1,j(x)[Bx ϕj(x)˚ ´ πj(x)], ψ2,j1,κ(x1)˚ (Vj1 ˝ ϕκ)(x1)u dx dx1

= iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
tψ1,j(x), ψ2,j1,κ(x1)˚u(Bx ϕj(x)˚ ´ πj(x)) (Vj1 ˝ ϕκ)(x1) dx dx1

+ iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
ψ2,j1,κ(x1)˚ψ1,j(x)[(Vj1 ˝ ϕκ)(x1), Bx ϕj(x)˚ ´ πj(x)] dx dx1

= iλ
n
ÿ

j,j1=1

ż `

0

ż `

0
ψ2,j1,κ(x1)˚ψ1,j(x)[(Vj1 ˝ ϕκ)(x1), Bx ϕj(x)˚ ´ πj(x)] dx dx1

= λ
n
ÿ

j,j1=1

ż `

0
ψ2,j1,κ(x)˚ψ1,j(x)(Vjj1 ˝ ϕκ)(x) dx (13.130)
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Hence,

tD1,0, D˚1,I,κu+ tD
˚
1,0, D1,I,κu = λ

n
ÿ

j,j1=1

ż `

0
ψ1,j(x)ψ2,j1,κ(x)˚(Vjj1 ˝ ϕκ)(x) (13.131)

+ ψ1,j(x)˚ψ2,j1,κ(x)(Vjj1 ˝ ϕκ)(x)˚ dx

= Hb f
I,κ + Hb f´high,1

I,κ (13.132)

where

Hb f
I,κ(λ) = λ

n
ÿ

j,j1=1

ż `

0
ψ1,j,κ(x)ψ2,j1,κ(x)˚(Vjj1 ˝ ϕκ)(x)

+ ψ1,j1,κ(x)˚ ψ2,j,κ(x)(Vjj1 ˝ ϕκ)(x)˚ dx (13.133)

=
λ
?
`

n
ÿ

j,j1=1

ÿ

k,k1,k2PT̂κ

f̃1,j(k) f̃2,j1(k1)˚ Fj,j1(k2)

+ f̃1,j(k)˚ f̃2,j1(k1) Fj,j1(k2)˚ (13.134)

and

Hb f´high,1
I,κ (λ) =

λ
?
`

n
ÿ

j,j1=1

ÿ

kPT̂zT̂κ

ÿ

k1,k2PT̂κ

f̃1,j(k) f̃2,j1(k1)˚ Fj,j1(k2)

+ f̃1,j(k)˚ f̃2,j1(k1) Fj,j1(k2)˚. (13.135)

Then, it follows that

Qκ(λ)
2 = Hκ(λ) + P + Hb f´high,1

I,κ . (13.136)
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By a similar analysis, we can just cutoff the bosons in D1,I . The result is

Qκ(λ)
2 = Hκ(λ) + P + Hb f´high,1,2

I,κ , (13.137)

where

Hb f´high,1,2
I,κ (λ) =

λ
?
`

n
ÿ

j,j1=1

ÿ

k,k1PT̂zT̂κ

ÿ

k2PT̂κ

f̃1,j(k) f̃2,j1(k1)˚ Fj,j1(k2)

+ f̃1,j(k)˚ f̃2,j1(k1) Fj,j1(k2)˚. (13.138)

It is unclear whether or not the operators Hb f ,high,1
I,κ and Hb f ,high,1,2

I,κ are positive.

13.6. Sharply-Regularized Free Hamiltonian

Introduce 2n bosonic and 2n fermionic number operators

Nb
˘,j(k) = a˘,j(k)˚a˘,j(k) (13.139)

N f
˘,j(k) = b˘,j(k)˚b˘,j(k), (13.140)

respectively. Consider the free, sharply-regularized, free total Hamiltonian

H0,κ = Hb
0,κ b I + I b H f

0,κ (13.141)
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as the sum involving a sharply-regularized, free bosonic Hamiltonian

Hb
0,κ =

n
ÿ

j=1

}πj,κ}
2
2 + }Bϕj,κ}

2
2 (13.142)

=
n
ÿ

j=1

ż `

0
|πj,κ(x)|2 + |Bϕj,κ(x)|2 dx (13.143)

= Eb
0,κ(φ) +

n
ÿ

j=1

ÿ

kPKb
j,κ

|k| (N+,j(k) + N´,j(´k)) (13.144)

and the sharply-regularized, free fermionic Hamiltonian

H f
0,κ =

n
ÿ

j=1

ż `

0
ψ̄j,κ(x)(σ1B)ψj,κ(x) dx (13.145)

= ´i
n
ÿ

j=1

ż `

0
ψ1,j,κ(x)˚Bψ1,j,κ(x) + ψ2,j,κ(x)˚Bψ2,j,κ(x) dx (13.146)

= E f
0,κ(φ) +

n
ÿ

j=1

 ÿ

kPK f
+,j,κ

|k|N+,j(k) +
ÿ

kPK f
´,j,κ

|k|N´,j(´k))

 , (13.147)

where Eb
0,κ(φ) and E f

0,κ(φ) are finite for κ ă 8 but otherwise diverge in the limit

κ Ñ 8. The bosonic zero-point energy is not independent of the twist angle φ. If
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φ ą 0, we sum over n translated lattices,

Eb
0,κ(φ) =

n
ÿ

j=1

ÿ

kPKb
j,κ

|k| (13.148)

=
n
ÿ

j=1

Nj´1
ÿ

n=0

(
2πn
`

+
Ωjφ

`

)
+

Nj
ÿ

n=1

(
2πn
`
´

Ωjφ

`

) (13.149)

=
2π

`

n
ÿ

j=1

Nj
ÿ

n=1

2n
1 + δnNj

=
2π

`

n
ÿ

j=1

N2
j , (13.150)

which follows from the elementary sum

N +
N´1
ÿ

n=1

2n = N + N(N ´ 1) = N2. (13.151)

That is,

Eb
0,κ(φ) =

π

2`

n
ÿ

j=1

|Kb
j,κ|

2. (13.152)

If φ = 0, then we sum over n symmetric lattices,

Eb
0,κ(0) =

n
ÿ

j=1

ÿ

kPT̂j,κ

|k| (13.153)

=
2π

`

n
ÿ

j=1

Nj´1
ÿ

n=´Nj+1

|n| (13.154)

=
2π

`

n
ÿ

j=1

Nj(Nj ´ 1) =
4π

`

n
ÿ

j=1

(
Nj

2

)
. (13.155)
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That is,

Eb
0,κ(0) =

π

2`

n
ÿ

j=1

(|T̂j,κ|
2
´ 1). (13.156)

Thus, for all non-negative values of the twist angle φ, the bosonic zero-point

energy is simply

Eb
0,κ(φ) =

2π

`

n
ÿ

j=1

Nj(Nj ´ δφ,0). (13.157)

Recall that

ÿ

kPK f
+,j,κ

|k| =
ÿ

kPK f
1,j,κ

k θ(k)´
ÿ

kPK f
2,j,κ

k θ(´k). (13.158)

Using the identities k = k(θ(k) + θ(´k)) and |k| = k(θ(k) ´ θ(´k)), we can

evaluate the fermionic zero-point energy. If φ ą 0, we sum over translated
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lattices,

E f
0,κ(φ) = ´

n
ÿ

j=1

ÿ

kPK f
+,j,κ

|k| (13.159)

= ´
1
2

n
ÿ

j=1

 ÿ

kPK f
1,j,κ

k + |k| ´
ÿ

k1PK f
2,j,κ

k1 ´ |k1|

 (13.160)

= ´
1
2

n
ÿ

j=1

(
π

2`
|K f

1,j,κ|
2
´

Ωjφ

`
|K f

1,j,κ|

)

´
1
2

(
π

2`
|K f

2,j,κ|
2 +

(1´Ωj)φ

`
|K f

2,j,κ|

)
= ´

π

4`

n
ÿ

j=1

(
|K f

1,j,κ|
2 + |K f

2,j,κ|
2
)
+

φ

2`

n
ÿ

j=1

(
Ωj|K

f
1,j,κ|

´(1´Ωj)|K
f
2,j,κ|

)
. (13.161)
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If φ = 0, we sum over symmetric lattices,

E f
0,κ(0) = ´

1
2

n
ÿ

j=1

 ÿ

kPT̂1,j,κ

k + |k| ´
ÿ

k1PT̂2,j,κ

k1 ´ |k1|

 (13.162)

= ´
π

`

n
ÿ

j=1

 ÿ

nPZ1,j,N

n + |n| ´
ÿ

n1PZ2,j,N

n1 ´ |n1|

 (13.163)

= ´
π

`

n
ÿ

j=1

 ÿ

nPZ1,j,N

|n|+
ÿ

n1PZ2,j,N

|n1|

 (13.164)

= ´
π

`

n
ÿ

j=1

(
N1,j(N1,j ´ 1) + N2,j(N2,j ´ 1).

)
(13.165)

Thus, for all non-negative values of the twist angle φ, the fermionic zero-point

energy is simply

E f
0,κ(φ) = ´

π

`

n
ÿ

j=1

(
N1,j(N1,j ´ δφ,0) + N2,j(N2,j ´ δφ,0)

)
+

φ

`

n
ÿ

j=1

(
ΩjN1,j ´ (1´Ωj)N2,j

)
. (13.166)
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Hence, the total zero-point energy is the sum

E0,κ = Eb
0,κ + E f

0,κ (13.167)

=
π

2`

n
ÿ

j=1

[
|Kb

j,κ|
2
´

1
2

(
|K f

1,j,κ|
2 + |K f

2,j,κ|
2
)]

+
φ

2`

n
ÿ

j=1

(
Ωj|K

f
1,j,κ| ´ (1´Ωj)|K

f
2,j,κ|

)
.

The discontinuity of the total zero-point energy E0,κ(φ) at φ = 0 is a manifesta-

tion of a spontaneous breaking of Z2-symmetry of the momentum lattices from

a symmetric lattice to a translated lattice when φ ą 0. We regard this as a twist

quantum phase transition.

Suppose |Kb
j,κ| = |K f

1,j,κ| = |K f
2,j,κ| = 2N for 1 ď j ď n, then

E0,κ = ´
φĉ
`

N = ´
φĉ
2π

κ. (13.168)

With φ = 0 and the aforementioned choice of cutoffs, the total Hamiltonian

H0 = s-limκÑ8 H0,κ need not be normal ordered.

13.7. Sharply-Regularized Momentum

Consider the total, sharply-regularized momentum operator

Pκ = Pb
κ b I + I b P f

κ , (13.169)

637



which is the sum involving the sharply-regularized bosonic momentum,

Pb
κ = ´

n
ÿ

j=1

ż `

0
πj,κ(x) Bϕj,κ(x) + Bϕj,κ(x)˚ πj,κ(x)˚ dx (13.170)

= pb
0,κ +

n
ÿ

j=1

ÿ

kPKb
j,κ

k
(

Nb
+,j(k)´ Nb

´,j(´k)
)

, (13.171)

and the sharply-regularized fermionic momentum,

P f
κ = ´i

n
ÿ

j=1

ż `

0
ψ1,j,κ(x)˚Bψ1,j,κ(x)´ ψ2,j,κ(x)˚Bψ2,j,κ(x) dx (13.172)

= p f
0,κ +

n
ÿ

j=1

 ÿ

kPK f
+,j,κ

k N f
+,j(k)´

ÿ

kPK f
´,j,κ

k N f
´,j(´k)

 , (13.173)

where pb
0,κ and p f

0,κ are finite constants for κ ă 8 but otherwise diverge in the

limit κ Ñ 8. In particular,

pb
0,κ =

n
ÿ

j=1

ÿ

kPKb
j,κ

k = ´
φ

`

n
ÿ

j=1

Ωj|Kb
j,κ|, (13.174)

and recalling that

ÿ

kPK f
+,j,κ

k =
ÿ

kPK f
1,j,κ

k θ(k) +
ÿ

kPK f
2,j,κ

k θ(´k), (13.175)
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we find

p f
0,κ = ´

n
ÿ

j=1

ÿ

kPK f
+,j,κ

k (13.176)

= ´
1
2

n
ÿ

j=1

 ÿ

kPK f
1,j,κ

k + |k|+
ÿ

kPK f
2,j,κ

k1 ´ |k1|

 (13.177)

= ´
1
2

n
ÿ

j=1

(
π

2`
|K f

1,j,κ|
2
´

Ωjφ

`
|K f

1,j,κ|

)

+
1
2

(
π

2`
|K f

2,j,κ|
2 +

(1´Ωj)φ

`
|K f

2,j,κ|

)
(13.178)

= ´
π

4`

n
ÿ

j=1

(
|K f

1,j,κ|
2
´ |K f

2,j,κ|
2
)

+
φ

2`

n
ÿ

j=1

(
Ωj|K

f
1,j,κ|+ (1´Ωj)|K

f
2,j,κ|

)
. (13.179)

Thus, the total zero-point momentum is the sum

p0,κ = pb
0,κ + p f

0,κ (13.180)

= ´
π

4`

n
ÿ

j=1

(
|K f

1,j,κ|
2
´ |K f

2,j,κ|
2
)

+
φ

2`

n
ÿ

j=1

(
Ωj

(
|K f

1,j,κ| ´ 2|Kb
j,κ|
)
+ (1´Ωj)|K

f
2,j,κ|

)
. (13.181)
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Suppose |Kb
j,κ| = |K f

1,j,κ| = |K f
2,j,κ| = 2N for 1 ď j ď n, then

p0,κ =
φĉ
`

N (13.182)

=
φĉ
2π

κ. (13.183)

With φ = 0 and the aforementioned choice of the cutoffs, the momentum P =

s-limκÑ8 Pκ need not be normal ordered.

13.8. Sharply-Regularized Charge Operators

The free bosonic Lagrangian for n complex bosonic fields is given by

L b =

ż `

0
L b

0 (x) dx (13.184)

=

ż `

0

n
ÿ

j=1

πj(x)˚ πj(x)´ Bx ϕj(x)˚Bx ϕj(x) dx. (13.185)

Clearly,L b
0 (x) is `-periodic. The multiplicative group Cˆ acts on

(ϕ1, . . . , ϕn) by multiplying each bosonic field by a phase,

(ϕ1, . . . , ϕn) ÞÑ (e´iq1 ϕ1, . . . , e´iqn ϕn), (13.186)
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where q1, . . . , qn P R. By Nöther’s theorem, there is a conserved charge density

j0(x) and therefore an associated charge operator

Qb
j = i

ż `

0
j0j (x) dx (13.187)

= ´iqj

ż `

0
ϕj(x)˚πj(x)˚ ´ πj(x) ϕj(x) dx. (13.188)

In terms of creation and annihilation operators,

Qb
j =

qj

2

ÿ

kPKb
j

2a+,j(k)a+,j(k)˚ ´ 2a´,j(´k)˚a´,j(´k) (13.189)

= qj

ÿ

kPKb
j

Nb
+,j(k)´ Nb

´,j(´k) + 1

 . (13.190)

Define the fermionic current

j f
j (x) = qjψ̄j(x)γ0ψj(x) (13.191)

and associated charge operator

Q f
j =

ż `

0
j f
j (x) dx (13.192)

= qj

ż `

0
ψ̄j(x)γ0ψj(x) dx (13.193)

= qj

ż `

0
ψ1,j(x)˚ψ1,j(x) + ψ2,j(x)˚ψ2,j(x). (13.194)

Problem 13.8.1. Compute Q f
j in terms of fermionic number operators.
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13.9. Zero-Point Energy and Momentum Cancellation

Supersymmetry is compatible with the choice |Kb
j,κ| = |K f

1,j,κ| for 1 ď j ď n,

since the sum

E0,κ + p0,κ =
π

2`

n
ÿ

j=1

|Kb
j,κ|

2
´ |K f

1,j,κ|
2 +

φ

`

n
ÿ

j=1

Ωj

(
|K f

1,j,κ| ´ |K
b
j,κ|
)

(13.195)

= 0, (13.196)

and there is no need to normal order the operator sum

H0 + P0 = s- lim
κÑ8

H0,κ + P0,κ. (13.197)

Unfortunately, the difference E0,κ ´ p0,κ does not share a similar cancellation,

but by taking qj|Kb
j,κ| = (d´ qj)|K

f
2,j,κ| for 1 ď j ď n, we effectively remove the φ

dependence of the difference,

E0,κ ´ p0,κ =
π

2`

n
ÿ

j=1

|Kb
j,κ|

2
´ |K f

2,j,κ|
2 +

φ

`

n
ÿ

j=1

Ωj|Kb
j,κ| ´ (1´Ωj)|K

f
2,j,κ| (13.198)

=
π

2`

n
ÿ

j=1

Ω´2
j (1´ 2Ωj)|K

f
2,j,κ|

2. (13.199)

Finally, if |K f
2,j,κ| = bqj, where b P N, then E0,κ ´ p0,κ = π(bd)2 ĉ

2` .

13.10. Sharply-Regularized Superpotential

One way to ensure that a holomorphic function f : Cn Ñ C has finitely

many zeros forming a compact set is the existence of (finite) constants ε, M ą 0
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such that the following elliptic bounds hold,

|B
α f |2 ď ε|B f |2 + M and |z|2 + | f | ď M

(
|B f |2 + 1

)
(13.200)

for any multi-index α, where |z| denotes the magnitude of z = (z1, . . . , zn) and

|B f |2 =
řn

j=1 |Bj f |2 is the squared magnitude of the gradient of f . If f satisfies

these, then f is called elliptic.

Recall that if f : (Cn+1, 0) Ñ (C, 0) is a weighted homogeneous polyno-

mial of (weighted) degree d P N and integral weights tq0, . . . , qnu P Nn+1. By

definition f satisfies identity

λd f (z0, . . . , zn) = f (λq0z0, . . . , λqn zn) (13.201)

for λ P Cˆ and, therefore, also satisfies the weighted Euler equation

f (z0, . . . , zn) = (deg f )´1
n
ÿ

j=0

(deg zj) zj Bj f (13.202)

= d´1
n
ÿ

j=0

qj zj Bj f . (13.203)

Define the reduced weight set ω = tω1, . . . , ωnu, where ωj =
qj
d for 1 ď j ď n.

Since weighted homogeneous polynomials have either an isolated critical

point at the origin, a continuum of critical points, flat direction, there or none at

all, it suffices to prove the existence of constants ε, ` ą 0 such that

|B f | ě ε|z|` (13.204)

643



in an open neighborhood of the origin, which establishes the existence of an

isolated critical point there. This inequality is known in the literature as the

(complex) Łojasiewicz inequality. Here, the infimum `0 of the exponents t`u is

known as the Łojasiewicz exponent and is an invariant of weighted homogeneous

polynomials within the same weight equivalence class, as we have described in

previous chapters.

Proposition 13.2 (Jaffe, [222222], [225225], [223223]). If the bosonic superpotential V

is weighted homogeneous and satisfies the elliptic bounds, then the corresponding heat

kernel e´βH´iσP´iθ J of the twist-regularized Wess-Zumino model is trace-class on the

boson-fermion Fock space.

We have proven that only the first elliptic bound need be shown, as the lat-

ter is redundant and automatically satisfied by virtue of the weighed Euler

equation, q.v., Proposition 3.143.14 in §3.33.3.
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Chapter 14

Bilocal Bounds

Arguments are to be avoided; they are always vulgar and often convincing.
— Oscar Wilde

Contents
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To study non-trivial interactions in this theory, we consider a superpotential

V(ϕΛ,κ) = V(ϕ1,Λ,κ, . . . , ϕn,Λ,κ) of the bosonic fields which when considered as

function of Cn is a non-degenerate, weighted homogeneous polynomial (with

an isolated zero at the origin) with reduced weight set Ω and satisfies the first

of the elliptic bounds. Again, we refer the reader to the following articles [158158],

[222222], [223223] and [225225] and [226226] for a more complete and comprehensive discus-

sion of twist fields.

These calculations represent only a first step toward proving the existence of

the partition function. Much more analysis is required.
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14.1. Strongly-Regularized Interaction Hamiltonian

Define the domain Dκ =
Ş

nPN D(Hn
0,κ). Consider the total, strongly-

regularized Hamiltonian

HΛ,κ(λ) = H0,κ + HI,Λ,κ(λ), (14.1)

where the interaction Hamiltonian

HI,Λ,κ(λ) = Hb
I,Λ,κ(λ) + Hb f

Λ,κ(λ). (14.2)

For notational convenience, it is convenient write

HΛ,κ(λ) = H f
0,κ + Hb

Λ,κ(λ) + Hb f
Λ,κ(λ), (14.3)

where the bilocal bosonic Hamiltonian Hb
Λ,κ is the sum

Hb
Λ,κ(λ) = Hb

0,κ + Hb
I,Λ,κ(λ) (14.4)

= Hb
0,κ + λ2

n
ÿ

j=1

ż `

0

ż `

0
Vj(ϕΛ,κ(x))˚ vj,Λ(x´ y)Vj(ϕΛ,κ(y)) dx dy, (14.5)

and the local boson-fermion interaction Hamiltonian is given by

Hb f
Λ,κ(λ) = hb f

Λ,κ(λ) + hb f
Λ,κ(λ)

˚ (14.6)

= λ
n
ÿ

j,j1=1

ż `

0
ψ1,j,Λ,κ(x)ψ2,j1,Λ,κ(x)˚Vjj1(ϕΛ,κ)

+ ψ2,j,Λ,κ(x)ψ1,j1,Λ,κ(x)˚Vjj1(ϕΛ,κ)
˚ dx, (14.7)
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where Vjj1(ϕΛ,κ) = Vjj1(ϕΛ,κ(x)). Define the local, cutoff, bosonic interaction

Hamiltonian Hb loc
I,Λ,κ,

Hb loc
I,Λ,κ(λ) = λ2

n
ÿ

j=1

ż `

0
|Vj(ϕΛ,κ(x))|2 dx ě 0. (14.8)

14.1.1. Fourier Representation of the Hamiltonian. Consider the Fourier

representation of the directional derivative,

Vj(ϕΛ,κ) =
1
?
`

ÿ

kPKVj ,κ

Ṽj(k) e´ikx (14.9)

where KVj,κ = K f
2,j,κ. Using the Fourier representations of Vj, we write Hb loc

I,Λ,κ as

a sum over momenta,

Hb loc
I,Λ,κ = λ2

n
ÿ

j=1

ÿ

k,k1PKVj ,κ

Ṽj(k)˚ Ṽj(k1)

(
1
`

ż `

0
ei(k´k1)x dx

)
(14.10)

= λ2
n
ÿ

j=1

ÿ

kPKVj ,κ

|Ṽj(k)|2 (14.11)

648



using the fact that δk,k1 =
1
`

ş`
0 ei(k´k1)x dx. Similarly, we may write Hb

I,Λ,κ as a

sum over momenta,

Hb
I,Λ,κ = λ2

n
ÿ

j=1

ż `

0

ż `

0
Vj(ϕΛ,κ(x))˚vj,Λ(x´ y)Vj(ϕΛ,κ(y)) dx dy (14.12)

=
λ2

`2

n
ÿ

j=1

ÿ

k,k2PKVj ,κ

ÿ

k1PT̂κ

Ṽj(k) µ̃Λ(k1)´2ε Ṽj(k2)˚

¨

ż `

0

ż `

0
e´i(1´Ωj)φ(x´y)/`e´i(k´k1)x´i(k1´k2)ydx dy. (14.13)

Observe that

ż `

0

ż `

0
e´i(1´Ωj)φ(x´y)/`e´i(k´k1)x´i(k1´k2)ydx dy

= `2e´i(k´k2)`/2s+j (k´ k1) s´j (k
1
´ k2),

where

s˘j (k) = j0
(

1
2(k`˘ (1´Ωj)φ)

)
(14.14)

=
sin[1

2(k`˘ (1´Ωj)φ)]
1
2(k`˘ (1´Ωj)φ)

, (14.15)
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and j0 is the zeroth spherical Bessel function. Collecting terms,

Hb
I,Λ,κ = λ2

n
ÿ

j=1

ÿ

k,k2PKVj ,κ

ÿ

k1PT̂κ

Ṽj(k) s+j (k´ k1) µ̃Λ(k1)´2εs´j (k
1 ´ k2) Ṽj(k2)˚ e´i(k´k2)`/2

= λ2
n
ÿ

j=1

ÿ

n,n1,n2PZN

(´1)n´n2Ṽj

(
2πn
` ´ (1´Ωj)φ

`

)
j0(π(n´ n1)) µ̃Λ

(
2πn1
`

)´2ε

¨ j0(π(n1 ´ n2))Ṽj

(
2πn2

`
´ (1´Ωj)φ

`

)˚
(14.16)

= λ2
n
ÿ

j=1

ÿ

n,n1,n2PZN

(´1)n´n2δn,n1δn1,n2 Ṽj

(
2πn
` ´ (1´Ωj)φ

`

)
µ̃Λ

(
2πn1

`

)´2ε

Ṽj

(
2πn2

`
´ (1´Ωj)φ

`

)˚
(14.17)

= λ2
n
ÿ

j=1

ÿ

kPT̂κ

µ̃Λ(k)´2ε
ˇ

ˇ

ˇ
Ṽj

(
k´ (1´Ωj)φ

`

)ˇ
ˇ

ˇ

2
(14.18)

= λ2
n
ÿ

j=1

ÿ

kPKVj ,κ

µ̃Λ

(
k + (1´Ωj)φ

`

)´2ε |Ṽj(k)|2, (14.19)

where we have used the fact that j0(πn) = δn,0. We claim that Hb
I,Λ,κ has a

simpler form if we take

Vj(ϕΛ,κ(x)) =
ei(1´Ωj)φx/`

?
`

ÿ

kPT̂κ

Fj(k) eikx (14.20)

=
ei(1´Ωj)φx/`

?
`

ÿ

kPT̂κ

Fj(´k) e´ikx. (14.21)
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On the cut-off lattice KVj,κ,

Ṽj(k) =
1
?
`

ż `

0
Vj(x) eikx dx (14.22)

=
ÿ

k1PT̂κ

Fj(´k1)

(
1
`

ż `

0
ei(k´k1)xei(1´Ωj)φx/`

)
dx (14.23)

=
ÿ

kPT̂κ

Fj(´k1) δk1,k2 = Fj(´k2), (14.24)

where k2 = k +
(1´Ωj)φ

` P Ẑκ. Hence, Ṽj(k)˚ = Fj(k2)˚ and, therefore,

Hb
I,Λ,κ = λ2

n
ÿ

j=1

ÿ

kPT̂κ

µ̃Λ(k)´2ε
|Fj(´k)|2 (14.25)

= λ2
n
ÿ

j=1

ÿ

kPT̂κ

µ̃Λ(k)´2ε
|Fj(k)|2, (14.26)

since µ̃Λ is even.

Equivalently, we could consider a mollified directional derivative Vj,Λ =

µ
f
2,j,ε,Λ ˚Vj with Fourier representation

Vj,Λ(ϕΛ,κ) =
ei(1´Ωj)φx/`

?
`

ÿ

kPT̂κ

µ̃Λ(k)´ε Fj(k) eikx. (14.27)

The corresponding local bosonic interaction Hamiltonian with a mollified su-

perpotential Vj,Λ is exactly the bilocal bosonic interaction with an unmollified

superpotential Vj since the bilocal interaction Hamiltonian depends only on the

Fourier coefficient of its superpotential.
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14.2. Local Bound

We establish a bound of the bilocal, bosonic Hamiltonian Hb
Λ,κ in terms of

the local, bosonic Hamiltonian Hb loc
Λ,κ and a cut-off dependent coupling constant.

Write λΛ,κ = λ µ̃Λ(κ)
´ε. Since infkPT̂κ

µ̃Λ(k)´ε = µ̃Λ(κ)
´ε, a lower bound, in

turn, is then

Hb loc
I,Λ,κ(λΛ,κ) = λ2 µ̃Λ(κ)

´2ε
n
ÿ

j=1

ÿ

kPT̂κ

|Fj(k)|2 (14.28)

ď λ2
n
ÿ

j=1

ÿ

kPT̂κ

µ̃Λ(k)´2ε
|Fj(k)|2 (14.29)

= Hb
I,Λ,κ(λ). (14.30)

The inequalities for the bosonic interactions translate into inequalities for the

total bosonic Hamiltonians, so it follows that

Hb loc
Λ,κ (λΛ,κ) = Hb

0,κ + Hb loc
I,Λ,κ(λΛ,κ) (14.31)

ď Hb
0,κ + Hb

I,Λ,κ(λ) (14.32)

= Hb
Λ,κ(λ), (14.33)

which we shall use for establishing both a Divergent Kato bound and a Mass

Shift bound.
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14.3. Divergent Kato Bound

Consider the boson-fermion interaction Hb f
Λ,κ = hb f

Λ,κ + (hb f
Λ,κ)

˚, where

hb f
Λ,κ(λ) = λ

n
ÿ

j,j1=1

ż `

0
ψ1,j,Λ,κ(x)ψ2,j1,Λ,κ(x)˚Vjj1(ϕΛ,κ(x)) dx. (14.34)

As an intermediate step, we show that for each ε1 ą 0 there exists a constant

M1 = M1(ε0, κ, Λ) ă 8 such that the boson-fermion interaction Hamiltonian is

a Kato perturbation of the local bosonic Hamiltonian,

|Hb f
Λ,κ(λ)| ď ε1Hb loc

Λ,κ (λΛ,κ) + M1. (14.35)

Suppose the second-order directional derivative Vjj2 has the following Fourier

represenation

Vjj1(ϕΛ,κ(x)) =
ei(1´Ωj´Ωj1 )φx/`

?
`

ÿ

kPT̂κ

Fj,j1(k) eikx. (14.36)
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Then as a momentum sum, we have

hb f
Λ,κ(λ) =

λ
?
`

n
ÿ

j,j1=1

ÿ

kPK f
1,j,κ

ÿ

k1PK f
2,j1,κ

ÿ

k2PT̂κ

ψ̃1,j,Λ,κ(k) ψ̃2,j1,Λ,κ(k1)˚ Fj,j1(k2)

¨

(
1
`

ż `

0
ei[(1´Ωj´Ωj1 )φ/`´k+k1+k2]xdx

)
(14.37)

=
λ
?
`

n
ÿ

j,j1=1

ÿ

k,k1,k2PT̂κ

ψ̃1,j,Λ,κ

(
k´

Ωjφ

`

)
ψ̃2,j1,Λ,κ

(
k1 ´

(1´Ωj1)φ

`

)˚
Fj,j1(k2)

¨

(
1
`

ż `

0
ei[(1´Ωj´Ωj1 )φ/`´(k´Ωjφ/`)+(k1´(1´Ωj1 )φ/`)+k2]xdx

)
(14.38)

=
λ
?
`

n
ÿ

j,j1=1

ÿ

k,k1,k2PT̂κ

ψ̃1,j,Λ,κ

(
k´

Ωjφ

`

)
ψ̃2,j1,Λ,κ

(
k1 ´

(1´Ωj1 )φ

`

)˚
Fj,j1(k2)

¨

(
1
`

ż `

0
e´i(k´k1´k2)xdx

)
(14.39)

=
λ
?
`

n
ÿ

j,j1=1

ÿ

k,k1PT̂κ

ψ̃1,j,Λ,κ

(
k´

Ωjφ

`

)
ψ̃2,j1,Λ,κ

(
k1 ´

(1´Ωj1 )φ

`

)˚
Fj,j1(k´ k1)

=
λ
?
`

n
ÿ

j,j1=1

ÿ

kPK f
1,j,κ

ÿ

k1PK f
2,j1,κ

ψ̃1,j,Λ,κ(k) ψ̃2,j1,Λ,κ(k1)˚ Fj,j1
(

k´ k1 ´ φ
`

)
. (14.40)

Recall the double summation identity

ÿ

n,n1PZN

| f (n´ n1)| =
ÿ

nPZ2N

(2N ´ 1´ |n|) | f (n)|, (14.41)
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which when applied to functions supported on ZN, simplifies to

ÿ

n,n1PZN

| f (n´ n1)| =
ÿ

nPZN

(2N ´ 1´ |n|) | f (n)|. (14.42)

Re-indexing to a summation over the unshifted lattice T̂κ, we bound the opera-

tor

|hb f
Λ,κ(λ)| ď

λ
?
`
}ψ̃Λ,κ}

2
8

n
ÿ

j,j1=1

ÿ

k,k1PT̂κ

|Fj,j1(k´ k1)| (14.43)

=
λ
?
`
}ψ̃Λ,κ}

2
8

n
ÿ

j,j1=1

ÿ

kPT̂κ

(
2N ´ 1´ `|k|

2π

)
|Fj,j1(k)| (14.44)

ď
λ
?
`
}ψ̃Λ,κ}

2
8

n
ÿ

j,j1=1

(2N ´ 1)
ÿ

kPT̂κ

|Fj,j1(k)| ´ inf
kPT̂κ

|Fj,j1(k)| `2π

ÿ

kPT̂κ

|k|

 .

Since
ř

kPT̂κ
|k| = 2π

` N(N ´ 1), then

|hb f
Λ,κ(λ)| ď

λ
?
`
}ψ̃Λ,κ}

2
8

n
ÿ

j,j1=1

(2N ´ 1)
ÿ

kPT̂κ

|Fj,j1(k)| ´ N(N ´ 1) inf
kPT̂κ

|Fj,j1(k)|

 ,

where }ψ̃α,κ}8 = sup
j;kPK f

α,j,κ
|ψ̃α,j,κ(k)| and }ψ̃κ}8 = supα }ψ̃α,κ}8. Using Par-

seval’s Theorem combined with the elliptic bound, for each ε0 ą 0, there is a
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constant M0 = M0(ε0, V) ă 8 such that

n
ÿ

j=1

ÿ

kPẐκ

|Fj,j1(k)|2 =

ż `

0

n
ÿ

j=1

|Vjj1(ϕΛ,κ(x))|2 dx (14.45)

ď ε0

ż `

0

n
ÿ

j=1

|Vj(ϕΛ,κ)(x)|2 dx + `M0, (14.46)

then recalling that λΛ,κ = λ µ̃Λ(κ)
´ε,

|hb f
Λ,κ(λ)| ď (2N ´ 1)

λn
?
`
}ψ̃κ}

2
8 µ̃Λ(κ)

´2ε

ε0

n
ÿ

j=1

ż `

0
|Vj(ϕΛ,κ(x))|2 dx + `M0


=

1
2

ε1λ2µ̃Λ(κ)
´2ε

n
ÿ

j=1

ż `

0
|Vj(ϕΛ,κ(x))|2 dx + M1

 (14.47)

=
1
2

ε1λ2
Λ,κ

n
ÿ

j=1

ÿ

kPẐκ

|Fj(k)|2 + M1

 (14.48)

=
1
2

(
ε1Hb loc

I,Λ,κ(λΛ,κ) + M1

)
(14.49)

ď
1
2

(
ε1Hb loc

Λ,κ (λΛ,κ) + M1

)
, (14.50)

where

M1 = 2nλ
?
` (2N ´ 1) }ψ̃κ}

2
8 µ̃Λ(κ)

´2ε M0 (14.51)

ε1 = (λ2`M0)
´1M1ε0, (14.52)
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both positive and finite. Note that ε1 = O(λ´1) and M1 = O(λ). Hence,

|Hb f
Λ,κ(λ)| = |hb f

Λ,κ(λ) + hb f
Λ,κ(λ)

˚
| (14.53)

ď 2|hb f
Λ,κ(λ)| (14.54)

ď ε1Hb loc
Λ,κ (λΛ,κ) + M1. (14.55)

Combining this with the bilocal bound Hb loc
Λ,κ (λΛ,κ) ď Hb

Λ,κ(λ), we establish the

bilocal, divergent Kato bound

|Hb f
Λ,κ(λ)| ď ε1Hb

Λ,κ(λ) + M1. (14.56)

14.4. Mass-Shift Bound

Suppose that V satisfies the Łojasiewicz inequality, then

δ|ϕΛ,κ|
θ = δ

 n
ÿ

j=1

|ϕj,Λ,κ(x)|2

θ/2

(14.57)

ď

 n
ÿ

j=1

|Vj(ϕΛ,κ(x))|2

1/2

(14.58)

= |BV(ϕΛ,κ)| (14.59)
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for some δ, θ ą 0. Suppose, in particular, δ2|ϕΛ,κ|
2 ď |BV(ϕΛ,κ)|

2. Then

Hb mass
I,Λ,κ (δ λ) = (δ λ)2

n
ÿ

j=1

ż `

0
|ϕj,Λ,κ(x)|2 dx (14.60)

ď λ2
n
ÿ

j=1

ż `

0
|Vj(ϕΛ,κ(x))|2 dx (14.61)

= Hb loc
I,Λ,κ(λ), (14.62)

where Hb mass
I,Λ,κ (m) is a mass shift with mass m. Combining the above inequal-

ities, we find a stronger lower bound of Hb
Λ,κ with a free, but massive bosonic

Hamiltonian. Define mΛ,κ = δ λΛ,κ. Then

Hb
0,κ + Hb mass

I,Λ,κ (mΛ,κ) = Hb
0,κ + (δ λΛ,κ)

2
n
ÿ

j=1

ż `

0
|ϕj,Λ,κ(x)|2 dx (14.63)

ď Hb
0,κ + λ2

Λ,κ

n
ÿ

j=1

ż `

0
|Vj(ϕΛ,κ(x))|2 dx (14.64)

= Hb loc
Λ,κ (λΛ,κ). (14.65)

Combining this with the local bound Hbloc
Λ,κ (λΛ,κ) ď Hb

Λ,κ(λ), we establish the

mass-shift bound,

Hb
0,κ + Hb mass

I,Λ,κ (mΛ,κ) ď Hb
Λ,κ(λ). (14.66)
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We refer the reader to [158158], [222222], [223223], [225225] and [226226].

15.1. Trace Class Heat Kernel

Let F = F b bF f denote the tensor product Fock space. Since HΛ,κ(λ)

is essentially self-adjoint on Dκ for λ ě 0, then the heat kernel e´βHΛ,κ(λ) is

well-defined for β ą 0 and φ, λ ě 0. In this section, we shall prove that the

strongly-regularized, total partition function

ZλV
Λ,κ(φ, β) = TrF e´βHΛ,κ(λ) (15.1)

is trace class for φ, λ ě 0.
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Consider λ = 0 and φ ą 0, that is, the free strongly-regularized Hamiltonian

H0,κ = HΛ,κ(0) with non-zero twist. For now we content ourselves with calculat-

ing the partition function of the heat kernel of a normal-ordered Hamiltonian

: H0,κ : = H0,κ ´ E0,κ (15.2)

= : Hb
0,κ : + : H f

0,κ :, (15.3)

which carries no zero-point energy term that might otherwise diverge in the

limit κ Ñ 8. It is a standard calculation to show that the trace of the heat kernel

over F , the free twist partition function Z0
κ(φ, β) = TrF e´β:H0,κ :, factors into a

product of the bosonic and fermionic partition functions. Define

Z0,b
κ (φ, β) = TrF b e´β:Hb

0,κ : and Z
0, f
κ (φ, β) = TrF f e´β:H f

0,κ :. (15.4)

Thus, Z0
κ(φ, β) = Z0,b

κ (φ, β)Z
0, f
κ (φ, β), where the free bosonic partition function

is the product

Z0,b
κ (φ, β) =

n
ź

j=1

ź

kPKb
j,κ

(
1´ e´β|k|

)´2
(15.5)

and the free fermionic partition function is the product,

Z
0, f
κ (φ, β) =

ź

k´PK f
´,j,κ

(
1 + e´β|k´|

)
ź

k+PK f
+,j,κ

(
1 + e´β|k+|

)
, (15.6)
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both finite for κ ă 8. To prove uniform convergence of the two factors in the

limit κ Ñ 8, recall that for an, bn ą 0,

exp

(
´2

ÿ

nďN

an

)
ď

ź

nďN

(1´ an)
´2
ď

(
1´

ÿ

nďN

an

)´2

(15.7)

and

1 +
ÿ

nďN

bn ď
ź

nďN

(1 + bn) ď exp

(
ÿ

nďN

bn

)
. (15.8)

The products converge uniformly (in the limit N Ñ 8) if and only if the cor-

responding summations converge uniformly. First, the bosonic summation is

given by

ÿ

kPKb
j,κ

e´β|k|
ď

ÿ

kPKb
j

e´β|k| (15.9)

= eβΩjφ/`
ÿ

ně1

e´2πβn/` + e´βΩjφ/`
ÿ

ně0

e´2πβn/` (15.10)

= cosh
(

β(π ´Ωjφ)

`

)
csch

(
βπ

`

)
, (15.11)

which is finite and less than 1 for β ą 0 with the caveat that 0 ď Ωjφ ď 2π for

1 ď j ď n. The infinite fermionic summations can be calculated in a similar
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fashion, viz.,

ÿ

k+PK f
+,j,κ

e´β|k|
ď

ÿ

k+PK f
+,j

e´β|k| (15.12)

= eβ(1´Ωj)φ/`
ÿ

ně1

e´2πβn/` + e´βΩjφ/`
ÿ

ně0

e´2πβn/` (15.13)

= eβ(1´2Ωj)φ/2` cosh
(

β(2π ´ φ)

`

)
csch

(
βπ

`

)
, (15.14)

and

ÿ

k´PK f
´,j,κ

e´β|k|
ď

ÿ

k´PK f
´,j

e´β|k| (15.15)

= eβΩjφ/`
ÿ

ně1

e´2πβn/` + e´β(1´Ωj)φ/`
ÿ

ně0

e´2πβn/` (15.16)

= e´β(1´2Ωj)φ/2` cosh
(

β(2π ´ φ)

`

)
csch

(
βπ

`

)
, (15.17)

respectively, both finite for β, φ ą 0. Thus, Z0
κ(φ, β) converges uniformly in the

limit κ Ñ 8. It follows that e´β:H0,κ : is trace-class uniformly in the limit κ Ñ 8

for β, φ ą 0 with 0 ď Ωjφ ď 2π for 1 ď j ď n.

Define the regularized, bosonic partition function,

Z0,b
κ (φ, β) =

n
ź

j=1

ź

kPẐ˚

(
1´ e´β|k´Ωjφ/`|

)´2
(15.18)

= Z0,b
κ (φ, β)

n
ź

j=1

(
1´ e´βΩjφ/`

)2
, (15.19)
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which is well-defined and finite for φ = 0. To calculate the degree of divergence

of the free partition function Z0
κ(φ, β) in the limit φ Ñ 0+, observe that for x ą

0,

x´2
ď (1´ e´x)´2

ď x´2L(x), (15.20)

where L(x) = 1 + x + 5x2

12 + x3

12 +
x4

240 , the Laurent expansion of the exponential

factor up to fifth order. We use these bounds to estimate the divergent factor

(1´ e´βΩjφ/`)´2. Define

L V
β/`(φ) =

(
`

β

)2n n
ź

j=1

Ω´2
j L

(
βΩjφ

`

)
(15.21)

and the constant L V
β/`(0) = ( `β )

2n śn
j=1 Ω´2

j . Note that since V has an isolated

zero at the origin, none of the reduced weights vanish, hence, L V
β/`(φ) is finite

for φ ě 0. For β, φ ą 0, we have the lower bound

φ´2n L V
β/`(0)Z

0,b
κ (φ, β) ď Z0,b

κ (φ, β), (15.22)

where the regularized partition function is bounded from above and does not

depend on V in the limit φ Ñ 0+. We conclude that

L V
β/`(0)Z

0,b
κ (φ, β)Z

0, f
κ (φ, β) ď φ2n Z0

κ(φ, β) (15.23)

ď L V
β/`(φ)Z

0,b
κ (0, β)Z

0, f
κ (φ, β), (15.24)
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where the fermionic partition function is bounded from above and does not

depend on V in the limit φ Ñ 0+. By the squeeze principle, it follows that the

divergence of Z0
κ(φ, β) = TrF e´β:H0,κ : is O(φ´2n) for β ą 0.

Suppose λ ą 0 and we take ε0 small enough to ensure 0 ă ε1 ă 1. From the

Divergent Kato bound,

(1´ ε1)Hb
Λ,κ(λ)+ : H f

0,κ : ´M1 ď HΛ,κ(λ) ď (1 + ε1)Hb
Λ,κ(λ)+ : H f

0,κ : +M1.

(15.25)

Define M4 = TrF e´βM1 ă 8 and ZλV,b
Λ,κ (φ, β) = TrF b e´βHb

Λ,κ(λ). Therefore,

M´1
4 ZλV,b

Λ,κ (φ, β(1 + ε1))Z
0, f
κ (φ, β) ď ZλV

Λ,κ(φ, β) (15.26)

ď M4 Z
λV,b
Λ,κ (φ, β(1´ ε1))Z

0, f
κ (φ, β). (15.27)

Since : Hb
0,κ : ď Hb

Λ,κ(λ), then

ZλV
Λ,κ(φ, β) ď M4 Z

0,b
κ (φ, β(1´ ε1))Z

0, f
κ (φ, β), (15.28)

which is bounded from above using the same argument for the free partition

function with φ ą 0 and β1 = β(1´ ε1) ą 0. Therefore, e´βHΛ,κ(λ) is trace-class

for β, φ ą 0 and λ ě 0.

Now we turn our attention to the case φ = 0 with λ ą 0. We cannot use the

above bounds since Z0,b
κ (φ, β(1´ ε1)) is divergent in the limit φ Ñ 0+. Instead,

consider the free, massive, bosonic Hamiltonian Hb
0,κ(m) = : Hb

0,κ : +Hmass
I,Λ,κ(m)

665



and the corresponding partition function on F b,

Zm,b
Λ,κ(φ, β) =

n
ź

j=1

ź

kPẐκ

(
1´ e´β ωm(k)

)´2
, (15.29)

where ωm(k) = (k2 + m2)1/2 = m µm(k). With this notation, Hb
0,κ(0) = : Hb

0,κ :

and Z0,b
κ (φ, β) is the corresponding free, massless bosonic partition function. By

the mass shift bound Hb
0,κ(mΛ,κ) ď Hb

Λ,κ(λ), where mΛ,κ = δ λ µ̃Λ(κ)
´ε ą 0, we

can compensate the divergence in the limit φ Ñ 0+ by incorporating mass that

depends on λ, δ, Λ and κ,

ZλV
Λ,κ(0, β) ď M4 Z

mΛ,κ ,b
Λ,κ (0, β(1´ ε1))Z

0, f
κ (0, β), (15.30)

which is bounded from above for β ą 0. Hence, e´βHΛ,κ(λ) is trace-class for

β ą 0 and λ, φ ě 0 such that not both φ and λ vanish.

We now determine the degree of divergence of ZλV
Λ,κ(φ, β) in the limit as

λ Ñ 0+ with φ = 0. Observe that ωmΛ,κ(k) ď ωmΛ,κ(κ) for k P Ẑκ. Define

M5 = (1´ e´β(1´ε1)ωmΛ,κ (κ))´2n(2N´1). Then

M5 (β(1´ ε1)mΛ,κ)
´2n

ď (β(1´ ε1)mΛ,κ)
´2n Z

mΛ,κ ,b
Λ,κ (0, β(1´ ε1)) (15.31)

ď Z
mΛ,κ ,b
Λ,κ (0, β(1´ ε1)) (15.32)

ď (β(1´ ε1)mΛ,κ)
´2n L(β(1´ ε1)mΛ,κ)

n

¨ Z
mΛ,κ ,b
Λ,κ (0, β(1´ ε1)), (15.33)
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which by a squeeze argument shows the degree of divergence is O((β(1 ´

ε1)mΛ,κ)
´2n) as λ Ñ 0+ with φ = 0 for β ą 0. That is, there is a constant

M6 = M4 L(β(1´ ε1)mΛ,κ)
n Z

mΛ,κ ,b
Λ,κ (0, β(1´ ε1))Z

0, f
κ (0, β) ă 8 such that for

φ = 0, we have

TrF e´βHΛ,κ(λ) ď M6 (β(1´ ε1)mΛ,κ)
´2n (15.34)

= M6 µ̃Λ(κ)
2nε (β δ)´2n

(
λ´ (2N ´ 1)

2n
?
`
}ψ̃κ}

2
8 ε0

)´2n
, (15.35)

where λ ą (2N ´ 1) 2n?
`
}ψ̃κ}

2
8 ε0.

15.2. Defining Relation of the Partition Function

The partition function is defined as ZλV = Tr Γ U e´βH(λ), where U =

e´iθ J´iσP is a symmetry group commuting with Q+ and anti-commuting with Γ.

According to Jaffe, one may consider λ P (0, 1] and

dZλV

dλ
= Tr Γ U

d
dλ

e´H(λ). (15.36)

Observe that

d
dλ

e´H(λ) = ´

ż 1

0
e´sH(λ) H1(λ) e´(1´s)H(λ)ds (15.37)

and H1(λ) = (Q2
+ ´ P)1 = tQ1+, Q+u, so

d
dλ

e´H(λ) = ´tQ1+, Q+ue´H(λ). (15.38)
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Using the fact that Γ U Q = Γ Q U = ´Q Γ U, it follows that

dZλV

dλ
= ´Tr Γ UtQ1+, Q+ue´H(λ) (15.39)

= ´Tr (Γ U Q1+Q+ ´Q+ΓUQ1+) e´H(λ) (15.40)

= ´Tr (Γ U Q1+Q+ ´ ΓUQ1+Q+) e´H(λ) (15.41)

= 0 (15.42)

by cyclicity of the trace. Jaffe proves the map λ ÞÑ ZλV is differentiable in λ P

(0, 1]. Along with the Hölder continuity of ZλV at λ = 0, one concludes that Zλ

is constant in λ on [0, 1].

15.3. Explicit Evaluation at λ = 0

Define y = e2πiz and q = e2πiτ, where z = (2π)´1(θ ´ φτ), τ = `´1(σ + iβ)

and `, β ą 0. Since τ P H and therefore q P ∆, we may view τ as a fundamental

period of the lattice Λτ = Z‘ τZ and q as the associated nome.

Let V denote a non-degenerate, weighted homogeneous superpotential that

satisfies the elliptic bounds. The (twist) partition function is given by the super-

trace

ZλV(z, τ) = Tr Γ e´βH(λ)´iσP´iθ J (15.43)

= Str e´βH(λ)´iσP´iθ J . (15.44)
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Define γb
˘,j(˘k) = e¯iθωj´β|k| and γ

f
˘,j(k) = e¯θω

f
j (˘k)´β|k|. Jaffe calculates

ZλV(z, τ) = eiθĉ/2
n
ź

j=1

ź

kPKb
j

ź

k1PK f
1,j

ź

k2PK f
2,j

(1´ γ
f
+,j(k

1))(1´ γ
f
´,j(k

2))

|1´ γb
+,j(k)|

 (15.45)

= eiθĉ/2
n
ź

j=1

8
ź

k=1

(
1´ qk´1y´(1´ωj)

1´ qk´1y´ωj

)(
1´ qky1´ωj

1´ qkyωj

)
, (15.46)

where ĉ =
řn

j=1 1 ´ 2ωj is the central charge and reduced weight ω =

tω1, . . . , ωnu P QX (0, 1
2 ].

In the sequel, we study the partition function from the point of view of q-

calculus and complex geometry. In the next chapter, we prove a q-Beta function

representation of the elliptic genus. Using this representation, we generalize

twist positivity to the supersymmetric case. We refer the reader to Appendix EE

for a brief review of Ramanujan q-series and Jacobi theta functions.
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Chapter 16

Supersymmetric Twist Positivity
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As the infinite product representation of the elliptic genus resembles a ratio

of Ramanujan q-series, it should be no surprise that the elliptic genus satisfies

interesting q-identities. This chapter is devoted to proving that the elliptic genus

admits a q-representation in terms of well-known q-functions, namely, the Jack-

son integral, q-hypergeometric, q-Gamma, q-Beta functions. A rather surprising

consequence of the latter is bosonic twist positivity may be generalized to super-

symmetric twist positivity.

16.1. The Elliptic Genus as a q-Function

Hereafter, we shall assume that |q| ă |y´ωj | ă 1 for 1 ď j ď n. The latter

inequality is always true, as |y´ωj | = |eiθ|´ωj |q´φ/2π|
´ωj ă e´ωj|´iφτ|, but the

former inequality does not hold in general.

Remark 16.1.1. Consider the square lattice period τ = 1 + i and twist

angles φ = π
2 , θ = π

4 . The double inequality holds if ω P (0, x)n where x =

0.202642367 . . . » 1
5 . M
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Define ρ = τ1n+1 + zω. To ensure that |q| ă |y´ωj | ă 1 for 0 ď j ď n, it

is sufficient to require that ρ P Hn, which follows from the equality |qyωj | =

|e2πi(τ+ωjz)| = |e´2πIm(ρj)|.

Proposition 16.1. Suppose that ρ P Hn and define ν = ´ z
τ . The elliptic genus

is a product of q-series, ZλV = eiĉθ/2 śn
j=1 Z

λV
j , where

ZλV
j (z, τ) =

(qν; q)8
(q; q)2

8

ÿ

kPZ

(q1´ν; q)k(qk+2´ν; q)8 qkωjν. (16.1)

Proof . We may write the following infinite product in terms of q-products,

ź

kě1

(
1´ qk´1y´(1´ωj)

1´ qk´1y´ωj

)(
1´ qky1´ωj

1´ qkyωj

)
=

(y´(1´ωj); q)8(yωj ; q)1(y1´ωj ; q)8
(y´ωj ; q)8(y1´ωj ; q)1(yωj ; q)8

=
(y´(1´ωj); q)8(qy1´ωj ; q)8

(y´ωj ; q)8(qyωj ; q)8
. (16.2)

Setting ξ j = y´ωj , b = qa and a = qy, and assuming that |q| ă |ξ j| = |y´ωj | ă 1,

then

(qyξ j; q)8((yξ j)
´1; q)8

(ξ j; q)8(q/ξ j; q)8
=

(q2y; q)8(y´1; q)8
(q; q)2

8

ÿ

kPZ

(qy; q)k
(q2y; q)k

ξk
j , (16.3)

which simplifies to

(q2y; q)8(y´1; q)8
(q; q)2

8

ÿ

kPZ

(qy; q)k
(q2y; q)k

y´kωj

=
(y´1; q)8
(q; q)2

8

ÿ

kPZ

(qy; q)k(qk+2y; q)8y´kωj . (16.4)
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Finally, set y = qz/τ = q´ν. This completes the proof. �

In terms of the Dirichlet eta function η(τ) = q1/24(q; q)8,

ZV(z, τ) = qn/12eiθĉ/2 (y
´1; q)n

8

η(τ)2n

n
ź

j=1

ÿ

kPZ

(qy; q)k(qk+2y; q)8 y´kωj . (16.5)

Proposition 16.2. The partition function is a ratio of Jacobi theta functions,

ZλV = eiφτĉ/2 śn
j=1 Z

λV
j , where

ZλV
j (z, τ) =

θ1(π(1´ωj)z; q1/2)

θ1(πωjz; q1/2)
(16.6)

=
ϑ1((1´ωj)z, τ)

ϑ1(ωjz, τ)
. (16.7)

Remark 16.1.2. Appendix EE is devoted to Jacobi theta functions. M

Proof . Recall that we have defined z = θ´φτ
2π , y = e2πiz, q = e2πiτ where

τ P H. For a, b P C,

θ1(πaz; q1/2)

θ1(πbz; q1/2)
= eπi(a´b)z (e

´2πiaz; q)8(qe2πiaz; q)8
(e´2πibz; q)8(qe2πibz; q)8

. (16.8)

It follows, then, that

ZλV
j (z, τ) = eiθ(1´2ωj)/2 (y

´(1´ωj); q)8(qy1´ωj ; q)8
(y´ωj ; q)8(qyωj ; q)8

(16.9)

= eiφ(1´2ωj)τ/2 θ1(π(1´ωj)z; q1/2)

θ1(πωjz; q1/2)
. (16.10)

Finally, note that ĉ =
řn

j=1 1´ 2ωj. �
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In terms of the original theta function,

ZλV(z, τ) = eiφτĉ/2
n
ź

j=1

ϑ1((1´ωj)z, τ)

ϑ1(ωjz, τ)
(16.11)

= eiφτĉ/2 eπiĉz
n
ź

j=1

ϑ((1´ωj)z + (1 + τ)/2, τ)

ϑ(ωjz + (1 + τ)/2, τ)
. (16.12)

Proposition 16.3. The partition function ZλV(z, τ) is a q-constant.

Proof . Consider the multivariable q-function f (t1, . . . , tn) =
śn

j=1 f j(tj),

where

f j(tj) = t
aj´bj
j

(tjqaj ; q)8(t´1
j q1´aj ; q)8

(tjqbj ; q)8(t´1
j q1´bj ; q)8

. (16.13)

Then f satisfies the identity f (qt1, . . . , qtn) = f (t1, . . . , tn) and therefore also

satisfies the difference equation Dα
q f = 0 for any multi-index α = (α1, . . . , αn),

that is, Dα
q = Dα1

q,1 ¨ ¨ ¨D
αn
q,n. We now show that the partition function is a special-

ization of the q-constant considered above. Define the following 2n coefficients

aj = (1´ 2ωj)
θ

4π(z + τ)
´ (1´ωj)

z
τ

and bj = aj + 1 +
z
τ

(16.14)
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and the variables tj = q´aj y´(1´ωj) = q1´bj yωj . Then

f (t1, . . . , tn) =
n
ź

j=1

t
aj´bj
j

(tjqaj ; q)8(t´1
j q1´aj ; q)8

(tjqbj ; q)8(t´1
j q1´bj ; q)8

(16.15)

=
n
ź

j=1

eiθ(1´2ωj)/2 (y
´(1´ωj); q)8(qy1´ωj ; q)8
(yωj ; q)8(qy´ωj ; q)8

(16.16)

= ZV(z, τ), (16.17)

which completes the proof. �

Remark 16.1.3. Note that if θ = 0, then the constants simplify greatly,

namely, aj =
(1´ωj)φ

2π and bj = 1´
ωjφ

2π . M

Proposition 16.4. The partition function ZV is a product of q-hypergeometric

functions, viz.,

ZV(z, τ) = eiĉθ/2
n
ź

j=1
2Φ11[y

1´2ωj , (qy)´1; y´ωj ; q, qyωj ]. (16.18)

Proof . Set a = y1´2ωj , b = (qy)´1, c = y´ωj and z = c/(ab). Since |z| =

|qyωj | ă 1, then it follows that

(y´(1´ωj); q)8(qy1´ωj ; q)8
(y´ωj ; q)8(qyωj ; q)8

= 2Φ11[y
1´2ωj , (qy)´1; y´ωj ; q, qyωj ]. (16.19)

�
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Since y = e2πiz = qz/τ, we may write

2Φ11[y
1´2ωj ,(qy)´1; y´ωj ; q, qyωj ]

= 2Φ11[q
(1´2ωj)z/τ, q´(1+z/τ); q´ωjz/τ; q, q1+ωjz/τ].

Proposition 16.5. The partition function ZλV is a product of a ratio of q-Beta

functions,

ZλV(z, τ) = eiĉθ/2
n
ź

j=1

Bq(1 +
ωjz
τ ,´

ωjz
τ )

Bq(1 +
(1´ωj)z

τ ,´
(1´ωj)z

τ )
. (16.20)

Proof . Define αj =
(1´2ωj)z

τ , β = ´(1 + z
τ ) = ν´ 1, and γj = ´

ωjz
τ = ωjν.

Then

Zj(z, τ) = 2Φ11[q
(1´2ωj)z/τ, q´(1+z/τ); q´ωjz/τ; q, q1+ωjz/τ]. (16.21)

With these coefficients, the Jackson integral simplifies to

ż 1

0

tβ´1(qt; q)(1´ωj)z/τ

(tq1+ωjz/τ; q)(1´2ωj)z/τ

dqt =
ż 1

0

tβ´1(qt; q)8(tq1+(1´ωj)z/τ; q)8
(tq1+(1´ωj)z/τ; q)8(tq1+ωjz/τ; q)8

dqt (16.22)

=

ż 1

0

tβ´1(qt; q)8
(tq1+ωjz/τ; q)8

dqt (16.23)

=

ż 1

0
tβ´1(qt; q)´γj dqt (16.24)

= Bq(β, 1´ γj) (16.25)
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and, therefore, the right side of equation (16.2116.21) reduces to

2Φ11[q
(1´2ωj)z/τ, q´(1+z/τ); q´ωjz/τ; q, q1+ωjz/τ] =

Bq(β, 1´ γj)

Bq(β, γj ´ β)
. (16.26)

Recalling that ν = ´ z
τ ,

Bq(β, 1´ γj)

Bq(β, γj ´ β)
=

Bq(ν´ 1, 1´ωjν)

Bq(ν´ 1, 1´ (1´ωj)ν)
(16.27)

=
Bq(ωjν, 1´ωjν)

Bq((1´ωj)ν, 1´ (1´ωj)ν)
(16.28)

=
Bq(1 +

ωjz
τ ,´

ωjz
τ )

Bq(1 +
(1´ωj)z

τ ,´
(1´ωj)z

τ )
(16.29)

from the symmetry Bq(x, y) = Bq(y, x) and identity

Bq(x, y) Bq(x + y, z) = Bq(y, z) Bq(x, y + z). (16.30)

�

16.1.1. Twist-Field Partition Function. Let H = H(V) denote the twist

boson-fermion Hamiltonian with elliptic and weighted homogeneous inter-

action superpotential V with weights tωju
n
j=1, P denote the boson-fermion

momentum operator and J denote the twist operator. Recall that the central

charge is simply ĉ =
řn

j=1 1 ´ 2ωj. Define the normalized parition function

ZV(z, τ) = Str e´βH´iσP´iθ J̄ , where J̄ = J ´ ĉ
2 . Jaffe calculates

ZV(z, τ) =
ź

j=1

ź

kě0

(y´(1´ωj); q)8(qy(1´ωj); q)8
(y´ωj ; q)8(qyωj ; q)8

(16.31)
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Proposition 16.6 (Theta Function Representation). For (z, τ) P CˆH, we

have

ZV(z, τ) = y´ĉ/2
n
ź

j=1

ϑ1((1´ωj) z, τ)

ϑ1(ωj z, τ)
. (16.32)

Proof . Define y = e2πiz and q = e2πiτ. Recall that

ϑ1(α z, τ)

ϑ1(β z, τ)
=

(
y´α/2 ´ yα/2

y´β/2 ´ yβ/2

)
(qy´α; q)8(qyα; q)8
(qy´β; q)8(qyβ; q)8

. (16.33)

However, since (aq; q)8 = (1´ a)´1 (a; q)8

y´α/2 ´ yα/2

y´β/2 ´ yβ/2
(qy´α; q)8(qyα; q)8
(qy´β; q)8(qyβ; q)8

=

(
y´α/2 ´ yα/2

y´β/2 ´ yβ/2

)(
1´ y´β

1´ y´α

)

¨
(y´α; q)8(qyα; q)8
(y´β; q)8(qyβ; q)8

(16.34)

= y(α´β)/2 (y´α; q)8(qyα; q)8
(y´β; q)8(qyβ; q)8

. (16.35)

With the choice of α = 1´ω and β = ω,

ϑ1((1´ω) z, τ)

ϑ1(ω z, τ)
= y(1´2ω)/2 (y

´(1´ω); q)8(qy1´ω; q)8
(y´ω; q)8(qyω; q)8

. (16.36)

The identity now follows from the definition ĉ =
řn

j=1 1´ 2ωj. �

Given the transformation properties of ϑ1 under the action of the semi-direct

product SL2(Z) ¸Z2, we now uncover another set of symmetries satisfied by

the partition function.
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Proposition 16.7 (Z2 ˙ SL2(Z)-Symmetry). For γδ = ((m, n), (a b
c d)) P

Z2 ˙ SL2(Z) and (z, τ) P CˆH, we have the transformation law

ZV
|γδ

(z, τ) = yĉ/2 eĉ[cz2´(2m+1)z´a1τ´b1]
c,d ZV(z, τ), (16.37)

where a1 = ma + nc and b1 = mb + nd.

Proof . Define y|γδ
= e2(z+a1τ+b1)

c,d = e2πi(z+a1τ+b1)/(cτ+d). If α = 1´ ω and

β = ω, then α´ β = α2 ´ β2 = 1´ 2ω and, therefore,

n
ź

j=1

ϑ1|γδ
((1´ωj) z, τ)

ϑ1|γδ
(ωj z, τ)

=

 n
ź

j=1

e
(1´2ωj)z(cz´2m)

c,d

 n
ź

j=1

ϑ1(αz, τ)

ϑ1(βz, τ)
(16.38)

= eĉz(cz´2m)
c,d

n
ź

j=1

ϑ1(αz, τ)

ϑ1(βz, τ)
. (16.39)

Thus,

ZV
|γδ

(z, τ) = y|´ĉ/2
γδ

n
ź

j=1

ϑ1|γδ
((1´ωj) z, τ)

ϑ1|γδ
(ωj z, τ)

(16.40)

= e´ĉ(z+a1τ+b1)
c,d eĉz(cz´2m)

c,d

n
ź

j=1

ϑ1((1´ωj) z, τ)

ϑ1(ωj z, τ)
(16.41)

= eĉz(cz´2m´1)´ĉ(a1τ+b1)
c,d

n
ź

j=1

ϑ1((1´ωj) z, τ)

ϑ1(ωj z, τ)
(16.42)

= yĉ/2 eĉz(cz´2m´1)´ĉ(a1τ+b1)
c,d ZV(z, τ), (16.43)

which is the claim. �
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Corollary 16.8 (Z2-Symmetry). For δ = (m, n) P Z2 and (z, τ) P CˆH,

we have the transformation law

ZV
|δ(z, τ) = ζ (yq1/2)´ĉm ZV(z, τ), (16.44)

where ζ = eπiĉn.

Corollary 16.9 (SL2(Z)-Symmetry). For γ = (a b
c d) P SL2(Z) and (z, τ) P

CˆH, we have the transformation law

ZV
|γ(z, τ) = yĉ/2 eĉz(cz´1)

c,d ZV(z, τ). (16.45)

For the convenience of the reader, we replace the original set of variables

and find the most general Z2 ˙ SL2(Z) transformation law explicitly:

ZV
(

z
cτ+d + m( aτ+b

cτ+d ) + n, aτ+b
cτ+d

)
=

eπiĉz+πiĉ[cz2´(2m+1)z´(ma+nc)τ´(mb+nd)]/(cτ+d) ZV(z, τ).

In particular, one has the two independent transformation laws:

ZV
(

z
cτ+d , aτ+b

cτ+d

)
= eπiĉz+πiĉ(cz2´z)/(cτ+d) ZV(z, τ) (16.46)

ZV(z + mτ + n, τ) = e´πiĉ(2mz+mτ+n) ZV(z, τ). (16.47)

16.2. Positivity of the Elliptic Genus

Define (a; q)n =
śn´1

k=0(1´ aqk), where n P N and |q| ă 1. We can analytically

continue n to ν P CzN by defining (a; q)ν = (a;q)8
(aqν;q)8

. For z P CzZď0 and |q| ă 1,
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define the q-Gamma function, Γq(z) = (1´ q)1´z (q;q)8
(qz;q)8

. The q-Beta function is

defined as the Jackson integral

Bq(x, y) =
ż 1

0
tx´1(tq; q)y´1 dqt =

Γq(x)Γq(y)
Γq(x + y)

, (16.48)

where 0 ă |q| ă 1, Re(x) ą 0 and Re(y) ą 0 and satisfies the identities

Bq(x, y) = Bq(y, x) and Bq(x, y)Bq(x + y, z) = Bq(y, z)Bq(y + z, x). (16.49)

Moreover, for q P (0, 1) and x P (´1, 1), we have the positivity sgn(x) Bq(x, 1´

x) ą 0. For |z| ă 1, define the q-hypergeometric function

2Φ11[q
α, qβ; qγ; q, z] =

1
Bq(β, γ´ β)

ż 1

0

tβ´1(qt; q)γ´β´1

(zt; q)α
dqt. (16.50)

The q-analogue of the Gauss Hypergeometric Theorem, proved by Jacobi and

Heine, is the following identity:

2Φ11[q
α, qβ; qγ; q, qγ´α´β] =

(qγ´α; q)8(qγ´β; q)8
(qγ; q)8(qγ´α´β; q)8

. (16.51)

16.2.1. Twist Positivity. Jaffe proves that Tr U(θ) e´βH on the bosonic Fock

space Fb is positive for all 1-parameter unitary groups U(θ) with U(0) = I. We

extend the analysis to the tensor product Fock space Fb bF f and prove that

when U(θ) = Γ e´iσP´iθ J , the partition function ZV = Str e´βH´iσP´iθ J is ape-

riodicially oscillatory about the abscissa. We determine explicitly the intervals

where ZV is positive.
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Proposition 16.10 (q-Beta Representation). The twist partition function

ZV(z, τ) admits the following q-representation,

ZV(z, τ) = eiĉθ/2
n
ź

j=1

Bq(1 +
ωjz
τ ,´

ωjz
τ )

Bq(1 +
(1´ωj)z

τ ,´
(1´ωj)z

τ )
. (16.52)

Proof . Write ZV(z, τ) = eiĉθ/2 śn
j=1 Zj(z, τ). Define αj =

(1´2ωj)z
τ , β =

´(1 + z
τ ), and γj = ´

ωjz
τ . Then one has the following explicit representation in

terms of a q-hypergeometric function,

Zj(z, τ) = 2Φ11[q
(1´2ωj)z/τ, q´(1+z/τ); q´ωjz/τ; q, q1+ωjz/τ]. (16.53)

With these exponents,the Jackson integral representation of the q-

hypergeometric function 2Φ11 simplifies

ż 1

0

tβ´1(qt; q)(1´ωj)z/τ

(tq1+ωjz/τ; q)(1´2ωj)z/τ

dqt =
ż 1

0

tβ´1(qt; q)8(tq1+(1´ωj)z/τ; q)8
(tq1+(1´ωj)z/τ; q)8(tq1+ωjz/τ; q)8

dqt (16.54)

=

ż 1

0

tβ´1(qt; q)8
(tq1+ωjz/τ; q)8

dqt (16.55)

=

ż 1

0
tβ´1(qt; q)´γj dqt (16.56)

= Bq(β, 1´ γj). (16.57)
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Hence, we may write the q-hypergeometric function as a ratio of q-beta func-

tions,

2Φ11[q
(1´2ωj)z/τ, q´(1+z/τ); q´ωjz/τ; q, q1+ωjz/τ] =

Bq(β, 1´ γj)

Bq(β, γj ´ β)

=
Bq(1 +

ωjz
τ ,´

ωjz
τ )

Bq(1 +
(1´ωj)z

τ ,´
(1´ωj)z

τ )
,

as claimed. �

Proposition 16.11 (Twist Positivity). For all β ą 0 the supertrace of the heat

kernel str e´βH(λ) is positive for any twist angle satisfying |φ| ă inft2π
ωi

, 2π
1´ωi

u.

Proof . The condition σ = θ = 0 is necessary and sufficient to ensure

q P (0, 1) and z
τ P R. Assuming further that |φ| ă inft2π

ωi
, 2π

1´ωi
u, we have

Str e´βH = lim
σ, θÑ0

ZV(z, τ) =
n
ź

i=1

Bq(
ωiφ
2π , 1´ ωiφ

2π )

Bq(
(1´ωi)φ

2π , 1´ (1´ωi)φ
2π )

ą 0, (16.58)

as claimed. �

As a corollary, one has the positivity of the quantum mechanical index.

16.3. Quantum Mechanical Ground States

Recall the space-time parameter τ = σ+iβ
` and twist parameter z = θ´φτ

2π . To

further simplify notation, let y = e2πiz and q = e2πiτ, as above. Recall the elliptic
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genus is given by

ZV(z, τ) = Str e´βH´iσP´iθ J (16.59)

= eiĉθ/2
n
ź

i=1

ź

kě0

1´ y´(1´ωj)qk

1´ y´ωj qk
1´ y1´ωj qk+1

1´ yωj qk+1 . (16.60)

The limit of zero-twist is the Witten (Fredholm) index of Q+
V , where (Q+

V )
2 =

H + P,

ind(Q+
V ) = dimC ker Q+

V ´ dimC ker (Q+
V )
˚ (16.61a)

= lim
θ,φÑ0

ZV(z, τ) (16.61b)

=
n
ź

i=1

(
1

ωi
´ 1
)

(16.61c)

= µ(V), (16.61d)

which is the Milnor number of the weighted homogeneous polynomial V. This

integer enumerates the bosonic ground states of the corresponding quantum

theory.
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Chapter 17

Twist Partition Function as an Elliptic Genus

Contents
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17.1. Atiyah-Singer Index Theorem

Atiyah and Singer proved that the signature σ(M) is the Fredholm index of

an elliptic operator D = d˚ + d, the signature operator of a compact manifold

M, where d is the exterior derivative and D2 = d˚d + dd˚ = ∆ is the Laplacian

restricted to the +1-eigenspace of even forms in the complex bundle Ω˚(M) =

Ω+(M)‘Ω´(M) under a specific Z2-action involving the Hodge star ˚ modulo

a normalizing power of i [192192]. That is, the index of D is given by

ind(D) = (´1)`xch(Λ+T˚CM´Λ´T˚CM) td(TC M)
e(TM)

, [M]y (17.1a)

=

C

2k
ź

i=1

xi

tanh xi
, [M]

G

, (17.1b)

which is precisely xLk(M), [M]y, the signature of M. Compare these formulas to

the Euler characteristic χ(M) = xe(TM), [M]y and the index of the Dolbeault

operator and ind(B) = xtd(TCM), [M]y, where e, ch and td denote the Euler,
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Chern and Todd classes, respectively. If M is a compact, oriented 4-manifold

with a virtual vector bundle E, the Atiyah-Singer Index Theorem states that

there is a Dirac operator D+
A corresponding the Â-genus with coefficients in E

(Chapter 2, [323323]),

ind(D+
A) = xÂ(TM) ch(E), [M]y (17.2)

= ´dim E
24 xp1(TM), [M]y+ 1

2xc1(E)2, [M]y. (17.3)

Combined with the Hirzebruch Signature Theorem, σ(M) = 1
3xp1(TM), [M]y,

ind(D+
A) = ´1

8 σ(M) + 1
2xc1(E)2

´ c2(E), [M]y (17.4)

In particular, if M is smooth spin 4-manifold, then the index of D+
A is even and

the term involving the Chern number is zero.

Proposition 17.1 (Rokhlin). If M is a closed, oriented, smooth spin 4-

manifold, then σ(M) is divisible by 16.

17.2. Elliptic Genera

Let M be a closed, oriented, smooth (Riemannian, spin) 4k-manifold. An

elliptic genus is a character-valued signature on the (free) loop space ΩM of maps

from S1 to M [451451]. We refer the reader specifically to Chapter 1 in [451451] and

the articles by Landweber, Ochanine, Ravenel, Witten, Yui and Zagier in [255255],

where elliptic genera are developed from first principles.
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Proposition 17.2. For a smooth, oriented, complex manifold X of dimension

n = dimC X (which is a smooth, oriented, real manifold of even dimension). Define the

series E``y,q(X) given by

yĉ/2 â

kě1

(
ľ

´y´dqk´1 TX b
ľ

´ydqk TX˚ b Symqk TX b Symqk TX˚
)

, (17.5)

where TX and TX˚ denote the tangent and cotangent bundles of X, respectively. The

corresponding elliptic genus ZV(X) on X is given by

ZV(X) = eiφτĉ/2
(

ch(E``y,q(X)) td(X)

e(X)

)
. (17.6)

Proof . Define z = θ´φτ
2π . Let txiu be the formal Chern roots of TX, where

xi = 2πizωi and ω is the weight of a non-degenerate, weighted homogeneous

superpotential f that satisfies the elliptic bounds. Let y = e2πiz, q = e2πiτ and

ĉ =
ř

i 1´ 2ωi. By definition, the Chern class of the elliptic series is the product,

yĉ/2
ź

kě1

ch
(
ľ

´y´dqk´1 TX
)
¨ ch

(
ľ

´ydqk TX˚
)

¨ ch
(

Symqk TX
)
¨ ch

(
Symqk TX˚

)
,

688



with

ch
(
ľ

t TX
)
=

n
ź

i=1

(1 + texi) (17.7)

ch
(
ľ

t TX˚
)
=

n
ź

i=1

(1 + te´xi) (17.8)

ch (Symt TX) =
n
ź

i=1

(1´ texi)´1 (17.9)

ch (Symt TX˚) =
n
ź

i=1

(1´ te´xi)´1, (17.10)

respectively. The Todd class of X is simply

td(X) =
n
ź

i=1

xi

1´ e´xi
, (17.11)

and the Euler class of X is

e(X) =
n
ź

i=1

xi. (17.12)

Hence, we have

ZV(X) = eπizĉ
n
ź

i=1

ź

kě1

(1´ qk´1e´2πiz(1´ωi))(1´ qke2πiz(1´ωi))

(1´ qk´1e´2πizωi)(1´ qke2πizωi)
(17.13a)

= yĉ/2
n
ź

i=1

ź

kě1

(1´ yqke´xi)(1´ y´1qk´1exi)

(1´ qke´xi)(1´ qkexi)

xi

xi(1´ e´xi)
(17.13b)

=
ch(E``y,q(X)) td(X)

e(X)
, (17.13c)
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as claimed. �

Remark 17.2.1. One could have defined the elliptic series E``y,q(X) as

yĉ/2 â

kě1

(
ľ

´y´dqk´1 TX b
ľ

´ydqk TX˚ b Symqk TX b Symqk´1 TX˚
)

,

which would imply ZV(X) = eiφτĉ/2 ch(E``y,q(X)). M

The characteristic power series of three well-known elliptic genera [451451] are

related to the following functions:

EQ1(x) = eπiτ/4(ex/2
´ e´x/2)

ź

kě1

(1´ qkex)(1´ qke´x)

(1´ qkex´πiτ)(1´ qke´x´πiτ)
(17.14)

ER(x) =
(

1´ e´x

1 + e´x

)
ź

kě1

(1´ qkex)(1´ qke´x)

(1 + qkex)(1 + qke´x)
(17.15)

EQ(x) = eπiτ/4(ex/2
´ e´x/2)

¨
ź

kě1

(1´ qkex)(1´ qke´x)

(1´ qkex´πi(˘1+τ))(1´ qke´x´πi(˘1+τ))
. (17.16)

Note

x
ER(x)

=
x

tanh
( x

2

) (´ex; q)8(´e´x; q)8
(ex; q)8(e´x; q)8

. (17.17)

Proposition 17.3. The partition function ZλV : CˆH Ñ C satisfies

lim
yÑ´1

ZλV = (´1)ĉ/2
n
ź

j=1

xj

EJ(xj)
, (17.18)
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where

x
EJ(x)

= ´iexj cot(
xj
2 )

(´exj ; q)8(´e´xj ; q)8
(exj ; q)8(e´xj ; q)8

. (17.19)

Proof . The partition function ZλV = eiĉθ/2 śn
j=1 Z

V
j , where

ZV
j =

ź

kě1

1´ qk´1y´(1´ωj)

1´ qk´1y´ωj

1´ qky1´ωj

1´ qkyωj
(17.20)

=
ź

kě1

1´ qk´1e´2πiz(1´ωj)

1´ qk´1e´2πizωj

1´ qke2πiz(1´ωj)

1´ qke2πizωj
(17.21)

=

(
1´ y´1exj

1´ e´x

)
(y´1exj ; q)8(ye´xj ; q)8
(exj ; q)8(e´xj ; q)8

, (17.22)

where we have set xj = 2πizωj. In the limit y Ñ ´1, we have

lim
yÑ´1

ZV
j =

exj

tanh(
xj
2 )

(´exj ; q)8(´e´xj ; q)8
(exj ; q)8(e´xj ; q)8

(17.23)

= ´iexj cot(
xj
2 )

(´exj ; q)8(´e´xj ; q)8
(exj ; q)8(e´xj ; q)8

. (17.24)

�

Remark 17.2.2. Proposition 17.317.3 shows that the elliptic genus recovers the

algebraic root of the corresponding singularity in the y Ñ ´1 limit. This is rather

suggestive of a more general phenomenon. M
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Chapter 18

Quantum Field Theory and Algebraic Links

Aut inveniam viam aut faciam.** — Hannibal

Contents

18.1. Elliptic Genus as a Link Invariant18.1. Elliptic Genus as a Link Invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

18.1. Elliptic Genus as a Link Invariant

Given a complex analytic germ f : (Cn+1, 0) Ñ (C, 0), define the locus

Vf, κ = f´1(κ), where κ P C. There is an δ ą 0 such that for 0 ď κ ă ε ă δ,

the map φ f = f
} f } : S2n+1

ε zVf, κ Ñ S1 is the projection of a locally trivial fibra-

tion over S1 [310310]. If f is non-degenerate, i.e., f has an isolated critical point

at t0u, then the intersection K f = Vf, 0 X S2n+1
ε is an (n ´ 2)-connected, pos-

sibly linked, codimension-two submanifold
šr S2n´1 Ă S2n+1

ε — an algebraic

(fibered) link — and the common boundary of a diffeomorphism class of fibers

tFf, ϑ = φ´1
f (eiϑ)uϑPS1 , each with the homotopy-type of a wedge sum of spheres,

Žµ Sn (op. cit.). Additionally, if f is weighted homogeneous, i.e., there are ra-

tionals ω = tω0, . . . , ωnu such that f = λ´1 f (λω0z0, . . . , λωn zn) for λ P Cˆ,

then each fiber Ff, ϑ is diffeomorphic to Vf, 1 as a deformation retraction, and the

*I shall either find a way or make one.
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Milnor number µ = dimC Ctz0, . . . , znu/xB0 f , . . . , Bn f y =
śn

i=0(
1

ωi
´ 1), where

ω Ă QX (0, 1
2 ] [310310].

Definition 18.1. A complex analytic function g : Cm Ñ C satisfies the

elliptic bounds if and only if there are positive constants ε, M, ρ ă 8 such that for

any non-negative multi-index α and for all z = (z1, . . . , zm) satisfying }z} ą ρ,

one has }Bαg} ď ε}Bg}2 + M and }z}2 + }g} ď M(}Bg}2 + 1), where Bg =

(B1g, . . . , Bmg).

Remark 18.1.1. The second inequality is redundant for non-degenerate,

weighted homogeneous polynomials. M

Proposition 18.2. Let f : (Cn+1, 0) Ñ (C, 0) be a non-degenerate, weighted

homogeneous polynomial satisfying the elliptic bounds. The elliptic genus Z f deter-

mines the reduced Alexander polynomial of the algebraic link K f , which is a complete

(cobordism and isotopy) invariant if K f Ă S3 is a knot.

Proof . Define the space-time-twist parameters τ = σ+iβ
` P H, z = θ´τφ

2π P

C and the associated nomes q = e2πiτ and y = e2πiz. Denote the weights of

f by ω, and define ĉ =
řn

i=0 1 ´ 2ωi, the central charge. Since f satisfies the

standard hypotheses, the corresponding elliptic genus Z f : CˆH Ñ C exists

and, assuming φ = 0, admits the following exact representation [223223],
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Z f (z, τ) = yĉ/2
n
ź

i=0

ź

kě0

(1´ y´(1´ωi)qk)(1´ y(1´ωj)qk+1)

(1´ y´ωi qk)(1´ yωi qk+1)
(18.1)

= y´(n+1)/2 Sp( f ; y) + O(q), (18.2)

where the Steenbrink series

Sp( f ; y) =
n
ź

i=0

y1´ωi ´ 1
1´ y´ωi

(18.3)

=

µ
ÿ

j=1

yγj (18.4)

and µ = rank Hn(Ff, 0; Z) [436436]. The spectrum Sp( f ) = tγju1ďjďµ of the mixed

Hodge structure of a generic fiber Ff, ϑ determines the characteristic polynomial

∆h˚(t) = det(tI´ h˚) of the Picard-Lefschetz monodromy h˚ : Hn(Ff, ϑ; C) Ñ

Hn(Ff, ϑ+2π; C) (op. cit.), viz.,

∆h˚(t) =
µ
ź

j=1

(t´ e2πiγj), (18.5)

the reduced Alexander polynomial of K f [310310], viz.,

∆h˚(t)
.
= (t´ 1)1´δr,1∆K f (t, . . . , t), (18.6)
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the Lefschetz zeta function [352352],

ζK f (t) = exp
ÿ

kě0

Λ(h˝k) tk

k (18.7)

=
ź

lě0

det(I´ th˚,l)
(´1)l+1

, (18.8)

where h : Vf, 1 Ñ Vf, 1 is the transformation h(z) = (e2πiω0z0, . . . , e2πiωn zn), and

the Lefschetz number

Λ(h˝k) =
ÿ

lě0

(´1)l Tr(hk
˚,l : Hl(Vf, 1; Q)Ñ Hl(Vf, 1; Q)) (18.9)

equals the Euler characteristic χk = tz P Vf, 1 | h˝k(z) = zu [310310], viz.,

ζK f (t) = (´1)µn(1´ t)´1∆h˚(t). (18.10)

If n = r = 1, the diffeomorphism-type of the relative pair (S3, K f ) [257257]. We

have therefore proven the following claim. �

Remark 18.1.2. The symmetry Z f (´z, τ) = Z f (z, τ) implies the reflexivity

Sp( f ; y) = yn+1Sp( f ; 1
y ), (18.11)

the reciprocity γµ+1´j = n + 1´ γj for 1 ď j ď µ, and the functional equation

∆h˚(t) = (´1)µntµ∆h˚(
1
t ). (18.12)

M
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Remark 18.1.3. The q-linear term of Z f is

qy´(n+1)/2Sp( f ; y)
n
ÿ

i=0

yωi + y1´ωi ´ y´ωi ´ y´(1´ωi). (18.13)

M

Corollary 18.3. If f : (Cn+1, 0)Ñ (C, 0) is a non-degenerate weighted homo-

geneous polynomial that satisfies the elliptic bounds, then the number of bosonic ground

states of the corresponding quantum theory is the Fredholm index of the supercharge

Q+
f , where (Q+

f )
2 = H + P, and is given by the zero-twist limit

ind(Q+
f ) = lim

θ, φÑ0
Z f (z, τ) (18.14a)

=
n
ź

i=0

(
1

ωi
´ 1
)

, (18.14b)

which coincides with the Milnor number µ( f ).

Corollary 18.4 ([289289]). If f : (C2, 0) Ñ (C, 0) is a squarefree, non-denerate

weighted homogeneous polynomial that satisfies the elliptic bounds and the correspond-

ing algebraic link is a knot, then ind(Q+
f ) = 2δ( f ), twice the delta invariant of f .

Remark 18.1.4. Given p, q P Ną1, the polynomial f = xp + yq has weights

t 1
p , 1

qu and corresponds to the torus link Tp,q = Vf, 0 X S3 with gcd(p, q) compo-

nents and unknotting number u(Tp,q) =
1
2(pq´ p´ q + gcd(p, q)) [247247]. Since
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f satisfies the standard hypotheses,

Z f = y
1
p+

1
q´1

p´2
ÿ

k=0

q´2
ÿ

l=0

yk/p+l/q + O(e2πiτ). (18.15)

Therefore,

Sp( f ) = t k
p +

l
qu1ďkďp´1,1ďlďq´1 = t2´ k

p +
l
qu1ďkďp´1,1ďlďq´1. (18.16)

Setting ζn = e2πi/n for n P N,

∆h˚(t) =
p´1
ź

k=1

q´1
ź

l=1

(t´ ζk
pζ l

q) (18.17)

=
(tlcm(p,q) ´ 1)gcd(p,q)(t´ 1)

(tp ´ 1)(tq ´ 1)
(18.18)

= (´t)µ∆h˚(
1
t ), (18.19)

where

µ = lim
θÑ0

Z f = (p´ 1)(q´ 1) (18.20)

is the Fredholm index of the supercharge Q+, which enumerates the quantum-

mechanical ground states [223223]. In particular, if p and q are coprime, then Tp,q is

a knot, and the index

µ = 2u(Tp,q) = 2g(Ff, ϑ), (18.21)

twice the genus of a corresponding generic fiber [310310, 247247]. M
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Chapter 19

Classification of WZθ,φ Models

The secret of all victory lies in the organization of the non-obvious. —
Marcus Aurelius

Contents

19.1. The Category of WZθ,φ Models19.1. The Category of WZθ,φ Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
19.2. Supersymmetry19.2. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

In this chapter we discuss a classification scheme for the moduli space of the

WZθ,φ models.

Proposition 19.1. The moduli space of the WZθ,φ models admits a classifica-

tion by the corresponding spectrum of the Picard-Lefschetz monodromy and the topo-

logical type of the corresponding algebraic links. In particular, algebraic knots in S3

completely classify said moduli space.

Proof . The claim follows from the Lê and Yamamoto classification of alge-

braic links [257257, 258258]. �

19.1. The Category of WZθ,φ Models

19.1.1. Elliptic Genera under Sebastiani-Thom Summation. Consider the

moduli space of WZθ,φ models with non-degenerate, weighted homogeneous
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superpotentials (that satisfy the elliptic bounds) equipped with the tensor prod-

uct of underlying Fock spaces.

Proposition 19.2. The elliptic genus of a Sebastiani-Thom summation is de-

fined on a tensor product Fock space and factors as a product of the constituent elliptic

genera.

Proof . Computing the elliptic genera in terms of Jacobi theta functions,

Z f ‘ g(z, τ) = y´(ĉ( f )+ĉ(g))/2
n
ź

i=1

ϑ1((1´ωi) z, τ)

ϑ1(ωi z, τ)

m
ź

j=1

ϑ1((1´ νj) z, τ)

ϑ1(νj z, τ)
(19.1a)

=

y´ĉ( f )/2
n
ź

j=1

ϑ1((1´ωj) z, τ)

ϑ1(ωj z, τ)

y´ĉ(g)/2
n
ź

j=1

ϑ1((1´ νj) z, τ)

ϑ1(νj z, τ)


= Z f (z, τ)Zg(z, τ). (19.1b)

Computing the elliptic genera in terms of heat kernels on Fock space,

StrF f e´βH´iσP´iθ J
¨ StrFg e´βH´iσP´iθ J = StrF e´βH´iσP´iθ J

b e´βH´iσP´iθ J

= StrF e´βH‘H´iσP‘P´iθ J‘J ,

where F = F f b Fg. Since the tensor product is a universal operation, it

follows that

StrF f ‘ g e´βH´iσP´iθ J = StrF f bFg e´βH‘H´iσP‘P´iθ J‘J , (19.2)

and the claim follows. �
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Corollary 19.3. The elliptic genus is invariant under iterated stabilization.

Proof . As Zz2
= 1,

ZΣ f (z, τ) = y´(ĉ( f )+ĉ(z2))/2
n
ź

i=1

ϑ1((1´ωi) z, τ)

ϑ1(ωi z, τ)
(19.3)

= Z f (z, τ), (19.4)

since ĉ(z2) = 0. �

Proposition 19.4. The moduli space of WZθ,φ models is monoidal.

Proof . It is a straightforward exercise to verify the following identities,

Z f ‘ g(z, τ) = Zg ‘ f (z, τ) (19.5)

and

Z( f ‘ g)‘ h(z, τ) = (Z f
¨ Zg

¨ Zh)(z, τ) (19.6)

= Z f ‘ (g ‘ h)(z, τ), (19.7)

which imply commutativity and associativity under Sebastiani-Thom summa-

tion. Thus, the moduli space is a commutative monoid with identity 1, namely,

the elliptic genus of a quasi-Brieskorn-Pham singularity with weights t1
2 , . . . , 1

2u.

Categorify. �

19.1.2. Elliptic Genera under Disjoint Union. One may consider a singu-

larity with a discrete set of isolated critical points, in which case the appropriate
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topological setting is that of a disjoint union of Milnor fibers and corresponding

algebraic links. From the point of view of quantum field theory, one may con-

sider a direct sum of Fock spaces implying an ordinary sum of elliptic genera,

(Z f + Zg)(z, τ) = y´ĉ( f )/2
n
ź

i=1

ϑ1((1´ωi) z, τ)

ϑ1(ωi z, τ)
+ y´ĉ(g)/2

n
ź

i=1

ϑ1((1´ νi) z, τ)

ϑ1(νi z, τ)

= Z f \ g(z, τ). (19.8)

As the numerical invariants of algebraics links are additive under disjoint union,

the number of quantum mechanical grounds states is additive under direct sum.

19.1.3. Elliptic Genera under Kronecker Products. Define the Kronecker

product of elliptic genera,

(Z f
b Zg)(z, τ) = y´ĉ( f b g)/2

n
ź

i=1

m
ź

j=1

ϑ1((1´ωiνj) z, τ)

ϑ1(ωiνj z, τ)
(19.9)

= Z f b g(z, τ). (19.10)

This operation is associative and commutative.

19.2. Supersymmetry

The reciprocity of the spectrum, namely, γµ+1´j = n + 1´ γj is related to a

map of the weights ωi Ñ 1´ωi, which interchanges the bosonic and fermionic

degrees of freedom and inverts the elliptic genus. This is supersymmetry, which

may equivalently be interpreted as a reciprocity law between the elementary
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symmetric and complete homogeneous polynomials and their generating func-

tions. These points are discussed in greater detail in Volume 3.

Lemma 19.5. Supersymmetry is Ehrhart Reciprocity made manifest.

704



Page intentionally left blank

705



Appendices



Appendix A

Link Data

O time! thou must untangle this, not I;
It is too hard a knot for me to untie!

— William Shakespeare, Twelfth Night (Act II, Scene 2)

Contents

A.1. Prime KnotsA.1. Prime Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709
A.2. Alexander Polynomial of Prime KnotsA.2. Alexander Polynomial of Prime Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
A.3. Prime Links with Two ComponentsA.3. Prime Links with Two Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
A.4. Prime Links with Three ComponentsA.4. Prime Links with Three Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
A.5. Prime Links with Four ComponentsA.5. Prime Links with Four Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
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A.8. Torus Links and Cyclotomic PolynomialsA.8. Torus Links and Cyclotomic Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721

The following tables of prime links (with up to four components) were cre-

ated using KnotPlotKnotPlot [418418]. For the convenience of the reader, we provide all

prime knots with no more than ten crossings in Tables A.1A.1, A.2A.2, A.3A.3 and A.4A.4.

The Alexander polynomials of prime knots with no more than seven cross-

ings are given in the Table A.5A.5. All prime links with two components and no

more than nine crossings are given in Tables A.6A.6 and A.7A.7. All prime links with

three components and no more than nine crossings are given in Table . Vari-

ous prime links with four components and zero or eight crossings are given
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in Table A.9A.9. The torus links ordered by crossing number are given in Table

A.10A.10. The characteristic polynomial of the torus link Tp,q for 2 ď p ď q ď 10

are given in Tables A.11A.11, A.13A.13 and A.14A.14. Recall the nth-cyclotomic polynomial

Φn(t) =
ś

gcd(k,n)=1(t´ ζk
n), where ζn = e2πi/n.
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A.1. Prime Knots

Table A.1. Prime Knots (01 to 928) [418418]

01 31 41 51 52 61 62 63

71 72 73 74 75 76 77 81

82 83 84 85 86 87 88 89

810 811 812 813 814 815 816 817

818 819 820 821 91 92 93 94

95 96 97 98 99 910 911 912

913 914 915 916 917 918 919 920

921 922 923 924 925 926 927 928
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Table A.2. Prime Knots (Continued, 929 to 1043) [418418]

929 930 931 932 933 934 935 936

937 938 939 940 941 942 943 944

945 946 947 948 949 101 102 103

104 105 106 107 108 109 1010 1011

1012 1013 1014 1015 1016 1017 1018 1019

1020 1021 1022 1023 1024 1025 1026 1027

1028 1029 1030 1031 1032 1033 1034 1035

1036 1037 1038 1039 1040 1041 1042 1043

710



Table A.3. Prime Knots (Continued, 1044 to 10107) [418418]

1044 1045 1046 1047 1048 1049 1050 1051

1052 1053 1054 1055 1056 1057 1058 1059

1060 1061 1062 1063 1064 1065 1066 1067

1068 1069 1070 1071 1072 1073 1074 1075

1076 1077 1078 1079 1080 1081 1082 1083

1084 1085 1086 1087 1088 1089 1090 1091

1092 1093 1094 1095 1096 1097 1098 1099

10100 10101 10102 10103 10104 10105 10106 10107
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Table A.4. Prime Knots (Continued, 10108 to 10165) [418418]

10108 10109 10110 10111 10112 10113 10114 10115

10116 10117 10118 10119 10120 10121 10122 10123

10124 10125 10126 10127 10128 10129 10130 10131

10132 10133 10134 10135 10136 10137 10138 10139

10140 10141 10142 10143 10144 10145 10146 10147

10148 10149 10150 10151 10152 10153 10154 10155

10156 10157 10158 10159 10160 10161 10162 10163

10164 10165
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A.2. Alexander Polynomial of Prime Knots

Table A.5. Alexander Polynomials of Prime Knots

K ∆K(t)

01 1
31 t2 ´ t + 1
41 t2 ´ 3t + 1
51 t4 ´ t3 + t2 ´ t + 1
52 2t2 ´ 3t + 2
61 2t2 ´ 5t + 2
62 t4 ´ 3t3 + 3t2 ´ 3t + 1
63 t4 ´ 3t3 + 5t2 ´ 3t + 1
71 t6 ´ t5 + t4 ´ t3 + t2 ´ t + 1
72 3t2 ´ 5t + 3
73 2t4 ´ 3t3 + 3t2 ´ 3t + 2
74 4t3 ´ 7t + 4
75 2t4 ´ 4t3 + 5t2 ´ 4t + 2
76 t4 ´ 5t3 + 7t2 ´ 5t + 1
77 t4 ´ 5t3 + 9t2 ´ 5t + 1
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A.3. Prime Links with Two Components

Table A.6. Prime Links with Two Components (02
1 to 92

25) [418418]

02
1 22

1 42
1 52

1 62
1 62

2 62
3 72

1

72
2 72

3 72
4 72

5 72
6 72

7 72
8 82

1

82
2 82

3 82
4 82

5 82
6 82

7 82
8 82

9

82
10 82

11 82
12 82

13 82
14 82

15 82
16 92

1

92
2 92

3 92
4 92

5 92
6 92

7 92
8 92

9

92
10 92

11 92
12 92

13 92
14 92

15 92
16 92

17

92
18 92

19 92
20 92

21 92
22 92

23 92
24 92

25
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Table A.7. Prime Links with Two Components (Continued, 92
26 to 92

61) [418418]

92
26 92

27 92
28 92

29 92
30 92

31 92
32 92

33

92
34 92

35 92
36 92

37 92
38 92

39 92
40 92

41

92
42 92

43 92
44 92

45 92
46 92

47 92
48 92

49

92
50 92

51 92
52 92

53 92
54 92

55 92
56 92

57

92
58 92

59 92
60 92

61
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A.4. Prime Links with Three Components

Table A.8. Prime Links with Three Components (03
1 to 93

21) [418418]

03
1 63

1 63
2 63

3 73
1 83

1 83
2 83

3

83
4 83

5 83
6 83

7 83
8 83

9 83
10 93

1

93
2 93

3 93
4 93

5 93
6 93

7 93
8 93

9

93
10 93

11 93
12 93

13 93
14 93

15 93
16 93

17

93
18 93

19 93
20 93

21
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A.5. Prime Links with Four Components

Table A.9. Various Prime Links with Four Components [418418]

04
1 84

1 84
2 84

3 84
4
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A.6. Torus Links

Table A.10. Torus Links (T1,1 to T6,7) [418418]

T1,1 T2,2 T2,3 T2,4 T2,5 T2,6 T3,3 T2,7

T2,8 T3,4 T2,9 T2,10 T3,5 T2,11 T2,12 T3,6

T4,4 T2,13 T2,14 T3,7 T2,15 T4,5 T2,16 T3,8

T2,17 T2,18 T3,9 T4,6 T2,19 T2,20 T3,10 T5,5

T2,21 T4,7 T2,22 T3,11 T2,23 T2,24 T3,12 T4,8

T5,6 T2,25 T2,26 T3,13 T2,27 T4,9 T2,28 T3,14

T5,7 T2,29 T2,30 T3,15 T4,10 T6,6 T2,31 T2,32

T3,16 T5,8 T2,33 T4,11 T2,34 T3,16 T2,35 T6,7
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A.7. Characteristic Polynomials of Torus Links

Table A.11. Characteristic Polynomials of Torus Links

L ∆L(t)

T2,2 t´ 1
T2,3 t2 ´ t + 1
T2,4 t3 ´ t2 + t´ 1
T2,5 t4 ´ t3 + t2 ´ t + 1
T2,6 t5 ´ t4 + t3 ´ t2 + t´ 1
T2,7 t6 ´ t5 + t4 ´ t3 + t2 ´ t + 1
T2,8 t7 ´ t6 + t5 ´ t4 + t3 ´ t2 + t´ 1
T2,9 t8 ´ t7 + t6 ´ t5 + t4 ´ t3 + t2 ´ t + 1
T2,10 t9 ´ t8 + t7 ´ t6 + t5 ´ t4 + t3 ´ t2 + t´ 1
T3,3 t4 ´ t3 ´ t + 1
T3,4 t6 ´ t5 + t3 ´ t + 1
T3,5 t8 ´ t7 + t5 ´ t4 + t3 ´ t + 1
T3,6 t10 ´ t9 + t7 ´ t6 ´ t4 + t3 ´ t + 1
T3,7 t12 ´ t11 + t9 ´ t8 + t6 ´ t4 + t3 ´ t + 1
T3,8 t14 ´ t13 + t11 ´ t10 + t8 ´ t7 + t6 ´ t4 + t3 ´ t + 1
T3,9 t16 ´ t15 + t13 ´ t12 + t10 ´ t9 ´ t7 + t6 ´ t4 + t3 ´ t + 1
T3,10 t18 ´ t17 + t15 ´ t14 + t12 ´ t11 + t9 ´ t7 + t6 ´ t4 + t3 ´ t + 1
T4,4 t9 ´ t8 ´ 2t5 + 2t4 + t´ 1
T4,5 t12 ´ t11 + t8 ´ t6 + t4 ´ t + 1
T4,6 t15 ´ t14 + t11 ´ t10 + t9 ´ t8 + t7 ´ t6 + t5 ´ t4 + t´ 1
T4,7 t18 ´ t17 + t14 ´ t13 + t11 ´ t9 + t7 ´ t5 + t4 ´ t + 1
T4,8 t21 ´ t20 + t17 ´ t16 ´ 2t13 + 2t12 ´ 2t9 + 2t8 + t5 ´ t4 + t´ 1
T4,9 t24 ´ t23 + t20 ´ t19 + t16 ´ t14 + t12 ´ t10 + t8 ´ t5 + t4 ´ t + 1
T4,10 t27 ´ t26 + t23 ´ t22 + t19 ´ t18 + t17 ´ t16 + t15 ´ t14

+ t13 ´ t12 + t11 ´ t10 + t9 ´ t8 + t5 ´ t4 + t´ 1
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Table A.12. Characteristic Polynomials of Torus Links (Continued)

L ∆L(t)

T5,5 t16 ´ t15 ´ 3t11 + 3t10 + 3t6 ´ 3t5 ´ t + 1

T5,6 t20 ´ t19 + t15 ´ t13 + t10 ´ t7 + t5 ´ t + 1

T5,7 t24 ´ t23 + t19 ´ t18 + t17 ´ t16 + t14 ´ t13 + t12 ´ t11 + t10 ´ t8 + t7 ´ t6 + t5 ´ t + 1

T5,8 t28 ´ t27 + t23 ´ t22 + t20 ´ t19 + t18 ´ t17 + t15 ´ t14 + t13 ´ t11 + t10 ´ t9 + t8 ´ t6 + t5 ´ t + 1

T5,9 t32 ´ t31 + t27 ´ t26 + t23 ´ t21 + t18 ´ t16 + t14 ´ t11 + t9 ´ t6 + t5 ´ t + 1

T5,10 t36 ´ t35 + t31 ´ t30 ´ 3t26 + 3t25 ´ 3t21 + 3t20 + 3t16 ´ 3t15 + 3t11 ´ 3t10 ´ t6 + t5 ´ t + 1

T6,6 t25 ´ t24 ´ 4t19 + 4t18 + 6t13 ´ 6t12 ´ 4t7 + 4t6 + t´ 1

T6,7 t30 ´ t29 + t24 ´ t22 + t18 ´ t15 + t12 ´ t8 + t6 ´ t + 1

T6,8 t35 ´ t34 + t29 ´ t28 + t27 ´ t26 + t23 ´ t22 + t21 ´ t20 + t19 ´ t18 + t17 ´ t16 + t15 ´ t14 + t13 ´ t12 + t9 ´ t8 + t7 ´ t6 + t´ 1

T6,9 t40 ´ t39 + t34 ´ t33 + t31 ´ t30 + t28 ´ t27 + t25 ´ t24 ´ t22 + t21 + t19 ´ t18 ´ t16 + t15 ´ t13 + t12 ´ t10 + t9 ´ t7 + t6 ´ t + 1

T6,10 t45 ´ t44 + t39 ´ t38 + t35 ´ t34 + t33 ´ t32 + t29 ´ t28 + t27 ´ t26 + t25 ´ t24 + t23 ´ t22 + t21 ´ t20

+t19 ´ t18 + t17 ´ t16 + t13 ´ t12 + t11 ´ t10 + t7 ´ t6 + t´ 1

T7,7 t36 ´ t35 ´ 5t29 + 5t28 + 10t22 ´ 10t21 ´ 10t15 + 10t14 + 5t8 ´ 5t7 ´ t + 1

T7,8 t42 ´ t41 + t35 ´ t33 + t28 ´ t25 + t21 ´ t17 + t14 ´ t9 + t7 ´ t + 1

T7,9 t48 ´ t47 + t41 ´ t40 + t39 ´ t38 + t34 ´ t33 + t32 ´ t31 + t30 ´ t29 + t27 ´ t26 + t25 ´ t24 + t23 ´ t22 + t21

´t19 + t18 ´ t17 + t16 ´ t15 + t14 ´ t10 + t9 ´ t8 + t7 ´ t + 1

T7,10 t54 ´ t53 + t47 ´ t46 + t44 ´ t43 + t40 ´ t39 + t37 ´ t36 + t34 ´ t32 + t30 ´ t29 + t27 ´ t25 + t24 ´ t22 + t20

´t18 + t17 ´ t15 + t14 ´ t11 + t10 ´ t8 + t7 ´ t + 1

T8,8 t49 ´ t48 ´ 6t41 + 6t40 + 15t33 ´ 15t32 ´ 20t25 + 20t24 + 15t17 ´ 15t16 ´ 6t9 + 6t8 + t´ 1

T8,9 t56 ´ t55 + t48 ´ t46 + t40 ´ t37 + t32 ´ t28 + t24 ´ t19 + t16 ´ t10 + t8 ´ t + 1

T8,10 t63 ´ t62 + t55 ´ t54 + t53 ´ t52 + t47 ´ t46 + t45 ´ t44 + t43 ´ t42 + t39 ´ t38 + t37 ´ t36 + t35 ´ t34 + t33 ´ t32 + t31 ´ t30

+t29 ´ t28 + t27 ´ t26 + t25 ´ t24 + t21 ´ t20 + t19 ´ t18 + t17 ´ t16 + t11 ´ t10 + t9 ´ t8 + t´ 1

T9,9 t64 ´ t63 ´ 7t55 + 7t54 + 21t46 ´ 21t45 ´ 35t37 + 35t36 + 35t28 ´ 35t27 ´ 21t19 + 21t18 + 7t10 ´ 7t9 ´ t + 1

T9,10 t72 ´ t71 + t63 ´ t61 + t54 ´ t51 + t45 ´ t41 + t36 ´ t31 + t27 ´ t21 + t18 ´ t11 + t9 ´ t + 1

T10,10 t81 ´ t80 ´ 8t71 + 8t70 + 28t61 ´ 28t60 ´ 56t51 + 56t50 + 70t41 ´ 70t40 ´ 56t31 + 56t30 + 28t21 ´ 28t20 ´ 8t11 + 8t10 + t´ 1

7
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A.8. Torus Links and Cyclotomic Polynomials

Table A.13. Torus Links and Cyclotomic Polynomials

L ∆L(t)

T2,2 Φ1(t)
T2,3 Φ6(t)
T2,4 Φ1(t)Φ4(t)
T2,5 Φ10(t)
T2,6 Φ1(t)Φ3(t)Φ6(t)
T2,7 Φ14(t)
T2,8 Φ1(t)Φ4(t)Φ8(t)
T2,9 Φ6(t)Φ18(t)
T2,10 Φ1(t)Φ5(t)Φ10(t)
T3,3 Φ1(t)2Φ3(t)
T3,4 Φ6(t)Φ12(t)
T3,5 Φ15(t)
T3,6 Φ1(t)2Φ2(t)2Φ3(t)Φ6(t)2

T3,7 Φ21(t)
T3,8 Φ6(t)Φ12(t)Φ24(t)
T3,9 Φ1(t)2Φ3(t)Φ9(t)2

T3,10 Φ6(t)Φ15(t)Φ30(t)
T4,4 Φ1(t)3Φ2(t)2Φ4(t)2

T4,5 Φ10(t)Φ20(t)
T4,6 Φ1(t)Φ3(t)Φ4(t)Φ6(t)Φ12(t)2

T4,7 Φ14(t)Φ28(t)
T4,8 Φ1(t)3Φ2(t)2Φ4(t)2Φ8(t)3

T4,9 Φ6(t)Φ12(t)Φ18(t)Φ36(t)
T4,10 Φ1(t)Φ4(t)Φ5(t)Φ10(t)Φ20(t)2
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Table A.14. Torus Links and Cyclotomic Polynomials (Continued)

L ∆L(t)

T5,5 Φ1(t)4Φ5(t)3

T5,6 Φ10(t)Φ15(t)Φ30(t)
T5,7 Φ35(t)
T5,8 Φ10(t)Φ20(t)Φ40(t)
T5,9 Φ15(t)Φ45(t)
T5,10 Φ1(t)4Φ2(t)4Φ5(t)3Φ10(t)4

T6,6 Φ1(t)5Φ2(t)4Φ3(t)4Φ6(t)4

T6,7 Φ14(t)Φ21(t)Φ42(t)
T6,8 Φ1(t)Φ3(t)Φ4(t)Φ6(t)Φ8(t)Φ12(t)2Φ24(t)2

T6,9 Φ1(t)2Φ2(t)2Φ3(t)Φ6(t)2Φ9(t)2Φ18(t)3

T6,10 Φ1(t)Φ3(t)Φ5(t)Φ6(t)Φ10(t)Φ15(t)2Φ30(t)2

T7,7 Φ1(t)6Φ7(t)5

T7,8 Φ14(t)Φ28(t)Φ56(t)
T7,9 Φ21(t)Φ63(t)
T7,10 Φ14(t)Φ35(t)Φ70(t)
T8,8 Φ1(t)7Φ2(t)6Φ4(t)6Φ8(t)6

T8,9 Φ6(t)Φ12(t)Φ18(t)Φ24(t)Φ36(t)Φ72(t)
T8,10 Φ1(t)Φ4(t)Φ5(t)Φ8(t)Φ10(t)Φ20(t)2Φ40(t)2

T9,9 Φ1(t)8Φ3(t)7Φ9(t)7

T9,10 Φ6(t)Φ15(t)Φ18(t)Φ30(t)Φ45(t)Φ90(t)
T10,10 Φ1(t)9Φ2(t)8Φ5(t)8Φ10(t)8

722



Page intentionally left blank

723



Appendix B

Classification of Weighted Homogeneous Singularities

One can easily classify all works of fiction either as descendants of the Iliad
or of the Odyssey. — Raymond Queneau
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In this appendix, we discuss the classification of non-degenerate, weighted

homogeneous singularities with inner modality between zero and six (inclusive)

up to right equivalence.

B.1. Inner Modality

Let m denote the maximal ideal of the ring Ctz1, . . . , znu. A polynomial f

is non-degenerate if there is an l P N such that ml Ă JB f Ă m. Recall that

a monomial za1
1 ¨ ¨ ¨ z

an
n has weighted degree d if and only if deg zi = qi and

řn
i=1 qiai = d. Let f be a non-degenerate weighted homogeneous polynomial
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with weights tq1, . . . , qnu and degree d. The inner modality of f , denoted m( f ),

is the number of monomials comprising f with weighted degree greater than or

equal to d, viz., m( f ) =
ř

iěd µi =
ř

iďC´d µi.

If f = ΣN f0 (the iterated stabilization of f0) for some N, then we say that f0

is the residual part of f . By a theorem of Arnold two non-degenerate, weighted

homogeneous singularities ΣN f0 and ΣNg0 are analytically equivalent if and

only if f0 and g0 are analytically equivalent [2323].

For the convenience of the reader, we tabulate the (corrected) nonequivalent,

non-degenerate, residual parts of weighted homogeneous singularities by sym-

bol (with subscript equal to the Milnor number) according to inner modality

less than or equal to five, principal weights and non-zero generalized genus

spectrum (the sequence of the number of positive lattice points intersecting the

corresponding weight polytopes). Arnold classified weighted homogeneous

singularities with inner modality equal to zero or one up to right equivalence

[2020]. Those weighted homogeneous singularities with inner modality between

two and five (inclusive) up to right equivalence have been classified by Yoshi-

naga and Watanabe [494494], Yoshinaga and Suzuki [493493] and Suzuki [449449]. Those

weighted homogeneous singularities with inner modality equal to six up to

right equivalence have been classified by Sarlabous, Arocha and Fuentes [415415],

although there remains three questionable singularities.

For those singularities with coefficients, certain conditions must be met to

ensure non-degeneracy. Notes of the form ∆(a, b) ‰ 0, etc., indicate some (poten-

tially complicated) polynomial relation of the coefficients must not vanish.
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B.2. Inner Modality Zero

Those weighted homogeneous singularities with inner modality equal to

zero are right equivalent to simple singularities [2020].

Table B.1. The Five Weighted Homogeneous Singularities with Inner
Modality Zero [2020]

Symbol Residual Part Weights pg Notes

Ak xk+1 t 1
k+1u tk + 1, t k+1

2 uu k ě 1
Dk xk´1 + xy2 t 1

k´1 , k´2
2k´2u tt k+5

2 uu k ě 4
E6 x4 + y3 t 1

4 , 1
3u t3u

E7 x3 + xy3 t 1
3 , 2

9u t4u
E8 x5 + y3 t 1

5 , 1
3u t4u

Remark B.2.1. For example, Ak represents the family of singularities

txk+1 +
řn

i=1 z2
i u with weights t 1

k+1 , 1
2 nu, Milnor number k and corresponding

generalized genus spectrum tk + 1, t k+1
2 u, 0̄u. Similarly, Dkě4 represents the fam-

ily of singularities txk´1 + xy2 +
řn

i=2 z2
i u with weights t 1

k´1 , k´2
2k´2 , 1

2 n´1u, Milnor

number k´ 1 and generalized genus spectrum tt k+5
2 u, 0̄u. M

Remark B.2.2. There are four quasi-Brieskorn-Pham families with inner

modality equal to zero, namely, Ak for k ě 1, D4, E6 and E8. Three are Brieskorn-

Pham, namely, Ak for k ě 1, E6 and E8. M
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B.3. Inner Modality One

Table B.2. The Fourteen Weighted Homogeneous Singularities with Inner
Modality One [2020]

Symbol Residual Part Weights pg

E12 x3 + y7 t 1
3 , 1

7u t6, 1u
E13 x3 + xy5 t 1

3 , 2
15u t7, 1u

E14 x3 + y8 t 1
3 , 1

8u t7, 1u
Z11 x3y + y5 t 4

15 , 1
5u t6, 1u

Z12 x3y + xy4 t 3
11 , 2

11u t7, 1u
Z13 x3y + y6 t 5

18 , 1
6u t7, 1u

W12 x4 + y5 t 1
4 , 1

5u t6, 1u
W13 x4 + xy4 t 1

4 , 3
16u t7, 1u

Q10 x3 + y4 + yz2 t1
3 , 1

4 , 3
8u t1u

Q11 x3 + y2z + xz3 t 1
3 , 7

18 , 2
9u t1u

Q12 x3 + y5 + yz2 t1
3 , 1

5 , 2
5u t1u

S11 x4 + y2z + xz2 t 1
4 , 5

16 , 3
8u t1u

S12 x2y + y2z + xz3 t 4
13 , 5

13 , 3
13u t1u

U12 x3 + y3 + z4 t 1
3 , 1

3 , 1
4u t1u

Remark B.3.1. There are four quasi-Brieskorn-Pham families with inner

modality equal to one, namely, E12, E14, W12 and U12, all of which are Brieskorn-

Pham. M
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B.4. Inner Modality Two

Table B.3. The Twenty Weighted Homogeneous Singularities with Inner
Modality Two [494494], [493493], [449449]

Symbol Residual Part Weights pg Notes

E18 x3 + y10 t 1
3 , 1

10u t9, 1u
E19 x3 + xy7 t 1

3 , 2
21u t10, 1u

E20 x3 + y11 t 1
3 , 1

11u t10, 1u
J16 x3 + y9 + ax2y3 t 1

3 , 1
9u t9, 1u 4a3 + 27 ‰ 0

W15 x4 + y6 + ax2y3 t 1
4 , 1

6u t8, 1u a2 ´ 4 ‰ 0
W17 x4 + xy5 t 1

4 , 3
20u t9, 1u

W18 x4 + y7 t 1
4 , 1

7u t9, 1u
Z15 x3y + y7 + ax2y3 t 2

7 , 1
7u t9, 1u 4a3 + 27 ‰ 0

Z17 x3y + y8 t 7
24 , 1

8u t9, 1u
Z18 x3y + xy6 t 5

17 , 2
17u t10, 1u

Z19 x3y + y9 t 8
27 , 1

9u t10, 1u
Q14 x3 + yz2 + xy4 + ax2y2 t 1

3 , 1
6 , 5

12u t1u a2 ´ 4 ‰ 0
Q16 x3 + yz2 + y7 t 1

3 , 1
7 , 3

7u t1u
Q17 x3 + yz2 + xy5 t 1

3 , 2
15 , 13

30u t1u
Q18 x3 + yz2 + y8 t 1

3 , 1
8 , 7

16u t1u
S14 x2z + yz2 + y5 + ay3z t 3

10 , 1
5 , 2

5u t1u a2 ´ 4 ‰ 0
S16 x2z + yz2 + xy4 t 5

17 , 3
17 , 7

17u t1u
S17 x2z + yz2 + y6 t 7

24 , 1
6 , 5

12u t1u
U14 x3 + xz2 + xy3 + ay3z t 1

3 , 2
9 , 1

3u t1u a(a2 + 1) ‰ 0
U16 x3 + xz2 + y5 t 1

3 , 1
5 , 1

3u t1u

Remark B.4.1. There are six quasi-Brieskorn-Pham families with in-

ner modality equal to two, namely, E18, E20, J16, W15, W18 and U16. Three are

Brieskorn-Pham, namely, E18, E20 and W18. M
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Remark B.4.2. At least three different versions of U14 exist in the literature

[493493], [494494], [449449]. In [493493], U14 is stated as x3 + xz2 + rx2y3 + sxy3z + ty3z2 + y9

with the explicit assumption that ∆(r, s, t) ‰ 0. The corresponding weights are

t1
3 , 1

9 , 1
3u and Milnor number µ = 32. In [494494], U14 is stated as x3 + xz2 + xy3 +

ty3z with the explicit assumption t(t2 + 1) ‰ 0. The corresponding weights

are t1
3 , 2

9 , 1
3u and Milnor number µ = 14. In [449449], Suzuki admits that U14 is in-

correctly stated in [493493] and replaces it with x3 + xz2 + xy3 + sy3z + ty4z with

the explicit assumption that ∆(s, t) ‰ 0. However, the revised singularity is not

weighted homogeneous. As the first and third versions appear to be inconsis-

tent with the classification, we state the second version in Table B.3B.3. M
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B.5. Inner Modality Three

Table B.4. The Twenty-Four Weighted Homogeneous Singularities with
Inner Modality Three [494494], [493493], [449449]

Symbol Residual Part Weights pg Notes

E24 x3 + y13 t 1
3 , 1

13u t12, 2u
E25 x3 + xy9 t 1

3 , 2
27u t13, 2u

E26 x3 + y14 t 1
3 , 1

14u t13, 2u
J22 x3 + y12 + ax2y4 t 1

3 , 1
12u t12, 2u 4a3 + 27 ‰ 0

N16 x4y + xy4 + ax3y2 + bx2y3 t 1
5 , 1

5u t10, 1u ∆(a, b) ‰ 0
Z21 x3y + y10 + ax2y4 t 3

10 , 1
10u t12, 2u 4a3 + 27 ‰ 0

Z23 x3y + y11 t 10
33 , 1

11u t12, 2u
Z24 x3y + xy8 t 7

23 , 2
23u t13, 2u

Z25 x3y + y12 t 11
36 , 1

12u t13, 2u
N19 x4y + y6 t 5

24 , 1
6u t10, 1u

N1
20 x4y + xy5 t 4

19 , 3
19u t11, 1u

N2
20 x5 + y6 t 1

5 , 1
6u t10, 1u

N21 x5 + xy5 t 1
5 , 4

25u t11, 1u
Q20 x3 + yz2 + y9 + ax2y3 t 1

3 , 1
9 , 4

9u t2u 4a3 + 27 ‰ 0
Q22 x3 + yz2 + y10 t 1

3 , 1
10 , 9

20u t2u
Q23 x3 + yz2 + xy7 t 1

3 , 2
21 , 19

42u t2u
Q24 x3 + yz2 + y11 t 1

3 , 1
11 , 5

11u t2u
V15 x2y + y4 + z4 + ay2z2 + bx2z t 3

8 , 1
4 , 1

4u t1u ∆(a, b) ‰ 0
V›1

18 x2y + z4 + y5 t 2
5 , 1

5 , 1
4u t1u

V›2
18 x2y + y3z + xz3 t 7

19 , 5
19 , 4

19u t1u
V›1

19 x2y + z4 + y4z t 13
32 , 3

16 , 1
4u t1u

V›2
19 x2y + y3z + z5 t 11

30 , 4
15 , 1

5u t1u
V›3

19 x2y + xz3 + y4 t 3
8 , 1

4 , 5
24u t1u

V›20 x2y + y4 + z5 t 3
8 , 1

4 , 1
5u t1u
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Remark B.5.1. There are five quasi-Brieskorn-Pham families with inner

modality equal to three, namely, E24, E26, J22, N16 and N2
20. Four are Brieskorn-

Pham, namely, E24, E26, N16 and N2
20. M
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B.6. Inner Modality Four

Table B.5. The Twenty-Eight Weighted Homogeneous Singularities with
Inner Modality Four [494494], [493493], [449449]

Symbol Residual Part Weights pg Notes

E30 x3 + y16 t 1
3 , 1

16u t15, 2u
E31 x3 + xy11 t 1

3 , 2
33u t16, 2u

E32 x3 + y17 t 1
3 , 1

17u t16, 2u
J28 x3 + y15 + ax2y5 t 1

3 , 1
15u t15, 2u 4a3 + 27 ‰ 0

W24 x4 + y9 t 1
4 , 1

9u t12, 2u
W25 x4 + xy7 t 1

4 , 3
28u t13, 2u

X21 x4 + y8 + ax3y2 + bx2y4 t 1
4 , 1

8u t12, 2u ∆(a, b) ‰ 0
Z27 x3y + y13 + ax2y5 t 4

13 , 1
13u t15, 2u 4a3 + 27 ‰ 0

Z29 x3y + y14 t 13
42 , 1

14u t15, 2u
Z30 x3y + xy10 t 9

29 , 2
29u t16, 2u

Z31 x3y + y15 t 14
45 , 1

15u t16, 2u
N22 x4y + y7 + ax2y4 t 3

14 , 1
7u t12, 2u a2 ´ 4 ‰ 0

N1
24 x5 + y7 t 1

5 , 1
7u t12, 2u

N2
24 x4y + xy6 t 5

23 , 3
23u t13, 2u

N25 x4y + y8 t 7
32 , 1

8u t13, 2u
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Table B.6. The Twenty-Eight Weighted Homogeneous Singularities with
Inner Modality Four (Continued) [494494], [493493], [449449]

Symbol Residual Part Weights pg Notes

Q26 x3 + yz2 + y12 + ax2y4 t 1
3 , 1

12 , 11
24u t2u 4a3 + 27 ‰ 0

Q28 x3 + yz2 + y13 t 1
3 , 1

13 , 6
13u t2u

Q29 x3 + yz2 + xy9 t 1
3 , 2

27 , 25
54u t2u

Q30 x3 + yz2 + y14 t 1
3 , 1

14 , 13
28u t2u

S23 x2z + yz2 + y8 t 9
32 , 1

8 , 7
16u t2u

S24 x2z + yz2 + xy6 t 7
25 , 3

25 , 11
25u t2u

S›20 x2z + yz2 + y7 + ax3y + bx2y3 t 2
7 , 1

7 , 3
7u t2u ∆(a, b) ‰ 0

V›21 x2y + z4 + y6 + ay3z2 t 5
12 , 1

6 , 1
4u t2u a2 ´ 4 ‰ 0

V›23 x2y + z4 + y5z t 17
40 , 3

20 , 1
4u t2u

V›24 x2y + z4 + y7 t 3
7 , 1

7 , 1
4u t2u

V118 x3 + y4 + z4 + ay2z2 t 1
3 , 1

4 , 1
4u t1u a2 ´ 4 ‰ 0

V120 x3 + xy3 + yz3 t 1
3 , 2

9 , 7
27u t1u

V121 x3 + xz3 + y4 t 1
3 , 1

4 , 2
9u t1u
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Remark B.6.1. There are seven quasi-Brieskorn-Pham families with in-

ner modality equal to four, namely, E30, E32, J28, W24, X21, N1
24 and V118. Four are

Brieskorn-Pham, namely, E30, E32, W24 and N1
24. M
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B.7. Inner Modality Five

Table B.7. The Thirty-One Weighted Homogeneous Singularities with Inner
Modality Five [449449]

Symbol Residual Part Weights pg Notes

E36 x3 + y19 t 1
3 , 1

19u t18, 3u
E37 x3 + xy13 t 1

3 , 2
39u t19, 3u

E38 x3 + y20 t 1
3 , 1

20u t19, 3u
J34 x3 + y18 + ax2y6 t 1

3 , 1
18u t18, 3u 4a3 + 27 ‰ 0

W27 x4 + y10 + ax2y5 t 1
4 , 1

10u t14, 2u a2 ´ 4 ‰ 0
W29 x4 + xy8 t 1

4 , 3
32u t15, 2u

W30 x4 + y11 t 1
4 , 1

11u t15, 2u
Z33 x3y + y16 + ax2y6 t 5

16 , 1
16u t18, 3u 4a3 + 27 ‰ 0

Z35 x3y + y17 t 16
51 , 1

17u t18, 3u
Z36 x3y + xy12 t 11

35 , 2
35u t19, 3u

Z37 x3y + y18 t 17
54 , 1

18u t19, 3u
N26 x5 + xy6 + ax3y3 t 1

5 , 2
15u t14, 2u a2 ´ 4 ‰ 0

N1
28 x5 + y8 t 1

5 , 1
8u t14, 2u

Q2
32 x3 + yz2 + xy10 + ax2y5 t 1

3 , 1
15 , 7

15u t3u a2 ´ 4 ‰ 0
Q34 x3 + yz2 + y16 t 1

3 , 1
16 , 15

32u t3u
Q35 x3 + yz2 + xy11 t 1

3 , 2
33 , 31

66u t3u
Q36 x3 + yz2 + y17 t 1

3 , 1
17 , 8

17u t3u
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Table B.8. The Thirty-One Weighted Homogeneous Singularities with Inner
Modality Five (Continued) [449449]

Symbol Residual Part Weights pg Notes

S26 x2z + yz2 + y9 + ay5z t 5
18 , 1

9 , 4
9u t2u a2 ´ 4 ‰ 0

S28 x2z + yz2 + xy7 t 8
29 , 3

29 , 13
29u t2u

S29 x2z + yz2 + y10 t 11
40 , 1

10 , 9
20u t2u

U›20 x3 + xz2 + y6 + ax2y2 + by2z2 + cxy2z t 1
3 , 1

6 , 1
3u t2u ∆(a, b, c) ‰ 0

U24 x3 + xz2 + y7 t 1
3 , 1

7 , 1
3u t2u

V›1
23 x2z + yz3 + y6 t 13

36 , 1
6 , 5

18u t2u
V›1

24 x2z + yz3 + xy4 t 9
25 , 4

25 , 7
25u t2u

V122 x3 + yz3 + y5 + axy2z t 1
3 , 1

5 , 4
15u t2u ∆(a) ‰ 0

V1124 x3 + y4 + z5 t 1
3 , 1

4 , 1
5u t2u

V1224 x3 + y4z + yz3 t 1
3 , 2

11 , 3
11u t2u

O16 x3 + y3 + z3 + w3 + (ax + by + cz + dw)3 t 1
3 , 1

3 , 1
3 , 1

3u ´ ∆(a, b, c, d) ‰ 0
O20 x4 + y3 + z3 + xw2 + ay2z t 1

4 , 1
3 , 1

3 , 3
8u ´ 4a3 + 27 ‰ 0

O21 x2y + y2z + xw2 + z4 t 5
16 , 3

8 , 1
4 , 11

32u ´

O22 x3 + yz2 + zw2 + y4 t 1
3 , 1

4 , 3
8 , 5

16u ´
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Remark B.7.1. There are ten quasi-Brieskorn-Pham families with inner

modality equal to five, namely, E36, E38, J34, W27, W30, N1
28, U˚

20, U24, V124 and O16.

Five are Brieskorn-Pham, namely, E36, E38, W30, N1
28 and V124. M

737



B.8. Inner Modality Six

Table B.9. The Thirty-Seven Weighted Homogeneous Singularities with
Inner Modality Six [415415]

Symbol Residual Part Weights pg Notes

E42 x3 + y22 t 1
3 , 1

22u t21, 3u
E43 x3 + xy15 t 1

3 , 2
45u t22, 3u

E44 x3 + y23 t 1
3 , 1

23u t22, 3u
J40 x3 + ax2y7 + y21 t 1

3 , 1
21u t21, 3u 4a3 + 27 ‰ 0

Z39 x3y + ax2y7 + y19 t 6
19 , 1

19u t21, 3u 4a3 + 27 ‰ 0
Z41 x3y + y20 t 19

60 , 1
20u t21, 3u

Z42 x3y + xy14 t 13
41 , 2

41u t22, 3u
Z43 x3y + y21 t 20

63 , 1
21u t22, 3u

N25 x5y + ax4y2 + bx3y3 + cx2y4 + xy5 t 1
6 , 1

6u t15, 3u ∆(a, b, c) ‰ 0
N˚28 x4y + ax2y5 + bx3y3 + y9 t 2

9 , 1
9u t16, 2u ∆(a, b) ‰ 0

N29 x5y + y7 t 6
35 , 1

7u t15, 3u
N1

30 x5y + xy6 t 5
29 , 4

29u t16, 3u
N2

30 x6 + y7 t 1
6 , 1

7u t15, 3u
N1

31 x4y + y10 t 9
40 , 1

10u t16, 2u
N2

31 x6y + y6 t 5
36 , 1

6u t16, 3u
N3

31 x5 + xy7 t 1
5 , 4

35u t16, 2u
N1

32 x4y + xy8 t 7
31 , 3

31u t17, 2u
N2

32 x5 + y9 t 1
5 , 1

9u t16, 2u
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Table B.10. The Thirty-Seven Weighted Homogeneous Singularities with
Inner Modality Six (Continued) [415415]

Symbol Residual Part Weights pg Notes

Q38 x3 + yz2 + xy12 + ax2y6 t 1
3 , 1

18 , 17
36u t3u a ‰ 0

Q40 x3 + yz2 + y19 t 1
3 , 1

19 , 9
19u t3u

Q41 x3 + yz2 + xy13 t 1
3 , 2

39 , 37
78u t3u

U26 x3 + xz2 + xy5 + ay5z t 1
3 , 2

15 , 1
3u t2u a ‰ 0

U28 x3 + xz2 + y8 t 1
3 , 1

8 , 1
3u t2u

V˚25 x2y + y4 + z6 + ay2z3 t 3
8 , 1

4 , 1
6u t2u a ‰ 0

V˚1
27 x2y + y6z + z4 + ay4z2 + by2z3 t 7

16 , 1
8 , 1

4u t2u ∆(a, b) ‰ 0
V˚30 x2y + z4 + axy5 + by9 t 4

9 , 1
9 , 1

4u t2u ∆(a, b) ‰ 0
V˚2

27 x2y + y4 + xz4 t 3
8 , 1

4 , 5
32u t2u

V˚31 x2y + z4 + y7z t 25
56 , 3

28 , 1
4u t2u

V1126 x3 + y3z + xz4 + ax2y2 4a3 + 27 ‰ 0
V1226 x3 + y4 + yz4 t 1

3 , 1
4 , 3

16u t2u
V140 ax10z + bxz2 + cx19 + dy3 t 1

19 , 1
3 , 9

19u t3u ∆(a, b, c, d) ‰ 0
O2

22 x + xy + axy + yz + zw ∆(a) ‰ 0
O1

24 x2z + y3 + ay2z + z3 + w4 t 1
3 , 1

3 , 1
3 , 1

4u ´ 4a3 + 27 ‰ 0
O2

24 xw2 + yz2 + y2w + x2z
O3

24 ax5 + bxz2 + cx3w + dy3 + ey2z + f yz2 + gz3 t 1
5 , 1

3 , 1
3 , 2

5u ´ ∆(a, b, c, d, e, f , g) ‰ 0
O4

24 x3y + xw2 + y2w + z3 t 3
13 , 4

13 , 1
3 , 5

13u ´

O25 x3z + xw2 + y2w + z3 t 2
9 , 11

36 , 1
3 , 7

18u ´
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Remark B.8.1. The singularities V1126, O2
22 and O2

24 appear erroneous as writ-

ten in [415415], as V1126 does not appear to be weighted homogeneous, µ(O2
22) = 0

and µ(O2
24) = 16. M
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Appendix C

Fractional Part Summations

A man is like a fraction whose numerator is what he is and whose
denominator is what he thinks of himself. The larger the denominator, the
smaller the fraction. — Leo Tolstoy

Contents

C.1. Non-modular Residue SummationsC.1. Non-modular Residue Summations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

In this short appendix, I discuss a method of simplification of a certain frac-

tional part summation. Our primary aim is to simplify the fractional summa-

tion

t1/ω2u
ÿ

i=1

"

1´ iω2

ω1

*

=

td/q2u
ÿ

i=1

"

d´ iq2

q1

*

, (C.1)

where dωi = qi, where qi, d P N. The ultimate aim is to compute the sum in

equation (C.1C.1) for q1, q2, d P N, and give exact, non-summatory representations

for the delta invariant δ and branch number r of an arbitrary weighted homo-

geneous plane curve singularity with weights tq1, q2u and weighted degree d.

Unfortunately, the following identity [245245] is not immediately applicable: For
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m P Z, n P N and α P R,

n
ÿ

k=0

Z

α + mk
n

^

= 1
2(m´ 1)(n´ 1) + 1

2(gcd(m, n) + 1)

+ gcd(m, n)
Z

α

gcd(m, n)

^

, (C.2)

which reduces to a related summation identity involving the fractional part

function. However, there is an approach which may simplify the fractional

part summation to one involving substantially fewer terms. By the identity

x´ yt x
y u = x mod y, one has

td/q2u
ÿ

i=0

"

d´ iq2

q1

*

=
1
q1

(d mod q2)t
d
q2

u´

td/q2u
ÿ

i=1

(iq2 mod q1)

 , (C.3)

where only the summands are reduced modulo q1 but not the entire summation.

C.1. Non-modular Residue Summations

For a, b, n P N, define the non-modular residue summation

S(a, b, n) =
n
ÿ

i=1

(ai mod b). (C.4)

Clearly, if b divides a, then S(a, b, n) = 0. Define ā = a
gcd(a,b) and b̄ = a

gcd(a,b) .
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Proposition C.1. Given a, b P N and c = gcd(a, b), if b - a, then for n P N,

S(a, b, n) = c
(

c
Yn

b

]

+

Z

(n mod b)
b̄

^

+ 1
)(

b̄
2

)

+ c
b̄´1
ÿ

k=1

(kā mod b̄)
Z

(n mod b̄)´ k
b̄

^

. (C.5)

Proof . If a and b are coprime, then one can split the sum S(a, b, n) into

b ´ 1 non-trivial sums involving the disjoint multiplicative residue classes

[b], [2b], . . . , [(b ´ 1)a] modulo b, where each class has t n´1
b u, . . . , tn´b+1

b u ele-

ments, respectively. Summing over these classes yields

S(a, b, n) =
(

b
2

)
+

b´1
ÿ

k=1

(ka mod b)
Z

n´ k
b

^

. (C.6)

For a and b not necessarily coprime, the identity S(a, b, n) = cS(ā, b̄, n), where

c = gcd(a, b), implies

S(a, b, n) = c

(b̄
2

)
+

b̄´1
ÿ

k=1

(
kā mod b̄

) Zn´ k
b̄

^

 . (C.7)
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Combining the transformation identities**,

S(a, b, n) = ctn
b uS(ā, b̄, b) + cS(ā, b̄, n mod b) (C.8a)

= ctn
b u(t b

b̄ uS(ā, b̄, b̄) + S(ā, b̄, b mod b̄))

+ c(t (n mod b)
b̄ uS(ā, b̄, b̄) + S(ā, b̄, (n mod b)mod b̄) (C.8b)

= c2tn
b uS(ā, b̄, b̄) + ctn

b uS(ā, b̄, b mod b̄))

+ ct
(n mod b)

b̄ uS(ā, b̄, b̄) + cS(ā, b̄, (n mod b)mod b̄) (C.8c)

= (c2tn
b u + ct

(n mod b)
b̄ u)

(
b̄
2

)
+ cS(ā, b̄, n mod b̄), (C.8d)

where we have used the identities b ” 0 mod b̄, (n mod b)mod b̄ ” n mod b̄,

S(¨, ¨, 0) = 0 and S(a, b, b) = (b
2) if a and b are coprime. Applying equation (C.7C.7)

to equation (C.8dC.8d) yields the claim. �

* The author would like to thank the user anon on Math.SEMath.SE for providing these two trans-
formation identities.
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Appendix D

Quasi-Brieskorn-Pham Surface Singularities

There is geometry in the humming of the strings, there is music in the spac-
ing of the spheres. — Pythagorus of Samos

Contents

D.1. Geometric Genera by Lattice Point EnumerationD.1. Geometric Genera by Lattice Point Enumeration . . . . . . . . . . . . . . . . . . . . . 747
D.2. Quasi-Brieskorn-Pham Surface SingularitiesD.2. Quasi-Brieskorn-Pham Surface Singularities . . . . . . . . . . . . . . . . . . . . . . . . . 749
D.3. Quasi-Brieskorn-Pham Surface Singularities by Geometric GenusD.3. Quasi-Brieskorn-Pham Surface Singularities by Geometric Genus . . 750
D.4. Quasi-Brieskorn-Pham Surface Singularities by Milnor NumberD.4. Quasi-Brieskorn-Pham Surface Singularities by Milnor Number . . . . 776

Recall that a polynomial is Brieskorn-Pham if and only if it is of the form

f =
řn

i=0 zai
i , where ai ě 1, with weights t 1

a0
, . . . , 1

an
u. Similarly, a polynomial

is quasi-Brieskorn-Pham if and only if it is a non-degenerate weighted homoge-

neous polynomial with inverse (positive) integer weights. In either case, the

corresponding Milnor number is the product
śn

i=0(a0 ´ 1).

D.1. Geometric Genera by Lattice Point Enumeration

Let a, b and c be positive integers with no common factor, i.e., gcd(a, b, c) =

1. Define a1 = gcd(b, c), b1 = gcd(c, a), c1 = gcd(a, b), d = a1b1c1, l = a + b + c

and l1 = a1 + b1 + c1. In Volume 2 of this work, we prove that the number of

positive lattice points in the (integral) t-dilate of the lattice tetrahedron W =
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convt0, ae1, be2, ce3u is the degree 3 polynomial**,

LW ,+(t) = abc
6 t3

´
(a+b)c

4 t2 +
(

c
4 +

bc
12a +

c(a+c1)(a´c1)
12ab

)
t

´

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

c
(

t´ i
a ´

j
b

))
, (D.1)

which is precisely the geometric genus pg( ft) of the t-dilate of the quasi-

Brieskorn-Pham surface singularity f with weights t1
a , 1

b , 1
c u, which includes,

in particular, the Brieskorn-Pham singularity f = xa + yb + zc. We compute the

fractional part summation

at
ÿ

i=1

tb(t´i/a)u
ÿ

j=1

!

c
(

t´ i
a ´

j
b

))
= ab´d

4 t2

+
(

a1s( bc
d , aa1

d ) + b1s( ac
d , bb1

d ) + c1s( ab
d , cc1

d ) + γ
)

t,

where γ = 1
4(a1 + b1 + c1 ´ a´ b)´ a2b2+c2(c1)2+d2

12abc and

s(p, q) = 1
4q

q´1
ÿ

k=1

cot(πk
q ) cot(πkp

q ) (D.2)

denotes the standard Dedekind sum on N2. By generalizing the previous com-

putation to arbitrary triples of positive integers, with no constraint on their

greatest common divisor, one can show the following, q.v., Proposition 6.256.25.

* Here, t¨u is used to denote the fractional part function and the delimiters of a set. The con-
text should clearly differentiate the two.
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Proposition D.1. Given a, b, c, t P N, the geometric genus of the t-dilate of

the quasi-Brieskorn-Pham polynomial f with inverse weights t1
a , 1

b , 1
c u is the degree 3

polynomial

pg( ft) =
abc
6 t3

´ 1
4(ab + bc + ca´ d

τ )t
2

+
(

1
4(l ´ l1) + 1

12(
ab
c + bc

a + ca
b + d2

abcτ2 )´S(a, b, c; d
τ )
)

t, (D.3)

where τ = gcd(a, b, c), l = a + b + c, a1 = gcd(b, c), b1 = gcd(a, c), c1 =

gcd(a, b), l1 = a1 + b1 + c1, d = a1b1c1 and

S(a, b, c; d
τ ) = a1s( bcτ

d , aa1τ
d ) + b1s( acτ

d , bb1τ
d ) + c1s( abτ

d , cc1τ
d ). (D.4)

D.2. Quasi-Brieskorn-Pham Surface Singularities

Let ta, b, cu denote the quasi-Brieskorn-Pham surface singularity with

weights t1
a , 1

b , 1
c u, which include the Brieskorn-Pham singularities of the form

f = xa + yb + zc. Without loss of generality, we may assume 1 ď a ď b ď c.

By an exhaustive numerical search we determine the exponents ta, b, cu sat-

isfying a ď b ď c ď 150, with geometric genera pg ď 25. The inverse weights

have been grouped into equivalence classes by their geometric genus pg and

each have a size according to the sequence**:

t8, 16, 17, 22, 27, 22, 28, 22, 28, 34, 39, 22, 35, 30,

33, 33, 38, 28, 38, 27, 43, 46, 33, 27, 55, 33 . . . u,

*The notation ab is to be interpreted as the integer a repeated b times.
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D.3. Quasi-Brieskorn-Pham Surface Singularities by Geometric Genus

Those triples in red indicate an integral homology 3-sphere for the corre-

sponding Brieskorn-Pham 3-manifold.

Table D.1. Quasi-Brieskorn-Pham Surface Singularities with pg = 0

0 (8) t1, l, ku t2, 2, cu t2, 3, 3u t2, 3, 4u t2, 3, 5u
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Table D.2. Quasi-Brieskorn-Pham Surface Singularities with pg = 1

1 (16) t2, 3, 6u t2, 3, 7u t2, 3, 8u t2, 3, 9u t2, 3, 10u
t2, 3, 11u t2, 4, 4u t2, 4, 5u t2, 4, 6u t2, 4, 7u
t2, 5, 5u t2, 5, 6u t3, 3, 3u t3, 3, 4u t3, 3, 5u
t3, 4, 4u
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Table D.3. Quasi-Brieskorn-Pham Surface Singularities with pg = 2

2 (17) t2, 3, 12u t2, 3, 13u t2, 3, 14u t2, 3, 15u t2, 3, 16u
t2, 3, 17u t2, 4, 8u t2, 4, 9u t2, 4, 10u t2, 4, 11u
t2, 5, 7u t2, 5, 8u t2, 5, 9u t3, 3, 6u t3, 3, 7u
t3, 3, 8u t3, 4, 5u
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Table D.4. Quasi-Brieskorn-Pham Surface Singularities with pg = 3

3 (22) t2, 3, 18u t2, 3, 19u t2, 3, 20u t2, 3, 21u t2, 3, 22u
t2, 3, 23u t2, 4, 12u t2, 4, 13u t2, 4, 14u t2, 4, 15u
t2, 6, 6u t2, 6, 7u t2, 6, 8u t2, 7, 7u t2, 7, 8u
t3, 3, 9u t3, 3, 10u t3, 3, 11u t3, 4, 6u t3, 4, 7u
t3, 5, 5u t3, 5, 6u
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Table D.5. Quasi-Brieskorn-Pham Surface Singularities with pg = 4

4 (27) t2, 3, 24u t2, 3, 25u t2, 3, 26u t2, 3, 27u t2, 3, 28u
t2, 3, 29u t2, 4, 16u t2, 4, 17u t2, 4, 18u t2, 4, 19u
t2, 5, 10u t2, 5, 11u t2, 5, 12u t2, 5, 13u t2, 6, 9u
t2, 6, 10u t2, 6, 11u t2, 7, 9u t3, 3, 12u t3, 3, 13u
t3, 3, 14u t3, 4, 8u t3, 4, 9u t3, 5, 7u t4, 4, 4u
t4, 4, 5u t4, 5, 5u
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Table D.6. Quasi-Brieskorn-Pham Surface Singularities with pg = 5

5 (22) t2, 3, 30u t2, 3, 31u t2, 3, 32u t2, 3, 33u t2, 3, 34u
t2, 3, 35u t2, 4, 20u t2, 4, 21u t2, 4, 22u t2, 4, 23u
t2, 5, 14u t2, 5, 15u t2, 5, 16u t2, 7, 10u t2, 7, 11u
t3, 3, 15u t3, 3, 16u t3, 3, 17u t3, 4, 10u t3, 4, 11u
t4, 4, 6u t4, 4, 7u
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Table D.7. Quasi-Brieskorn-Pham Surface Singularities with pg = 6

6 (28) t2, 3, 36u t2, 3, 37u t2, 3, 38u t2, 3, 39u t2, 3, 40u
t2, 3, 41u t2, 4, 24u t2, 4, 25u t2, 4, 26u t2, 4, 27u
t2, 5, 17u t2, 5, 18u t2, 5, 19u t2, 6, 12u t2, 6, 13u
t2, 6, 14u t2, 7, 12u t2, 7, 13u t2, 8, 8u t2, 8, 9u
t2, 8, 10u t2, 9, 9u t2, 9, 10u t3, 3, 18u t3, 3, 19u
t3, 3, 20u t3, 5, 8u t4, 5, 6u
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Table D.8. Quasi-Brieskorn-Pham Surface Singularities with pg = 7

7 (22) t2, 3, 42u t2, 3, 43u t2, 3, 44u t2, 3, 45u t2, 3, 46u
t2, 3, 47u t2, 4, 28u t2, 4, 29u t2, 4, 30u t2, 4, 31u
t2, 6, 15u t2, 6, 16u t2, 6, 17u t2, 8, 11u t3, 3, 21u
t3, 3, 22u t3, 3, 23u t3, 5, 9u t3, 5, 10u t3, 6, 6u
t3, 6, 7u t3, 7, 7u
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Table D.9. Quasi-Brieskorn-Pham Surface Singularities with pg = 8

8 (28) t2, 3, 48u t2, 3, 49u t2, 3, 50u t2, 3, 51u t2, 3, 52u
t2, 3, 53u t2, 4, 32u t2, 4, 33u t2, 4, 34u t2, 4, 35u
t2, 5, 20u t2, 5, 21u t2, 5, 22u t2, 5, 23u t2, 8, 12u
t2, 8, 13u t2, 9, 11u t3, 3, 24u t3, 3, 25u t3, 3, 26u
t3, 4, 12u t3, 4, 13u t3, 4, 14u t3, 5, 11u t3, 6, 8u
t4, 4, 8u t4, 4, 9u t4, 5, 7u

758



Table D.10. Quasi-Brieskorn-Pham Surface Singularities with pg = 9

9 (34) t2, 3, 54u t2, 3, 55u t2, 3, 56u t2, 3, 57u t2, 3, 58u
t2, 3, 59u t2, 4, 36u t2, 4, 37u t2, 4, 38u t2, 4, 39u
t2, 5, 24u t2, 5, 25u t2, 5, 26u t2, 6, 18u t2, 6, 19u
t2, 6, 20u t2, 7, 14u t2, 7, 15u t2, 7, 16u t2, 8, 14u
t2, 8, 15u t2, 9, 12u t3, 3, 27u t3, 3, 28u t3, 3, 29u
t3, 4, 15u t3, 4, 16u t3, 5, 12u t3, 6, 9u t3, 7, 8u
t4, 4, 10u t4, 4, 11u t4, 5, 8u t4, 6, 6u
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Table D.11. Quasi-Brieskorn-Pham Surface Singularities with pg = 10

10 (39) t2, 3, 60u t2, 3, 61u t2, 3, 62u t2, 3, 63u t2, 3, 64u
t2, 3, 65u t2, 4, 40u t2, 4, 41u t2, 4, 42u t2, 4, 43u
t2, 5, 27u t2, 5, 28u t2, 5, 29u t2, 6, 21u t2, 6, 22u
t2, 6, 23u t2, 7, 17u t2, 7, 18u t2, 9, 13u t2, 9, 14u
t2, 10, 10u t2, 10, 11u t2, 10, 12u t2, 11, 11u t2, 11, 12u
t3, 3, 30u t3, 3, 31u t3, 3, 32u t3, 4, 17u t3, 5, 13u
t3, 5, 14u t3, 6, 10u t3, 6, 11u t3, 7, 9u t4, 5, 9u
t4, 6, 7u t5, 5, 5u t5, 5, 6u t5, 6, 6u
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Table D.12. Quasi-Brieskorn-Pham Surface Singularities with pg = 11

11 (22) t2, 3, 66u t2, 3, 67u t2, 3, 68u t2, 3, 69u t2, 3, 70u
t2, 3, 71u t2, 4, 44u t2, 4, 45u t2, 4, 46u t2, 4, 47u
t2, 7, 19u t2, 9, 15u t2, 10, 13u t3, 3, 33u t3, 3, 34u
t3, 3, 35u t3, 4, 18u t3, 4, 19u t3, 7, 10u t3, 8, 8u
t3, 8, 9u t5, 5, 7u
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Table D.13. Quasi-Brieskorn-Pham Surface Singularities with pg = 12

12 (35) t2, 3, 72u t2, 3, 73u t2, 3, 74u t2, 3, 75u t2, 3, 76u
t2, 3, 77u t2, 4, 48u t2, 4, 49u t2, 4, 50u t2, 4, 51u
t2, 5, 30u t2, 5, 31u t2, 5, 32u t2, 5, 33u t2, 6, 24u
t2, 6, 25u t2, 6, 26u t2, 7, 20u t2, 7, 21u t2, 7, 22u
t2, 8, 16u t2, 8, 17u t2, 8, 18u t2, 9, 16u t2, 9, 17u
t2, 10, 14u t2, 11, 13u t3, 3, 36u t3, 3, 37u t3, 3, 38u
t3, 4, 20u t3, 4, 21u t4, 4, 12u t4, 4, 13u t4, 6, 8u
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Table D.14. Quasi-Brieskorn-Pham Surface Singularities with pg = 13

13 (30) t2, 3, 78u t2, 3, 79u t2, 3, 80u t2, 3, 81u t2, 3, 82u
t2, 3, 83u t2, 4, 52u t2, 4, 53u t2, 4, 54u t2, 4, 55u
t2, 5, 34u t2, 5, 35u t2, 5, 36u t2, 6, 27u t2, 6, 28u
t2, 6, 29u t2, 7, 23u t2, 8, 19u t2, 11, 14u t3, 3, 39u
t3, 3, 40u t3, 3, 41u t3, 4, 22u t3, 4, 23u t4, 4, 14u
t4, 4, 15u t4, 5, 10u t4, 7, 7u t4, 7, 8u t5, 5, 8u
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Table D.15. Quasi-Brieskorn-Pham Surface Singularities with pg = 14

14 (33) t2, 3, 84u t2, 3, 85u t2, 3, 86u t2, 3, 87u t2, 3, 88u
t2, 3, 89u t2, 4, 56u t2, 4, 57u t2, 4, 58u t2, 4, 59u
t2, 5, 37u t2, 5, 38u t2, 5, 39u t2, 7, 24u t2, 7, 25u
t2, 8, 20u t2, 8, 21u t2, 10, 15u t2, 10, 16u t3, 3, 42u
t3, 3, 43u t3, 3, 44u t3, 5, 15u t3, 5, 16u t3, 5, 17u
t3, 6, 12u t3, 6, 13u t3, 7, 11u t3, 8, 10u t4, 5, 11u
t4, 6, 9u t5, 5, 9u t5, 6, 7u

764



Table D.16. Quasi-Brieskorn-Pham Surface Singularities with pg = 15

15 (33) t2, 3, 90u t2, 3, 91u t2, 3, 92u t2, 3, 93u t2, 3, 94u
t2, 3, 95u t2, 4, 60u t2, 4, 61u t2, 4, 62u t2, 4, 63u
t2, 6, 30u t2, 6, 31u t2, 6, 32u t2, 7, 26u t2, 7, 27u
t2, 8, 22u t2, 8, 23u t2, 10, 17u t2, 11, 15u t2, 12, 12u
t2, 12, 13u t2, 12, 14u t2, 13, 13u t2, 13, 14u t3, 3, 45u
t3, 3, 46u t3, 3, 47u t3, 5, 18u t3, 6, 14u t3, 7, 12u
t3, 8, 11u t4, 5, 12u t4, 6, 10u
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Table D.17. Quasi-Brieskorn-Pham Surface Singularities with pg = 16

16 (38) t2, 3, 96u t2, 3, 97u t2, 3, 98u t2, 3, 99u t2, 3, 100u
t2, 3, 101u t2, 4, 64u t2, 4, 65u t2, 4, 66u t2, 4, 67u
t2, 5, 40u t2, 5, 41u t2, 5, 42u t2, 5, 43u t2, 6, 33u
t2, 6, 34u t2, 6, 35u t2, 9, 18u t2, 9, 19u t2, 9, 20u
t2, 10, 18u t2, 10, 19u t2, 11, 16u t2, 11, 17u t3, 3, 48u
t3, 3, 49u t3, 3, 50u t3, 4, 24u t3, 4, 25u t3, 4, 26u
t3, 5, 19u t3, 6, 15u t3, 7, 13u t4, 4, 16u t4, 4, 17u
t4, 5, 13u t4, 6, 11u t4, 7, 9u
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Table D.18. Quasi-Brieskorn-Pham Surface Singularities with pg = 17

17 (28) t2, 3, 102u t2, 3, 103u t2, 3, 104u t2, 3, 105u t2, 3, 106u
t2, 3, 107u t2, 4, 68u t2, 4, 69u t2, 4, 70u t2, 4, 71u
t2, 5, 44u t2, 5, 45u t2, 5, 46u t2, 9, 21u t2, 12, 15u
t3, 3, 51u t3, 3, 52u t3, 3, 53u t3, 4, 27u t3, 4, 28u
t3, 5, 20u t3, 5, 21u t3, 6, 16u t3, 6, 17u t4, 4, 18u
t4, 4, 19u t5, 6, 8u t5, 7, 7u
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Table D.19. Quasi-Brieskorn-Pham Surface Singularities with pg = 18

18 (38) t2, 3, 108u t2, 3, 109u t2, 3, 110u t2, 3, 111u t2, 3, 112u
t2, 3, 113u t2, 4, 72u t2, 4, 73u t2, 4, 74u t2, 4, 75u
t2, 5, 47u t2, 5, 48u t2, 5, 49u t2, 6, 36u t2, 6, 37u
t2, 6, 38u t2, 7, 28u t2, 7, 29u t2, 7, 30u t2, 8, 24u
t2, 8, 25u t2, 8, 26u t2, 9, 22u t2, 9, 23u t2, 11, 18u
t2, 12, 16u t2, 13, 15u t3, 3, 54u t3, 3, 55u t3, 3, 56u
t3, 4, 29u t3, 5, 22u t3, 7, 14u t3, 7, 15u t3, 9, 9u
t3, 9, 10u t3, 10, 10u t4, 5, 14u
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Table D.20. Quasi-Brieskorn-Pham Surface Singularities with pg = 19

19 (27) t2, 3, 114u t2, 3, 115u t2, 3, 116u t2, 3, 117u t2, 3, 118u
t2, 3, 119u t2, 4, 76u t2, 4, 77u t2, 4, 78u t2, 4, 79u
t2, 6, 39u t2, 6, 40u t2, 6, 41u t2, 7, 31u t2, 7, 32u
t2, 8, 27u t2, 11, 19u t2, 12, 17u t2, 13, 16u t3, 3, 57u
t3, 3, 58u t3, 3, 59u t3, 4, 30u t3, 4, 31u t3, 8, 12u
t3, 9, 11u t5, 6, 9u
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Table D.21. Quasi-Brieskorn-Pham Surface Singularities with pg = 20

20 (43) t2, 3, 120u t2, 3, 121u t2, 3, 122u t2, 3, 123u t2, 3, 124u
t2, 3, 125u t2, 4, 80u t2, 4, 81u t2, 4, 82u t2, 4, 83u
t2, 5, 50u t2, 5, 51u t2, 5, 52u t2, 5, 53u t2, 7, 33u
t2, 8, 28u t2, 8, 29u t2, 9, 24u t2, 9, 25u t2, 10, 20u
t2, 10, 21u t2, 10, 22u t2, 11, 20u t2, 11, 21u t2, 13, 17u
t3, 3, 60u t3, 3, 61u t3, 3, 62u t3, 4, 32u t3, 4, 33u
t3, 5, 23u t3, 8, 13u t4, 4, 20u t4, 4, 21u t4, 5, 15u
t4, 5, 16u t4, 7, 10u t5, 5, 10u t5, 5, 11u t5, 7, 8u
t6, 6, 6u t6, 6, 7u t6, 7, 7u
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Table D.22. Quasi-Brieskorn-Pham Surface Singularities with pg = 21

21 (46) t2, 3, 126u t2, 3, 127u t2, 3, 128u t2, 3, 129u t2, 3, 130u
t2, 3, 131u t2, 4, 84u t2, 4, 85u t2, 4, 86u t2, 4, 87u
t2, 5, 54u t2, 5, 55u t2, 5, 56u t2, 6, 42u t2, 6, 43u
t2, 6, 44u t2, 7, 34u t2, 7, 35u t2, 7, 36u t2, 8, 30u
t2, 8, 31u t2, 10, 23u t2, 12, 18u t2, 12, 19u t2, 14, 14u
t2, 14, 15u t2, 14, 16u t2, 15, 15u t2, 15, 16u t3, 3, 63u
t3, 3, 64u t3, 3, 65u t3, 4, 34u t3, 4, 35u t3, 5, 24u
t3, 5, 25u t3, 6, 18u t3, 6, 19u t3, 7, 16u t3, 8, 14u
t3, 9, 12u t3, 10, 11u t4, 4, 22u t4, 4, 23u t4, 7, 11u
t5, 5, 12u
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Table D.23. Quasi-Brieskorn-Pham Surface Singularities with pg = 22

22 (33) t2, 3, 132u t2, 3, 133u t2, 3, 134u t2, 3, 135u t2, 3, 136u
t2, 3, 137u t2, 4, 88u t2, 4, 89u t2, 4, 90u t2, 4, 91u
t2, 5, 57u t2, 5, 58u t2, 5, 59u t2, 6, 45u t2, 6, 46u
t2, 6, 47u t2, 7, 37u t2, 9, 26u t2, 9, 27u t2, 9, 28u
t2, 10, 24u t2, 13, 18u t3, 3, 66u t3, 3, 67u t3, 3, 68u
t3, 5, 26u t3, 6, 20u t3, 7, 17u t3, 9, 13u t4, 5, 17u
t4, 8, 8u t4, 8, 9u t4, 9, 9u
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Table D.24. Quasi-Brieskorn-Pham Surface Singularities with pg = 23

23 (27) t2, 3, 138u t2, 3, 139u t2, 3, 140u t2, 3, 141u t2, 3, 142u
t2, 3, 143u t2, 4, 92u t2, 4, 93u t2, 4, 94u t2, 4, 95u
t2, 7, 38u t2, 7, 39u t2, 12, 20u t2, 14, 17u t3, 3, 69u
t3, 3, 70u t3, 3, 71u t3, 5, 27u t3, 6, 21u t3, 7, 18u
t3, 10, 12u t4, 5, 18u t4, 6, 12u t4, 6, 13u t5, 5, 13u
t5, 6, 10u t6, 6, 8u
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Table D.25. Quasi-Brieskorn-Pham Surface Singularities with pg = 24

24 (55) t2, 3, 144u t2, 3, 145u t2, 3, 146u t2, 3, 147u t2, 3, 148u
t2, 3, 149u t2, 4, 96u t2, 4, 97u t2, 4, 98u t2, 4, 99u
t2, 5, 60u t2, 5, 61u t2, 5, 62u t2, 5, 63u t2, 6, 48u
t2, 6, 49u t2, 6, 50u t2, 7, 40u t2, 7, 41u t2, 8, 32u
t2, 8, 33u t2, 8, 34u t2, 9, 29u t2, 10, 25u t2, 10, 26u
t2, 12, 21u t2, 13, 19u t2, 13, 20u t2, 14, 18u t2, 15, 17u
t3, 3, 72u t3, 3, 73u t3, 3, 74u t3, 4, 36u t3, 4, 37u
t3, 4, 38u t3, 5, 28u t3, 5, 29u t3, 6, 22u t3, 6, 23u
t3, 7, 19u t3, 8, 15u t3, 8, 16u t3, 11, 11u t3, 11, 12u
t4, 4, 24u t4, 4, 25u t4, 5, 19u t4, 6, 14u t4, 7, 12u
t4, 8, 10u t5, 5, 14u t5, 6, 11u t5, 7, 9u
t5, 8, 8u
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Table D.26. Quasi-Brieskorn-Pham Surface Singularities with pg = 25

25 (33) t2, 3, 150u t2, 3, 151u t2, 3, 152u t2, 3, 153u t2, 3, 154u
t2, 3, 155u t2, 4, 100u t2, 4, 101u t2, 4, 102u t2, 4, 103u
t2, 5, 64u t2, 5, 65u t2, 5, 66u t2, 6, 51u t2, 6, 52u
t2, 6, 53u t2, 8, 35u t2, 9, 30u t2, 10, 27u t2, 11, 22u
t2, 11, 23u t2, 11, 24u t2, 12, 22u t2, 12, 23u t3, 3, 75u
t3, 3, 76u t3, 3, 77u t3, 4, 39u t3, 4, 40u t3, 7, 20u
t3, 9, 14u t4, 4, 26u t4, 4, 27u
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D.4. Quasi-Brieskorn-Pham Surface Singularities by Milnor Number

Proposition D.2. The number of equivalence classes of quasi-Brieskorn-Pham

surface singularities with Milnor number µ is the backward difference

∇
µ
ÿ

i=1

tµ/iu
ÿ

j=i

tµ/(ij)u
ÿ

k=j

1. (D.5)

Proof . The number of factorizations of n into a product of three positive

integers is the backward difference

∇
n
ÿ

i=1

tn/iu
ÿ

j=i

tn/(ij)u
ÿ

k=j

1, (D.6)

which can be proved by properly counting the number of positive integral so-

lutions of the equation n = ijk, which is equal to that of the inequality n ď ijk

minus that of n´ 1 ď ijk. The difference above now follows. �

In this section, we compile those quasi-Brieskorn-Pham surface singularities

by Milnor number less than or equal to 300.
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Table D.27. Quasi-Brieskorn-Pham Surface Singularities with µ = 0

0 (8) t1, l, ku
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Table D.28. Quasi-Brieskorn-Pham Surface Singularities with µ = 1

1 (1) t2, 2, 2u
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Table D.29. Quasi-Brieskorn-Pham Surface Singularities with µ = p Prime

Prime p (1) t2, 2, p + 1u
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Table D.30. Quasi-Brieskorn-Pham Surface Singularities with µ = 4

4 (2) t2, 2, 5u t2, 3, 3u
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Table D.31. Quasi-Brieskorn-Pham Surface Singularities with µ = 6

6 (2) t2, 2, 7u t2, 3, 4u
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Table D.32. Quasi-Brieskorn-Pham Surface Singularities with µ = 8

8 (3) t2, 2, 9u t2, 3, 5u t3, 3, 3u
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Table D.33. Quasi-Brieskorn-Pham Surface Singularities with µ = 9

9 (2) t2, 2, 10u t2, 4, 4u
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Table D.34. Quasi-Brieskorn-Pham Surface Singularities with µ = 10

10 (2) t2, 2, 11u t2, 3, 6u
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Table D.35. Quasi-Brieskorn-Pham Surface Singularities with µ = 12

12 (4) t2, 2, 13u t2, 3, 7u t2, 4, 5u t3, 3, 4u
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Table D.36. Quasi-Brieskorn-Pham Surface Singularities with µ = 14

14 (2) t2, 2, 15u t2, 3, 8u
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Table D.37. Quasi-Brieskorn-Pham Surface Singularities with µ = 15

15 (2) t2, 2, 16u t2, 4, 6u
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Table D.38. Quasi-Brieskorn-Pham Surface Singularities with µ = 16

16 (4) t2, 2, 17u t2, 3, 9u t2, 5, 5u t3, 3, 5u
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Table D.39. Quasi-Brieskorn-Pham Surface Singularities with µ = 18

18 (4) t2, 2, 19u t2, 3, 10u t2, 4, 7u t3, 4, 4u

789



Table D.40. Quasi-Brieskorn-Pham Surface Singularities with µ = 20

20 (4) t2, 2, 21u t2, 3, 11u t2, 5, 6u t3, 3, 6u
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Table D.41. Quasi-Brieskorn-Pham Surface Singularities with µ = 21

21 (2) t2, 2, 22u t2, 4, 8u
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Table D.42. Quasi-Brieskorn-Pham Surface Singularities with µ = 22

22 (2) t2, 2, 23u t2, 3, 12u
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Table D.43. Quasi-Brieskorn-Pham Surface Singularities with µ = 24

24 (6) t2, 2, 25u t2, 3, 13u t2, 4, 9u t2, 5, 7u t3, 3, 7u
t3, 4, 5u
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Table D.44. Quasi-Brieskorn-Pham Surface Singularities with µ = 25

25 (2) t2, 2, 26u t2, 6, 6u
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Table D.45. Quasi-Brieskorn-Pham Surface Singularities with µ = 26

26 (2) t2, 2, 27u t2, 3, 14u
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Table D.46. Quasi-Brieskorn-Pham Surface Singularities with µ = 27

27 (3) t2, 2, 28u t2, 4, 10u t4, 4, 4u
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Table D.47. Quasi-Brieskorn-Pham Surface Singularities with µ = 28

28 (4) t2, 2, 29u t2, 3, 15u t2, 5, 8u t3, 3, 8u
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Table D.48. Quasi-Brieskorn-Pham Surface Singularities with µ = 30

30 (5) t2, 2, 31u t2, 3, 16u t2, 4, 11u t2, 6, 7u t3, 4, 6u
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Table D.49. Quasi-Brieskorn-Pham Surface Singularities with µ = 32

32 (5) t2, 2, 33u t2, 3, 17u t2, 5, 9u t3, 3, 9u t3, 5, 5u
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Table D.50. Quasi-Brieskorn-Pham Surface Singularities with µ = 33

33 (2) t2, 2, 34u t2, 4, 12u
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Table D.51. Quasi-Brieskorn-Pham Surface Singularities with µ = 34

34 (2) t2, 2, 35u t2, 3, 18u
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Table D.52. Quasi-Brieskorn-Pham Surface Singularities with µ = 35

35 (2) t2, 2, 36u t2, 6, 8u

802



Table D.53. Quasi-Brieskorn-Pham Surface Singularities with µ = 36

36 (8) t2, 2, 37u t2, 3, 19u t2, 4, 13u t2, 5, 10u t2, 7, 7u
t3, 3, 10u t3, 4, 7u t4, 4, 5u

803



Table D.54. Quasi-Brieskorn-Pham Surface Singularities with µ = 38

38 (2) t2, 2, 39u t2, 3, 20u
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Table D.55. Quasi-Brieskorn-Pham Surface Singularities with µ = 39

39 (2) t2, 2, 40u t2, 4, 14u
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Table D.56. Quasi-Brieskorn-Pham Surface Singularities with µ = 40

40 (6) t2, 2, 41u t2, 3, 21u t2, 5, 11u t2, 6, 9u t3, 3, 11u
t3, 5, 6u

806



Table D.57. Quasi-Brieskorn-Pham Surface Singularities with µ = 42

42 (5) t2, 2, 43u t2, 3, 22u t2, 4, 15u t2, 7, 8u t3, 4, 8u
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Table D.58. Quasi-Brieskorn-Pham Surface Singularities with µ = 44

44 (4) t2, 2, 45u t2, 3, 23u t2, 5, 12u t3, 3, 12u
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Table D.59. Quasi-Brieskorn-Pham Surface Singularities with µ = 45

45 (4) t2, 2, 46u t2, 4, 16u t2, 6, 10u t4, 4, 6u

809



Table D.60. Quasi-Brieskorn-Pham Surface Singularities with µ = 46

46 (2) t2, 2, 47u t2, 3, 24u

810



Table D.61. Quasi-Brieskorn-Pham Surface Singularities with µ = 48

48 (9) t2, 2, 49u t2, 3, 25u t2, 4, 17u t2, 5, 13u t2, 7, 9u
t3, 3, 13u t3, 4, 9u t3, 5, 7u t4, 5, 5u
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Table D.62. Quasi-Brieskorn-Pham Surface Singularities with µ = 49

49 (2) t2, 2, 50u t2, 8, 8u
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Table D.63. Quasi-Brieskorn-Pham Surface Singularities with µ = 50

50 (4) t2, 2, 51u t2, 3, 26u t2, 6, 11u t3, 6, 6u

813



Table D.64. Quasi-Brieskorn-Pham Surface Singularities with µ = 51

51 (2) t2, 2, 52u t2, 4, 18u

814



Table D.65. Quasi-Brieskorn-Pham Surface Singularities with µ = 52

52 (4) t2, 2, 53u t2, 3, 27u t2, 5, 14u t3, 3, 14u

815



Table D.66. Quasi-Brieskorn-Pham Surface Singularities with µ = 54

54 (6) t2, 2, 55u t2, 3, 28u t2, 4, 19u t2, 7, 10u t3, 4, 10u
t4, 4, 7u

816



Table D.67. Quasi-Brieskorn-Pham Surface Singularities with µ = 55

55 (2) t2, 2, 56u t2, 6, 12u

817



Table D.68. Quasi-Brieskorn-Pham Surface Singularities with µ = 56

56 (6) t2, 2, 57u t2, 3, 29u t2, 5, 15u t2, 8, 9u t3, 3, 15u
t3, 5, 8u

818



Table D.69. Quasi-Brieskorn-Pham Surface Singularities with µ = 57

57 (2) t2, 2, 58u t2, 4, 20u

819



Table D.70. Quasi-Brieskorn-Pham Surface Singularities with µ = 58

58 (2) t2, 2, 59u t2, 3, 30u

820



Table D.71. Quasi-Brieskorn-Pham Surface Singularities with µ = 60

60 (10) t2, 2, 61u t2, 3, 31u t2, 4, 21u t2, 5, 16u t2, 6, 13u
t2, 7, 11u t3, 3, 16u t3, 4, 11u t3, 6, 7u t4, 5, 6u

821



Table D.72. Quasi-Brieskorn-Pham Surface Singularities with µ = 62

62 (2) t2, 2, 63u t2, 3, 32u

822



Table D.73. Quasi-Brieskorn-Pham Surface Singularities with µ = 63

63 (4) t2, 2, 64u t2, 4, 22u t2, 8, 10u t4, 4, 8u

823



Table D.74. Quasi-Brieskorn-Pham Surface Singularities with µ = 64

64 (7) t2, 2, 65u t2, 3, 33u t2, 5, 17u t2, 9, 9u t3, 3, 17u
t3, 5, 9u t5, 5, 5u

824



Table D.75. Quasi-Brieskorn-Pham Surface Singularities with µ = 65

65 (2) t2, 2, 66u t2, 6, 14u

825



Table D.76. Quasi-Brieskorn-Pham Surface Singularities with µ = 66

66 (5) t2, 2, 67u t2, 3, 34u t2, 4, 23u t2, 7, 12u t3, 4, 12u

826



Table D.77. Quasi-Brieskorn-Pham Surface Singularities with µ = 68

68 (4) t2, 2, 69u t2, 3, 35u t2, 5, 18u t3, 3, 18u

827



Table D.78. Quasi-Brieskorn-Pham Surface Singularities with µ = 69

69 (2) t2, 2, 70u t2, 4, 24u

828



Table D.79. Quasi-Brieskorn-Pham Surface Singularities with µ = 70

70 (5) t2, 2, 71u t2, 3, 36u t2, 6, 15u t2, 8, 11u t3, 6, 8u

829



Table D.80. Quasi-Brieskorn-Pham Surface Singularities with µ = 72

72 (12) t2, 2, 73u t2, 3, 37u t2, 4, 25u t2, 5, 19u t2, 7, 13u
t2, 9, 10u t3, 3, 19u t3, 4, 13u t3, 5, 10u t3, 7, 7u
t4, 4, 9u t4, 5, 7u

830



Table D.81. Quasi-Brieskorn-Pham Surface Singularities with µ = 74

74 (2) t2, 2, 75u t2, 3, 38u

831



Table D.82. Quasi-Brieskorn-Pham Surface Singularities with µ = 75

75 (4) t2, 2, 76u t2, 4, 26u t2, 6, 16u t4, 6, 6u

832



Table D.83. Quasi-Brieskorn-Pham Surface Singularities with µ = 76

76 (4) t2, 2, 77u t2, 3, 39u t2, 5, 20u t3, 3, 20u

833



Table D.84. Quasi-Brieskorn-Pham Surface Singularities with µ = 77

77 (2) t2, 2, 78u t2, 8, 12u

834



Table D.85. Quasi-Brieskorn-Pham Surface Singularities with µ = 78

78 (5) t2, 2, 79u t2, 3, 40u t2, 4, 27u t2, 7, 14u t3, 4, 14u

835



Table D.86. Quasi-Brieskorn-Pham Surface Singularities with µ = 80

80 (9) t2, 2, 81u t2, 3, 41u t2, 5, 21u t2, 6, 17u t2, 9, 11u
t3, 3, 21u t3, 5, 11u t3, 6, 9u t5, 5, 6u

836



Table D.87. Quasi-Brieskorn-Pham Surface Singularities with µ = 81

81 (4) t2, 2, 82u t2, 4, 28u t2, 10, 10u t4, 4, 10u

837



Table D.88. Quasi-Brieskorn-Pham Surface Singularities with µ = 82

82 (2) t2, 2, 83u t2, 3, 42u

838



Table D.89. Quasi-Brieskorn-Pham Surface Singularities with µ = 84

84 (10) t2, 2, 85u t2, 3, 43u t2, 4, 29u t2, 5, 22u t2, 7, 15u
t2, 8, 13u t3, 3, 22u t3, 4, 15u t3, 7, 8u t4, 5, 8u

839



Table D.90. Quasi-Brieskorn-Pham Surface Singularities with µ = 85

85 (2) t2, 2, 86u t2, 6, 18u

840



Table D.91. Quasi-Brieskorn-Pham Surface Singularities with µ = 86

86 (2) t2, 2, 87u t2, 3, 44u

841



Table D.92. Quasi-Brieskorn-Pham Surface Singularities with µ = 87

87 (2) t2, 2, 88u t2, 4, 30u

842



Table D.93. Quasi-Brieskorn-Pham Surface Singularities with µ = 88

88 (6) t2, 2, 89u t2, 3, 45u t2, 5, 23u t2, 9, 12u t3, 3, 23u
t3, 5, 12u

843



Table D.94. Quasi-Brieskorn-Pham Surface Singularities with µ = 90

90 (10) t2, 2, 91u t2, 3, 46u t2, 4, 31u t2, 6, 19u t2, 7, 16u
t2, 10, 11u t3, 4, 16u t3, 6, 10u t4, 4, 11u t4, 6, 7u

844



Table D.95. Quasi-Brieskorn-Pham Surface Singularities with µ = 91

91 (2) t2, 2, 92u t2, 8, 14u

845



Table D.96. Quasi-Brieskorn-Pham Surface Singularities with µ = 92

92 (4) t2, 2, 93u t2, 3, 47u t2, 5, 24u t3, 3, 24u

846



Table D.97. Quasi-Brieskorn-Pham Surface Singularities with µ = 93

93 (2) t2, 2, 94u t2, 4, 32u

847



Table D.98. Quasi-Brieskorn-Pham Surface Singularities with µ = 94

94 (2) t2, 2, 95u t2, 3, 48u

848



Table D.99. Quasi-Brieskorn-Pham Surface Singularities with µ = 95

95 (2) t2, 2, 96u t2, 6, 20u

849



Table D.100. Quasi-Brieskorn-Pham Surface Singularities with µ = 96

96 (12) t2, 2, 97u t2, 3, 49u t2, 4, 33u t2, 5, 25u t2, 7, 17u
t2, 9, 13u t3, 3, 25u t3, 4, 17u t3, 5, 13u t3, 7, 9u
t4, 5, 9u t5, 5, 7u

850



Table D.101. Quasi-Brieskorn-Pham Surface Singularities with µ = 98

98 (4) t2, 2, 99u t2, 3, 50u t2, 8, 15u t3, 8, 8u

851



Table D.102. Quasi-Brieskorn-Pham Surface Singularities with µ = 99

99 (4) t2, 2, 100u t2, 4, 34u t2, 10, 12u t4, 4, 12u

852



Table D.103. Quasi-Brieskorn-Pham Surface Singularities with µ = 100

100 (8) t2, 2, 101u t2, 3, 51u t2, 5, 26u t2, 6, 21u t2, 11, 11u
t3, 3, 26u t3, 6, 11u t5, 6, 6u

853



Table D.104. Quasi-Brieskorn-Pham Surface Singularities with µ = 102

102 (5) t2, 2, 103u t2, 3, 52u t2, 4, 35u t2, 7, 18u t3, 4, 18u

854



Table D.105. Quasi-Brieskorn-Pham Surface Singularities with µ = 104

104 (6) t2, 2, 105u t2, 3, 53u t2, 5, 27u t2, 9, 14u t3, 3, 27u
t3, 5, 14u

855



Table D.106. Quasi-Brieskorn-Pham Surface Singularities with µ = 105

105 (5) t2, 2, 106u t2, 4, 36u t2, 6, 22u t2, 8, 16u t4, 6, 8u

856



Table D.107. Quasi-Brieskorn-Pham Surface Singularities with µ = 106

106 (2) t2, 2, 107u t2, 3, 54u

857



Table D.108. Quasi-Brieskorn-Pham Surface Singularities with µ = 108

108 (12) t2, 2, 109u t2, 3, 55u t2, 4, 37u t2, 5, 28u t2, 7, 19u
t2, 10, 13u t3, 3, 28u t3, 4, 19u t3, 7, 10u t4, 4, 13u
t4, 5, 10u t4, 7, 7u

858



Table D.109. Quasi-Brieskorn-Pham Surface Singularities with µ = 110

110 (5) t2, 2, 111u t2, 3, 56u t2, 6, 23u t2, 11, 12u t3, 6, 12u

859



Table D.110. Quasi-Brieskorn-Pham Surface Singularities with µ = 111

111 (2) t2, 2, 112u t2, 4, 38u

860



Table D.111. Quasi-Brieskorn-Pham Surface Singularities with µ = 112

112 (9) t2, 2, 113u t2, 3, 57u t2, 5, 29u t2, 8, 17u t2, 9, 15u
t3, 3, 29u t3, 5, 15u t3, 8, 9u t5, 5, 8u

861



Table D.112. Quasi-Brieskorn-Pham Surface Singularities with µ = 114

114 (5) t2, 2, 115u t2, 3, 58u t2, 4, 39u t2, 7, 20u t3, 4, 20u

862



Table D.113. Quasi-Brieskorn-Pham Surface Singularities with µ = 115

115 (2) t2, 2, 116u t2, 6, 24u

863



Table D.114. Quasi-Brieskorn-Pham Surface Singularities with µ = 116

116 (4) t2, 2, 117u t2, 3, 59u t2, 5, 30u t3, 3, 30u

864



Table D.115. Quasi-Brieskorn-Pham Surface Singularities with µ = 117

117 (4) t2, 2, 118u t2, 4, 40u t2, 10, 14u t4, 4, 14u

865



Table D.116. Quasi-Brieskorn-Pham Surface Singularities with µ = 118

118 (2) t2, 2, 119u t2, 3, 60u

866



Table D.117. Quasi-Brieskorn-Pham Surface Singularities with µ = 119

119 (2) t2, 2, 120u t2, 8, 18u

867



Table D.118. Quasi-Brieskorn-Pham Surface Singularities with µ = 120

120 (16) t2, 2, 121u t2, 3, 61u t2, 4, 41u t2, 5, 31u t2, 6, 25u
t2, 7, 21u t2, 9, 16u t2, 11, 13u t3, 3, 31u t3, 4, 21u
t3, 5, 16u t3, 6, 13u t3, 7, 11u t4, 5, 11u t4, 6, 9u
t5, 6, 7u

868



Table D.119. Quasi-Brieskorn-Pham Surface Singularities with µ = 121

121 (2) t2, 2, 122u t2, 12, 12u

869



Table D.120. Quasi-Brieskorn-Pham Surface Singularities with µ = 122

122 (2) t2, 2, 123u t2, 3, 62u

870



Table D.121. Quasi-Brieskorn-Pham Surface Singularities with µ = 123

123 (2) t2, 2, 124u t2, 4, 42u

871



Table D.122. Quasi-Brieskorn-Pham Surface Singularities with µ = 124

124 (4) t2, 2, 125u t2, 3, 63u t2, 5, 32u t3, 3, 32u

872



Table D.123. Quasi-Brieskorn-Pham Surface Singularities with µ = 125

125 (3) t2, 2, 126u t2, 6, 26u t6, 6, 6u

873



Table D.124. Quasi-Brieskorn-Pham Surface Singularities with µ = 126

126 (10) t2, 2, 127u t2, 3, 64u t2, 4, 43u t2, 7, 22u t2, 8, 19u
t2, 10, 15u t3, 4, 22u t3, 8, 10u t4, 4, 15u t4, 7, 8u

874



Table D.125. Quasi-Brieskorn-Pham Surface Singularities with µ = 128

128 (8) t2, 2, 129u t2, 3, 65u t2, 5, 33u t2, 9, 17u t3, 3, 33u
t3, 5, 17u t3, 9, 9u t5, 5, 9u

875



Table D.126. Quasi-Brieskorn-Pham Surface Singularities with µ = 129

129 (2) t2, 2, 130u t2, 4, 44u

876



Table D.127. Quasi-Brieskorn-Pham Surface Singularities with µ = 130

130 (5) t2, 2, 131u t2, 3, 66u t2, 6, 27u t2, 11, 14u t3, 6, 14u

877



Table D.128. Quasi-Brieskorn-Pham Surface Singularities with µ = 132

132 (10) t2, 2, 133u t2, 3, 67u t2, 4, 45u t2, 5, 34u t2, 7, 23u
t2, 12, 13u t3, 3, 34u t3, 4, 23u t3, 7, 12u t4, 5, 12u

878



Table D.129. Quasi-Brieskorn-Pham Surface Singularities with µ = 133

133 (2) t2, 2, 134u t2, 8, 20u

879



Table D.130. Quasi-Brieskorn-Pham Surface Singularities with µ = 134

134 (2) t2, 2, 135u t2, 3, 68u

880



Table D.131. Quasi-Brieskorn-Pham Surface Singularities with µ = 135

135 (6) t2, 2, 136u t2, 4, 46u t2, 6, 28u t2, 10, 16u t4, 4, 16u
t4, 6, 10u

881



Table D.132. Quasi-Brieskorn-Pham Surface Singularities with µ = 136

136 (6) t2, 2, 137u t2, 3, 69u t2, 5, 35u t2, 9, 18u t3, 3, 35u
t3, 5, 18u

882



Table D.133. Quasi-Brieskorn-Pham Surface Singularities with µ = 138

138 (5) t2, 2, 139u t2, 3, 70u t2, 4, 47u t2, 7, 24u t3, 4, 24u

883



Table D.134. Quasi-Brieskorn-Pham Surface Singularities with µ = 140

140 (10) t2, 2, 141u t2, 3, 71u t2, 5, 36u t2, 6, 29u t2, 8, 21u
t2, 11, 15u t3, 3, 36u t3, 6, 15u t3, 8, 11u t5, 6, 8u

884



Table D.135. Quasi-Brieskorn-Pham Surface Singularities with µ = 141

141 (2) t2, 2, 142u t2, 4, 48u

885



Table D.136. Quasi-Brieskorn-Pham Surface Singularities with µ = 142

142 (2) t2, 2, 143u t2, 3, 72u

886



Table D.137. Quasi-Brieskorn-Pham Surface Singularities with µ = 143

143 (2) t2, 2, 144u t2, 12, 14u

887



Table D.138. Quasi-Brieskorn-Pham Surface Singularities with µ = 144

144 (18) t2, 2, 145u t2, 3, 73u t2, 4, 49u t2, 5, 37u t2, 7, 25u
t2, 9, 19u t2, 10, 17u t2, 13, 13u t3, 3, 37u t3, 4, 25u
t3, 5, 19u t3, 7, 13u t3, 9, 10u t4, 4, 17u t4, 5, 13u
t4, 7, 9u t5, 5, 10u t5, 7, 7u

888



Table D.139. Quasi-Brieskorn-Pham Surface Singularities with µ = 145

145 (2) t2, 2, 146u t2, 6, 30u

889



Table D.140. Quasi-Brieskorn-Pham Surface Singularities with µ = 146

146 (2) t2, 2, 147u t2, 3, 74u

890



Table D.141. Quasi-Brieskorn-Pham Surface Singularities with µ = 147

147 (4) t2, 2, 148u t2, 4, 50u t2, 8, 22u t4, 8, 8u

891



Table D.142. Quasi-Brieskorn-Pham Surface Singularities with µ = 148

148 (4) t2, 2, 149u t2, 3, 75u t2, 5, 38u t3, 3, 38u

892



Table D.143. Quasi-Brieskorn-Pham Surface Singularities with µ = 150

150 (10) t2, 2, 151u t2, 3, 76u t2, 4, 51u t2, 6, 31u t2, 7, 26u
t2, 11, 16u t3, 4, 26u t3, 6, 16u t4, 6, 11u t6, 6, 7u

893



Table D.144. Quasi-Brieskorn-Pham Surface Singularities with µ = 150

150 (10) t2, 2, 151u t2, 3, 76u t2, 4, 51u t2, 6, 31u t2, 7, 26u
t2, 11, 16u t3, 4, 26u t3, 6, 16u t4, 6, 11u t6, 6, 7u

894



Table D.145. Quasi-Brieskorn-Pham Surface Singularities with µ = 152

152 (6 ) t2, 2, 153u t2, 3, 77u t2, 5, 39u t2, 9, 20u t3, 3, 39u
t3, 5, 20u

895



Table D.146. Quasi-Brieskorn-Pham Surface Singularities with µ = 153

153 ( 4 ) t2, 2, 154u t2, 4, 52u t2, 10, 18u t4, 4, 18u

896



Table D.147. Quasi-Brieskorn-Pham Surface Singularities with µ = 154

154 (5) t2, 2, 155u t2, 3, 78u t2, 8, 23u t2, 12, 15u t3, 8, 12u

897



Table D.148. Quasi-Brieskorn-Pham Surface Singularities with µ = 155

155 (2) t2, 2, 156u t2, 6, 32u

898



Table D.149. Quasi-Brieskorn-Pham Surface Singularities with µ = 156

156 (10) t2, 2, 157u t2, 3, 79u t2, 4, 53u t2, 5, 40u t2, 7, 27u
t2, 13, 14u t3, 3, 40u t3, 4, 27u t3, 7, 14u t4, 5, 14u

899



Table D.150. Quasi-Brieskorn-Pham Surface Singularities with µ = 158

158 (2) t2, 2, 159u t2, 3, 80u

900



Table D.151. Quasi-Brieskorn-Pham Surface Singularities with µ = 159

159 (2) t2, 2, 160u t2, 4, 54u

901



Table D.152. Quasi-Brieskorn-Pham Surface Singularities with µ = 160

160 (12) t2, 2, 161u t2, 3, 81u t2, 5, 41u t2, 6, 33u t2, 9, 21u
t2, 11, 17u t3, 3, 41u t3, 5, 21u t3, 6, 17u t3, 9, 11u
t5, 5, 11u t5, 6, 9u

902



Table D.153. Quasi-Brieskorn-Pham Surface Singularities with µ = 161

161 (2) t2, 2, 162u t2, 8, 24u

903



Table D.154. Quasi-Brieskorn-Pham Surface Singularities with µ = 162

162 (9) t2, 2, 163u t2, 3, 82u t2, 4, 55u t2, 7, 28u t2, 10, 19u
t3, 4, 28u t3, 10, 10u t4, 4, 19u t4, 7, 10u

904



Table D.155. Quasi-Brieskorn-Pham Surface Singularities with µ = 164

164 ( 4) t2, 2, 165u t2, 3, 83u t2, 5, 42u t3, 3, 42u

905



Table D.156. Quasi-Brieskorn-Pham Surface Singularities with µ = 165

165 (5) t2, 2, 166u t2, 4, 56u t2, 6, 34u t2, 12, 16u t4, 6, 12u

906



Table D.157. Quasi-Brieskorn-Pham Surface Singularities with µ = 166

166 (2) t2, 2, 167u t2, 3, 84u

907



Table D.158. Quasi-Brieskorn-Pham Surface Singularities with µ = 168

168 (16) t2, 2, 169u t2, 3, 85u t2, 4, 57u t2, 5, 43u t2, 7, 29u
t2, 8, 25u t2, 9, 22u t2, 13, 15u t3, 3, 43u t3, 4, 29u
t3, 5, 22u t3, 7, 15u t3, 8, 13u t4, 5, 15u t4, 8, 9u
t5, 7, 8u

908



Table D.159. Quasi-Brieskorn-Pham Surface Singularities with µ = 169

169 (2) t2, 2, 170u t2, 14, 14u

909



Table D.160. Quasi-Brieskorn-Pham Surface Singularities with µ = 170

170 (5) t2, 2, 171u t2, 3, 86u t2, 6, 35u t2, 11, 18u t3, 6, 18u

910



Table D.161. Quasi-Brieskorn-Pham Surface Singularities with µ = 171

171 (4) t2, 2, 172u t2, 4, 58u t2, 10, 20u t4, 4, 20u

911



Table D.162. Quasi-Brieskorn-Pham Surface Singularities with µ = 172

172 (4) t2, 2, 173u t2, 3, 87u t2, 5, 44u t3, 3, 44u

912



Table D.163. Quasi-Brieskorn-Pham Surface Singularities with µ = 174

174 (5) t2, 2, 175u t2, 3, 88u t2, 4, 59u t2, 7, 30u t3, 4, 30u

913



Table D.164. Quasi-Brieskorn-Pham Surface Singularities with µ = 175

175 (4) t2, 2, 176u t2, 6, 36u t2, 8, 26u t6, 6, 8u

914



Table D.165. Quasi-Brieskorn-Pham Surface Singularities with µ = 176

176 (9) t2, 2, 177u t2, 3, 89u t2, 5, 45u t2, 9, 23u t2, 12, 17u
t3, 3, 45u t3, 5, 23u t3, 9, 12u t5, 5, 12u

915



Table D.166. Quasi-Brieskorn-Pham Surface Singularities with µ = 177

177 (2) t2, 2, 178u t2, 4, 60u

916



Table D.167. Quasi-Brieskorn-Pham Surface Singularities with µ = 178

178 (2) t2, 2, 179u t2, 3, 90u

917



Table D.168. Quasi-Brieskorn-Pham Surface Singularities with µ = 180

180 (20) t2, 2, 181u t2, 3, 91u t2, 4, 61u t2, 5, 46u t2, 6, 37u
t2, 7, 31u t2, 10, 21u t2, 11, 19u t2, 13, 16u t3, 3, 46u
t3, 4, 31u t3, 6, 19u t3, 7, 16u t3, 10, 11u t4, 4, 21u
t4, 5, 16u t4, 6, 13u t4, 7, 11u t5, 6, 10u t6, 7, 7u

918



Table D.169. Quasi-Brieskorn-Pham Surface Singularities with µ = 182

182 (5) t2, 2, 183u t2, 3, 92u t2, 8, 27u t2, 14, 15u t3, 8, 14u

919



Table D.170. Quasi-Brieskorn-Pham Surface Singularities with µ = 183

183 (2) t2, 2, 184u t2, 4, 62u

920



Table D.171. Quasi-Brieskorn-Pham Surface Singularities with µ = 184

184 (6) t2, 2, 185u t2, 3, 93u t2, 5, 47u t2, 9, 24u t3, 3, 47u
t3, 5, 24u

921



Table D.172. Quasi-Brieskorn-Pham Surface Singularities with µ = 185

185 (2) t2, 2, 186u t2, 6, 38u

922



Table D.173. Quasi-Brieskorn-Pham Surface Singularities with µ = 186

186 (5) t2, 2, 187u t2, 3, 94u t2, 4, 63u t2, 7, 32u t3, 4, 32u

923



Table D.174. Quasi-Brieskorn-Pham Surface Singularities with µ = 187

187 (2) t2, 2, 188u t2, 12, 18u

924



Table D.175. Quasi-Brieskorn-Pham Surface Singularities with µ = 188

188 (4) t2, 2, 189u t2, 3, 95u t2, 5, 48u t3, 3, 48u

925



Table D.176. Quasi-Brieskorn-Pham Surface Singularities with µ = 189

189 (6) t2, 2, 190u t2, 4, 64u t2, 8, 28u t2, 10, 22u t4, 4, 22u
t4, 8, 10u

926



Table D.177. Quasi-Brieskorn-Pham Surface Singularities with µ = 190

190 (5) t2, 2, 191u t2, 3, 96u t2, 6, 39u t2, 11, 20u t3, 6, 20u

927



Table D.178. Quasi-Brieskorn-Pham Surface Singularities with µ = 192

192 (16) t2, 2, 193u t2, 3, 97u t2, 4, 65u t2, 5, 49u t2, 7, 33u
t2, 9, 25u t2, 13, 17u t3, 3, 49u t3, 4, 33u t3, 5, 25u
t3, 7, 17u t3, 9, 13u t4, 5, 17u t4, 9, 9u t5, 5, 13u
t5, 7, 9u
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Table D.179. Quasi-Brieskorn-Pham Surface Singularities with µ = 194

194 (2) t2, 2, 195u t2, 3, 98u
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Table D.180. Quasi-Brieskorn-Pham Surface Singularities with µ = 195

195 (5) t2, 2, 196u t2, 4, 66u t2, 6, 40u t2, 14, 16u t4, 6, 14u

930



Table D.181. Quasi-Brieskorn-Pham Surface Singularities with µ = 196

196 (8) t2, 2, 197u t2, 3, 99u t2, 5, 50u t2, 8, 29u t2, 15, 15u
t3, 3, 50u t3, 8, 15u t5, 8, 8u
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Table D.182. Quasi-Brieskorn-Pham Surface Singularities with µ = 198

198 (10) t2, 2, 199u t2, 3, 100u t2, 4, 67u t2, 7, 34u t2, 10, 23u
t2, 12, 19u t3, 4, 34u t3, 10, 12u t4, 4, 23u t4, 7, 12u
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Table D.183. Quasi-Brieskorn-Pham Surface Singularities with µ = 200

200 (12) t2, 2, 201u t2, 3, 101u t2, 5, 51u t2, 6, 41u t2, 9, 26u
t2, 11, 21u t3, 3, 51u t3, 5, 26u t3, 6, 21u t3, 11, 11u
t5, 6, 11u t6, 6, 9u
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Table D.184. Quasi-Brieskorn-Pham Surface Singularities with µ = 201

201 (2) t2, 2, 202u t2, 4, 68u
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Table D.185. Quasi-Brieskorn-Pham Surface Singularities with µ = 202

202 (2) t2, 2, 203u t2, 3, 102u
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Table D.186. Quasi-Brieskorn-Pham Surface Singularities with µ = 203

203 (2) t2, 2, 204u t2, 8, 30u
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Table D.187. Quasi-Brieskorn-Pham Surface Singularities with µ = 204

204 (10) t2, 2, 205u t2, 3, 103u t2, 4, 69u t2, 5, 52u t2, 7, 35u
t2, 13, 18u t3, 3, 52u t3, 4, 35u t3, 7, 18u t4, 5, 18u

937



Table D.188. Quasi-Brieskorn-Pham Surface Singularities with µ = 205

205 (2) t2, 2, 206u t2, 6, 42u
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Table D.189. Quasi-Brieskorn-Pham Surface Singularities with µ = 206

206 (2) t2, 2, 207u t2, 3, 104u
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Table D.190. Quasi-Brieskorn-Pham Surface Singularities with µ = 207

207 (4) t2, 2, 208u t2, 4, 70u t2, 10, 24u t4, 4, 24u

940



Table D.191. Quasi-Brieskorn-Pham Surface Singularities with µ = 208

208 (9) t2, 2, 209u t2, 3, 105u t2, 5, 53u t2, 9, 27u t2, 14, 17u
t3, 3, 53u t3, 5, 27u t3, 9, 14u t5, 5, 14u
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Table D.192. Quasi-Brieskorn-Pham Surface Singularities with µ = 209

209 (2) t2, 2, 210u t2, 12, 20u
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Table D.193. Quasi-Brieskorn-Pham Surface Singularities with µ = 210

210 (14) t2, 2, 211u t2, 3, 106u t2, 4, 71u t2, 6, 43u t2, 7, 36u
t2, 8, 31u t2, 11, 22u t2, 15, 16u t3, 4, 36u t3, 6, 22u
t3, 8, 16u t4, 6, 15u t4, 8, 11u t6, 7, 8u

943



Table D.194. Quasi-Brieskorn-Pham Surface Singularities with µ = 212

212 (4) t2, 2, 213u t2, 3, 107u t2, 5, 54u t3, 3, 54u
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Table D.195. Quasi-Brieskorn-Pham Surface Singularities with µ = 213

213 (2) t2, 2, 214u t2, 4, 72u
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Table D.196. Quasi-Brieskorn-Pham Surface Singularities with µ = 214

214 (2) t2, 2, 215u t2, 3, 108u
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Table D.197. Quasi-Brieskorn-Pham Surface Singularities with µ = 215

215 (2) t2, 2, 216u t2, 6, 44u
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Table D.198. Quasi-Brieskorn-Pham Surface Singularities with µ = 216

216 (19) t2, 2, 217u t2, 3, 109u t2, 4, 73u t2, 5, 55u t2, 7, 37u
t2, 9, 28u t2, 10, 25u t2, 13, 19u t3, 3, 55u t3, 4, 37u
t3, 5, 28u t3, 7, 19u t3, 10, 13u t4, 4, 25u t4, 5, 19u
t4, 7, 13u t4, 9, 10u t5, 7, 10u t7, 7, 7u
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Table D.199. Quasi-Brieskorn-Pham Surface Singularities with µ = 217

217 (2) t2, 2, 218u t2, 8, 32u
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Table D.200. Quasi-Brieskorn-Pham Surface Singularities with µ = 218

218 (2) t2, 2, 219u t2, 3, 110u

950



Table D.201. Quasi-Brieskorn-Pham Surface Singularities with µ = 219

219 (2) t2, 2, 220u t2, 4, 74u

951



Table D.202. Quasi-Brieskorn-Pham Surface Singularities with µ = 220

220 (10) t2, 2, 221u t2, 3, 111u t2, 5, 56u t2, 6, 45u t2, 11, 23u
t2, 12, 21u t3, 3, 56u t3, 6, 23u t3, 11, 12u t5, 6, 12u

952



Table D.203. Quasi-Brieskorn-Pham Surface Singularities with µ = 221

221 (2) t2, 2, 222u t2, 14, 18u

953



Table D.204. Quasi-Brieskorn-Pham Surface Singularities with µ = 222

222 (5) t2, 2, 223u t2, 3, 112u t2, 4, 75u t2, 7, 38u t3, 4, 38u

954



Table D.205. Quasi-Brieskorn-Pham Surface Singularities with µ = 224

224 (12) t2, 2, 225u t2, 3, 113u t2, 5, 57u t2, 8, 33u t2, 9, 29u
t2, 15, 17u t3, 3, 57u t3, 5, 29u t3, 8, 17u t3, 9, 15u
t5, 5, 15u t5, 8, 9u

955



Table D.206. Quasi-Brieskorn-Pham Surface Singularities with µ = 225

225 (8) t2, 2, 226u t2, 4, 76u t2, 6, 46u t2, 10, 26u t2, 16, 16u
t4, 4, 26u t4, 6, 16u t6, 6, 10u
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Table D.207. Quasi-Brieskorn-Pham Surface Singularities with µ = 226

226 (2) t2, 2, 227u t2, 3, 114u

957



Table D.208. Quasi-Brieskorn-Pham Surface Singularities with µ = 228

228 (10) t2, 2, 229u t2, 3, 115u t2, 4, 77u t2, 5, 58u t2, 7, 39u
t2, 13, 20u t3, 3, 58u t3, 4, 39u t3, 7, 20u t4, 5, 20u

958



Table D.209. Quasi-Brieskorn-Pham Surface Singularities with µ = 230

230 (5) t2, 2, 231u t2, 3, 116u t2, 6, 47u t2, 11, 24u t3, 6, 24u
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Table D.210. Quasi-Brieskorn-Pham Surface Singularities with µ = 231

231 (5) t2, 2, 232u t2, 4, 78u t2, 8, 34u t2, 12, 22u t4, 8, 12u

960



Table D.211. Quasi-Brieskorn-Pham Surface Singularities with µ = 231

232 (6 ) t2, 2, 233u t2, 3, 117u t2, 5, 59u t2, 9, 30u t3, 3, 59u
t3, 5, 30u
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Table D.212. Quasi-Brieskorn-Pham Surface Singularities with µ = 234

234 (10) t2, 2, 235u t2, 3, 118u t2, 4, 79u t2, 7, 40u t2, 10, 27u
t2, 14, 19u t3, 4, 40u t3, 10, 14u t4, 4, 27u t4, 7, 14u
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Table D.213. Quasi-Brieskorn-Pham Surface Singularities with µ = 235

235 (2) t2, 2, 236u t2, 6, 48u

963



Table D.214. Quasi-Brieskorn-Pham Surface Singularities with µ = 236

236 (4) t2, 2, 237u t2, 3, 119u t2, 5, 60u t3, 3, 60u
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Table D.215. Quasi-Brieskorn-Pham Surface Singularities with µ = 237

237 (2) t2, 2, 238u t2, 4, 80u
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Table D.216. Quasi-Brieskorn-Pham Surface Singularities with µ = 238

238 (5) t2, 2, 239u t2, 3, 120u t2, 8, 35u t2, 15, 18u t3, 8, 18u

966



Table D.217. Quasi-Brieskorn-Pham Surface Singularities with µ = 240

240 (24) t2, 2, 241u t2, 3, 121u t2, 4, 81u t2, 5, 61u t2, 6, 49u
t2, 7, 41u t2, 9, 31u t2, 11, 25u t2, 13, 21u t2, 16, 17u
t3, 3, 61u t3, 4, 41u t3, 5, 31u t3, 6, 25u t3, 7, 21u
t3, 9, 16u t3, 11, 13u t4, 5, 21u t4, 6, 17u t4, 9, 11u
t5, 5, 16u t5, 6, 13u t5, 7, 11u t6, 7, 9u

967



Table D.218. Quasi-Brieskorn-Pham Surface Singularities with µ = 242

242 ( 4) t2, 2, 243u t2, 3, 122u t2, 12, 23u t3, 12, 12u
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Table D.219. Quasi-Brieskorn-Pham Surface Singularities with µ = 243

243 (5) t2, 2, 244u t2, 4, 82u t2, 10, 28u t4, 4, 28u t4, 10, 10u

969



Table D.220. Quasi-Brieskorn-Pham Surface Singularities with µ = 244

244 ( 4) t2, 2, 245u t2, 3, 123u t2, 5, 62u t3, 3, 62u

970



Table D.221. Quasi-Brieskorn-Pham Surface Singularities with µ = 245

245 (4) t2, 2, 246u t2, 6, 50u t2, 8, 36u t6, 8, 8u

971



Table D.222. Quasi-Brieskorn-Pham Surface Singularities with µ = 246

246 (5) t2, 2, 247u t2, 3, 124u t2, 4, 83u t2, 7, 42u t3, 4, 42u

972



Table D.223. Quasi-Brieskorn-Pham Surface Singularities with µ = 247

247 (2) t2, 2, 248u t2, 14, 20u
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Table D.224. Quasi-Brieskorn-Pham Surface Singularities with µ = 248

248 (6) t2, 2, 249u t2, 3, 125u t2, 5, 63u t2, 9, 32u t3, 3, 63u
t3, 5, 32u

974



Table D.225. Quasi-Brieskorn-Pham Surface Singularities with µ = 249

249 (2) t2, 2, 250u t2, 4, 84u
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Table D.226. Quasi-Brieskorn-Pham Surface Singularities with µ = 250

250 (6 ) t2, 2, 251u t2, 3, 126u t2, 6, 51u t2, 11, 26u t3, 6, 26u
t6, 6, 11u

976



Table D.227. Quasi-Brieskorn-Pham Surface Singularities with µ = 252

252 (20) t2, 2, 253u t2, 3, 127u t2, 4, 85u t2, 5, 64u t2, 7, 43u
t2, 8, 37u t2, 10, 29u t2, 13, 22u t2, 15, 19u t3, 3, 64u
t3, 4, 43u t3, 7, 22u t3, 8, 19u t3, 10, 15u t4, 4, 29u
t4, 5, 22u t4, 7, 15u t4, 8, 13u t5, 8, 10u t7, 7, 8u

977



Table D.228. Quasi-Brieskorn-Pham Surface Singularities with µ = 253

253 (2) t2, 2, 254u t2, 12, 24u

978



Table D.229. Quasi-Brieskorn-Pham Surface Singularities with µ = 254

254 (2) t2, 2, 255u t2, 3, 128u
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Table D.230. Quasi-Brieskorn-Pham Surface Singularities with µ = 255

255 (5) t2, 2, 256u t2, 4, 86u t2, 6, 52u t2, 16, 18u t4, 6, 18u

980



Table D.231. Quasi-Brieskorn-Pham Surface Singularities with µ = 256

256 (10) t2, 2, 257u t2, 3, 129u t2, 5, 65u t2, 9, 33u t2, 17, 17u
t3, 3, 65u t3, 5, 33u t3, 9, 17u t5, 5, 17u t5, 9, 9u
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Table D.232. Quasi-Brieskorn-Pham Surface Singularities with µ = 258

258 ( 5) t2, 2, 259u t2, 3, 130u t2, 4, 87u t2, 7, 44u t3, 4, 44u

982



Table D.233. Quasi-Brieskorn-Pham Surface Singularities with µ = 259

259 (2) t2, 2, 260u t2, 8, 38u
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Table D.234. Quasi-Brieskorn-Pham Surface Singularities with µ = 260

260 (10) t2, 2, 261u t2, 3, 131u t2, 5, 66u t2, 6, 53u t2, 11, 27u
t2, 14, 21u t3, 3, 66u t3, 6, 27u t3, 11, 14u t5, 6, 14u

984



Table D.235. Quasi-Brieskorn-Pham Surface Singularities with µ = 261

261 (4) t2, 2, 262u t2, 4, 88u t2, 10, 30u t4, 4, 30u

985



Table D.236. Quasi-Brieskorn-Pham Surface Singularities with µ = 262

262 (2) t2, 2, 263u t2, 3, 132u

986



Table D.237. Quasi-Brieskorn-Pham Surface Singularities with µ = 264

264 (16) t2, 2, 265u t2, 3, 133u t2, 4, 89u t2, 5, 67u t2, 7, 45u
t2, 9, 34u t2, 12, 25u t2, 13, 23u t3, 3, 67u t3, 4, 45u
t3, 5, 34u t3, 7, 23u t3, 12, 13u t4, 5, 23u t4, 9, 12u
t5, 7, 12u

987



Table D.238. Quasi-Brieskorn-Pham Surface Singularities with µ = 265

265 (2) t2, 2, 266u t2, 6, 54u

988



Table D.239. Quasi-Brieskorn-Pham Surface Singularities with µ = 266

266 (5) t2, 2, 267u t2, 3, 134u t2, 8, 39u t2, 15, 20u t3, 8, 20u

989



Table D.240. Quasi-Brieskorn-Pham Surface Singularities with µ = 267

267 (2) t2, 2, 268u t2, 4, 90u

990



Table D.241. Quasi-Brieskorn-Pham Surface Singularities with µ = 268

268 (4) t2, 2, 269u t2, 3, 135u t2, 5, 68u t3, 3, 68u

991



Table D.242. Quasi-Brieskorn-Pham Surface Singularities with µ = 270

270 (16) t2, 2, 271u t2, 3, 136u t2, 4, 91u t2, 6, 55u t2, 7, 46u
t2, 10, 31u t2, 11, 28u t2, 16, 19u t3, 4, 46u t3, 6, 28u
t3, 10, 16u t4, 4, 31u t4, 6, 19u t4, 7, 16u t4, 10, 11u
t6, 7, 10u

992



Table D.243. Quasi-Brieskorn-Pham Surface Singularities with µ = 272

272 (9 ) t2, 2, 273u t2, 3, 137u t2, 5, 69u t2, 9, 35u t2, 17, 18u
t3, 3, 69u t3, 5, 35u t3, 9, 18u t5, 5, 18u

993



Table D.244. Quasi-Brieskorn-Pham Surface Singularities with µ = 273

273 (5) t2, 2, 274u t2, 4, 92u t2, 8, 40u t2, 14, 22u t4, 8, 14u

994



Table D.245. Quasi-Brieskorn-Pham Surface Singularities with µ = 274

274 (2) t2, 2, 275u t2, 3, 138u

995



Table D.246. Quasi-Brieskorn-Pham Surface Singularities with µ = 275

275 (4) t2, 2, 276u t2, 6, 56u t2, 12, 26u t6, 6, 12u

996



Table D.247. Quasi-Brieskorn-Pham Surface Singularities with µ = 276

276 (10) t2, 2, 277u t2, 3, 139u t2, 4, 93u t2, 5, 70u t2, 7, 47u
t2, 13, 24u t3, 3, 70u t3, 4, 47u t3, 7, 24u t4, 5, 24u

997



Table D.248. Quasi-Brieskorn-Pham Surface Singularities with µ = 278

278 (2) t2, 2, 279u t2, 3, 140u

998



Table D.249. Quasi-Brieskorn-Pham Surface Singularities with µ = 279

279 (4) t2, 2, 280u t2, 4, 94u t2, 10, 32u t4, 4, 32u

999



Table D.250. Quasi-Brieskorn-Pham Surface Singularities with µ = 280

280 (16) t2, 2, 281u t2, 3, 141u t2, 5, 71u t2, 6, 57u t2, 8, 41u
t2, 9, 36u t2, 11, 29u t2, 15, 21u t3, 3, 71u t3, 5, 36u
t3, 6, 29u t3, 8, 21u t3, 11, 15u t5, 6, 15u t5, 8, 11u
t6, 8, 9u
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Table D.251. Quasi-Brieskorn-Pham Surface Singularities with µ = 282

282 (5) t2, 2, 283u t2, 3, 142u t2, 4, 95u t2, 7, 48u t3, 4, 48u

1001



Table D.252. Quasi-Brieskorn-Pham Surface Singularities with µ = 284

284 (4) t2, 2, 285u t2, 3, 143u t2, 5, 72u t3, 3, 72u

1002



Table D.253. Quasi-Brieskorn-Pham Surface Singularities with µ = 285

285 (5) t2, 2, 286u t2, 4, 96u t2, 6, 58u t2, 16, 20u t4, 6, 20u

1003



Table D.254. Quasi-Brieskorn-Pham Surface Singularities with µ = 286

286 (5) t2, 2, 287u t2, 3, 144u t2, 12, 27u t2, 14, 23u t3, 12, 14u

1004



Table D.255. Quasi-Brieskorn-Pham Surface Singularities with µ = 287

287 (2) t2, 2, 288u t2, 8, 42u

1005



Table D.256. Quasi-Brieskorn-Pham Surface Singularities with µ = 288

288 (24) t2, 2, 289u t2, 3, 145u t2, 4, 97u t2, 5, 73u t2, 7, 49u
t2, 9, 37u t2, 10, 33u t2, 13, 25u t2, 17, 19u t3, 3, 73u
t3, 4, 49u t3, 5, 37u t3, 7, 25u t3, 9, 19u t3, 10, 17u
t3, 13, 13u t4, 4, 33u t4, 5, 25u t4, 7, 17u t4, 9, 13u
t5, 5, 19u t5, 7, 13u t5, 9, 10u t7, 7, 9u

1006



Table D.257. Quasi-Brieskorn-Pham Surface Singularities with µ = 289

289 (2) t2, 2, 290u t2, 18, 18u

1007



Table D.258. Quasi-Brieskorn-Pham Surface Singularities with µ = 290

290 (5) t2, 2, 291u t2, 3, 146u t2, 6, 59u t2, 11, 30u t3, 6, 30u

1008



Table D.259. Quasi-Brieskorn-Pham Surface Singularities with µ = 291

291 (2) t2, 2, 292u t2, 4, 98u

1009



Table D.260. Quasi-Brieskorn-Pham Surface Singularities with µ = 292

292 (4) t2, 2, 293u t2, 3, 147u t2, 5, 74u t3, 3, 74u

1010



Table D.261. Quasi-Brieskorn-Pham Surface Singularities with µ = 294

294 (10 ) t2, 2, 295u t2, 3, 148u t2, 4, 99u t2, 7, 50u t2, 8, 43u
t2, 15, 22u t3, 4, 50u t3, 8, 22u t4, 8, 15u t7, 8, 8u

1011



Table D.262. Quasi-Brieskorn-Pham Surface Singularities with µ = 295

295 (2) t2, 2, 296u t2, 6, 60u

1012



Table D.263. Quasi-Brieskorn-Pham Surface Singularities with µ = 296

296 (6) t2, 2, 297u t2, 3, 149u t2, 5, 75u t2, 9, 38u t3, 3, 75u
t3, 5, 38u

1013



Table D.264. Quasi-Brieskorn-Pham Surface Singularities with µ = 297

297 (6) t2, 2, 298u t2, 4, 100u t2, 10, 34u t2, 12, 28u t4, 4, 34u
t4, 10, 12u

1014



Table D.265. Quasi-Brieskorn-Pham Surface Singularities with µ = 298

298 (2) t2, 2, 299u t2, 3, 150u

1015



Table D.266. Quasi-Brieskorn-Pham Surface Singularities with µ = 299

299 (2 ) t2, 2, 300u t2, 14, 24u

1016



Table D.267. Quasi-Brieskorn-Pham Surface Singularities with µ = 300

300 (20) t2, 2, 301u t2, 3, 151u t2, 4, 101u t2, 5, 76u t2, 6, 61u
t2, 7, 51u t2, 11, 31u t2, 13, 26u t2, 16, 21u t3, 3, 76u
t3, 4, 51u t3, 6, 31u t3, 7, 26u t3, 11, 16u t4, 5, 26u
t4, 6, 21u t4, 11, 11u t5, 6, 16u t6, 6, 13u t6, 7, 11u
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Appendix E

Jacobi Theta Functions

It is true that Fourier had the opinion that the principal aim of mathematics
was public utility and explanation of natural phenomena; but a philosopher
like him should have known that the sole end of science is the honor of the
human mind, and that under this title a question about numbers is worth as
much as a question about the system of the world.

— Carl Gustav Jacob Jacobi
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In this appendix, we discuss a class of functions which are naturally associ-

ated with complex torus, the Jacobi theta functions. For more details, the readers

is encouraged to consult [1818, 328328] and [329329], from which we shall quote freely.
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E.1. Jacobi Theta Functions

Let H denote the upper-half plane, tη P C | Im(η) ą 0u. On CˆH, we define

the (third of four) theta function ϑ3 by the infinite series

ϑ3(z, τ) =
ÿ

kPZ

eπik2τ+2πikz. (E.1)

Proposition E.1 (Mumford, [328328]). The Jacobi theta function ϑ3(z, τ) is the

unique holomorphic function f : CˆH Ñ C such that limIm(τ)Ñ+8 f (z, τ) = 1 and

the following transformations hold

1. f (z + 1, τ) = f (z, τ),

2. f (z + τ, τ) = e´πiτ´2πiz f (z, τ),

3. f (z + 1
2 , τ + 1) = f (z, τ) and

4. f ( z
τ ,´ 1

τ ) = (´iτ)1/2 eπiz2/τ f (z, τ).

Using the transformation properties of ϑ3(0, iτ), Riemann proved the follow-

ing functional identity satisfied by ζ(s) =
ř

kě1 k´s (appropriately analytically

continued), the so called reflection formula, which yields deep insights into the

distribution of the primes.

Proposition E.2 (Riemann, 1859). Let ξ(s) = π´s/2 Γ( s
2) ζ(s). Then ξ has a

meromorphic continuation on Czt1u and satisfies the functional equation

ξ(s) = ξ(1´ s). (E.2)
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The Jacobi theta function ϑ3 is not limited to only analytic investigations,

but finds applications in combinatorial number theory.

E.1.1. Sums-of-Squares Functions. Let rn(k) denote the number of ways

to represent a positive integer k as a sum of n squares, i.e., k = k2
1 + ¨ ¨ ¨ k

2
n.

For example, r2(5) = 8 since 5 = (˘1)2 + (˘2)2 = (˘2)2 + (˘1)2. We can

understand the behavior of rn(k) by appealing to the study of the function

ϕ(q) := ϑ3(0, τ) =
ř

kPZ qk2
, Jacobi noticed the deep connection between the

Fourier coefficients of powers of the theta function and sums of squares,

ϕ(q)n =
ÿ

k1PZ

¨ ¨ ¨
ÿ

knPZ

qk2
1+¨¨¨+k2

n =
ÿ

kě0

rn(k) qk. (E.3)

where q = eπiτ. He subsequently proved that

r2(k) = 4
ÿ

d|k

(´1)(d´1)/2 = 4(d1,4(k)´ d3,4(k)), (E.4)

where da,b(k) enumerates the positive divisors d of k such that d is congruent

to a modulo b, written as (a, b) ” d. From this it may be concluded that each

prime congruent to 1 modulo 4 can be written as a sum of two squares.

Proposition E.3 (Ramanujan).

ϕ(q)4 = 1 + 8
ÿ

kě1

kqk

1 + (´1)k qk (E.5)

ϕ(q)6 = 1´ 4
ÿ

kě0

(´1)k(2k + 1)2q2k+1

1´ q2k+1 + 16
ÿ

kě1

k2qk

1 + q2k , (E.6)
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and

ϕ(q)8 = 1 + 16
ÿ

kě1

k3qk

1´ (´1)kqk . (E.7)

Introduce the sum-divisor function σ`(k) =
ř

d|k d`. The sum-of-four-

squares function admits the representation,

r4(k) = 8
ÿ

d|k, 4-d
d =

$

&

%

σ1(k) d mod 4 ı 0

σ1(k)´ 4σ1(
d
4 ) d mod 4 ” 0.

(E.8)

Hence, every positive integer is the sum of four squares, since the divisor func-

tions (or difference of divisor functions) above are never zero. Through similar

arguments, Ramanujan gave the rather complicated formula,

r6(k) = 4

 ÿ

d|k, (d,4)”3

d2
´

ÿ

d|k, (d,4)”1

d2



+ 16

 ÿ

d|k, ( k
d ,4)”1

d2
´

ÿ

d|k, ( k
d ,4)”1

d2

 , (E.9)

as well as the remarkably simple formula,

r8(k) = 16 (´1)k
ÿ

d|k

(´1)d d3. (E.10)

E.2. Properties of the Jacobi Theta Functions

Jacobi introduced four functions θi : CˆH Ñ C. Following the notational

convention of Whittaker and Watson, introduce the nome q = eπiτ with τ P H
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(hence, |q| ă 1) and define the first of four theta functions as the infinite series

θ1(z, τ) = ´i
ÿ

kPZ

(´1)kei(π(2k+1)2τ/4+(2k+1)z). (E.11)

When the explicit dependence on q is needed, instead of θ1(z, τ), we will write

θ1(z; q). There is a second and extremely useful summation representation of θ1,

namely,

ÿ

kPZ

(´1)keπi(2k+1)2τ/4ei(2k+1)z =
ÿ

kě0

(´1)keπi(2k+1)2τ/4ei(2k+1)z

+
ÿ

ką0

(´1)´keπi(1´2k)2τ/4ei(1´2k)z (E.12)

=
ÿ

kě0

(´1)keπi(2k+1)2τ/4ei(2k+1)z

´
ÿ

kě0

(´1)keπi(2k+1)2τ/4e´i(2k+1)z (E.13)

= 2i
ÿ

kě0

(´1)kq(k+1/2)2
sin(2k + 1)z. (E.14)

Hence,

θ1(z; q) = 2
ÿ

kě0

(´1)kq(k+1/2)2
sin(2k + 1)z. (E.15)

Proposition E.4. The function θ1 satisfies the second-order partial differential

equation

B2θ1

Bz2 = ´4q
Bθ1

Bq
. (E.16)
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Proof . Since the infinite summation of equation (E.15E.15) converges abso-

lutely, we can differentiate term-wise,

4q
Bθ1

Bq
(z; q) = 4

ÿ

kě0

(´1)k
(

k +
1
2

)2

q(k+1/2)2
sin(2k + 1)z (E.17)

= 2
ÿ

kě0

(´1)kq(k+1/2)2
(2k + 1)2 sin(2k + 1)z (E.18)

= ´
B2θ1

Bz2 (z; q), (E.19)

which proves the claim. �

Remark E.2.1. The Jacobi theta function θ1(0, iτ) satisfies the heat equation.

M

E.2.1. Ramanujan q-Products and q-Series. Define the following functions,

(a; q)n :=
n´1
ź

k=0

(1´ aqk) and (a; q)8 := lim
nÑ8

(a; q)n (E.20)

where n P N and |q| ă 1. For n P CzN, we define

(a; q)n =
(a; q)8
(aqn; q)8

. (E.21)

Observe that for |a| ă 1, we have

(aq; q)8 = (1´ a)´1(a; q)8. (E.22)
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These functions are known as Ramanujan q-products or q-Pochhammer sym-

bols as they generalize the Pochammer symbol, i.e., the rising factorial function,

(n)k :=
k´1
ź

j=0

(n + j) =
Γ(n + k)

Γ(n)
= lim

qÑ1´

(qn; q)k

(1´ q)k . (E.23)

A Ramanujan q-series is an infinite series of the form

ÿ

kPZ

ak qk, (E.24)

where the coefficients takukPZ are not all zero and |q| ă 1.

Proposition E.5. For |q| ă 1 and z P C, we have the following product

representations

θ1(z; q) = ´iq1/4(q2; q2)8 eiz (e´2iz; q2)8(q2e2iz; q2)8 (E.25)

= 2q1/4 (q2; q2)8 sin z (q2e´2iz; q2)8(q2e2iz; q2)8. (E.26)

Proof . The equivalence of the two expressions follows from the identity

sin z =
eiz(1´ e´2iz)

2i
=

eiz(e´2iz; q2)8
2i(q2e´2iz; q2)8

. (E.27)

Finally, the Jacobi triple product implies

(e´2iz; q2)8(q2e2iz; q2)8(q2; q2)8 =
ÿ

kPZ

(´1)kqk(k+1)e2ikz (E.28)

= q´1/4e´iz
ÿ

kPZ

(´1)kq(2k+1)2/4ei(2k+1)z, (E.29)
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which proves the claim. �

As a result of absolute convergence of the infinite products, we can multiply

the linear factors of each and write

θ1(z; q) = 2q1/4 (q2; q2)8 sin z
ź

kě1

(1´ 2q2k cos 2z + q4k). (E.30)

We now prove two important symmetries enjoyed by θ1.

Proposition E.6. The following identities hold,

θ1(z + π, τ) = ´θ1(z, τ) (E.31)

θ1(z + πτ, τ) = ´e´πiτ´2iz θ1(z, τ). (E.32)

Proof . Consider

θ1(z + π; q) = ´i
ÿ

kPZ

(´1)kq(k+1/2)2
e(2k+1)i(z+π) (E.33)

= ´i
ÿ

kPZ

(´1)k+2k+1q(k+1/2)2
e(2k+1)iz (E.34)

= ´θ1(z; q), (E.35)

which establishes a 2π-periodicity in the first argument. To establish the second

symmetry, note that

θ1(z + πτ; q) = ´iq1/4ei(z+πτ)(q2; q2)8(e´2i(z+πτ); q2)8(q2e2i(z+πτ); q2)8 (E.36)

= ´iq5/4eiz(q2; q2)8(q´2e´2iz; q2)8(q4e2iz; q2)8. (E.37)
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Then

θ1(z + πτ; q)
θ1(z; q)

= q
(q´2e´2iz; q2)8(q4e2iz; q2)8
(e´2iz; q2)8(q2e2iz; q2)8

(E.38)

= q
(1´ q´2e´2iz)(q´2e´2iz; q2)8(q2e2iz; q2)8
(1´ q2e2iz)(q´2e´2iz; q2)8(q2e2iz; q2)8

(E.39)

= ´q´1e´2iz, (E.40)

which completes the proof. �

Write f |g = f ˝ g.

Proposition E.7. For γ = (a b
c d) P SL(2, Z) and (z, τ) P CˆH, we have

identity

θ1|γ(z, τ) = ζ8(c, d) (cτ + d)1/2eicz2/π(cτ+d) θ1(z, τ), (E.41)

where ζ8(c, d) is an eight-root of unity depending on c and d.

Proof . See [1818]. �

Proposition E.8. For α, β P Cˆ,

lim
zÑ0

θ1(αz; q)
θ1(βz; q)

=
α

β
. (E.42)
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Proof . Observe that

lim
zÑ0

θ1(αz; q)
θ1(βz; q)

= lim
zÑ0

sin(αz)
sin(βz)

8
ź

k=1

1´ 2q2k cos(2αz) + q4k

1´ 2q2k cos(2βz) + q4k (E.43)

= lim
zÑ0

sin(αz)
sin(βz)

=
α

β
, (E.44)

where the last equality involves L’Hospital’s rule. �

The number of identities and symmetries satisfied by the Jacobi theta func-

tions is rivaled only by the myriad of notations used to define them. To avoid

confusion, we shall respect the notational conventions of Whittaker and Wat-

son and subsequently introduce our own scaled variant. As before, let q = eπiτ.

Introduce three more Jacobi theta functions θi : CˆH Ñ C, where

θ2(z, τ) =
ÿ

kPZ

eπi(k+1/2)2τ+(2k+1)iz (E.45)

θ3(z, τ) =
ÿ

kPZ

eπik2τ+2ikz (E.46)

θ4(z, τ) =
ÿ

kPZ

(´1)k eπik2τ+2ikz. (E.47)

When the explicit dependence on q is needed, instead of θi(z, τ), we will write

θi(z; q). The four theta functions are related through the following identities.
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Proposition E.9. The following identities hold:

θ1(z, τ) = ´ieiz+πiτ/4 θ4(z + πτ
2 , τ) (E.48)

θ2(z; q) = θ1(z + π
2 , τ) (E.49)

θ3(z, τ) = θ4(z + π
2 , τ). (E.50)

Proof . We prove the first identity. Observe that

θ4(z + πτ
2 , τ) =

ÿ

kPZ

(´1)k eπik2τ+2ik(z+πτ/2) (E.51)

= eπiτ/4´iz
ÿ

kPZ

(´1)kei(π(2k+1)2τ/4+(2k+1)z), (E.52)

which is ie´iz´πiτ/4 θ1(z, τ). The last two identities follow similarly. �

As a result, we have θ4(z; q) = θ3(z;´q). Other interesting representations

include the following,

Proposition E.10. For q = eπiτ P ∆ and z P C, we have the equivalent

representations

θ2(z, τ) = 2
ÿ

kě0

q(k+1/2)2
cos(2k + 1)z (E.53)

= 2q1/4(q2; q2)8 cos z (´q2e´2iz; q2)8(´q2e2iz; q2)8. (E.54)

Before proceeding to the next result, we need the following identity.
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Proposition E.11. Let ζn = e2πi/n. Then

(q; q)8 =
n´1
ź

k=0

(q1/nζk
n; q1/n)8. (E.55)

Corollary E.12. For q = eπiτ P ∆, we have the identity

(q; q)8 =
q´1/24
?

3
θ2(

π

6
; q1/6). (E.56)

Proof . The q-product representation of the θ2 implies

θ2(
π
6 ; q1/3) =

?
3 q1/12 (q2/3; q2/3)8(´q2/3ζ3; q2/3)8(´q2/3ζ´1

3 ; q2/3)8. (E.57)

The identity

(q2; q2)8 = (q2/3; q2/3)8(q2/3ζ´1
3 ; q2/3)8(q2/3ζ3; q2/3)8 (E.58)

= (q2/3; q2/3)8(´q2/3ζ3; q2/3)8(´q2/3ζ´1
3 ; q2/3)8. (E.59)

and scaling q2 Ñ q implies the claim. �

Proposition E.13. For q = eπiτ P ∆ and z P C, we have the equivalent

representations

θ3(z, τ) = 1 + 2
ÿ

kě1

qk2
cos(2kz) (E.60)

= (q2; q2)8(´qe´2iz; q2)8(´qe2iz; q2)8. (E.61)
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Proposition E.14. For q = eπiτ P ∆ and z P C, we have the equivalent

representations

θ4(z, τ) = 1 + 2
ÿ

kě1

(´1)kqk2
cos(2kz) (E.62)

= (q2; q2)8(qe´2iz; q2)8(qe2iz; q2)8. (E.63)

Thus, we also have

θ2(z, τ) = 2q1/4(q2; q2)8 cos z
ź

kě1

(1 + 2q2k cos(2z) + q4k)

θ3(z, τ) = (q2; q2)8
ź

kě1

(1 + 2q2k´1 cos(2z) + q4k´2)

θ4(z, τ) = (q2; q2)8
ź

kě1

(1´ 2q2k´1 cos(2z) + q4k´2).

Proposition E.15. The following q-product identities hold:

(´q,´q)8 = (q;´q)8(q2; q2)8(´q; q2)2
8 (E.64)

(q4; q4)8 = (q2; q2)8(´q2; q2)8 (E.65)

(q; q)8 = (q2; q2)8(q; q2)8 (E.66)

1 = (´q2; q2)8(q; q2)8(´q; q2)8. (E.67)

The last identity is equivalent to the Jacobi Triple Product.
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Corollary E.16. The following identity holds,

24q(´q2; q2)8
8 + (q; q2)8

8 = (´q; q2)8
8. (E.68)

Define the last three nullwerts, θi(q) = θi(0, τ).

Corollary E.17. The non-trivial theta nullwerts are given by

θ2(q) = 2q1/4 (q
4; q4)2

8

(q2; q2)8
, θ3(q) =

(´q,´q)8
(q;´q)8

and θ4(q) =
(q; q)2

8

(q2; q2)8
. (E.69)

Proof . Since θ3(q) = (q2; q2)8(´q; q2)2
8, it suffices to prove the identity

(´q,´q)8 = (q;´q)8(q2; q2)8(´q; q2)2
8, (E.70)

which we leave as an exercise. By combining

θ2(q) = 2q1/4(q2; q2)8(´q2; q2)2
8 (E.71)

θ4(q) = (q2; q2)8(q; q2)2
8 (E.72)

with the identities

(q4; q4)8 = (q2; q2)8(´q2; q2)8 (E.73)

(q; q)8 = (q2; q2)8(q; q2)8, (E.74)

respectively, the other two identities follow. �
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Corollary E.18 (Jacobi). The following identity holds:

θ4
3(q) = θ4

2(q) + θ4
4(q). (E.75)

Proof . The identity follows from Proposition E.17E.17 and the q-series identity

24q(q4; q4)8
8 + (q; q)8

8 =

(
(´q,´q)8(q2; q2)8

(q;´q)8

)4

(E.76)

= (q2; q2)8
8(´q; q2)8

8, (E.77)

which is equivalent to 24q(´q2; q2)8
8 + (q; q2)8

8 = (´q; q2)8
8. �

Given the myriad of conventions, it should be no surprise that we now in-

troduce yet another version of the theta functions suitable for our purpose.

Since the modern definition of the nome is q = e2πiτ P ∆, and we wish for

2-periodicity and τ-quasiperioidicity in the first argument of ϑ1, we make the

substitution τ Ñ 2τ and z Ñ πz in θ above and define the variant

ϑ1(z, τ) = ´iq1/8eπiz(q; q)8(e´2πiz; q)8(qe2πiz; q)8 (E.78)

= 2q1/8(q; q)8(qe´2πiz; q)8(qe2πiz; q)8 sin πz (E.79)

= θ1(πz; eπiτ). (E.80)

and the three other variants, ϑi(z, τ) = θi(πz; eπiτ) for i = 2, 3 and 4. Alter-

natively, if we wish to focus on the dependence of q = e2πiτ, we write ϑi(z; q).

That is, ϑi(z; e2πiτ) = θi(πz; eπiz).
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Proposition E.19. The following identities hold:

ϑ1(πz, τ) = ´ieiπ(z+τ/2) ϑ4(z + τ, τ) (E.81)

ϑ2(z; τ) = ϑ1(z + τ; τ) (E.82)

ϑ3(z, τ) = ϑ4(z + τ, τ). (E.83)

Introduce a second nome y = e2πiz P Cˆ. Then we see

ϑ1(z, τ) = ´iq1/8y1/2(q; q)8(y´1; q)8(qy; q)8 (E.84)

= iq1/8(q; q)8 (y´1/2
´ y1/2)(qy´1; q)8(qy; q)8, (E.85)

which descends to a function on Cˆ ˆ ∆. The involution ϑ1(´z, τ) = ´ϑ1(z, τ)

is clear from this representation. By construction,

Proposition E.20. We have the symmetries

ϑ1(z + 1, τ) = ´ϑ1(z, τ) and ϑ1(z + τ, τ) = ´e´πiτ´2πiz ϑ1(z, τ). (E.86)

Proof . Observe that

ϑ1(z + τ, τ)

ϑ1(z, τ)
=

(q´1/2y´1/2 ´ q1/2y1/2)(y´1; q)8(q2y; q)8
(y´1/2 ´ y1/2)(qy´1; q)8(qy; q)8

(E.87)

=
(1´ y´1)(q´1/2y´1/2 ´ q1/2y1/2)(y´1; q)8(qy; q)8

(1´ qy)(y´1/2 ´ y1/2)(y´1; q)8(qy; q)8
(E.88)

= ´q´1/2 y´1. (E.89)

Also, ϑ1(z+1,τ)
ϑ1(z,τ) = θ1(πz+π; eπiτ)

θ1(πz; eπiτ)
= ´1, which completes the proof. �
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Let δ = (m, n) P Z2 act on (z, τ) P CˆH by δ(z, τ) = (z + mτ + n, τ). More

generally, we have the following functional transformation identity. Note that δ

corresponds to a point on the lattice Λτ = Z‘ τZ.

Proposition E.21. For δ = (m, n) P Z2 and (z, τ) P CˆH, we have identity

ϑ1|δ(z, τ) = (´1)n+me´πim2τ´2πimz ϑ1(z, τ). (E.90)

Proof . The identity (a; q)´ν = (´1)ν qν(ν´1)/2 (q/a)ν

(q/a;q)ν
implies the equality

(aq; q)ν (q/a; q)´ν = (´1)νqν2/2 aν (aqν)´1/2 ´ (aqν)1/2

a´1/2 ´ a1/2 (E.91)

for ν P C. Translating z to z + n gives the factor (´1)n, so we need only consider

the ratio

ϑ1(z + mτ, τ)

ϑ1(z, τ)
=

(q´m/2y´1/2 ´ qm/2y1/2)(q1´my´1; q)8(q1+my; q)8
(y´1/2 ´ y1/2)(qy´1; q)8(qy; q)8

(E.92)

=
q´m/2y´1/2 ´ qm/2y1/2

(y´1/2 ´ y1/2)(qy´1; q)´m(qy; q)m
(E.93)

= (´1)mq´m2/2 y´m, (E.94)

where we have used the identity (aqν;q)8
(a;q)8

= (a; q)ν. �

We have thusfar been concerned with transformation identities of ϑ1(z, τ) in

the first argument. Transformation identities in the second argument are more

geometrically rich and provide a bridge to the study of modular functions and

forms. Let γ = (a b
c d) P SL(2, Z) act on (z, τ) P CˆH by γ(z, τ) = ( z

cτ+d , aτ+b
cτ+d ).
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Recall the Jacobi symbol of a P Z with respect to k P N is the product of Le-

gendre symbols, (
a
k

)
=

(
a
p1

)r1

¨ ¨ ¨

(
a
pn

)rn

, (E.95)

where the integer k is given by the prime decomposition pr1
1 ¨ ¨ ¨ prn

n . Recall that

we have defined the following theta functions,

ϑ1(z, τ) = ´i
ÿ

kPZ

(´1)keπi(k+1/2)2τ+πi(2k+1)z (E.96)

ϑ3(z, τ) =
ÿ

kPZ

eπik2τ+2πikz. (E.97)

Proposition E.22. Let ϑ denote either ϑ1 or ϑ3. For γ = (a b
c d) P SL(2, Z) with

ab and cd even, and (z, τ) P CˆH, we have identity

ϑ|γ(z, τ) = ζ8(c, d) (cτ + d)1/2eπicz2/(cτ+d) ϑ(z, τ), (E.98)

where the eight-root of unity ζ8(c, d) is such that

ζ8(c, d) =

$

&

%

i(d´1)/2( c
|d|) c even and d odd

e´πic/4(d
c) c odd and d even.

(E.99)

1036



Thus, the action of γδ = ((m, n), (a b
c d)) P Z2 ˙ SL2(Z) on (z, τ) P CˆH is

given by

γδ(z, τ) = (δ ˝ γ)(z, τ) (E.100)

= δ

(
z

cτ + d
,

aτ + b
cτ + d

)
(E.101)

=

(
z

cτ + d
+ m

(
aτ + b
cτ + d

)
+ n,

aτ + b
cτ + d

)
(E.102)

=

(
z + a1τ + b1

cτ + d
,

aτ + b
cτ + d

)
, (E.103)

where a1 = ma + nc and b1 = mb + nd. Note that this notation allows us to write

γ0 as simply γ, where 0 = (0, 0) is the additive identity in Z2.

E.2.2. Jacobi Forms. We use the notation and convention of [328328, 329329]. Let

y = e2πiz and q = e2πiτ. Define ez
c,d = eπiz/(cτ+d).

Definition E.23. A weak Jacobi form of level 1, weight k P Z and index

ν P Q is a holomorphic function f : CˆH Ñ C satisfying the following:

1. f |γ(z, τ) = (cτ + d)k e2νcz2

c,d f (z, τ) for all γ = (a b
c d) P SL2(Z); and,

2. f |δ(z, τ) = (y2 qm)´mν f (z, τ) for all δ = (m, n) P Z2.

By the transformation identities satisfied by ϑ1(z, τ), we conclude the follow-

ing.

Proposition E.24. The Jacobi Theta Function ϑ1(z, τ) is a weak Jacobi form of

level 1, weight 1
2 and index 1

2 .
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Corollary E.25. For α, β P Cˆ and (z, τ) P CˆH,

ϑ1|γ(αz, τ)

ϑ1|γ(βz, τ)
= eπic(α2´β2)z2/(cτ+d) ϑ1(αz, τ)

ϑ1(βz, τ)
. (E.104)

Corollary E.26. For α, β P Cˆ and (m, n) P Z2, we have

ϑ1(αz + mτ + n, τ)

ϑ1(βz + mτ + n, τ)
= e´2πim(α´β)z ϑ1(αz, τ)

ϑ1(βz, τ)
. (E.105)

Corollary E.27. For α, β P Qˆ, the ratio ϑ1(αz,τ)
ϑ1(βz,τ) is a Jacobi form of level 1,

weight 0 and index 1
2(α

2 ´ β2).

Proof . Suppose f and g are Jacobi forms of level 1, weight k with different

indices ν1 = ν( f ) and ν2 = ν(g). Then we have the symmetries

f |γ(z, τ)

g|γ(z, τ)
= e2c(ν1´ν2)z2

c,d
f (z, τ)

g(z, τ)
(E.106)

f |δ(z, τ)

g|δ(z, τ)
= (y2 qm)´m(ν1´ν2)

f (z, τ)

g(z, τ)
(E.107)

and therefore conclude that h = f
g is a Jacobi form of level 1, weight 0 and index

ν = ν1 ´ ν2. For α, β P Cˆ, γδ = ((m, n), (a b
c d)) P Z2 ˙ SL2(Z) and (z, τ) P CˆH,

we have the identity

ϑ1|γδ
(αz, τ)

ϑ1|γδ
(βz, τ)

= e´2m(α´β)z+c(α2´β2)z2

c,d
ϑ1(αz, τ)

ϑ1(βz, τ)
. (E.108)

Thus, the claim follows immediately. �
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E.3. Theta Functions with Rational Characteristics

For r, s P Q, define the following two-parameter theta function

ϑr,s(z, τ) =
ÿ

kPZ

eπi(k+r)2τ e2πi(k+r)(z+s). (E.109)

Taking r = s = 1
2 [328328], we have

ϑ 1
2 , 1

2
(z, τ) =

ÿ

kPZ

eπi(k+1/2)2τ e2πi(k+1/2)(z+1/2) (E.110)

= i
ÿ

kPZ

(´1)keπi(k+1/2)2τ e2πi(k+1/2)z (E.111)

= ´ϑ1(z, τ). (E.112)

E.4. q-Theta Function

For |q| ă 1 and w P C, define the q-theta function**

θq(w) = (w; q)8(qw´1; q)8. (E.113)

Note that θq(w) = θq(qw´1) = ´wθq(w´1) and

ϑ1(z, τ) = ´iq1/8y1/2(q; q)8 θq(y´1) (E.114)

= iq1/8y´1/2(q; q)8 θq(y), (E.115)

where y = e2πiz and q = e2πiτ.

*The notation θq should not be confused with θ defined at the beginning of the section.
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Proposition E.28. For α, β P Cˆ, we have the limits

lim
zÑ0

ϑ1(αz, τ)

ϑ1(βz, τ)
=

α

β
= lim

zÑ0

θq(e2πiαz)

θq(e2πiβz)
q = e2πiτ. (E.116)

Proof . The first equality follows from the identity

ϑ1(αz, τ)

ϑ1(βz, τ)
=

θ1(απz; eπiτ)

θ1(βπz; eπiτ)
. (E.117)

The second equality follows from the identity

θq(e2πiαz)

θq(e2πiβz)
= eπi(α´β)z ϑ1(αz, τ)

ϑ1(βz, τ)
. (E.118)

�
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D imension, Fund. Math. 25 427–440 (1935). [8888]

[210] Hill, M. A., Hopkins, M. J., and Ravenel, D. C., On the Non -Existence of Ele -
ments of Kervaire Invariant One, arXiv:0908.3724 [math.AT] (2010). [301301]

[211] Hopkins, M. J., Algebraic Topology and Modular Forms, Proceedings of the
ICM, Beijing 1 283–309 (2002).

[212] Horn, R. and Johnson, C. R., Matrix Analysis, Cambridge Univ. Press, Cambridge,
UK (1985). [178178]

[213] , Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, UK (1991).
[178178]

[214] Hoste, J., Torus Knots are Fourier- (1 ,1 ,2 ) Knots, arXiv:0708.3590 [math.GT]
(2007). [261261]

[215] Hungerford, T. W., Algebra, Graduate Texts in Mathematics 73, Springer-Verlag, New
York, NY (1974, 2003). [134134]

[216] Hurwitz, A., Zur Invariantentheorie, Math. Annalen 45 381–404 (1894). [179179]

1059
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Intégrales, Bull. Soc. Math. France 93 333–367 (1965). [iiiiii], [1616], [7676]

[375] Picantin,M., Automatic Structures for Torus L ink Groups,
arXiv:math/0111079 [math.GR] (2001). [245245]

[376] Pick, G., Geometrisches zur Zahlentheorie ., Sitzenber. Lotos, Prague 19 311–319

(1899).

1071



[377] Pichon, A., Real Analytic germs f ḡ and Open -book Decompositions of
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Aust. Math. Soc. 81 343–349 (2010).

[454] Teissier, B., Variétés Polaires . I . Invariants Polaires des S ingularités

d ’Hypersurfaces Invent. Math. 40 3, 267–292 (1977). [104104], [160160], [370370]

[455] Tenenbaum, G., Introduction to Analytic and Probabilistic Number

Theory, Cambridge Univ. Press, Cambridge, UK (1995).

[456] Titchmarsh, E. C., The Theory of the R iemann Zeta-Function, 2nd Ed., Revised
by D. R. Heath-Brown, Oxford Science Publications, Oxford. Univ. Press (1951, 1986).
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Postface

What is best in mathematics deserves not merely to be learned as a task, but
to be assimilated as a part of daily thought, and brought again and again
before the mind with ever-renewed encouragement. Real life is, to most men,
a long second-best, a perpetual compromise between the real and the possible;
but the world of pure reason knows no compromise, no practical limitations,
no barrier to the creative activity embodying in splendid edifices the passion-
ate aspiration after the perfect from which all great work springs. Remote
from human passions, remote even from the pitiful facts of nature, the gen-
erations have gradually created an ordered cosmos, where pure thought can
dwell as in its natural home, and where one, at least, of our nobler impulses
can escape from the dreary exile of the natural world. — B. Russell

E.4.1. Errata. In an attempt to write a self-contained and interdisciplinary

treatise, I have included substantial background material and an extensive bibli-

ography (covering all three volumes). I have taken great care (and even greater

grief) to establish a smooth, connected and relatively elementary presentation.

Such an enormous undertaking requires equally daunting, aggressive and

continued revision often yielding innumerably distinct versions. Continuing

in this manner with the aim of utter perfection is not only futile but also ulti-

mately incompatible with the timely completion of a doctorate. The present work

is therefore a draft composition that should be read critically and with caution.

This draft version is dated: March 2013.
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Errata, typographical or otherwise, are to be expected, so a corrigendum

shall be written. Should the dear reader be so moved to action by the discovery

of such abominable creatures, contacting the author is well-advised, welcomed

and certainly appreciated. The most current version of this work can be ob-

tained directly from the authorauthor.

E.4.2. Colophon. This document was prepared, compiled and formatted by

the author using LATEXLATEX and its derivatives AMS-LATEX and XeTeX (via TeX LiveTeX Live

2010–2012 for Mac OS X) with the amsartamsart document class and mathpazomathpazo

(Palatino) font type with fncychapfncychap (modified Lenny) chapter style. For easier

navigation, we use the hyperrefhyperref package for both internal and external hyper-

linking of table of contents, indices, parts, chapters, sections, subsections, propo-

sitions, corollaries, equations, tables, figures, citations and urls, etc., to their

respective labels. The formatting of this work conforms to the Form of the

PhD D issertation (January 2013) written by the Graduate School of Arts

and Sciences (GSAS) at Harvard University, including those additional guide-

lines mandated by the Registrar’s Office.

The author has made extensive use of the technical computing software

MathematicaMathematica for numerical calculations and the computer algebra system

SingularSingular for computing singularity type, Jacobi ideals, local algebras and re-

lated numerical invariants.

The ornate borderornate border on the front (volume) cover page is a modified reproduc-

tion from W. R. Tymm and Sir M. Digby Wyatt’s The Art of Illuminating
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as practised in Europe from the Earliest Times : Illustrated

by Borders , Initial Letters , and Alphabets (1860). The rose imagerose image

in the preface is an unmodified reproduction from Blackie ’s L ittle Ones ’

Annual : Stories and Poems for L ittle People (1890). Most of the

knot and link diagrams in Volume 1 can be found in Wikimedia Commons and

are considered non-copyrighted, within the public domain and subject to fair

use [389389].

The figure of torus links ordered by crossing number was drawn using

the knot/links graphing suite KnotPlotKnotPlot [418418]. The figure of the five platonic

solids was drawn using Polyhedra Stellation AppletPolyhedra Stellation Applet [7373]. Unless stated oth-

erwise, the remaining figures were drawn by the author using a combination of

MathematicaMathematica, OmnigraffleOmnigraffle, and LATEXiTLATEXiT.

E.4.3. Veritate. Despite what is written on the official title page—a require-

ment to receive the doctoral degree—the subject matter of this work is clearly

Mathematics and Mathematical Physics. Moreover, it was written in the Lyman

Physical Laboratory in the Department of Physics at Harvard University.

E.4.4. Tractus. The dear reader may well wonder—rightly so—why this

work is rather lengthy. I offer the following Aesopean fable as my reply.
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The Boy and the Nettles**

While gathering berries from a hedge, a boy’s hand was stung by
a nettle. He ran to his mother, and with great agony said to her, “I
touched a nettle ever so slightly! Why does it hurt so?” “This, my
dear boy, is why you got stung,” she replied. “Had you grasped it
boldly, with all of your might, it wouldn’t have hurt you in the least.”

Figure E.1. A Common Nettle (Urtica dioica) [389389]

*Adapted from Aesop ’s Fables as translated by V. S. Vernon Jones.
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Sit Finis Libri,Non Finis Quaerendi
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