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INVESTIGATION

Extending Coalescent Theory to Autotetraploids

B. Arnold," K. Bomblies, and J. Wakeley

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138

ABSTRACT We develop coalescent models for autotetraploid species with tetrasomic inheritance. We show that the ancestral genetic
process in a large population without recombination may be approximated using Kingman's standard coalescent, with a coalescent
effective population size 4N. Numerical results suggest that this approximation is accurate for population sizes on the order of
hundreds of individuals. Therefore, existing coalescent simulation programs can be adapted to study population history in autote-
traploids simply by interpreting the timescale in units of 4N generations. We also consider the possibility of double reduction,
a phenomenon unigue to polysomic inheritance, and show that its effects on gene genealogies are similar to partial self-fertilization.

OLYPLOIDY, which results from whole-genome duplica-

tion, is a significant evolutionary force throughout the
tree of life. It is particularly widespread in higher plants but
also occurs in fishes, amphibians, reptiles, insects, and even
a mammal (Sexton 1980; Gallardo et al. 1999; Leggatt and
Iwama 2003; Gregory and Mable 2005). In plants, estimates
of the proportion of angiosperm species that have experi-
enced genome doubling during their evolutionary history
vary from 30 to 100% (Stebbins 1950; Grant 1981; Masterson
1994; Ciu et al. 2006), and polyploidy is thought to be a potent
mechanism of sympatric speciation (Wood et al. 2009).

Polyploids can arise via interspecific hybridization (allopo-
lyploids) or intraspecific genome duplication (autopolyploids),
e.g., through the fusion of unreduced gametes (Stebbins
1947). Allopolyploids, born from the union of distinct
genomes, frequently exhibit bivalent pairing and disomic
inheritance. As a result, the duplicated chromosome sets
are only partially homologous (homeologous) and follow
separate evolutionary paths if they do not pair and recom-
bine. Conversely, autotetraploids contain four nondiverged
sets of chromosomes that are fully homologous. During
meiosis, these homologs may form multivalents or biva-
lents with random chromosome pairing, resulting in tetra-
somic inheritance in both cases.
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Autotetraploids were once thought to be vanishingly rare
compared to allopolyploids, but they are much more common
than previously suspected (Soltis et al. 2007). Numerous wild
plant species have been demonstrated to exhibit tetrasomic
inheritance with random chromosome pairing, despite form-
ing only bivalents at meiosis I (Supporting Information, Table
S1 and references therein; Soltis et al. 2007). However, allele
segregation in autopolyploids can become much more com-
plex than that in diploids when chromosomes form multiva-
lents from crossing over with more than one homolog during
meiosis, as this may lead to double reduction. Double re-
duction occurs when multivalents are resolved such that
segments of sister chromatids migrate to the same pole at
meiosis I, allowing, for example, an ABBB genotype to pro-
duce AA gametes (Haldane 1930; Mather 1935). Among
cytologically characterized natural autotetraploid plants,
multivalent formation is less common than bivalent pairing
but is still present in enough species to merit attention in
theoretical models.

The body of literature on theoretical population genetics
of polyploids has grown but is still very small in comparison
to the work done on diploids (Bever and Felber 1992; Otto
and Whitton 2000). Studies have characterized equilibrium
genotype proportions (Haldane 1930), genetic drift, and
levels of genetic variation (Wright 1938; Moody et al.
1993), as well as population structure of autotetraploid pop-
ulations (Ronfort et al. 1998; Luo et al. 2006). A few studies
have considered the effects of double reduction on the equi-
librium frequencies of neutral and deleterious alleles (Crow
1954; Butruille and Boiteux 2000). The gene genealogical or
coalescent approach to population genetics (Hudson 1983;
Tajima 1983) has proved a useful framework for interpreting
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genetic variation. Coalescent models have been applied to
data from tetraploid species, but the justification for this has
not been elucidated. The ability to extract all the information
from a set of DNA sequences collected from natural popula-
tions will help answer questions about autopolyploid evolu-
tion. For example, do most autopolyploids experience severe
bottlenecks from the formation event? How many indepen-
dent formation events do most autopolyploid species experi-
ence? Is there gene flow between ploidy levels? How old are
these autopolyploid populations and how evolutionarily stable
is tetrasomic inheritance? What does genome structure look
like in natural populations, in terms of evolutionarily impor-
tant parameters such as the population mutation and recom-
bination rates?

Despite the increasing awareness of autopolyploidy, the
burgeoning advances in DNA sequencing technology, and
the utility of these data for studying evolution, few studies
have analyzed nuclear DNA sequence variation in natural
populations of autotetraploids (Tiffin and Gaut 2001;
Jorgensen et al. 2011; St. Onge et al. 2012). Here we develop
a coalescent model for autotetraploids to facilitate the analysis
of DNA sequence data. Specifically, we derive the coalescent
effective population size (Sjodin et al. 2005) for autotetraploid
species. We consider both double reduction and the possibility
of partial selfing. Our mathematical results hold in the limit as
the population size tends to infinity, but we show that they are
numerically very accurate when the population size is only
moderately large (in the hundreds). These results provide
a mathematical framework to explicitly model DNA sequence
evolution in autotetraploid populations, which may be
employed to estimate mutation and recombination rates,
infer ancestral demography, and detect various types of selec-
tion from DNA sequence data sets of diploids. In short, we
show how standard coalescent models or simulations may be
applied to autotetraploids with only minor modification, thus
allowing for detailed predictions to be made about patterns of
genetic variation and for population history and the evolution-
ary forces acting on natural populations to be inferred from
DNA sequence data.

Theory

Kingman (1982a,b) gave a formal proof of the existence of
what he called the “n-coalescent”—now simply coalescent
or Kingman’s coalescent—as the ancestral genetic process
for a sample from a large haploid population. Specifically,
for a genetic locus at which all variation is selectively neutral
and there is no intralocus recombination, the genetic ances-
try of a sample of size n may be modeled as a process in
which each pair of lineages ancestral to the sample “coales-
ces” with rate equal to one. Derivations of the coalescent
begin with the computation of single-generation probabili-
ties (i.e., of coalescence) and then proceed by taking a limit
as the population size (N) tends to infinity, rescaling time in
units proportional to N generations so that a coalescence
rate of one per pair of lineages is obtained. Coalescent mod-
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els have been extended to include population subdivision
and migration, changes in population size over time, recom-
bination, and natural selection. Efficient software is avail-
able to simulate samples of genetic data (Hudson 2002;
Ewing and Hermisson 2010).

Kingman’s derivation of the coalescent is valid only for
haploid population models (this includes the diploid mon-
oecious Wright-Fisher model, because it can be reduced to
a haploid model). In particular, Kingman assumed that ge-
netic lineages are “exchangeable” as in the haploid popula-
tion models of Cannings (1974). The general formalism for
treating diploids or other (nonexchangeable) population
structures was developed by Mohle (1998a,b,c). It has
been applied in a variety of situations to show that King-
man’s coalescent is robust to deviations from Kingman’s orig-
inal assumptions, but also to describe an augmented set of
ancestral genetic processes that are closely related to King-
man’s coalescent; see Wakeley (2008) for a review. Here
we use Mohle’s technique to derive the ancestral genetic
process at a single neutral locus without recombination in
an autotetraploid species.

Sample size of two chromosomes

Consider a Wright-Fisher population of N autotetraploid,
monoecious individuals that create gametes via tetrasomic
inheritance with no recombination (i.e., no double reduc-
tion, which is considered later). That is, an individual with
four distinct alleles at a locus produces ( ‘2‘) = 6 kinds of game-
tes, each with equal frequency. Generations are nonoverlap-
ping. Each of the N offspring that form the next generation is
created by the union of two gametes sampled randomly with
replacement from all possible gametes of the parental gener-
ation. Thus each individual is produced by selfing with prob-
ability 1/N. Due to the added structure in which each gamete
contains two distinct parental copies of each locus, and in
contrast to the diploid monoecious case, samples of chro-
mosomes from a tetraploid species are not exchangeable.
In particular, the conditional probability of coalescence
depends on whether two genetic lineages are within the
same individual or in separate individuals. For example, with-
out recombination and double reduction, two lineages cannot
coalesce in the immediately previous generation if they are
within the same individual and came from the same gamete.

We can construct a single-generation transition matrix P
for an ancestral process that accounts for the specific details
of tetrasomic inheritance by setting up an absorbing Markov
chain that has three states for a sample size of n = 2: (1)
two distinct lineages within the same individual, (2) two
lineages in separate individuals, and (3) a single lineage
that is the common ancestor of the two lineages. As we trace
them back in time, the two lineages may travel between
states one and two until they ultimately coalesce. Transition
probabilities are calculated by conditioning on two pieces of
information: whether lineages came from the same gam-
ete in the previous generation and the particular pattern
of ancestry.



For instance, if both lineages are in the same individual
(state 1), they coalesce in the previous generation if they
came from different gametes (probability 2/3) produced by
the same parent (probability 1/N) and trace back to the
same chromosome in that parent (probability 1/4) (see Fig-
ure 1). Thus, P; 3 = 1/6N. This is in agreement with Wright
(1938), who showed that the “proportion of unlike pairs of
genes” decays by a factor of 5/6 for self-fertilizing autote-
traploids. If two lineages are in separate individuals (state
2), the probability of coalescence must be computed for
all possible patterns of shared ancestry that potentially
result in identity by descent (Table S2), with the marginal
probability of coalescence being P,3; = 1/4N after
simplification.

Applying the same logic to calculate the probabilities of
other possible transitions, we get the following 3 x 3 single-
generation transition matrix P with states 1, 2, and 3 repre-
sented by rows one, two, and three, respectively:

This matrix describes the exact, discrete-time ancestral
process for the two lineages. As in Kingman’s coalescent,
we seek a continuous-time approximation that will be
accurate when the population size is large. Specifically,
we take the limit N — oo, with time rescaled by N, to test
whether the ancestral limit process converges to King-
man’s coalescent.

Mohle (1998a) obtained a useful convergence result for
Markov processes with two timescales such as the one de-
scribed by the matrix above. Since P contains terms that be-
come increasingly different in the limit N — oo, we can use
Mohle’s result to construct a continuous-time approximation.
We rewrite P in three parts, such that

S 1
P7F+N+O(ﬁ), @))]
where F = limy_, .,P and S = limy_, ,N(P — F). Matrix F
contains the “fast” events that occur frequently on the time-
scale of the original discrete-time process (i.e., the movement
of lineages from within to between gametes), whereas matrix
S contains the “slow” events (i.e., coalescence). The terms in
S/N become very small as N tends to infinity. These events
occur on the timescale of N generations. While Mohle’s result
allows for additional terms, of 0(1/N), which tend to zero more
quickly than 1/N, in our case these terms are equal to zero.
If the matrix E = lim,_, F’ exists, the continuous-time
approximation to our ancestral process involves the fast
events instantaneously reaching their equilibrium (E), after

Figure 1 A diagram of a tetraploid individual, showing the two diploid
gametes that united to create it. If chromosomes are sampled without
replacement, after the first lineage is sampled, with probability 2/3 we
sample the second lineage from a different gamete, which came from the
same parent with probability 1/N (where N is the population size), assum-
ing random mating. Conditional on these events, these two sampled
lineages coalesce with probability 1/4.

which they enter the slower process of coalescence de-
scribed by rate matrix G = ESE (Mohle 1998a). More for-
mally, Mohle’s Theorem 1 (Mohle 1998a) states that the
rescaled ancestral process converges to limy _, PN =
EetS. Together matrices E and G describe the rescaled an-
cestral process, with time measured in units of N genera-
tions. Applying this theorem to our discrete-time matrix
above, we have

o 1 2 1
- Z 0 2 3 6
3 3
F=lo 1 of and S=[3 _, 1
4 4
0 0 1
0 0 0
such that
1 1
010 © ~7 3
E=|(0 0 andG:O_ll.
0 0 1 4 4
0 0 O

Here, we see that if lineages2 start out in state 1 (within
the same individual), they may remain in that state if they
came from the same gamete (F; ;) or different gametes from
the same parent (S; ;). However, our continuous-time ap-
proximation for large populations shows that the number of
generations the lineages remain in state 1 is negligible on
the timescale of N generations, so they immediately travel to
separate individuals (from state 1 to state 2 since E; , = 1).
Once in state 2, the pair of lineages enter the coalescence
process given by G, which is a simple exponential process in
which coalescence occurs with rate equal to 1/4 (on the
timescale of N generations), which agrees with forward-time
models of autotetraploid populations (Moody et al. 1993). If
time is rescaled again, by the constant factor 4, so that 1 unit
of time is equal to 4N generations, then the rate of coales-
cence is one, just as in Kingman’s coalescent. That is, we
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Table 1 Markov states that account for all possible configurations of four lineages in an autotetraploid population,
with two types of absorbing states to assess the relative probabilities of single- and multiple-coalescence events

State

Description

NoubhwN =

All four lineages within the same individual

Three lineages within the same individual and one lineage in a separate individual

Two pairs of lineages, each within the same individual

Two lineages within the same individual and the other two each in separate individuals
All four lineages in separate individuals

Three lineages remain after a single-coalescence event

One or two lineages remain after a multiple-coalescence event

have shown for a sample size of 2 that the coalescent process
for an autotetraploid species without double reduction con-
verges to the same limiting ancestral process as that of a hap-
loid population model when the coalescent effective size is
defined as N, = 4N.

Extension to larger samples

Convergence to Kingman’s coalescent for a sample of size 2
does not guarantee convergence for larger samples. It must
also be true that pairwise coalescent events dominate the
limiting ancestral process (Mohle and Sagitov 2001). In the
case of an autotetraploid without double reduction, we must
check that multiple coalescent events between lineages within
a single individual are negligible in the limit N — o. For
example, four lineages within a single individual will coa-
lesce in two pairs in the immediately previous generation
with probability 1/6N, which is of the same order of mag-
nitude as the rate of pairwise coalescence. In fact, such
events become negligible in the limit because four lineages
in a single individual will be overwhelmingly more likely to
be descended from two pairs of lineages in two different
individuals. We show this by briefly repeating our previous
analysis, using Mchle’s (1998a) technique, or Equation 1,
but for a sample of n = 4.

We construct this more complicated ancestral process by
defining a new absorbing Markov chain with seven states
that include all possible configurations of four lineages.
Transient states 1-5 account for all possible ways lineages
can be distributed within and between individuals (Table 1).
States 6 and 7 are both absorbing, with the former repre-
senting single, pairwise coalescence events and the latter
defined to include all possible multiple-coalescence events.
States 6 and 7 are absorbing in the sense that here we are
concerned only with the process during which there are four
ancestral lineages. However, the coalescent process resumes
on the remaining ancestral lineages, if more than one remain,
with a new transition matrix appropriate for the smaller sam-
ple size. As in the derivation for n = 2, transition probabilities
between states can be calculated by conditioning on patterns
of ancestry. All possible patterns for four lineages, along with
their associated conditional transition probabilities, are shown
in Table S3.

We obtain a new P that is now the 7 x 7 single-generation
transition matrix for a sample of size n = 4 (not shown). The
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continuous-time approximation for a large population is
obtained by applying Mohle’s (1998a) theorem, decompos-
ing P into three separate matrices that contain events that
occur on different timescales, as done above. In the limit as
N— o, with time rescaled in N generations, we obtain mat-
rices E and G that describe the ancestral process:

0 00 O0O1O0O0
0 00 O0O1O0O0
0 0001 O0O0
E={0 0 0 0O1 0O
0 0001 O0O0
0 00 0O0OT1FPO
|0 00O OO O 1]
and
[0 0 0 0 —3/2 3/2 0]
0 00 0 —-3/2 3/20
0 00 0 —-3/2 3/20
G=(0 0 0 0 —3/2 3/2 0
0 00 0 —-3/2 3/20
0 00 0 —-3/2 3/20
|10 00O 0O —3/2 3/2 0]

Similarly to the process for n = 2, there is an instantaneous
adjustment of the sample to a state in which all lineages are
in separate individuals (here state 5), independent of the
starting state. The sample then enters the continuous-time
process given by G, in which the rate of single coalescence
events, on the timescale of N generations, is six times greater
than in the case of n = 2, or 6 x (1/4) = 3/2. This is identical
to Kingman’s coalescent, in which coalescence times are
exponentially distributed and occur with rate equal to the
number of pairs of lineages: (‘2‘)

Our result is analogous to the one obtained by Mohle
(1998b) for a diploid dioecious population. In the diploid
case, even though two lineages in a single individual cannot
coalesce in the previous generation (thus violating the ex-
changeability assumption of Kingman’s coalescent), lineages
quickly assume a state in which each is in a separate indi-
vidual, and the long-term coalescence rate is equal to one
per pair of lineages when time is measured in units of 2N
generations. In the tetraploid monoecious case, although
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Figure 2 The probability of a single coalescence event, conditional on an
absorbing event, given the process started in state 1 (blue) or state 5 (red)
for N up to 1000 autotetraploid individuals.

lineages may travel together in gametes for some number of
generations without coalescing, they are overwhelmingly
more likely to become scattered such that each is in a sepa-
rate individual, and the long-term coalescence rate is equal
to one per pair of lineages when time is measured in units of
4N generations.

Accuracy for finite N

Although the continuous-time approximation applies in the
limit as population size tends to infinity, we want to know
the validity of this approximation for smaller, finite pop-
ulations. All the information about the ancestral process is
contained in the single-generation transition martix P, so we
can analyze the dynamics of this discrete-time process for a
range of population sizes and compare them to the continuous-
time approximation that allows only single coalescent events.
We investigate the accuracy of two key features of the lim-
iting ancestral process: that coalescence events occur pre-
dominantly between pairs of lineages and that the majority
of the ancestral process before coalescence is spent in state
5 (i.e., with all lineages in separate individuals, making them
exchangeable).

We can do this using standard theory of absorbing
Markov chains, for example in Chap. 11 of Grinstead and
Snell (1997), by writing the transition matrix in canonical
block form,

St
o I}

in which Q is a 5 x 5 matrix of transition probabilities among
transient (noncoalescent) states, R is a 5 x 2 matrix of tran-
sition probabilities from transient to asborbing (coalescent)
states, 0 is a 2 x 5 zero matrix, and I is the identity matrix (in
this case 2 x 2). Then, for each starting state, the 5 x 5
matrix inverse N = (I — Q)~! contains the expected num-
bers of generations spent in each transient state before ab-

0.75 —

0.50 —

0.26 —

Proportion of Time (generations)

2 10 100 1000

Log Population Size

Figure 3 The expected proportion of generations the Markov chain
spends in state 1 (blue), state 2 (orange), state 3 (red), state 4 (green),
or state 5 (black) for a range of population sizes. Here the process starts in
state 1 but spends a vast majority of its time in state 5, even for small
populations. These proportions were calculated from matrix N (see text).
Note that state 4 is possible only when N = 3 and state 5 is possible only
when N = 4.

sorption and the 5 x 2 matrix product NR contains the
probabilities of absorption in each absorbing state.

In terms of how genetic data are typically sampled,
there are two extreme starting states for the process: state
1 or state 5, in which a biologist samples all chromosomes
from a single autotetraploid individual or one chromo-
some from each of four individuals. Given these starting
states, the probability of a single coalescence event (absorbing
to state 6 rather than state 7) is plotted in Figure 2 for
a range of population sizes, indicating rapid convergence
to an ancestral process involving predominantly pairwise
coalescence events. Likewise, Figure 3 shows that the frac-
tion of time spent in state 5 (when all lineages are in
separate individuals) approaches one quickly as the pop-
ulation size increases. In Figure 3 the sample is assumed
to start in state 1, which may be considered the farthest
from the transient equilibrium (state 5) of the limiting
ancestral process. From Figures 2 and 3, we conclude that
the limiting ancestral process for a sample of size n = 4
should be quite accurate as long as the population size
is > ~100.

Extension to arbitrary sample size n

An exact calculation for larger sample sizes is not practical
given the complexity of the model with n = 4. However,
a strong heuristic derivation can be made based on the fact
that when n < N, events that occur with probability O(1) or
O(1/N) per generation will dominate the ancestral process.
In short, if n lineages are in fewer than n individuals, the
most probable events are O(1) and these send the lineages
into different individuals. If instead each lineage is in a sep-
arate individual, the most probable events are O(1/N) and
these bring lineages into the same individual, possibly to
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coalesce. Due to the O(1) transition probabilities, the chance
that n lineages will ever be in fewer than n — 1 individuals
(other than when they are originally sampled) is negligible
ifn < N.

Thus, starting with n lineages in n individuals, we can
accurately summarize the process using a Markov chain with
just three states: (1) n lineages are within n — 1 individu-
als, (2) n lineages remain in n individuals, and (3) n — 1
lineages are arrived at by a coalescent event (see Table S4).
We have

Applying Mohle’s (1998a) theorem, we obtain matrices E

and G,
o (3)s (3)s
01 0 2/4 2)4
E=|0 1 O and G = n\ 1 n\1|{,
0 0 1 o (5)s (5)s
| 0 0 0 |

which demonstrates that the ancestral process, starting
either in state 1 or in state 2, corresponds to Kingman’s
standard n-coalescent if time is measured in units of 4N
generations.

An ancestral process with double reduction

Autotetraploids contain four sets of homologous chromo-
somes, and crossovers may potentially occur among any of
them. When more than one crossover arises per chromo-
some, they may involve different pairing partners and create
multivalents at metaphase I. Depending on how chromo-
somes segregate, double reduction may occur at a partic-
ular locus if there is a crossover between this locus and the
centromere (Mather 1935, 1936; Crow 1954). Retrospec-
tively, these lineages are automatically identical by descent
(i.e., they coalesce) in the previous generation. This is
qualitatively similar to the case of partial selfing studied
by Nordborg and Donnelly (1997) and Mo6hle (1998a), in
which lineages within a single individual may coalesce in
the immediately previous generation if the individual was
produced by selfing.

Multivalent formation is a necessary precursor for double
reduction (Mather 1935). Most established autotetraploids
form bivalents at meiosis (see Table S1) almost certainly
because multivalents are associated with aneuploid gametes
and thus reduced fitness of progeny (reviewed in Comai
2005). Double reduction is thus a phenomenon primarily
of newly formed autotetraploids that have not adapted to
a genome-doubled state, but individuals capable of correctly
segregating multivalents could theoretically be selected for
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(Comai 2005). Depending on how meiotic mechanisms
evolve in a particular autotetraploid species, double reduc-
tion may not occur over long enough periods of evolutionary
time (i.e., on the coalescent timescale of N generations) to
have a significant effect. Nonetheless, the presence of double
reduction in at least some natural autopolyploids means that it
merits consideration. We use Mohle’s technique here as well,
with n = 2, to study the effects of double reduction on the
coalescent process.

Consider a locus at some distance from the centromere,
such that recombination may occur between them. For
simplicity, we assume that recombination does not occur
within the locus under consideration. Following Stift et al.
(2008), the frequency of double reduction («) has a the-
oretical maximum value of 1/6, assuming that chromosomes
always form quadrivalents and one crossover occurs between
the locus and the centromere. With probability 1/3, the
recombined chromosomes migrate to the same pole dur-
ing meiosis I (assuming all chromosome pairs are equally
likely to segregate), and the probability that the two sister
chromatids also migrate to the same pole during meiosis II
is 1/2. Double reduction can be less than this maximum if
recombination between the locus and the centromere does
not occur in every multivalent association (i.e., the locus is
distal to the centromere) or if chromosomes form bivalents
with some probability at meiosis I. Thus, o may range from
0 to 1/6 and will differ between loci.

To study an ancestral process for n = 2 that includes
double reduction, we define an absorbing Markov chain
with the same three states used previously. The resulting
matrix looks very similar to the one for tetrasomic inheritance:

-l*a_’_l 2_2 oz_l_l-

3 2N 3 3N 3 6N
P= 3 1_1 1
4N N 4N
0 0 1

This shows that double reduction increases the probability
of coalescence from state 1 by an amount «/3. Since double
reduction does not affect lineages that came from separate
gametes, the transition probabilities for state 2 are un-
changed. When in state 1, if lineages came from the same
gamete in the previous generation, which occurs with prob-
ability 1/3, there is a chance « that they were sister chro-
matids in the immediately previous generation and thus
coalesce. Importantly, the chance of this novel transition
when lineages are in state 1 does not depend on the pop-
ulation size N. There is no reason to suppose that « is small,
and we assume that it is a constant when we take the limit
N — o, Using Mohle’s (1998a) theorem to obtain a continu-
ous-time approximation on the timescale of N generations, we
have
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Unlike the previous models above, coalescence is now
possible in both the fast and slow processes. On the limiting
timescale of N generations, lineages may instantaneously co-
alesce instead of moving directly to state 2. This will create an
association of alleles within individuals. Once in state 2, line-
ages will remain in this state for a majority of their ancestry
but coalesce at a rate faster than 1/4 when time is measured
in units of N generations. Thus double reduction decreases the
long-term coalescent N.. In addition, a single exponentially
distributed rate of coalescence (i.e., the Kingman coalescent)
is not sufficient to capture all the dynamics of an ancestral
process with double reduction; with time rescaled in units
proportional to N generations, lineages may coalesce instan-
taneously if they were sampled from the same individual.

As previously mentioned, these effects are also observed
in the coalescent process with partial self-fertilization
(Nordborg and Donnelly 1997; Mohle 1998b). However, the
two models are not identical for tetraploids. In File S1, we
extend our model of coalescence for autotetraploids without
double reduction to included partial selfing, with probability s.
We find that the maximum rate of double reduction (o« = 1/6)
produces the same ancestral process as one with s = 1/4, but
that there are slight quantitative differences between the two
models. Figure 4 shows the relationship between s and «, in
terms of the parameter values that give the same coalescent
Ne. The relationship is only slightly nonlinear; though mech-
anistically distinct, selfing and double reduction have very
similar effects on patterns and levels of genetic variation.

The coalescent with double reduction for abitrary n

Consider a sample of n alleles from a population such that k
individuals contain two alleles, [ individuals contain three al-
leles, m individuals contain four alleles, and n — 2k — 31 — 4m
alleles are in separate individuals. Unlike the extension to ar-
bitrary n for the model above, coalescence events may occur
with O(1) if double reduction is possible. Thus, the instan-
taneous adjustment of the sample involves both the move-
ment of lineages from within to between individuals and
coalescence events. After this instantaneous adjustment, the

1/4 —

1/6 —

Selfing rate

—_
~
iy
N

0 118 1/9 1/6

Probability of Double Reduction

Figure 4 The slightly nonlinear relationship between double reduction
and self-fertilization. The maximum probability of double reduction (1/6)
corresponds to a selfing rate of 1/4.

remaining lineages are in separate individuals and coalesce
with probability O(1/N).

The number of instantaneous coalescence events depends
on the sample configuration, i.e., the number of lineages
within an individual. Following Nordborg and Donnelly
(1997), for each of the k individuals that contain two line-
ages, the number of instantaneous coalescence events is X ~
Binomial(k, o/ (o + 2)), with the probability of coalescence
calculated above from the analysis with n = 2. For the
[ individuals that contain three lineages, the number of instan-
taneous coalescence events is Y ~ Binomial(l, 3o/ (ax + 2)):
two of the lineages must come from the same gamete and
coalesce with probability o, but if they do not coalesce with
probability 1 — «, then they coalesce in previous generations
from double reduction with probability (o/(a + 2)). Thus, the
overall probability of coalescence is o + (1 — a)(a/ (a0 + 2)) =
3a/(a + 2). Applying the same logic to the m individuals with
four lineages (see File S1), the number of coalescence events is
Z = (Zy, Z,, Z3) ~ Multinomial(m, p = (p1, p», p3)). Here, Z;
is the number of single coalescence events that occur with
probability p; = 12a(1—«)/(a + 2)? Z is the number of dou-
ble coalescence events that occur with probability
p2 = 9a2/(a + 2)?, and Z; is the number of times no line-
ages coalesce (i.e., four lineages within an individual get
separated into four distinct individuals) with probability
ps = 4(a—1)%/(a + 2)*. The numbers of lineages that remain
after this instantaneous adjustment,n — X — Y — Z; — 2Z,,
are in separate individuals and enter the slow process of
coalescence with rate (" X7V 47%)(1/4 4 3a/4(a + 2)) if
time is measured in units of N generations. The coalescence
rate calculated here is the same as above for n = 2 but
applied to each pair of remaining lineages.

Discussion

Autotetraploids with tetrasomic inheritance have long been con-
sidered vanishingly rare but now are increasingly recognized
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as a common phenomenon in plant evolution (Soltis et al.
2007). Many established polyploid species or populations
have been shown to have tetrasomic inheritance (Table
S1). Nuclear DNA sequence data will provide invaluable in-
sight into many unknown aspects of autopolyploid evolu-
tion, such as the process of formation and establishment
from relatively few individuals that are at least partially re-
productively isolated from their diploid progenitor. Here, we
extend the coalescent, a widely used model in population
genetics and phylogenetics, to autotetraploid populations
to aid in the analysis of DNA sequence data sets from these
species.

Our results show that, although tetrasomic inheritance
creates additional configurations of lineages that have
unique probabilities of coalescence compared to those for
diploid organisms, the ancestral process for autotetraploids
without double reduction converges to Kingman’s haploid
coalescent model with time rescaled by 4N generations. In-
tuitively, this convergence occurs because in a large, panmictic
population ancestral lineages quickly get separated to differ-
ent individuals such that the sample spends a majority of its
history in a configuration in which lineages are exchangeable.

Simulating data with the tetrasomic inheritance model
without double reduction would produce genealogies like
those generated from diploid and haploid models, such as
Hudson’s ms (Hudson 2002), with the exception that the
timescale of the process must be interpreted differently.
The time to the most recent common ancestor (Tygrca) of
a pair of lineages in an autotetraploid population is expo-
nentially distributed with a mean of one when time is mea-
sured in units of 4N generations. Thus a given value of
Tmrea is interpreted as 4N X Tyrca rather than 2N X Tyrca
as in diploid coalescent models. From this it follows that, as
has been previously demonstrated (Moody et al. 1993),
autotetraploids are expected to have twice the levels of ge-
netic variation as diploids for a given demographic size.
However, many demographic or biological factors may lead
to departures from this expectation, such as population his-
tory, the distribution of offspring per individual, or nonran-
dom mating.

A useful application of the coalescent is to infer ancestral
demography. Little is known about the characteristics of the
bottlenecks associated with the formation of an autotetra-
ploid lineage, which can arise through the union of un-
reduced gametes produced by diploids. Since autotetraploid
formation events are relatively rare, but potentially on the
order of the genic mutation rate (Ramsey and Schemske
1998), entire populations may be founded by a small num-
ber of individuals, resulting in a severe genetic bottleneck.
However, the severity of this bottleneck likely varies among
cases as certain environmental factors and alleles may greatly
affect the rate of unreduced gamete formation in diploids
(Ramsey and Schemske 1998); higher rates can lead directly
to repeated autotetraploid formation or promote gene flow
from diploids to tetraploids. Multiple formation events or gene
flow from diploid gene pools may increase the effective pop-
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ulation size during autotetraploid formation and reduce the
severity of the bottleneck. Several studies have documented
multiple origins in autotetraploids (Soltis et al. 1989; Wolf
et al. 1990; Ptacek et al 1994). Alternatively, gene flow
among ploidy levels may occur via interploidy hybrids (i.e.,
triploids) if they have nonzero fertility and produce some
euploid gametes (Felber and Bever 1997; Husband 2004).

The utility of the models developed here depends on the
specific demographic history of the autotetraploid popula-
tion. If the present-day autotetraploid race traces back to
relatively few individuals (i.e., ~10), then the sample size n,
or number of ancestral lineages, is not much smaller than
the population size N. Since n < N is a critical assumption of
the Kingman coalescent, the continuous-time models devel-
oped here in the context of large population size may not be
applicable. Simulated gene genealogies produced by stan-
dard coalescent programs such as Hudson’s ms may not look
like the actual pattern of ancestry that contains multifurca-
tions, a likely gene tree structure of small populations that
affects predicted patterns of genetic variation. Special simu-
lation programs may be developed that can accommodate
extreme population size crashes, for example as in the meta-
population model of Wakeley and Aliacar (2001). Alterna-
tively, the distribution of pairwise coalescence and linkage
disequilibrium can be used to quantify the severity of the
bottleneck, such as Li and Durbin’s (2011) pairwise coales-
cent model, if multiple mergers are a likely feature of the
underlying genealogy. Simulations should be done to see
whether these models are robust to such large population
size reductions.

If mating is not random (i.e., self-fertilization occurs) or if
the autotetraploids form multivalents and exhibit double
reduction, the ancestral process does not converge to King-
man’s simple model. In these cases, Kingman’s coalescent
does not fully capture the relatively complicated ancestry
of the sample of lineages because the coalescent process
cannot be described by a single exponential distribution;
coalescent events may occur instantly with a nonzero proba-
bility even as population size tends to infinity. For sample sizes
greater than two, simultaneous multiple mergers become an
issue. For instance, if four lineages are within the same in-
dividual that was created by a selfing event, a simultaneous
multiple merger occurs in the previous generation with prob-
ability s/6, where s is the selfing rate (see File S1 for details).
This probability is independent of population size and thus
does not tend to zero as N — . For a coalescent model
with double reduction and four lineages within the same
individual, as N — o gametes likely come from different
parents, unlike in the selfing model. However, a simul-
taneous multiple merger occurs at the locus of interest if
both gametes that formed the individual were produced
by double-reduction events with probability «?. Thus, these
ancestral processes are more complex than the Kingman co-
alescent since coalescent events may happen on two sepa-
rate timescales and simultaneous multiple mergers likely
occur.
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The coalescent model with double reduction is similar to
the many-demes model, with its “scattering phase” and “col-
lecting phase” (Wakeley 1999), and to the coalescent with
partial selfing (Nordborg and Donnelly 1997; Mohle 1998a).
It is interesting to note, however, that a maximum of two O(1)
coalescence events may occur in the instantaneous adjustment
for four lineages sampled from within a single tetraploid in-
dividual. This results from the fact that with probability of
0O(1) the two gametes that form each individual came from
different parents, and only each pair that came from the same
gamete may coalesce via double reduction. For finite N, more
coalescence events are possible if gametes originated from the
same parent, but this has probability O(1/N) and thus does
not happen in the instantaneous adjustment. Tetrasomic in-
heritance thus creates a genetic structure that has a mathemat-
ically distinct ancestral process.

However, there are two observations that suggest that, at
least in plants, self-fertilization or double reduction may rarely
affect results: first, of the established autotetraploid plant
species that have been documented and studied, multivalent
formation (and thus the possibility of double reduction) and
self-fertilization are both rare. For example, among 24 species
for which tetrasomic inheritance has been molecularly con-
firmed, chromosome associations have also been examined in
11. Among these, only 2 closely related species commonly
form multivalents. Two other species form multivalents only
rarely, while the remainder show exclusively bivalent associ-
ations at meiosis (Table S1). Thus in most of these examples,
double reduction would be rare or absent. Self-fertilization is
also rare. Although selfing can in theory promote the estab-
lishment of tetraploids by helping avoid minority cytotype
exclusion (Rodriguez 1996), it is very rare among polyploid
species in nature (Stebbins 1947). The majority of plant spe-
cies we identified in the literature that have tetrasomic inher-
itance are obligately outcrossing (see Table S1 notes for
references). Selfing rates are therefore generally zero for most
autotetraploids. Thus, the simple tetrasomic coalescent model
may be widely applicable.

In conclusion, our results demonstrate that Kingman’s
coalescent is robust to tetrasomic inheritance, making exist-
ing coalescent models applicable for analyzing population
genomic data collected from natural autotetraploid popula-
tions that exhibit this mode of inheritance. These models
will greatly facilitate the study of the evolutionary forces
acting on these organisms. However, standard coalescent
simulators cannot be used to interpret these data if the
autotetraploids self-fertilize at an appreciable rate or if
some loci experience double reduction, the latter being
verified by cytology and segregation studies.
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Table S1 Plant species with confirmed tetrasomic inheritance

Chromosome associations

Species (metaphase |) Reference(s)
Acacia nilotica 1
Actinidia chinensis 2
Allium nevii 3
Arabidopsis lyrata 4
Biscutella laevigata 5,6
Centaurea jacea Bivalents 7
Chrysanthemum boreale Bivalents 8
Dioscorea trifida 9
Epilobium angustifolium Mostly Bivalents, Some quadrivalents 10, 11
Heuchera grossulariifolia Mostly Bivalents, Some quadrivalents 12
Heuchera micrantha 13
Lotus corniculatus Bivalents 14,15
Maclura pomifera 16
Medicago sativa 17
Paspalum notatum™* Mostly quadrivalents 18
Paspalum simplex Mostly quadrivalents 19
Prunus spinosa Bivalents 20
Rorippa amphibia 21
Rorippa sylvestris 21
Rutidosis leptorrhynchoides 22
Thymus praecox 23
Tolmeia menziesii Bivalents 24
Turnera ulmifolia Bivalents 25, 26
Vaccinium corymbosum Bivalents 27,28

This table lists species that have been demonstrated to be genetically tetrasomic, meaning that four alleles segregate
at single loci. It is meant to show that numerous species have been demonstrated to have tetrasomic inheritance,
even if cytologically diploidized, and is not meant to be an exhaustive list.

** paspalum notatum has tetrasomic inheritance at most markers, but in apmoctic lines has disomic inheritance
around the apospory (apomixis) locus.
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Table S2 Patterns of ancestry used to calculate transition probabilities for the ancestral process of 2 lineages
sampled from an autotetraploid population. Balls represent autotetraploid individuals, and lines are the transmission
of gametes. From left to right, the columns containing probabilities represent the probability of observing the pattern

of ancestry and the conditional transition probabilities for the Markov chain.

Pattern P{Pattern} P11 P12 P13
1 5 1
N 6 6
N-1 12
3 3
Pattern P{Pattern} P21 P22 P23
! 3 1
N? 4 4
N -1
N® !
N -1 3 1 1
4o — = Nt -t
N 8 2 8
N -1 3 1 1
20— — — —
N-° 8 2 8
-1 -2
R et 1
PG\ R T B
N? 16 4 16
(N -DWN =2)(N -3)
N? !

Note: For example, for the pattern of ancestry in which two autotetraploids are half-sibs, the probability of
coalescence is 1/16 because, conditional on this pattern, there is a 1/4 chance that the two lineages in separate
individuals came from the same parent and a 1/4 chance that they originated from the same chromosome. For the
case in which two autotetraploids are full-sibs, the probability of coalescence is twice as great since it may occur in

each of the two parents.
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Table S3 Patterns of ancestry used to calculate transition probabilities for the ancestral process of 4 lineages
sampled from an autotetraploid population. Balls represent autotetraploid individuals, and lines are the transmission
of gametes. From left to right, the columns containing probabilities represent the probability of observing the pattern

of ancestry and the conditional transition probabilities for the Markov chain.

Pattern P{Pattern} P11 P12 P13 P4 Pis Pie P17
1 1 2 1
N 6 3 6
Pattern P{Pattern} Py Py Py Py Pys P Py
1 ! S 1
N? 8 8 4
N-1 1 1
N’? 2 2
4ol LU 3 1
N? 32 8 8 32 16
_ 1 3 3
—— 1 3 3
5 V=DV -2) 1 2 I
N 4 2 4
4o W-DWN-2) 1 3 1 3
N? 8 16 2 16
? ??‘ ? (N =1)(N =2)(N -3) |
Nj
Pattern P{Pattern} P31 P P33 P34 P3s P3¢ P37
1 25 65 61
N? 216 108 216
N-1 25 s L
N? 36 18 36
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Pattern P{Pattern} P31 P32 P33 P34 P3s P3s P37
P s 5 5 07 7
N? 216 18 36 216 108
pe V-1 12 ou 31
N? 108 9 36 54 27
5o V=DV -2) el 3 4
N? 18 9 6
g W-DW-» 1115 1B
N? 216 9 12 9 54 216
(N =N -2)(N - 3) 1 4 4
N? 9 9 9
Pattern P{Pattern} Pa Pa Pa3 Pay Pas Pas P47
1 5 7 S
N’ 48 12 16
go 1 LI REE
N® 24 9 24 144 48
3. V-1 505 7o
TN 18 24 36 24
12 N-1 1 S i E i
N°® 64 24 32 48 64
6 . —N — l l l ﬂ L
N’® 36 3 72 24
4o N1 L | JER
N’ 96 24 32 16
30 V=DV -2) 5 1 1 4 1
N’ 18 12 6 9 36

6 Sl
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Pattern P{Pattern} P P4 Py Pyq Pys Pag P47

peW-bDW-2 11317 9 35
N3 64 72 24 24 144 576

~1)(N =2
240 H-DN-2) 15
N- 8 32
12.—(N_1)(N_2) l i 1 i L
N3 72 48 144 72

L I
144 288

oo | W

2
g N-DWV-2) 1 1 1 3 1% 1
N’ 192 144 96 8 576 36
6o V-DIN-2) 1 3 7 11
N’ 18 48 12 4 144
[o V=DV -2) 2 ek
N® 6 6

go V-DNV-2) 15 12 7 3
N’ 12 32 24 24 96
12.(N—l)(N—2)(N—3) 7 1
N? 72 24
goV-DN-DWN-3 L5 15 1 4 1
N’ 192 48 32 12 6 192 48
3% (N -1)(N -2)(N -3) 2 2 1
) N° 3 9 9
1 W=DV -2)N-3) s 13 2 01
N’® 36 96 24 9 72 288

N | —
O | —
£
£

go V=DV -2)(N -3) L 1 4 1 =
N’ 18 24 12 9 24

2qe W=D -2)(N-3) i 2 L L 2 L
N’ 18 96 2 6 144 288
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Pattern P{Pattern} Py P4 Pa3 Paa Pas Pag Pa7

%.(N-l)(N—2)(N—3)(N-4) l i L
35 2 9 18
o5 (N = 1)(N = 2)(N = 3)(N - 4) L L l_l 7 i
} NS 36 48 24 18 48
(N = 1)(N = 2)(N = 3)(N - 4)(N - 5) l %
IS 3

Pattern P{Pattern} Psy Ps; Ps3 Psy Pss Pse Ps7

1 3 kel 1

N’ 32 16 32

N-1 3 3 9 13

8 64 16 16 64

N-1 3 9 1

LAY 8 6 16

3
24— 128 16 64 64 128

=

%
i
ox|'~“
AR
98]
e}
—
o

|
o0 | W
|

15 1
32 16

=
|
| w

=
3
2)
5 e

=

|
N
w
| w
o
=

6 25
128 256

w
[}e]
L ]
h
a
%
D | W
a
o w
o
oo‘\'
o | o
R[5
)

)
93
0\“-"

=

2
1
wn
>
o)
2
o0
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Pattern P{Pattern} Psy Ps; Ps3 Psa Pss Pse Ps;

4o V=DV -2) 3 2 L
N’ 8 16 16
24 o W-DV-2) 3 3 3 3 15
N’ 128 16 16 64 128
op e N -DIN-2) 3 ) 13 i
N’ 16 3 32 32
4g e N -DIN-2) 3 2 P 7 3
— N 16 64 16 16 64
goe V-DN-2) 3 9 9 9 27 19
N’ 256 64 128 32 64 256
(N -1)(N -2) 9 3 5 1
24 . = e i M Rl
N 32 8 16 32
oge V=D -2) 3 9 3 B 1
N’ 32 64 8 64 32
g =D W~2 g 9 8 515
N’ 64 64 32 128 128
e N-DV-2) 3 9 27 9 105 29
N’ 512 64 256 32 256 512
6,(N—l)(N—Z) 3 1
N’ 4 4
1pe V-DIN-2) 9 3 S S
N’ 32 8 16 32
4ge N -DWNV-2) 3 LS 21 1
N’ 32 16 64 64
g6+ VDV -2) 3 9 3 23 L
N’ 32 64 8 64 32
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Pattern P{Pattern} Psy Ps; Ps3 Psa Pss Pse Psy
e N-DW-2 3 327 3 95 25
N’ 512 32 256 8 256 512
(N -1)(N -2) 3 1
24 . _— i S
N 4 4
48.(N—l)(N—2) 9 9 9 1
N’ 64 16 32 64
oge N-DWV-2) R A ] 4 3
N’ 64 64 32 128 128
6o V=DV -2) 3 9 2t 1
N’ 3 16 64 64
06 * W-DWN -2) 3 -l 3 23 1
N’ 32 64 8 64 32
24_(N—l)(N—Z)(N—f’) 3 3 13 1
N’ 16 8 32 32
1. (N-D(N-2)(N-3) 3 9 9 i 3 17
> N7 256 64 32 8 8 256
12_(N—l)(N—Z)(N—3) 3 4
N’ 4 4
24_(N—l)(N—Z)(N—3) 9 9 9 1
N’ 64 16 32 64
192« V=DV -2V -3) 3 9 3 1 5 3
N’ 32 128 8 8 16 128
48 e (N -1)(N -2)(N -3) 135 9 21 e
N’ 32 16 64 64
4go YDAV -2)N -3) 3 O L /A
N’ 32 8 4 64 64

10 SI
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Pattern P{Pattern} Ps1 Ps> Ps3 Psa Pss Pse Ps7
g WD B A 8, B 4 B A
N’ 512 32 256 8 8 256 512
(N -1D(N =-2)(N -3) 3 1
24 o - = =
N 4 4
450 W=D -2V -3) L S A
N’ 64 8 4 32 64
. (N =1)(N =2)(N -3) 3 9 15 1 35 1
N’ 64 128 32 8 128 64
16.(N—l)(N—2)(N—3) 3 9 21 o
N’ 32 16 64 64
%.(N—I)(N—Q)(N—S) 3 9 B 1 5 Bi
N’ 32 128 8 8 16 128
(N -1)(N -2)(N -3) 3 1
24 . ) e = i
N 8 2 8
(N =1)(N =2)(N -3) 9 1 3
96 ¢ - 2 4 =
N 16 4 16
4g0 M -DWNV -V -3 9 3 1 1 1
N’ 64 8 4 32 64
192 o (N -DWN -2)N -3) L 9 1 15 e
N’ 128 16 8 64 128
96+ V=DV -2V -3) 3 5129 L
N’ 64 32 4 128 128
65t (N =D(N =2)(N -3) 3 9 15 1 35 Ey
N’ 64 128 32 8 128 64
1920 V=DV -2V -3) 309 151 331
N’ 64 128 32 8 128 64
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Pattern P{Pattern} Psy Ps; Ps3 Psa Pss Pse Ps;
(N =N =2)(N -3)
o i 1
2o V=D -2)N -3) 3 1 1
N’ 8 2 8
300 V=DV -2)(N -3) 2 £ 3
: N’ 16 4 16
2o V=D -2)(N -3) 5 3 ] U
N’ 64 8 4 32 64
450 N -DWV -2)(N -3) 2, & 1 L B
N’ 128 16 8 64 128
y (N -1(N -2)(N -3)N -4) 3 1
N’ 4 4
1o =DV =2 - 3N - 4) 3 3 o, 17 1
i D) 8 4 64 64
W-DN-2DN-HN-4 3 3 2 S 0 19
o s 512 32 32 16 256 512
(N =1)(N = 2)(N = 3)(N - 4) 3 1 1
48 7 i =y =
N 8 2 8
5 (N=1)N=2)N-=-3)N-4) . l i
N’ 16 4 16
(N=-1D(N=2)N-3)N-4) I é E i L
% - 128 8 8 64 128
(V- DV - 2N - 3NN - 4) B 15 1 2 1
96 * 0 64 32 128 128
(N =1)N=2)(N=-3)N-4) i i E = l i
) 7 64 256 8 16 32 256

i%iﬁ;l(ﬁ

12 SI
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Pattern P{Pattern} Psy Ps; Ps3 Psa Pss Pse Ps;
1o V= DNV -2 - 3N - 4) 3 9 1 21 e
- N 64 32 2 128 128
%%W (N = 1)(N = 2)(N - 3)(N - 4)
4. Z |
N
2y DN =DV =N - 4) 3 3 1
N 16 4 16
(N = )(N =2)(N =3)(N - 4) 3 1 1
24 . 7 S = =
N 8 2 8
(.(N—l)(N—Z)(N—S)(N—-'i) 3 i 1,
N’ 8 ) 8
" (N =1)(N -2)(N -3)(N -4) 9 3 j £ L
N’ 128 8 8 64 128
. (N =1)(N =2)(N =3)(N -4) 9 1 3
} N’ 16 4 16
075 (N = 1)(N = 2)(N - 3)(N - 4) 9 15 S 3 B
B N’ 256 32 16 128 256
(N =1)(N = 2)(N = 3)(N -4)N -5) l
6 N7
W? (N = 1)(N = 2)(N = 3)(N = 4)(N = 5) 3 3 1
48 « 7 —— i —t
N 16 4 16
%y (N =1)(N = 2)(N =3)(N -4)N -5) 3 l l
12« —_ 5B =
N 8 2 8
(N = 1)(N = 2)(N = 3)(N = 4)(N = 5) 3 1 |
48 K] —_ Y i
N 8 2 8
m o6 - (N =1)(N = 2)(N = 3)(N - 4)(N -5) l i i i L
Z@ N’ 256 32 16 128 256
wv (N = 1)(N = 2)(N = 3)(N - 4)(N - 5) 3 1 1
24 7 il — —_
N 8 2 8
(N = 1)(N = 2)(N = 3)(N - 4)(N - 5) 3 9 1 21 1
32 — — = ol Ty
%ggz N 64 32 2 128 128
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Pattern P{Pattern} Psy Ps;

(N = IXN = 2N -3)N -4)(N - 5)N -6)
4. 7
N
(N = 1)}N = 2N - 3)(N - 4)N - 5)N -6)
2 .
24 7
N
k‘sﬁi z?y (N =1)YN =2)XN =-3)N -4)(N - 5N -6)N -1T7)
7

N

> w

—

W

f—
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Table S4 Patterns of ancestry that are O(1) and O(1/N) used in constructing the coalescent process for an arbitrary

sample size n.

Pattern P{Pattern} Number of Parents  P{Coalescence|Pattern}
1
n—+0( 7) 2n -1 0
N N~
1 2 n
2n 1 1 1
3 5 —nl—+0— _ —
1 2 3 n
2n 1 1
3 5 eee 3 5 1- 7 N+O(F) 2n 0
1 n

B. J. Arnold et al.
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File S1
Extending Coalescent Theory to Self-Fertilizing Autotetraploids
For a population of autotetraploids that self-fertilize with probability s, the single-generation transition

matrix for the ancestral process is given by

1 2 K
K 3( s) p
3
p_| 2 L
4N N AN
0 0 1

Using the result of Mdhle 1998 and collecting the “fast” events, which occur on the timescale of single generations,

into matrix F and the “slow” events, which occur on the timescale of N generations, into matrix S, we obtain

1 s 2(1-) s 0 0 0]
3 3 6
F=| 0 1 Oland S = 2 -1 l
4 4
0 0 1 10 0 0

in the limit as N tends to infinity. Here, F =lim,_ P and S =lim,_ N(P -F). If the limit E =1im,_  F' exists,

N — o0

the continuous-time approximation to this ancestral process with partial selfing is characterized by matrices
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'0 4 — 4y P '0 1257 =225 +10 4-4s5 |
4 -3s 4 - 3s 9s* —245+16 9s* —24s5+16
1 1
E=(0 1 0 and G =10 -
4 -3s 4 -3s
0 0 1 0 0 0

where G = ESE (Mshle 1998).

Note on extending double reduction to arbitrary n
If four lineages are within an individual and double reduction is possible, three types of events
may occur for each pair of lineages in the instantaneous adjustment of the sample: (1) two lineages come
from the same gamete and coalesce in the immediately previous generation via double reduction with

probability ocz, (2) two lineages come from the same gamete, do not coalesce in the immediately previous

generation, but coalesce in later generations via double reduction with probability (1-a) ¢
o+

, or (3) two
5 3)
lineages get separated into distinct individuals before any coalescence event with probability
(1 —a)(iz). Putting these probabilities together, if four lineages are within an individual, a double

o+

coalescence event occurs in the instantaneous adjustment of the sample with probability

2
@ +(1—a)2 % , a single coalescence event occurs with probability
+2 a+2

a’ +2a(l-a)
[0}

2l a(l1-ar) 2 +2 (l—oz)2 @ 2 , and no coalescence events occur with probability
a+2 a+2\a+2

2
(1 —a)z(%) . Thus, the number of instantaneous coalescence events for m individuals that contain
o+

four lineages is Multinomial with length m and probability vector p containing the three probabilities

described above.
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