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Abstract: Microorganisms have been cooperating with
each other for billions of years: by sharing resources,
communicating with each other, and joining together to
form biofilms and other large structures. These coopera-
tive behaviors benefit the colony as a whole; however,
they may be costly to the individuals performing them.
This raises the question of how such cooperation can arise
from natural selection. Mathematical modeling is one
important avenue for exploring this question. Evolution-
ary experiments are another, providing us with an
opportunity to see evolutionary dynamics in action and
allowing us to test predictions arising from mathematical
models. A new study in this issue of PLOS Biology
investigates the evolution of a cooperative resource-
sharing behavior in yeast. Examining the competition
between cooperating and ‘‘cheating’’ strains of yeast, the
authors find that, depending on the initial mix of strains,
this yeast society either evolves toward a stable coexis-
tence or collapses for lack of cooperation. Using a simple
mathematical model, they show how these dynamics arise
from eco-evolutionary feedback, where changes in the
frequencies of strains are coupled with changes in
population size. This study and others illustrate the
combined power of modeling and experiment to
elucidate the origins of cooperation and other funda-
mental questions in evolutionary biology.

How much cooperation does it take to maintain a society?

Many biological populations, from microbes to insects to humans,

depend on the cooperation of their members in order to access

resources, raise offspring, and avoid danger. Yet in any

cooperative activity, there is the risk of ‘‘cheaters,’’ who benefit

from the generosity of others while making no contribution of their

own. Consider, for example, the layabout in a communal

household who refuses to cook or clean dishes. If this cheating

behavior spreads through the population, the society as a whole

may collapse.

Evolutionary biologists since Darwin have been fascinated by

how populations can overcome this dilemma. Studying this

question can be challenging. While the products of evolution are

evident in the natural world, the process that produced them is

mostly hidden from view. As a consequence, direct observation of

the evolution of cooperation in action is often limited.

Much of our current understanding of this conundrum arises

from mathematical modeling. Ever since the birth of population

genetics about a century ago, it has been recognized that the

theory of evolution can be set upon exact mathematical

foundations. This approach has flourished ever since, and

especially in the last few decades. The theory of choice to study

social phenomena is evolutionary game theory [1–5], in which

behaviors that affect others are represented as strategies. Simple

mathematical models describe the dynamics of these strategies

under mutation and selection, depending on the population

structure [6–12]. Applied to the problem of cooperation, these

models show that if a cooperating individual receives some of the

benefit of his or her own labors—as in Snowdrift games or some

nonlinear public goods games—then evolutionary dynamics may

lead to an equilibrium in which cooperators and cheaters coexist

[1,13]. On the other hand, if benefits accrue only to others—as in

Prisoners’ Dilemma games—then cooperation is expected to

disappear unless some mechanism is present to support it [14].

Recently, experiments with microbes have afforded us an

unprecedented opportunity to observe evolution in action [15–20].

Bacteria, yeast, and other single-celled organisms divide rapidly

enough that evolutionary change—the arrival and fixation of

beneficial mutations—can be observed in the laboratory. More-

over, the experimenter is able to control the population size,

environmental conditions, and other variables, and can therefore

test hypotheses regarding how the course of evolution depends on

these variables. Experimenters can also preserve specimens of the

population from all phases of its evolution as a ‘‘living record’’ of

genotypic and phenotypic change. In short, experiments with

microbes are a powerful tool for testing evolutionary hypotheses.

Microorganism experiments hold particular promise for shed-

ding light on how cooperative behaviors emerge from evolution

[21–26]. Microbial species cooperate in a variety of ways: They

form biofilms, produce iron-scavenging agents, produce chemicals

to resist antibiotics, and form fruiting bodies when local resources

are depleted. By mixing wild-type strains that display a particular

cooperative behavior with ‘‘cheater’’ mutants that do not,

researchers can test hypotheses about what conditions favor

wild-type ‘‘cooperators’’ over cheaters.

In one such experiment, Gore et al. [26] studied a social

dilemma in the yeast Saccharomyces cerevisiae. The preferred nutrient

sources for this yeast are the simple sugars glucose and fructose;

however, it can subsist on the compound sugar sucrose by
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producing the enzyme invertase, which breaks down sucrose into

glucose and fructose. A crucial point is that, since this reaction

occurs near the cell wall, only about 1% of these simple sugars are

captured by the cell in which they are produced. The remaining

99% diffuse away and are available to other cells. Thus producing

invertase is a cooperative behavior, with the bulk of the benefit

going to cells other than the producer. Moreover, this cooperation

is costly, in that the production of invertase carries a metabolic cost

to the producer. To study the evolution of this behavior, Gore et

al. created cheater strains that do not produce invertase, and

thereby avoid the associated cost. Letting these strains compete

with each other, they found that, in most cases, cooperator and

cheater strains converged to an equilibrium in which both strains

coexisted—a result consistent with theoretical predictions regard-

ing Snowdrift games and nonlinear public goods games [1,13].

Much theoretical work on the evolution of cooperation and

other traits has assumed, for the sake of simplicity, that the

population size remains roughly constant while the strains in

question are competing. However, it is entirely possible that

population dynamics—changes in population size—may occur on the

same timescale as evolutionary dynamics—changes in the frequencies

of competing types. In this case, these two dynamical processes

may affect one another, a phenomenon known as eco-evolutionary

feedback [27–30]. Mathematical modeling has shown that eco-

evolutionary feedback may lead to a variety of complex dynamical

behaviors, including multiple equilibria, cycling, chaos, and

Turing patterns [28,30–33].

In this issue of PLOS Biology, Sanchez and Gore [34] have—for

the first time, to our knowledge—empirically demonstrated eco-

evolutionary feedback in the evolution of cooperation. Using the

yeast system described above, the authors studied the coupled

dynamics of the population density and the proportion of

cooperator types within the population. The mechanism for eco-

evolutionary feedback in this system is intuitive: the growth of the

population as a whole depends on the concentration of simple

sugars, which in turn depends on the density of cooperators. If

there are insufficient cooperators, the overall population density

declines. With low population density, cooperators have an

advantage due to the simple sugars they manage to retain for

themselves. At this point, cooperators increase in frequency, and

the concentration of simple sugars increases, leading to overall

population growth. But once this happens, cheaters proliferate

faster than cooperators due to their lower metabolic costs. This in

turn depresses the frequency of cooperators, and the cycle repeats

itself. We would therefore expect to see cycling or spiraling

behavior in the eco-evolutionary dynamics of these types,

consistent with theoretical predictions [32,33].

In their experiment, Sanchez and Gore observed not only

spiraling, but also bistability—the presence of two equilibria to

which the system might converge, depending on the initial

conditions [35]. If the initial population density and/or the initial

proportion of cooperators is too low, not enough simple sugars are

produced and the population collapses. On the other hand, if there

are sufficiently many cooperators in the initial population, the

population converges in spiraling fashion to an equilibrium in

which population density is high and cooperators and cheaters

coexist (Figure 1). To complement their experiment, the authors

developed a simple Lotka-Volterra–type model describing the

interdependent growth of the competing strains. This model

reproduces the observed eco-evolutionary dynamics with remark-

able fidelity, given its simplicity.

Interestingly, the proportion of cooperators in the coexistence

equilibrium is low—less than 10%—but is nonetheless sufficient

to maintain the viability of the population. Does the predom-

inance of cheaters in this equilibrium hurt the population as a

whole? The authors found that the overall density and

productivity of the population in the coexistence equilibrium is

not much less than what cooperators would achieve in the

absence of cheaters. However, the predominance of cheaters

does impact the population’s resilience to an ecological shock—

in this case, rapid and significant dilution of the population.

Cooperators in monomorphic equilibrium survive this shock, but

populations in mixed equilibrium between cooperators and

cheaters do not. In short, mixed populations are comparably

productive to, but significantly less resilient than, cooperator-

only populations.

The study of Sanchez and Gore illustrates the synergistic power

of theory and experiment when carefully combined. The opportu-

nities for further such combinations are immense. Population

genetics and evolutionary game theory have provided us with a

wealth of testable hypotheses about evolution, and we now have the

experimental technology to test them. Some of the most interesting

hypotheses regard the effect of spatial structure on the evolution of

cooperation. Well-known results in evolutionary game theory show

that spatial structure can promote cooperation [6,36–39], though

this effect depends strongly on the details of spatial reproduction and

replacement [40]. Thus far, experimental studies have addressed

this question only indirectly, with reduced pathogen virulence

representing an indirect form of cooperation [41], or with group

subdivision standing in for spatial structure [22,23]. The effects of

spatial structure on the evolution of cooperation in microbial

colonies remains an important open question.

At the same time, we must also allow experimental results to

inform the development of new mathematical models. The field of

social bacterial evolution requires well-defined, simple models that

describe how populations of bacteria change over time, taking into

account the reproductive events, social interactions, and population

structures particular to these populations. This approach ultimately

brings together the methods of population genetics, evolutionary

game theory, ecology, and experimental microbiology.

Figure 1. Dynamics of eco-evolutionary feedback in cooperator
and cheater strains of the yeast S. cerevisiae, as observed in the
experiment of Sanchez and Gore. There are two basins of
attraction, with a different outcome expected from each. If there are
too few cooperators to start, not enough simple sugars are produced
and the population collapses. On the other hand, if the initial number of
cooperators is sufficient, the system converges in spiraling fashion to an
equilibrium in which cooperators and cheaters coexist.
doi:10.1371/journal.pbio.1001549.g001
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