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Abstract

Background: Total knee arthroplasty (TKA) is common, effective, and cost-effective. Innovative implants promising reduced
long-term failure at increased cost are under continual development. We sought to define the implant cost and
performance thresholds under which innovative TKA implants are cost-effective.

Methods: We performed a cost-effectiveness analysis using a validated, published computer simulation model of knee
osteoarthritis. Model inputs were derived using published literature, Medicare claims, and National Health and Nutrition
Examination Survey data. We compared projected TKA implant survival, quality-adjusted life expectancy (QALE), lifetime
costs, and cost-effectiveness (incremental cost-effectiveness ratios or ICERs) of standard versus innovative TKA implants. We
assumed innovative implants offered 5–70% decreased long-term TKA failure rates at costs 20–400% increased above
standard implants. We examined the impact of patient age, comorbidity, and potential increases in short-term failure on
innovative implant cost-effectiveness.

Results: Implants offering $50% decrease in long-term TKA failure at #50% increased cost offered ICERs ,$100,000
regardless of age or baseline comorbidity. An implant offering a 20% decrease in long-term failure at 50% increased cost
provided ICERs ,$150,000 per QALY gained only among healthy 50–59-year-olds. Increasing short-term failure, consistent
with recent device failures, reduced cost-effectiveness across all groups. Increasing the baseline likelihood of long-term TKA
failure among younger, healthier and more active individuals further enhanced innovative implant cost-effectiveness
among younger patients.

Conclusions: Innovative implants must decrease actual TKA failure, not just radiographic wear, by 50–55% or more over
standard implants to be broadly cost-effective. Comorbidity and remaining life span significantly affect innovative implant
cost-effectiveness and should be considered in the development, approval and implementation of novel technologies,
particularly in orthopedics. Model-based evaluations such as this offer valuable, unique insights for evaluating technological
innovation in medical devices.
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Introduction

Many medical devices are marketed with claims of reduced

long-term device failure and/or adverse events. Such claims are

often based upon laboratory or ex vivo data extrapolated to long-

term outcomes in humans and cannot be evaluated with short-

term trials. Given the costs and limitations of prospectively

collecting long-term efficacy data on innovative devices, simulation

modeling is an ideal methodology to evaluate current technologies

and anticipate potential health and economic consequences of

future technologies.

Total knee arthroplasty (TKA) implant innovation provides an

informative case study for examining the impact of medical device

innovation on healthcare costs [1]. Over 620,000 TKAs were

performed in the US in 2009, predominantly for end-stage

osteoarthritis (OA) [2]. TKA inpatient costs exceed $9 billion per

year, the highest aggregate cost among the 10 fastest growing

procedures [3]. Over 85% of recipients have functional improve-

ment after TKA [4–7], and TKA is highly cost-effective [8].

Fueled by this success and trends suggesting that TKA

recipients are younger, heavier, more active, and surviving longer

after TKA than previously [2,9–11], over 35 TKA systems or

components have been approved by the Food and Drug

Administration (FDA) each year for the last decade through the

510(k) clearance process [12]. This process allows approval of

perceived low-risk medical devices based upon claims of similarity

to existing approved devices and likely incentivizes incremental

improvements. Indeed, most claims of improved device durability

are based upon ex vivo studies [13–19], rather than clinical trials,

and such innovations come at a price, as newer implants are more

costly [20–22].

Trade-offs between incremental improvements and their costs

are poorly understood. With rising healthcare costs, it is critical to

examine the value of technological advancements over existing

devices. TKA is an ideal example for studying the cost/benefit

trade-offs for medical devices, particularly those that offer quality

of life improvement rather than immediate survival benefit. Given

the costs and limitations of prospectively collecting long-term

efficacy data on innovative medical devices, such as TKA

implants, simulation modeling is an ideal methodology to evaluate

current technologies and anticipate potential health and economic

consequences of future technologies.

We sought to examine cost/benefit trade-offs and present the

long-term economic implications associated with the use of

innovative TKA implants using a simulation modeling approach.

Specifically, we sought to define the conditions, including the

patient characteristics, implant performance, and cost assumptions,

under which innovative TKA implants might offer clinical benefit

and good value for additional dollars spent versus those scenarios

under which innovative implants would result in greater costs and/

or unfavorable economic value. More broadly, our analysis provides

a paradigmatic case study of the impact of medical device

innovation on clinical efficacy and cost-effectiveness.

Methods

Ethics Statement
The study was approved by the Institutional Review Board of

Brigham & Women’s Hospital. Our research was conducted

entirely in the U.S.A. No participants were involved and so no

consent was required.

Analytic Overview
We used a validated, previously published computer simulation

model of knee OA natural history and management (the

Osteoarthritis Policy or OAPol model) [23,24] to forecast surgical,

clinical and economic outcomes associated with ‘‘innovative’’

TKA implants (e.g., highly crossed-linked polyethylene or other

innovative biomaterials) as compared with ‘‘standard’’ implants

(i.e., an ultra-high molecular weight all polyethylene tibial

component) [25] in persons with end-stage knee OA. Laboratory

data indicate these newer implants experience less wear, implying

greater durability [14,19]. Our primary analysis varied implant

durability and cost among different patient cohorts. Incremental

cost-effectiveness ratios (ICERs), defined as the incremental

benefits in additional quality-adjusted life expectancy (QALE)

divided by the incremental costs, were estimated for innovative

compared with standard implants.

OAPol Model
The OAPol model is a state-transition simulation model that

uses a series of annual transitions between health states to describe

the natural history and clinical management of knee OA. Pain,

comorbidity, treatment, quality of life, and resource use are used

to define discreet health states. These characteristics also influence

further disease progression, response to treatments, development

of additional comorbidities, and mortality. The model is imple-

mented as a Monte Carlo simulation, meaning a random number

generator and a set of estimated probabilities are used to

determine the state-to-state pathway followed by each simulated

patient. Each patient’s course is then tracked until death, and large

numbers of individual simulations are combined to estimate

population outcomes and costs. This model has been used to

estimate TKA cost-effectiveness [8], knee OA burden [24], and

quality-adjusted life-years (QALYs) lost due to obesity and knee

OA [23]. Model specifications, validation, and data sources have

been previously published [1,23] and are supplemented in the

Technical Appendix S1.

Study Population
We considered a population of individuals with end-stage

(Kellgren-Lawrence grade IV) symptomatic knee OA at baseline.

We considered four separate age and comorbidity cohorts to

explore the impact of these characteristics on implant cost

effectiveness. The four cohorts included 50–59 year-olds with

and without comorbidity at the time of TKA and 70–79 year-olds

with and without comorbidity at the time of TKA (see Population

Demographics below for further explanation). We selected these

age stratifications because while, historically, most US TKA

recipients were in their 70 s, individuals under 65 years old

represent the most rapidly growing group among TKA recipients

[11].

Input Parameters
Model input parameters are listed in Table 1 and summarized

below. Further details are also provided in the Technical

Appendix S1.

Population demographics. We derived baseline distribu-

tions of sex, race, and ethnicity from 2000 Medicare claims data

[26] and validated these parameters against a nationally repre-

sentative sample of TKR recipients [2]. We dichotomized the

baseline presence of medical comorbidities as ‘‘healthy’’ (no

comorbidities) versus ‘‘with comorbidity’’ (including baseline

obesity, cardiovascular disease, and other, non-OA musculoskel-

etal disorders). Cohorts ‘‘with comorbidity’’ experienced higher

Placing a Price on Medical Device Innovation
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Table 1. Model Input Parameters*.

Parameter Estimates Source

Quality of Life (in QALYs)

,65 years old 65+ years old

Healthy With
Comorbidity

Healthy With
Comorbidity

Knee Pain - (No pain relief from TKA) 0.806 0.679 0.884 0.757 NHANES 2005–2008 [33,34], Losina
et al, 2011

No Knee Pain - (Pain relief from TKA){ 0.952 0.867 0.943 0.858 [23]

Surgical AE` 0.60 Fisman et al, 2001 [32]

Medical AE Pneumonia Myocardial Infarction Pulmonary Embolism

0.60 0.65 0.50 Taylor et al, 2009 [29],
Melinkow et al, 2008 [30], Weaver
et al, 2001 [31]

Costs (in 2010 US$)

Healthy With Comorbidity

Underlying Medical Costs 986–1,205 2,388–2,860 Lee et al, 2001 [35], NHANES 2005–
2008 [33,34]

Analgesic Treatment1 333 Red Book 2008 [36]

TKA Costs Primary TKA Revision TKA

First Year 23,903 28,195 Losina et al, 2009 [8]

Implant 5,414 Mendenhall, 2004 [37]

Annual Follow-Up 103 CMS|| 2008 [39], Teeny et al, 2003 [40]

Surgical AE 21,213 HCUP 2008 [2]

Medical AE Pneumonia Myocardial Infarction Pulmonary Embolism

10,388 18,478 12,090 HCUP 2008 [2]

, Standard Implants ,

TKA Efficacy & Adverse Events

Short-Term" Long-Term**

Primary TKA Revision TKA Primary TKA Revision TKA

Technical Failure{{ % 1.1 1.1 1.36 1.36 Losina et al, 2009 [8]

Pain Relief Success`` % 86.2 74.3 96.0 94.4 Katz et al, 2007 [7]

Adverse Events11 %

Surgical 0.37 0.67 2 2

Medical

Pneumonia 1.27 1.27 2 2

Myocardial Infarction 0.75 0.75 2 2 Katz et al, 2004 [27]

Pulmonary Embolism 0.74 0.74 2 2

Death from AE 0.63 0.96 2 2

, Innovative Implants ,

TKA Efficacy

Short-Term Long-Term

Technical Failure % (Range) 1.1 (1.1–5.5) 0.4–1.1*** Losina et al, 2009 [8]

Pain Relief Success % (Range) 86.2 (75.9–100) 96.0 Katz et al, 2007 [7]

Costs (in 2010 US$)

TKA Costs

First Year 24,986–45,559 Losina et al, 2009 [8]

Placing a Price on Medical Device Innovation
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mortality, reduced quality of life, and increased underlying

medical costs, compared to ‘‘healthy’’ cohorts.

Surgical outcomes: TKA Efficacy and Adverse Events for

Standard Implants. Surgical outcomes consisted of TKA

efficacy and adverse event (AE) rates which were derived from

published estimates [7,8,27]. Standard TKA efficacy was com-

prised of pain relief efficacy (defined as the percentage of

individuals achieving pain relief) and the absence of technical

failure (defined as the percentage of individuals requiring or

qualifying for revision surgery due to mechanical failure).

Experiencing recurrent knee pain following surgery resulted in a

decrement in quality of life as noted below. Both pain relief and

technical failure were further divided into first year (‘‘short-term’’)

versus subsequent year (‘‘long-term’’) rates.

The primary clinical outcome in the model consisted of QALE,

a patient-relevant outcome assessment validated for use in a wide

range of clinical conditions, including knee osteoarthritis and

individuals undergoing TKA. QALE represents an ideal metric for

assessing long-term outcomes following TKA as this procedure is

focused primarily on improving function and reducing pain, thus

directly affecting quality of life. Scores from the SF-36 question-

naire were transformed into quality of life weights using published

methods [8,28]. Quality of life estimates for TKA-related AEs

were derived from published literature [29–32]. Quality of life

valuations over time were influenced by the presence of pain, body

mass index (obese or non-obese) and number of comorbidities (0–

1, 2–3, or .3).

Economic outcomes: Costs. Underlying annual medical

costs, in 2010 US dollars, were stratified by age, presence of knee

pain and comorbidity and ranged from $986 to $2,860 [33–35].

An additional annual cost of $333 was added for individuals for

whom TKA did not provide pain relief to account for analgesic

treatment [36].

The cost of TKA (including hospital, physician, and rehabili-

tation costs) was estimated at $23,903 [8], of which the implant

cost represented $5,414, based on survey data from a national

sample of hospitals [37]. This estimate of implant cost is consistent

with the findings of a recent study utilizing data from sixty-one

hospitals in 2008 [38]. Annual follow-up cost for TKA (including a

physician visit and imaging) was determined from Medicare

reimbursement data and a national survey of orthopedic surgeons

[39,40].

Primary Analysis
We measured comparative value in constant (2010) US dollars

per QALY gained and reported all economic outcomes from a

modified societal perspective, adjusted for time value (with 3%

annual discounting), but excluding indirect costs [41]. We

estimated the proportion of each cohort surviving with their

original implant intact at 5, 10, 15, and 20 years after TKA. We

calculated the QALE and costs associated with each combination

of innovative TKA implant cost (20–400% over standard cost)

[21,37,42] and reduction in long-term implant failure rate (5–70%

decreases compared to standard implants) [14,19] in each of the

four primary patient cohorts. ICERs compared to standard TKA

were calculated for each combination of implant cost, long-term

implant failure rate, and patient cohort.

Sensitivity Analyses
Based upon recent data suggesting that younger TKA recipients

experience higher revision rates than older individuals [43],

presumably due to higher activity levels leading to higher wear, we

examined the impact of higher annual TKA failure rates (2.72–

5.44%, versus 1.36% baseline risk) among the healthy 50–59-year-

old cohort. We also examined the impact of increasing short-term

TKA failure consistent with recent orthopedic device failures

(100–500% increases in first-year technical failure) [44] while

simultaneously decreasing long-term failure (5–70%), as one might

anticipate from an innovative technology offering greater long-

term benefit at higher short-term risk. We examined the impact of

varying the proportion of patients achieving pain relief from

innovative TKA implants; we considered values ranging from an

8% decrease to a 20% increase, compared to standard TKA. We

also varied TKA cost [8], TKA offer and acceptance rates, and

recipient demographics.

Results

Effect of Innovative Implants on Patient and Implant
Survival

Patient survival 20 years following TKA ranged from 80.7%

among healthy 50–59-year-olds to 13.6% among 70–79-year-olds

with baseline comorbidity. Among healthy 50–59-year-olds,

64.9% survived and retained their primary TKA implant at 20

Table 1. Cont.

Parameter Estimates Source

Implant{{{ 6,497–27,070 Mendenhall, 2004 [37]

*Further input parameters are provided in the online Technical Appendix and published literature (Suter 2011, Losina 2011).
{In order to capture significant pain, we defined pain as those individuals noting functional limitations. Quality of life estimates were derived from general population
data, not specifically from TKA recipients.
`Derived from data for quality of life in persons with prosthetic joint infection.
1Annual cost of analgesic treatment was added for individuals who did not achieve pain relief from their TKA.
||CMS = Centers for Medicare and Medicaid Services.
"Short-term refers to the first year following primary or revision TKA.
**Long-term refers to the annual proportion of individuals experiencing a TKA outcome or AE each year following the first year after primary or revision TKA.
{{Technical failure is the percentage of individuals who required or qualified for revision surgery due to mechanical failure of the prosthesis, with or without associated
symptoms.
``Pain relief success is the percentage of individuals achieving pain relief without technical failure. In instances of technical failure, pain relief was significantly less than
the values reported above.
11Adverse events (AEs) only occurred in the first year after primary or revision TKA.
***These values represent the range of failure rates used in the Primary Analysis (20–70% reductions in failure for innovative compared to standard implants). Standard
implants had long-term failure rates as high as 5.44% in the sensitivity analysis exploring the impact of higher long-term failure in healthy 50–59-year-olds, producing a
failure rate of 4.35% for an innovative implant offering a 20% decrease in long-term failure.
{{{The implant cost is included in the total first-year cost of TKA.
doi:10.1371/journal.pone.0062709.t001
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years (Figure 1), compared to 11.0% of 70–79-year-olds with

baseline comorbidity. In total, 17.8% of healthy 50–59-year-olds

and 9.4% of 70–79-year-olds with baseline comorbidity underwent

revision surgery within 20 years of their primary TKA.

Innovative implants offering a 5% reduction in long-term TKA

failure decreased the proportion of TKA recipients undergoing

subsequent revision by only 0.79% and 0.39% (absolute percent-

age points) over 20 years in healthy 50–59-year-olds and 70–79-

year-olds with comorbidity, respectively. Implants offering a 40%

decrease in long-term TKA failure decreased the percent of TKA

recipients undergoing revision by 6.29% among healthy 50–59-

year-olds and 3.28% among 70–79-year-olds with comorbidity.

An implant reducing long-term failure by 70% decreased revisions

by 11.32% among healthy 50–59-year-olds and 5.83% among 70–

79-year-olds with comorbidity.

Effect of Innovative Implants on QALE, Costs, and Cost-
Effectiveness

Remaining QALE and costs for standard and innovative

implants are reported in Table 2. QALE after standard TKA

ranged from 7.57 QALYs among 70–79-year-olds with baseline

comorbidity to 16.43 QALYs among healthy 50–59-year-olds.

Innovative TKA implants decreasing long-term TKA failure by

5% offered, on average, #0.01 additional QALYs (,four days)

compared to standard TKA among all four populations. Implants

decreasing long-term failure by 40% resulted in #0.06 additional

QALYs among 50–59-year-olds and 0.02 additional QALYs

among 70–79-year-olds. A 70% decrease in long-term failure

offered an average of 0.10 additional QALYs (,37 quality-

adjusted days) across the cohorts.

Remaining lifetime costs ranged from $42,186 in healthy 70–79-

year-olds to $82,524 among healthy 50–59-year-olds. Innovative

implants costing 20% to 400% above standard implants resulted in

$446 to $20,959 increases in lifetime costs. Greater reductions in

long-term failure always resulted in lower costs. Innovative

implants offering a 70% reduction in long-term failure at only

20% higher cost resulted in greater QALE but lower lifetime costs

than the standard implant in all four cohorts, suggesting such an

implant would be cost-saving compared to standard implants if

that level of TKA failure reduction could be achieved.

ICERs for innovative compared to standard implants varied

with changes in both long-term implant failure and implant cost.

Innovative implants costing at least three times more than a

standard implant yielded ICERs above $150,000 per QALY

gained in all populations except for healthy 50–59-year-olds, for

which the ICER was $81,493. Implants offering a 20% reduction

in long-term failure at 50% increased implant cost yielded ICERs

of $71,007 per QALY gained (compared to standard TKA)

among healthy 50–59-year-olds, $158,622 among 50–59-year-olds

with baseline comorbidity, $189,494 among healthy 70–79-year-

Figure 1. Proportion of population alive with original implant after Standard TKA by age and comorbidity. The estimated proportion
of the population surviving with a successful primary TKA implant are noted by black bars among each of the four cohorts at 5, 10, 15, and 20 years
after standard TKA. The dark grey bars represent the proportion of the population who have experienced technical TKA failure but have not
undergone revision either due to the fact that their failure has not been observed by either the patient or their physician or they have been offered
revision but refused. The light grey bars represent the proportion that has undergone revision TKA. As one moves from healthy 50–59-year-olds on
the left to those with baseline comorbidity to healthy 70–79-year-olds and finally 70–79-year-olds with comorbidity on the far right, fewer individuals
survive to experience TKA failure and therefore TKA revision. TKA = Total knee arthroplasty.
doi:10.1371/journal.pone.0062709.g001

Placing a Price on Medical Device Innovation
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olds, and $278,098 among 70–79-year-olds with baseline comor-

bidity. More favorable ICERs were obtained when we considered

a healthier, younger target population and when we assumed

cheaper, more effective innovative implants (Figure 2). This trend

persisted in the 60–69-year-old and 80–89-year-old cohorts

(Figure 1 in the Technical Appendix).

Sensitivity Analyses
Increasing the standard implant failure rate among healthy 50–

59-year-olds produced lower ICERs for innovative implants.

Tripling the standard failure rate among healthy 50–59-year-olds

from 1.36% to 4.08% reduced the ICER for an implant that

decreased failure by 20% at 50% greater cost from $71,007 to

$22,475ska per QALY gained.

Increasing short-term implant failure while simultaneously

reducing long-term failure decreased cost-effectiveness across all

cohorts (i.e., fewer innovative implants produced ICERs

,$100,000 compared to standard TKA; Figure 3). Doubling

short-term failure from 1.1% (the value for a standard implant) to

2.2% for an innovative implant offering a 20% reduction in long-

term failure at 50% increased cost raised the ICER from $71,007

to $141,022 per QALY gained among healthy 50–59-year-olds

and from $278,098 to $807,358 per QALY gained among 70–79-

year-olds with comorbidity. When the short-term failure rate was

doubled and reductions in long-term failure rates from innovative

implants were small, innovative implants offered similar or worse

QALE compared to standard implants, but at greater cost

(‘‘dominated’’ scenarios in Figure 3).

The impact of increasing age and comorbidity on innovative

implant cost-effectiveness could be offset by either greater

reductions in long-term TKA failure or improved pain relief after

TKA, as might be expected with an implant that offers both

technical (decreased long-term failure) and clinical (increased

likelihood of pain relief) benefits (Figure 2 in the Technical

Appendix). A 4% increase in the percentage of individuals

experiencing pain relief after TKA reduced the ICER for an

innovative implant offering a 70% reduction in long-term TKA

failure at twice the cost of a standard implant, from $147,106 to

$76,270 per QALY gained among 70–79-year-olds with baseline

comorbidity.

Varying standard TKA implant cost (compared to the base

assumption of $5,414) from $2,390 to $11,952 produced ICERs

among healthy 50–59-year-olds that ranged from $82 (for lowest

standard implant cost) to $92,272 (for highest standard implant

cost) per QALY gained for an innovative implant that costs twice a

standard implant and offers a 70% decrease in long-term failure.

Performing the same analysis among 70–79-year-olds with

baseline comorbidity produced ICERs ranging from $36,585 to

$386,828 per QALY gained when the cost of the standard implant

was similarly ranged (Figure 3 in the Technical Appendix).

Discussion

We used TKA to demonstrate how simulation modeling can

measure the value of new healthcare technologies. We quantified

the impact of implant cost and longevity, and recipient age and

comorbidity on innovative TKA implant cost-effectiveness. The

Table 2. Lifetime QALE, cost, and cost-effectiveness estimates associated with Standard and Innovative TKA.

Ages 50–59 Ages 70–79

% Decrease
in Long-

% Increase
in Implant Healthy* With comorbidity{ Healthy* With comorbidity{

Term Failure Cost Cost QALE ICER` Cost QALE ICER` Cost QALE ICER` Cost QALE ICER`

Standard TKA $61,589 16.43 2 $82,523 12.88 2 $42,186 8.57 2 $55,606 7.57 2

20% $62,508 16.44 $98,576 $83,443 12.88 $256,918 $43,152 8.57 $285,846 $56,568 7.58 $253,792

50% $64,135 16.44 $272,947 $85,042 12.88 $703,083 $44,734 8.57 $754,131 $58,136 7.58 $667,360

5% 100% $66,834 16.44 $562,378 $87,734 12.88 $1,454,320 $47,358 8.57 $1,530,912 $60,723 7.58 $1,349,707

200% $72,220 16.44 $1,139,780 $93,034 12.88 $2,933,511 $52,632 8.57 $3,091,912 $65,951 7.58 $2,728,599

400% $83,034 16.44 $2,299,170 $103,648 12.88 $5,895,966 $63,148 8.57 $6,204,194 $76,378 7.58 $5,478,685

20% $62,035 16.46 $15,392 $83,031 12.89 $38,457 $42,856 8.58 $56,394 $56,275 7.58 $82,829

50% $63,648 16.46 $71,007 $84,618 12.89 $158,622 $44,437 8.58 $189,494 $57,852 7.58 $278,098

20% 100% $66,352 16.46 $164,242 $87,283 12.89 $360,432 $47,069 8.58 $411,024 $60,453 7.58 $600,244

200% $71,754 16.46 $350,514 $92,614 12.89 $763,998 $52,333 8.58 $854,102 $65,675 7.58 $1,246,999

400% $82,548 16.46 $722,735 $103,245 12.89 $1,568,953 $62,861 8.58 $1,740,275 $76,103 7.58 $2,538,459

20% $60,290 16.53 Cost saving $81,486 12.93 Cost saving $41,846 8.61 Cost saving $55,308 7.60 Cost saving

50% $61,911 16.53 $3,114 $83,088 12.93 $12,082 $43,420 8.61 $28,197 $56,850 7.60 $47,443

70% 100% $64,615 16.53 $29,254 $85,757 12.93 $69,145 $46,058 8.61 $88,485 $59,463 7.60 $147,106

200% $70,019 16.53 $81,493 $91,079 12.93 $182,905 $51,328 8.61 $208,939 $64,694 7.60 $346,593

400% $80,814 16.53 $185,840 $101,741 12.93 $410,828 $61,858 8.61 $449,577 $75,108 7.60 $743,764

*No obesity or comorbidity at baseline.
{Baseline obesity, cardiovascular disease, and non-OA musculoskeletal disease.
`ICER = incremental cost-effectiveness ratio in 2010 US$ per quality-adjusted life-year (QALY) gained, compared with standard TKA. ‘‘Cost saving’’ indicates greater
QALYs achieved at a lower cost compared to standard TKA.
doi:10.1371/journal.pone.0062709.t002
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hypothetical ability of innovative TKA implants to delay the need

for revision resulted in quality of life gains as high as 0.10 QALY,

consistent with other medical device innovations, such as dual-

chamber pacemakers, which offer incremental QALE benefits of

0.14 QALY compared to standard pacemakers [45]. It is

important to note, however, that because the revision rates of

TKA with standard implants are already low, much of the

population may not experience any benefit from innovative

implants, while a small group of people may experience large

benefits by avoiding otherwise complex revision procedures.

Taken as an average across the whole population, innovative

TKA implants therefore offered smaller increases in QALE than

other novel therapeutics, such as dabigatran for stroke prevention

in atrial fibrillation, which provided 0.42 more QALYs than

warfarin, a four times greater QALE benefit than even the most

optimistic innovative TKA implant in our study [46]. Further,

these gains are attenuated in older populations or those with

greater comorbidity that may not survive long enough to benefit

from decrements in long-term TKA failure.

While there is no single accepted threshold below which a novel

therapy might be considered ‘‘cost-effective’’, the WHO Com-

mission on Macroeconomics and Health offers the following

guidance: interventions should be labeled ‘‘cost-effective’’ in a

given country if their ICER is less than three times that nation’s

per capita gross domestic product; interventions whose ICER is

less than the per capita GDP may be labeled ‘‘highly cost-

effective’’ [47,48]. The GDP in the US is roughly $50,000 [49],

suggesting that that innovative TKA implants offering at most a

15% reduction in long-term failure are unlikely to offer cost-

effective value to a broad range of patient populations. Such

implants would need to provide at least a 50% relative decrease in

actual TKA failure compared with standard implants to be

considered broadly cost-effective according to WHO standards.

Healthy 50–59-year-olds, those with the greatest anticipated life

expectancy among our four cohorts, received the most meaningful

clinical and economic benefit from decreasing the TKA failure

rate. In fact, if innovative implants could be proven to reduce true

long term TKA failure by at least 35% among this cohort, and if

such implants cost only 20% more than existing implants, they

might even offer a cost saving alternative to standard implants.

This finding was accentuated when we assumed that younger,

healthier TKA recipients had a higher baseline risk of revision

than older less healthy individuals, as recent data suggest [43].

However, the true efficacy of innovative implants is

poorly understood and, based upon recent experience with

metal-on-metal implants [22], might actually lead to increased,

rather than decreased TKA failure rates.

While implant cost and efficacy affected innovative TKA

implant cost-effectiveness, recipient comorbidity and remaining

life span also had a substantial impact. Our results suggest these

factors may be even more important if innovative implants lead to

increased short-term TKA failure, as one might expect with a

novel technology that requires the development of specific skills

and/or surgical experience to produce optimal results. When the

short-term failure risk is doubled for healthy 50–59 year olds, an

innovative implant with only a 10% reduction in late-term failure

led to worse QALE than standard implants. The results were even

less favorable in older and sicker cohorts (Figure 3). Despite

yielding acceptable ICERs under some scenarios, increases in

innovative implant survival offered at most a 11.32% absolute

reduction in the cumulative risk of revision among healthy

Figure 2. Implant cost and long-term TKA failure rate thresholds. Each shaded area represents implant cost increases (vertical axis) and
failure rate reductions (horizontal axis) required to achieve a given ICER range (see Legend contained in Figure) among the four primary cohorts.
ICER = incremental cost-effectiveness ratio in 2010 US$ per quality-adjusted life-year (QALY) gained, compared with standard TKA.
doi:10.1371/journal.pone.0062709.g002
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50–59-year-olds and 5.83% absolute reduction among individuals

aged 70–79 with baseline comorbidity.

There are limitations to our analysis. We estimated proportional

decreases in TKA implant failure based upon laboratory studies of

tibial and acetabular bearing surfaces [14,19], which are unlikely

to correlate precisely with clinical TKA outcomes and likely

overestimate the true clinical benefit of innovative implants.

However, in addition to exploring a wide range of possible effects

of innovative implants on reducing TKA failure, we chose

conservative estimates and assumed laboratory wear underesti-

mates true failure our conservative estimates demonstrated that

innovative biomaterials require a minimum of 50–55% reduction

in true long-term failure to be considered broadly cost-effective.

Published studies suggest innovative hip implants may reduce

short-term in vivo wear rates between 40–72%, [50–53] but these

radiographic findings may not accurately reflect clinical outcomes

such as implant failure or the need for revision. Robust, long-term

clinical data on TKA implants are unavailable, which is one of the

advantages of simulation modeling in this area. As true TKA

failure rates are unlikely to be reduced as much as short-term ex

vivo knee or in vivo hip studies indicate, it is improbable that

existing innovative implants offer marked economic value across

all populations.

Increased activity levels among younger, healthier TKA

recipients, who may therefore be at greater risk of TKA failure,

may further enhance innovative implant cost-effectiveness. How-

ever, we did not model dynamic decreases in TKA failure as an

individual ages, so our model likely overestimates the cost-

effectiveness of innovative implants under such assumptions. In

contrast, our base implant cost estimate may exceed the average

cost experienced by some hospitals [54], thereby underestimating

cost-effectiveness. Since TKA cost-effectiveness is sensitive to

implant cost, TKA innovations may be more or less cost-effective

depending upon the implant cost each hospital pays, producing

variability in value according to the negotiated cost [21]. While we

did not assess the impact of surgical technique on cost-

effectiveness, we did examine the possibility that innovative

technology might offer greater short-term failure due to the

potential for increased technical complexity associated with novel

devices. We also did not consider that the decision, from a

patient’s or society’s perspective, to adopt an innovative implant

today is to forgo the option of an even better implant tomorrow.

However, similar limitations are likely to affect the evaluation of

any innovative medical device and can be addressed by sensitivity

analyses to assess the impact of data uncertainty.

The FDA 510(k) clearance process has been criticized for

insufficient safety oversight and suppressing innovation through

incentivizing incremental gains [44,55]. Limited oversight of

medical device approval combined with economic and other

incentives serve to speed technology adoption [56]. However,

recent data demonstrate expedited approval is associated with

increased rates of high-risk product recalls [57]. Our analyses

suggest that small, incremental improvements in device longevity

may have little to no effect on QALE and cost-effectiveness,

Figure 3. Implant cost and long-term TKA failure thresholds in a scenario where the base short-term failure rate doubles. Each
shaded area represents implant cost increases (vertical axis) and failure rate reductions (horizontal axis) required to achieve a given ICER range (see
Legend contained in Figure) among the four primary cohorts in 2010 US$ per quality-adjusted life year (QALY) gained, compared with standard TKA.
Areas with black and white diagonal lines indicate assumptions under which innovative implants offer lower QALE for greater cost compared to
standard implants (i.e., such an innovative implant is ‘‘dominated’’ by the standard implant).
doi:10.1371/journal.pone.0062709.g003
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further supporting the Institute of Medicine’s recent call for

redesigning the 510(k) approval process [58]. Furthermore,

extensive recent data demonstrate that not all innovative implant

technologies will lead to actual improvements in longevity, and

some, such as metal-on-metal hip implants, may even lead to

worse long-term outcomes [22,59–62]. Innovative implants

providing no clinical benefit at an added cost would not be cost-

effective. Decisions as to the marketing, use and reimbursement of

medical devices are currently being made without robust outcomes

data to guide decision making. Our approach serves as a model for

evaluating a wide range of innovative technologies.

Because innovative implant technologies are released at about a

rate of 30 per year [11], surgeons and hospitals are often faced

with choices of whether to use specific innovative devices. These

devices may utilize one or more innovative technologies, such as

cementless fixation, rotating or sliding bearing inserts, novel

biomaterials, or gender-specific designs. For several of these

technologies, it is not clear whether they offer a significant

improvement in clinical outcomes over existing prostheses [63–

65]. However, as data from joint registries and head-to-head trials

uncover which specific implants can offer improved clinical

outcomes and/or reduced rates of revision, our model allows

decision makers to combine these outcomes data with the

implant’s marketed cost to determine whether such a device

would be cost-effective in particular patient populations.

While it is difficult to predict the benefit of an innovative TKA

implant to any one individual, the incremental benefit to society

appears modest, and the excess cost of using innovative implants

indiscriminately across populations could be substantial. Com-

pared to per capita healthcare expenditures among industrialized

nations, TKA alone is responsible for $3 billion in increased US

spending [66]. Targeting implants to specific populations based on

their expected clinical benefit may offer significant savings.

Moreover, TKA is representative of many medical devices,

ranging from hip and spinal implants, plates, screws and other

orthopedic hardware, to cataract and ophthalmologic implants,

which offer improvements in quality of life rather than survival

benefits. This work has implications for the development and

adoption of any medical device offering long-term clinical benefit

at a greater initial cost. Our analysis demonstrates that small

decreases in long-term device failure can provide clinical and

economic value under certain circumstances, but these innovations

may not offer equal benefit in all populations. In addition, many

innovative technologies offer improved long-term outcomes at the

expense of increased short-term complications due to increased

complexity of the procedure and/or the technical skill required to

optimally implement such advances. Our data suggest that even if

innovative implants lead to some increases in short-term

complications, the impact on overall cost-effectiveness will be

small in situations where innovative devices offer substantial

benefit over standard devices in reducing long term failure. In

situations where innovative implants are associated with lowering

rather than increasing short-term complications, cost-effectiveness

will likely be more favorable.

These results also provide important insights regarding the costs

and benefits associated with the diffusion of technology into

clinical practice. The modeling approach presented here can and

should focus and improve device development, identify optimal

populations for testing novel technologies, and provide physicians,

insurers and patients detailed information on the clinical benefits

expected for a given investment. The complex trade-offs between

short- and long-term health and economic consequences of

technological innovation cannot easily be captured by even the

most sophisticated randomized trials. Model-based evaluations

such as those presented here may provide important insights for

evaluating medical device innovation and merit consideration as a

standard component of the evaluation process.
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