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Abstract  
Nonalcoholic fatty liver disease (NAFLD), an escalating health problem worldwide, covers a spectrum of 

pathologies characterized by fatty accumulation in hepatocytes in early stages, with potential progression to liver 
inflammation, fibrosis, and failure. A close, yet poorly understood link exists between NAFLD and dyslipidemia, 
a constellation of abnormalities in plasma lipoproteins including triglyceride-rich very low density lipoproteins. 
Apolipoproteins are a group of primarily liver-derived proteins found in serum lipoproteins; they not only play an 
extracellular role in lipid transport between vital organs through circulation, but also play an important intracellu-
lar role in hepatic lipoprotein assembly and secretion. The liver functions as the central hub for lipoprotein metab-
olism, as it dictates lipoprotein production and to a significant extent modulates lipoprotein clearance. Lipoprotein 
metabolism is an integral component of hepatocellular lipid homeostasis and is implicated in the pathogenesis, 
potential diagnosis, and treatment of NAFLD.

Keywords: nonalcoholic fatty liver disease (NAFLD), hepatic steatosis, nonalcoholic steatohepatitis, apolipo-
protein, lipoprotein metabolism, very low density lipoprotein
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INTRODUCTION
An important evolutionary feature of vertebrates is 

the emergence of the liver, a versatile organ that ful-
fills numerous physiological needs and, especially, the 
maintenance of metabolic homeostasis. The regulation 
of lipid metabolism is one of the liver's core func-
tions. The liver can both acquire lipids from the circu-
lation and secrete lipid particles into the blood stream. 
Some species, such as the shark, have a hypertrophic 
liver reaching 10%-20% of total body weight; thus 
up to half of the liver mass is composed of fat and 
provides buoyancy functions[1]. Migratory birds re-

versibly accumulate lipids in the liver, as well as the 
peripheral adipose tissue in the autumn, to meet the 
extreme metabolic demand in the winter, a phenom-
enon exploited by humans to produce the foie gras. 
On the other hand, the human liver does not seem to 
be designed for much lipid storage. Excessive fatty ac-
cumulation in the liver is recognized as a pathological 
state. Fatty liver may occur acutely in pregnant women 
with genetic deficiency of 3-hydroxyacyl CoA dehy-
drogenase, an enzyme involved in β-oxidation of fatty 
acids, resulting in accumulation of medium to long 
chain fatty acids and subsequent acute liver failure[2].

The pathology of chronic fatty accumulation was 
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first characterized in alcoholism, a chronic condition 
associated with the potential of acute hepatitis exac-
erbation[3]. It was first described by Jurgen Ludwig 
in 1981 that the identical fatty accumulation pathol-
ogy also occurs in nonalcoholics[4]. Nonalcoholic fatty 
liver disease (NAFLD) is a condition characterized by 
histological findings of fatty accumulation in hepa-
tocytes that are indistinguishable from alcoholic fatty 
liver disease. NAFLD covers a broad spectrum of dis-
ease states, ranging from fatty infiltration (steatosis), 
inflammation [steatohepatitis, also known as nonal-
coholic steatohepatitis (NASH)], to fibrosis and cir-
rhosis[5]. NAFLD is now recognized as an escalating 
health problem, affecting both affluent as well as de-
veloping countries[6,7]. Recent epidemiological studies 
indicate that the prevalence of NAFLD in the United 
States is 33% determined by 1H NMR spectroscopy[8], 
and 46% determined by ultrasound[9]. The prevalence 
among Hispanics and Caucasian males was found to 
be the highest[10]. NAFLD is a hallmark of metabolic 
syndrome, with approximately 70% obese and diabetic 
patients also having NAFLD[11-13]. Contrary to an early 
notion that fatty liver was a benign condition, about 
30% of patients with positive ultrasound findings 
of fatty liver showed NASH on biopsy[9]. In another 
study, 3% of NAFLD patients develop cirrhosis, a rate 
much higher than the general public[14]. This translates 
into 10%-14% of the general population having NASH 
and 1%-1.4% having NASH induced cirrhosis. Other 
studies showed that hepatic steatosis is an independ-
ent risk factor for coronary artery disease, the leading 
cause of mortality in developed countries[15-17]. In liver 
transplant, hepatic steatosis is a well-established risk 

factor for ischemia reperfusion injury, leading to poor 
outcome of the graft[18]. 

Patients with NAFLD are frequently asymptomatic. 
Physical findings are rare before impaired compensa-
tion of the liver functions. Clinically, the workup of 
NAFLD is often triggered by elevated liver enzymes 
after ruling out alcohol abuse or viral hepatitis. As-
partate aminotransferase to alanine aminotransferase 
ratio is usually less than one until advanced fibrosis 
has occurred[19]. Hepatic steatosis is also a frequent 
incidental finding during abdominal imaging studies. 
Ultrasonography is safe and cost-effective, thus is of-
ten used as a screening tool. On ultrasonography, the 
steatosis produces a diffuse increase in echogenicity 
compared to the neighboring renal cortex as a result of 
increased parenchymal reflectivity of intracellular fat 
inclusions[20]. A recent report showed that ultrasound 
has a sensitivity of 92% and specificity of 100% in 
detecting hepatic steatosis after workup for other 
causes of liver diseases[21]. Computed tomography and 
magnetic resonance imaging also offer information on 
hepatic steatosis. Proton magnetic resonance spectros-
copy (1H MRS) has been gaining popularity in epide-
miological research, as it offers the most sensitive and 
precise quantification of steatosis[22,23]. Despite ad-
vances in imaging modalities, liver biopsy is still the 
gold standard in the diagnosis of NAFLD as it is the 
only way to make the distinction between simple st-
eatosis versus steatohepatitis or cirrhosis. Besides the 
invasive nature of biopsy, sampling and interpretation 
variability limits the accuracy of NALFD staging[24].

This review summarizes our current understanding 
of the relationship between lipoprotein metabolism 
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Fig. 1 Overview of lipoprotein metabolism. Human lipoproteins are predominantly produced by the small intestine and the 
liver. Small intestine produces chylomicron, which contains apoB48, apoA-I, apoC-I, apoC-II, and apoC-III. The remnant particles, 
after utilization of lipids by the peripheral tissue, are taken up by the hepatocytes. The liver produces apoB-100-containing VLDL 
and premature HDL. VLDL is hydrolyzed in circulation and converted into IDL and LDL. Both IDL and LDL can be taken up by the 
hepatocytes. The discoidal shaped premature HDL becomes mature HDL in the circulation, and serves an important role in reverse 
cholesterol transport. VLDL: very low density lipoprotein; HDL: high density lipoproteins; IDL: intermediate density lipoprotein; 
LDL: low density lipoprotein. 
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and NAFLD, with a goal of clarifying pathophysiol-
ogy of the disease and potentially identifying new di-
agnostic strategies and therapeutic targets. 

LIPOPROTEIN METABOLISM AND 
PATHOPHYSIOLOGY OF NAFLD

Hydrophobic lipids are transported in the form of 
lipoproteins. The vehicles of this rather complex trans-
port system consist of apolipoproteins, a family of 
surface active proteins synthesized predominantly by 
the liver and, to a lesser extent, by the small intestine. 
The three major classes of lipoproteins in humans are 
chylomicrons, very low density lipoprotein (VLDL), 
and high density lipoprotein (HDL) (Fig. 1). Chylomi-
crons are synthesized in the small intestine, whereas 
VLDL is produced by the liver and is the precursor of 
low density lipoprotein (LDL). Both chylomicron and 
VLDL particles contain a single copy of apolipoprotein 
B (apoB), an extremely hydrophobic and tightly-bound 
protein that is often referred to as a nonexchangeable 
apolipoprotein. The major exchangeable apolipoproteins 
include apoA-I, apoA-II, apoA-IV, apoA-V, apoC-I, 
apoC-II, apoC-III, and apoE[25,26]. These are smaller pro-
teins (as compared to apoB) and are often co-secreted 
with apoB-containing lipoproteins such as VLDL and 
chylomicrons. Some of these proteins, such as apoA-I, 
are also produced as lipid-poor forms and constituents 
of the pre-β-HDL, which later matures into HDL during 
the reverse cholesterol transport process. The only route 
for triglyceride (TAG) export from hepatocytes is via 
the assembly of VLDL (see below). Serum lipoprotein 
is also a major source of hepatocellular lipid uptake, in-
cluding chylomicron remnant, LDL and HDL.

The cause of NAFLD remains poorly understood. 
Nonetheless, it can be rationalized that hepatic st-
eatosis is a result of net hepatocellular retention of 
lipids, especially in the form of TAG. From a liver 
centric point of view, this imbalance results from 
abnormalities in one or more of the following four 
processes: (1) hepatic uptake of fatty acid, lipoprotein 
and glucose, (2) de novo TAG synthesis, (3) TAG 
degradation and fatty acid β oxidation, and (4) lipo-
protein secretion in the form of VLDL[27]. In NAFLD 
patients, 15% of the hepatic lipid comes from dietary 
fatty acid, 30% from de novo synthesis, and 60% 
from the lipolysis of adipose tissue[28]. 

The most reproducible observation of NAFLD is 
its association with metabolic syndrome and insu-
lin resistance. Accumulating evidence has revealed 
that insulin resistance profoundly affects hepatic lipid 
homeostasis[29]. Under insulin resistance state, all of the 
three major sources of hepatic TAG increased, namely, 
the albumin bound free fatty acid (FFA) from lipoly-
sis of adipose tissue, the fatty acids metabolized from 
circulating chylomicrons and VLDL-derived lipopro-
teins via lipoprotein lipase (LPL), and fatty acids from 
de novo lipogenesis[29]. Insulin modulates lipolysis of 
adipose tissue, leading to increased levels of serum 
FFAs[30]. Insulin resistance also increases the produc-
tion of chylomicron and VLDL, but hampers their 
lipolysis in the circulation, thus increasing the hepatic 
uptake of lipids from chylomicron and VLDL[31,32]. 
Persistent elevation of serum LDL leads to the accu-
mulation of plasma oxidized LDL (oxLDL), which is 
one of the endogenous antigens in a number of diseas-
es featured by oxidative stress. A high titer of serum 

Fig. 2 VLDL synthesis in hepatocytes. VLDL synthesis requires a synchronized process along apoB-100 maturation in the ER-Gol-
gi secretory compartments. The nascent apoB-100 forms a primordial particle within the ER with the assistance of MTP. The primordial 
particle subsequently expands as the translation of apoB continues and more lipids are added. Intralumenal lipid droplets are also formed 
within the ER, and carry apoC-III. The VLDL precursor will combine with the intralumenal lipid droplets, either in the ER or in the Golgi, 
through a process that may or may not require the MTP activity. Mature VLDLs are secreted through vesicle-mediated exocytosis. PM: 
plasma membrane; VLDL: very low density lipoprotein; ER: endoplasmic reticulum; MTP: microsomal triglyceride-transfer protein. 
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IgA to oxLDL level was associated with worsening 
fatty liver disease[33]. Circulating IgG against lipid per-
oxidation products was higher in NAFLD patients than 
in controls in an independent study[34]. In particular, 
an elevated anti-malondialdehyde antibody level was 
correlated with an increased risk of cirrhosis[34].

Closely related with insulin resistance is adipocyte 
dysfunction, an important metabolic derangement 
leading to hepatic steatosis. Leptin is an adipocyte-
derived hormone with pleiotropic physiological func-
tions, most importantly known to exert an effect on 
the hypothalamus[35]. The leptin deficient mouse (ob/
ob) develops massive fatty liver as well as obesity and 
insulin resistance[36]. In a transgenic mouse model, 
symptoms resembling congenital generalized lipod-
ystrophy were observed by expressing constitutively 
activated sterol regulatory element-binding protein 
1c (SREBP-1c)[37]. The lipodystrophic mice, despite 
normal weight, had phenotypes similar to metabolic 
syndrome, including massive fatty liver. Infusion of 
leptin is able to reverse the phenotype of hepatic stea-
tosis and insulin resistance. Similar effects of leptin on 
alleviating hepatic steatosis have also been illustrated 
in lipodystrophic patients[38,39]. However, cellular and 
molecular mechanisms by which leptin exerts its ef-
fect on regulating hepatic lipoprotein production re-
main to be defined. 

APOLIPOPROTEIN B
The mature apoB-100 consists of 4,536 amino acids 

and is one of the largest proteins secreted by the liver 
in the form of VLDL[40,41]. The small intestine secrets 
chylomicrons that contain apoB-48, which represents 
the N-terminal 48% of apoB-100 (resulting from the 
apoB mRNA editing)[42,43]. The assembly of apoB-
48 and apoB-100 with lipids dictates the production 
of respective chylomicrons and VLDL, a process in-
volving a complex folding and intracellular trafficking 
pathway and requires coordination of multiple cellular 
machineries (Fig. 2)[44]. Genetic defects in the APOB 
gens can lead to NAFLD, as exemplified in familial 
hypobetalipoproteinemia (FHBL)[45,46]. FHBL is an 
autosomal co-dominant disease, characterized by less 
than 5th percentile of total cholesterol, LDL cholester-
ol, or total apoB[47]. The estimated prevalence of het-
erozygotic forms of FHBL, based on clinical criteria, 
is 1/500-1/1,000[48]. The homozygotic form of FHBL 
is exceedingly rare and often causes significant devel-
opmental defects. This underlying genetic condition 
either directly or indirectly affects the integrity of the 
apoB secretory pathway. A number of truncating or 
missense mutations within the APOB gene were found 
to cause FHBL[49]. Interestingly, longevity is report-

edly associated with FHBL, probably because the 
lowered serum cholesterol in FHBL protects against 
cardiovascular diseases[50].

Although many FHBL individuals are clinically 
silent, FHBL significantly increases the susceptibil-
ity for NAFLD. This has been shown in mice express-
ing truncated forms of apoB[51,52]. In humans, FHBL is 
found to cause an increased hepatic TAG content and 
elevation in liver enzymes[53-55]. It is unclear whether 
hepatic steatosis in FHBL individuals follows the 
same natural history as those NAFLD patients with-
out FHBL. It has been shown, however, that FHBL-
induced hepatic steatosis in individuals does not nec-
essarily cause insulin resistance[56]. A non-obese FHBL 
patient with cirrhosis developed severe NASH after re-
ceiving liver transplant from a healthy FHBL donor[57], 
suggesting that NAFLD can progress aggressively in 
FHBL without insulin resistance. However, whether 
or not steatosis alone (without insulin resistance) is 
sufficient to drive hepatic inflammation remains to be 
determined. It should be pointed out that not all FHBL 
mutations cause hepatic steatosis. In a phase III clini-
cal trial using apoB antisense oligonucleotide, patients 
with familial hypercholesterolemia receiving the in-
hibitor did not develop hepatic steatosis after 13 weeks 
of treatment[58]. There is likely a spectrum of severities 
in steatosis, depending upon the degree of impairment 
in the secretion of apoB-containing lipoproteins.

Currently, it is unclear whether or not development 
of NAFLD alone can cause impairment in VLDL 
secretion. Insulin resistance, generally, is associated 
with increased hepatic TAG production in the form 
of VLDL, as dyslipidemia is a hallmark of metabolic 
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Fig. 3 Predicted natural history of serum lipopro-
tein levels in NAFLD. NAFLD is associated with dyslipi-
demia, an integral feature of metabolic syndrome. As disease 
progresses, hepatic lipoprotein production will decline as a 
result of decompensated liver failure. This progression may be 
manifested as a decline in serum lipoprotein levels, which may 
potentially precede global decline in hepatic synthetic function, 
a condition currently monitored by albumin and coagulation 
time clinically. NAFLD: non-alcoholic fatty liver disease. 
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syndrome[59,60]. Increased hepatic fat content often 
(but not always) correlates with increased hepatic 
TAG secretion[60,61]. However, as NAFLD progresses, 
it is conceivable that the production of VLDL/apoB 
might decrease secondary to the impairment of hepa-
tocellular function (Fig. 3). Studies of seven patients 
with biopsy proven NASH showed decreased apoB 
production rate (by 50%) as compared with obese or 
lean controls without NAFLD[62]. One theory for this 
impairment is endoplasmic reticulum (ER) stress. It 
has been shown in cell culture and animal studies that, 
although moderate FFA overload increases apoB se-
cretion, prolonged exposure of FFA induced ER stress 
and resulted in decreased apoB secretion[63]. The ER 
stress may represent a state prior to the decline of glo-
bal hepatic synthetic function, a condition of end-stage 
liver disease characterized by extensive replacement 
of hepatocytes by fibrotic tissues (which is clinically 
being monitored by albumin or coagulation factors) 
(Fig. 3). Effective apoB maturation in conjunction 
with VLDL assembly and secretion, however, de-
mands a higher level of cellular function integrity, a 
process far more complex than the secretion of soluble 
proteins such as albumin or coagulation factors. If the 
decline of VLDL production does precede the impair-
ment in global hepatic synthetic function, one might 
expect that apoB production can serve as a potential 
surrogate marker to replace the rather invasive liver 
biopsy for monitoring NAFLD disease progression. 
However, the challenge in measuring apoB production 
is the labor intensive nature of apoB kinetic studies. 
The gold standard to measure apoB production rate 
requires the use of isotopic labeled amino acids or lip-
ids, a rather cumbersome method. Validated surrogate 
markers could potentially replace these methods.

MICROSOMAL TRIGLYCERIDE TRA-
NSFER PROTEIN

Although not an apolipoprotein, the microsomal 
triglyceride-transfer protein (MTP) plays an indis-
pensable role in apoB metabolism[64]. Synthesized 
mainly in the liver and small intestine, MTP exists as 
a heterodimer through non-covalent binding to pro-
tein disulfide isomerase, an ER resident protein[65]. The 
amino acid sequence of MTP is homologous to the N-
terminal 20% of apoB, suggesting that MTP and apoB 
may share a common evolution origin[66,67]. MTP was 
found capable of transferring TAG between vesicles in 
vitro, and was thus proposed as an lipid transfer protein 
during apoB maturation[68]. MTP binds to apoB and 
ER membrane, and also functions as a chaperone that 
assists in apoB folding (Fig. 2)[69,70]. The lack of func-
tional MTP causes abetalipoproteinemia, a condition 

characterized by the virtual absence of apoB-contain-
ing lipoprotein in the plasma[71]. The hallmark clinical 
manifestations of abetalipoproteinemia include hepatic 
steatosis as well as developmental defects associated 
with the malabsorption of lipid-soluble vitamins[72,73].

Abetalipoproteinemia is a rare, naturally occur-
ring cause of NAFLD. The MTP inhibition can also 
be acquired in viral hepatitis or iatrogenic by MTP 
inhibitors. Hepatitis C virus genotype 3 (HCV-3) is 
known to cause hepatic steatosis. In HCV-3 induced 
steatosis, the MTP activity and the MTTP mRNA 
level were both reduced[74]. There was a positive cor-
relation between the histological grade of steatosis and 
reduction in the MTTP mRNA[74]. The MTP inhibitors 
were developed initially with a hope to treat hyperc-
holesterolemia. However, although the MTP inhibi-
tors effectively lower serum LDL, they cause a dose-
dependent hepatic steatosis and variable severity of 
transaminitis[75]. These side effects have prohibited the 
FDA approval of first generation MTP inhibitors for 
the treatment of dyslipidemia. However, the efforts to 
optimize and balance the efficacy and adverse profile 
of MTP inhibitors have not ceased[76].

Genetic studies have identified an interaction be-
tween MTP and NAFLD. A polymorphism at the pro-
moter region (-493G/T) of MTTP is associated with 
biological surrogates of steatohepatitis in patients with 
type II diabetes[77]. The G allele is responsible for de-
creased MTP transcription, and is prone to increased 
intrahepatic TAG content. The TT polymorphism is 
associated with an atherogenic postprandial lipid pro-
file, elevated levels of serum hs-CRP and resistin, and 
an increased risk of coronary artery diseases[78,79]. This 
is an example of genetic differences accounting for 
risk factors of divergent metabolic disorders including 
fatty liver and coronary artery disease. MTP also plays 
a role linking insulin resistance to hepatic VLDL pro-
duction. The MTTP gene expression is under negative 
regulation of insulin[80]. Insulin leads to the phosphor-
ylation of forkhead transcription factor FoxO1 and its 
exclusion from the nucleus, resulting in the inhibition 
of MTP transcription[81]. Insulin also inhibits MTP 
production via the MAPK pathway[82]. It could there-
fore be postulated that one effect of insulin resist-
ance is the loss of such negative regulation, leading 
to increased MTP production, thus more pronounced 
apoB-VLDL production.

APOLIPOPROTEIN C-III
There is a recent revival of interests in apoC-III, an 

exchangeable apolipoprotein, for its newly suggested 
role in lipoprotein metabolism and NAFLD. Human 
apoC-III is a 79-amino acid glycoprotein found in 
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all three classes of lipoproteins, VLDL, chylomicron 
and HDL[26,83]. The liver contributes to the major-
ity of serum apoC-III in the form of VLDL. Like 
other exchangeable apolipoproteins, apoC-III can be 
transferred between lipoprotein particles. The NMR 
structure of human apoC-III on lipid-mimicking SDS 
micelles showed an extended helical belt structure, 
wrapping over the surface of the micelle as an open 
necklace[84]. Similar extended alpha helical conforma-
tion is also seen in recently determined apoA-I and 
apoA-IV structures[85,86].

The plasma concentration of apoC-III is closely as-
sociated with plasma concentrations of TAG. It was 
initially proposed that apoC-III inhibits LPL-mediated 
catabolism of TAG-rich lipoproteins, thus resulting 
in increased plasma TAG concentration[87]. Recently, 
it was found that apoC-III acts intracellularly and 
stimulates hepatic secretion of TAG-rich VLDL under 
lipid-rich conditions (Fig. 2 and Fig. 4)[88]. This effect 
was seen in cell cultures and apoc3-knockout mice 
infected with adenoviruses expressing human apoC-
III[88-90]. Metabolic labeling studies showed that apoC-
III stimulates the incorporation of newly synthesized 
TAG into the microsomal compartments[88]. ApoC-
III may also facilitate the expansion of nascent VLDL 
particles, as such function is abolished by a naturally 
occurring A23T mutation linked to hypotriglyceri-
demia in humans[90]. Furthermore, apoC-III appears to 
link lipoprotein metabolism to glucose metabolism. 
Glucose induces apoC-III transcription, while PPARα, 
PPARγ, Rev-Erb, FXR, and insulin all exert an in-
hibitory role in apoC-III transcription[91]. Therefore, 
apoC-III could underlie the adaptive effect of TAG 
hyper-secretion in the state of metabolic syndrome.

It remains controversial as to whether genetic vari-
ants of apoC-III are directly implicated in NAFLD. 
Over-expression of human apoC-III in transgenic mice 
predisposes the animal to diet induced hepatic stea-
tosis and hepatic insulin resistance[92]. Genetic stud-
ies in humans showed that multiple polymorphisms in 
the promoter region of APOC3 were associated with 
familial hypercholesterolemia[93-95]. Among these poly-
morphisms, T-455C and C-482T were located in the 
insulin response element, a region that exerts negative 
regulation on apoC-III expression[93,96]. It was reported 
that T-455C and C-482T were associated with hepatic 
steatosis in 95 healthy Asian Indian men, as well as a 
test group composed of 163 healthy non-Asian Indian 
men[23]. However, the association between the APOC3 
promoter polymorphism and NAFLD was not observed 
in the Dallas Heart Study, in which a cohort of more 
African Americans with older age and higher BMI were 
studied[22]. The difference in population characteristics 
may explain discrepancies between the two studies. 
Nevertheless, the debate on SNP association does not 
negate the role of apoC-III in TAG-rich VLDL metab-
olism, which likely has an impact on hepatic steatosis.  

APOLIPOPROTEIN E
Apolipoprotein E (apoE) is a 299-amino acid pro-

tein, initially discovered as an exchangeable apoli-
poprotein that modulates lipoprotein metabolism[97] 
and also plays an important role in neurodegenerative 
diseases such as Alzheimer's disease[98]. Serum apoE is 

Fig. 4 Lipid homeostasis in normal state (A) vs insu-
lin resistance state (B). The flow of lipids among different 
organs is shown schematically. The pointed-arrow depicts the 
direction of lipid flow; the line thickness and grayscale repre-
sent the relative quantity. The arrow with open circle indicates 
factors mediating the lipid delivery. In normal lipid homeos-
tasis, dietary lipids are excreted with apoB-48 in the forms of 
chylomicrons from the small intestine. The majority of this 
lipid load is utilized by peripheral tissues (e.g. adipocytes and 
skeletal muscles). A portion of this lipid load reaches the liver 
via apoE mediated uptake. Under insulin resistance conditions, 
besides increased FFA release from adipocytes, decreased LPL 
activity shunts more lipid load away from the peripheral tis-
sues toward ectopic organs such as the liver and the pancreas. 
Hepatic steatosis is a high lipid turnover state, a condition as-
sociated with increased uptake and secretion of lipoproteins. 
Fatty deposition in islet cells further exacerbates metabolic 
syndrome. VLDL: very low density lipoprotein; FFA: free fatty 
acid; LPL:  lipoprotein lipase.
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produced primarily by hepatocytes either in the form 
of VLDL or in association with HDLs. In addition to 
the liver, apoE is also expressed in a variety of other 
tissues including the brain, spleen, lung, adrenal gland, 
ovary kidney and macrophages[97]. There are three iso-
forms of human apoE, ε2, ε3, and ε4, which differ in 
amino acids at positions 112 and 158 (ε2, Cys and Cys; 
ε3, Cys and Arg; ε4, Arg and Arg)[99]. The ε2 genotype 
is linked to type III hyperlipidemia, a familial condi-
tion associated with premature atheroscloerosis[100,101].

ApoE is implicated in lipoprotein metabolism both 
extracellularly and intracellularly. ApoE is present 
on chylomicrons, but its mRNA is not found in en-
terocytes. ApoE becomes chylomicron-bound in the 
circulation and mediates the removal chylomicron 
remnant via the LDL receptor (LDLR) (Fig. 4)[102,103]. 
The N-terminal half of the apoE protein shares high 
identity to the LDLR binding domain in apoB, thus 
conferring its LDLR binding ability[104]. The affinity of 
apoE to LDLR is 25-fold higher than that of apoB[105]. 
ApoE also interacts with receptors other than LDLR, 
such as LDL receptor related protein 1 (LRP1), apoE 
receptor 2 (apoER2) and the VLDL receptor[98]. Thus, 
the absence of LDLR does not entirely affect chy-
lomicron clearance[106].

Intracellularly, apoE facilitates apoB maturation 
and VLDL assembly in hepatocytes. Expression of 
apoE in immortalized human or rat hepatocytes stim-
ulates VLDL secretion[107,108]. The apoe-null mouse 
showed markedly reduced VLDL production from 
the liver[109], which could be restored by adenovirus-
mediated apoE3 expression[108]. Although the exact 
mechanism of this stimulatory effect is unclear, cur-
rent evidence suggests that apoE impacts the early 
assembly of VLDL in the ER rather than the VLDL 
maturation during post-ER trafficking (Fig. 2)[110,111].

The overall impact of apoE in NAFLD reflects its 
dual roles in lipoprotein metabolism, the secretion of 
VLDL and clearance of postprandial chylomicrons. 
The hepatic TAG content was markedly increased 
in the apoe-null mouse, with a perivenous distribu-
tion of steatosis on biopsy[111]. Nevertheless, the apoe-
null mouse is more resistant to diet-induced NAFLD 
than the wildtype mouse, likely as a result of impaired 
postprandial uptake of chylomicrons by the hepato-
cytes[112]. The extent of diet induced steatosis in apoe-
null mouse is less than ldlr-null mouse, suggesting the 
presence of an apoE-mediated hepatic TAG uptake 
pathway independent from LDLR. 

In humans, the impact of apoE on hepatic steato-
sis varies among different apoE isoforms. In a case 
control study of 57 biopsy confirmed NASH patients, 
the APOE ε3 allele was overrepresented in NASH pa-

tients[113]. The ε3/ε3 genotype was strongly associated 
with increased risk of NASH (odds ratio = 7.941; p 
= 0.000)[113]. In other case-control studies, the ε2 and 
ε4 allele carriers had significant reduction in NAFLD 
risk[114,115]. The hepatic uptake of lipids from dietary 
sources is in competition with non-hepatic utiliza-
tion via the lipoprotein lipase (Fig. 4). It could be pos-
tulated that in metabolic syndrome, a condition as-
sociated with dietary fat overload, apoE may act as a 
mediator that regulates the distribution of dietary lipid 
load between the liver and the peripheral tissue. If this 
hypothesis is true, there might be a role for therapeu-
tic strategies targeting the apoE-receptor interaction, 
thereby modulating this balance.

OTHER APOLIPOPROTEINS, LIPO-
PROTEIN LIPASES AND NUCLEAR 
HORMONE RECEPTORS

The roles that other exchangeable apolipoproteins 
play in NAFLD are less well defined. Proteomics 
analysis of serum samples from 65 NAFLD patients 
(with varying biopsy proven stages of disease) showed 
that several apolipoproteins have >14% differences 
(P < 0.05) in their serum concentration as compared 
with 16 obese controls, including apoA-II, apoA-IV, 
apoB, apoC-I, apoC-III and apoL-I[116]. However, sev-
eral apolipoproteins (such as apoA-I and apoA-V) and 
lipases (such as LPL) that are potentially involved in 
NAFLD were not identified in this study.  

Apolipoprotein A-I is the most important apolipo-
protein in HDL, and plays essential roles in reverse 
cholesterol transport as well as a number of physi-
ological functions that are considered cardioprotec-
tive[117]. Low HDL and high apoB/apoA-I ratio is 
associated with obesity, metabolic syndrome, insulin 
resistance, and NAFLD[118-120]. ApoA-I is primarily 
produced by the liver in lipid poor forms. Phospholip-
ids and cholesterols are added extracellularly through 
ATP binding cassette transporter A1 (ABCA1), a 
transmembrane protein present in both hepatocytes 
and peripheral tissues. The liver has been recognized 
as an essential site for initial lipidation involving a 
unique process called retroendocytosis[121-123]. This 
hepatic production of HDL could attenuate VLDL se-
cretion via a phosphatidylinosital-3 kinase mediated 
signaling pathway[124]. Its effect in hepatic steatosis is 
yet to be determined. 

Apolipoprotein A-V is a new member in the apol-
ipoprotein family and has a specific impact on lipid 
metabolism[125]. ApoA-V is expressed in the liver, 
with a small amount secreted in VLDL and HDL[126]. 
In mouse models, apoa5-null mice displayed elevat-
ed serum TAG levels, while mice that overexpressed 



　8 Jiang ZG et al. / The Journal of Biomedical Research, 2013, 27(1):1-13

apoA-V had decreased serum TAG levels[125,127]. 
These data suggest a role of apoA-V that is antago-
nistic to apoC-III in VLDL production, although 
mechanisms responsible for the apoA-V action re-
main to be defined. It was shown that the improve-
ment in hepatic steatosis among obese NAFLD 
patients who underwent bariatric surgery was ac-
companied with significant reduction in hepatic 
apoA-V mRNA levels[128]. In HepG2 cells, knock 
down of apoA-V resulted in marked decrease in he-
patic TAG content[128]. In cultured cells, apoA-V was 
found to be not in direct association with apoB100, 
but with intracellular lipid droplets[129]. In humans, 
two apoA-V polymorphisms have strong association 
with elevated serum TAG levels[130,131]. However, it is 
unclear whether these polymorphisms offer protec-
tion against NAFLD. 

Lipoprotein lipase (LPL) is an extracellular matrix 
bound enzyme present outside of capillary endothelial 
cells. Although not a member of apolipoproteins, it 
dictates the catabolism of chylomicron and VLDL, an 
integral process in normal lipoprotein metabolism[132]. 
LPL is produced by many tissues, including adipose 
tissue, cardiac and skeletal muscle, pancreatic islets, 
and macrophages, but not by the adult liver. LPL 
catalyzes the rate limiting step in the breakdown of 
TAGs from serum lipoproteins for utilization by the 
peripheral tissue (Fig. 4). An important activator of 
this enzyme is apoC-II, an exchangeable apolipopro-
tein produced by the liver. The genetic deficiency 
or malfunction of lipoprotein lipase results in type I 
hyperlipoproteinemia and subsequent ectopic TAG 
accumulation. In normal individuals, LPL activity in 
the adipose tissue is essential in buffering the circula-
tory TAG load, which protects against ectopic TAG 
accumulation, including hepatic steatosis[133]. In obes-
ity, the impaired ability to up-regulate LPL by insu-
lin exacerbates hepatic postprandial lipid load, thus 
causes hepatic steatosis. The regulation of LPL is 
therefore a crucial component in hepatic lipid home-
ostasis. Updates on the biology of LPL have been 
reviewed elsewhere[134,135].

The expression of genes involved in hepatic lipid 
and lipoprotein metabolism is, to a large extent, regu-
lated by an array of nuclear hormone receptors (also 
known as transcription factors) in response to changes 
in the balances of nutrients, mainly fatty acids and 
carbohydrates[136,137]. Not surprisingly, expression of 
most of the above discussed apolipoproteins, LPL, 
and lipoprotein receptors is regulated by the nuclear 
hormone receptors, such as LXR[138], FXR[139], PPARα 
and PPARγ[140]. These nuclear hormone receptors are 
implicated in hepatic steatosis and some have been 

proposed as targets for treatment of NAFLD. LXR 
promotes free fatty acid uptake by the liver and pro-
motes large VLDL secretion[141]. The LXR-null mice 
develop hepatomegaly with intrahepatic accumulation 
of cholesterol esters[142]. FXR, on the other hand is a 
bile acid sensor and decreases circulating TAGs upon 
activation[136,137]. LXR and FXR are recognized as 
promising drug targets for an array of diseases includ-
ing NAFLD. PPARα provides transcriptional control 
of genes in the β oxidation of fatty acids, whereas 
PPARγ is the principal regulator in adipogensis and 
promotes insulin sensitivity[143]. Fibrates are PPARα 
agonists that have been well established in treating 
dyslipidemia[144]. In rodent models, fibrates provide 
hepatic protection against diet induced NASH[145]. 
Thiazolidinediones, PPARγ agonists developed in the 
mid 1990s, were once among the frontline agents in 
treating type 2 diabetes mellitus[146]. In randomized 
control trials for NAFLD, pioglitazone was found 
to improve the liver enzyme profiles and histologi-
cal grades of steatohepatitis, although there were no 
benefits in reducing fibrosis[147,148]. These transcription 
factors have been reviewed[136,137,143,149].

CONCLUSION
Lipoprotein metabolism is a central process im-

plicated in the development of hepatic steatosis. Our 
knowledge in the biology of lipoprotein metabolism 
has expanded significantly in the past two decades. 
Now key players in the system have been identified. 
We may begin to understand the molecular mechanism 
that modulates the formation, secretion, clearance and 
regulation of lipoprotein metabolism. Such knowledge 
will prepare us to better understand NAFLD, a grow-
ing problem that is endemic in the modern society. 

Several key questions remain to be answered. Is li-
poprotein metabolism primarily altered in NAFLD? If 
so, is that alteration pathogenic or is it simply a mala-
daptation secondary to metabolic syndrome? How 
does lipoprotein metabolism evolve as the progression 
of NAFLD? Are there changes in lipoprotein metabo-
lism that one can identify in the serum that can predict 
disease progression? Finally, are there steps in lipo-
protein metabolism that are amenable to intervention, 
thus halting or changing the course of disease? Issues 
raised by these questions will be addressed both on the 
basic science and clinical level and will surely impact 
the diagnosis and therapeutics in the future. 
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