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Abstract

Drug-drug interactions (DDIs) can lead to serious and potentially lethal adverse events. In recent years, several drugs have
been withdrawn from the market due to interaction-related adverse events (AEs). Current methods for detecting DDIs rely
on the accumulation of sufficient clinical evidence in the post-market stage – a lengthy process that often takes years,
during which time numerous patients may suffer from the adverse effects of the DDI. Detection methods are further
hindered by the extremely large combinatoric space of possible drug-drug-AE combinations. There is therefore a practical
need for predictive tools that can identify potential DDIs years in advance, enabling drug safety professionals to better
prioritize their limited investigative resources and take appropriate regulatory action. To meet this need, we describe
Predictive Pharmacointeraction Networks (PPINs) – a novel approach that predicts unknown DDIs by exploiting the network
structure of all known DDIs, together with other intrinsic and taxonomic properties of drugs and AEs. We constructed an
856-drug DDI network from a 2009 snapshot of a widely-used drug safety database, and used it to develop PPIN models for
predicting future DDIs. We compared the DDIs predicted based solely on these 2009 data, with newly reported DDIs that
appeared in a 2012 snapshot of the same database. Using a standard multivariate approach to combine predictors, the PPIN
model achieved an AUROC (area under the receiver operating characteristic curve) of 0.81 with a sensitivity of 48% given
a specificity of 90%. An analysis of DDIs by severity level revealed that the model was most effective for predicting
‘‘contraindicated’’ DDIs (AUROC=0.92) and less effective for ‘‘minor’’ DDIs (AUROC=0.63). These results indicate that
network based methods can be useful for predicting unknown drug-drug interactions.

Citation: Cami A, Manzi S, Arnold A, Reis BY (2013) Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions. PLoS ONE 8(4): e61468.
doi:10.1371/journal.pone.0061468

Editor: Miguel Angel Medina, Universidad de Malaga, Spain

Received November 19, 2012; Accepted March 11, 2013; Published April 19, 2013

Copyright: � 2013 Cami et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Library of Medicine (1K99LM011014-01, R01 LM009879) and the National Institute of General Medical
Sciences (R01 GM89731, R01 GM085421). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: aurel.cami@childrens.harvard.edu

Introduction

Adverse drug-drug interactions (DDIs) are a serious health

threat that can result in significant morbidity and mortality. In

recent years, several drugs have been withdrawn from the market

because of serious interaction-related adverse events (AEs). For

example, the antihistamine drug astemizole (Hismanal) and the

gastrointestinal-disorders drug cisapride (Propulsid) were with-

drawn from the market in 1999 and 2000, respectively, after it was

determined that each could cause fatal arrhythmias when given in

combination with certain other drugs [1,2]. Similarly, the

hypertension drug mibefradil (Posicor) was withdrawn from the

market in 1998 because of interactions with a number of other

drugs [3].

Drug-drug interactions may be categorized by various criteria,

two important ones being the severity level and the underlying

DDI mechanism. In terms of severity, DDIs are often categorized

into minor, moderate and severe (or, major) [4]. Minor DDIs are

considered of slight clinical significance and typically only call for

routine patient monitoring, moderate DDIs have a higher clinical

significance and may require dosage changes and closer monitor-

ing, and major DDIs can lead to serious adverse effects and should

typically be avoided. In terms of mechanism, DDIs can be broadly

categorized as either pharmacokinetic or pharmacodynamic [4–

7]. Pharmacokinetic DDIs occur when one drug interferes with the

absorption, distribution, metabolism, or elimination of another

drug, leading to changes in the plasma concentration of the

affected drug. One of the largest groups of pharmacokinetic

interactions are those caused by the inhibition or induction of

cytochrome P450 (CYP) isozymes, which are involved in the

metabolism of many drugs [4,5]. Pharmacodynamic interactions

occur when one drug interferes with a second drug at a target site,

leading to additive or subtractive effects for the involved drugs

[4,7]. Although important, pharmacodynamic interactions make

up a smaller class than pharmacokinetic interactions.

Ideally, the interactions of a new drug with existing drugs could

be predicted in the early stages of discovery and development.

Traditionally, early stage predictions have focused on pharmaco-

kinetic DDIs and include a variety of in silico [8–11] and in vitro

methods [5,12–15]. Presently, for many types of pharmacokinetic

interactions, early stage prediction can be highly sensitive and

specific. On the other hand, for pharmacodynamic DDIs,

although early-stage prediction is also routinely conducted, it is

comparatively less effective [16,17]. In the later pre-market stages,

in vivo experiments [18] and clinical trials are employed to check

the most important interactions predicted in the early stages.

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e61468



Notwithstanding this wide range of activities, many important

DDIs can go undetected in the pre-market phase, as evidenced by

interaction-related post-market warnings and withdrawals.

For the many DDIs that go undetected in the pre-market phase,

early detection during the post-market phase could lead to the

prevention of many potential AEs, either through the addition of

an interaction warning on the drug label, or in extreme cases

through drug withdrawal. A number of statistical methods exist for

detecting whether the combination of two drugs is associated with

an increased risk of certain AEs. These methods analyze post-

market data, such as spontaneous reports, insurance claim

databases or electronic medical records [19–22]. In order to

identify potential safety issues, these detection methods rely on

waiting for sufficient post-market evidence to accumulate –

a process that can take years, during which time numerous people

may be affected by the adverse interaction. Detection methods are

further hindered by the vastness of the space of possible drug-drug-

AE combinations. Therefore, there is a practical need for

predictive tools that can identify potential DDIs years in advance.

To meet this need, we propose Predictive Pharmacointeraction

Networks (PPINs). PPINs exploit the network structure formed by

the set of known DDIs, as well as various intrinsic and taxonomic

properties of drugs, in order to predict unknown DDIs. PPINs

work by constructing a network of known DDIs, where ‘‘nodes’’

represent drugs and ‘‘edges’’ represent the known interactions

between drugs. A predictive model is developed to predict the

unknown edges, or DDIs. Such a ‘‘link-prediction’’ approach has

been used in other applications, such as social, metabolic or food

networks [23,24]. Network analysis is well suited for the medical

and pharmacological domain, where complex relationships exist

among various entities, such as drugs, targets, and diseases [25–

28]. A number of recent pharmacological studies have proposed

interesting applications of network analysis, including character-

izations of the network structure formed by known drug-drug

interactions [29,30]. Our prior work has focused on developing

network-based models to predict unknown drug-adverse event

associations [31]. To our knowledge, the current study is the first

to use network-based models for predicting unknown DDIs. While

detection of unknown AEs is a difficult challenge, detection of

unknown DDIs is far more challenging as it involves relying on

sufficient evidence accumulating within a much smaller sub-

population that is simultaneously exposed to both drugs and

presenting with the relevant AE. Since DDI’s can be more difficult

to detect than AE’s, it is even more critical to develop effective

methods for predicting DDIs years in advance. Prediction of DDIs

is a challenging and unique problem that requires a tailored set of

methods and predictors. Whereas in predictive bipartite drug-AE

networks, each drug node can only be connected to an AE node,

in the DDI network each drug node may potentially be connected

with every other node in the network.

In this study, we evaluate the performance of a predictive

network model using a simulated-prospective validation based on

two chronologically separated snapshots of a widely used drug

safety database. This validation method preserves the historical

order in which the data became available, thereby enabling

a realistic assessment of the model’s predictive power. The

computational approach proposed here is intended as a comple-

mentary hypothesis-generation tool to help drug safety experts

identify potential drug-drug interactions. The predicted DDIs can

be used to guide follow-up investigation by drug safety experts.

Results

We begin with an overview of the PPIN approach (Fig. 1),

followed by a more detailed methodological account. To construct

the PPIN, we integrated data from multiple sources, including

DDI data, drug taxonomic data and intrinsic drug properties.

Based on a 2009 snapshot of a widely used drug safety database,

we constructed a network representation of all known DDIs,

where each node represents a drug, and each edge connecting two

nodes represents a known interaction between those two drugs.

Next, we used these data to construct a set of covariates and to

develop predictive logistic regression (LR) and generalized linear

mixed (GLM) models. These models predicted the probabilities for

all the non-edges of the 2009 network and those with the highest

probabilities formed the model’s top predictions for unknown

DDIs. We performed a simulated prospective evaluation of the

model’s predictive performance by comparing these predictions

with the set of newly reported DDIs that appeared in a 2012

version of the same drug safety database, and were not present in

the 2009 snapshot.

All the above steps were also carried out for three sub-networks

of the DDI network, namely the sub-networks induced by the

‘‘minor’’, ‘‘major’’ and ‘‘contraindicated’’ DDIs. (Following

standard network theory terminology, the subgraph induced by

a set of edges consists of those edges together with any vertices that

are their endpoints.).

Data Description
Fig. 2 provides a visualization of the DDI network (produced

using the Cytoscape visualization tool, www.cytoscape.org). The

data for constructing this network were obtained from the

following sources: DDIs were extracted from two chronologically

separated snapshots of Multum Vantage Rx, a widely used drug

safety database. This database contains a variety of clinical

information about drug products and diseases, including drug-

drug interactions, drug-disease interactions, allergies, dosing

information, and so on (http://www.multum.com/

VantageRxDB.htm). In this study, we only used the Vantage Rx

information on drug-drug interactions. The two snapshots used in

the study contained all reported DDIs of all FDA-approved drugs

as of October 2009 and March 2012, respectively. The taxonomic

and intrinsic drug properties were extracted from World Health

Organization Anatomical Therapeutic Chemical Classification

System (ATC) (www.whocc.no/atc) and DrugBank (http://www.

drugbank.ca/), respectively. Generic names were used to uniquely

represent drugs and to perform data integration. A list of

synonyms from NCGC Pharmaceutical Collection (NPC) [32]

was used to identify the different forms of generic names that

referred to a common ‘‘active pharmaceutical ingredient’’ (API).

After integrating the DDI data from the 2009 snapshot with the

DrugBank and ATC drug data, we identified 856 unique drugs

(APIs) for which valid data was available in all three databases.

The 2009 data contained 55,560 DDIs formed by these drugs.

The 2009 DDI network, thus, consisted of 856 nodes (drugs),

55,560 edges (DDIs) and 310,380 non-edges (pairs that were not

known to form DDIs in 2009). The known DDIs in the training set

made up 15.2% of all combinatorially possible DDIs. The 2012

DDI data snapshot reported 4,401 new DDIs among these 856

drugs (proportion of new DDIs in the validation set: 1.4% of all

combinatorially possible DDIs that were not reported as DDIs in

the 2009 dataset). Fig. 2A shows the DDIs contained in the 2009

safety database snapshot, while Fig. 2B shows the DDIs newly

reported in the 2012 snapshot. In both parts of Fig. 2 node size is

proportional to the node degree in the 2009 DDI network. Some

Network-Based Prediction of Drug Interactions
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of the drugs with high degree in 2009 are labeled for illustration

purposes. As seen in Fig. 2B, many of the DDIs newly reported

during 2009–2012 involved drugs that were already highly

connected in 2009 (although a few drugs with small degree in

2009 had a notably large number of newly reported DDIs).

The 2009 sub-network induced by the set of ‘‘minor’’ DDIs (i.e.

the minor-DDI sub-network) consisted of 696 drugs and 4,221

DDIs. In 2012, there were 271 newly reported ‘‘minor’’ DDIs

among those drugs. The 2009 sub-network induced by the set of

‘‘major’’ DDIs (i.e. the major-DDI sub-network) consisted of 718

drugs and 7,263 DDIs. In 2012, there were 794 newly reported

‘‘major’’ DDIs among those drugs. The 2009 sub-network induced

by the set of ‘‘contraindicated’’ DDIs consisted of 491 drugs and

2,323 DDIs. In 2012, there were 122 newly reported ‘‘contra-

indicated’’ DDIs among those drugs.

Figure 1. Overview of the PPIN approach for predicting drug-drug interactions (DDIs). Beginning on the left, data were integrated from
multiple sources, including safety data (two snapshots of known DDIs from 2009 and 2012), taxonomic data (ATC taxonomy of drugs), and data
related to the intrinsic properties of drugs (chemical substructures). Next, a network representation of the DDIs contained in the 2009 database
snapshot was constructed from which a collection of network, taxonomic and intrinsic covariates were derived. These covariates were used to
develop a predictive model based solely on the 2009 data that predicted new, unknown drug-drug interactions. These predictions were evaluated
against the newly reported DDIs that appeared in the 2012 data.
doi:10.1371/journal.pone.0061468.g001

Figure 2. A visualization of the DDI network. (A) The DDIs present in the 2009 training dataset are shown in blue. (B) The DDIs newly reported in
the 2012 validation dataset are shown in red. In both parts, the size of each node is proportional to the node degree in the 2009 network. Some of
the most highly-connected drugs are labeled for illustrative purposes.
doi:10.1371/journal.pone.0061468.g002

Network-Based Prediction of Drug Interactions
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Using the 2009 DDI network we derived a number of network,

taxonomic and intrinsic covariates (Table S1) corresponding to the

drug pairs. The network covariates encode purely structural

information contained in the DDI network, the taxonomic

covariates encode information related to the ATC categories of

drugs, while the intrinsic covariates encode information related to

the molecular substructures of drugs. Three of the network

covariates - degree_prod, betw_prod, and cccnw_max - aimed to

capture, respectively, the popularity, centrality, and network

clustering, which are widely used statistics in network analysis

[33]. The remaining covariates aimed to capture the similarity (or

dissimilarity) between the two drugs in terms of their network

properties (jackard, jackard_max2_mean), taxonomic properties

(atc_min, atc_min_prod), or chemical properties (str_jackard,

str_max_prod). The similarity-based covariates are either 0th or

1st order: the computation of the 0th order covariates relies only on

the properties of the two drugs forming the pair (jackard, atc_min,

str_jackard), whereas the computation of the 1st order covariates

relies on the properties of the two drugs forming the pair as well as

on the properties of their network neighbors.

The above covariates were also computed for the 2009 minor-

DDI, major-DDI, and contraindicated-DDI sub-networks.

Predictive Performance
We began our analysis by performing univariate LR analysis of

all covariates. Table S2 shows the results of this analysis, including

parameter estimates, P values, and the AUROC achieved in the

training set. Fig. 3A shows the validation set ROC curves and

AUROC values for six similarity-based covariates. The best

univariate performance was achieved by the 1st order network

covariate jackard_max2_mean (validation set AUROC 0.779),

followed by 0th order network covariate jackard (0.746), 1st order

taxonomic covariate atc_min_prod (0.742), 0th order intrinsic

covariate str_jackard (0.62) and 0th order taxonomic covariate

atc_min (0.53). Likewise, Fig. 3B shows the ROC curves and the

validation set AUROCs for three non-similarity covariates.

We performed a systematic search over all subsets of covariates

to identify multivariate LR and GLM models with improved

prediction performance. Fig. 3C shows the ROC curves and

AUROC values for two such models. A parsimonious LR model

consisting of the three 1st order similarity covariates (model LR3,

Table S3) achieved a validation set AUROC of 0.794. A GLM

model that also includes 0th order and non-similarity covariates

(model GLM8, Table S4) achieved a small but significant

improvement over LR3 in terms of AUROC (AUROC=0.807,

p-value from comparison of LR3 and GLM8 ROC curves

,0.0001). For this model, the sensitivity was 0.11, 0.34, and

0.48, given a specificity of 0.99, 0.95, and 0.90, respectively. As is

often the case with predicting such rare phenomena, high

specificity and sensitivity can still be associated with low PPV. At

a specificity of 0.99, the PPV of the GLM8 model was 13.5% and

the model lift (i.e. the fold-reduction in the search space of possible

DDIs) was 9.6. The LR3 model achieved slightly higher PPV and

lift values at a specificity 0.99 (15% and 10.7, respectively). Fig. 3D

shows the ROC curves of model LR3 for the minor-DDI, major-

DDI and contraindicated-DDI sub-networks. The respective

AUROCs of these three sub-networks were 0.63, 0.81, and 0.92.

The results obtained for the DDI network indicate that

multivariate LR and GLM models achieved a small AUROC

improvement over the best performing covariate (jackard_max2_-

mean) and no PPV improvement at very high specificity levels (e.g.

above 99%). A close inspection of these multivariate models

reveals that they are dominated by the covariate jackard_max2_-

mean; the remaining covariates can only slightly affect the

predictions by jackard_max2_mean. As an illustration, Fig. 4,

shows three-way Venn diagrams of the sets of true and false

positives generated by the univariate models jackard_max2_mean,

str_max_prod and the multivariate model LR3 when the

specificity of each model was fixed at 0.95. As seen, nearly 88%

of the true positives (Fig. 4A) and 77% of the false positives (Fig. 4B)

generated by model LR3 are also generated by jackard_max2_-

mean. The remaining 12% of true positives and 23% of false

positives generated by LR3 were drug pairs having jackard_-

max2_mean slightly below its 95%-specificity threshold of 0.61

and generally high values of str_max_prod (Fig. 4C).

Possibly due to this domination by one predictor, the

multivariate models LR3 and GLM8 do not maximally leverage

the different types of information contained by the covariates. This

outcome is especially noticeable at very high specificity levels,

where, as reported earlier, the multivariate PPV was no higher

than the PPV produced by jackard_max2_mean. Since in real-

world prospective settings a predictive model would most likely be

used to generate a relatively small number of predictions that are

as reliable as possible, it is natural to ask whether other methods

for combining covariates could lead to improved PPV. One way to

increase the PPV would be to reduce the number of false positives

generated by the model. To achieve this reduction, a straightfor-

ward heuristic would be to set the training-set specificity of each

covariate at a very high level and to consider only those

predictions that are common to all covariates. To evaluate this

heuristic we set the prediction thresholds of jackard_max2_mean

and str_max_prod at their respective univariate 99th percentiles in

the training set of non-edges (0.756 and 0.575) and generated a set

of 656 predicted drug pairs in the validation set that were above

both thresholds. We found that this set of predictions contained

134 true positives, with a corresponding PPV of 20.4% -

a substantial improvement over the multivariate models LR3

and GLM8.

Prediction of DDI Type
The present study is focused on the prediction of unknown

drug-drug interactions. The development of a robust method for

identifying specific AEs that may be associated with certain DDIs

is outside the scope of this work. For illustration purposes, we

conducted an initial investigation of a basic method for suggesting

potential types for the predicted DDIs. We used the ‘‘interaction

description’’ field in the Vantage Rx database, which describes the

type of interaction between two drugs. We investigated a straight-

forward method for predicting the DDI type associated with each

predicted interacting drug pair: we examined all other known

interactions involving either of these two drugs in the 2009

network (the ‘‘neighborhood types’’), and identified the most

common interaction types amongst them (see Methods for

complete details).

Fig. 5 illustrates the performance of this basic method on the set

of true positives predicted by the GLM model, with its specificity

fixed at 0.95. Of the 1,496 true positives predicted by the GLM

model, only 1,232 had a 2012 DDI type that existed among the

2009 neighborhood types. For each of these 1,232 drug pairs,

Fig. 5A shows the number of unique interaction types found in its

2009 network neighborhood and the rank of the true DDI type

when the ‘‘neighborhood types’’ were sorted in decreasing order of

frequency. The newly reported DDI types typically coincide with

one of the most frequently occurring types in the network

neighborhood. Fig. 5B enables a more precise description of this

phenomenon by plotting the cumulative distribution of the rank of

true ID. For instance, for 20% of the drug pairs, the true DDI type

was the most frequent neighborhood type, for 35% of the pairs,

Network-Based Prediction of Drug Interactions
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the true DDI type was amongst the top 3, and for 43% of the pairs

it was amongst the top 5. As an illustration, Table S5 shows five

top-ranked triples (drug, drug, DDI type) that were correctly

predicted by the above approach.

Discussion

The proposed multivariate model for predicting unknown drug-

drug interactions achieved an AUROC of 0.81 with a sensitivity of

0.48 given a specificity of 0.90. The model PPV was as high as

14%, corresponding to a ten-fold reduction in the search space of

possible DDIs. A heuristic approach aimed at reducing the

number of false positives resulted in a PPV of 20% and a fourteen-

fold reduction in the search space. Finally, a multivariate model

achieved AUROCs of 0.63, 0.81 and 0.92, respectively, for the

minor-DDI, major-DDI and contraindicated-DDI sub-networks.

These findings suggest that the proposed network method can be

useful for predicting future reported DDIs years in advance, and

that its predictive power is highest for the most severe DDIs. This

proposed approach can serve as a complementary hypothesis-

generation tool in supporting the work of drug safety professionals.

The proposed model included three types of covariates:

network, taxonomic and intrinsic. For the taxonomic and intrinsic

covariates, similarity in functional category or chemical structure

was positively correlated with the similarity of DDI profiles. For

network covariates, similarity in network neighborhoods was

positively correlated with similarity of DDI profiles. Overall, we

found that the 1st order similarity-based covariates used in the

Figure 3. Predictive performance plots. (A) ROC curves for similarity-based covariates; (B) ROC curves for non-similarity covariates; (C) ROC
curves for multivariate models; (D) ROC curves for three severity-based DDI classes: minor, major and contraindicated.
doi:10.1371/journal.pone.0061468.g003

Network-Based Prediction of Drug Interactions
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model displayed a better predictive performance than the 0th order

covariates, implying that network structure contains useful in-

formation for the prediction of unknown DDIs. We also found that

the non-similarity covariates displayed a marginal incremental

contribution when combined with the similarity covariates.

Tatonetti et al. [34] have recently published a non-network

based model for identifying DDIs for specific AEs. The present

study differs from Tatonetti et al.’s study in several ways. First, the

PPIN model is based on a drugome-level view of all DDIs, whereas

each of the models proposed by Tatonetti et al. focuses on the

DDIs associated with one specific AE. Second, the covariates in

the PPIN model are based on the network structure formed by the

known DDI relationships, whereas the covariates in Tatonetti

et al.’s models are not network-based (they are computed using the

AE frequencies from the Adverse Event Reporting System

(AERS)). Third, to assess the model’s predictive performance,

the current study uses a simulated prospective approach based on

two chronologically separated snapshots of a widely used DDI

database, whereas Tatonetti et al. used cross-validation within one

chronological snapshot as well as comparison with computation-

ally derived response variables.

This study has a number of limitations. The main limitation

relates to the fact that no perfect ‘‘gold standard’’ exists in the area

of drug safety. A number of studies in recent years have shown that

different safety databases often disagree about the existence and

the severity of drug-drug interactions [35–37]. The specific

reference standard used in this study contains all known drug-

drug interactions according to the compilers of the database, but

obviously does not contain interactions that have yet-to-be

discovered by the scientific community. Thus, it is not possible

to tell whether the pairs not reported as interactions are confirmed

true negatives or not-yet-known positives. Furthermore, the data

may contain DDIs that will subsequently be removed from the

database. Another limitation of the study is that it was conducted

on a subset of all marketed drugs determined by data availability.

Although this subset consisted of nearly nine hundred drugs, there

exists the possibility of a biased sample, implying that the results

would not necessarily hold for an even larger network of drug-drug

interactions. Further, the validation set for this study was the set of

all study-drug pairs not known to form an interaction in 2009.

Some of these pairs may consist of drugs that are never or rarely

prescribed together (for example, due to gender or age related

reasons). Such pairs can, however, be straightforwardly filtered out

by cross-referencing standard drug label information. As discussed

in the Results section, the LR and GLM modeling frameworks

proved satisfactory but sub-optimal for combining different

Figure 4. Model comparison. Analysis is based on predictions generated by the univariate models jackard_max2_mean, str_max_prod and the
multivariate model LR3 when specificity of each model was fixed at 95%. (a) Three-way Venn diagram of the true positives by the three models; (B)
Three-way Venn diagram of the false positives by the three models; (C) Scatter plot of jackard_max2_mean versus str_max_prod for the drug pairs
predicted to be DDIs by LR3 but not by jackard_max2_mean.
doi:10.1371/journal.pone.0061468.g004

Network-Based Prediction of Drug Interactions
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sources of information. Finally, in the proposed models, causality

between the model covariates and the response variable can’t be

presumed due to the existence of potential confounders.

This study could be extended in several clinically important

directions, such as developing a rigorous model for generating

drug-drug-mechanism or drug-drug-AE predictions. Another

direction is to enrich the network data with frequency and severity

information on the reported DDIs to further improve predictive

performance. These extensions could increase the practical value

of the PPIN approach for drug-safety professionals. Due to the

‘‘gold standard’’ limitations mentioned earlier, a further un-

derstanding of the predictive value of the PPIN approach would be

achieved by applying it to reference data from other databases.

The proposed network-based DDI prediction method can be

put to immediate use, with practitioners training models using any

available clinical drug interactions database, and following up on

the highest scoring model predictions with thorough clinical

investigations. By augmenting the existing drug safety detection

tools with tools of drug safety prediction, drug interactions can be

identified earlier and more accurately, reducing drug-related

morbidity and mortality.

Materials and Methods

Network Construction
We constructed an integrated network representation of data on

drugs and drug-drug interactions. In this network, nodes denote

drugs and edges denote the known DDIs. The set of edges

corresponds to the DDIs contained in a 2009 snapshot of the

Vantage Rx database. For each drug in the network we assembled

the list of chemical substructures (from DrugBank) and a list of

ATC code(s). We refer to the network described above as the DDI

network. We then constructed three sub-networks of the DDI

network, namely those induced by the set of ‘‘minor’’, ‘‘major’’

and ‘‘contraindicated’’ DDIs, respectively. We refer to these three

networks as the minor-DDI, major-DDI, and contraindicated-

DDI sub-networks, respectively.

Predictive Modeling
The binary response variable Yij denoting the presence or

absence of an interaction between drug i and drug j was modeled

as a Bernoulli random variable and a function of three types of

covariates (Table S1): (i) Network – Covariates of the first type

depend on the structure of the observed DDI network but not on

the attributes of drugs; (ii) Taxonomic – Covariates of the second

type depend on the structure of the observed DDI network and on

the taxonomic attributes (i.e. ATC codes). As a preliminary step

for creating taxonomic covariates, we computed for every pair

(drug1, drug2) the minimum distance dATC(drug1, drug2), denoting the

minimum over all possible ATC positions of drug1 and drug2 of the

length of the shortest path between drug1 and drug2 in the ATC

taxonomy; (iii) Intrinsic – Covariates of the third type depend on

the structure of the observed DDI network and on the intrinsic

properties of drugs.

We began the model development by fitting all possible

univariate logistic regression (LR) models, to gauge the univariate

effect and significance of each covariate (Table S2). Next, we

developed multivariate LR models and performed a search to

optimize model fit (Akaike Information Criterion statistic) over all

possible subsets of covariates. The data used to estimate each LR

model consisted of the response variable Yij, i=1,…,855,

j= (i+1),…,856 and of the corresponding values of covariates Xijk

(where k=1,…,8 ranges over the final set of covariates) computed

from the 2009 DDI network. Thus, each pair of drugs (i, j) was

represented only once in the training data for the LR model. The

fitting of the LR model was carried out by maximum likelihood

estimation. The statistical significance (P values) of covariates was

assessed through the standard chi-square test in the LOGISTIC

procedure in the Statistical Analysis System (SAS), v9.2. After the

multivariate LR model was estimated, we computed the estimated

probability of interaction (or, score) pestij for each drug pair (i, j) in

the validation set (the set of pairs that were non-edges in the 2009

DDI network). These model development and validation steps

were also carried out for the minor-DDI, major-DDI and

contraindicated-DDI sub-networks.

Finally, as a means of accounting for within-drug associations

among the responses Yij, we developed generalized linear mixed

(GLM) models, which consisted of the same fixed effects as the LR

models but included drug-specific random intercepts. The data

used to estimate the GLM8 model consisted of the response

variable Yij, i=1,…,856, j=1,…,856 and of the corresponding

values of covariates Xijk computed from the 2009 DDI network. In

Figure 5. Accuracy of DDI type prediction. Analysis is based on
DDI types occurring in the set of true positives predicted by the GLM
model when its specificity was fixed at 0.95. (A) The true positive pairs
are shown ordered according to the number of unique interaction IDs
found in the pair’s neighborhood (blue bars); the rank of each pair’s
true ID according to the 2012 snapshot (purple crosses) is also shown;
(B) Cumulative distribution of the rank of true ID.
doi:10.1371/journal.pone.0061468.g005
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other words, each pair of drugs (i, j) was represented twice in the

training data, once as a response for drug i and a second time as

a response for drug j. This duplication was carried out to allow the

correct estimation of random intercepts. Note that if the random

intercepts were excluded from the model, the estimates of fixed

effects and probabilities of interaction would be identical to those

obtained earlier in the LR model. The fitting of the GLM models

was carried out by maximum likelihood using the adaptive

quadrature method in the GLIMMIX procedure in SAS v9.2

(Table S5). The ‘‘best linear unbiased predictor’’ (BLUP) was used

to estimate random intercepts. After the multivariate GLM model

was estimated, two estimated probabilities pestij and pestji were

generated for each drug pair (i, j) in the validation set: one based

on the fixed-effect estimates and the BLUP estimator for drug i

and another based on the fixed-effect estimates and the BLUP

estimator for drug j. Finally, we computed the predicted score for

each pair (i, j) by taking the arithmetic mean of the estimated

probabilities pestij and pestji.

We hypothesized that the validation set pairs having the highest

scores would be the ones that appear as true DDIs in the 2012

snapshot of Vantage Rx. To evaluate the predictive performance

we computed the validation set AUROC by comparing the scores

generated for validation set pairs with the actual presence or

absence of DDIs in the 2012 snapshot. In addition, we computed

the model sensitivity and positive predictive value for various

benchmark levels of specificity, including 0.99, 0.95 and 0.90.

Prediction of DDI Type
To suggest likely DDI types for the predicted interactions, we

employed the following straightforward method. For each

predicted DDI pair (i, j) we first identified all unique DDI types

corresponding to the set of edges having i or j as an end-point in

the 2009 DDI network, i.e. the DDI types occurring in the

network neighborhood of pair (i, j). Then, for each DDI type we

computed the neighborhood frequency count, i.e. the number of

times that type is encountered among the edges having i or j as an

end-point in the 2009 DDI network. We then sorted the

neighborhood types in decreasing order of frequency and

hypothesized that one of the most frequent neighborhood types

would coincide with the true DDI types observed in the 2012.

To evaluate the above method, we first identified the true

positives predicted by the GLM model when its specificity was

fixed at 0.95. For each such true positive we extracted the set of

2009 neighborhood interaction types sorted in decreasing order of

frequency count. We computed the rank of the true interaction

type (extracted from 2012 snapshot) within the set of neighbor-

hood types and the cumulative distribution of that rank.
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