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PASTA: splice junction identification from
RNA-Sequencing data
Shaojun Tang1,2,3,4 and Alberto Riva1,2*
Abstract

Background: Next generation transcriptome sequencing (RNA-Seq) is emerging as a powerful experimental tool for
the study of alternative splicing and its regulation, but requires ad-hoc analysis methods and tools. PASTA
(Patterned Alignments for Splicing and Transcriptome Analysis) is a splice junction detection algorithm specifically
designed for RNA-Seq data, relying on a highly accurate alignment strategy and on a combination of heuristic and
statistical methods to identify exon-intron junctions with high accuracy.

Results: Comparisons against TopHat and other splice junction prediction software on real and simulated datasets
show that PASTA exhibits high specificity and sensitivity, especially at lower coverage levels. Moreover, PASTA is
highly configurable and flexible, and can therefore be applied in a wide range of analysis scenarios: it is able to
handle both single-end and paired-end reads, it does not rely on the presence of canonical splicing signals, and it
uses organism-specific regression models to accurately identify junctions.

Conclusions: PASTA is a highly efficient and sensitive tool to identify splicing junctions from RNA-Seq data.
Compared to similar programs, it has the ability to identify a higher number of real splicing junctions, and provides
highly annotated output files containing detailed information about their location and characteristics. Accurate
junction data in turn facilitates the reconstruction of the splicing isoforms and the analysis of their expression levels,
which will be performed by the remaining modules of the PASTA pipeline, still under development. Use of PASTA
can therefore enable the large-scale investigation of transcription and alternative splicing.

Keywords: RNA-Seq, Next-generation sequencing, Alternative splicing, Computational analysis of alternative splicing
Background
Alternative splicing (AS) is the process by which a single
gene can generate multiple transcripts, and therefore dif-
ferent proteins, through the alternative use of exons. As
our knowledge of the structure and organization of ge-
nomes increases, AS is being increasingly recognized as a
fundamental process at the basis of the molecular diversity
and complexity within the cell, of gene regulation, and of
a number of critical biological processes ranging from de-
velopment to disease [1]. Alterations of AS are linked to
human diseases ranging from cancer to muscular dystro-
phies, from neurodegenerative diseases to obesity [2]. A
better understanding of the mechanisms that regulate AS
and of the relationships between AS and pathological
* Correspondence: ariva@ufl.edu
1Department of Molecular Genetics and Microbiology, College of Medicine,
University of Florida, Gainesville, FL, USA
2University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
Full list of author information is available at the end of the article

© 2013 Tang and Riva; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
states will provide new, important insights into these dis-
eases, leading to advances in their diagnosis, and opening
the way for the development of novel molecular therapies.
High-throughput RNA sequencing technology (RNA-

Seq) provides a very large amount of information about
transcriptional state, averaged across a population of
cells, under the form of short reads that map to genomic
regions corresponding to gene transcripts [3]. Reads
mapping to the exons of a gene indicate that the corre-
sponding gene is likely expressed. Exons and junctions
that are specific to a single isoform of a gene make it
possible to identify the particular splicing isoform or
isoforms that are expressed [4], while more accurate iso-
form reconstruction can be achieved by analyzing reads
that map to exon-exon junctions. Finally, the number of
reads aligning to a gene region, when normalized to the
length of the region, provides an estimate of the expres-
sion level of that gene [5]. The results of an RNA-Seq
experiment can therefore provide a snapshot of the RNA
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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landscape in a population of cells in a given state, ran-
ging from a catalog of all RNA molecules represented in
it, to their exact structure, to their relative expression
levels [6].
We are developing an innovative computational pipe-

line for the analysis of alternative splicing through RNA-
Seq, called PASTA (Patterned Alignments for Splicing
and Transcriptome Analysis). The pipeline is composed
of three modules, dealing with splice junction detection,
isoform reconstruction, and expression level estimation,
respectively. Here we describe the first module of the
pipeline, whose purpose is to identify all exon-exon
junctions that can be inferred from aligned short reads.
This is accomplished through a highly accurate splice-
junction identification algorithm combined with heuristic
methods to score junctions on the basis of biologically
relevant features.

Implementation
The first step in running PASTA consists in aligning
short reads obtained from RNA sequencing to the refer-
ence genome. This step is usually performed using an
existing, fast alignment tool such as Bowtie or Bowtie2
[7]. Since the reads are aligned against the genomic se-
quence, reads that are entirely contained within exons
will align correctly, while reads falling over the junctions
between two exons will, in general, fail to align. The
main task performed by PASTA is to infer the exact lo-
cation of exon-intron boundaries using the unaligned
reads.
In contrast to the seed and extend method used by the

majority of similar programs, PASTA relies on patterned
alignments combined with a logistic regression model.
Patterned alignments allow PASTA to identify the pos-
ition of putative splice junctions with high accuracy. The
logistic regression model is used to score putative splice
junctions according to their biological “context”: for ex-
ample, the presence of canonical splice signals [8] and of
regulatory elements such as the Branch-Point Sequence
(BPS), and the expected distribution of intron sizes.

Patterned alignments
The PASTA algorithm considers each unaligned read in
turn and generates two sets of “patterned” subsequences
from it, by splitting it at different cutoff points. If we de-
note the read length with n and we choose a stepping
distance s and a minimum fragment size m, each pat-
terned pair will consist of the sequence from the start of
the read to position p and of the sequence from position
p to the end of the read, where p ranges from m to n-m
in steps of s. All these fragments then undergo a second
round of alignment. Fragments longer than a set mini-
mum size are again aligned to the reference sequence
with Bowtie, while each remaining short fragment is
aligned to the region around the other fragment in the
pair, using a local alignment procedure. For example if
n=36, the minimum alignment size is 14 and the step
size is 4, patterned pairs (14, 22), (18, 18) and (22, 14),
as well as single fragments (−, 30), (−, 26) and (26,-),
(30,-) will be aligned to the reference genome (the two
numbers in parenthesis represent the lengths of the left
and right fragments respectively, while ‘-’ indicates a left
or a right fragment too short to undergo whole-genome
alignment). To identify exon-intron boundaries, PASTA
first looks for alignment matches from all patterned
pairs (14, 22), (18, 18) and (22, 14). If alignment matches
are reported for both the left and right fragment in a
given patterned pair (a “double match”), PASTA will
optimize the exon-intron boundary adjusting the frag-
ments by 1 or 2 nucleotides in both directions around
the cutoff point. For example, if alignment matches are
found for patterned pair (14, 22), PASTA will also test the
alternative patterned pairs (12, 24), (13, 23) and (15, 21),
(16, 20), to identify the patterned pair that minimizes se-
quence alignment mismatches. Its position will be used as
the putative exon-intron boundary.
The alternative case occurs when there is no double

match for a given read; in other words, there is no pair
of fragments whose left and right components have a
unique alignment to the genome. In this case PASTA
will pick the fragment with the longest aligned match
from individually aligned fragments, and perform a local
alignment step in order to determine the location of the
other half of the pair.
Suppose for example that the left fragment (26,-) is

the longest fragment observed to have an alignment
match. PASTA will search the chromosome region adja-
cent to its position to locate the optimal position of the
remaining right fragment of length 10. The size of the
region analyzed by the local alignment procedure can be
configured by user, with a default of 100,000 base pairs.
This step obviously increases the computational cost of
the algorithm, since each short read gives rise to a large
number of fragment pairs; on the other hand all these
fragments are relatively short and can therefore be aligned
very efficiently. On average, the second round of align-
ment takes 2 to 5 times longer than the initial one, but
this performance penalty is compensated by a large gain
in accuracy, as shown below.

A logistic regression model for splice junction prediction
Because of the uncertainty involved in identifying the
precise location of splice junctions from short RNA-Seq
reads, PASTA employs a logistic regression model to as-
sign a score to each putative intron produced by a pair
of junctions. The model takes into account several fac-
tors that characterize the intronic context, such as the
presence or absence of canonical splicing signals, the
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posterior probability of the intron size from the Pareto
distribution, the alignment mismatches [9,10]. In par-
ticular, intron sizes can be modeled by a Pareto distribu-
tion whose parameters are organism-dependent, since
the intron size distribution in a specific organism follows
a characteristic curve (Additional file 1: Figure S1).
The logistic regression model can be written as f(Z) =

ß0 + ßZ + ε, where f(Z) is the logistic regression value,
ß0 and ß are coefficient vectors and Z is a vector con-
taining the values of regression factors described above.
The coefficients of the logistic regression model and of
the Pareto distribution are estimated from existing splice
junction annotations for the species under consideration
[9,11]. The PASTA package provides pre-computed mo-
dels for many commonly studied organisms.
Individual explanatory variables contribute differently

to the logistic regression model as shown by regression
coefficients (Additional file 1: Table S1). In general,
sequence alignment similarity and intron Pareto score
contribute most significantly in the organisms under stu-
dy. In addition, the coefficient of the same explanatory
variable is also different by organisms. For example, in-
tron size contributes more to the logistic regression mo-
del in maize compared with mouse. This is consistent
with the fact that there is a more stringent preference
for shorter introns in maize compared with mouse.
Whenever a set of reads gives rise to multiple putative

junctions, the logistic regression model is applied to the
resulting introns to generate a score for each. The score
is computed as 1/(1 + e-f(Z)) which returns a value in the
range 0 to 1, with large negative values of f(Z) producing
probabilities close to 0, and large positive values produ-
cing probabilities close to 1. The putative junction that
produces the highest-scoring intron is then chosen as
the predicted junction.

Junction identification
The procedure described above is used to determine the
location of a putative splice junction given a single short
read. In general, a predicted junction will be supported
by multiple short reads aligning to the same general re-
gion. Therefore, PASTA will cluster putative splice junc-
tions based on their positions. If a cluster contains a
single putative junction (i.e., generated by a single short
read), PASTA will directly report its position as a pre-
dicted junction. If instead the cluster contains several
putative junctions, the putative junction with the highest
value of the logistic regression model will be used to de-
termine the position of the junction, and the number of
putative junctions in the cluster will be reported as the
junction coverage.
It is important to note that, although the process here

described does not explicitly look for canonical splicing
signals, the presence or absence of the canonical splicing
signal is one of the variables included in the logistic
regression model. By assigning different weights to this
variable, the user can therefore determine how strong the
preference for canonical splicing junctions should be.

Paired-end RNA-Seq reads
When working with paired-end reads, PASTA applies
the patterned alignment procedure described above to
the reads in each pair for which no full alignments were
found. Reads in a pair are aligned independently, but in-
formation regarding the position of one of the reads can
be helpful in aligning the second one. For example, as-
sume that the leftmost read in a pair (read A) has a full-
length match to the genome, while the rightmost read
(B) requires a patterned alignment. If it becomes neces-
sary to perform local alignment on the left fragment of
read B, the region to be scanned will be delimited by the
position of read A.

Software description
PASTA is distributed as a command-line tool for GNU/
Linux systems, and is specifically designed for inclusion
in automated RNA-Seq analysis pipelines. PASTA can
take advantage of multiple cores by parallelizing opera-
tions whenever possible. The program takes as input a
file containing short reads in FASTQ format (or two
files, in the case of paired-end sequencing), and an argu-
ment indicating the organism being analyzed, in order to
load the correct parameters for the logistic regression
model. The output consists of a file listing all identified
junctions in BedGraph format, and a file containing the
positions of all matched reads in SAM format. In
addition, PASTA generates optional output files contai-
ning alignment details for each predicted junction and
overall alignment statistics, such as the splice site signal
and the probability score of the predicted junction from
the statistical model. PASTA requires approximately
10 GB of RAM and a runtime of 5 hours to process
20 million paired-end RNA-Seq reads of 50 bp using
4 parallel threads. The program is highly configurable
through command-line arguments or a configuration
file, and an integrated help system provides extensive
documentation for all available options. The download
package provides sample files that can be used to test
the program and experiment with the different options.

Results and discussion
We have tested PASTA both on simulated RNA-Seq
data, to measure its sensitivity and specificity in identi-
fying known splice junctions, and on two real mouse
RNA-Seq datasets, in order to assess the program’s abi-
lity to identify splice junctions inferred from ENSEMBL
annotations and to estimate the number of novel potential
junctions discovered. In both cases, the performance of



Figure 1 Junction Accuracy of TopHat and PASTA. The blue bars represent TopHat predictions and the red bars represent PASTA predictions.
Junction FP rates are shown in the top panel and junction FN rates are shown in the bottom panel. A total of 4 different sequencing depths
were simulated.

Figure 2 Junction Accuracy of PASTA and other software. The two panels display the results of the comparison of PASTA with other junction
detection pipelines on simulated datasets. In the first simulation, the frequencies of indels, substitutions and sequencing errors were 0.05%, 0.1%
and 0.5% respectively, and 80% of the splice signals were from annotated splice isoforms. In the second simulation, the frequencies of indels,
substitutions and sequencing errors were 0.25%, 0.5% and 1% respectively, with 65% of the splice signals coming from annotated splice forms. In
addition, 25% of the trailing 10 bases are subject to a 50% sequencing error rate. Reproduced with permission from [4].
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Table 1 Number of reads and junctions detected

Run Number of reads PASTA junctions TopHat junctions Ratio

(millions)

1 Control Lane 1 19.2 165541 80211 2.064

Lane 3 15.4 149797 72908 1.828

Total 34.6 195731 112581 1.739

Mutant Lane 1 21.8 169493 72908 2.325

Lane 2 17.9 157481 82036 1.920

Lane 3 22.3 162408 81823 1.985

Lane 4 39.2 202157 59014 3.426

Total 101.2 287568 152196 1.889

2 Control Lane 1 29.9 166050 140831 1.179

Lane 2 8.74 141885 107399 1.321

Lane 3 10.2 144879 110459 1.312

Total 48.84 210016 157949 1.330

Mutant Lane 1 27.6 148238 113908 1.301

Lane 2 10.6 160885 124606 1.291

Lane 3 25.4 175240 133601 1.312

Lane 4 25.6 177388 133539 1.328

Total 89.2 250991 167664 1.497

This table displays the total number of reads, the total number of junctions identified by both programs, and the ratio between these two numbers for Run 1 and
Run 2 respectively.

Table 2 Number of junctions from ENSEMBL known genes

Run PASTA TopHat Common Common/ PASTA Common /TopHat

1 Control Lane 1 128811 65117 63063 0.490 0.968

Lane 3 120465 67552 65252 0.542 0.966

Total 140083 86148 83674 0.597 0.971

Mutant Lane 1 129099 57615 55770 0.432 0.968

Lane 2 122237 67038 64517 0.528 0.962

Lane 3 123860 65568 63078 0.509 0.962

Lane 4 142097 41084 39695 0.279 0.966

Total 163462 98757 95854 0.586 0.971

2 Control Lane 1 130899 115751 111098 0.849 0.960

Lane 2 119397 94638 91672 0.768 0.969

Lane 3 119950 96743 93614 0.780 0.968

Total 146117 123247 118544 0.811 0.962

Mutant Lane 1 122889 99377 96287 0.784 0.969

Lane 2 127854 106340 102840 0.804 0.967

Lane 3 132544 111252 107418 0.810 0.966

Lane 4 134049 111334 107571 0.802 0.966

Total 156339 126177 121633 0.778 0.964

This table displays the number of junctions in ENSEMBL known gene models identified by PASTA and TopHat for Run 1 and Run 2 respectively.
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PASTA was compared to that of TopHat (version 1.1.0),
one of the most widely-used programs for splice junction
detection [12].
Comparison of PASTA and Tophat on single end
simulated data
As a first test of the performance of PASTA, we com-
pared its ability to detect known splice junctions against
TopHat. We generated four simulated datasets of 50nt
single-ended RNA-Seq reads from mouse transcripts
appearing in ENSEMBL gene annotations, correspon-
ding to average depths of coverage ranging from 1 to
8 reads per nucleotide, and we introduced random se-
quencing errors at a frequency of 1/1000 basepairs and
Single Nucleotide Polymorphism (SNP) at a frequency of
5/1000 basepairs. After running PASTA and TopHat on
the four datasets, we measured each program’s sensiti-
vity and specificity. The results are reported in Figure 1.
As read depth increases, sensitivity increases (since
detecting junctions becomes easier) but specificity also
decreases (since the number of false positives increases
with the number of reads). The results show that PASTA
consistently exhibits a lower false negative rate than
TopHat, especially at low coverage level. Sensitivity is
consistently higher than TopHat (on average, 20% to
40% higher), especially for transcripts expressed at a
low level. PASTA is therefore well-suited for identify-
ing “rare” splicing events, reducing the risk of missing
splicing events critical for AS analysis.
Table 3 Number of junctions not from ENSEMBL known gene

Run Group PASTA TopHat

1 Control Lane 1 36702 15094

Lane 3 29331 14416

Total 55647 26433

Mutant Lane 1 40393 15293

Lane 2 35243 14997

Lane 3 38547 16255

Lane 4 60059 17930

Total 124104 53439

2 Control Lane 1 35150 25080

Lane 2 22487 12716

Lane 3 24928 13716

Total 63898 34702

Mutant Lane 1 25348 14531

Lane 2 33030 18266

Lane 3 42695 22349

Lane 4 43338 22205

Total 94651 41487

The third part displays the number of additional junctions (not in ENSEMBL annota
This indicates that the use of PASTA may lead to a
reduction in sequencing costs, for example by mul-
tiplexing more samples in the same run, since it is
able to produce reliable results even at low sequen-
cing depths.

Comparison between PASTA and other pipelines on
paired-end simulated data
We also compared PASTA with several other splice junc-
tion detection pipelines using simulated datasets of 100 nt
paired-end reads provided by Grant et al. [4]. Two differ-
ent datasets were generated on the basis of different poly-
morphism frequencies and error rates. The first datasets
contains simulated reads with an indel rate of 0.05%, a se-
quencing error rate of 0.5%, and a substitution rate of
0.1%. The second datasets has an indel rate of 0.25%, a se-
quencing error range of 1%, and a substitution rate of
0.5%. In both cases, PASTA performed significantly better
than MAPSPLICE, SPLICEMAP or Tophat, and achieved
performance comparable to GSNAP or RUM, as shown
in Figure 2.
Overall, simulations with various sequencing depths

show that PASTA is highly sensitive in identifying splice
junctions even when the sequencing depth is relatively
low. PASTA is able to identify splice junctions with reads
of small to medium size (30 to 70 basepairs) and rare
transcripts that result in low coverage levels. On the
other hand, PASTA achieves results similar to other
comparable tools on longer reads and higher sequencing
depths, as demonstrated by the second simulation study.
s

Common Common /PASTA Common /TopHat

3267 0.089 0.216

3098 0.106 0.215

5368 0.096 0.203

2589 0.064 0.169

2990 0.085 0.199

3110 0.081 0.191

2234 0.037 0.125

7947 0.064 0.149

10251 0.292 0.409

4785 0.213 0.376

5190 0.208 0.378

15181 0.238 0.437

5710 0.225 0.393

7254 0.220 0.397

9368 0.219 0.419

9290 0.214 0.418

19214 0.203 0.463

tion) identified by PASTA and TopHat for Run 1 and Run 2 respectively.



Table 4 Average probability scores and percentages of canonical junctions

Cov = 1 Cov > 1

Run Lane id Junctions Avg Score Canonical fraction Junctions Avg Score Canonical fraction

1 1 182951 0.208 0.169 161315 0.71 0.706

3 151512 0.215 0.185 146821 0.71 0.72

5 225167 0.181 0.143 168571 0.697 0.683

6 214297 0.167 0.139 160157 0.665 0.673

7 196135 0.176 0.141 186288 0.607 0.6

8 286174 0.174 0.132 224290 0.609 0.569

2 1 185119 0.407 0.142 182407 0.743 0.698

2 111081 0.4 0.256 121711 0.86 0.853

3 128474 0.364 0.22 128610 0.833 0.822

5 120223 0.424 0.243 129222 0.853 0.84

6 153947 0.37 0.183 155789 0.78 0.754

7 179484 0.38 0.151 199578 0.66 0.624

8 185332 0.381 0.146 201870 0.656 0.615

Cov <= 2 Cov > 2

1 1 219248 0.239 0.204 125018 0.801 0.802

3 186561 0.25 0.227 111772 0.806 0.818

5 264113 0.21 0.174 129625 0.791 0.783

6 255218 0.196 0.172 119236 0.774 0.786

7 247485 0.202 0.17 134938 0.724 0.722

8 345153 0.196 0.152 165311 0.718 0.683

2 1 223944 0.413 0.179 143582 0.825 0.791

2 135570 0.445 0.321 97222 0.913 0.912

3 155550 0.4 0.275 101534 0.902 0.898

5 145114 0.458 0.299 104331 0.908 0.904

6 188431 0.387 0.223 121305 0.87 0.855

7 229704 0.371 0.18 149358 0.767 0.739

8 236287 0.372 0.175 150915 0.762 0.729

Cov <=5 Cov > 5

1 1 259337 0.298 0.268 84929 0.887 0.887

3 225201 0.318 0.302 73132 0.892 0.898

5 305148 0.262 0.228 88590 0.881 0.878

6 296541 0.25 0.233 77913 0.875 0.881

7 296642 0.251 0.224 85781 0.855 0.852

8 397801 0.234 0.187 112663 0.83 0.806

2 1 263656 0.442 0.231 103870 0.907 0.892

2 169910 0.527 0.427 62882 0.948 0.95

3 189370 0.475 0.37 67714 0.944 0.945

5 178189 0.526 0.394 71256 0.947 0.948

6 223803 0.44 0.295 85933 0.931 0.927

7 280701 0.397 0.23 98361 0.899 0.885

8 287818 0.395 0.222 99384 0.898 0.88
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Table 4 Average probability scores and percentages of canonical junctions (Continued)

Cov <=10 Cov > 10

1 1 289649 0.352 0.326 54617 0.924 0.922

3 253947 0.377 0.365 44386 0.926 0.926

5 335371 0.311 0.28 58367 0.921 0.917

6 326184 0.3 0.286 48270 0.917 0.916

7 326196 0.296 0.272 56227 0.907 0.902

8 431187 0.269 0.224 79277 0.887 0.87

2 1 288984 0.475 0.278 78542 0.938 0.933

2 197064 0.583 0.497 35728 0.958 0.96

3 216813 0.532 0.44 40271 0.956 0.957

5 205938 0.58 0.466 43507 0.958 0.96

6 251758 0.49 0.36 57978 0.949 0.95

7 308843 0.434 0.28 70219 0.936 0.93

8 316415 0.432 0.271 70787 0.935 0.926
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Analysis on mouse RNA-Seq data
We have performed two RNA-Sequencing runs on Il-
lumina Genome Analyzer 2x using mouse samples in or-
der to generate initial validation data for PASTA (called
Run1 and Run2 respectively in the following). Run1 pro-
duced two lanes of RNA-Seq data from control mouse
samples and four lanes from mutant mouse samples,
while Run2 produced three lanes from control mouse
samples and four lanes from mutant mouse samples.
The mutant samples were obtained from Mbnl3 knock-
down mice provided by the Swanson laboratory at the
University of Florida. Mbnl3 encodes a protein belonging
to the muscleblind family of Cys3His zinc finger proteins,
and is known to have a widespread effect on splicing. The
Table 5 Average coverage (in reads/junction) and probability

Known junctions

Run Lane id Junctions Avg Cov Avg score Canonical fr

1 1 127707 13.393 0.818 0.922

3 120058 11.559 0.817 0.933

5 127561 14.353 0.822 0.923

6 121484 12.362 0.799 0.924

7 121641 14.724 0.799 0.921

8 135760 18.913 0.814 0.900

2 1 127102 22.007 0.896 0.933

2 119385 9.819 0.903 0.961

3 119715 10.806 0.904 0.960

5 122562 11.343 0.907 0.960

6 125888 14.778 0.909 0.955

7 126222 19.085 0.904 0.946

8 127674 19.007 0.895 0.932

Known Junctions indicates predicted junctions appearing in ENSEMBL known gene
ENSEMBL known genes. Only junctions with a maximum coverage of 100 were con
disruption of normal Mbnl3 function may therefore in-
duce changes in the splicing pattern of many downstream
genes regulated by it [13,14]. In the following we provide a
description of the experiments and we present our prelim-
inary analysis of the results.
In order to evaluate the performance of PASTA in

detecting splice junctions, we ran TopHat on the same
data, and we compared the number of known junctions
identified by the two programs. Since we do not have an
independent way of confirming the predicted junctions,
we used the set of junctions derived from the validated
gene models in the ENSEMBL genes database as the
“gold standard” against which to measure performance.
Tables 1, 2 and 3 contain the results of the comparison
score of junctions in ENSEMBL known genes

Unknown junctions

action Junctions Avg Cov Avg score Canonical fraction

216559 1.872 0.222 0.125

178275 1.857 0.217 0.122

266177 1.808 0.200 0.111

252970 1.737 0.178 0.1

260782 2.033 0.194 0.106

374704 2.151 0.203 0.116

240424 2.120 0.403 0.146

113407 1.629 0.364 0.155

137369 1.627 0.332 0.139

126883 1.676 0.394 0.158

183848 1.811 0.348 0.138

252840 2.151 0.339 0.127

259528 2.140 0.342 0.124

s, and Unknown Junctions indicates predicted junctions not appearing in
sidered.



Table 6 Average coverage (in reads/junction) and probability score of junctions by canonical signal

Canonical junctions Non-canonical junctions

Run Lane id Junctions Avg score Avg Cov Junctions Avg score Avg Cov

1 1 144869 0.783 11.85 199397 0.196 2.001

3 133780 0.787 10.428 164553 0.192 1.967

5 147430 0.777 12.493 246308 0.177 1.909

6 137620 0.756 10.955 236834 0.161 1.831

7 139533 0.756 12.907 242890 0.174 2.142

8 165421 0.753 15.589 345043 0.179 2.303

2 1 153599 0.871 18.534 213927 0.360 2.151

2 132287 0.888 8.983 100505 0.315 1.678

3 133965 0.884 9.781 123119 0.288 1.68

5 137729 0.89 10.242 111716 0.346 1.721

6 145698 0.882 12.946 164038 0.304 1.871

7 151673 0.869 16.193 227389 0.299 2.185

8 151274 0.864 16.272 235928 0.307 2.207

Canonical Junctions indicates predicted junctions with a canonical splicing signal, while Non-canonical Junctions indicates predicted junctions without the
canonical signal. Only junctions with a maximum coverage of 100 were considered.

Table 7 Prediction of minor splice sites using mouse
RNA-Seq dataset from Mbnl2 experiment

Lane id Ensembl AT-AC PASTA AT-AC Perc

1 178 652 27.30%

2 170 684 24.85%

3 190 798 23.81%

5 153 660 23.18%

6 164 751 21.84%

7 71 221 32.13%

8 181 369 49.05%

Total 1107 4135 26.77%

The number of minor splice sites (AT-AC) from PASTA predictions compared
against ENSEMBL mouse annotations.
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between PASTA and TopHat on data from the two se-
quencing runs. The results show, first of all, that PASTA
detects a higher number of junctions than TopHat, es-
pecially with shorter read lengths, and the difference
increases with the number of reads. Table 2 focuses on
known junctions: we computed the number of predicted
junctions appearing in ENSEMBL that are identified by
both programs, and reported the ratio between the com-
mon known junctions and the number of predictions
from each program, respectively, as a percentage. The
resulting value, that indicates the percentage of TopHat
junctions that PASTA correctly identifies, is consistently
at 96% or higher in both Run1 and Run 2. Additionally,
PASTA identifies an extra 50% or higher of known junc-
tions in Run 1, and 20% or higher of known junctions in
Run 2 that are completely absent in TopHat predictions.
The number of known junctions identified by TopHat is
significantly lower in Run 1 in comparison with Run 2,
as a result of the smaller number of reads and shorter
read size in Run 1 compared with Run 2. In contrast,
PASTA is able to recover a similar number of splice
junctions in Run 1 and Run 2. Some of these extra
known junctions identified by PASTA map to exons
that are sequenced at low levels or are supported by
very few junction-spanning reads; these reads are there-
fore crucial in reconstructing correct gene structures.
Table 3 reports the number of additional junctions

(i.e., not found in ENSEMBL known genes) identified by
both programs. Although it is impossible to know whe-
ther these junctions are real or are false positives with-
out performing a large-scale validation experiment, a
substantial number of them are identified by both pro-
grams, especially in the case of longer read lengths and
higher sequencing depths. In addition, a significant frac-
tion of the new junctions is covered by more than one
read, which increases the likelihood that they are indeed
biologically real. The average coverage of new junctions
ranges from 5.3 in Run 1 to 8.2 in Run 2, and the per-
centage of junctions with coverage higher than the ave-
rage ranges from 8% in Run 1 to 16% in Run 2.
Table 4 displays the average probability score and the

frequency of canonical (GT-AG) junctions as a function
of the coverage level (expressed as reads/junctions) on
junctions identified by PASTA. The results show that
higher coverage is usually a strong indicator of real junc-
tions, characterized by high probability scores and pres-
ence of canonical splice signals. These results are further
supported by Table 5. Using ENSEMBL known genes,
we can see that PASTA predicted junctions that appear
in the known genes exhibit higher average probability
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scores and higher coverage. In addition, Table 6 shows
that canonical junctions have significantly higher average
scores and coverage than non-canonical one. Finally, in
order to see the average coverage for PASTA predicted
junctions that appeared in ENSEMBL know genes, we
compute the total number of reads that fall on these
junctions. These results suggest that PASTA predicted
junctions that appear on ENSEMBL genes are mostly ca-
nonical junctions (97% or more), and are normally sup-
ported by high probability scores and high coverage as
shown by Table 5. Finally, we compared PASTA with
RUM in splice junction prediction using the RNA-Seq
datasets from Run 1 and Run 2. Results (see Additional
file 1: Tables S2 and S3) shows that PASTA and RUM
predictions are very closely correlated with each other in
detecting known junctions.

PCR validations on minor splice sites
In order to validate PASTA’s ability to detect splice junc-
tions including minor splice sites, we selected a total of
nine splicing junctions in a third RNA-Seq dataset from
the mouse forebrain and tested them experimentally.
Five of these candidate targets contained the minor
splice site signal AT-AC, while the other four candidate
targets contained the minor splice site signal GC-AG
(Additional file 1: Figure S2 and Table S4).
PCR assays confirmed the presence of all GC-AG sig-

nals and AT-AC signals tested, demonstrating PASTA’s
potential to accurately discover minor splice sites. In
particular, we investigated AT-AC signals, which are
excised by a new class of splicesome, as they are known
to be present in genes with critical cellular functions
[2,8]. ENSEMBL annotations only contain a total of 473
AT-AC signals, which may be an underestimation due to
bias towards canonical junctions in gene-finding algo-
rithms. PASTA identified on average 500 AT-AC signals
per sequencing run in mouse RNA-Seq datasets, and
approximately 30-50% of these signals are present in
ENSEMBL annotated junctions (Table 7). The remai-
ning 50% or more AT-AC signals may come from no-
vel junctions.

Conclusions
PASTA is an easy to use and efficient tool to identify
splice junctions from RNA-Seq data, intended as the
first module in a complete computational pipeline for
AS analysis. Compared to similar tools, PASTA offers an
increased ability to detect real splice junctions especially
at low coverage levels and short sequence size, due to
several heuristic strategies it employs. It does not rely on
the presence of canonical splice junctions, and it uses an
organism-specific statistical model to evaluate predicted
intron-exon junctions. Junction positions are determined
through a highly accurate procedure based on patterned
alignments. Moreover, PASTA enables the prediction of
trans-splicing events from patterned alignments identified
in different chromosomes. It allows prediction of splice
junctions in less well-studied non-model organisms using
information learned from closely-related model orga-
nisms. In addition, experimental validation demonstrates
PASTA’s high sensitivity in discovering minor splice sites
(Table 7, Additional file 1: Figure S2 and Table S4).
Finally, PASTA does not filter predicted junctions on

the basis of their coverage, but retains high-scoring junc-
tions even when they are supported by a low number of
reads. The reason is that the final result we are inter-
ested in is not the presence or absence of an individual
junction, but which isoform structures can be inferred
from a set of junctions in the same locus. It is there-
fore a better strategy to retain low-coverage junctions
(provided they have a high score) and evaluate the isoform
(s) they participate in when information about all the
other junctions in them is known. The resulting high sen-
sitivity in discovering splice junctions, including minor
splice sites, was demonstrated by experimental validation
of a subset of PASTA predictions.
Availability and requirements
Project name: PASTA
Project home page: http://genome.ufl.edu/rivalab/PASTA
Operating system(s): Linux, OS X
Programming language: Common Lisp
Other requirements: Bowtie package
License: GNU GPL
Additional file

Additional file 1: Supplementary Materials.
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