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Mechanized Verification with Sharing

Gregory Malecha Greg Morrisett

Harvard University SEAS

Abstract. We consider software verification of imperative programs by
theorem proving in higher-order separation logic. Of particular interest
are the difficulties of encoding and reasoning about sharing and aliasing
in pointer-based data structures. Both of these are difficulties for reason-
ing in separation logic because they rely, fundamentally, on non-separate
heaps. We show how sharing can be achieved while preserving abstrac-
tion using mechanized reasoning about fractional permissions in Hoare
type theory.

1 Motivation

Axiomatic semantics [7] is one way to formally reason about programs. Under
these semantics, programs are analyzed by considering the effect of primitive
operations on predicates over the heap. Unfortunately, stating and reasoning
about these predicates is complicated due to potential pointer aliasing. It was not
until Reynolds proposed separation logic [16] that reasoning about imperative
programs in a modular way became tractable. However, even with this logic some
specifications are still not simple. For example, many algorithms are simplified
by sharing data which can be difficult to express in separation logic.

The difficulty comes from conflicting goals: We want to reason locally and
compositionally about programs, and, at the same time, we wish to share data
globally to make algorithm and data structure implementations more efficient.
Vanilla separation logic provides the first, but makes the second difficult because
of the non-local effects illustrated by the following Java program:

1 void error(List <T> lst) {

Iterator <T> itr = lst.iterator ();

3 lst.remove (0);

itr.next (); // throws ConcurrentModificationException

5 }

Here, line 3 has removed the element that the iterator is referencing, so we’ve
destroyed the view that the iterator is abstracting even though line 3 does not
even mention the iterator. If problems like this go undetected at run-time, they
can result in NullPointerExceptions in Java, or memory corruption or seg-
mentation faults in lower level languages such as C.

In this paper we show how type-directed formal verification can be used to
verify data structures that share state, in particular collections and their iter-
ators. Our data structures are heap-allocated and make liberal use of pointer



aliasing. We have found that sharing makes formally reasoning about the cor-
rectness of programs in an automated way difficult, and we believe general the-
orem proving techniques are most suitable to address these problems that other
techniques have not been able to.

We consider sharing of two sorts, external and internal. In external shar-
ing, we wish to support multiple, simultaneous views of the same underlying
memory for clients. In internal sharing, the sharing is completely hidden behind
the abstraction allowing the client to reason using a simple interface while the
implementation uses aliasing to make implementations more efficient.

Contributions

We begin with a brief overview of the Ynot verification library [4] (Section 2),
demonstrating how higher-order separation logic can be used to provide abstrac-
tion. We then cover our contributions, we

– Show how fractional permissions [8] can be applied to provide sharing of
high-level abstractions, we focus on collections. (Section 3)

– Show how external sharing can be leveraged to mechanically verify higher-
order, effectful computations in Ynot, we focus on iterators. (Section 4)

– Show how internal sharing can be expressed by describing the representa-
tion of B+ tree, skirted n-ary trees, and how our approach simplifies the
implementation of an iterator. (Section 5)

– While formalizing B+ trees, we also show a technique for formalizing data
structures with a non-functional connection to their specification. (Section 5)

In our presentation, we focus on interfaces in stylized Coq, but our implemen-
tation and verification are available at http://ynot.cs.harvard.edu/. After
our contributions, we consider the burden of verification, the implications of our
techniques, and related work (Section 6).

We believe that our methodology extends previous work describing aliasing
in separation logic [3] by being amenable to machine-checkable proofs and em-
bedable in Hoare-type theory. Previous work has developed paper-and-pencil
proofs and, as has been seen in other contexts [1], the evolution from rigorous,
manual proofs to mechanically verified proofs is not always straightforward.

2 Background

Ynot [4] is a Coq library that implements Hoare type theory [14] to reason about
imperative programs using types. Hoare logic describes commands using Hoare
triples, commands along with pre- and post-conditions. Ynot encodes these in
the type of the Cmd monad.

{P} c {r ⇒ Q} ≡ c : Cmd (P ) (r ⇒ Q)

where the command c has pre-condition P and post-condition Q that depends
on the return value of c (bound to r). This type means that the command c can

http://ynot.cs.harvard.edu/


be run in any state that satisfies P and, if c terminates with value r, then the
resulting state will satisfy Q r.

Ynot defines pre- and post-conditions in the logic of Coq as predicates over
heaps, which, themselves, are defined as functions from pointers to optional val-
ues. Previous work [4] showed how using a stylized fragment of separation logic
makes verification conditions more amenable to automation and therefore less
burdensome for the programmer to prove. As in previous work, we use a shal-
low embedding of separation logic which we extend with support for fractional
permissions (Figure 1).

h |= P Heap Propositions (hprop)

Empty h |= emp
∆⇐⇒ ∀p. h p = None

Points-to h |= p
q7→ v

∆⇐⇒ h p = Some (q, v) ∧ ∀p′. p 6= p′ → h p = None

Separating Conjunction h |= P ∗Q ∆⇐⇒ ∃h1 h2. P h1 ∧Qh2 ∧ h = h1 ] h2 ∧ h1 ⊥ h2

Existentials h |= ∃x.Px
∆⇐⇒ ∃x. Px h

Pure Injection h |= [p]
∆⇐⇒ emph ∧ p

h0 ⊥ h1 Heap Disjointness

h0 ⊥ h1 = ∀p.

8><>:
v0 = v1 ∧ q0 + q1 ≤ 1 ∀i ∈ {0, 1}. hi p = Some(qi, vi)

qi ≤ 1 i ∈ {0, 1} ∧ hi p = Some(qi, v) ∧ h1−i p = None

True ∀i ∈ {0, 1}. hi p = None

h0 ] h1 Heap Union

(h0 ] h1) p =

8><>:
Some(q0 + q1, v) ≤ 1 ∀i ∈ {0, 1}. hi p = Some(qi, v)

Some(qi, v) i ∈ {0, 1} ∧ hi p = Some(qi, v) ∧ h1−i p = None

None ∀i ∈ {0, 1}. hi p = None

Fig. 1. The shallow embedding of separation logic used in Ynot.

The empty heap (emp) denotes a heap containing no allocated cells, all point-
ers are mapped to None 1. The permission to access the heap cell pointed to by
p is given by the fractional points-to relation, p

q7→ v [8,6,15]. We use the simple
model of fractional permissions originally developed by Boyland [8]. In this work,
the value of q is a rational number such that 0 < q ≤ 1, in all cases the points-to
relation asserts that the heap contains a cell with the value v pointed to by p.
When q = 1, the points to assertion gives code the ability to read, write, and
deallocate the cell. When q < 1, the points-to relation gives read-only access to

1 The symbols None and Some are the constructors of the option α type which repre-
sents an optional value of type α which is included in the Some constructor.



the heap cell. The separating conjunction (∗) states that the two conjuncts hold
on two “disjoint” pieces of the heap. In the definition h0 ⊥ h1 defines the dis-
jointness which is slightly complicated by the fractional permissions. Two heaps
are disjoint if each pointer is mapped by only one heap or the values are the
same and the fractions sum to a valid fraction. The ] operator defines a similar
notion of unioning disjoint heaps. Ynot also supports existential quantification
and pure propositions (propositions that do not mention the heap such as x = y
or x < 5) in heap propositions.

new : Π(T : Type)(v : T ), Cmd(emp)(p : ptr ⇒ p 7→ v)
free : Π(p : ptr), Cmd(∃T,∃v : T, p 7→ v)( : unit⇒ emp)
read : Π(T : Type)(p : ptr)(P : T → hprop),

Cmd(∃v : T, p
q7→ v ∗ P v)(v : T ⇒ p

q7→ v ∗ P v)
write : Π(T : Type)(p : ptr)(v : T ), Cmd(∃T,∃v′ : T, p 7→ v′)( : unit⇒ p 7→ v)
bind : Π(T U : Type)(PP ′ : hprop)(Q : T → hprop)(Q : U → hprop),

(∀v : T,Q v =⇒ P ′)→ Cmd(P )(Q)→ (T → Cmd(P ′)(Q′))→ Cmd(P )(Q′)
return : Π(T : Type)(v : T ), Cmd(emp)(r : T ⇒ [r = v])
cast : Π(T : Type)(P P ′ : hprop)(QQ′ : T → hprop), (P ′ =⇒ P )→

(∀v : T.Q v =⇒ Q′ v)→ Cmd(P )(v : T ⇒ Q v)→ Cmd(P ′)(v : T.Q′ v)
frame : Π(T : Type)(P QR : hprop), Cmd(P )(r : T )(Qr)→

Cmd(P ∗R)(r : T ⇒ Qr ∗R)

Fig. 2. Axiomatic basis for Hoare type theory using separation logic.

Ynot axiomatizes the primitive heap operations using the commands given
in Figure 2. The new command allocates memory by producing the read-write
capability to access the memory cell pointed to by the return value. The pre-
condition specifies that the command needs no heap capabilities so the resulting
pointer must be globally unique. The free command deallocates a memory cell
by consuming the read-write permission to access the cell. The read command
reads the values from a cell given a predicate, P , that describes the rest of the
heap based on this value. The dependence on P allows us to enforce that the v
in the pre-condition is the same as the v in the post-condition because P could
include a precise equation on v. For example, if p pointed to a pointer to v,
we could pick P = fun r ⇒ r 7→ v thus making the post-condition reduce to
p

q7→ r * r 7→ v. The write command updates the value in a heap cell given a
pointer and the new value.

These commands are combined using monadic bind and return in addition
to a cast command that takes a proof and applies Hoare’s consequence rule. The
frame command extends the footprint of a command with extra capabilities
that are invariant under the command. This is essential to local reasoning and
enables Ynot to run a command with pre-condition P and post-condition Q in
an environment satisfying P ∗R and allows us to infer the post-condition Q ∗R.



3 Sharable Abstractions: Linked Lists

In this section, we develop the basis of our contributions by defining a simple
interface for externally sharable list structures. Sharing will allow multiple read-
only views of the list or a single read-write view. We will achieve this using
fractional permissions in the same way that we do for heap cells.

In Ynot, abstract data types are defined by a representation predicate and
associated theorems and imperative commands. The interface for sharable lists
(ImpList) is given as a type-class [18] in Figure 3. The class is parametrized

Fixpoint specNth {T} (ls : list T) (n : nat) : option T :=

2 match ls , n with

| nil , _ ⇒ None

4 | a :: _, 0 ⇒ Some a

| _ :: b, S n ⇒ specNth b n

6 end

8 Class ImpList (T : Type) (tlst : Type) := {

(* The tlst is a handle to perm capabilities to the list T *)

10 llist : perm → tlst → list T → hprop ;

(* Fractional merging and splitting of lists *)

12 llist_split : ∀ q q’ t m, q |#| q’ →
llist (q + q’) t m ⇐⇒ llist q t m * llist q’ t m ;

14 (* Allocate an empty list *)

new : Cmd (emp) (res : tlst ⇒ llist 1 res nil) ;

16 (* Free the list *)

free : Π (t : tlst),

18 Cmd (∃ ls : list T, llist 1 t ls) (_ : unit ⇒ emp) ;

(* Get the ith element from the list if it exists. *)

20 sub : Π (t : tlst T) (i : nat) (m : #list T#) (q : #perm#),

Cmd (llist q t m)

22 (res : option T ⇒ llist q t m * [res = specNth m i]) ;

(* Insert an element at the ith position in the list. *)

24 insert : Π (t : tlst) (v : T) (i : nat) (m : #list T#),

Cmd (llist 1 t m)

26 (_ : unit ⇒ llist 1 t (specInsert v i m)) ;

}

Fig. 3. Externally-sharable list interface.

by the type of the elements in the list (T) and the type of handles to the list
(tlst). The representation predicate (llist) relates a fractional permission (of
type perm), the list handle and a functional model of the list (the list T) to the
imperative representation, i.e. the structure of the heap. The heap proposition
llist q t l states that t is a handle to a q-fraction of an imperative repre-
sentation of the functional list l. Conceptually, we can think of this as t

q7→ l.



h

’A’ ’B’ ’C’

Indirection cell
Null

List contents

Fig. 4. A heap representing the list [’A’, ’B’, ’C’].

Assuming this, new and free are analogous to Ynot’s new and free commands.
The specifications for sub and insert are expressed by relating their return value
and post-condition to the result of pure functions (specNth and specInsert)
that we take as specifications (we give the specNth function as an example of
our specifications). We use the # in types to denote computationally irrelevant
variables [4]. These can be thought of as compile-time-only values that are used
to specify the behavior of computations without incurring run-time overhead.

One easy way to realize this interface is using singly-linked lists as shown in
Figure 4. The following recursive equations specify the representation invariant
for singly-linked list segments between pointers from and to.

llseg q from to nil
∆⇐⇒ [from = to] (1)

llseg q (Ptr from) to (a :: b) ∆⇐⇒ ∃x. from
q7→ mkNode a x ∗ llseg q x to b (2)

tlst T = ptr (3)
llist q t ls

∆⇐⇒ ∃hd. t
q7→ hd ∗ llseg hd Null ls (4)

In equation (1), the model list is empty so the start and end pointers are the
same. When the model list is not empty, i.e. it is a cons (a :: b), from must
not be null, and there must exist a pointer x such that from points to a heap
cell containing a and x (from q7→ mkNode a x) and x points to the rest of the
list (llseg x to b). Equation (4) makes the list mutable by making tlst an
indirection pointer so the pointer to the head of the list can change.

Since the definition only claims a q-fraction of the list, all of the points-to
assertions have fraction q. This allows us to prove the llist_split lemma that
states a q0 +q1 fraction of the list is equivalent to a q0 fraction of the list disjoint
from a q1 fraction of the list. We can use this proof to create two disjoint, read-
only views of the same list to share.

4 External Sharing: Iterators

The ability to share the list abstraction pays off when we need to develop an-
other view of the list. Here, we develop a simple, efficient iterator over our list
representation.

Our iterator is defined by a representation predicate (liter) and commands
for creating iterators (open), advancing the iterator (next), and deallocating it-
erators (close):



Parameter titr : Type → Type.

2 Parameter liter : ∀ T. perm → tlst T →
titr → list T → nat → hprop.

4 Parameter open : Π (T : Type) (t : tlst T) (m : #list T#)

(q : #perm#),

6 Cmd (llist q t m) (res : titr T ⇒ liter q t res m 0).

Parameter next : Π (T : Type) (t : titr T) (m : #list T#)

8 (idx : #nat#) (own : #tlst T#) (q : #perm#),

Cmd (liter t m idx)

10 (res : option T ⇒ liter t m (idx + 1) *

[res = specNth m idx]).

12 Parameter close : Π (T : Type) (t : titr T) (own : #tlst T#)

(m : #list T#) (q : #perm#),

14 Cmd (∃ idx : tlst T, liter q own t m idx)

(_ : unit ⇒ llist q own m).

The representation predicate defines the heap by relating a fractional ownership
of the list and the handle to the underlying list to the iterator handle, the
functional contents of the list, and a natural number which defines the current
position in the list. Here, the fractional permission is the fractional ownership
of the underlying list, not of the iterator, so even if this fraction is not 1, we
will still be able to call next. The open computation constructs an iterator to
the beginning of a tlst T by converting the heap predicate from llist q t m
to liter q t res m 0. The next command returns the current element in the
list (or None if the iterator is past the end of the list) and advances the position,
reflected in the index argument of liter. The close command reverses the effect
of open by converting the liter back into a llist.

The owner parameter to the representation predicate is necessary for describ-
ing the heap precisely enough to support the close command. Its use is similar
the use of ownership types[5]. By making it a parameter we can specify that the
llist permissions in the post-condition of close are exactly those that went into
the open command.

With this, we can describe an iterator by full ownership of a heap cell con-
taining a pointer to the current node, and fractional ownership of the owner
pointer and underlying list. For simplicity implementing the interface, we break
the specification of the list into two parts: the part that has already been visited
(firstn i m) that goes from st to cur, and the rest (skipn i m) that goes from
cur to Null.

titr T = ptr
iter own q t m i

∆⇐⇒ ∃cur.∃st. own
q7→ st ∗ t 7→ cur ∗

llseg q st cur (firstn i m) ∗ llseg q cur Null (skipn i m)

5 Internal Sharing & Non-functional Heaps: B+ trees

We now turn to the problem of internal sharing. Recall that in internal shar-
ing, we completely hide the sharing from the client. To demonstrate our tech-



nique, we discuss the representation of B+ trees that we presented in previous
work [12]. We choose B+ trees to implement this interface because they have a
structure that is tricky to reason about because of aliasing and previous work
only demonstrated an imperative fold rather than the more primitive iterator.
Our implementation for this interface does not include fractional permissions,
though we believe that it would be relatively straightforward to add them.

(* tfmap is the type of finite maps from key to value. *)

2 Class FiniteMap (K V : Type) (tfmap : Type) := {

(* The tfmap handle represents the fmap. *)

4 repMap : tfmap → fmap K V → hprop ;

(* Create an empty finite map. *)

6 new : Cmd emp (h : tfmap ⇒ repMap h nil) ;

(* Associate the key k with the value m. *)

8 insert : Π (h : tfmap) (k : K) (v : V) (m : #fmap K V#),

Cmd (repMap t m)

10 (res : option V ⇒ repMap h (specInsert v m) *

[res = specLookup k m]) ;

12 (** ... free & lookup ... **)

14 titr : Type ;

repIter : tfmap → titr → fmap K V → nat → hprop ;

16 open : Π (h : tfmap) (m : #fmap K V#),

Cmd (repMap h m) (res : titr ⇒ repIter h res m 0) ;

18 next : Π (h : titr) (own : #tfmap#) (m : #fmap K V#)

(idx : #nat#),

20 Cmd (repIter own h m idx)

(res : option (K * V) ⇒
22 repIter own h m (idx + 1) * [specNth m idx]) ;

close : Π (h : titr) (own : #tfmap#) (m : #fmap K V#),

24 Cmd (∃i. repIter own h m i) (_ : unit ⇒ repMap own m)

}

Fig. 5. The imperative finite map interface.

Figure 5 gives our target interface for finite maps and their iterators, which
we combine for brevity. The class is parametrized by the type of keys, values,
and finite map handles. The logical model is a sorted association list (fmap K
V) that we relate to the handle with the heap proposition repMap q t m. The
remaining computations are similar to those of the list; we support allocation
and deallocation as well as key lookup and key-value insertion. The iterator
predicate is the same as the list iterator predicate except it does not have the
fractional permission. The open, next and close commands are the same as for
the list.
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1 2

v1 v2

3 4 5 6

v3 v4 v5 v6

7 8 9

v7 v8 v9

treeSorted Min Max

treeSorted Min (Key 2) treeSorted (Key 2) (Key 6) treeSorted (Key 6) Max

Fig. 6. An B+ tree of arity 4 (n = 4) for the finite map from i 7→ vi for 1 ≤ i ≤ 9.

B+ trees are balanced, ordered, n-ary trees that store data only at the leaves
and maintain a pointer list in the fringe to make in-order iteration of the values
efficient. Figure 6 shows a simple B+ tree with arity 4.

As with most tree structures, B+ trees are comprised of two types of nodes:

– Leaf nodes store data as a sequence of at most n key-value pairs in increasing
order by key. The trailing pointer position points to the next leaf node.

– Branch nodes contain a sequence of at most n keys-subtree pairs and a final
subtree. The pairs are ordered such that the keys in a subtree are less than
or equal to the associated key (represented in the figure as treeSorted min
max). For example, the second subtree can only contain values greater than
2 and less than or equal to 6. The final subtree covers the span greater than
the last key; in the figure, this is the span greater than 6.

As with the iterator, the two main difficulties in formalizing B+ trees reveal
themselves in the representation predicate. The first concerns the fact that mul-
tiple trees can represent the same finite map. The second concerns the aliasing
at the leaves which is necessary to make iteration efficient.

The standard way to address the first problem is to use a direct relational
specification of the heap, existentially quantifying the splitting of the list into
subtrees at each level [17]. While this works well for paper-and-pencil proofs, it
makes automation difficult because tactics need to guess the way that the heap
is broken up at every step in order to instantiate existentials. Following this
approach can yield goals with many existential variables that are not trivial to
pick automatically. To avoid this, we factor the relation between the interface
model and the heap description into a relation and a function, as shown in
Figure 7.

Our representation model is a functional tree that we index by the height
to enforce the balancedness constraint. In Coq, we could define this as follows,
though we will modify it slightly to address the next problem:

Fixpoint ptree (h : nat) : Type :=

2 match h with

| 0 ⇒ list (key * value)

4 | S h’ ⇒ list (key * ptree h’) * ptree h’



end

The second difficulty deals more directly with sharing. In the standard repre-
sentation for a tree, we existentially quantify the pointers at the parent pointer
for each node, but, if we follow this approach we can not directly encode the
aliasing at the leaves because the predicate does not have access to both point-
ers. We could quantify the leaf pointers when the tree splits, but this gets ugly
because we are working with n-ary trees. This would also lead to difficulties when
defining iterators because we will want to frame the trunk part of the computa-
tion and consider only the leaves. Instead, we embed the pointers directly in the
representation model using the following type:

1 Fixpoint ptree (h : nat) : Type :=

ptr * match h with

3 | 0 ⇒ list (key * value)

| S h’ ⇒ list (key * ptree h’) * ptree h’

5 end

Using this representation model, we can easily compute the pointers that alias
without needing to worry about scoping since all of the pointers will be quantified
at the root.

With this model, we can turn to describing the heap. We define repTree h o p

to hold on to a heap representing the ptree p of height h when the rightmost
leaf’s next pointer equals o:

repTree 0 optr (p′, ls) ∆⇐⇒ ∃ary. p′ 7→ mkNode 0 ary optr ∗ repLeaf ary ls

repTree (1 + h) optr (p′, (ls, nxt)) ∆⇐⇒
∃ary. p′ 7→ mkNode (h + 1) ary (ptrFor nxt) ∗
repBranch ary (firstPtr nxt) ls ∗ repTree h optr nxt

The repTree predicate has two cases depending on the ptree’s height. In the
leaf case, the array holds the list of key-value pairs from the ptree.

repLeaf ary [v1, ..., vm] ∆⇐⇒
ary[0] 7→ Some v1 ∗ ... ∗ ary[m− 1] 7→ Some vm∗
ary[m] 7→ None ∗ ... ∗ ary[n− 1] 7→ None

Interface Model Heap Description

Representation Model

∼ repMap

∼ rel
= rep

Abstraction
Barrier

Fig. 7. Decouple the relational mapping between the interface and the heap by
factoring out a representation model that is functionally related to the heap.



In the branch case, the array holds key-pointer pairs such that each pointer
points to the representation of the corresponding subtree in the ptree. This is
captured by the repBranch predicate:

repBranch ary optr [(k1, t1), ..., (km, tm)] ∆⇐⇒
ary[0] 7→ Some (k1, ptrFor t1) ∗ repTree h (firstPtr t2) t1 ∗ ...∗
ary[m− 2] 7→ Some (km−1, ptrFor tm−1) ∗ repTree h (firstPtr tm) tm−1∗
ary[m− 1] 7→ Some (km, ptrFor tm) ∗ repTree h optr tm∗
ary[m] 7→ None ∗ ... ∗ ary[n− 1] 7→ None

At this point, we have defined the rep function from Figure 7; it remains to
define rel. A standard relation would be fine to implement this, but since each
tree corresponds to exactly 1 finite map, we can simplify things by computing
the finite map (using as_map) associated with the tree and stating that it equals
the desired model.

We can pick the handle type to be a pointer and define the full representation
predicate to be the conjunction of rep and rel with some additional pure facts:

repMap hdl m
∆⇐⇒ ∃h.∃p : ptreeh.

hdl 7→ (ptrFor p, #p#) ∗ repTreeh None p∗
[m = as map p] ∗ [treeSortedh p Min Max]

By packing a copy of the ptree with the root pointer, we avoid the need to
search for a model during proofs. The alternative is to show that there is at
most one ptree that a given pointer and heap can satisfy (i.e., that repTree
is precise [15]). However, this is complicated by the fact that the ptree type is
indexed by the height. The pure treeSorted predicate combines all of the facts
about the key constraints, but is not necessary for the iterator and was explained
in previous work [12], so we do not explain it in detail.

With our representation for B+ trees, we can now turn to their iterators.
Our approach is similar to the technique we applied to the list iterator. First, we
state the heap predicate that divides the tree into the “trunk” and the branches
as disjoint entities. We can achieve this with only minor discomfort by parame-
terizing repTree by the leaf case and passing the empty heap when we only want
to describe the trunk. We also implement a function repLeaves to describe a list
of leaves in isolation. These two functions satisfy the following property which
is key to opening and closing our iterator:

∀h optr p. repTree optr p⇐⇒
repTrunk optr p ∗ repLeaves (Some (firstPtr p)) (leaves p) optr

Using these predicates, we can define the representation of the iterator:

repIter own h m idx
∆⇐⇒ ∃h.∃tr : ptreeh.∃i.∃prev.∃cur.∃rest.

own 7→ (ptrFor tr, #tr#) ∗ repTrunkh None p ∗
[m = as map p] ∗ [treeSortedh p Min Max] ∗
h 7→ (cur, i) ∗ repLeaves prev cur ∗ repLeaves rest None ∗
[leaves tr = prev ++ rest] ∗ [posInv i idx prev rest m]



The first two lines after the existentials corresponds to the framed heap and
pure facts needed to re-establish the tree representation invariant. The third line
declares the iterator state (h 7→ (cur, i)) and the combined repLeaves specify
the representation of the leaves. Because each leaf could have a different number
of key-value pairs, it is difficult to use the built-in firstn and skipn functions,
so we existentially quantify two lists of leaves (prev and rest) and assert that
their concatenation (++) must be equal to the leaves of the tree. The final pure
fact establishes the invariant on the cur and the index into the current leaf: if
there are elements left to iterate, i + length (as map prev) = idx and i is a valid
index in the list. Otherwise, i = 0 and rest = nil.

6 Discussion

In this section we consider the overhead of verification (Section 6.1), summarize
our sharing insights (Section 6.2), and review related work (Section 6.3).

6.1 The Burden of Mechanized Proofs

Our methodology places the burden of proof on the developer. Proof search
scripts and lemmas are part of the final code and running them considerably in-
creases compilation time. However, our proofs confirm strong functional correct-
ness properties and our specifications document precise pre- and post-conditions
for clients to use.

Figure 8, presents a quantitative look at the size of our development in num-
ber of lines. The Spec column counts command specifications; this is the interface
that the client needs to reason about. Excluding the data structure invariants,
this is the part of the code that a client of the library needs to reason about.
The Impl column counts imperative code. The next two columns count auxiliary
lemmas and automation. The second, Sep. Lemmas, counts lines that pertain to
separation logic, while Log. Lemmas counts lines that only reason about pure
structures, such as lists. The Overhead column gives the ratio of proofs to spec-
ification and code. The Time column gives the time required to prove all of the
verification conditions not including auxiliary lemmas. Line counts include only
new lines needed for verifying the function, so, if a lemma is required for both
sub and insert it is only counted against sub.

As Figure 8 shows, the first commands contribute the most to the proof bur-
den because we are writing general lemmas about the model and representation
predicate. Once these lemmas have been proven, the remainder of the commands
are almost immediate. We believe that the logical lemmas required for our code
are mostly within the capabilities of existing automated theorem provers [13]
and integrating such tools would likely eliminate all of the overhead from this
column. It is less likely that existing tools are directly applicable to our sepa-
ration logic though existing automation is fairly good at this. The time spent
interactively verifying our implementation was mostly spent abstracting lemmas
which is straightforward but time consuming because of Coq’s toplevel model.



Lines of Code Overhead
Command Spec Impl Log. Lemmas Sep. Lemmas Lines Time (m:s)

new 2 1 1 15 5.33x 0:00
free 3 13 0 33 2.06x 0:15
insert 9 25 11 15 0.76x 1:22
delete 9 26 7 1 0.23x 2:52
sub 3 14 0 1 0.06x 1:21
mfold_left 7 13 6 1 0.35x 1:47

iterator 3 3 0 29 4.83x 0:17
close 3 2 0 9 1.80x 0:11
next 3 8 13 30 3.91x 2:30

Total 82 123 73 155 1.11x 12:07

Fig. 8. Breakdown of lines of code for lists and iterators.

6.2 Sharing Lessons

While originally proposed for parallel code, fractional permissions for external
sharing are important for sequential code. This is a by-product of multiple views
of the same data structure, in our case lists and iterators. Our solution is simple
because the list and iterator are completely decoupled and so we do not need to
correlate mutation through multiple views 2. Supporting mutation with a sin-
gle iterator is relatively straight-forward though we need to change our iterator
to carry the pointer to the list representation so that we can update the head
pointer. The ConcurrentModificationException problem from Java is a gen-
eral consequence of mutation of structures with multiple views over them and
giving natural semantics to these operations is similar to the difficulty of writing
precise specifications for concurrent functions.

When describing internal sharing, we get to specify equations directly on
pointers. The difficulties come from scoping the existential quantification of
pointers in recursive representation predicates. We find that quantifying all of
the pointers at the beginning is useful for addressing this problem and it fits
well with our solution to the problem of heap structures being loosely related
to interface models because we can store the pointers in the interface model
and easily encode aliasing. This approach also allows us separately to state pure
facts about the structure of the heap rather than having to fold them into the
representation predicate.

6.3 Related Work

Weide [20] uses model-oriented specification in Resolve to specify how iterators
behave. These specifications follow a requires/ensures template on top of a purely
logical model, similar to Ynot’s interface model.
2 It should be noted that the code for maintaining multiple views is non-trivial, so the

verification should not be expected to be trivial either.



Bierhoff [2] proposed a technique for using type-state specifications [10] for
iterators. This system uses finite state machines to define the state of an object
and specify when operations are permitted. This technique is particularly use-
ful for specifying “non-interference” properties [19] such as marking a collection
read-only when an iterator exists. We achieve this using fractional permissions,
but can encode the same functionality by adding a state parameter to the rep-
resentation predicate of our data structures.

Our approach is most similar to the work of Krishnaswami [11] where sep-
aration and Hoare logic are combined to reason about iterators. His technique
relies on the separating implication (−∗), the separation logic analog of implica-
tion. We are interested in incorporating this into our separation logic, but we
have not yet developed effective automation for it, so the burden of using it can
be considerable. More recent work by Jensen [9] shows how a similar approach
using separating implication can be applied to mutable views of a container.

B+ trees have been formalized in two previous developments. Bornat et al. [3]
proposed using classical conjunction to capture the B+ tree as a tree and a
list in the same heap. This is convenient for representation, but it requires re-
establishing both the heap as a tree and as a list at every step of the code. By
unifying the two views, we only need to reason about the view that we are using
in our code. We support the two views by proving repTree is equivalent to a
representation that exposes the leaves as a list.

Sexton and Thielecke [17] formulate B+ trees by defining a language of tree-
operations for a stack-machine. Their representation is similar to our own in not
using classical conjunction, but they quantify structure in the representation
predicate which forces them to state the pure properties there as well.

7 Conclusions

In this work we have demonstrated a technique for building verified imperative
software using theorem proving in the Ynot library for Coq.

We showed how external sharing can be achieved using abstract predicates
which quantify over fractional permissions and showed how this technique can
be applied to representing multiple views. Further, we showed how ownership
types can be applied to make the view’s representation predicate precise.

To address internal sharing we suggest simplifying recursive definitions by
existentially quantifying all of the salient aspects of the data structure at the
beginning of the representation predicate. This makes stating facts such as alias-
ing equations simple and allows the programmer to implement his or her code
to minimize the use of existential quantification which can be difficult for au-
tomation to reason about.

Future Work

The use of the separating implication in so many developments [11,17] demon-
strates its usefulness. It would benefit our own development by allowing us to



avoid duplicating parts of the representation predicate in the iterators. We are
interested in extending Ynot’s automation to reason about it and hope that
doing so will reduce the burden of specifying and verifying Ynot code.
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