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Fermi surface reconstruction in hole-doped t-J models

without long-range antiferromagnetic order.

Matthias Punk and Subir Sachdev

Department of Physics, Harvard University, Cambridge MA 02138

(Dated: February 21, 2012)

Abstract
We calculate the Fermi surface of electrons in hole-doped, extended t-J models on a square

lattice in a regime where no long-range antiferromagnetic order is present, and no symmetries

are broken. Using the “spinon-dopon” formalism of Ribeiro and Wen, we show that short-range

antiferromagnetic correlations lead to a reconstruction of the Fermi surface into hole pockets which

are not necessarily centered at the antiferromagnetic Brillouin zone boundary. The Brillouin zone

area enclosed by the Fermi surface is proportional to the density of dopants away from half-filling, in

contrast to the conventional Luttinger theorem which counts the total electron density. This state

realizes a “fractionalized Fermi liquid” (FL*), which has been proposed as a possible ground-state of

the underdoped cuprates; we note connections to recent experiments. We also discuss the quantum

phase transition from the FL* state to the Fermi liquid state with long-range antiferromagnetic

order.
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I. INTRODUCTION

The nature of electronic Fermi surfaces in strongly correlated metals, in particular under-

doped cuprates, has been the subject of intensive debate for many years. Recent observations

of pocket-like Fermi surfaces in quantum oscillation experiments1–5 as well as new angle re-

solved photo emission measurements6 have triggered a renewed theoretical interest in this

matter7–9.

One possible, well known route to a Fermi surface reconstruction is the onset of spin-

density wave (SDW) order, which breaks a large Fermi surface into small electron- and

hole-pockets centered at the magnetic Brillouin zone boundary10,11. In fact, many of the un-

resolved theoretical problems in strongly correlated electron materials, from heavy-Fermion

compounds to high-Tc cuprates, are related to the fate of electronic excitations close to anti-

ferromagnetic quantum critical points12. It has been been argued, however, that the critical

point between a metal with a large Fermi surface and an antiferromagnetic metal with small

Fermi pockets may be replaced by a new intermediate phase, the so called fractionalized

Fermi liquid (FL*)13,14, which exhibits small pockets similar to the antiferromagnetic metal,

but breaks no symmetries: summaries of these arguments, and of previous theoretical work,

can be found in two recent reviews.15,16

The simplest picture of the FL* phase appears in the context of Kondo lattice models

coupling a lattice of localized f moments and a conduction band of itinerant c electrons.

There are two important energy scales to consider: the Kondo exchange JK between the

f moments and the c electrons, and Heisenberg exchange JH between the f moments. If

JK � JH , then f moments are “Kondo-screened” by the conduction electrons, leading to

a Fermi liquid ground state with Fermi surfaces enclosing the traditional Luttinger volume

which counts the density of both the f and c electrons; the only memory of the localized

nature of the underlying f electrons is the that electronic quasiparticles near the Fermi

surface have an effective mass which is much larger than the bare electron mass, and so this

phase is often referred to as a ‘heavy’ Fermi liquid. However, in the opposite parameter

regime JH � JK other phases can appear. The most natural possibility is the appearance

of magnetic order of the f moments, but let us assume the f -f couplings are sufficiently

frustrated so that this does not happen. Then the f moments may form a spin liquid, which

does not break any symmetries of the lattice Hamiltonian. The formation of the spin liquid

also quenches the Kondo effect, and so the effective value of JK does not renormalize to

infinity as it does in the single impurity Kondo model13,14,17. The c electrons are now only

weakly coupled to the f spin liquid, and so the c electrons form a “small” Fermi surface

which encloses a volume controlled only by the density of c electrons, which violates the

traditional Luttinger count. This is the FL* metal.

This paper describes a FL* state in a single-band model appropriate for the cuprate

superconductors. Previous studies18,19 realized such a state by initially fractionalizing the

electron into a neutral S = 1/2 spinon, and a spinless “holon” carrying electromagnetic
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charge. The spinons eventually became the excitations of a ‘background’ spin liquid, analo-

gous the spin liquid of the f electrons above. And the holons eventually captured a spinon to

reconstitute as electron-like particles which occupied the states inside a small Fermi surface.

Because of this somewhat intricate sequence of transformations, the description of the FL*

state was only achieved in a semi-phenomenological manner.

Here we will provide a more direct and quantitative description of the FL* state in a

single-band model. The key step will be a rewriting of the single band degrees of freedom

in a manner which mimics those of the Kondo lattice. Such a formulation is provided by

the representation of Ribeiro and Wen20 in which the electron fractionalizes into a neutral

spinon and a “dopon” which has the same quantum numbers as the electron.

The rest of the paper is organized as follows. In section II we introduce the extended t-J

model in the representation of Ribeiro and Wen20, which is ideally suited for our purposes.

Section III deals with our approach to construct FL* ground states and presents results for

the shape and position of the electronic Fermi surface. Section IV describes the Fermi surface

evolution from the FL* state to the Fermi liquid state with long-range antiferromagnetic

order, along with a discussion of the quantum-critical properties. We summarize our results,

and note connections to recent experiments in Section V.

II. MODEL

In the following we want to study ground-states of extended t-J Hamiltonians on the

square lattice

H = −1

2

�

ij

tij

�
c̃
†
iσ
c̃
jσ

+ h.c
�
+

1

2

�

ij

Jij

�
si · sj −

1

4
ninj

�
, (2.1)

where c̃†
iσ
(c̃

iσ
) denotes the Gutzwiller projected creation (annihilation) operator of electrons

with spin σ on lattice site i, si = c̃
†
iα
σαβ c̃iβ is the electron spin operator and ni = c̃

†
iσ
c̃
iσ

the electron number operator (here and in the following we sum over repeated spin indices).

We are interested in describing possible ground states slightly below half filling n = 1 − x,

where the density of doped holes is small x � 1 but large enough to destroy any long-range

magnetic order. In addition these ground states should not break any lattice symmetries. In

particular we want to show that strong short-range antiferromagnetic correlations already

lead to a reconstructed Fermi surface consisting of small hole pockets, the area of which

is proportional to the dopant density x, instead of 1 − x as for conventional Fermi liquids.

Such ground states realize a fractionalized Fermi liquid13,14.

Our starting point is the spinon-dopon formulation of the t-J model developed by Ribeiro

and Wen20. In this representation the elementary excitations are spinons, which carry spin-

1/2 but no charge, and dopons, which carry spin-1/2 and charge. Accordingly, Ribeiro

and Wen introduce two degrees of freedom per lattice site, a ’localized’ spin-1/2 as well as
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TABLE I: Single site basis-state correspondence: t-J v.s. spinon-dopon.

t-J spinon-dopon

|↑�i |↑ 0�i
|↓�i |↓ 0�i
|0�i (|↑↓�i − |↓↑�i)/

√
2

unphys. triplet-states
unphys. doubly occupied dopon

a fermionic spin-1/2 degree of freedom - the dopon - representing a doped charge carrier.

A physical hole corresponds to a singlet of a lattice spin and a dopon. The correspon-

dence between single-site basis states is shown in Tab. I. Following this approach, the t-J

Hamiltonian in Equ. (2.1) takes the form20

H =
1

2

�

ij

Jij(Si · Sj − 1/4)P(1− d
†
iα
d
iα
)(1− d

†
jβ
d
jβ
)P

+
1

2

�

ij

tij

2
P
�1
4
d
†
iα
d
jα

− 1

2
(d†

iα
�σαβdjβ) · (Si + Sj) + d

†
iα
d
jα
Si · Sj

+ i (d†
iα
�σαβdjβ) · (Si × Sj) + h.c.

�
P − µ

�

i

d
†
iα
d
iα

. (2.2)

Here P =
�

j
(1 − d

†
j↑dj↑d

†
j↓dj↓) denotes the Gutzwiller projector for the fermionic spin-1/2

operators d
†
i
and di that create or annihilate a dopon on lattice site i, and we added a

chemical potential µ for the dopons. Note again that the spins Sj on each lattice site j are

independent, localized spin-1/2 degrees of freedom and are not associated with the spin of

the dopons. This representation of the t-J model is faithful in the sense that the Hamiltonian

doesn’t couple the physical singlet- and the unphysical triplet states in the enlarged Hilbert

space that is spanned by the spin- and the dopon degree of freedom20. A projection to the

physical Hilbert space is thus not necessary.

In terms of the spin- and dopon operators the Gutzwiller projected electron operators

take the form

c̃
†
jσ

=
σ√
2
P
�
(1/2 + σS

z

j
)dj−σ − S

σ

j
djσ

�
P , (2.3)

where Sσ denotes the spin raising (lowering) operator S+ (S−) for σ =↑ (↓). From Equ. (2.3)

one can easily show that total density of electrons is given by

�

σ

c̃
†
jσ
c̃
jσ

= P(1−
�

σ

d
†
jσ
d
jσ
)P

low doping
≈ 1−

�

σ

d
†
jσ
d
jσ

, (2.4)

i.e. the density of doped charge carriers equals the density of dopons x =
�

σ
�d†

iσ
diσ�, as
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expected.

As will be explained in more detail below, our main assumption is that the localized lattice

spins form a Z2 spin liquid with bosonic spinon excitations. This is reasonably justified in

the doping regime close to the antiferromagnetically ordered phase, where the interaction

between the lattice spins is frustrated by the motion of dopons. The bosonic nature of

the spinons prohibits a hybridization of spinons with fermionic dopons and gives rise to an

electronic Fermi surface, the volume of which is determined by the density dopons x alone,

as long as no pairing instabilities occur. This is in contrast to the conventional Luttinger

theorem, which states that in a metal without broken symmetries the ’volume’ enclosed by

the Fermi surface should be proportional to the total density of electrons 1− x. It has been

shown earlier, however, that topological excitations associated with the emergent gauge field

of a spin liquid have to be included in the Luttinger count14, giving rise to a FL* phase with

small pocket Fermi surfaces the total volume of which is the same as in an antiferromagnetic

metal. In the present formalism, this modified Luttinger theorem of a Fermi surface of size x

can be easily proved by applying the usual many-body formalism to the system of interacting

spinons and dopons described by Eq. (2.2) (and more explicitly in Eq. (3.3) below); we need

only assume that the final state is adiabatically connected to a state of weakly interacting

spinons and dopons, and then the standard proof leads here to the novel Luttinger count of

x.

In the presence of strong local AF correlations the most important couplings between the

dopons and the localized spins are the two interaction terms in the second line of Equ. (2.2).

The ∼ Si · Sj term leads to a strong suppression of nearest neighbor hopping of dopons in

a locally AF ordered background, whereas the ∼ (Si +Sj) term is responsible for scattering

of dopons with momentum transfer close to q = (π, π). In the following we are going to

neglect the ∼ Si ×Sj term due to the expected strong local collinear AF correlations. Also,

we use a mean-field decoupling of the Heisenberg exchange term in the first line of (2.2),

i.e. J → (1− x)2J and drop the Gutzwiller projectors, which is safe in the low doping limit

x � 1.

III. FL* AND ELECTRON FERMI SURFACE

As mentioned above, the main prerequisite in order to get a fractionalized Fermi liquid is

that the localized spins form a spin liquid. Within our model (2.2) spin liquid ground states

can be conveniently described using a Schwinger-Boson representation for the lattice spins,

i.e. we write

Si =
1

2
b
†
iα
σαβbiβ , (3.1)

which requires the constraint
�

σ
b
†
iσ
biσ = 1 to hold on every lattice site. Note that there is

an emergent U(1) gauge structure associated with the redundancy of the Schwinger Boson

representation under local phase transformations bjσ → bjσ exp(iφj). The exchange terms
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can be expressed in terms of Schwinger Bosons using the identity

Si · Sj = −1

2
(�αβb

†
iα
b
†
jβ
)(�γδbiγbjδ) +

1

4
+

δij

2
. (3.2)

Inserting these expressions in the Hamiltonian (2.2) and using the approximations mentioned

above, we obtain the Hamiltonian

H = −1

4

�

ij

�
Jij +

tij

2
(d†

iα
d
jα

+ d
†
jα
d
iα
)

�
�αβb

†
iα
b
†
jβ
�γδbiγbjδ (3.3)

+
1

2

�

ij

tij

4

�
2 d†

iα
d
jα

− d
†
iα
d
jβ

�
b
†
iβ
b
iα
+ b

†
jβ
b
jα

�
+ h.c.

�
+
�

i

�
λ b

†
iα
b
iα
− µ d

†
iα
d
iα

�
,

where λ is the Lagrange multiplier that enforces the Schwinger Boson constraint on average.

In this representation a spin liquid can be conveniently described by employing the mean-

field decoupling

Qij =
1

2
��αβb†iαb

†
jβ
� . (3.4)

By construction this mean-field decoupling preserves the SU(2) invariance since Qij is a

singlet expectation value. After a Fourier transformation we obtain the euclidean mean-

field action (we use the shorthand notation k = (ω,k))

SMF/β =
�

k,σ

d̄kσ(−iωn + ξ
0
k)dkσ +

�

k

B
†
k

�
−iΩn + λ −

�
p QpJp−k

−
�

p Q
∗
pJp−k iΩn + λ

�
Bk

−
�

q,k,k�

d̄
k�+q−kσ

B
†
k
Vσσ

�

k�kq Bq
d
k�σ� +

�

kq

Q
∗
k+qJqQk

−1

2

�

q,k,k�

(tk� + tk�+q+k)
�
Bk↓Bq↑d̄k+k�+q↑dk�↓ +B

∗
k↑B

∗
q↓d̄k�↓dk�+k+q↑

�
, (3.5)

where we have introduced the bosonic Nambu spinor

Bk =

�
bk↑

b
∗
−k↓

�
(3.6)

and

Vσσ
�

k�kq =

�
1
2(tk� + tk�+q−k)δσ,↑

�
p
Qp(tp+k�−k + tp−k�−q)�

p
Q

∗
p(tp+k�−k + tp−k�−q)

1
2(tk� + tk�+q−k)δσ,↓

�
δσσ� , (3.7)

as well as

ξ
0
k = tk + 2

�

qp

Q
∗
qtpQk+q−p − µ , (3.8)
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where tk is the usual tt�t�� tight-binding dispersion on the square lattice with non-zero hopping

amplitudes up to third nearest neighbors

tk = t
�
cos kx + cos ky

�
+ t

� 2 cos kx cos ky + t
�� � cos 2kx + cos 2ky

�
. (3.9)

Note that in contrast to Jk and Qk we have absorbed a factor 1/2 in the definition of tk.

Moreover, iωn and iΩn denote fermionic and bosonic Matsubara frequencies, respectively.

Because the bosonic spinon modes are gapped in the spin-liquid phase we can safely integrate

them out and obtain an effective action for the dopon fields d. Expanding to second order

in the bosonic propagator we get

S
(2)
MF[d̄, d] = S0[d̄, d] + Tr log βG−1

0 − TrG0Φ

−1

2
TrG0ΦG0Φ− TrG0DG0D̄ − TrG0D̄G0D , (3.10)

where Tr denotes the trace with respect to momentum-, Matsubara- and Nambu indices.

Furthermore we have defined

(G−1
0 )kq =

�
−iΩn + λ −

�
p QpJp−k

−
�

p Q
∗
pJp−k iΩn + λ

�
δkq (3.11)

and

Φkq =
�

k�

d̄k�+q−k σV
σσ

�

k�kqdk�σ� (3.12)

Dkq =
1

4

�

k�

(tk� + tk�+q+k)d̄k�↓dk�+k+q↑ σx (3.13)

D̄kq =
1

4

�

k�

(tk� + tk�+q+k)d̄k�+k+q↑dk�↓ σx , (3.14)

where σx denotes the respective Pauli matrix in Nambu space. The effective dopon action

in Equ. (3.10) describes the hopping of doped charge carriers in a locally AF-ordered back-

ground as well as the residual interactions between dopons due to the exchange of a spinon

pair. Note, however, that the Schwinger boson mean-field theory presented here cannot

be used to describe a conventional Fermi liquid state with a large Fermi surface at large

doping, where the Luttinger volume is determined by the total density of electrons 1 − x.

This phase can be described using Schwinger Fermions instead of Bosons20. In this case a

hybridization between dopons and Fermionic spinons can lead to a ground-state with a large

Fermi surface.
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A. Gaussian dopon action

The linear contribution ∼ G0 to the effective dopon action (3.10) basically descends from

the term in the Hamiltonian (2.2) which couples the dopons to Si · Sj and thus strongly

renormalizes the bare dopon dispersion. Performing the Matsubara summation and the

trace over the Nambu indices of the TrG0Φ term we get the Gaussian action

S
(1)
MF = β

�

k,σ

d̄kσ

�
− iωn + ξ

0
k −

�

k�

λtk + 4
�

qp Q
∗
pQqJq−k�tp+k−k�

2Ek�

�
dkσ

+Tr log βG−1
0 + β

�

kq

Jq−kQ
∗
qQk . (3.15)

This expression can be simplified using the self-consistency conditions for the Lagrange

multiplier λ as well as for the mean-field Qk. We make one further approximation here,

however, and determine λ and Qk at the Gaussian level not fully self-consistent, but only

with respect to S
(0)
MF = Tr log βG−1

0 , i.e. we neglect the back-action of the dopons on the

spinons. The approximate self-consistency equations thus read

1 =
∂F

(0)

∂λ
=

�

k

λ

Ek
(3.16)

0 =
∂F

(0)

∂Q∗
p

=
�

k

Jp−k

�
Qk −

�
q Jq−kQq

2Ek

�
, (3.17)

where F (0) is the free energy associated with S
(0)
MF. Here and in the following Ek denotes the

spinon dispersion relation, which is given by

Ek =

�
λ2 − |

�

q

QqJq−k|2 . (3.18)

Inserting these expressions back into (3.15) we get

S
(1)
MF = β

�

k,σ

d̄kσ

�
− iωn + ξk

�
dkσ + Tr log βG−1

0 + const. (3.19)

with the Gaussian dopon dispersion

ξk = tk/2− 2
�

qp

QqQ
∗
ptp+k−q − µ . (3.20)

Note the different sign of the second term compared to the bare dopon dispersion ξ
0
k in

Equ. (3.8).
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B. Mean-field ansatz for a Z2-FL*

In the following we use the simplest mean field ansatz for the Qij’s. We take a zero-

flux state with Qij = Q on nearest neighbor bonds. The invariant gauge group21 (IGG),

i.e. the group of gauge transformations that leaves this ansatz invariant, is U(1) due to

the bipartite nature of the square lattice. Indeed, we can choose the gauge transformation

bjσ → bjσ exp(iφ) on sublattice A and bjσ → bjσ exp(−iφ) on sublattice B without changing

the ansatz. However, since gapless U(1) gauge fluctuations are hard to control, we break the

U(1) gauge group down to Z2 by including frustration in the form of a small next-nearest

neighbor exchange interaction J
� as well as a corresponding singlet bond-amplitude Q�. The

excitations of the emergent Z2 gauge field are gapped visons which shouldn’t play a big role

in our subsequent analysis as long as their gap is sufficiently large, thus we neglect them in

the following. The Fourier transformation of our ansatz Qij then takes the form

Qk = i2 [Q(sin kx + sin ky) +Q
�(sin(kx + ky) + sin(ky − kx))] . (3.21)

Note that Qji = −Qij and thus Q−k = −Qk. The corresponding spinon dispersion relation

(3.18) is given by

Ek =
�

λ2 − 4 |JQ(sin kx + sin ky) + 2J �Q� cos kx sin ky|2 , (3.22)

where J and J
� are the nearest- and next-nearest-neighbor exchange couplings whereasQ and

Q
� are the corresponding singlet amplitudes on nearest- and next-nearest neighbor bonds.

For this choice of Qk the convolutions in all the expressions for the effective action can be

evaluated straightforwardly. In particular, the Gaussian dopon dispersion from Eq. (3.20)

takes the form

ξk =
t

2
(1− 4|Q|2)

�
cos kx + cos ky

�

+ t
�(1− 4|Q�|2) cos kx cos ky +

t
��

2

�
cos 2kx + cos 2ky

�
− µ . (3.23)

Note that the dispersion is invariant under Z2 gauge transformations Qij → −Qij. The

singlet amplitudes Q and Q
� can take values between Q,Q

� ∈
�
0, 1/

√
2
�
, where Q = 1/

√
2 if

nearest neighbor spins form a singlet. One can clearly see that the nearest neighbor hopping

amplitude vanishes for perfect classical local AF correlations (Q=1/2) and it changes sign

for Q > 1/2. It is important to emphasize, however, that the Gaussian dopon dispersion

(3.23) is strongly renormalized by the residual interaction.
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V
qkk’

(1) V
qkk’

(2)= =

k, k+q,

k’,k’+q,

FIG. 1: Dopon-dopon interactions induced by the exchange of a spinon pair.

C. Residual interactions, effective dopon action at quartic order

Here we analyze the interactions between dopons that are induced by the exchange of a

spinon pair. The quadratic terms ∼ G2
0 in the effective dopon action (3.10) are given by

S
(2)
int = −

�

kq

Tr2
�1
2
(G0)kΦkq(G0)qΦqk + (G0)kDkq(G0)qD̄qk + (G0)kD̄kq(G0)qDqk

�
. (3.24)

The first term gives rise to non-spinflip interactions, which we denote by V
(1)
qkk� , whereas the

second and third terms describe interactions where the dopon spins are flipped (denoted by

V
(2)
qkk�). Both interactions are shown schematically in Fig. 1.

In the following we perform a self-consistent Hartree-Fock analysis of this induced re-

tarded interaction. Self-consistency is necessary because the interactions are strong and the

shape as well as the position of the Fermi surface is strongly affected by interaction induced

fluctuations22. The Hartree-type interactions are accounted for already to a large extent in

the Gaussian dopon dispersion (3.23). In fact, the Hartree diagrams would correspond to a

self-energy correction of the bosonic spinon propagator and are not expected to change the

results qualitatively. For this reason we restrict ourselves to the two Fock-type diagrams

shown in Fig. 2. Since we expect the Fermi-liquid character of the dopons to prevail, we

use a dominant pole approximation and neglect the incoherent part of the dopon Green’s

function. In this approximation, the dopon Green’s function in the diagrams in Fig. 2 takes

the form

Gσ(k, iω) ≈
Zk

−iω + ξk
, (3.25)

where the quasiparicle residue Zk as well as the dopon dispersion ξk are calculated self-

consistently. We will justify this approximation a posteriori by checking that the quasipar-

ticle weight Zk is reasonably large. The dopon self-energy corresponding to the diagrams in

10



Vqkk
(1)

= +

Vqkk
(2)

FIG. 2: Fock-type self-energy diagrams for the dopons.

Fig. 2 thus takes the form

Σ(k, iωn) =
1

β

�

q

Zk+q

V
(1)
qkk

+ V
(2)
qkk

−iωn − iΩq + ξk+q
(3.26)

= − 1

8β2

�

qk�

Zk+q
iΩk�(iΩk� + iΩq) akk�q + bkk�q

[−iωn − iΩq + ξk+q][E2
k� − (iΩk�)2][E2

k�+q
− (iΩk� + iΩq)2]

,

where akk�q and bkk�q are momentum dependent factors given by

akk�q = 3(tk + tk+q)
2 − 2

��(Q∗t)k�−k + (Q∗t)k�+k+q

��2 (3.27)

bkk�q = (tk + tk+q)
2
�
3λ2 +

�
(Q∗J)k�(Q∗J)k�+q + c.c.

��

+λ(tk + tk+q)
�
(Q∗∗J)k� + (Q∗∗J)k�+q

��
(Q∗t)k�−k + (Q∗t)k�+k+q

�
+ c.c.

+(Q∗∗J)k�(Q∗∗J)k�+q

�
(Q∗t)k�−k + (Q∗t)k�+k+q

�
+ c.c.

+2λ2
��(Q∗t)k�−k + (Q∗t)k�+k+q

��2 . (3.28)

Here the asterisk denotes convolutions, i.e. (Q∗ t)k =
�

p Qptk−p. After performing the

Matsubara sums and analytic continuation iωn → ω + iδ we get (at T = 0)

ΣR(k, ω) = − 1

16

�

q,k�

Zk+q

�
1

2Ek�Ek�+q

Ek�Ek�+qakk�q − bkk�q

ω − Ek� − Ek�+q − ξk+q + iδ

−Θ(−ξk+q)

�
(Ek� − ξk+q + ω)akk�q + bkk�q/Ek�

E
2
k�+q − (Ek� − ξk+q + ω + iδ)2

+
(Ek�+q + ξk+q − ω)akk�q + bkk�q/Ek�+q

E
2
k� − (Ek�+q + ξk+q − ω − iδ)2

��
. (3.29)

The imaginary part of the retarded dopon self energy finally takes the form

ImΣR(k, ω) = − π

16

�

k�q

Zk+q

�
bkk�q

2Ek�Ek�+q
− akk�q

2

��
Θ(ξk+q)δ(ω − Ek� − Ek�+q − ξk+q)

+Θ(−ξk+q)δ(ω + Ek� + Ek�+q − ξk+q)
�
. (3.30)

11



Note that ImΣR(ω) ≡ 0 for −2∆ < ω < 2∆, where ∆ denotes the spinon gap.

In all subsequent calculations we do not determine the Lagrange multiplier λ (which fixes

the Schwinger-Boson constraint) self-consistently, but use it to fix the value of the spinon gap

∆. Moreover, we use the nearest- and next-nearest neighbor singlet amplitudes Q and Q
� as

free parameters. Our calculational procedure works as follows: first, we calculate ImΣR(k, ω)

numerically using the adaptive Monte-Carlo integration algorithm Miser23, which is based

on a recursive stratified sampling method. Since the computational effort increases consid-

erably with increasing accuracy, we set the bound of the relative error estimate to be smaller

than 6%, which is arguably a relatively large value, but sufficient for our purpose. In order

to perform the Monte-Carlo integration we smoothen the singularities of the delta-functions

as well as the step-functions by replacing the delta-functions by Lorentzians with a FWHM

of 0.01 and the step functions by Fermi distributions at an effective inverse temperature

β = 200.

The second step is to evaluate the real part of the self energy by a Kramers-Kronig

transform and determine the dopon dispersion ξk by finding the maximum of the dopon

spectral function

A(k, ω) =
1

π

−ImΣR(k, ω)

[−ω + ξ
(0)
k + ReΣR(k, ω)]2 + [ImΣR(k, ω)]2

. (3.31)

Here, ξ(0) denotes the Gaussian dopon dispersion from Equ. (3.23). The quasiparticle residue

Zk is obtained via

Z
−1
k =

����1−
∂ ReΣR(k, ω)

∂ω

����
ω=ξk

. (3.32)

Finally, the self consistency loop is performed by plugging ξk and Zk back into Equ. (3.30)

and repeating the steps above until convergence is achieved.

D. Relation between the electron- and the dopon Fermi-surface

Using Equ. (2.3) the electron momentum distribution can be expressed in terms of the

lattice spin- and dopon operators as

c
†
kσckσ = const. +

1

2

�

ij

e
ik·(Ri−Rj)

�
−(1/4 + Si · Sj)d

†
jσ
d
iσ
+ (d†

jα
�σαβdiβ) · (Si + Sj)/2

�
,

(3.33)

where we implicitly sum over repeated spin indices and again neglect the Si × Sj term.

Using the Schwinger-Boson representation (3.1) for the lattice spins the electron momentum
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FIG. 3: (Color online) Self-consistent dopon dispersion ξk (left) and dopon quasiparticle residue Zk

(right) in the Z2-FL* phase as a function of kx and ky in the upper right quadrant of the Brillouin
zone. The thick black contour marks the position of the dopon Fermi surface, which coincides
with the electron Fermi surface. The dashed line indicates the magnetic Brillouin zone boundary.
Parameter values for this plot are: Q = 0.4, ∆ = 0.025, µ = 0.083 and the rest as in Tab. II.

distribution is given by

�c†kσckσ� = const. +
1

2

�

ij

e
ik·(Ri−Rj)

�
− d

†
jσ
d
iσ
+

1

2
(�αβb

†
iα
b
†
jβ
)(�γδbiγbjδ)d

†
jσ
d
iσ

+
1

4
d
†
jα
d
iβ
(b†

iβ
b
iα
+ b

†
jβ
b
jα
)
�

= −1

2
�d†−kσd−kσ�+ smooth function of k . (3.34)

The second line follows because the last two terms give rise to convolutions of the do-

pon momentum distribution with spinon correlators, where the Fermi surface singularity is

smoothened out. We thus conclude that the electron Fermi surface coincides with the dopon

Fermi surface. Moreover, the value of the electron quasiparticle residue at the Fermi surface

is one half times the dopon quasiparticle residue Zk.

From Equ. (3.34) it is also clear that the spinon-dopon approach to the t-J model cannot

give rise to electron pockets at the antinodal regions, as observed in recent experiments.

Instead the Fermi surfaces are always hole-like.

E. Results

The following results were obtained using standard values for the bare hopping ampli-

tudes, shown in Tab. II. The nearest-neighbor hopping amplitude defines our energy scale

and has been set to unity. The next nearest neighbor exchange interaction J
� as well as

the corresponding singlet amplitude Q
� were chosen to be relatively small compared to the

13



FIG. 4: (Color online) As in Fig. 3 but with parameters: Q = 0.54, ∆ = 0.025, µ = 0.18.

TABLE II: parameter values

t 1 J 0.25 Q variable µ variable
t’ -0.3 J’ 0.05 Q’ 0.1 ∆ variable
t” 0.1

nearest neighbor values, as their only purpose is to break the IGG form U(1) down to Z2.

Our results for the self-consistent dopon dispersion ξk and quasiparticle residue Zk as

a function of kx and ky in the upper right quadrant of the Brillouin zone are shown in

Figs. 3, 4 and 5. These results are at a finite dopon density nd > 0, although we note

that ξk as well as Zk look qualitatively similar in the case where the dopon density is

going to zero. The position of the dispersion minimum depends on the strength of the

local antiferromagnetic correlations, which is parametrized by the singlet bond-amplitude

Q. For Q = 1/2 the hole pockets are aligned with the magnetic Brillouin zone boundary and

centered at q � (π/2, π/2). For weaker correlations Q < 0.5 the hole-pockets are shifted to

the outer side of the magnetic Brillouin zone boundary towards q = (π, π), whereas stronger

local AF-correlations Q > 0.5 give rise to hole-pockets centered on the inner side of the

magnetic Brillouin zone boundary (see Fig. 6).

The spinon gap ∆ does not influence the position of the pockets, but it changes their

shape slightly. The smaller ∆ is, the more elliptical are the hole-pockets. This is illustrated

in Fig. 7. We note, however, that the ellipticity of the hole-pockets depends more strongly

on the precise value of the bare hopping parameters t
� and t

�� as on the size of the spinon

gap. In fact, smaller t
� and t

�� give rise to more elliptical pockets, similar to the standard

SDW theory for antiferromagnetic metals.

The effective mass of the dopons turns out to be enhanced compared to the bare electron

band mass as well. For the two dispersions shown in Fig. 7, the arithmetic mean of the

14



FIG. 5: (Color online) As in Fig. 3 but with parameters: Q = 0.5, ∆ = 0.01, µ = 0.182.

effective masses at the dispersion minimum along the two principal axes is m̄eff ≈ 2.5 in

natural units (i.e. m = 1 corresponds to the band mass of the nearest neighbor tight-

binding dispersion). Again the effective mass depends on the precise value of the bare

hopping parameters t
� and t

��. For highly elliptical pockets the effective mass can reach

values on the order of meff ∼ 10 along the flat direction.

Within our approximation scheme the quasiparticle residue Zk does not drop sharply on

the outer half of the Fermi surface, as expected from phenomenological models18. Only for

relatively high dopon fillings, as in Fig. 3, an asymmetry of Zk between the inner- and outer

side of the hole-pocket appears.

IV. PHASE TRANSITION BETWEEN A Z2-FL* AND AN AF-METAL

The Schwinger-Boson description (3.1) is well suited to study the quantum phase tran-

sition between the Z2-FL* described above and a metal with long-range antiferromagnetic

order. Indeed, AF-ordering corresponds to a condensation of Schwinger Bosons at the points

where the spinon-gap closes. For Q
� = 0 the ordering wave vector is commensurate and

the spinon dispersion (3.22) has two degenerate minima at the momenta q = ±K with

K = (π/2, π/2). A condensate of the two Schwinger-Boson flavors at these respective mo-

menta, i.e. �bq↑� =
√
ms δq,K and �bq↓� =

√
ms δq,−K, corresponds to an AF-ordered state

with staggered magnetization ms in x-direction.

Within our path integral formulation in Equ. (3.5) such a Schwinger-Boson condensate

can be straightforwardly introduced by shifting the Nambu fields

Bqσ → Bqσ +
√
ms δΩn,0 δq,K (4.1)

and keeping only the quadratic terms in the shifted field. Note that the mean field ansatz
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FIG. 6: (Color online) Evolution of the Fermi surface in the Z2-FL* phase as a function of the
nearest neighbor singlet amplitude Q ∈ [0, 1/

√
2]. Shown is the upper right quadrant of the

Brillouin zone. Black solid line: Q = 0.54,∆ = 0.025, µ = 0.18, red dotted line: Q = 0.5,∆ =
0.01, µ = 0.182, blue dashed line: Q = 0.4,∆ = 0.025, µ = 0.083, other parameters as in Tab. II.
The hole-pockets move to the inner side of the magnetic Brillouin zone boundary (indicated by the
dashed line) as the strength of local antiferromagnetic correlations, parametrized by Q, increases.

Qk in Equ. (3.21) also acquires a contribution from the condensate

Qk =
ms

2
(δk,K − δk,−K) +Q

(0)
k (4.2)

where Q
(0)
k = i2Q(sin kx + sin ky) describes the strong nearest-neighbor correlations on top

of the uniform long-range correlations induced by the condensate. The mean-field action in

the AF-ordered phase has the same form as Equ. (3.5) with three differences: first, Qk is

given by Equ. (4.2). Second, the bare dopon dispersion ξ
0
k in Equ. (3.8) is replaced by

ξ
0
k = tk(1−ms)−m

2
s
(tk − tk−π) + 2

�

qp

Q
(0)
q

∗
tp Q

(0)
k+q−p − µ (4.3)

and most importantly, the condensate gives rise to an additional term to the action (3.5)

which describes the scattering of dopons with momentum transfer q = π and which takes

the form

SAF/β = −ms

2

�

ωn,k

(tk + tk+π)(d̄ωn,k+π↑ dωn,k↓ + h.c.) (4.4)

Now we can perform the same analysis as in Sec. III by integrating out the bosonic modes

and performing a Hartree-Fock analysis of the effective quartic dopon action. At this level

of approximation the off-diagonal elements of the self-energy in spin-space vanish identically

and the diagonal elements have exactly the same structure as in Sec. III. The effective dopon
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FIG. 7: (Color online) Evolution of the dopon dispersion ξk in the Z2-FL* phase as a function of
the spinon gap ∆ for Q = 0.54 and µ = 0.15. Left: ∆ = 0.025, right: ∆ = 0.005, other parameters
as in Tab. II. The Fermi energy is below the dopon band in both cases. With decreasing spinon
gap ∆ the dispersion around the minima becomes more elliptical.

action in the AF-ordered phase including the self-energy corrections is thus given by

S/β =
�

k

�
d̄ωn,k+π↑ d̄ωn,k↓

�




−iωn + ξk+π

Zk+π
−ms

2
(tk + tk+π)

−ms

2
(tk + tk+π)

−iωn + ξk

Zk





�
dωn,k+π↑

dωn,k↓

�
, (4.5)

where ξk and Zk again denote the self-consistently determined dopon dispersion and quasi-

particle residue, calculated in the same manner as in Sec. III using Eqs. (4.2) and (4.3).

Diagonalizing (4.5) we obtain two dopon bands with dispersions

ω±(k) =
ξk+π + ξk

2
± 1

2

�
(ξk+π − ξk)2 +m2

s
ZkZk+π (tk + tk+π)2 . (4.6)

The dopon Fermi surface is determined by ω±(k) = 0. Slightly beyond the AF critical

point, where the condensate density is small (ms � 1), the self energy contributions to

the dopon Green’s function are basically the same as in the Z2-FL* phase with a vanishing

spinon gap and the dispersion ξk has a minimum close to q = (π/2, π/2), as in Sec. III.

The dopon Fermi surface in the AF-ordered phase thus again takes the form of pockets

close to q = (π/2, π/2). However, the pockets are symmetric with respect to the magnetic

Brillouin zone (BZ) boundary due to the presence of long-range antiferromagnetic order.

The shape of the hole-pocket again depends on the strength of the short-range correlations,

parametrized by Q in Equ. (4.2). Possible Fermi-surfaces for ms = 0.05 are shown in Fig. 8.

For these plots we used the same ξk and Zk as in the FL* phase with a vanishingly small

spinon gap and Q
� = 0, which is justified for ms � 1, as argued above. Note that for
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FIG. 8: (Color online) Possible Fermi surface shapes in the antiferromagnetically ordered phase
for ms � 1. Shown is the upper right quadrant of the Brillouin zone. The dashed line marks the
magnetic Brillouin zone boundary. See text for a discussion.

Q = 1/2 the dispersion ξk is almost symmetric with respect to the magnetic Brillouin zone

boundary and thus the two dopon bands in the AF-ordered phase are almost degenerate for

ms � 1. In this case we get two concentric Fermi pockets, shown as solid blue and dashed

red lines in the left plot of Fig. 8. For larger ms, the red Fermi pocket shrinks to zero,

and we eventually obtain the familiar single hole pocket centered on q = (π/2, π/2) of the

AF ordered phase. The right plot shows a Fermi surface for Q = 0.54, in which case the

single pocket on the inner side of the magnetic BZ in the FL* phase is “symmetrized” at

the magnetic BZ boundary.

Note that in the AF-ordered phase the electron Fermi surface is related to the dopon

Fermi surface not by the same Equ. (3.34) as in the FL* phase. The spinon condensate

gives rise to additional contributions ∼ ms, which only change the electron quasiparticle

residue, however. The shape of the electron Fermi surface still coincides with the dopon

Fermi surface.

The nature of the quantum critical point between the AF-ordered and FL* phases can be

addressed by methods similar to earlier work24–27. The magnetic fluctuations are described

by the spinor Schwinger bosons, and their critical theory is the O(4) Wilson-Fisher fixed

point. We now have to check if this critical point is destabilized by the dopon Fermi surfaces.

Because the dopons don’t carry emergent gauge charges, they couple rather weakly to the

critical spin fluctuations18; the influence of this coupling can be analyzed perturbatively,

and as in previous work25,27 it is found to be irrelevant. So the critical theory remains that

of the deconfined O(4) variety.24
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V. CONCLUSIONS

This paper has presented a microscopic construction of a FL* phase in a single-band t-J

model on the square lattice, and described its evolution towards the onset of antiferromag-

netic order. This was achieved by writing the t-J model in a Kondo-like formulation using

the spinon-dopon formalism.20 The FL* phase had a “background” spin liquid, which was

the Z2 spin liquid with bosonic spinon excitations. This spinon was then coupled to mobile

carriers (the “dopons”) which had the same quantum numbers of the electron. Our effective

Hamiltonian for the spinons and dopons was an exact, in principle, representation of the

t-J model. However, we only analyzed this effective Hamiltonian in a relatively straightfor-

ward self-consistent one-loop approximation. But there is an obstacle to extending such an

analysis to higher orders and accuracy by using more powerful computational methods.

Despite its uncontrolled nature, our analysis yielded physically sensible results for the

electron spectrum, which resemble aspects of the experimental observations. The key feature

was the presence of a small hole pocket centered near but not at the magnetic Brillouin

zone boundary. This pocket enclosed a volume determined by x, the density of doped

carriers alone. The quasiparticle residue was anisotropic around the Fermi surface, but our

approximation did not yield the strong variation found in earlier phenomenological models.18

We note a recent independent study28 to describing the under-doped cuprates as a

“Luttinger-volume violating Fermi liquid” (LvvFL) with a spin liquid of fermionic spinons.

The LvvFL state is qualitatively the same as the FL* state.

On the experimental front, there are a number of recent indications that FL*-like a model

of pocket Fermi surfaces without antiferromagnetic long-range order may be appropriate

for the pseudogap region of the hole-doped cuprates. The angle dependence of quantum

oscillations in YBa2Cu3O6.59 is consistent4 with the absence of spin-density wave ordering.

NMR measurements29 on YBa2Cu3Oy have so far not seen antiferromagnetic order at fields

as high as 30 Tesla, but do report evidence of charge-ordering. Such a charge ordering can be

superposed on our FL* analysis in a straightforward manner; as long as the charge ordering

wavevector does not connect the hole pockets of the FL* state, there will be little change

in the Fermi surface configuration. And we have already noted photoemission evidence for

pocket Fermi surfaces.6
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