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The quantum theory of antiferromagnetism in metals is necessary for our un-

derstanding of numerous intermetallic compounds of widespread interest. In

these systems, a quantum critical point emerges as external parameters (such

as chemical doping) are varied. Because of the strong coupling nature of this

critical point, and the “sign problem” plaguing numerical quantum Monte

Carlo (QMC) methods, its theoretical understanding is still incomplete. Here,

we show that the universal low-energy theory for the onset of antiferromag-

netism in a metal can be realized in lattice models, which are free from the

sign problem and hence can be simulated efficiently with QMC. Our simula-

tions show Fermi surface reconstruction and unconventional spin-singlet su-

perconductivity across the critical point.
! This manuscript has been accepted for publication in Science. This version has not undergone final editing. Please
refer to the complete version of record at http://www.sciencemag.org/. The manuscript may not be reproduced or
used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written
permission of AAAS.
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The presence of an antiferromagnetic transition in a metal is common to compounds such as

electron-doped cuprates (1), iron based superconductors (2), and heavy fermion Kondo lattice

systems (3). Whereas our understanding of quantum antiferromagnetism in insulators has seen

remarkable advances (4), analogous problems in metals are far more complicated because of

the subtle interplay between the low energy fermionic quasiparticles on the Fermi surface, and

the quantum fluctuations of the antiferromagnetic order parameter. In addition, the presence

of the Fermi surface has hampered large scale numerical studies, because QMC algorithms

are afflicted by the well-known fermion sign problem. Such algorithms express the partition

function as a sum over Feynman histories, and the sign problem arises when the weights as-

signed to the trajectories are not all positive because of quantum interference effects. A general

solution to the fermion sign problem has been proved to be in the computational complexity

class of nondeterministic polynomial (NP) hard (5), and so there has been little hope that the

antiferromagnetic quantum critical point could be elucidated by computational studies.

Application of the methods of quantum field theory and the renormalization group to the

onset of antiferromagnetism in a metal (6), has identified (7, 8) a universal quantum field the-

ory which captures all the singular low energy quantum fluctuations that control the quantum

critical point and deviations from the Fermi liquid physics of traditional metals. In two spa-

tial dimensions, the field theory is expressed in terms of fermionic excitations in the vicinity

of a finite number of ‘hot spots’ on the Fermi surface, and is thus independent of the details

of the fermionic band-structure, except for the number of hot-spots and Fermi-velocities at the

hot-spots (9). Recent work (10, 11) has shown that the renormalization group and Feynman

graph expansions of the field theory flow to strong coupling, making further analytical progress

difficult.

Here, we show that the universal quantum field theory can be realized in lattice models

which are free of the sign problem, and so is amenable to large scale QMC studies. Our claim
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does not contradict the no-go theorem of Ref. (5), because we do not provide a general recipe

for eliminating the sign problem. However, we will eliminate it for the specific case of the onset

of antiferromagnetic order in a two-dimensional metal, provided the perturbative arguments on

the importance of the hot spots to the quantum field theory (7, 8, 10, 11) apply. Our modified

lattice model has at least two bands. Therefore, in cases in which there is only a single active

band at the transition, such as in the electron-doped cuprates, our method requires modifying

Fermi surface far away from the hot spots; we show that this can be done while preserving the

universal low-energy properties of the antiferromagnetic critical point. On the other hand, our

method applies to multi-band situations (such as in the iron-based superconductors) without

changes to their Fermi surface configuration. Being a low-energy effective theory, the method

will not apply where the proximity of a Mott insulator is important, as is likely the case in the

hole-doped cuprates (12–16).

To illustrate our method, we now consider the onset of antiferromagnetic order in a simple

one-band model on the square lattice, as is appropriate for the electron-doped cuprates. The

electrons, ck (the spin index is left implicit), with dispersion εk, have a single “large” Fermi

surface (Fig 1A). The antiferromagnetic order parameter is #ϕq; we will assume the important

fluctuations of #ϕq are restricted to small values of |q|, much smaller than the size of the Brillouin

zone. The antiferromagnetic ordering wavevector is K = (π, π), and #ϕq represents the electron

spin density at the wavevector K + q; we will also refer to the antiferromagnetic order as spin

density wave (SDW) order. We can now write the electron part of the Hamiltonian as

H =
∑

k

εk c
†
kck + λ

∑

k,q

c†k+K+q (#s · #ϕq) ck (1)

where λ is the ‘Yukawa’ coupling between the electrons and the SDW order, and #s are the Pauli

matrices. The Yukawa term is the simplest coupling consistent with translational symmetry and

spin-rotation invariance, and can be derived e.g. by decoupling of the repulsive interaction in a
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Hubbard model by an auxiliary field which maps to #ϕ in the long-wavelength limit (17). The

hot spots are at k for which εk = εk+K = 0 (Fig. 1A); at these points, #ϕq=0 scatters electrons

between initial and final states which are both on the Fermi surface. To obtain the electron

Fermi surface in a metal with SDW order, we replace #ϕq by its expectation value 〈#ϕq〉 = #Nδq,0

(where #N is the staggered magnetization), and recompute the electron dispersion; this leads to

the Fermi surface reconstruction shown in Fig. 1B.

We now describe our method to deform the model, such that the sign problem is avoided,

while preserving the structure of the hot spots. Let us separate the hot spots into two groups,

so that K only connects hot spots from one group to the other. Now deform the one-band

electronic dispersion to a two-band model with an additional ‘orbital’ label, so that all the

hot spots in one group are on the Fermi surfaces of the first band, while the hot spots of the

other group reside on the Fermi surfaces of the second band (an example of such a dispersion is

shown in Fig. 1C, in which the ‘horizontal’ and ‘vertical’ Fermi surfaces are part of two separate

electronic bands). Note that the vicinities of the hot spots in the two-band model are essentially

identical to those in the one-band model in Fig. 1A, and so the same low energy theory for the

onset of antiferromagnetism applies to both models. With no further assumptions, the deformed

model has only positive weights in a suitable quantum Monte Carlo realization.

We will write down a specific lattice model for which we will establish a sign-free Monte

Carlo algorithm, and then present numerical results. We begin with the band structure of the

ck electrons in Fig. 1C. We write the band with vertical Fermi surfaces in terms of fermions

ψx with ck → ψx,k, and the band with horizontal Fermi surfaces in terms of fermions ψy with

ck → ψy,k+K. This leads to the ψx,y Fermi surfaces shown in Fig. 2A. Then our model has the
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action S = SF + Sϕ =
∫ β

0
dτ(LF + Lϕ) with

LF =
∑

i,j,α=x,y

ψ†
αi [(∂τ − µ) δij − tα,ij ]ψαj + λ

∑

i

ψ†
xi (#s · #ϕi)ψyi +H.c.,

Lϕ =
1

2

∑

i

1

c2

(

d#ϕi

dτ

)2

+
1

2

∑

〈i,j〉

(#ϕi − #ϕj)
2 +

∑

i

(r

2
#ϕ2
i +

u

4
(#ϕ2

i )
2
)

. (2)

Here i, j run over the sites of the square lattice, τ is the imaginary time and β - the inverse

temperature. The parameter r will be used to tune across the quantum critical point, and u

is a non-linear self-coupling of #ϕ. The ψx (ψy) fermion hops along the horizontal (vertical)

direction with an amplitude t‖ = −1 (+1), and along the vertical (horizontal) direction with an

amplitude t⊥ = −0.5 (0.5), respectively; the resulting band structure is shown in Fig. 2A (solid

lines). The model has C4 symmetry, and its apparent violation is an artifact of the shifting of

the ψy fermions by K. We chose the chemical potential µ1 = µ2 = −0.5, c = 1, u = 1, and

λ = 1.

By construction, the modified two-band model has the same hot spot structure as the original

one-band model. Therefore, we argue that it preserves the universal properties of the antiferro-

magnetic transition. We prove (9) that the introduction of the second band eliminates the sign

problem in this model.

Note that it is possibly to analytically integrate out #ϕ in Eq. (S12), and establish equivalence

to a large class of Hubbard-like models to which our method applies. However, we choose

to keep #ϕ as in independent degree of freedom because it keeps the physics transparent and

streamlines the analysis.

We have performed determinant Monte Carlo simulations of the action (S12) using the algo-

rithm described in Refs. (18–20), for systems of linear size up to L = 14 and inverse temperature

β = 14, with either periodic or anti-periodic boundary conditions. An imaginary time step of

∆τ = 0.1 was used in most of the calculations; we checked that the results do not change for

∆τ = 0.05. Up to 50000 Monte Carlo sweeps were performed for each run, giving a statistical
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error for most measured quantities of a few percent.

First, we present results showing the reconstruction of the Fermi surface across the SDW

transition. Fig. 3 shows the fermion occupation number summed over the two flavors of

fermions as a function of quasi-momentum. The Fermi surfaces are clearly visible as disconti-

nuities. r = 0.5 is found to be on the disordered side of the SDW critical point, and the Fermi

surface closely resembles the one in Fig. 2A. At r = 0, a gap opens at the hot spots, and the

Fermi surface is reconstructed into electron and hole pockets, as in the SDW ordered state in

Fig. 2b. Decreasing r further to −0.5 increases the magnitude of the SDW order parameter, and

causes the hole pockets to disappear and the electron pockets to shrink.

To examine the magnetic transition, we computed the SDW susceptibilityχϕ =
∑

i

∫ β

0
dτ〈#ϕi(τ)·

#ϕ0(0)〉. Figure 4A shows χϕ normalized by L2β as a function of r. In order to extract informa-

tion about the zero-temperature limit, we scale β with the linear system size; in the appropriate

units, β = L was used. We observe a rapid upturn in χϕ near r = 0.25. For r < 0.25, χϕ/(L2β)

for different system sizes and inverse temperatures nearly collapse on top of each other, which

is the expected behavior on the ordered side of the transition. The results are consistent with

a second-order transition at rc ≈ 0.25. This is further supported by the Binder cumulant in

Fig. 4B, where we observe the expected behavior in both phases, separated by a critical point

at rc = 0.25± 0.1.

The SDW critical modes mediate effective inter-fermion interactions, which can lead to in-

stabilities of the Fermi surface. As a result, additional competing phases can appear. Near

the SDW critical point, these instabilities are a result of a subtle competition between the en-

hancement of the SDW fluctuations, which tends to strengthen the effective interactions, and

the loss of coherence of the fermionic quasi-particles (10, 11). Superconductivity is a natural

candidate for the leading potential instability. In order to examine the emergence of a supercon-

ducting phase near the SDW critical point, we have computed equal-time pairing correlations
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P±(#xi) = 〈∆±(#xi)∆±(0)†〉. Here, ∆±(#xi) = isyab(ψixaψixb ± ψiyaψiyb) (where a, b =↑, ↓ are

spin indices) are superconducting order parameters with either a + or − relative sign between

the two fermionic flavors (square lattice symmetry A1g and B1g, respectively).

In order to probe for long-range order, we measured P±(#xi) near the maximum range

#xmax = (L/2, L/2). We plot P̄±(#xmax) = 1
9

∑1
εx,y=−1 P±(#xmax + εx#ηx + εy#ηy), where #ηx =

(1, 0) and #ηy = (0, 1), in Fig. 4C. Long-range superconducting order at β → ∞ would corre-

spond to superconducting correlations that saturate to a constant upon increasing L and β.

The B1g pairing correlations are found to be significantly enhanced in the vicinity of the

SDW critical point, rc ≈ 0.25. The A1g correlations are significantly smaller in magnitude and

negative in sign. This is consistent with the expectation that the effective attraction mediated by

magnetic fluctuations promotes superconductivity with a sign change between the two orbitals

(22, 23).

The maximum of the B1g correlations occurs for r ≈ 0.5, on the disordered side of the

magnetic critical point which is located at rc ≈ 0.25 (21). Interestingly, the suppression of the

superconducting correlations away from the optimal r is very asymmetric: whereas the pairing

correlations decrease gradually for r > rc, they are suppressed dramatically for r < rc. This

may be a result of the opening of an SDW gap on portions of the Fermi surface.

The method described in this Letter opens the way to study various physical aspects of

spin density wave transitions in metals, in a numerically exact way. The interplay between

unconventional superconductivity and magnetism and possible non-Fermi liquid behavior in

the quantum critical regime should now be accessible. Moreover, such simulations will provide

controlled benchmarks for analytic approximations (7, 8, 10, 11).

The two-band model presented here is a member of a wider family of strongly correlated

fermionic models that can be rendered free of the sign problem. It has already been known that

some models with two flavors of fermions interacting via a four-fermion interaction are sign
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problem free at generic fermion density (24). Remarkably, these models do not rely on any

specific characteristic of the electron dispersion; e.g. there is no requirement for particle-hole

symmetry, or any symmetry that relates the two bands. Extensions of this trick to related models

of physical interest should be possible.
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Figure 1: (A) Fermi surface of the Fermi liquid phase of a single band model on the square
lattice with unit lattice spacing. The “hot spots” are denoted by the filled circles. (B) The
reconstructed Fermi surface in the metal with SDW order. The dashed lines show the Fermi
surface in the metal without SDW order, and its translation by K. Gaps have opened at the
hot spots, leading to small “pocket” Fermi surfaces. (C) A deformed Fermi surface of the
metal without SDW order, in which the vicinities of the hot spots are unchanged from (A). The
horizontal and vertical Fermi surfaces now belong to separate electronic bands.
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Figure 2: (A) Fermi surfaces (full lines) of LF for free ψx,y fermions with the parameters listed
in the text. The dashed lines show the portion of the Fermi surface in Fig. 1c which was shifted
by K to obtain the ψy Fermi surface. Now the hot spots are at the intersections of the Fermi
surfaces. (B) Mean-field ψx,y Fermi surfaces with SDW order |〈#ϕ〉| = 0.25.
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Figure 3: Quantum Monte-Carlo results for the fermion occupation number nk = 〈ψ†
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ykψyk〉/2 as a function of k across the Brillouin zone, for systems with L = 14, β = 14,

and r = −0.5, 0, 0.5. In order to enhance the resolution, results from simulations with either
periodic or anti-periodic boundary conditions in the x and y directions were combined. Despite
appearances, full square lattice symmetry is preserved in all our computations for the original
ck fermions.
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Figure 4: (A) The SDW susceptibility χϕ, normalized by L2β, as a function of r, for systems
of size L = 8, 10, 12, 14 and β = L for each curve. The statistical errors in χφ are smaller than
the symbol size. (B) The Binder cumulant for an O(3) order parameter CB = 1− 3〈'Φ4〉
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, where

#Φ = 1
N

∑

i #ϕi, approaching the expected values of 0.4 and 0 in the two phases. (C) Equal-time
pairing correlations in systems of size L = 10, 12, 14 and β = L for each curve, as a function
of r. Dashed (solid) lines show P̄+ (P̄−), corresponding to A1g (B1g) superconducting order
parameters, in which the pairing amplitude in the two fermion flavors is of the same (opposite)
sign, respectively. rc is the estimated position of the SDW critical point.
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Supplementary Material

Quantum Field Theory

In this section, we briefly review the universal field theory for the SDW transition developed

in Refs. (7,8,10,11). This effective field theory has been analyzed perturbatively in the order

parameter-fermion coupling λ.

One of the key results of the analysis is that, if we ignore the possibility of a high-energy

pairing instability, the fermion and order parameter propagators acquire universal singular parts

which depend only on the structure of the hot spots (e.g. the velocities at the hot spots and the

angle between them). This justifies the assumptions behind the construction of the lattice model

presented in the main text: as long as the structure of the hot spots is preserved, we expect the

universal behavior near the antiferromagnetic critical point to be unchanged. The microscopic

parameters of the model should only come in through the ultraviolet cutoffs to the critical fluc-

tuations. These cutoffs can, in principle, be set by matching at high energy scales. Specifically,

we can match a sign-problem-free lattice model to a Hubbard-like model by equating their hot-

spot Fermi surfaces and Fermi velocities. Other parameters of the sign-problem-free model can

be determined by matching its physical observables to those of the sign-problem-present Hub-

bard model at temperatures high enough to allow accurate computations by other methods for

the latter model. The sign-problem-free model can then be used to compute observables at low

temperatures.

Another observation made in Ref. (10), however, is that ultimately the conventional ways to

control the perturbative series for the effective field theory, such as an expansion in the inverse

number of fermion flavors, are uncontrolled for this problem. The fate of the flow to strong

coupling has to be resolved by numerical simulations. For this we need a lattice regularization

of the continuum quantum field theory, and the lattice model considered in the main body of the
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paper provides precisely such a regularization.

The field theory is formulated in terms of the fermion excitations in the vicinity of the hot

spots. The antiferromagnetic order parameter #ϕ, with wavevector K, connects fermions at a hot

spot at wavevector k with fermions at a hot spot with wavevector k +K; both fermions are on

the Fermi surface if εk = εk+K = 0, and this defines the allowed values of k. Linearizing the

fermion dispersion about the hot spots, and expanding the order parameter in spatial gradients,

in two spatial dimensions we obtain the Lagrangian L = Lψ + Lϕ where

Lψ = ψ†
1 (∂τ − iv1 ·∇)ψ1 + ψ†

2 (∂τ − iv2 ·∇)ψ2 + λ#ϕ · (ψ†
1#sψ2 + H.c.)

Lϕ =
1

2c2
(∂τ #ϕ)

2 +
1

2
(∇#ϕ)2 +

r

2
#ϕ2 +

u

4
(#ϕ2)2 (S1)

Here ψa, with a = 1, 2, are two species of low energy fermions in the vicinity of the hot spots

at k and k+K, and va are their Fermi velocities. A similar Lagrangian applies to the other hot

spots. This theory has the same general structure as coupled fermion-boson theory in particle

physics, such as the Gross-Neveu model (25), with fermions and bosons coupled via trilinear

“Yukawa” coupling λ. The key difference is in the fermion dispersion, which does not have a

relativistic form. In the relativistic cases, the fermion dispersion has a Dirac form with energy

∼ ±v|k|, and this vanishes only at isolated points in the Brilluoin zone. The resulting fermion-

boson theory is well understood (25). In our case, the fermions dispersion ∼ v · k, and this

vanishes on a line in the Brillouin zone which is orthogonal to v. This is the central difference

which makes the quantum field theory in Eq. (S1) strongly coupled.

Let us parametrize the Fermi velocities by

v1 = (vx, vy) , v2 = (−vx, vy) . (S2)

Here, for convenience, we have rotated the coordinates by 45◦ relative to Fig. 1a in the main

text. It is useful to introduce the ratio and the modulus

tanφ ≡
vy
vx

, v = |v| . (S3)
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Here 0 < 2φ < π is the angle between the Fermi surfaces at the hot spot. We now present the

singular terms in the low energy spectrum at two loop order, as obtained in Refs. (10,17). We

will restrict the expressions to precisely at the quantum critical point at zero temperature; all

our conclusions, and similar but lengthier expressions, apply also close to the quantum critical

point and at low temperatures. For the fermion Green’s function we have

G−1
a (ω,p) = −va · p+

3v sin 2φ

8
i sgn(ω)

(

√

γ|ω|+
(vā · p)2

v2
−

|vā · p|

v

)

, (S4)

where ω is an imaginary frequency, 1̄ = 2 and 2̄ = 1, and

γ =
Nhλ2

2πvxvy
, (S5)

where Nh is the number of pairs of hot spots (Nh = 4 for the electron-doped cuprates). In the

expression (S4) we have dropped the bare free fermion iω term because it is not as singular as

the self-energy correction from the fluctuations of the antiferromagnetic order, and we have not

explicitly written the real part of the self energy which renormalizes the velocities vx and vy.

The singular part of the propagator of the boson #ϕ is

D−1(ω, #p ) = γ|ω|+ p 2 . (S6)

In these expressions above the strength of the interactions is controlled by the Yukawa cou-

pling λ, and hence via the value of γ. However a key observation is that dependence on λ can

be scaled away, and the above low energy spectra are actually universal. Indeed, it is easily

seen from Eqs. (S4,S6) that after rescaling momenta by p → λp, the λ dependence appears as

overall prefactors which can be absorbed into a rescaling of the fields. This independence on

the value of λ is a general feature of the low-energy quantum field theory (10), and is crucial

to its properties. One of its consequences appeared in the leading log estimate of the pair-

ing instability presented in Ref. (10), which was found to be a logarithm-squared term with a

λ-independent prefactor.
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QuantumMonte Carlo

We set up SF + Sϕ for a Monte Carlo study (17). Discretizing imaginary time, the partition

function becomes

Z =

∫

dϕ exp (−Sϕ)Trψ

[

N
∏

n=1

B̂n

]

+O
(

∆τ 2
)

, (S7)

where ∆τ is an imaginary time step, β = N∆τ , and the operators B̂n are given by

B̂n = e−
1

2
∆τψ†Kψe−∆τψ†Vnψe−

1

2
∆τψ†Kψ. (S8)

K and Vn are matrices given by

Ki,j;α,α′;s,s′ = δs,s′δα,α′ (−tα,ij − µ)

Vn;i,j;α,α′;s,s′ = λ (σ1)α,α′ δij [#s · #ϕi (n∆τ)]s,s′ , (S9)

where i, j are spatial indices, σ1 is a Pauli matrix, α,α′ = x, y are flavor indices, and s, s′ =↑, ↓

are spin indices. ψ† is a vector of fermionic operators,

ψ† =
(

ψ†
x,1,↑, . . . ,ψ

†
x,N ,↑,ψ

†
x,1,↓, . . . ,ψ

†
x,N ,↓,

ψ†
y,1,↑, . . . ,ψ

†
y,N ,↑,ψ

†
y,1,↓, . . . ,ψ

†
y,N ,↓

)

. (S10)

N is the number of lattice sites. Note that Trψ in Eq. S7 represents a trace over fermionic

many-body states in Fock space. This fermionic trace can be carried out, giving

Tr

[

N
∏

n=1

B̂n

]

= det

[

1 +
N
∏

n=1

Bn

]

, (S11)

where Bn = e−
1

2
∆τKe−∆τVne−

1

2
∆τK . For a proof of this formula, see, e.g., Ref. (19). We then

arrive at the following form of the partition function:

Z =

∫

dϕ exp (−Sϕ) det

[

1 +
N
∏

n=1

Bn

]

+O
(

∆τ 2
)

, (S12)

which can be evaluated using Monte Carlo techniques, by sampling over space-time configura-

tions of #ϕi (τ).
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Positivity of the action

Monte Carlo sampling can be done efficiently if the action in Eq. S12 is non-negative. To show

that this is the case, we note that the matrix

M [#ϕ] ≡ 1 +
N
∏

n=1

Bn (S13)

commutes with the following anti-unitary operator:

U = is2σ3K, (S14)

where #s are Pauli matrices which act on the spin index, #σ are Pauli matrices which act on the

orbital (x, y) index, and K is the complex conjugation operator. Note that U2 = −1. Using

this, one can prove (26,27) (in a similar way to the proof of Kramers’ theorem) that if λα is an

eigenvalue of M , λ∗α is an eigenvalue also, and that if λα is real then it is doubly degenerate.

The determinant can be written as det [M ] =
∏

α |λα|
2 ≥ 0. The integrand in the partition

function (Eq. S12) is therefore non-negative, and can be simulated using Monte Carlo without

a sign problem. Note that there are no particular restrictions on tij (e.g. it does not have to be

bipartite) or µ. So particle-hole symmetry or specific densities are not required.
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