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Abstract

Compared to a neutral model, purifying selection distorts the structure of

genealogies and hence alters the patterns of sampled genetic variation. Al-

though these distortions may be common in nature, our understanding of

how we expect purifying selection to affect patterns of molecular variation

remains incomplete. Genealogical approaches such as coalescent theory

have proven difficult to generalize to situations involving selection at many

linked sites, unless selection pressures are extremely strong. Here, we intro-

duce an effective coalescent theory (a “fitness-class coalescent”) to describe

the structure of genealogies in the presence of purifying selection at many

linked sites. We use this effective theory to calculate several simple statis-

tics describing the expected patterns of variation in sequence data, both at

the sites under selection and at linked neutral sites. Our analysis combines

a description of the allele frequency spectrum in the presence of purifying

selection with the structured coalescent approach of Kaplan et al. (1988),

to trace the ancestry of individuals through the distribution of fitnesses

within the population. We also derive our results using a more direct ex-

tension of the structured coalescent approach of Hudson and Kaplan

(1994). We find that purifying selection leads to patterns of genetic vari-

ation that are related but not identical to a neutrally evolving population

in which population size has varied in a specific way in the past.
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INTRODUCTION

Purifying selection acting simultaneously at many linked sites (“background selection”) can

substantially alter the patterns of molecular variation at these sites, and at linked neutral

sites (Gordo et al., 2002; Hill and Robertson, 1966; Hudson and Kaplan, 1994, 1995;

Kaplan et al., 1988; McVean and Charlesworth, 2000; O’Fallon et al., 2010; Seger

et al., 2010). In recent years, evidence from sequence data points to the general importance

of these selective forces among many linked variants in microbial and viral populations, and

on short distance scales in the genomes of sexual organisms (Comeron et al., 2008; Hahn,

2008; Seger et al., 2010). In these situations, existing theory does not fully explain patterns

of molecular evolution (Hahn, 2008).

It is difficult to incorporate negative selection at many linked sites into genealogical frame-

works such as coalescent theory, because these frameworks typically rely on characterizing

the space of possible genealogical trees before considering the possibility of mutations at var-

ious locations on these trees. When selection operates, the probabilities of particular trees

cannot be defined independently of the mutations, and the approach breaks down (Tavare,

2004; Wakeley, 2009).

Despite this difficulty, a number of productive approaches have been developed to predict

how negative selection influences patterns of molecular variation and to infer selection pres-

sures from data. Charlesworth et al. (1993) introduced the background selection model

and showed that strong purifying selection reduces the effective population size relevant

for linked neutral sites (Charlesworth, 1994; Charlesworth et al., 1995). However,

weaker selection also distorts patterns of variation, in a way that cannot be completely

described by a neutral model with any effective population size (Comeron and Kreit-

man, 2002; McVean and Charlesworth, 2000), a phenomenon often referred to as

Hill-Robertson interference (Hill and Robertson, 1966). Several theoretical frameworks

have been developed to analyze this situation. The ancestral selection graph of Neuhauser

and Krone (1997) and Krone and Neuhauser (1997) provides an elegant formal solu-

tion to the problem, but unfortunately it requires extensive numerical calculations (Prze-

worski et al., 1999). These limit the intuition we can draw from this method, and make

it impractical as the basis for inference from most modern sequence data. An alternative
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approach is based on the structured coalescent, and views the population as subdivided

into different fitness classes, tracing the genealogies of individuals as they move between

classes. This approach was first introduced by Kaplan et al. (1988) and further developed

by Hudson and Kaplan (1994, 1995) in the case where fluctuations in the size of each

fitness class can be neglected. This structured coalescent approach has been been the basis

for computational methods developed by Gordo et al. (2002), Seger et al. (2010), and

Zeng and Charlesworth (2011), and analytical approaches such as those of Barton

and Etheridge (2004), Hermisson et al. (2002) and O’Fallon et al. (2010).

In this paper, we build on the structured coalescent framework by introducing the idea

of a “fitness-class coalescent.” Rather than considering the coalescence process in real time,

we treat each fitness class as a “generation” and trace how individuals have descended by

mutations through fitness classes, moving from one “generation” to the next by subsequent

mutations. We show that the coalescent probabilities in this fitness-class coalescent can be

computed using an approach based on the Poisson Random Field method of Sawyer and

Hartl (1992), or equivalently can be derived as an extension of the structured coalescent

approach of Hudson and Kaplan (1994).

Our fitness-class coalescent theory can be precisely mapped to a coalescence theory in

which certain quantities (e.g. coalescence times) have different meanings than in the tradi-

tional theory. We can then invert this mapping to determine the structure of genealogies and

calculate statistics describing expected patterns of genetic variation. This approach requires

certain approximations, but it also has several advantages. Most importantly, we are able

to derive relatively simple analytic expressions for coalescent probabilities and distributions

of simple statistics such as heterozygosity. Consistent with earlier work, we find that the

effects of purifying selection are broadly similar to an effective population size that changes

as time recedes into the past. Our analysis makes this intuition precise and quantitative:

we can compute the exact form of this time-varying effective population size, as defined by

the rate of pairwise coalescence. We also show that this intuition has important limitations:

for example, different pairs of individuals have different time-varying effective population

size histories, meaning that in principle it is possible to distinguish selection from changing

population size. Our approach also makes it possible to calculate the diversity of selected

alleles themselves, which may be important when selection is common (Williamson and
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Orive, 2002).

We begin in the next section by describing the fitness-class coalescent idea which underlies

our approach. We then describe the details of our model and analyze two ways to imple-

ment the fitness-class coalescent. The first relies on the Poisson Random Field method of

Sawyer and Hartl (1992) to describe the frequency distribution of distinct lineages within

each fitness class. We show how this lineage structure can be used to compute coalescence

probabilities in each fitness class. The second approach is based on tracing the ancestry of

individuals in the order that events occur as described by Hudson and Kaplan (1994),

and implemented numerically by Gordo et al. (2002). We show how we can sum over all

possible ancestral paths to compute equivalent coalescence probabilities in each fitness class.

The two approaches provide different and complementary intuitive pictures of the process,

and depend on various approximations in somewhat different ways.

After computing coalescence probabilities with both approaches, we show how these prob-

abilities can be used to analyze the structures of genealogies, and we calculate various

statistics describing genetic variation in these populations, which we compare to numerical

simulations. We then discuss the relationship between our results, neutral theory, and earlier

work on selection, and we explore how various approximations limit our approach. The most

important of these approximations is that we neglect fluctuations in the size of each fitness

class, analogous to earlier work (Hudson and Kaplan, 1994), which restricts our analysis

to the case of strong selection (relative to inverse population size). This approximation also

means that we neglect Muller’s ratchet. We describe this and related approximations and

describe their regime of validity in the Discussion. Finally, in the Appendices we explore

these approximations in more detail and describe how they inform the relationship between

our work and earlier approaches.

THE FITNESS-CLASS COALESCENT

In this section, we outline the main ideas underlying our fitness-class coalescent approach.

We begin our analysis by considering the balance between mutations at many linked sites

and negative selection against the mutants, which leads to an equilibrium distribution of

fitnesses within a population (Haigh, 1978). We illustrate this in Fig. 1, for the case in

which all deleterious mutations have the same fitness cost. Each individual is characterized
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by the number k of deleterious mutations it contains. Each fitness class k contains many

distinct lineages, each of which arose from deleterious mutations in more-fit individuals, as

illustrated in Fig. 2. Neutral mutations also occur, but we consider these later.

Hudson and Kaplan (1994) observed that individuals move between fitnesses by dele-

terious mutations, and that when two individuals are in the same fitness class they could

be from the same lineage and hence coalesce. Our fitness-class coalescent exploits this ob-

servation to define an effective genealogical process that completely bypasses the ancestral

process in real time. Instead, we treat each fitness class as a “generation,” and we count

time in deleterious mutations: each deleterious mutation moves us from one “generation”

to the next. In this way, we can trace the ancestry of individuals through the fitness dis-

tribution. For example, there is some probability that two individuals chosen from fitness

class k are genetically identical (i.e. come from the same lineage). If not, they each arose

from mutations within fitness class k − 1. If both those mutations occurred in individuals

in the same lineage in fitness class k − 1, we say the two individuals “coalesced” in class

k− 1. If not, they came from different mutations from class k− 2, and could have coalesced

there, and so on. In this way, we can construct a fitness-class coalescent tree describing the

relatedness of two individuals, as illustrated in Fig. 2.

In this paper we show that the probability that two randomly chosen individuals who are

currently in fitness classes k and k′ coalesce in class k − `, P k,k′→k−`
c , is approximately

P k,k′→k−`
c =

1

2nk−`sk−`
Ak,k

′

` , (1)

where nk is the population size of fitness class k, sk is an effective selection pressure against

these individuals, and

Ak,k
′

` =

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (2)

This coalescent probability is inversely proportional to the population size of the fitness

class, nk−`, and the effective selection coefficient within that class, sk−`, modified by the

combinatoric coefficient Ak,k
′

` . As we will see, this has a clear intuitive interpretation. Fitness

class k − ` has size nk−`, so the coalescence probability per real generation is 1
nk−`

. We will

see that each lineage spends of order sk−` generations in that class, so the total coalescence

probability in this class has the form 1
nk−`

1
sk−`

. This is multiplied by Ak,k
′

` /2, which we will

show describes the probability that the two individuals are in class k − ` at the same time.
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In other words, the probability coalescence occurs in a class equals the inverse population

size of the class times the number of generations lineages spend together in that class. In the

following sections of this paper we derive Eq. 1 in the two alternative ways mentioned in the

Introduction: by explicitly considering the lineage frequency distribution and by following

the path summation method of Hudson and Kaplan (1994) and Gordo et al. (2002).

Calculating statistics describing sequence variation: Our approach of treating

mutation events as timesteps, and computing coalescence probabilities at each timestep,

allows us to make a precise mapping to coalescence theory in which certain quantities have

a different meaning than in the traditional theory. In this framework, we can calculate a

simple analytic expression for the probability two lineages sampled from particular fitness

classes will coalesce in any other fitness class. These fitness-class coalescence probabilities

allow us to explicitly calculate the structure of genealogies in this “mutation time.” We

can then compute the distribution of any statistic describing expected sequence variation

by averaging over the fitness classes our original individuals come from. For a statistic x

that depends on genealogies between two individuals, for example, we write expressions of

the form

P (x) =
∑

H(k, k′)Prob[k, k′ coalesce in k − `]P (x|k, k′, `), (3)

where H(k, k′) describes the probability two individuals sampled at random from the pop-

ulation come from classes k and k′ respectively.

From the form of these expressions and our simple result for the coalescence probabilities,

we can immediately see the main effect of selection on the structure of genealogies. The

discussion following Eq. (1) implies that the effect of negative selection is similar to that of

an effective population size that changes as time recedes into the distant past — i.e. some

Ne(t). This intuition has been suggested by earlier work (see e.g. Seger et al. (2010)). As

we will see, our analysis describes the precise form of Ne(t): it follows the distribution nk−`

as ` increases further to the past, modified by the coefficient Ak,k
′

` . We will also see that

this picture of time-varying population size has limits: different pairs of individuals have a

different Ne(t). As is clear from Eq. (3), these different histories are averaged according

to the distribution H(k, k′). While it is the average Ne(t) between pairs that determines

the distribution of pairwise statistics, this suggests that statistical power may exist in larger

samples to distinguish negative selection from neutral population expansion. We explore
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these general conclusions of our analysis in detail in the Discussion.

Note that in the standard neutral coalescent, one first calculates the distribution of coa-

lescence times and then imagines mutations occurring as a Poisson process throughout the

coalescent tree, with rates proportional to branch lengths. In our fitness-class coalescent,

by contrast, the coalescence times are the mutations. To avoid confusion, from here on we

will refer to the effective “generations” in our model as “steps,” and refer to the fitness-class

coalescent “times” as the “steptimes.” We will reserve the word “time” to refer to the actual

coalescent time, measured in actual generations.

After determining a fitness-class coalescent tree, we can invert our mapping to determine

the structure of genealogies in real time. We will do this by calculating how the steptime

in our fitness-class coalescent model translates into an actual time in generations. This will

allow us to relate the distribution of branch lengths in steptimes to an actual coalescent

tree in generations. We can then treat neutral mutations as is usually done in the standard

coalescent: as a Poisson process with probabilities proportional to branch lengths.

Our fitness-time coalescent requires a number of approximations which limit its applica-

bility. Most importantly, we neglect Muller’s ratchet, and more generally ignore the effects of

fluctuations in the size of each fitness class. We discuss these approximations in more detail

below. We find that within a broad and biologically relevant parameter regime they lead

to systematic but small corrections to our results. Despite these limitations, our approach

also has several advantages relative to previous work. The fitness-time coalescent approach

makes many otherwise difficult analytic calculations tractable, allows us to compute the

diversity at the selected sites in addition to linked neutral sites, and may offer a useful basis

for practical methods of coalescent simulation and inference.

MODEL

We imagine a finite haploid population of constant size N . Each haploid genome has a

large number of sites, which begin in some ancestral state and mutate at a constant rate.

Each mutation is either neutral or confers some fitness disadvantage s (where by convention

s > 0). We assume an infinite-sites framework, so there is negligible probability that two

mutations segregate simultaneously at the same site. We assume that there is no epistasis

for fitness, and that each deleterious mutation carries fitness cost s, so that the fitness of an
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individual with k deleterious mutations is wk = (1 − s)k. Since we assume that s � 1, we

will often approximate wk by 1− sk.

The population dynamics are assumed to follow the diffusion limit of the standard Wright-

Fisher model. That is, we assume that deleterious mutations occur at a genome-wide rate Ud

per individual per generation (with deleterious mutations assumed to be decoupled from se-

lection). We define θd/2 ≡ NUd, the per-genome scaled deleterious mutation rate. Similarly,

neutral mutations occur at a rate Un per individual per generation, and we analogously define

θn/2 ≡ NUn. We assume that each newly arising mutation occurs at a site at which there

are no other segregating polymorphisms in the population (the infinite-sites assumption).

We focus exclusively on the case of perfect linkage, where we imagine that all the sites

we are considering are in an asexual genome or within a short enough distance in a sexual

genome that recombination can be entirely neglected. Although our model is defined for

haploids, this assumption means that our analysis also applies to diploid populations pro-

vided that there is no dominance (i.e. being homozygous for the deleterious mutation carries

twice the fitness cost as being heterozygous). In this case, our model is equivalent to that

considered by Hudson and Kaplan (1994).

We believe that this is the simplest possible model based on a concrete picture of muta-

tions at individual sites that can describe the effects of a large number of linked negatively

selected sites on patterns of genetic variation. It is essentially equivalent to the model de-

scribed by Charlesworth et al. (1993) and Hudson and Kaplan (1994), which has

formed the basis for much of the analysis of background selection (Charlesworth et al.,

1993; Gordo et al., 2002; Seger et al., 2010).

Our analysis will develop a fitness-class coalescent theory that involves tracing the an-

cestry of individuals as they change in fitness by acquiring deleterious mutations. In order

to do this, we need to first understand the distribution of fitnesses within the population.

Since in our model all deleterious mutations have the same fitness cost s, we can classify in-

dividuals based on their Hamming class, k, relative to the wildtype (which by definition has

k = 0). That is, individuals in class k have k deleterious mutations more than the most-fit

individuals in the population. Note that not all individuals in class k have the same set of k

deleterious mutations. Furthermore, k refers only to the number of deleterious mutations an

individual has; individuals with the same k can have different numbers of neutral mutations.
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We normalize fitness such that by definition all individuals in class k = 0 have fitness 1.

Individuals in class k then have fitness 1− ks (Fig. 1).

Haigh (1978) showed that the balance between mutation and selection leads to a steady

state in which the fraction of the population in fitness class k, which we call hk, is given by

a Poisson distribution with mean Ud/s,

hk =
e−Ud/s

k!

(
Ud
s

)k
. (4)

This means that the average fitness in the population is 1− Ud, and that k̄ = Ud
s

.

Throughout our analysis, we will assume that the population exists in this steady state

mutation-selection balance. In particular, we neglect the fact that in a finite population there

will be fluctuations around this hk. This approximation is central to our approach, and we

make it in subtly different ways in both our lineage-structure and our sum of ancestral paths

calculations of the fitness-class coalescence probabilities. It will typically be valid in the bulk

of the fitness distribution when selection is strong (Ns� 1); our analysis is limited to this

strong selection case and breaks down when Ns <∼ 1. We discuss this approximation in more

detail in the Discussion and in Appendix B. We note that this approximation also implies

that we assume that Muller’s ratchet can be neglected. We will return to the question of

the importance of Muller’s ratchet in more detail in the Discussion.

We will later need to understand the distributions of timings, Qk−1
k (t), at which an

individual mutates from class k − 1 to class k. We can calculate this by noting that the

probability that an individual in class k arose from a mutation in an individual in class k−1

rather than a reproduction event from an individual in class k is

NUdhk−1
Nhk[1− Ud − s(k − k̄)] +NUdhk−1

. (5)

Substituting in the steady state values for the hk, and noting that these mutation events are

a Poisson process, we find

Qk−1
k (t) = ske−skt. (6)

Note that this calculation is identical to the equivalent distribution of mutation timings

computed by Gordo et al. (2002) following the approach of Hudson and Kaplan (1994).
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LINEAGE STRUCTURE AND THE FITNESS-CLASS COALESCENCE
PROBABILITIES

In general, the individuals in a particular fitness class k will not be genetically identical.

Rather, there will be a number of different lineages within this class, each lineage created by

a deleterious mutation from class k − 1. We now consider the structure of lineage diversity

amongst individuals within a given fitness class in the mutation-selection balance. Note

that for our purposes here, we only consider deleterious mutations in defining lineages; we

consider the diversity at neutral sites separately below.

Consider a fitness class k, which has an overall frequency hk (Fig. 1b). The frequency

hk is maintained by a stochastic process in which the class is constantly receiving new

individuals from class k− 1 due to deleterious mutations. In our infinite-alleles model, each

such mutation creates a lineage which is an allele that is unique within the population.

Each lineage fluctuates in frequency for a while before eventually dying out, perhaps after

acquiring additional mutations that found new lineages in fitness class k + 1. At any given

moment, there is some frequency distribution of lineages in each class k (see Fig. 2). While

the identity of these lineages changes over time, there is a probability distribution that at any

moment there is a given frequency distribution of lineages. In steady state, this probability

distribution does not change with time.

New lineages are founded in class k at a rate θk/2, where

θk = 2Nhk−1Ud. (7)

These individuals are then removed from class k at a per capita rate

sk ≡ −Ud − s(k − k̄). (8)

We refer to sk as the effective selection coefficient against an allele in class k, because it is

the rate at which any particular lineage in class k loses individuals, and we define

γk = Nsk. (9)

Using these definitions, we can compute the steady state probability distribution of lineages

using the Poisson Random Field model of Sawyer and Hartl (1992). The essential result
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is that the number of distinct lineages in class k with a frequency between a and b (in the

total population) is Poisson distributed with mean
∫ b
a
fk(x)dx, where

fk(x) =
θk

x(1− x)

1− e−2γk(1−x)

1− e−2γk
. (10)

Note that our Poisson Random Field result implies that on average the sum of all the

frequencies of all the alleles in fitness class k is simply hk =
∫ 1

0
xfk(x)dx, and that the

probability that two individuals chosen at the same time at random from fitness class k

both come from the same lineage is
∫ 1

0
dxx2fk(x)/h2k.

We note that the PRF result involves various implicit approximations, and is valid within

a specific parameter regime. Most importantly, we neglect fluctuations in the sizes of each

fitness class. This has two main effects. First, it means that we neglect the correspond-

ing fluctuations in the distribution of lineage frequencies fk(x). Second, it means we are

implicitly neglecting the fact that, given a lineage of size x exists in class k, the actual hk

is on average not at its steady state value (e.g. if a high-frequency lineage exists, hk will

tend to be larger). We explain these approximations in detail in Appendix B, and describe

an alternative branching process formulation for the lineage structure that corrects for the

second effect described above.

The Fitness-class Coalescent Probabilities: We can now calculate the degree of

relatedness between two individuals sampled from the population. Our goal is to understand

the probability distribution of the fitness-class coalescence steptimes for two individuals

chosen at random from the population. We begin by calculating the coalescence probability

in each step.

First, imagine that by chance we pick two individuals from the same fitness class k. If

the two individuals are from the same lineage, they coalesce within this class. In this case,

they are genetically identical and the coalescence steptime is 0. If not, we want to calculate

the probability they coalesce in class k − 1, P k,k→k−1
c . If the lineage of individual A in class

k was founded by a mutation from class k − 1 a time t1 ago, and the lineage of individual

B in class k was founded by a mutation a time t2 ago, the probability the two individuals

came from a common lineage in class k − 1 is

P k,k→k−1
c =

∫
dt1dt2Q

k−1
k,k (t1, t2)

xfk−1(x)

hk−1

y

hk−1
Gk−1(y → x, |t2 − t1|). (11)
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Here Qk−1
k,k (t1, t2) is the joint distribution of t1 and t2, x/hk is the probability one of the

individuals came from a lineage of size x given that the lineage exists, fk(x) is the probability

that the lineage exists, and Gk−1(y → x, |t2 − t1|) is the probability a lineage in class k − 1

changes in frequency from x to y in time |t2 − t1| (where y could be 0, corresponding to

a lineage that has already mutated back to class k − 2 by the time the second individual

mutates to class k − 1). The forms of Q and G are described in Appendix A.

If the two individuals coalesced in this first step, the coalescent steptime is 1. If not (which

occurs with probability 1− P k,k→k−1
c ), we have to consider the probability they coalesce at

the next step (i.e. in the mutations that took them from class k − 2 to k − 1), P k,k→k−2
c ,

and so on.

So far we have imagined that both individuals that we originally selected from the pop-

ulation came from the same class k. This will not generally be true. Rather, when we pick

two individuals at random, they will come from classes k and k′ with probability

H(k, k′) =

 2hkhk′ if k 6= k′

h2k if k = k′
(12)

For convenience we choose k ≤ k′. We define P k,k′→k−`
c to be the probability that two

individuals from classes k and k′ coalesce in class k − `. Note that P k,k′→k−`
c = 0 for ` < 0.

For ` ≥ 0 we have

P k,k′→k−`
c =

∫
dxdydt1dt2Q

k−`
k,k′ (t1, t2)

xfk−`(x)

hk−`

yGk−`(y → x, |t2 − t1|)
hk−`

. (13)

From the set of coalescence probabilities Eq. (13), we can calculate the probability

distribution of coalescence steptimes between two individuals. We describe these steptimes

by the distribution of classes in which coalescence occurs; given that we pick two individuals

from classes k and k′ (with k < k′ by convention) the probability that they coalesce in class

k − ` is simply

φk
′

k (`) = P k,k′→k−`
c

`−1∏
j=0

[
1− P k,k′→k−j

c

]
. (14)

We note that this expression contains an implicit approximation, as described in Appendix

A.

Computing the Coalescence Probabilities: We now have a formal structure describ-

ing the structure of coalescent genealogies in the presence of negative selection. It remains,
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however, to evaluate the coalescent probabilities in each step by evaluating the integrals in

Eq. (13). We explain the details of this calculation in Appendix A. We find

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (15)

where Ak,k
′

` is a numerical coefficient which depends on k, k′, and ` but not on the population

parameters,

Ak,k
′

` =

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (16)

In Fig. 3 we show examples of these coalescence probabilities for different population pa-

rameters. We see that the probability of coalescence decreases with increasing selection

coefficients and population size.

Eq. (15) is the complete solution for coalescent probabilities in the non-conditional

approximation. This general form for the coalescence probabilities makes intuitive sense.

Nhk−` is the population size of class k−`, and 1
s(k−`) is the average number of generations that

an individual spends in class k−` before mutating away. Since the per-generation coalescent

probability in a population of size n is proportional to 1
n
, it makes sense that the coalescent

probability in class k − ` is approximately proportional to one over the population size of

this class times the number of generations individuals spend in this class. The additional 1

in the denominator captures the fact that the individuals might mutate away from the class

before coalescing there (which reduces the average time they spend in the class together).

The numerical factor multiplying this basic scaling, Ak,k
′

` comes from the integrals over the

probability distribution of mutant timings (i.e. the dt1 and dt2 integrals). It reflects the

probability that the ancestors of the two individuals we are considering were both in class

k − ` at the same time, since they could not otherwise coalesce there.

From this result, we can also form an intuitive picture of the shape of genealogies in the

presence of negative selection. We have just seen that the coalescence probability per actual

generation depends on the parameters as 1
Nhk−`

, where the relevant value of ` increases as

we go back in time. Thus the structure of genealogies in the presence of negative selection

is similar to having a variable population size as we go back in time. The precise nature of

this variable population size is encoded in the fitness distribution hk−`. For example, if we

imagine sampling two individuals from the same below-average fitness class, the probability

distribution of their genealogies is like having a population size that initially increases and
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then decreases as we look backwards in time. Of course, this analogy only goes so far. Most

importantly, the coalescent steptimes are related to the statistics describing genetic diversity

in a different way from how normal coalescent times are usually related to these statistics.

We return to this point in the section on the structure of genealogies below.

A SUM OF ANCESTRAL PATHS APPROACH

We have just computed the fitness-class coalescence probabilities by considering the lineage

structure within each fitness class. Kaplan et al. (1988) proposed a somewhat different

way to look at the same problem: they considered a sample of individuals and, without

explicitly describing lineage structure, computed the relative probabilities that the next

event to occur backwards in time would involve a mutation or coalescent event. For example,

if two individuals are in the same fitness class, the next event could be either coalescence

within that class or a mutation event. The rates at which these events occur determines

their relative probabilities.

In its original form, this approach used diffusion equations to account for fluctuations in

the frequencies of each fitness class hk. Barton and Etheridge (2004) used this framework

to provide a complete solution for the effect of selection at a single site on the structure of

genealogies. However, it has not yet proven possible to solve these equations in the more

general case of selection at many linked sites. Instead, Hudson and Kaplan (1994) made

progress by neglecting fluctuations in the frequencies hk, the same approximation that is

central to our approach. Using this approximation, they derived a recursion relation for the

mean time to a common ancestor, their Eq. (12). Gordo et al. (2002) used this equation

as the basis for a coalescent simulation.

Recursion relations of the Hudson and Kaplan (1994) form can be solved numerically,

and have been used to generate data describing coalescent statistics, but have not yet led

to an analytic description of the structure of genealogies. We now demonstrate that these

numerical methods are equivalent to our lineage-based formalism above, by showing that

the Hudson and Kaplan (1994) approach can be used to derive identical analytical for-

mulas for the fitness-class coalescent probabilities. We refer to this as a “sum of ancestral

paths” approach, because it relies on summing over all possible paths of individual ancestry

through the fitness distribution. The equivalence of this approach to our lineage-structure
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calculations means that our analytical results in this paper match earlier numerical and

simulation results based on the Hudson and Kaplan (1994) formulation.

In order to calculate the coalescence probabilities for a sample of two individuals, we

consider the set of all possible ancestral paths these individuals may have followed. Each

path is represented by an ordered set of events, backwards in time. These events may either

be deleterious mutation events, which move one of the ancestral lineages to the previous

fitness class, or coalescence events, which merge the two ancestral lineages. In order for

two individuals to coalesce in class k − `, each ancestral lineage must undergo a series of

deleterious mutation events, bringing them from their initial classes to class k − `. The

lineages must then coalesce before any additional deleterious mutations occur. For example,

in order for two individuals sampled from class k to coalesce in class k − 1, the first event,

backwards in time, must be a deleterious mutation. This mutation can occur in either

individual. After this event, one of the ancestral lineages is still in class k, while the other is

in class k − 1. The second event, backwards in time, must be a deleterious mutation event

in the ancestral lineage that remains in class k. Both ancestral lineages are now in class

k − 1. Finally, the third event must be a coalescent event. Note that there are a total of

two paths, since either individual may have been the first to mutate.

The probability of any particular ancestral path is the product of the probability of each

event in the path. We saw above that deleterious mutations occur in an individual in class

k at rate sk. If the two individuals are in different classes, they are not able to coalesce as

the next event. Thus the probability of each possible event is simply:

P (1st Event is Del. Mut. in k|k, k′) =
sk

sk + sk′
(17)

P (1st Event is Del. Mut. in k′|k, k′) =
sk′

sk + sk′
. (18)

If the two individuals are in the same class, the next event may either be a coalescent event

or a deleterious mutation. Within each class, coalescence is a neutral process that occurs

with rate 1/Nhk. Therefore, we have

P (1st Event is Coal.|k, k) =
1/(Nhk)

sk + sk + 1/(Nhk)
=

1

1 + 2Nhksk
(19)

P (1st Event is Del. Mut.|k, k) =
2sk

sk + sk + 1/(Nhk)
=

2Nhksk

1 + 2Nhksk
. (20)
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These probabilities are analogous to those used by Gordo et al. (2002), derived from the

framework of Hudson and Kaplan (1994).

Using these probabilities, we can easily calculate the probability of any particular path.

In general, in order for two individuals sampled from classes k′ and k to coalesce in class

k − `, the ancestral paths must consist of some order of k′ − k + 2` events which include

k′ − k + ` deleterious mutation events in the ancestral lineage that began in k′, and `

deleterious mutation events in the ancestral lineage that began in k. The path must then

conclude with a final coalescent event. Note that there are a total of
(
k′−k+2`

l

)
possible paths,

reflecting the number of ways to order the mutation events in one lineage with those in the

other. To calculate the coalescence probability, we sum the probabilities of each path that

results in this particular coalescence event.

We can carry out this sum in the general case by dividing up the
(
k′−k+2`

l

)
possible paths

according to whether or not the ancestral lineages ever coexisted in each class before class

k− `. Each case leads to a different path probability, and these probabilities can be exactly

summed. We carry out this calculation in detail in Appendix A. We find that to leading

order in 1
1+2Nhk−`s(k−`)

, we have

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (21)

which exactly matches our expression for the coalescence probabilities in our PRF approach,

Eq. (15).

We note that in deriving this result, we have made the same approximations we used in

our lineage structure based approach. Thus the results from the PRF method and the sum

of ancestral paths are exactly equivalent in the regime where they are valid. However, there

are subtle differences in the results to higher orders of the approximations, which provide

useful intuition about the process. For example, in the sum of ancestral paths approach it

is more natural to calculate φk
′

k (`) directly, without first calculating P k,k′→k−`
c , and doing

so allows us to compute certain higher-order corrections to the coalescence probabilities.

We discuss these details of the correspondence between the approximations used in the two

methods in Supplementary Appendix D.
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THE STRUCTURE OF GENEALOGIES AND STATISTICS OF
GENETIC DIVERSITY

We can now use the coalescence probabilities described above to calculate the structure

of genealogies in the presence of negative selection. We can then use these genealogies to

calculate various statistics describing the genetic diversity within the population. We know

the coalescent probabilities in each step of our fitness-class coalescent process, so in principle

we can calculate the probability of any genealogy relating an arbitrary number of individuals

using methods analogous to those used in standard neutral coalescent theory. This would

then allow us to calculate the distribution of any statistic describing the genetic diversity

among these individuals, again using methods analogous to neutral coalescent theory.

Here we will focus on the simplest genealogical relationship: the distribution of the

time to the most recent common ancestor of two individuals, which demonstrates the main

ideas in the simplest context. This allows us to calculate the distribution of the per-site

heterozygosity π. This is the only statistic relevant to a sample of two individuals. In

larger samples, the coalescent probabilities between any pair of sampled individuals are

independent of those between any other pair that does not share the same most recent

common ancestor, so the distribution of per-site heterozygosity we expect within such a

sample is closely related to the ensemble distribution of π we calculate here.

In our fitness-class coalescent framework, it is natural to consider diversity at the nega-

tively selected sites separately from diversity at linked neutral sites. We focus first on the

distribution of coalescent steptimes and πd, the per-site heterozygosity at negatively selected

sites alone, ignoring neutral mutations. We will then turn to the connection between step-

times and actual times in generations, which will enable us to calculate the distribution of

neutral diversity, including the per-site heterozygosity at neutral sites πn. In analyzing data,

we will of course typically not know a priori which sites are neutral and which are negatively

selected. In such a situation, we merely add up the expected diversity at neutral sites and

negatively selected sites, so that the total expected per-site heterozygosity is π = πd + πn.

Distribution of steptimes and πd: We begin by imagining that we sample two indi-

viduals at random from the same fitness class k. If they coalesce in class k − `, they each

acquired ` different deleterious mutations to reach class k. Thus the number of negatively

selected sites at which they will be polymorphic is twice their coalescent steptime, πd = 2`.
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We therefore have

ρ(πd = 2`) = φkk(`), (22)

where ρ(πd = 2`) is the probability πd = 2`.

More generally, if two individuals sampled from classes k and k′ coalesce in class k − `,

we have πd = 2`+ k′ − k. This means we have

ρ(πd = 2`+ k′ − k|k, k′) = φk
′

k (`). (23)

We can average this over the distributions of k and k′ to find the distribution of πd amongst

individuals sampled at random from the population. We find

ρ(πd) =
∑
`

∞∑
k=0

H(k, k′ = k + πd − 2`)φk
′=k+πd−2`
k (`), (24)

where the first sum runs from ` = 0 to the largest integer less than or equal to the smaller

of k or πd/2. Note that in practice we only have to evaluate the sum over k from 0 to a

multiple of Ud/s, since H(k, k′) will be negligible for larger k.

These results for the distributions of genealogy lengths and of πd involve several sums.

However, all the terms in these sums are straightforward and the numerical evaluations of

their values are simple and fast. In Fig. 4 we show a representative example of the predicted

distribution of the per-site heterozygosity at negatively selected sites, ρ(πd), compared to

simulation results. We explore the significance of the shape of the distribution ρ(πd), how

this distribution depends on the parameter values, and the source of the small but systematic

deviations between the theoretical predictions and the simulation results in the Discussion.

The relationship between steptimes and time in generations: So far we have

focused on the genealogies measured in steptimes, which allowed us to calculate the distri-

bution of heterozygosity among negatively selected sites. We would now like to relate the

steptimes to actual times in generations. To do this, we consider the probability that a

coalescence event occurred at time t, given two individuals sampled from classes k and k′

that coalesced in class k − `, ψ(t|k, k′, `). We compute this distribution in Supplementary

Appendix E, and find

ψ(t|k′, k, `) =

πd−1∑
i=0

sπd(−1)πd−i−1
(
πd − 1

i

)(
k′ + k

πd

)
B

A−B
(
e−sBt − e−sAt

)
, (25)
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where we have defined A ≡ k′ + k − i and B ≡ 2 (k − `) + 1
Nshk−`

.

Note that when Nhk−`s(k − `)� 1 (the same condition required to neglect fluctuations

in hk, see Appendix B), this expression can be simplified; we find

ψ(t|k′, k, `) = s(πd + 1)e−s(k
′+k)t(est − 1)πd

(
k′ + k

πd + 1

)
. (26)

However, it is important to note that while this approximation may be valid in the bulk of the

distribution, it will always fail when coalescence occurs in the zero-class, where s(k− `) = 0.

In this case, we must use the more complex expression Eq. (25) (or in the case when the

coalescence time within the 0-class can be neglected compared to the time taken to descend

from the 0-class, the simpler expression described in Eq. (39) below).

Averaging over the possible values of k, k′, and `, we find the overall distribution of actual

coalescent time between two randomly chosen individuals,

ψ(t) =
∑
k′≥k

∞∑
k=0

k∑
`=0

ψ(t|k, k′, `)φk′k (`)H(k, k′), (27)

where the distributions H(k, k′), φk
′

k (`), and ψ(t|k, k′, `) are as given above. However, as we

will see below, in calculating neutral diversity we will typically find it easier to work directly

with ψ(t|k, k′, `) rather than this unconditional distribution for ψ(t).

The neutral heterozygosity πn: From the distributions of real times to a common

ancestor described above, we can calculate the distribution of πn, the neutral heterozygosity.

Since the neutral mutations occur as a Poisson process with rate Un, and there are a total

of 2t generations in which these mutations can occur, πn follows a Poisson distribution with

mean Unt, where t is drawn from the distribution of coalescence times, Eq. (27). We have

ρ(πn) =

∫ ∞
0

[2Unt]
πn

πn!
e−2Untψ(t)dt. (28)

In Fig. 5, we compare this distribution of neutral heterozygosity to simulations. We find

good general agreement to the shape of the distribution, though there are slight systematic

errors (consistent with the effects of Muller’s ratchet, which we explore further in the Discus-

sion). Note that, like our results for the diversity at negatively selected sites, these results

differ dramatically from the exponential distribution a neutral model or effective population

size approximation would predict; we describe these comparisons further in the Discussion.
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We note that an alternative way to compute neutral heterozygosity is to further extend

the sum of ancestral paths approach which we used above to provide an alternative derivation

of the coalescence probabilities. In this formulation, we do not make any connection to real

times. However, this approach provides an alternative way to compute the distribution of

neutral heterozygosity, ρ(πn). We carry out this computation in Supplementary Appendix

G, and show that it leads to results identical to our analysis above.

The total heterozygosity π: To calculate the distribution of total heterozygosity π =

πn + πd, we must account for the fact that πd and πn are not independent: large πd means

a large coalescent steptime and hence makes a large πn more likely. The distribution of πd

is given by ρ(πd) above. Above we found ψ(t|k, k′, `), which implies that

ρ(πn|k, k′, `) =

∫ ∞
0

[2Unt]
πn

πn!
e−2Untψ(t|k, k′`)dt. (29)

We can compute this integral; we find

ρ(πn|k′, k, `) =

πd−1∑
i=0

πd(−1)πd−i−1
(
πd − 1

i

)(
k′ + k

πd

)
B

A−B

(
(2Un

s
)πn

(2Un
s

+B)πn+1
−

(2Un
s

)πn

(2Un
s

+ A)πn+1

)
.

(30)

Since πd = 2`+ k − k′, this implies

ρ(πn|πd) =
∑

πd=k′−k+2`

ρ(πn|k, k′, `). (31)

This describes the joint distribution of selected and neutral variation, which is of interest

in situations where we know in advance which sites are likely to be neutral and which are

selected (e.g. when analyzing the joint distribution of synonymous and non-synonymous

variation). It implies a particular relationship between the observed diversity at selected

sites and the reduction in linked neutral variation.

In many situations, however, we will not know which alleles are selected and which are

neutral. In this case, we want to understand the distribution of total heterozygosity π, which

is given by

ρ(π) =
∑

πn+πd=π

ρ(πd)ρ(πn|πd). (32)

This is no more difficult to calculate than ρ(πn), since it involves analogous sums. In Fig. 6,

we compare this predicted distribution of total heterozygosity to simulations. As with the
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other aspects of heterozygosity, we find good general agreement to the simulations, with the

slight systematic errors that are consistent with the effects of Muller’s ratchet.

The mean pairwise heterozygosity: Above we have calculated the distribution of

heterozygosity for both neutral and deleterious mutations, as well as total heterozygosity.

It is straightforward to average these results to calculate the mean pairwise heterozygosity

for both neutral and deleterious mutations; the mean total pairwise heterozygosity is simply

the sum of these. In Fig. 7 and Fig. 8 we show how this mean heterozygosity depends on

population size, mutation rate, and selection strength, for neutral and deleterious mutations

respectively. We see that the dependence of 〈πd〉 on the population size is fairly weak. While

it increases roughly linearly with N in the weak selection regime, this quickly saturates and

for Ns substantially greater than 1 the mean heterozygosity becomes almost independent of

population size. The dependence on Ud/s, by contrast, is much stronger. The dependence

of 〈πn〉 on the parameters is also interesting: this depends weakly on the parameters for

small N or Ud/s, but for larger N becomes roughly linear. These results make intuitive

sense, particularly in light of the “mutation-time” approximation that we introduce in the

Discussion, where we discuss these figures in more detail.

Statistics in larger samples: The distributions of πn and πd described above are very

different from the distributions of heterozygosity expected in the absence of selection. We

could certainly measure the distribution of pairwise heterozygosity from a sample of many

individuals from a population, and use this to infer the action of selection. However, it

may also be useful to understand the expected distribution of other statistics describing the

variation in larger samples. One statistic often used to describe variation in larger samples is

the total number of segregating sites among a sample of n individuals, Sn. Here we describe

how our framework allows us to calculate the distribution of S3; similar methods can be used

to calculate the distribution of Sn for larger n. As we will see, it is unwieldy to calculate

closed form expressions for these quantities in our framework, so here we merely lay out a

prescription for calculating S3.

We first consider the distribution of Sd3 , the number of segregating negatively selected sites

among three randomly sampled individuals. In order to calculate the probability a sample

has a particular Sd3 , we imagine picking three individuals at random from the population

and calculate the probability of the coalescence events that lead to that Sd3 . We illustrate
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such a situation where three individuals are sampled from classes k, k′, and k′′ in Fig. 9.

Two of these three lineages coalesced in class k1. We call the steptime at which two of the

three lineages coalesced τ3 (see Fig. 9). We next need to calculate the distribution of τ2, the

total steptime to common ancestry of the three individuals. This time of course cannot be

smaller than τ3. Given values of τ3 and τ2, it is clear from Fig. 9 that the total number of

segregating negatively selected sites is Sd3 = 2τ2 + τ3 − (k′′ − k)− (k′′ − k′)..

Calculating the joint distribution of τ2 and τ3 is tedious, because we must sum over all

possible orderings of the coalescence events, but it can be computed using either our lineage

structure method or the sum of ancestral paths approach. The basic result is analogous to our

results for the coalescence steptime between a pair of individuals: coalescence probabilities

within a given class are proportional to the inverse size of that class times the number of real

generations the ancestors of given individuals typically spend in that class, times a factor

that reflects the time that the ancestors of sampled individuals are present in each class at

the same time.

Given a particular value of Sd3 , there is a relationship between the steptimes and actual

times (analogous to Eq. (25)), which we could use to find the distribution of the total number

of segregating neutral sites Sn3 . More complex statistics involving even larger samples can

be computed using similar methods.

However, while this analysis provides a prescription for calculating the distribution of Sd3

and Sn3 , it is clear that the full distributions are opaque. In the Discussion we provide a

simple approximation for Sn in a specific parameter regime we refer to as the “mutation-

time” regime, but the complexities of the general calculation are tangential to the ideas

behind our framework, so we do not pursue them further here. However, these issues will

be important to explore in future work aiming to use this framework for data analysis, and

our approach here can be used as the basis for genealogical simulations. Further, since our

methods allow us to quickly compute the probability of a given genealogical history and to

draw a particular genealogy from the appropriate distribution, they may provide a useful

basis for importance sampling or MCMC methods to infer selection pressures from data.
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NUMERICAL SIMULATIONS OF THE GENETIC DIVERSITY

We compare the predictions of our fitness-class coalescence analysis to Monte Carlo simula-

tions of the Wright-Fisher model. In our simulations, we consider a population of constant

size N and we keep track of the frequencies of all genotypes over successive, discrete gen-

erations. In each generation, N individuals are sampled with replacement from the preced-

ing generation, according to the standard Wright-Fisher multinomial sampling procedure

(Ewens, 2004) in which the chance of sampling an individual is determined by its fitness

relative to the population mean fitness.

In our simulations, each genotype is characterized by the set of sites at which it harbors

deleterious mutations and the set of sites at which it harbors neutral mutations. In each

generation, a Poisson number of deleterious mutations are introduced, with mean NUd, and

a Poisson number of neutral mutations are introduced, with mean NUn; each new mutation

is ascribed to a novel site, indexed by a random number. The mutations are distributed

randomly and independently among the individuals in the population (so that a single

individual might receive multiple mutations in a given generation). The simulations record

the time (in generations) at which each distinct genotype was first introduced.

Starting from a monomorphic population, all simulations were run for at least 1
s

ln(Ud/s)

or N generations (whichever was larger), to ensure relaxation both to the steady-state

mutation-selection equilibrium and to the PRF equilibrium of allelic frequencies within each

fitness class. The final state of the population — i.e. the frequencies of all surviving geno-

types — was recorded at the last generation. In order to produce the empirical distributions

of πd, and πn shown in Fig. 4 and Fig. 5, we averaged across at least 300 independent

populations for each parameter set.

Our simulations allow for random fluctuations in the frequencies of each fitness class, and

for Muller’s ratchet. In most of the parameter regimes we explored, the ratchet proceeded

during the simulation, so that the least loaded class at the end of each simulation typically

contained anywhere from no deleterious mutations (typical for Ud/s = 2) to of order ten

(typical for Ud/s = 4). We see that despite these effects, our theory agrees well with the

simulations, although there are small systematic errors that are consistent with effects of

the ratchet. Generally speaking these errors increase as we increase Ud/s, but become less
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severe for larger N or s. We consider these effects of Muller’s ratchet in more detail in the

Discussion.

DISCUSSION

In recent years, both experimental studies and sequence data have pointed to the general

importance of selective forces among many linked variants in microbial and viral populations,

and on short distance scales in the genomes of sexual organisms (Hahn, 2008). Our analysis

provides a framework for understanding how one particular type of selection — pervasive

purifying (i.e. negative) selection against deleterious mutations — affects the structure

of genetic variation at the negatively selected sites themselves and at linked neutral loci.

This type of selection is presumably widespread in many populations, in which there is a

selective pressure to maintain existing genotypes and mutations away from these genotypes

at a variety of loci are deleterious.

A variety of earlier work has addressed aspects of this problem, as described in the In-

troduction. The key insight of our approach is that instead of following the true ancestral

process, we develop a fitness-class genealogical approach which focuses on how individuals

“move” through the fitness distribution. Here each mutation plays the role of a reproduc-

tive event that moves individuals through the fitness distribution, and each fitness class is

a “generation” in which coalescence can occur with some probability. We calculate this

probability using a simple approximation based on the PRF model of Sawyer and Hartl

(1992), rather than by considering the actual reproductive process within that class. By

extending formulas originally computed by Hudson and Kaplan (1994), we showed that

these coalescent probabilities can also be computed using a summation of ancestral paths

based on the structured coalescent described by Kaplan et al. (1988). Hence the con-

clusions from our analysis also describe the simulations of Gordo et al. (2002) and are

consistent with all other results based on this structured coalescent approach. Our work is

also closely related to recent work in a continuous-fitness model by O’Fallon et al. (2010),

which uses a similar framework to analyze the weak-selection regime but not the Ns � 1

situation we study here. We explore the relationship between our analysis and earlier work

in more detail in Appendix C.

Our approach leads to simple expressions for the coalescent probability at each step in
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our fitness-class genealogical process. This makes it a complete effective coalescent theory:

using these probabilities, we can calculate the probability that a sample of individuals has

any particular ancestral relationship. Our coalescent probabilities are different from those

in the standard Kingman coalescent (Kingman, 1982), so the structure of genealogies has

a different form.

Of course, since our process is an effective rather than an actual coalescent, the rela-

tionship between a fitness-class genealogy and the expected statistics of genetic variation

given that genealogy is different than in the standard neutral coalescent. Given a particular

genealogy measured in steptimes, the numbers of deleterious mutations are the coalescent

times, and to calculate the statistics of neutral variation we have to make use of the rela-

tionship between steptimes and actual coalescence times. This contrasts with the Kingman

coalescent, where numbers of neutral mutations are typically Poisson-distributed variables

with means proportional to coalescence times (Wakeley, 2009). However, we can account

for these differences by starting with the distribution of fitness-class genealogies and then

converting these genealogies into actual coalescence times.

In this paper, we have used this fitness-class approach to calculate simple statistics de-

scribing genetic variation, in particular the distribution of pairwise heterozygosity. This

leads to analytic expressions for the quantities of interest, although these expressions in-

volve sums which are most easily calculated numerically. These are easy to compute, and do

not become harder to evaluate in larger populations, and hence are more efficient to evaluate

than either simulations or calculations within the ancestral selection graph.

An Intuitive Picture of the Structure of Genealogies: The most important aspect

of our analysis is not the specific results for heterozygosity, which match the conclusions

of earlier simulations. Rather, the fitness-class coalescent approach allows us to draw sev-

eral important general conclusions about how negative selection distorts the structure of

genealogies. For two individuals drawn from particular fitness classes, the effect of negative

selection is similar to that of an effective population size that changes as time recedes into

the past. This is consistent with suggestions from earlier work (e.g. the simulation study

of Williamson and Orive (2002) and the work of Seger et al. (2010)). However, this

is not a population size that decreases in a simple way into the past. Our analysis shows

the exact form of this time dependent population size. Further, it is clear from our analy-
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sis that this is not the only effect of negative selection on genealogies. There are two key

complications. First, the statistics of genetic variation (particularly at the deleterious sites

themselves) depend on the structure of genealogies differently in our fitness-class coalescent

than in the standard neutral coalescent. Second, the time-varying rate of coalescence be-

tween a pair of individuals depends on the fitness classes they were sampled from. In other

words, different pairs of individuals have a different time-varying effective population size.

This suggests that genetic diversity cannot be represented by a single time-varying effective

Ne(t) for the whole population, which means that it may be possible to develop statistical

tests to distinguish negative selection from population size. All of these general intuitive

conclusions about the structure of genealogies in our fitness-class coalescent are illustrated

in Fig. 10.

We now pause to make this intuitive picture of the shape of typical genealogies more

precise. In general the probability that two individuals will coalesce within class k has the

form Pc ≈ A
2

1
nksk

, where nk is the population size of that class, sk is the effective selection

pressure against individuals within that class, and A is a constant that depends on which

classes the lineages began in, but not on any of the population parameters. We have seen

that each lineage spends on average 1
sk

generations in class k. Thus we can think of each

individual as seeing a historical effective population size as shown in Fig. 10c: it starts in

some class k with size nk and spends 1
sk

generations in that class before moving to class

k − 1, and so on.

If we sample two individuals, however, they will not always be in the same class at the

same time. This effect reduces the coalescence probabilities in each class, as captured by

the factor A/2. This factor is the average fraction of the 1
sk

generations each lineage spends

in class k that the two lineages spend there together. Alternatively, we can think of this

factor as consisting of two parts: A is the probability that the two lineages are ever in the

same class at the same time, and 1
2sk

is the average amount of time that they coexist in the

class if they coexist at all (they each spend on average 1
sk

generations there, but on average

overlap for only half this time if they overlap at all). While the two lineages are in the class

at the same time, the per-generation coalescent probability is 1
nk

.

This logic implies that genealogies in the presence of purifying selection look like neutral

genealogies with a specific type of historical population size dependence. Imagine for example
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we picked two individuals from the same fitness class k. They each spend on average 1
sk

generations in class k, and during that time they have a probability A
2

1
nk

per (real) generation

of coalescing (this probability includes the fact that on average they are both in the class

simultaneously for only a fraction of the mean time each spends there). So roughly speaking,

they have an effective population size of Ne ∼ 2nk/A
k,k
`=0 for the first 1

sk
generations. If they

fail to coalesce, they then move to class k − 1, where they spend 1
s(k−1) generations and

have a probability A
2

1
nk−1

per generation of coalescing, and hence an effective population size

Ne ∼ 2nk−1/A
k,k
`=1 for this time. If they again fail to coalesce, they move to class k − 2, and

so on.

So far, this picture of a time-dependent population size is rather crude, but we can make it

more precise. Specifically, we can write the coalescence probability between two individuals

sampled from class k and k′ as a function of time in generations as

ψ(t|k, k′) =
k∑
`=0

φk
′

k (`)ψ(t|k, k′, `). (33)

We can then define the time-dependent effective population size between these individuals,

Ne(t), as the inverse probability of coalescence at time t given that coalescence has not yet

occurred,

1

Ne(t)
=

ψ(t|k, k′)
1−

∫ t
0
ψ(t′|k, k′)dt′

. (34)

In other words, the Ne(t) is defined as usual as the inverse of the probability that the two

individuals will coalesce at time t given that they have not yet done so.

We illustrate this precise time-dependent population size Ne(t) in Fig. 10d. We see that

for two individuals sampled from the same fitness class, Ne(t) typically increases into the

recent past and then decreases into the more distant past. This reflects the fact that the two

individuals are becoming less likely to be in the same fitness class in the recent past, but

that as time recedes into the distant past they are likely to be in the highly fit classes which

have smaller nk. For two individuals sampled from classes near but not identical to each

other, Ne(t) starts high and then drops before exhibiting a pattern similar to that among

individuals sampled from the same class. This reflects the fact that it takes at least a short

time before the two individuals have any chance of being in the same class. Finally, for

two individuals sampled from more distant classes, Ne(t) simply declines into the past, both
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because longer ago they were more likely to be in the same class and more likely to be in

the small classes near the high-fitness tail.

Averaging over the whole population, Fig. 10d shows the precise time-dependent popu-

lation size Ne(t) for two randomly sampled individuals. This average Ne(t) initially stays

roughly constant as time recedes into the past before decreasing thereafter. For these two

randomly sampled individuals, selection is indistinguishable from this particular historically

varying population size. The distribution of coalescence times between this pair of individ-

uals looks the same as neutral coalescent histories with this specific population size history.

The deleterious mutation rates and selection pressures only matter in that they determine

the form of this population size history. We note that the average Ne(t) shown in Fig.

10d implies that recent branches of genealogies will typically be longer relative to ancient

branches than we would expect under neutrality. Thus background selection will lead to an

excess of low-frequency variants, and hence lead to negative values of Tajima’s D, consis-

tent with expectations from previous work (Charlesworth et al., 1995; Fu, 1997; Gordo

et al., 2002).

However, a key difference from a neutral population of time-varying size is that, as is clear

in Fig. 10d, pairs of individuals do not typically come from the same fitness class. Rather,

they come at random from different parts of the fitness distribution, and those that come

from different places have ancestries characterized by different historically varying population

sizes. The total distribution of ancestry is the sum of all of these. In other words, the genetic

variation within the population is like that in a population where some individuals had one

type of historical population size history, while others had another. If we restrict ourselves

to pairwise statistics such as π, the average Ne(t) across pairs of individuals will accurately

describe the genetic diversity. However, when we consider appropriately defined statistics

in larger samples, the fact that there is no single Ne(t) for the whole population could be

important. It remains an interesting question for future work to explore how to exploit this

fact to develop statistical tests to distinguish the effects of purifying selection from that of

a historically varying effective population size.

Approximations underlying our approach: Our analysis relies on several key ap-

proximations. First, both our lineage-structure and our sum of ancestral paths methods

assume that we can neglect fluctuations in the total frequency hk of each class. Related
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to this approximation, we have also implicitly assumed that the probability a lineage in

class k reaches a frequency close to hk can be neglected. In Appendix B, we analyze these

approximations in detail and show that they will hold in class k whenever Nhksk � 1. In

practice, this condition will often break down in the high and low-fitness tails of the fitness

distribution. Fortunately, provided it holds in the bulk of the distribution in which most

individuals will be sampled (which will typically be true provided Ns � 1), our approach

will still be a good approximation. We have also made several other more technical approx-

imations in computing the fitness-class coalescent probabilities. We discuss these in detail

in Supplementary Appendices A and D.

Our final and most important approximation is that we assume that Muller’s ratchet

can be neglected. The ratchet occurs when h0 fluctuates to 0, so we can think of this

approximation as an extreme aspect of neglecting fluctuations in the sizes of each fitness

class. This approximation can sometimes be problematic; we discuss it in detail below.

Although we have focused primarily on situations when selection is weak compared to

total deleterious mutation rates, our approach is also valid regardless of whether s is strong or

weak compared to Ud. However, when selection is sufficiently strong (Ns� 1 and Ud/s < 1),

then an effective population size approximation accurately describes the patterns of genetic

variation, as we describe below. Thus our methods are primarily useful for situations where

selection is weak compared to mutation rates.

Relationship with an effective population size approximation: Charlesworth

et al. (1993) considered how selection against many linked deleterious mutations affects

linked neutral diversity in a model identical to ours. These authors found that when selection

is sufficiently strong, the shape of genealogies and hence the statistics of variation at linked

neutral sites is identical to the neutral case, with a reduced effective population size. We

refer to this as the effective population size (EPS) approximation.

The idea behind the EPS approximation is that when selection is strong, deleterious

mutations are quickly eliminated from the population by selection. Thus if we sample in-

dividuals from the population, they must have very recently descended from individuals

within the class of individuals which had no deleterious mutations (the 0-class). The EPS

approximation assumes that the time for this to happen can be neglected, and that indi-

viduals never coalesce before it does. These individuals then coalesce within the 0-class as
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a neutral process with effective population size equal to the size of that 0-class, which is

Ne−Ud/s. Thus the genetic diversity within the population is identical to that in a neutral

population of reduced size Ne = Ne−Ud/s.

The EPS approximation is valid provided that the neutral coalescence time within the

0-class, tneut, is large compared to the time it takes for a typical individual to have descended

from the 0-class, tdesc. We know tneut ∼ Ne−Ud/s, and since a typical individual comes from

fitness class k ∼ Ud/s, we have that tdesc ∼
∑Ud/s

j=1
1
js
∼ 1

s
ln
(
Ud
s

)
. This means that the EPS

approximation will be valid provided

Nse−Ud/s � ln

(
Ud
s

)
. (35)

Because of the exponential term on the left hand side of this expression, it is clear that

the EPS approximation is a strong-selection, weak-mutation limit. It will tend to be valid

provided that Ns > 1 and Ud < s. However, whenever Ud becomes much larger than s, it will

typically break down even in enormous populations, as has been suggested by Nordborg

et al. (1996) and Kaiser and Charlesworth (2009).

Our analysis describes the effects of background selection beyond the EPS approximation.

We do not assume that the coalescence time through the fitness distribution is small com-

pared to the coalescence times within the 0-class, or that coalescence cannot occur among

individuals carrying deleterious mutations. It is precisely these two effects that lead to dis-

tortions away from the neutral expectations, making it impossible to describe genealogies

using neutral theory with a revised effective population size. Although our analysis is a

generalization of the EPS approximation, it is not inconsistent with it. However, we have

focused primarily on situations where the EPS approximation breaks down, and coalescence

times through the fitness distribution are large compared to those in the 0-class, because

this is the situation where our approach is most useful.

Note also that in many situations it may be the case that there are many linked weakly

selected mutations and many linked strongly selected mutations. In such circumstances, the

process we consider and the EPS approximation can act simultaneously, each for different

classes of mutations. Imagine we had one class of mutations with fitness cost s1 which

occur with mutation rate U1, where U1 < s1 and Ns1 � 1 so that the EPS approximation

applies. At the same time, imagine another class of mutations with fitness cost s2 which
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occur with mutation rate U2, where U2 � s2 so that the EPS approximation breaks down

for these mutations. In this case, the genetic diversity we expect to see will be characteristic

of our fitness-class coalescent theory (with Ud = U2 and s = s2), but with a reduced

effective population size Ne = Ne−U1/s1 . In other words, the strongly selected mutations

reduce the effective population size because all individuals are very recently descended from

an individual that had no large-effect mutations, but the coalescence time through the

distribution of weakly selected mutations cannot be neglected.

A “Mutation-time” Approximation: We have seen that our analysis accounts for

two effects missing from the EPS approximation: coalescence events outside the 0-class,

and the time it takes for individuals to have descended from the 0-class. Whenever Ud/s

and N are both sufficiently large, the former effect can be neglected while the latter is

still important, because the number of lineages in each fitness class becomes large and

hence coalescence events are very unlikely to occur outside of the 0-class. This leads to

an approximation which we can think of as a generalization of the EPS approximation.

Rather than considering primarily the diversity generated within the most-fit background,

we focus instead on the diversity that accumulates while lineages move between different

less-fit backgrounds. Hence we term this approach a “mutation-time approximation” (MTA)

for short. In this approximation, we assume that all individuals coalesce within the 0-class,

as with the EPS approximation. However, unlike the EPS approximation, we consider the

time it took for individuals to descend from the 0-class in addition to the coalescence time

within the 0-class. This approximation is valid for large N (when even Nh1 is enormous

compared to 1
s
) so that coalescence always occurs in the 0-class.

In this mutation-time approximation our results become much simpler and provide a

useful intuitive picture of the structure of genealogies and genetic variation. Consider the

deleterious heterozygosity πd of two individuals sampled from fitness classes k and k′. In

this approximation, these two individuals always coalesce in the 0-class so we always have

πd = k + k′. Since two individuals are sampled from classes k and k′ with probability

H(k, k′), the distribution of πd in the population as a whole is extremely simple: we have

ρ(πd) =
∑

k=πd−k′
H(k, k′) = e−2Ud/s

1

πd!

(
2Ud
s

)πd
. (36)

This simple approximation makes it clear why the distribution of πd looks the way it does,
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and explains how it varies with Ud/s and with N , both in this mutation-time approximation

and more generally. For large N , when coalescence outside the 0-class can be neglected, two

individuals from class k and k′ have πd = k+k′. Thus the distribution of πd has roughly the

same shape as the distribution of fitness within the population. The mean πd is 2Ud/s, since

the average individual comes from class k = Ud/s. Smaller and larger πd are less likely; the

distribution of fitness in the population has variance equal to the mean, so the variance of

the distribution of πd is also roughly equal to its mean. As N gets smaller, there is sometimes

coalescence outside of the 0-class. This reduces πd given k and k′. Hence as we reduce N ,

the distribution of πd shifts somewhat leftwards, with a peak somewhat below 2Ud/s, and

has slightly more variance relative to the mean since there is a less definite correspondence

between k, k′, and πd. Since πn is determined by πd, this also explains why the distribution

of πn has the peaked form we observe, and how it depends on Ud/s and N (note that for

πn the coalescence time within the 0-class, which increases linearly with N , must also be

included). All of these intuitive expectations are reflected in our results, as shown in Fig. 4,

Fig. 5, Fig. 7, and Fig. 8. Note for example that in Fig. 4, the peak of πd is slightly below

2Ud/s (reflecting the finite population size) and has variance about equal to its mean; we

have verified that as N increases the shape of the distribution remains roughly the same,

but the mean increases towards 2Ud/s and the variance decreases slightly.

More complex statistics of sequence variation are similarly straightforward to calculate in

the mutation-time approximation. When considering larger samples, the genetic diversity

is determined by the fitness classes these individuals come from, which is always simple

since the probability a given individual is sampled from fitness class k is just the Poisson-

distributed hk. This approximation may therefore prove useful in developing simple and

intuitive expressions for various statistics. For example, we can use this approximation

to calculate a simple expression for the distribution of the total number of segregating

negatively selected sites in a sample of size n, Sdn, which as we have seen above is otherwise

rather involved. We have

ρ(Sdn = x) =
∑

k1,k2,...kn

hk1hk2 . . . hkn , (37)

where the sum is over sets of the ki that sum to x. We find

ρ(Sdn = x) = e−nUd/s
1

x!

(
nUd
s

)x
. (38)
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This is a distribution which is peaked around a mean value of nUd
s

, for the same reasons the

distribution of πd looks as it does. We note however that as we increase the sample size n

the population size N must be even larger for this MTA approximation to hold.

We can also calculate the distributions of actual coalescence times and hence the distribu-

tions of statistics describing neutral diversity in the mutation-time approximation. Consider

the distribution of the real coalescence time between two individuals chosen from classes k

and k′. In the mutation-time approximation where the coalescence time within the 0-class

can be neglected, the actual coalescence time is

ψ(t|k, k′) = s(k + k′)e−s(k+k
′)t
(
est − 1

)k+k′−1
. (39)

Averaging over the values of k and k′, we have

ψ(t) = 2Ude
−st−2(Ud/s)e−st . (40)

The distribution of coalescence times once within the 0-class is ψ0(t) = 1
Nh0

e−t/(Nh0). From

this distribution of real coalescence times, we can find the distribution of neutral heterozy-

gosity πn in the usual way,

ρ(πn) =

∫ ∞
0

[2Unt]
πn

πn!
e−2Untψ(t)dt. (41)

We can immediately see that the average coalescence time in this MTA approximation is

t ≈
∑2Ud/s

0
1
si

+ Nh0 ≈ 1
s

ln (2Ud/s) + Nh0. We therefore expect that the neutral heterozy-

gosity will on average be

〈πn〉 ∼
2Un
s

ln

(
2Ud
s

)
+ 2Nh0Un. (42)

The first term in this expression comes from the time to descend through the fitness distri-

bution, while the second term comes from the time to coalesce within the 0-class. If this

latter term is large compared to the former, the EPS approximation applies. In the oppo-

site case where the time to descend through the distribution dominates, we can see from

the MTA approximation that, as with πd, the shape of this distribution of πn is primarily

determined by the shape of H(k, k′). In this case, the peak in hk at k = Ud/s leads to a

peak in the distribution of real times and hence a peak in the distribution of πn. The width

of the distribution of πn is somewhat wider, however, since even given individuals coming
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from fitness classes near the mean, there is a broad distribution of possible real times, and

a broad distribution of πn even given a particular real time.

This average heterozygosity would correspond to an effective population size of

Ne ∼
1

s
ln

(
2Ud
s

)
+Nh0, (43)

but as we have seen this effective population size cannot correctly describe the full distribu-

tion of πn nor its relationship to other statistics describing the genetic diversity. For smaller

values of N where the mutation-time approximation breaks down, the average πn would be

somewhat lower than the MTA predicts, and its distribution somewhat broader.

Muller’s Ratchet: We have neglected Muller’s ratchet throughout our analysis, and as-

sumed that the fitness distribution hk is fixed. Yet Muller’s ratchet will certainly occur, and

in some circumstances could have a significant impact on genetic diversity (Charlesworth

and Charlesworth, 1997; Gordo et al., 2002; Seger et al., 2010). Thus this is a poten-

tially important omission from our theory. In this section we discuss some of the complica-

tions associated with Muller’s ratchet that are important to keep in mind when considering

our approach. We discuss the parameter regimes where neglecting Muller’s ratchet should

be reasonable, and those where it is likely to cause more serious problems. We provide rough

estimates of how large we expect these problems to be, and suggest a few possible ways in

which future work might incorporate Muller’s ratchet into our general framework.

Muller’s ratchet causes several related problems within our theoretical framework. First,

it causes the values of hk to change with time, and means they may not always follow a

Poisson distribution. This changes the distribution of lineage frequencies within each class,

and hence changes the coalescence probabilities. After a “click” of the ratchet, the whole

distribution hk shifts in a complicated way, eventually reaching a new state where it is shifted

left (so the class that was originally at frequency hk is now at frequency hk−1, and so on).

In a similarly complex way, the PRF distribution of lineage frequencies in class k shifts from

fk to fk−1, and so on. This naturally changes the coalescence probabilities in each class.

Fortunately, since the coalescence probabilities in class k are generally very similar to those

in classes k + 1 or k − 1, this effect is unlikely to lead to major inaccuracies provided the

ratchet does not click many times within a coalescent time. This is true except when we

start considering coalescence in classes close to the 0-class, where the k-dependence becomes
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significant. This can be thought of as an additional problem associated with Muller’s ratchet,

and is associated with the fact that the ratchet shifts the whole fitness distribution. This

effect is easiest to see with an example: imagine we sample two individuals within the k-class,

and that these individuals did not coalesce before their ancestors were both in the 0-class.

At the time (in the past) when these individuals’ ancestors were in the 0-class, this current

0-class might have been the 1-class or 2-class (or higher). Thus these two individuals within

the 0-class might not coalesce until, for example, their ancestors were in what is currently

the “−2”-class. This clearly means that we might in fact have πd > 2k, which our analysis

assumes is impossible. In fact, we observe precisely this effect in simulations, and it is the

reason why we commonly observe systematic deviations where the simulated values of πd

are larger than our theory predicts.

From this discussion it is clear that the key factor in determining whether Muller’s ratchet

can reasonably be neglected is how many times the ratchet “clicks” in a coalescence time.

We have seen above that an average individual coalesces through the fitness distribution in

a time at most of order 1
s

ln (Ud/s) generations. Once within the 0-class, coalescence times

are of order Ne−Ud/s. We must compare these times to the time it takes for the ratchet to

“click.” The rate of the ratchet is a complex issue that has been analyzed by Gordo and

Charlesworth (2000a), Gordo and Charlesworth (2000b), and Kim and Stephan

(2002) in the regime where Ne−Ud/s > 1 and by Gessler (1995) in the regime where

Ne−Ud/s < 1. No general analytic expressions exist which are valid across all parameter

regimes. However, provided the ratchet does not typically move a substantial fraction of the

width of the fitness distribution in the coalescence time of two random individuals, it will

be a small correction to πd, and neglecting it is a reasonable first approximation. In practice

we find in our simulations that for the parameter regimes we consider, πd is at most of order

2 larger than our theoretical predictions, which would correspond roughly to the effect of a

single click of the ratchet during a typical coalescence time.

The discussion above suggests a way to incorporate Muller’s ratchet within our theoretical

framework, albeit in an ad-hoc way. The ratchet shifts the distribution hk underneath the

fitness-class coalescent process. The details of this shift are complicated, but on average

every click of the ratchet shifts the distribution one step to the left. We can define kmin to

be the number of deleterious mutations (relative to the optimal genotype) in the most-fit
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individual at any given time. For the case where Ne−Ud/s > 1, the rest of the distribution

will be approximately a Poisson distribution, but with hk replaced by hk−kmin
. Muller’s

ratchet can then be thought of as a process by which kmin increases over time. This increase

is a random process, but has some average rate, leading to an average kmin(t). As we look

backwards in time during the fitness-class coalescent process, the value of kmin is decreasing

due to Muller’s ratchet. This suggests a simple approximation: we replace the actual value

of k with an “effective” value of k that accounts for the fact that kmin decreases as we look

backwards in time. For each step through the fitness distribution, we imagine that kmin has

decreased by the appropriate amount, and hence the effective value of k in the new fitness

class is decreased by less than 1 compared to the old fitness class. When Ne−Ud/s < 1 the

ratchet is an almost deterministic process, so a similar approximation may prove useful, but

in this case the distribution hk is on average shifted from the Poisson form (Gessler, 1995).

To incorporate the ratchet into our analysis in this situation, we first must recalculate the

relevant coalescence probabilities given the expected average form of hk, and then carry out

the above program. These and other methods to account for Muller’s ratchet remain an

interesting topic for future work.

Despite the potential relevance of Muller’s ratchet in practical situations, we note that it

does not affect our results in the standard coalescent limit. As is apparent from our general

expressions for the coalescence probabilities, the structure of our fitness-class coalescent

theory does not depend on all three parameters N , Ud, and s independently. Rather, it

depends only on the combinations NUd and Ns. Thus our theory makes sense in the

standard limit where NUd and Ns are held constant while we take N → ∞. In this limit,

Muller’s ratchet does not occur. Whether this means we can neglect the ratchet for large

but finite N depends on the convergence properties of the coalescent limit. This is a difficult

limit to explore with simulations, because it requires large population sizes. However, we

have used simulations to verify in a few cases that, as expected, increasing N while keeping

NUd and Ns constant does not change the predicted structure of genealogies but decreases

some of the systematic differences between theoretical predictions and the simulations which

are suggestive of the effect of the ratchet. Note that while this ratchet-free limit does not

change the structure of genealogies in our fitness-class coalescent, the distribution of real

coalescent times does change, since all real timescales are proportional to s. Thus, as might
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be expected, we must also take NUn constant as N →∞ if we wish neutral diversity to also

remain unaffected in this limit.

Note that this ratchet-free limit, while fairly standard in coalescent theory, is somewhat

different from the mutation-time approximation we discussed above. Of course, we can easily

imagine a population which is large enough that the mutation-time approximation applies,

and then take the standard coalescent limit.

Conclusion: Our fitness-class coalescent approach provides a framework in which we can

compute distributions of genealogical structures in situations where many linked negatively

selected sites distort patterns of genetic variation. We have used this framework to calculate

the distributions of a few simple statistics describing sequence variation. It remains for

future work to use this fitness-class coalescent approach to compute a wide array of statistics

to better understand the details of how purifying selection on many linked sites distorts

patterns of genetic variation. The eventual goal will be to use our results to help interpret

the increasing amounts of sequence data which seem to point to the importance of negative

selection on many linked sites.
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APPENDIX A: THE FITNESS-CLASS COALESCENT PROBABILITIES

PRF Lineage-Structure Approach: In the main text, we used our PRF lineage-structure

approach to write an integral expression for the probability P k,k′→k−`
c that two individuals

sampled from fitness classes k and k′ coalesce in class k−`, Eq. (13) above. In this Appendix,

we evaluate this integral to calculate the coalescent probabilities.

Eq. (13) depends on the transition probability for the change in the frequency of a lineage

from x to y in a time |t1−t2| in class k−`, Gk−`(y → x, |t2−t1|). This transition probability

was calculated by Kimura (1955) and can be expressed as an infinite sum of Gegenbauer

polynomials. Fortunately, it appears in the context of an integral

IG =

∫
yGk−`(y → x, |t2 − t1|)dy, (44)

which is simply the average of y over Gk−`. Hence this integral is given by the deterministic

result for the change in the frequency of the lineage,

IG = xe−s(k−`)|t2−t1|. (45)

Note this deterministic solution simply reflects the exponential decline in frequency of a rare

deleterious allele. Substituting Eq. (45) into Eq. (13), we find

P k,k′→k−`
c =

∫
dxdt1dt2Q

k−`
k,k′ (t1, t2)

x2fk−`(x)

h2k−`
e−s(k−`)|t2−t1|. (46)

The x integral can be evaluated using standard asymptotic methods; we find∫ 1

0

dxx2fk−`(x) ≡ Ik−`x =
1

1 + 2Nhk−`s(k − `)
. (47)

Note that this and all further expressions for Ik−`x incorporate the branching process correc-

tion for fluctuations in hk described in Appendix B. Plugging in this result, we find

P k,k′→k−`
c = Ik−`x

∫
dt1dt2Q

k−`
k,k′ (t1, t2)e

−s(k−`)|t2−t1|. (48)

To make further progress, we must understand Qk−`
k,k′ (t1, t2), the joint distribution of the

times at which individuals sampled from fitness classes k and k′ originally mutated from

class k − ` to class k − ` + 1. In general, t1 and t2 are not independent, since in order

for the two lineages to have coalesced in class k − ` they must not have coalesced in any
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earlier classes, which makes them less likely to have been in those classes at the same

time. In Supplementary Appendix A, we analyze these distortions and their effects on

the coalescence probabilities. Here we make use of a simpler approximation: since the

coalescence probability in each step will turn out to be small, conditioning on not coalescing

in a particular class does not shift the distribution of mutation timings much. We therefore

neglect the complications associated with the probability distributions of the mutant timings

conditional on non-coalescence. We refer to this as the non-conditional approximation, and

discuss its validity further in Supplementary Appendix A.

In the non-conditional approximation, the times t1 and t2 are independent, Qk−`
k,k′ (t1, t2) =

Qk−`
k (t1)Q

k−`
k (t2). We calculate these distributions of mutant timings Qk−`

k (t) in Supplemen-

tary Appendix B. Plugging these in, and evaluating the integrals as described in Supple-

mentary Appendix C, we find∫
dt1dt2Q

k−`
k,k′ (t1, t2)e

−s(k−`)|t2−t1| =

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) ≡ Ak,k
′

` . (49)

Plugging this result into Eq. (48), we find P k,k′→k−`
c = Ik−`x Ak,k

′

` , the result quoted in the

main text. We note that e−s(k−`)|t2−t1| is the probability the ancestor of the first individual

to mutate into class k − ` is still there when the ancestor of the second individual mutated

into that class. Thus Ak,k
′

` is the probability that the ancestors of the two individuals were

in class k − ` at the same time, while Ik−`x is the probability that they coalesce if so, as

described in the main text.

Sum of ancestral paths approach: In the main text, we considered the probability

of any particular ancestral path in the history of a sample of two individuals. In this

section, we sum over the probabilities of all possible ancestral paths to compute the fitness-

class coalescence probabilities. First, we consider sampling two individuals from the same

fitness class k. In order for these two individuals to coalesce in class k, the first event must

be a coalescent event. Using the event probabilities computed in the main text, we find

P k,k→k
c = Ikx , equivalent to our earlier lineage-based result. In order for these individuals

to coalesce in class k − 1, the first event must be a deleterious mutation event. Since both

individuals’ ancestral lineages are currently in class k, the probability the first event is a

deleterious mutation event is 1− Ikx . After this event, there is now one ancestral lineage in

class k− 1, and one in class k. The next event must be a deleterious mutation in the latter,
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which occurs with probability k
2k−1 . Finally, the third event must be a coalescent event.

This implies

φkk(1) = (1− Ikx)Ik−1x

k

2k − 1
. (50)

Note that this logic has given us an expression for the probability that the coalescent steptime

is 1, φkk(1), and not the probability of coalescence in this class given that coalescence has not

yet occurred, P k,k→k−`
c , because we have already included the probability that the coalescence

event does not happen in class `.

We can continue to extend this logic to subsequent fitness classes. For example, for

coalescence to occur in class k−2, there are six possible paths. We can label them as AABBc,

BBAAc, ABABc, ABBAc, BABAc, and BAABc, where A corresponds to a mutation in the

first individuals’ ancestral lineage, B corresponds to a mutation in the second individuals’

ancestral lineage, and c corresponds to a coalescent event. We can calculate the probability

of each path. For example,

P (AABBc) =

(
1− Ikx

2

)(
k − 1

2k − 1

)(
k

2k − 2

)(
k − 1

2k − 3

)
Ik−2x . (51)

The probability of path BBAAc is identical, since it has the same probabilities at each

step. However, the remaining four paths have a different probability, because the ancestral

lineages exist together in the k − 1 class at the same time. This distorts the probability of

mutations at that step, since coalescence could also have occurred. For paths of this type,

we have

P (ABABc) =

(
1− Ikx

2

)(
k

2k − 1

)(
1− Ik−1x

2

)(
k − 1

2k − 3

)
Ik−2x . (52)

We add up each path to find

φkk(2) = Ik−2x

k(k − 1)

4(2k − 1)(2k − 3)

(
2
(
1− Ikx

)
+ 4

(
1− Ikx

) (
1− Ik−1x

))
(53)

= Ik−2x

3k(k − 1)

2(2k − 1)(2k − 3)

(
1− Ikx −

2

3
Ik−1x +

2

3
IkxI

k−1
x

)
. (54)

It is informative to consider the form of this result. The Ik−2x factor is the probability that

the two ancestral lineages coalesce in class k−2, given that they existed in class k−2 at the

same time. The remaining factors represent the probability that the two ancestral lineages

existed at the same time in class k − 2. This consists of a leading order term k(k−1)
4(2k−1)(2k−3)

(identical to our earlier result for Ak`=2), multiplied by a correction due to the distortion in

paths from the possibility of coalescence in previous steps.
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We can continue on to consider the probability of coalescence in class k−3. There are now

a total of
(
6
3

)
possible paths. These can be split into four types, depending upon whether

the two ancestral lineages coexisted in both classes k − 1 and k − 2 (e.g. ABABABc), in

class k − 1 only (e.g. ABAABBc), in class k − 2 only (e.g. AABBABc), or in neither

(e.g. AAABBBc). The probability of each type of path is identical, except for a distortion

factor (1 − Ik−ix ) for each class k − i in which the two ancestral lineages were together at

the same time. The probabilities can be calculated as before, and summed to yield φkk(3).

Using similar logic, we can extend this approach to the situation where two individuals are

sampled from different classes, k′ and k.

In Supplementary Appendix D, we describe the details of carrying out this summation

over all possible paths to determine the coalescent probabilities. We find

φk
′

k (`) = Ik−`x

(
k′

k−`

)(
k
k−`

)(
k′+k

k′−k+2`

) [1−
`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix + (55)

`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx − . . .

]
, (56)

where as always we have assumed k ≤ k′ by convention. The form of this solution is

intuitive. The factor Ik−`x is the probability of coalescence in class k − `, given that the two

ancestral lineages existed in this class at the same time. The remaining factors reflect the

probability that the two lineages are together in class k− ` at some point. This consists of a

leading order term, which is identical to the Ak,k
′

` calculated previously, times a correction.

The correction represents the distortion in the paths due to the possibility that coalescence

could have occurred at previous steps. There are a total of l + 1 terms in the correction,

each of which is known and calculable.

Provided that 2Nhksk � 1, we can neglect the higher-order terms in Eq. (56). This is

equivalent to calculating the probability of coalescence in a given class, without considering

the possibility that coalescence events could have occurred in previous classes. Thus it

converts our expression for φk
′

k (`) into an expression for P k,k′→k−`
c . Neglecting these terms

also implicitly makes the non-conditional approximation, as we did in the PRF method,

because it assumes that the fact that coalescence did not occur in previous classes does not

distort the likelihood of taking particular paths. Making this approximation, we find

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (57)

42



which exactly matches our expression for the coalescence probabilities in the non-conditional

approximation in our PRF approach, Eq. (15).

The condition 2Nhksk � 1 is the condition we are already assuming in treating the

frequencies of each class, hk as constant (see Appendix B). Thus the results from the PRF

method and the sum of ancestral paths are exactly equivalent in the regime where they are

valid. We discuss the correspondence between approximations in the sum of ancestral paths

method as compared to the PRF method in more detail in Supplementary Appendix D.

APPENDIX B: FLUCTUATIONS IN HK

Throughout our analysis, we have neglected fluctuations in the frequencies of each fre-

quency class hk. This approximation was necessary to write our PRF expressions for lineage

structure, fk(x), which depend on hk. Similarly, it was necessary for us to compute the

probabilities of each possible ancestral event in our sum of ancestral paths method. In this

Appendix, we examine this approximation in detail and analyze its regime of validity.

Fluctuations in the fitness class frequencies affect the coalescence probability within class

k in three different ways. First, fluctuations in hk−1 affect the rate at which mutations enter

class k. When hk−1 is larger than average, more mutations occur. Within the PRF method,

this means that there will be more small lineages than the steady state fk(x) accounts for,

which reduces the coalescence probability. In the sum of ancestral paths method, this means

that the probability of mutation events increases relative to the probability of coalescence

events, which similarly reduces the coalescence probability. When hk−1 is smaller than

average, less mutations occur, and the reverse is true.

Second, fluctuations in hk affect the coalescence rates within this class. Consider the case

where hk is larger than average. Within the PRF method, this means that the probability

that two individuals randomly sampled from class k come from a given lineage of size x

is less than our assumption of x2

h2
k
. This reduces the coalescence probability. In the sum

of ancestral paths method, this means that the probability of coalescence events decreases

relative to mutation events, which similarly reduces the coalescence probability. As before,

when hk is smaller than average, the reverse is true.

The third effect of fluctuations is specific to the PRF method, in which we assumed that

the probability two individuals in class k come from a lineage of frequency x (given that
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the lineage exists) is x2

h2
k
. This implicitly assumes that the fact that there exists a lineage of

frequency x in fitness class k does not affect the expected frequency of the class hk. This is

not strictly true: given that there exists a lineage at high frequency, it is likely that hk is

larger than average, and vice versa. In other words, there is a correlation between the size

of a lineage and the frequency of the class, so the probability that two individuals picked

from a class come from the a lineage of frequency x is not precisely x2

h2
k
. When x is large, this

expression overestimates the probability two individuals are from the same lineage, since

given that those high-frequency lineages exist, hk will be larger than average. Similarly

(though less dramatically), when x is small our expression underestimates the probability

two individuals are from the same lineage.

Note that this third effect of fluctuations is distinct from the second effect above. The

second effect describes fluctuations in hk that are uncorrelated to the frequency of a par-

ticular lineage. It thus applies to both the PRF and sum of ancestral paths methods; it

reflects the general fact that when hk is larger coalescence is less likely. The third effect, on

the other hand, reflects the fact that if we assume we sample an individual from a lineage

of size x, this biases the value of hk. Since our sum of ancestral paths method never makes

any references to lineages, this third effect of fluctuations only applies to the PRF method.

These three effects all depend on the size of the fluctuations relative to the average size of

the each fitness class. Thus neglecting fluctuations will be a good approximation provided

that the fluctuations in hk are small compared to hk. To determine when this will hold, we

note that each lineage in class k can reach, at most, a maximum size of order 1
sk

individuals

(selection prevents any individual lineage from becoming more common than this). The

total number of individuals in the class is on average Nhk. This means that, provided

that Nhk � 1
sk

, each fitness class is made up of many individual lineages. Thus we would

expect that the fluctuations in the sizes of each one would tend to cancel, and the overall

fluctuations in hk should be negligible provided that this condition holds.

To make this intuition more precise, we must calculate the variance in hk and compare

it to hk. In principle this information is contained in our PRF expressions, but it is much

simpler to compute using a continuous-time branching process method. That is, rather than

use a diffusion approximation to describe the dynamics of each lineage, we use a continuous-

time branching process. As before, we imagine that new lineages in class k are created at
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a rate θk/2. In steady state there will be some time-independent probability that there are

n total individuals across all the lineages in the class, P (n). Note that on average we must

have n/N = hk, and that P (n) contains information on the fluctuations in the hk. We first

compute the generating function for P (n),

H(z) ≡
∞∑
n=0

P (n)zn. (58)

To do so, we start by computing the generating function for the probability distribution

of the number of individuals from each lineage, as described by Eqs. (7-9) of Desai and

Fisher (2007). We substitute this expression into Eq. (24) of Desai and Fisher (2007)

and integrate. We find

H(z) ≡
∞∑
n=0

P (n, t)zn ≡ 〈zn〉 =

[
s

1− z(1− s)

] θ
2(1−s)

, (59)

where angle brackets denote expectation values, and we have suppressed the k subscripts.

Note that this calculation is based on a continuous-time branching process, in which indi-

viduals have a different distribution of offspring number than in a Wright-Fisher process,

leading to a transient distribution of the frequencies of individual lineages that is half as

large as in the Wright-Fisher model for lineages of substantial frequency. Thus to make com-

parisons with the Wright-Fisher process, we have to take θ → 2θ (as we would in comparing

Wright-Fisher to Moran models), as described by Desai and Fisher (2007).

Eq. (59) describes the fluctuations in the size of an individual fitness class: the mean,

variance, and higher moments of n can be easily computed by taking derivatives of H(z).

Thus we can immediately compute V ar(hk)/hk using standard generating function methods.

We find that in fact the fluctuations in hk are indeed negligible provided that

Nhksk � 1. (60)

In practice, this condition will often break down in the high and low-fitness tails of the fitness

distribution. Fortunately, provided it holds in the bulk of the distribution in which most

individuals will be sampled, which will typically be true provided Ns � 1, our approach

will still be a good approximation.

Correcting for correlations between the size of a lineage and the frequency

of the fitness class: All three effects of fluctuations in hk described above are negligible
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in the same parameter regime, Nhksk � 1. However, the fact that the third effect applies

only to our PRF result obscures the precise relationship between our two approaches, and

the relationship to earlier work. Further, relaxing this approximation provides a useful

comparison of the subtle differences between the assumptions underlying the approaches.

Thus we describe here an alternative approach to understanding the lineage structure in a

fitness class which allows us to account for these correlations between the size of a lineage,

x, and the frequency of the fitness class, hk.

We first note that, in his original calculation of the neutral ESF, Ewens (1972) used a

diffusion result, f(x), roughly analogous to our PRF expression to describe the probability

that there exists a lineage with frequency x in the population at a given time. However,

Ewens’ f(x) was derived as the solution to the diffusion approximation to the K-allele

Wright-Fisher process, in the limit of infinite alleles. This process explicitly imposes the

constraint that the sum of all lineages in the population at a given time must add to 1. This

means that there is no correlation between the size of a lineage and the total number of

individuals in the population.

The PRF calculation of the lineage structure does not involve this explicit constraint. This

is what makes it possible to compute a simple analytical expression for fk(x). This lack of

constraint means that the PRF result admits fluctuations in hk, which lead to corresponding

correlations between x and hk. We could partially avoid this by defining γk = Nhksk, rather

than Nhk, as we have so far. This would effectively mean that each lineage is assumed to

be diffusing between 0 and hk rather than between 0 and 1, and forbid any lineage from

reaching a frequency larger than hk. Thus it reduces the discrepancies associated with the

correlations between x and hk. However, even with this redefinition, there is no constraint

that the lineages in a given class all add to precisely hk, and so correlations still exist.

To correct exactly for the effects of correlations between x and hk, we extend the

continuous-time branching process model introduced above. We now imagine that there

are B sites in the genome, each of which can mutate to create a new lineage in class k.

In the large-B limit, each distinct lineage in class k arose from a mutation at a different

site in the genome (and we will later make the infinite-sites assumption B → ∞, which

makes this exactly true). The rate at which new mutations found lineages in class k due to

mutations at a specific one of these B sites is θk
2B

. This means that, analogous to Eq. (59),
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the generating function for the probability that there are n mutations at a particular site i

in class k is

Hi(z) =

[
s

1− z(1− s)

] θ
B(1−s)

, (61)

where again we have suppressed the k subscripts and we have taken θ → 2θ to match to the

Wright-Fisher model as described above.

If we define ni,k to be the total number of mutants at site i in class k, we have that

σk ≡
B∑
i=1

ni,k (62)

is the total number of individuals in the class (note that on average we expect σk = Nhk).

We now imagine that we sample some number m individuals from class k. The probability

that they are all from the same lineage is

J (k)
m =

〈
B∑
i=1

nmi,k
σmk

〉
=

〈
nm1,k

(n1,k + . . . n1,B)m
+

nm2,k
(n1,k + . . . n1,B)m

+ ...+
nmB,k

(n1,k + ..n1,B)m

〉
.

(63)

Note this has the same form as our PRF expression, except we are averaging over
nmi
σm

rather

than averaging over nmi and then dividing by the average σm. In other words, we are

explicitly accounting for the correlations between x and hk.

We can rewrite Eq. (63) using the identity

1

σmk
=

∫ ∞
0

xm−1

(m− 1)!
e−xσkdx. (64)

This identity can easily be verified by integrating the RHS by parts. Using this, and noting

that lineages at each of the B sites are independent, we find

J (k)
m =

〈
B∑
i=1

nmi

∫ ∞
0

xm−1

(m− 1)!
e−xσkdx

〉

= B

∫ ∞
0

xm−1

(m− 1)!
〈nm1 e−xσk〉dx

= B

∫ ∞
0

xm−1

(m− 1)!
〈e−xni〉B−1〈nm1 e−xn1〉dx. (65)

The first expectation value inside the integral can be computed by noting that

〈e−xni〉 = H(z = 1− x) =

[
1 + x

1− s
s

] θ
B(1−s)

. (66)
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Differentiating this result m times with respect to x results in an expression for 〈nm1 e−xn1〉.

Plugging these results in and integrating, taking the limit B → ∞, and neglecting higher

order terms in s, we find

J (k)
m = θ

m−1∑
j=0

(−1)j
(
m− 1

j

)
1

θ + j
=

(m− 1)!∏m−1
j=1 (θ + j)

=
1(

θ+m−1
θ

) . (67)

If we were to use the original PRF result to calculate the probability two individ-

uals sampled simultaneously from class k are from the same lineage, we would find∫ 1

0

(
x
hk

)2
fk(x)dx = 1

θ
. Using our branching process result for J

(k)
2 , we see that correct-

ing the PRF result for the third effect of fluctuations in hk yields the modified probability

1
1+θk

. As expected, the branching process result precisely matches the sum of ancestral

paths approach, which is also unaffected by this third effect of fluctuations in the hk. All of

the formulae quoted in the main text and shown in the figures incorporate this correction,

which appropriately handles the correlations between the frequency of an individual lineage

and the size of the fitness class.

APPENDIX C: RELATION TO PREVIOUS WORK

In this Appendix we compare our analysis to related work, and summarize the key ap-

proximations that we and others have used. We have presented two main approaches to

calculating coalescence probabilities in this paper. The first approach is based on the lin-

eage structure within each fitness class, described using a PRF-based method. The second

approach involves summing over all possible ancestral paths, based on the structured coa-

lescent framework introduced by Kaplan et al. (1988) and Hudson and Kaplan (1994,

1995). We show in this paper that both approaches involve closely related approximations

and yield equivalent expressions for the coalescence probabilities.

Historically, attempts to describe the coalescent process in the presence of selection go

back to the structured coalescent introduced by Kaplan et al. (1988). These authors

considered a sample of individuals from given fitness classes and computed the relative

probabilities that the next event to occur backwards in time would involve a mutation or

coalescent event, without explicitly describing lineage structure. In their original work,

Kaplan et al. (1988) used a full stochastic description of the frequencies of each fitness

class, in which one keeps track of the probability distribution of these frequencies to account
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this Hudson & Hudson & Gordo Charlesworth Barton & Seger O’Fallon

work Kaplan 88 Kaplan 94,95 et al 02 et al 93 Etheridge 04 et al.10 et al. 10

analytical expressions

for genealogy structure x x x x

accounts for frequency

class fluctuations

(valid for Ns ∼ 1) x x x x∗

valid for

Nse−U/s << ln[U/s] x x x x x x x

valid for

Ns� 1 x x x x x x x

valid for

many classes x x x x x x x

accounts for

Muller’s ratchet x x† x

discrete

fitness classes x x x x x x x

TABLE I A summary of related approaches to the coalescence process in the presence of purifying

selection. ∗Addresses Ns ∼ 1 situation, but assumes deterministic fitness distribution. †Within a

two-class framework.

for selection. They derived diffusion equations for the transition probabilities between states.

This approach is very general, but as a result is complex and requires numerical evaluation.

Barton and Etheridge (2004) developed this diffusion approach to compute the effect

of selection on genealogies in a system in which selection acts only on a single locus.

Hudson and Kaplan (1994) later simplified their original structured coalescent ap-

proach to describe the case where fluctuations in the frequencies of fitness classes can be

neglected. In this deterministic approximation, they showed that one can compute very

simple expressions for the relative probabilities of the next event to occur backwards in time

in the history of a sample. In this manner, Hudson and Kaplan (1994) were able to gen-

erate a simple recursion relation for the mean time to a common ancestor, their Eq. (12).

Gordo et al. (2002) used this equation as the basis for a coalescent simulation, and Zeng

and Charlesworth (2011) recently extended this method to describe the joint effects of

recombination and background selection.

Recursion relations of the Hudson and Kaplan (1994) form can be solved numerically,

and have been used to generate data describing coalescent statistics, but have not yet led to

an analytic description of the structure of genealogies in the presence of negative selection

at many linked sites. In this paper we have shown that one can sum over ancestral paths

within this framework, to derive analytical formulas for the coalescence probabilities which

are equivalent to those computed from our lineage-based formalism. This equivalence means
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that our analytical results in this paper match earlier numerical and simulation results based

on the Hudson and Kaplan (1994) formulation. However, like the Hudson and Kaplan

(1994) framework, neither of our approaches in this paper account for fluctuations in the

frequencies of fitness classes.

In reality, the frequency of each fitness class will fluctuate due to genetic drift. As we have

described in Appendix B, these fluctuations are substantial in classes whose deterministic

size is small compared to the inverse of the effective selection pressure against individuals

in that class, Nhksk < 1. This leads to important effects on the structure of genealogies

if most fitness classes through the bulk of the fitness distribution fluctuate substantially.

This will occur whenever Ns <∼ 1, so fluctuations must therefore be taken into account for

small Ns. While the diffusion approach of Kaplan et al. (1988) in principle provides a

complete solution to this problem for all values of Ns, this formalism and the related results

of Barton and Etheridge (2004) are computationally strenuous. There remains a need

for further work on accurate but more analytically tractable approaches which are able to

account for the frequency fluctuations.

We note that the work of O’Fallon et al. (2010) and of Hermisson et al. (2002)

introduced analytical approaches valid for the case of Ns ∼ 1, although these methods are

not based on a model related to the ideas of Kaplan et al. (1988). We also note that the

problem of fluctuating fitness class sizes has been considered in the case of other problems

(for example, forward selection (Coop and Griffiths, 2004)), but a detailed discussion is

outside the scope of this work.

Neglecting the fluctuations in fitness class frequencies is in principle reasonable when

Ns� 1. However, we note that even when Ns� 1, the sizes of the smallest fitness classes

near the tails of the distribution may still fluctuate substantially. Muller’s ratchet is one

aspect of this general effect. Recently Seger et al. (2010) extended the simulation scheme

of Gordo et al. (2002) to address this problem by first doing a forward-time simulation,

recording the fluctuations in the classes (including Muller’s ratchet) from this simulation,

and then putting these fluctuations into a backwards simulation by hand. Our methods do

not account for these effects. They are therefore less general than the work of Seger et al.

(2010), and break down due to fluctuation effects more quickly as Ns decreases. On the

other hand, our analysis does not rely on forward simulations and is able to compute simple
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analytic expressions for coalescence probabilities.

We also note that although we consider the large Ns approximation, our approach has

a broader range of applicability than the effective population size approximation, which

assumes that the coalescence time is dominated by the time to coalescence within the most-

fit class. For the EPS approximation to be valid requires that this latter time (∼ Ne−Ud/s)

is small compared to the time average individuals took to descend from the most-fit class

(∼ 1
s

lnNs). Thus for the EPS approximation to hold, we require Ne−Ud/s � 1
s

ln [Ud/s],

not just Ns� 1. Thus we can easily have Ns� 1, yet Nse−Ud/s � ln [Ud/s], in which case

the EPS approximation breaks down and yet our approach is still valid.
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FIG. 1 The distribution of the fraction of the population in each fitness class. (a) The distribution

of the number of individuals as a function of fitness, where the most beneficial class is arbitrarily

defined to have fitness 1, and each deleterious mutation introduces a fitness disadvantage of s.

Mutations move individuals to less-fit classes, and selection balances this by favoring the classes

more fit than average. The shape of the depicted steady state distribution is a result of this

mutation–selection balance. The inset (b) shows the processes which lead to this balance within

a given fitness class.
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FIG. 2 Each fitness class in the population is composed of many lineages, each of which was

created by a single mutation and is (in our infinite-sites model) genetically unique. Shown is a

schematic cartoon in which each lineage is depicted in a different color. The arrows denote an

example of the fitness-class coalescence process for two individuals sampled from classes 8 and 9.

These individuals came from different lineages, and these lineages were created by mutations from

different lineages within the next most-fit class (as shown by the arrows). The arrows trace the

ancestry of the two individuals back through the different lineages that successively founded each

other, until they finally coalesce in the class third from right.
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FIG. 3 Examples of the coalescence probabilities P k,k
′→k−`

c for two individuals sampled from fitness

classes k and k′ to coalesce in class k − `, shown as a function of `. Here Ud/s = 8, s = 10−3, and

results are shown for Ns = 10 (dotted lines), Ns = 50 (dashed lines), and Ns = 100 (solid lines).
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FIG. 4 Characteristic examples of the distribution of πd. Here N = 5× 104, s = 10−3 and in (a)

Ud/s = 2, while in (b) Ud/s = 4. Theoretical predictions are shown as a solid line, simulation

results as a dashed line. Simulation results are averaged across at least 300 independent simulations

for each parameter set; shaded regions show one standard error in the simulation results. The fit to

simulations is good, but we tend to slightly underestimate πd, and this tendency is worse for larger

Ud/s. This is consistent with the effects of Muller’s ratchet, which becomes more problematic as

we increase Ud/s. This systematic underestimate becomes less severe (for all values of Ud/s) as

N increases, as expected, but comprehensive simulations for much larger N are computationally

prohibitive.
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FIG. 5 Characteristic examples of the distributions of πn and the real coalescent times. (a)

Theoretical predictions for the distribution of πn for Ud/s = 2, compared to simulation results.

(b) Theoretical predictions for the distribution of πn for Ud/s = 4, compared to simulation results.

Simulation results are averaged across at least 300 independent simulations for each parameter set;

shaded regions show one standard error in the simulation results. (c) Theoretical predictions for the

distribution of real coalescence times for Ud/s = 2; note these simply mirror the distribution of πn,

as expected. (d) Theoretical predictions for the distribution of real coalescence times for Ud/s = 4.

In all panels we have N = 5× 104 and s = 10−3. Our theory agrees well with the simulations, but

note that, as with πd, we tend to systematically underestimate πn, and this tendency is worse for

larger Ud/s. This is consistent with Muller’s ratchet, and as expected becomes more problematic

for larger Ud/s. This systematic underestimate becomes less severe (for all values of Ud/s) as we

increase N , as expected, but comprehensive simulations for much larger N are computationally

prohibitive.
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FIG. 6 Characteristic examples of the distribution of total heterozygosity π. Here N = 5 × 104,

s = 10−3 and in (a) Ud/s = 2, while in (b) Ud/s = 4. Theoretical predictions are shown as a

solid line, simulation results as a dashed line. Simulation results are averaged across at least 300

independent simulations for each parameter set; shaded regions show one standard error in the

simulation results. The fit to simulations is good, but we tend to slightly underestimate π, and

this tendency is worse for larger Ud/s. This is for the same reasons as in the distributions of πn
and πd.
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FIG. 7 Theoretical predictions for the mean pairwise heterozygosity at negatively selected sites,

〈πd〉, as a function of the parameters. (a) 〈πd〉 as a function of Ud/s for several values of Ns. In

the “mutation-time” approximation we expect this to be linear with a slope of 2, since on average

individuals are sampled from the mean class at k = Ud/s and coalesce in the 0-class, and hence

have πd = 2Ud/s. We see that as expected this approximation becomes more and more accurate

as Ns increases. For smaller N , there is substantial probability of coalescence in the bulk of the

fitness distribution, which is greater for larger Ud/s. Thus the slope of 〈πd〉 as a function of Ud/s

decreases as Ns decreases, and has a downwards curvature. (b) 〈πd〉 as a function of Ns for

several values of Ud/s. We see that as Ns becomes large, 〈πd〉 approaches 2Ud/s, again consistent

with the mutation-time approximation. As Ns decreases, coalescence within the bulk of the fitness

distribution becomes more likely, and hence 〈πd〉 decreases.
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FIG. 8 Theoretical predictions for the mean real coalescence time 〈t〉. In this figure we fix s = 10−3

and show the dependence of the mean pairwise heterozygosity on N and on Ud/s. The mean

pairwise heterozygosity at neutral sites, 〈πn〉 is simply 〈πn〉 = 2Un〈t〉. (a) Mean coalescence time

as a function of N for various values of Ud/s. We see that 〈t〉 increases slowly with N until for

large enough N the EPS approximation applies and 〈t〉 becomes linear in N . (b) Mean coalescence

time as a function of Ud/s for several values of N . For large N , the dependence is roughly linear,

consistent with the EPS approximation. For smaller N , coalescence can occur in the bulk of the

fitness distribution, reducing the mean coalescence time.
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FIG. 9 The fitness-class coalescence process for three individuals, A, B and C, where A and B

coalesced τ3 steptimes ago and C coalesced with the other two τ2 steptimes ago.
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FIG. 10 Relationship between our results and an effective population size approximation. (a) A

typical coalescent tree in a neutral population of constant size. The coalescent probability per

generation between a random pair of individuals is the inverse population size. Time runs from

the past at the top to the present at the bottom. (b) An example of a neutral coalescent tree

in a population which was smaller in the past than the present. The population size is shown

as the width in green. Coalescence events are more likely to occur when the population size is

smaller. (c) The effective population size history for an individual experiencing purifying selection

according to our model. The individual spends on average 1
sk generations in class k, which has

a total size Nhk. Note that pairs of individuals are sampled from different classes k (i.e. they

are not all sampled from the bottom of this picture). Further, the coalescence probabilities also

include a factor of A/2, which reflects the probability that two lineages are in the same class at

the same time. (d) The historically varying effective population size Ne(t) for a pair of individuals

sampled from classes k and k′, as defined in the text, for several values of k and k′. The Ne(t) for

two individuals sampled at random from the whole population is also shown. Here N = 5 × 104,

Ud/s = 6, and s = 10−3.
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SUPPLEMENTARY APPENDIX A:
THE FULL CONDITIONAL CALCULATION

In the main text, we focused primarily on the non-conditional approximation to the coa-

lescence probabilities, which led to our simple expression for the coalescence probabilities,

Eq. (15). In this Supplementary Appendix, we show how this approximation can be relaxed

in our lineage-structure framework by carrying out the full conditional calculation for some

of the simplest possible cases. We use this to understand the structure of the conditional

results and discuss the validity of the non-conditional approximation. We note that the full

conditional result can also be obtained from the sum of ancestral paths approach by keeping

the higher order terms in Eq. (56) of Appendix A, as described in Supplementary Appendix

D, and the validity of the non-conditional approximation can be directly assessed with that

approach.

We begin by considering the full conditional result for the probability that two individuals

both sampled from class k coalesce in class k − 2. From Appendix A of the main text, we

have

P k,k→k−2
c = Ik−2x

∫
Qk−2
k,k (t1, t2) exp [−s(k − 2)|t1 − t2|] dt1dt2. (S.1)

In order to evaluate this integral, we need to determine the probability distribution of mutant

timings Qk−2
k,k (t1, t2). The time t1 is the sum of the time for one individual to have mutated

from class k− 2 to class k− 1 plus the time for it to have mutated from class k− 1 to class

k, and analogously for t2. However, in order for the two lineages to coalesce in class k − 2,

they must not have coalesced in class k − 1. To illustrate the main point, we neglect the

distortion in the mutant timings due to the fact that individuals did not coalesce in class

k and focus only on the distortions due to the fact that coalescence did not occur in class

1



k − 1; if desired, the former distortion can also be included using analogous methods. We

refer to the probability distribution of the times when these individuals mutated from class

k − 1 to class k conditional on them not having coalesced in class k − 1 as Qk−1
k,k (t1, t2|nc).

The distribution of the times for these individuals to then have mutated from class k− 2 to

class k − 1 is then given by

Qk−2
1step(t1, t2) = [s(k − 1)]2e−s(k−1)(t1+t2). (S.2)

Thus the distribution of t1 and t2 is given by

Qk−2
k,k (t1, t2) = Qk−1

k,k (t1, t2|nc) ? Qk−2
1step(t1, t2), (S.3)

where ? indicates a convolution. Note that much of the time when the individuals did

coalesce in class k−1, they did so because t1 happened to be close to t2 (since this increases

the chance the two individuals mutated from the same lineage). Thus in Qk−1
k,k (t1, t2|nc),

t1 and t2 are on average further apart than in Qk−1
k,k (t1, t2), and t1 and t2 are no longer

independent random variables.

We now need to calculate Qk−1
k,k (t1, t2|nc). We have

Qk−1
k,k (t1, t2|nc) =

Qk−1
k,k (t1, t2)−Qk−1

k,k (t1, t2|c)P k,k→k−1
c

1− P k,k→k−1
c

, (S.4)

where Qk−1
k,k (t1, t2|c) is the distribution of timings of mutations from class k − 1 to k given

that the lineages do coalesce in class k − 1. Applying the general probability identity

P (t1, t2|c) = 1
P (c)

P (c|t1, t2)P (t1, t2), and reading off the coalescence probability given t1 and

t2 from Eq. (13), we find that

Qk−1
k,k (t1, t2|c) =

Ik−1x

P k,k→k−1
c

Qk−1
k,k (t1, t2)e

−s(k−1)|t1−t2|. (S.5)

We therefore find

Qk−1
k,k (t1, t2|nc) =

1

1− P k,k→k−1
c

[
(sk)2e−sk(t1+t2) − Ik−1x (sk)2e−2k(t1+t2)e−s(k−1)|t1−t2|

]
. (S.6)

Plugging this into our convolution formula for Qk−2
k,k (t1, t2) and evaluating the integrals

by separating out the possible time orderings, we find

Qk−2
k,k (t1, t2) =

k2 [s(k − 1)]2

1− P k,k→k−1
c

e−s(k−1)(t1+t2)
[(

1− e−st1
) (

1− e−2t2
)
− Ik−1x

k − 2
B

]
, (S.7)

2



where we have defined

B =
1

(k − 2)

[
1− e−2smin(t1,t2) − 2

k

(
1− e−skmin(t1,t2)

)
+

1

k

(
1− e−2k|t1−t2|

) (
e−2smin(t1,t2) − e−skmin(t1,t2)

)]
. (S.8)

We can now use this expression in Eq. (S.1) to calculate the coalescence probability P k,k→k−2
c .

Since the result is tedious and does not further illuminate the structure of the full conditional

calculation, we do not do so explicitly here, but the integrals are straightforward to evaluate

with the methods we have used above.

To motivate the validity of the non-conditional approximation, we need to consider the

full calculation going back one additional step. Thus we consider the probability that two

individuals both sampled from class k coalesce in class k − 3, P k,k→k−3
c . This will be given

by

P k,k→k−3
c =

∫
Qk−3
k,k (t1, t2)

x2

h2k−3
fk−3(x)e−s(k−3)|t1−t2|dt1dt2dx, (S.9)

where here Qk−3
k,k (t1, t2) is the distribution of the time at which the ancestors of the two

sampled individuals originally mutated from class k − 3 to class k − 2, conditional on them

not coalescing in classes k − 2 or k − 1.

We can calculate Qk−3
k,k (t1, t2) in the same way we calculated Qk−2

k,k (t1, t2). Explicitly,

Qk−3
k,k (t1, t2) = Qk−2

k,k (t1, t2|nc) ? Qk−3
1step(t1, t2), (S.10)

where analogously to the expression in the previous step

Qk−2
k,k (t1, t2|nc) =

1

1− P k,k→k−2
c

[
Qk−2
k,k (t1, t2)−Qk−2

k,k (t1, t2|c)P k,k→k−2
c

]
. (S.11)

We note that Qk−2
k,k (t1, t2) is the expression in Eq. (S.7) we calculated above. As before, we

have

Qk−2
k,k (t1, t2|c)P k,k→k−2

c = Ik−2x Qk−2
k,k (t1, t2)e

−s(k−2)|t1−t2|, (S.12)

hence we can write

Qk−2
k,k (t1, t2|nc) =

Qk−2
k,k (t1, t2)

1− P k,k→k−2
c

[
1− Ik−2x e−s(k−2)|t1−t2|

]
. (S.13)

Plugging the above expression back into Eq. (S.10), we obtain

Qk−3
k,k (t1, t2) =

s2(k − 1)2k2s2(k − 2)2

(1− P k,k→k−1
c )(1− P k,k→k−2

c )
e−s(k−2)(t1+t2)

∫ t2

0

∫ t1

0

es(k−2)(y+z)es(k−1)(y+z)

×
[
1− Ik−2x e−s(k−z)|y−z|

] [
(1− e−sy)(1− e−sz)− Ik−1x

k − 2
B

]
. (S.14)
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We could evaluate the integrals in the above expression for Qk−3
k,k (t1, t2) in the same way

that we did in our calculation for Qk−2
k,k (t1, t2). We would then substitute this result for

Qk−3
k,k (t1, t2) into an analogous calculation of Qk−4

k,k (t1, t2), and so on. In this way we can

build up the full conditional results. The most useful way to go about this is to separate the

results into powers of Ix, which is a small parameter related to the coalescent probability

in each step. We see from the expression for Qk−3
k,k (t1, t2) that there is a term in (Ix)

0,

which is exactly the non-conditional approximation. There are two terms involving (Ix)
1,

and a single term involving (Ix)
2. In general, in the expression for Qk−`

k,k (t1, t2), we will have

one (Ix)
0 term (which equals the result in the non-conditional approximation) plus ` terms

proportional to Ix,
(
2
`

)
terms proportional to (Ix)

2, and so on. Fortunately, the dependence

on the population parameters is entirely contained within these powers of Ix. That is, the

coefficients of these various powers of Ix depend only on k and `, and not at all on the

population parameters N , s, and Ud. Thus we could simply calculate a table of coefficients

once, and then would be able to understand all the distributions of mutant timings (and

from this all the coalescent probabilities).

In practice, it is easier to make these full conditional calculations within the sum of

ancestral paths approach. As we show in Supplementary Appendix D, that approach leads

naturally to a power series in Ix of exactly the form described above, in which the leading

order term is the non-conditional approximation and the additional terms represent the

conditional corrections. This calculation shows that provided Ix � 1, which is true provided

our usual condition that Nhksk � 1 holds, these higher order terms are all small, and our

non-conditional approximation is valid.

These full conditional results are, however, very complex and unilluminating. Therefore

we focus here on understanding the general structure of these results, and on showing why

the non-conditional approximation is good description of the distribution of mutation tim-

ings. We can see that at each step back through the fitness distribution, the probability

distribution of times shifts from the non-conditional results by a factor which is roughly

proportional to the coalescence probability at that step. That is, in general we have

Qk−`
k,k (t1, t2) =

1

1− P k,k→k−`
c

[
Qk−`
k,k (t1, t2)− P k,k→k−`

c Qk−2
k,k (t1, t2|c)

]
. (S.15)

The first term in square brackets reflects the fact that the probability distribution at a
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given step conditional on non-coalescence at that step is almost equal to the unconditional

probability distribution at that step. The second term represents the correction: note that

it is proportional to the coalescence probability in that step, P k,k→k−`
c . The nature of the

correction can be seen by plugging in the distribution of times conditional on coalescence,

giving

Qk−`
k,k (t1, t2) =

Qk−`
k,k (t1, t2)

1− P k,k→k−`
c

[
1− Ik−`x e−s(k−`)|t1−t2|

]
. (S.16)

We see that the correction acts to reduce the probability that |t1 − t2| is small — that is, it

makes it more likely that t1 and t2 are further apart, because this is more likely to be the

case given that coalescence did not occur.

Since at each step the shift in the distribution of mutant timings is proportional to the

coalescence probability, and the coalescence probability at each step is small, it seems clear

that the non-conditional approximation where we simply ignore this shift in mutant timings

is reasonable. However there is one potential caveat we must consider: although the shift

in the distribution of mutation timings due to conditioning on non-coalescence is small in

each step, we typically take many steps before the lineages coalesce. In fact, since the shift

in mutation timings is proportional to the coalescence probability, and we typically go back

a number of steps of order one over the coalescence probability, in principle the shifts in

mutation timings could add up to a substantial shift.

Fortunately, there are three factors which prevent this from happening. First, the shift

in mutation timings at each step is always to reduce the probability of times t1 and t2 where

|t1 − t2| <∼ 1
(k−`)s . Since at each step ` is increasing, and the range of separations between

mutation timings at which coalescence can happen is also increasing, the shifts in mutation

timings from many steps ago are not a huge factor in determining coalescence probabilities

in a particular step. That is, though the shifts in mutation timings add up over many steps,

the shifts most relevant to the coalescent probability in a given step do not. Second, the

coalescence probabilities at each step are different. This reduces the chance that we take

enough steps to shift the overall mutation timings substantially by the time we coalesce.

Finally, and most importantly, we will see that the there is a substantial probability that

the ancestors of the two individuals sampled do not coalesce until they are in the most-fit

class. This means that the total sum of coalescence probabilities (and hence the total possible

weight in the shift of mutation timings) remains small even in the worst case where the two

5



lineages do not coalesce for the maximum possible number of steps. The non-conditional

approximation will always be good in the regime where this is true. All of these heuristic

conclusions are reflected in the fact that the full conditional result we calculate in the sum

of ancestral paths approach is equal to the non-conditional result plus corrections that are

small provided Ix � 1.

SUPPLEMENTARY APPENDIX B: THE NON-CONDITIONAL
DISTRIBUTIONS OF MUTANT TIMINGS

Within the non-conditional approximation we need to calculate the distribution of mutant

timings, as used in Eq. (48). Specifically, we need to calculate

Qk−`
k (t) = Qk−1

k (t) ? Qk−2
k−1(t) ? Q

k−3
k−2(t) ? . . . ? Q

k−`
k−`+1(t), (S.17)

where ? refers to a convolution and

Qk−`
k−`+1(t) = s(k − `+ 1)e−s(k−`+1)t, (S.18)

as given by Eq. (6). In general, the convolution of n exponential distributions with param-

eters λ1 . . . λn is given by
n−1∑
i=0

λie
−λit

n−1∏
j=0,6=i

λj
λj − λi

. (S.19)

Applying this identity with λi = s(k − i), we find

Qk−`
k (t) =

`−1∑
i=0

se−s(k−i)t


`−1∏
j=0

k − j

`−1∏
j=0,6=i

i− j

 (S.20)

We can simplify this expression by noting that

`−1∏
j=0

(k − j) =
k!

(k − `)!
, (S.21)

and similarly that
`−1∏

j=0, 6=i

(i− j) = i!(`− 1− i)!(−1)`−1−i. (S.22)
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This means we have

Qk−`
k (t) =

`−1∑
i=0

s`e−s(k−i)t(−1)`−i−1
(
`− 1

i

)(
k

k − `

)
. (S.23)

We can evaluate this sum by recognizing the binomial expansion formula

(1 + x)n =
n∑
i=0

xi
(
n

i

)
, (S.24)

where we identify x = −est. We find

Qk−`
k (t) = s`

(
k

`

)
e−skt

(
est − 1

)`−1
. (S.25)

More generally, we have

Qb
a(t) = s(a− b)

(
a

b

)
e−sat

(
est − 1

)a−b−1
. (S.26)

SUPPLEMENTARY APPENDIX C: GENERAL COALESCENCE
PROBABILITIES IN THE NON-CONDITIONAL APPROXIMATION

The probability of coalescence for two individuals originally in two different classes k and

k′, as defined in Eq. (48) can be rewritten as

P k,k′→k′−`
c =

1

1 + 2Nhk−`s(k − `)
[I1 + I2] , (S.27)

where we have defined

I1 =

∫ ∞
0

Qk−`
k′ (t1)e

−s(k−`)t1
∫ t1

0

Qk−`
k (t2)e

s(k−`)t2dt2dt1 (S.28)

I2 =

∫ ∞
0

Qk−`
k (t2)e

−s(k−`)t2
∫ t2

0

Qk−`
k′ (t1)e

s(k−`)t1dt1dt2. (S.29)

Note that both I1 and I2 involve integrals of the form

Ia =

∫ t

0

Qb
a(t
′)esbt

′
dt′. (S.30)

Plugging in the results for the non-conditional distributions of mutant timings, Eq. (S.26),

and making use of the binomial expansion formula for (1 + x)n noted in Supplementary
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Appendix B, we find this integral becomes

Ia = s(a− b)
(
a

b

)∫ t

0

es(b−a)t
′
(
est
′ − 1

)a−b−1
dt′ (S.31)

= s(a− b)
(
a

b

) a−b−1∑
i=0

(−1)a−b−1+i
(
a− b− 1

i

)∫ t

0

es(b−a+i)t
′
dt′ (S.32)

= (a− b)
(
a

b

)
(−1)a−b

a−b−1∑
i=0

(−1)i

a− b

(
a− b
i

)(
es(b−a+i)t − 1

)
(S.33)

=

(
a

b

)
(−1)a−b

a−b∑
i=0

(−1)i
(
a− b
i

)(
es(b−a+i)t − 1

)
(S.34)

=

(
a

b

)
(−1)a−bes(b−a)t

a−b∑
i=0

(
−est

)i(a− b
i

)
(S.35)

=

(
a

b

)
es(b−a)t

(
est − 1

)a−b
. (S.36)

We now substitute this result for Ia into our expressions for I1 and I2. We note that both

have terms of the form

Ib =

∫ ∞
0

Qb
a(t)

(
c

b

)
e−sct

(
est − 1

)c−b
dt. (S.37)

Using similar manipulations to those above, we find

Ib = (a− b)
(
a

b

)(
c

b

)∫ ∞
0

e−s(a+c)t
(
est − 1

)a+c−2b−1
dt (S.38)

= s(a− b)
(
a

b

)(
c

b

)
(−1)a+c−1

a+c−2b−1∑
i=0

(
a+ c− 2b− 1

i

)
(−1)i

∫ ∞
0

e−s(a+c−i)tdt(S.39)

= (a− b)
(
a

b

)(
c

b

)
(−1)a+c−1

a+c−2b−1∑
i=0

(−1)i
(
a+ c− 2b− 1

i

)
1

a+ c− i
. (S.40)

Using the partial fraction decomposition

1(
n+x
n

) =
n∑
i=1

(−1)i−1
(
n

i

)
i

x+ i
, (S.41)

we find

Ib =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)a+c(−2b−1

a+c−2b

) =
a−b

a+c−2b

(
a
b

)(
c
b

)
(−1)2b(

a+c
a+c−2b

) . (S.42)

We can now use this result for Ib to determine I1 and I2, and hence compute P k,k′→k′−`
c .

We find

P k,k′→k′−`
c =

1

1 + 2Nhk−`s(k − `)

(
k′

k−`

)(
k
k−`

)(
k+k′

2`+k′−k

) . (S.43)
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As we noted in the main text, this is just

P k,k′→k−`
c =

1

1 + 2Nhk−`s(k − `)
Ak,k

′

` , (S.44)

with Ak,k
′

` as defined in Eq. (16). Note that when k = k′, this result simplifies to P k,k→k−`
c

as defined in the main text, as expected.

SUPPLEMENTARY APPENDIX D: COMPUTING SUMS OF
ANCESTRAL PATHS

In this appendix, we describe the calculation of φk
′

k (`) using the sum of ancestral paths

approach.

Calculation of φkk(3): We begin by considering a simpler specific case, where k = k′

and ` = 3. There are a total of
(
6
3

)
= 20 possible ancestral paths by which two individuals

sampled from class k can coalesce in class k − 3. These can be separated into four types,

according to whether the two ancestral lineages were ever together in classes k− 1 or k− 2.

We can list all paths of each type, using the notation that A is a mutation event in the first

lineage, and B is a mutation event in the second lineage. We have



ABABAB

ABABBA

ABBAAB

ABBABA

BAABAB

BAABBA

BABAAB

BABABA


︸ ︷︷ ︸
(2

1)(
2
1)(

2
1)=8 ways


ABAABB

ABBBAA

BAAABB

BABBAA


︸ ︷︷ ︸

(2
1)((

4
2)−(2

1)(
2
1))=4 ways


AABBAB

AABBBA

BBAAAB

BBAABA


︸ ︷︷ ︸

(2
1)((

4
2)−(2

1)(
2
1))=4 ways


AAABBB

AABABB

BBBAAA

BBABAA


︸ ︷︷ ︸
(6

3)−others=4ways

.

The probabilities of all paths of a particular type are identical. We can calculate the

probability of each of the four types of paths using the same logic as outlined in the main
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text. We find

P (AAABBBc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

)
, (S.45)

P (AABBABc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−1x

)
, (S.46)

P (ABAABBc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−2x

)
, (S.47)

P (ABABABc) = Ik−3x

k(k − 1)(k − 2)

8(2k − 1)(2k − 3)(2k − 5)

(
1− Ikx

) (
1− Ik−1x

) (
1− Ik−2x

)
.(S.48)

Summing over all the possible paths, we find

φkk(3) = Ik−3

(
k
k−3

)(
k
k−3

)(
2k
6

) [
1−

(
2
1

)(
4
2

)(
6
3

) Ik−1 −
(
2
1

)(
4
2

)(
6
3

) Ik−2 +

(
2
1

)(
2
1

)(
2
1

)(
6
3

) Ik−1Ik−2

]
. (S.49)

We now pause to consider the form of the probabilities of each type of ancestral path.

These probabilities differ only by factors of (1 − Ik−ix ). One such factor arises each time

the two ancestral lineages are together in class k − i. In other words, we can rewrite

the probability of each path as the probability of an undistorted path (defined to be a

path in which the contributions due to the possibility of coalescence in previous classes are

neglected), times a correction for each class in which the two lineages are together:

P (AAABBBc) = P (Undistorted Path)
(
1− Ikx

)
(S.50)

P (AABBABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1x

)
(S.51)

P (ABAABBc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−2x

)
(S.52)

P (ABABABc) = P (Undistorted Path)
(
1− Ikx

) (
1− Ik−1x

) (
1− Ik−2x

)
. (S.53)

By definition, the “undistorted path” probability is the probability neglecting the contribu-

tions due to the possibility of coalescence in previous steps, and is therefore the same for all

paths. We have

P (Undistorted Path) =
k(k − 1)(k − 2)k(k − 1)(k − 2)

2k(2k − 1)(2k − 2)(2k − 3)(2k − 4)(2k − 5)
Ik−`x (S.54)

=

k!
(k−3)!

k!
(k−3)!

2k!
(2k−6)!

Ik−`x . (S.55)

Using these results, we can write φkk(3) as

φkk(3) = [# of Paths]P (Undistorted Path)
[
Fk(1− Ikx) + Fk,k−1(1− Ikx)(1− Ik−1x )

+Fk,k−2(1− Ikx)(1− Ik−2x ) + Fk,k−1,k−2(1− Ikx)(1− Ik−1x )(1− Ik−2x )
]
, (S.56)
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where we have defined F{a} to be the fraction of paths that are together in the set of classes

{a} (and are not together in any other class).

Calculation of φkk′(`): We now use this approach to calculate the coalescence probability

in the general case. The probability of any particular ancestral path from k and k′ to k−` is

the product of the individual probabilities of each mutational step that makes up this path.

Each such individual probability consists of three parts: a numerator, which depends only

on the current class of the lineage that mutates, divided by a denominator, which depends

only on the sum of the current set of classes for both lineages, times a correction factor of

(1− Ik−ix ) if the two lineages are in the same class at that step.

Although in each ancestral path the mutations will occur in a different order, all paths

will ultimately consist of the same set of mutations (k′ → k′ − 1 → . . . → k − ` and

k → k − 1 → . . . → k − `). Therefore, regardless of the path taken, the product of the

numerators from each step will be identical. Similarly, the sum of the current set of classes

will begin at k′+k, and decrement by one each time a deleterious mutation occurs, until both

lineages are in the final class (k′ + k → k′ + k − 1→ . . .→ 2k − 2`). Therefore, regardless

of the path taken, the product of the denominators from each step will also be identical.

Therefore, the paths will differ only by the correction factor (1−Ik−ix ) for each class in which

the two ancestral lineages are together. This means that, analogous to the case of φkk(3) we

described above, the probability of each path is the probability of an “undistorted path”

times the appropriate correction factor. The probability of the undistorted path is

P (Undistorted Path) =
k′(k′ − 1) . . . (k − `+ 1)k(k − 1) . . . (k − `+ 1)

(k′ + k)(k′ + k − 1) . . . (2k − 2`+ 1)
Ik−`x . (S.57)

We can now sum up all possible paths to obtain

φkk′(`) = [# of Paths]P (Undistorted Path)

[
F∅ +

∑̀
i=0

Fk−i(1− Ik−ix )

+
`−1∑
i=0

∑̀
j>i

Fk−i,k−j(1− Ik−ix )(1− Ik−jx ) (S.58)

+
`−2∑
i=0

`−1∑
j>i

∑̀
m>j

Fk−i,k−j,k−m(1− Ik−ix )(1− Ik−jx )(1− Ik−mx ) + . . .

]
,

where as before F{a} is the fraction of paths that are together in the set of classes {a} (and

are not together in any other class). Note that there are a total of ` + 1 terms in this
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equation, representing the possibility that the two lineages can be together in anywhere

from 0 to ` of the classes. We can rearrange these terms to write

φkk′(`) = [# of Paths]P (Undistorted Path)

[
1−

∑̀
i=0

Gk−iI
k−i
x

+
`−1∑
i=0

∑̀
j>i

Gk−i,k−jI
k−i
x Ik−jx (S.59)

−
`−2∑
i=0

`−1∑
j>i

∑̀
m>j

Gk−i,k−j,k−mI
k−i
x Ik−jx Ik−mx + . . .

]
,

where we have defined G{a} to be the fraction of paths that are together in at least the set

of classes {a}.

We can evaluate each of these factors of G. For example, the fraction of paths that are

together in class k− i equals the number of ways for the two lineages to descend from classes

k′ and k to be together in class k−i,
(
k′−k+2i

i

)
, times the number of ways for the two lineages

to descend from class k− i to be together in class k− `,
(
2i−2`
i−`

)
, divided by the total number

of ways for the two lineages to descend from classes k′ and k to be together in k−`,
(
k′−k+2`

`

)
.

Using this logic, we find

φkk′(`) = [# of Paths]P (Undistorted Path) (S.60)

×

[
1−

`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix +
`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx . . .

]
.

The total number of paths is
(
k′−k+2`

`

)
, so we finally find that the full probability of

coalescence in class k − ` is

φk
′

k (`) = Ik−`x

(
k′

k−`

)(
k
k−`

)(
k′+k

k′−k+2`

) [1−
`−1∑
i=0

(
k′−k+2i

i

)(
2`−2i
`−i

)(
k′−k+2`

`

) Ik−ix +

`−2∑
i=0

`−1∑
j>i

(
k′−k+2i

i

)(
2j−2i
j−i

)(
2`−2j
`−j

)(
k′−k+2`

`

) Ik−ix Ik−jx − . . .

]
. (S.61)

This is Eq. (56) from the main text. Note that it equals our non-conditional result for

P k,k′→`
c times a correction factor. There are a total of ` + 1 terms in this correction factor.

This full correction factor can be arbitrarily complex for large `, so we do not write out a

general form here. However, it is straightforward to calculate for any values of k, k′, and `;

a Mathematica script to do so is available on request.
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SUPPLEMENTARY APPENDIX E: THE CORRESPONDENCE
BETWEEN STEPTIMES AND REAL TIMES

In this Supplementary Appendix, we calculate the correspondence between steptimes and the

actual times measured in generations. Our goal is to calculate the probability distribution

of real coalescence times, ψ(t|k, k′, `), given that individuals were initially in classes k and

k′ and coalesced in class k − `.

To begin, we neglect the coalescence time within class k−`, and consider the distribution

of the time at which an ancestor of one of the two sampled individuals first mutated from

class k − ` to class k − ` + 1. We refer to this as ψ1(t|k, k′, `). We first calculate the joint

distribution of the times at which both ancestors mutated out of the class, Rk−`
k,k′ (t1, t2).

Conditional on coalescence in class k − `, Rk−`
k,k′ (t1, t2), is given by the probability of t1 and

t2 and coalescence divided by the total probability of coalescence. That is,

R(t1, t2) =
P (coal|t1, t2)P (t1, t2)

P (coal)
. (S.62)

Substituting in the relevant expressions from the main text, this gives

Rk−`
k,k′ (t1, t2) =

1

Ak,k
′

`

Qk−`
k,k′ (t1, t2)e

−s(k−`)|t1−t2|. (S.63)

The time at which the first ancestor mutated out of class k − ` is the longer of the two

times t1 and t2,

ψ(t|k, k′, `) =

[∫ t

0

Rk−`
k,k′ (t1, t)dt1 +

∫ t

0

Rk−`
k,k′ (t, t2)dt2

]
. (S.64)

Substituting in our expression for Rk−`
k,k′ (t1, t2) and carrying out the integrals as in Supple-

mentary Appendix C, we find

ψ1(t|k, k′, `) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (S.65)

where we have used πd = k′ − k + 2`.

We can alternatively calculate ψ1(t|k, k′, `) using our sum of ancestral paths approach.

As before, we imagine two individuals sampled from classes k and k′ and condition on them

coalescing in class k − `. Consider a case where k 6= k′. Then the first event in the history

of these two individuals must be a deleterious mutation. Since these mutations happen at

13



rate sk and sk′ in each lineage, the distribution of times since this mutation occurred in one

of the two ancestral lineages is

P (t) = s(k + k′)e−s(k+k
′)t. (S.66)

With probability k′

k+k′
, this mutation is in the lineage sampled from class k′, in which case

the two lineages are now in classes k and k′ − 1. Alternatively, the mutaion occurred in the

lineage sampled from k and the lineages are in classes k − 1 and k′.

We can now consider the time to the next event backwards in time. If the two lineages

are in the same class (but not yet in class k − `), the distribution of times to the next

deleterious mutation event is somewhat shorter, because we are conditioning on coalescence

not occuring. However, provided that 2sk1 � 1
Nhk

(the condition we are already making

elsewhere), this shortening of the time will be a small correction and neglecting it is a good

approximation.

Making this approximation, the rate at which the next deleterious mutation event occurs

when the two lineages are in classes k1 and k2 is just s(k1 + k2). Regardless of the order

in which these mutations happen between the two lineages, this sum is simply decreased

by s at each step. This will continue until the both ancestral lineages are in class k − `.

Therefore, the distribution of times until the original mutation out of class k− ` is given by:

ψ1(t|k′, k, `) = s(k′ + k)e−s(k
′+k)t ? s(k′ + k − 1)e−s(k

′+k−1)t ? . . . ? s(2k − 2`+ 1)e−s(2k−2`+1)t.

(S.67)

This can be written as

ψ1(t|k′, k, `) = λ0e
−λ0t ? λ1e

−λ1t ? . . . ? λk′−k+2`−1e
−λk′−k+2`−1t, (S.68)

where we have defined:

λi = s(k′ + k − i). (S.69)

We can compute this convolution as in Supplementary Appendix B (compare to Eq. (S.17)

for Q2k−2`
k+k′ (t)). We find

ψ1(t|k, k′, `) = sπde
−s(k′+k)t(est − 1)πd−1

(
k′ + k

πd

)
, (S.70)

identical to the result of our lineage structure calculation above.

14



Distribution of Coalescence Times: To calculate the correspondence between step-

times and real times, we now need to add the time it takes two individuals two coalesce in

class k − `, which we refer to as ψ2(t|k, k′, `), to the time it took them both to get to that

class, ψ1(t|k, k′, k − `). The rate of coalescence once in class k − ` is 1
Nhk−`

, so we have

ψ2(t|k′, k, `) = (2s(k − `) + 1/Nhk−`) e
−[2s(k−`)+1/Nhk−l]t. (S.71)

Putting this together, the full distribution of times since coalescence is

ψ(t|k′, k, `) = ψ1(t|k′, k, `) ? ψ2(t|k′, k, `). (S.72)

Carrying out this convolution (and expanding the binomial factor (est − 1)πd−1 in ψ1), we

find

ψ(t|k′, k, `) =

πd−1∑
i=0

sπd(−1)πd−i−1
(
πd − 1

i

)(
k′ + k

πd

)
B

A−B
(
e−sBt − e−sAt

)
, (S.73)

where we have defined A ≡ k′ + k − i and B ≡ 2 (k − `) + 1
Nshk−`

.

SUPPLEMENTARY APPENDIX F: AN ALTERNATIVE APPROACH
TO NEUTRAL DIVERSITY

Instead of calculating the distribution of neutral heterozygosity by first computing the dis-

tribution of real times, we could alternatively incorporate neutral mutations directly into the

sum of ancestral paths framework. This completely bypasses the correspondence with real

coalescence times. To do this, we characterize ancestral paths not only by the ordering of

deleterious mutation and coalescence events, but also by the ordering of neutral mutations.

This means that if we sample two individuals A and B, there are five types of events that

can happen in their ancestral paths: a deleterious mutation (DM) in A or in B, a neutral

mutation (NM) in either A or in B, and or a coalescence (C) event (if A and B are currently

in the same class).

We now imagine that we sample two individuals from classes k and k′, and that they

coalesce in class k − `. Our goal is to calculate the probability distribution of πn given k,

k′, and `, ρ(πn|k, k′, `). We will find it helpful to divide the five types of events that can

occur into two classes: neutral mutations on the one hand, and deleterious mutations or

coalescence (which we call “steps”) on the other. We begin by computing the probability
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that a given number of NMs occur before the next DM or C events (i.e. the number of

neutral mutations that occur at this “step”). We have

P (a NMs, then DM in k′ or k′|k′, k) =

(
2Un
s

k′ + k + 2Un
s

)a
k + k′

k′ + k + 2Un
s

, (S.74)

where we have made our usual assumption that Nhksk � 1, allowing us to neglect the rates

of coalescence events (when k = k′) in writing this expression.

This probability only depends on the sum of the current classes the individulas are in.

At each subsequent step, regardless of the path taken, this sum of the classes will decrease

by one. Therefore, the probability that ai neutral mutations occur at step i is independent

of the path taken. This observation allows us to calculate the probability that a given

total number of neutral mutations have occurred since coalescence. We first calculate the

probability that a given number of neutral mutations have occurred since the first deleterious

mutation out of the k− ` class. We will add in the additional neutral mutations once in the

k − ` class at the end.

In order for πn neutral mutations to have occurred since the first deleterious mutation

out of class k − `, we require that a0 mutations occurred at the first step, a1 mutations

occurred at the second step, and so on, such that a0 + a1 + . . .+ ak′−k+2`−1 = πn. This gives

ρ(πn = X|k′, k, `) =

(k′+k)!
(2k−2`)!

( 2Un
s

+k′+k)!

( 2Un
s

+2k−2`)!

∑
|~a|=X

(
2Un/s

2Un/s+ k + k′

)a0

. . .

(
2Un/s

2Un/s+ 2k − 2l + 1

)ak′−k+2l−1

.

(S.75)

We can define x ≡ 2Un/s+ k + k′, recognize πd = k′ − k + 2`, and relabel the ai as

a0 → X − b0, a1 → b0 − b1, . . . aπd−2 → bπd−3 − bπd−2, aπd−1 → bπd−2. (S.76)

This gives

ρ(πn = X|k′, k, `) =

(
k′+k
πd

)( 2Un
s

+k′+k
πd

) (2Un
s

)X (
1

x

)X X∑
b0=0

(
x

x− 1

)b0
(S.77)

b0∑
b1=0

(
x− 1

x− 2

)b1
. . .

bπd−3∑
bπd−2=0

(
x− πd + 2

x− πd + 1

)bπd−2

.
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To simnplify this expression, it is helpful to define a function f such that:

f (A,B) ≡
(

1

x

)X X∑
b0=0

(
x

x− 1

)b0
(S.78)

b0∑
b1=0

(
x− 1

x− 2

)b1
. . .

X∑
bA−1=0

(
x− A+ 1

x− A

)b0 bA−1∑
bA=0

(
x− A
x−B

)bA
In other words, f (A,B) is a set of A nested sums, each of the same form, except for the

final sum, which can have a different denominator. Using this definition, we have

P (πn = X|k′, k, `) =

(
k′+k
πd

)( 2Un
s

+k′+k
πd

) (2Un
s

)X
f (πd − 2, πd − 1) . (S.79)

The virtue of this definition is that this sum can be solved recursively. We have

bA−1∑
bA=0

(
x− A
x−B

)bA
=
x−B
A−B

− x− A
A−B

(
x− A
x−B

)bA−1

. (S.80)

Therefore we have

f (A,B) =
x− A
B − A

f (A− 1, B)− x−B
B − A

f (A− 1, A) . (S.81)

Repeatedly inserting this result yields:

f (A,A+ 1)→ (x− A)(x− A− 1)

1

(
f (A− 1, A+ 1)

x− A− 1
− f (A− 1, A)

x− A

)
f (A,A+ 1)→ (x− A+ 1)(x− A)(x− A− 1)

2

[
f (A− 2, A+ 1)

x− A− 1
− 2f (A− 2, A)

x− A
+

f (A− 2, A− 1)

x− A+ 1

]
...

f (A,A+ 1)→ (m+ 1)

(
x− A− 1 +m

m+ 1

) m∑
i=0

(−1)i+m

x− A− 1 + i

(
m

i

)
f (A−m,A+ 1− i) . (S.82)

Note that f(−1, B) = 1/BX , since there are no more sums to compute. Thus, for m = A+1

we have

f (A,A+ 1) = (A+ 2)

(
x

A+ 2

) A+1∑
i=0

(−1)i+A+1

(x− A− 1 + i)X+1

(
A+ 1

i

)
. (S.83)

Relabeling the sum and taking A = πd − 2, we have

f (πd − 2, πd − 1) = πd

(
x

πd

) πd−1∑
i=0

(−1)i

(x− i)X+1

(
πd − 1

i

)
. (S.84)
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We can now substitute these results into our expression for πn, to find

ρ1(πn = X|k′, k, `) = πd

(
k′ + k

πd

)(
2Un
s

)X πd−1∑
i=0

(−1)i

(2Un/s+ k + k′ − i)X+1

(
πd − 1

i

)
(S.85)

Note, however, that this is only the distribution of neutral mutations since the first delete-

rious mutation out of class k − l. It is also possible for neutral mutations to occur prior to

the coalescence event. Adding in this factor, we find

ρ(πn = X|k′, k, `) = πd

(
k′ + k

πd

) πd−1∑
i=0

(−1)i
(
πd − 1

i

)
(S.86)

×
πn∑
X=0

(2Un/s)
X

(2Un/s+ k + k′ − i)X+1

(
2Nk−lUn

1 + 2Nk−lUn + 2Nk−ls(k − l)

)πn−X
.

Rearranging this expression gives

ρ(πn|k′, k, `) =

πd−1∑
i=0

πd(−1)πd−i−1
(
πd − 1

i

)(
k′ + k

πd

)
B

A−B

(
(2Un

s
)πn

(2Un
s

+B)πn+1
−

(2Un
s

)πn

(2Un
s

+ A)πn+1

)
,

(S.87)

where we have defind

A = k′ + k − i, B = 2 (k − `) +
1

Nshk−l
, (S.88)

identical to our earlier result.
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