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ABSTRACT 

Neuroimaging studies of episodic memory in young adults demonstrate greater functional 

neural activity in ventrolateral prefrontal cortex and hippocampus during retrieval of 

relational, as compared to item, information. We tested the hypothesis that healthy older 

adults – individuals who exhibit behavioral declines in relational memory – would show 

reduced specificity of ventrolateral prefrontal and hippocampal regions during relational 

retrieval. At study, participants viewed two nouns and were instructed to covertly 

generate a sentence that related the words. At retrieval, functional magnetic resonance 

images were acquired during item and relational memory tasks. In the relational task, 

participants indicated whether the two words were previously seen together. In the item 

task, participants indicated whether both items of a pair were previously seen. In young 

adults, left posterior ventrolateral PFC and bilateral hippocampal activity was modulated 

by the extent to which the retrieval task depended on relational processing. In older 

adults, activity in these regions was equivalent for item and relational memory 

conditions, suggesting a reduction in ventrolateral PFC and hippocampal specificity with 

normal aging.  

 

Key Words: aging, relational memory, functional MRI, prefrontal cortex, medial 
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3 
 

 

INTRODUCTION 

Decades of cognitive aging research have shown that older adults do not perform as well 

as young adults on tests of episodic memory (for a review, see Hoyer and Verhaeghen, 

2006). Episodic memory refers to the encoding and conscious retrieval of contextually-

specific information, such as an event that occurred at a particular place and time 

(Tulving, 1983). Age differences have been found in memory for several types of 

contextual attributes, including perceptual features (Kausler and Puckett, 1981; McIntyre 

and Craik, 1987; Naveh-Benjamin, 2000; Pilotti, et al., 2003); spatial attributes (Denney 

et al., 1992; Park, et al., 1982, 1983); temporal order (Kausler and Puckett, 1981); and the 

source of information (Johnson, et al., 1993; Schacter, et al., 1991; Simons, et al., 2004). 

A review by Spencer and Raz’s (1995), and another more recently by Old and Naveh-

Benjamin (2008), indicate that age differences in memory for contextual details are twice 

as large as age differences in memory for content items. 

Encoding and retrieval of contextual attributes is thought to rely on relational memory 

processing, which occurs when two previously unrelated items are linked together (e.g., 

Eichenbaum and Cohen, 2001). Two prominent theoretical views have been proposed to 

account for age-related deficits in contextual or relational memory. Whereas the binding 

deficit view suggests that older adults have a fundamental deficit in linking or integrating, 

the separate elements of a to-be-remembered episode (Bayen, et al., 2000; Burke and 

Light, 1981; Chalfonte and Johnson, 1996; Lyle, et al., 2006; Mitchell, et al., 2000; 

Naveh-Benjamin, 2000; Ryan, et al., 2007), the control deficit view asserts that older 

adults experience more generalized age-related declines in the processes under cognitive 
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control (Anderson and Craik, 2000; Craik, 1986; Craik and Byrd, 1982; Jennings and 

Jacoby, 1993; Light, et al., 2000; Moscovitch and Winocur, 1995; Smith et al.. 1998), 

such as the strategic manipulation, organization, or evaluation of features or contextual 

attributes, and the conscious, intentional retrieval of relational information (Dew and 

Giovanello, in press). 

Research in neuropsychology and cognitive neuroscience suggests that such binding 

and control processes depend primarily upon the medial temporal lobe (MTL) and the 

prefrontal cortex (PFC), respectively. Whereas the MTL, particularly the hippocampus, 

serves to bind elements together into a learning event (e.g., Eichenbaum, et al., 2007; 

Moscovitch, 1992), PFC regions mediate consciously-controlled bias mechanisms that 

operate under effortful, intentional conditions (Buckner, 2003). For example, functional 

neuroimaging studies in young adults have shown greater hippocampal activity during 

the encoding (Chua et al., 2007; Henke et al., 1999; Jackson and Schacter, 2004; Davachi 

and Wagner, 2002) and retrieval (Giovanello et al., 2004, Yonelinas et al., 2001) of 

relational, relative to item, information. Additionally, fMRI studies in young adults have 

reported activity in left PFC during controlled encoding (Mottaghy et al., 1999; Fletcher 

et al., 2000; Lepage et al., 2000; Henson et al., 2002) and intentional retrieval (Badgaiyan 

et al., 2002, Bunge et al., 2004, Dobbins, et al., 2002; Rugg, et al., 1999; Velanova et al., 

2003) of relational information.  

The notion that age-related declines in relational memory may be linked to 

dysfunction in prefrontal cortex (PFC) and medial temporal lobe (MTL) regions fits well 

with structural, volumetric magnetic resonance imaging studies of older adults 

demonstrating that age-related atrophy differs across brain regions.  For example, the 
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frontal lobes show the steepest rate of age-related atrophy (Pfefferbaum, et al., 1998; Raz 

et al., 2005; Resnick, et al., 2003), particularly inferior frontal subregions (Resnick, et al., 

2003), and this atrophy corresponds to cognitive deficits (e.g., Gunning-Dixon and Raz, 

2003). Additionally, memory structures within the MTL (e.g., entorhinal cortex, 

hippocampus, and parahippocampal gryus), exhibit differential rates of decline, with the 

hippocampus showing substantial atrophy and the entorhinal cortex demonstrating 

minimal changes (Raz et al., 2005). Consistent with this finding, Persson and colleagues 

(2006) reported reduced hippocampal volume in a group of older adults whose episodic 

memory performance declined over time compared to that of a group whose memory 

performance remained stable. More recently, Yonelinas and colleagues (2007) 

demonstrated that reductions in hippocampal volume resulted in decreased recollection of 

episodic memories. Finally, Chen and colleagues (2010) found hippocampal region-

specific contributions to memory performance, reporting greater age-related reductions in 

the volume of anterior hippocampus relative to posterior hippocampus. Taken together, 

these findings suggest that age-related declines in PFC and the hippocampus may 

underlie the relational memory impairment observed in healthy older adults. 

Prior functional neuroimaging studies of relational memory in healthy older adults 

have demonstrated age-related alterations in neural activity (Cabeza, 2006). Such 

alterations have taken the form of “under-recruitment” (i.e., failures to recruit specific 

brain regions to the same extent as young adults) or “non-selective recruitment” (i.e., 

recruitment of brain regions engaged beyond those of young adults), particularly when 

tasks place strong demands on relational processing. With regard to relational encoding, 

age-related under-recruitment has been observed during intentional learning of word pairs 
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(Cabeza et al., 1997). Compared to young adults, older adults show weaker activity in left 

ventrolateral PFC, a region that has been associated with semantic processing and verbal 

encoding (for reviews see Cabeza and Nyberg, 2000; Gabrieli et al., 1998).  

The link between age-related relational memory deficits and medial temporal lobe 

decline is supported by age-related decreases in medial temporal lobe activity during 

encoding (for example, Mitchell et al., 2000; Daselaar et al., 2003). More recently, 

Dennis et al. (2008) examined the effects of aging on the neural correlates of successful 

item and source memory encoding and showed age-related reductions in both 

hippocampal and prefrontal regions that were more pronounced for source memory than 

for item memory. During relational retrieval, age-related changes in PFC activity have 

been observed (for example, Cabeza et al., 1997; Cabeza et al., 2002). In one study, 

Cabeza and colleagues (1997) scanned participants while recalling word pairs and found 

age-related decreases in right PFC activity. Additionally, older adults showed activation 

in left ventrolateral PFC that was not displayed by young adults. As a result, prefrontal 

activity during relational memory retrieval was unilateral for young adults and bilateral 

for older adults – the neural pattern termed “non-selective” neural activity. Regarding 

medial temporal lobe activity, event-related fMRI studies have documented age-related 

changes in medial temporal lobe activity linked to relational memory performance (for 

example, Cabeza et al., 2004; Mitchell et al., 2000). In one study (Mitchell et al., 2000), 

older adults showed weaker MTL activity when binding objects to their locations). In 

another study (Cabeza et al., 2004), older adults showed weaker activity in the 

hippocampus but stronger activity in the parahippocampal gyrus during a recognition task 

with remember/know responses.  
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Although prior functional neuroimaging studies of relational memory have 

demonstrated age-related neural alterations in the form of “under-recruitment” or “non-

selective-recruitment” in medial temporal lobe and prefrontal cortex regions, no studies 

have examined the specificity of activity in neural regions engaged by both young and 

older adult groups. That is, under conditions in which both young and older adults recruit 

the same neural regions (e.g., prefrontal cortex and medial temporal regions) during 

successful relational memory performance, it is unclear whether these regions mediate 

the same type of mnemonic information. The current study addressed this issue by 

examining the contribution of prefrontal cortex and hippocampus during recognition of 

item and relational information in young and older adults. Critically, we compared 

retrieval of item information and relational information, holding constant the stimuli and 

the encoding task for the two retrieval conditions (item and relational). In addition, we 

equated the level of recognition accuracy across young and older adult groups to assess 

whether age-related neural changes in prefrontal cortex and hippocampus would occur 

under conditions of age-equivalent relational memory performance, and if not, whether 

hippocampal and prefrontal activity in older adults exhibited the same specificity for 

relational information as activity associated with these regions in young adults. We 

hypothesized that young and older adults would recruit the prefrontal cortex and 

hippocampus during accurate retrieval, albeit for different memory conditions: we 

expected young adults were to recruit prefrontal cortex and the hippocampus during 

relational memory retrieval, whereas we expected older adults to recruit these regions for 

both item and relational memory conditions, thereby showing a reduction in processing 

specificity. 
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METHODS 

Participants 

Sixteen young adults between the ages of 20 and 29 years (M =22.8, SD=3.0) and sixteen 

older adults between the ages of 66 and 73 years (M = 69.6, SD = 2.3) were paid for their 

participation. Young adults had a mean education of 15.8 years (SD=.04) and older adults 

had a mean education of 15.9 years (SD=2.2). Young adults were recruited from flyers 

posted on the Harvard University campus and older adults were recruited from 

Cambridge, Massachusetts and the surrounding communities.  Participants were right-

handed, fluent English speakers with normal or corrected-to-normal vision. All 

participants were screened to ensure that they were healthy, reported no history of 

psychiatric (including depression and epilepsy) or neurological disorder (including 

diabetes), had no contra-indications for functional magnetic resonance imaging (fMRI), 

and were not taking psychotropic medication. Informed consent was obtained from all 

participants according to the institutional review board at Massachusetts General 

Hospital. 

 

Neuropsychological Assessment 

In addition, older adult participants were given a battery of neuropsychological tests to 

assess their mental functioning. The neuropsychological battery consisted of the Mini-

Mental State Exam, subtests from the Wechsler Adult Intelligence Scale (WAIS)-Revised 

(Mental Arithmetic and Mental Control) and WAIS-III (Digit Span Backward), subtests 

from the Wechsler Memory Scale – Revised (Logical Memory I and Verbal Paired 
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Associates), the California Verbal Learning Test, the Wisconsin Card Sorting Test, and 

the Controlled Oral Word Association Test. The neuropsychological data, collected 

within six months of this study, are presented in Table 1. Participants whose performance 

was greater than one standard deviation below the mean on any test were excluded from 

the study.  

 

Insert Table 1 Here 

 

Stimuli and Cognitive Task 

Stimuli were 288 one- to three-syllable unrelated nouns (M Freq= 56.3; SD=63.5). 

Following extensive practice outside the scanner, participants received two 

study/retrieval runs. During study, young participants simultaneously viewed two nouns 

(42 unrelated word pairs/run; total stimuli: 84), and were instructed to covertly create a 

sentence that incorporated the two words. For older participants, each study run consisted 

of the 42 unrelated word pair trials, with each trial randomly repeated 3 times throughout 

the course of the run (in an attempt to produce equivalent levels of recognition 

performance)1. As with young adults, older adults were instructed to covertly create a 

sentence that incorporated the two words. All participants indicated via button press that 

they had successfully created an encoding sentence for each trial. During retrieval, which 

started immediately following the study phase, functional MR images were acquired for a 

total of 192 trials while participants performed one of two recognition tasks (Associative 

and Item). In the Associative task, participants saw pairs of words previously seen 

                                                
1 Although not explicitly instructed to do so, all older adult participants reported that they generated the 
same encoding sentence for all repetitions of a word pair.  
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together (Intact Pair - IP), pairs of words previously seen, but not together (Rearranged 

Pair - RP), and pairs of novel words (New Pair - NP). Test stimuli appeared for 6 seconds 

each, during which participants indicated whether the two words were previously seen 

together. In the Item task, participants saw pairs of words previously seen, but not 

together (Rearranged Items - RI), pairs consisting of one old word and one new word, 

(Old/New Items - ONI), and pairs consisting of two new words (New Items - NI). They 

were asked to indicate whether both words of a pair were previously seen. Four task 

blocks alternated between self-paced associative recognition and item recognition (Figure 

1). Each block consisted of 18 trials drawn from each of the task-appropriate 

experimental conditions types (Associative Block: 6 IP, 6 RP, 6 NP; Item block: 6 RI, 6 

ONI, 6 NI), as well as 6 control trials during which participants viewed ampersands and 

number signs, and were instructed to indicate on which side of the screen the ampersands 

had appeared. Control trials were also used to introduce jitter during each scanner run. 

Trials were randomized within each task block. Starting task and stimulus conditions 

were counterbalanced across participants. 

Insert Figure 1 Here 

 

fMRI Data Acquisition and Analysis 

Whole-brain gradient-echo, echo-planar images were collected during the test phase (3-

mm slices, TR=2, TE=23) only using a Siemens 3T MR scanner. Slices were oriented 

along the long axis of the hippocampus with a resolution of 3.125mm x 3.125mm x 3mm. 

High resolution T1-weighted (MP-RAGE) structural images were collected for anatomic 

visualization. Stimuli were back-projected onto a screen and viewed in a mirror mounted 
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above the participant’s head. For those participants requiring vision correction, subjects 

were given MRI compatible glasses with prescriptions matching their own. The task was 

presented using MacStim software (CogState Ltd, Melbourne, Australia).  Responses 

were recorded using an MR-compatible response box. Head motion was restricted using a 

pillow and foam inserts. 

All preprocessing and data analysis were conducted using SPM2 (Statistical 

Parametric Mapping; Wellcome Department of Neurology, UK). Slice acquisition timing 

was corrected by resampling all slices in time relative to the first slice, followed by rigid 

body motion correction. The functional data were then normalized spatially to the 

standard T1 Montreal Neurological Institute template. Images were re-sampled into 3-

mm cubic voxels and smoothed spatially with a 5-mm full-width half-maximum isotropic 

Gaussian kernel.  

For each participant, on a voxel-by-voxel basis, an event-related analysis was first 

conducted in which all instances of a particular event type were modeled through the 

convolution with a canonical hemodynamic response function. Each retrieval trial (6 

seconds in duration) was modeled as three 2-second TRs. Because our interest centered 

on neural recruitment during successful retrieval, as well as the fact that we designed the 

paradigm to elicit high levels of accuracy from each age group, all memory conditions 

were modeled for correct decisions only. Effects for each event type were estimated using 

a subject-specific, fixed effects model. These data were then entered into a second order, 

random-effects analysis. Analyses contrasted activation as a function of recognition type 

(associative versus item) using the appropriate trial types (IP, RP, NP, RI, ONI, NI). 
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Regions consisting of at least five contiguous voxels that exceeded the threshold of p< 

0.001 were considered reliable.  

Conjunction analyses (using the masking function in SPM2) then examined what 

neural regions were: (1) commonly activated by young and older participants during 

relational retrieval and (2) differential activated by young or older participants during 

relational retrieval. For conjunction analyses examining commonalities between groups, 

the threshold for each contrast entered in to a conjunction analysis was set at p < .01 

(such that the conjoint probability of the conjunction analysis, using Fisher’s estimate 

(Fisher, 1950; Lazar et al., 2002) was p < .001). For analyses examining differences 

between groups, the threshold for the first contrast entered in the analysis was set at p < 

.01, while the threshold for the second contrast entered into the analysis was set at p<.001 

(such that the conjoint probability of the conjunction analysis, using Fisher’s estimate 

was p<.0001). Voxel coordinates are reported in Montreal Neurological Institute (MNI) 

coordinates and reflect the most significant voxel within the cluster.  

RESULTS 

Behavioral Data 

The proportion of studied and unstudied stimuli endorsed as “old” are shown in Table 2. 

Behaviorally, associative recognition accuracy was calculated as the difference between 

“old” judgments to intact stimulus pairs (hits) and “old” judgments to recombined 

stimulus pairs (false alarms), while item recognition was calculated as the difference in 

“old” judgments to recombined items (hits) and “old” judgments to new items (false 

alarms). An analysis of variance (ANOVA) with memory type (item, relational) and 

response type (IP hits, NP false alarms, RI hits, NI false alarms) as within-subjects 
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factors, and group (young old) as a between-subjects factor revealed a main effect of 

memory type (F(1, 30) = 42.69, p<.0001), indicating that greater accuracy in the 

relational task than the item task, as well as a main effect of response type (F(1,30) = 

865.26, p<.0001, indicating that studied stimuli were correctly endorsed “old” at a higher 

rate than non-studied relations or items. There was no main effect of group F < 1, nor a 

group x memory type x condition interaction, indicating that both groups performed 

equivalently well on the item and relational memory tasks.  

 

Insert Table 2 Here 

 

Functional Neuroimaging Data 

Neural regions commonly associated with young and older adults during accurate 

relational memory retrieval 

We hypothesized that young and older adults would recruit the prefrontal cortex and the 

medial temporal lobe (i.e., hippocampus) during accurate retrieval, albeit for different 

memory conditions. As such, we contrasted all memory conditions greater than the 

control condition (IP+RP+RI+ONI+NI > control)2 for both groups to assess common 

regions generally contributing to accurate memory performance. This analysis revealed 

activity in several neural regions, including left ventrolateral and dorsolateral prefrontal 

cortex, left superior parietal cortex, left inferior frontal gyrus, and right hippocampus for 

both groups (see Table 3). To examine which conditions elicited retrieval-related activity 

                                                
2 Of note, direct comparisons between memory types (i.e., associative and item) yielded the same pattern of 
results as those reported. We chose to report the comparison of all memory conditions greater than the 
control condition because this contrast allowed us to extract the percent signal change in the same regions 
for all memory conditions (IP+RP+RI+ONI+NI) in both age groups. 
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in the PFC and hippocampus, we extracted the signal change in these regions (left 

ventrolateral PFC, left dorsolateral PFC and hippocampus) for each group. Based on the 

t-test, there were two significant clusters within the left ventrolateral PFC (one anterior 

region located in BA 47 and one posterior region located in BA 44), one cluster within 

dorsolateral PFC (BA 46) and one cluster within the right hippocampus. The data, shown 

in Figure 2, illustrate that young adults recruited right hippocampus and left posterior 

ventrolateral PFC during retrieval of relational information, whereas older adults 

recruited these regions during retrieval of item and relational information. More 

specifically, young adults showed greater hippocampal activity to intact pairs than to any 

other memory condition, while older adults recruited right hippocampus for several 

mnemonic conditions, both relational and item. Similarly, young adults activated left 

posterior ventrolateral PFC during retrieval of intact and recombined pairs, while older 

adults activated this region during both relational and item memory. Such findings point 

to age-related reductions in processing specificity for hippocampal and left posterior 

ventrolateral PFC regions. A different pattern emerged, however, in left anterior 

ventrolateral PFC and left dorsolateral PFC (see Figure 2). Here, both groups recruited 

these regions during retrieval of item and relational information, indicating no loss of 

processing specificity with age. 

 

Insert Figure 2 Here 

 

Regions showing a stronger correspondence to accurate memory in young adults than in 

older adults.  
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We examined neural regions uniquely activated by young (i.e., young>old) adults during 

accurate memory retrieval.  This contrast showed greater activity in bilateral inferior 

frontal gyrus, left middle frontal gyrus, left hippocampus, and bilateral occipital cortex 

for young adults relative to older adults (see Table 3).  

 

Regions showing a stronger correspondence to accurate memory in older adults than in 

younger adults. 

Finally, we examined neural regions uniquely activated by older (i.e., old>young) adults 

during accurate memory retrieval.  This contrast showed greater activity in bilateral 

superior and middle frontal gyri, as well as left middle temporal gyrus for older adults 

relative to young adults (See Table 3).  

 

Insert Table 3 Here 

 

DISCUSION 

Under conditions in which stimuli and encoding tasks were held constant and behavioral 

performance was equivalent between young and older adults, both groups showed neural 

activity in left ventrolateral PFC, left dorsolateral PFC, and right hippocampus during 

accurate retrieval. Whereas young adults’ neural activity in left posterior ventrolateral 

PFC and right hippocampus was modulated by the extent to which the retrieval task 

depended on relational processing, older adults activated these regions during the 

retrieval of relational, as well as item, information, suggesting an age-related reduction in 

processing specificity in these regions.  No age-related differences in processing 
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specificity, however, were observed in anterior ventrolateral PFC or dorsolateral PFC: 

activity in these regions was observed during retrieval of item and relational information 

for both groups, demonstrating that not all regions showed age-related reductions in 

specificity for our task. 

 Behaviorally, increased repetition of relational information at encoding for older 

adults equated young and older adults’ relational memory performance. Such findings 

demonstrate that with encoding support (i.e., multiple repetitions at study) older adults 

can overcome their relational memory deficit. This finding is consistent with prior 

behavioral reports demonstrating the benefit of encoding support to older adults’ source 

memory performance. For example, Glisky and her colleagues (2001) found that only a 

subset of their older adult participants showed deficits in source memory, namely those 

with below average frontal function, and these deficits could be eliminated by requiring 

participants at study to consider the relation between an item and its context. The current 

behavioral findings demonstrate that memory for other types of contexts (i.e., the inter-

item associations formed between two words) can be equated between young and older 

adults with encoding support.  

 At the neural level, hippocampal activity in young adults was modulated by the 

extent to which the retrieval task depended upon relational processing. This finding is 

consistent with several findings indicating a critical role for the hippocampus during the 

encoding (Chua et al., 2007; Davachi and Wagner, 2002; Henke et al., 1999; Jackson and 

Schacter, 2004; Prince et al., 2005; Sperling et al., 2001; Sperling et al., 2003) and 

retrieval of relational information (Giovanello et al., 2004, 2009; Yonelinas et al., 2001). 

Similarly, activity in left posterior ventrolateral PFC observed in the current study is 
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consistent with prior reports that this region is involved in the retrieval of temporal order, 

spatial location, and presentation modality (Cabeza et al., 2003; Hayes et al., 2004; 

Henson, et al., 1999; Nolde et al., 1998; Ranganath, et al., 2000), and may reflect the 

processing of relevant features (e.g., semantic, phonological, or orthographic)  of stimuli 

(i.e., intra-item associations) or the degree of controlled selection that is engaged (see 

Blumenfeld and Ranganath, 2007).  

In contrast, older adults showed significant neural activity in right hippocampus 

and posterior ventrolateral PFC, but activity in these regions was observed for both item 

and relational memory conditions, suggesting dedifferentiation or loss of regional 

specialization. Such age-related dedifferentiation is consistent with a prior report that 

documented declining ventral visual cortex specificity in older adults for whom face 

regions were also more responsive to places than in young adults where regions 

responded discriminately to one category (Park et al., 2004). Moreover, Payer and 

colleagues (2006) observed ventral visual dedifferentiation in older adults during working 

memory encoding, together with prefrontal overactivation, raising the possibility that 

frontal regions may compensate for lost perceptual specificity. In the current study, 

neural activity in bilateral middle and superior frontal regions was greater for older adults 

than for younger adults, again potentially suggesting the frontal regions may compensate 

for reduced hippocampal specificity, particularly under conditions in which no age-

related behavioral differences are observed. 

However, a different pattern emerged in the anterior ventrolateral PFC and 

dorsolateral PFC. In these regions, neural activity was similar between young and older 

adult groups, with activity present for both item and relational memory conditions. Prior 
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studies in young adults suggest that activation of anterior ventrolateral PFC is enhanced 

during the general selection of semantic information, while dorsolateral PFC is involved 

in the organization or comparison of relationships among items that are active in memory 

(see Paller and Wagner, 2002; Ranganath, 2010). For instance, Murray and Ranganath 

(2007) reported that anterior ventrolateral prefrontal (BA 45/47) activity at encoding 

predicted successfully memory for both items and relations, while dorsolateral prefrontal 

(BA 46) activity predicted successful memory for relational information only. The 

current findings in anterior ventrolateral PFC dovetail nicely with those of Murray and 

Ranganath (2007), extending their observation at encoding to activity at retrieval and 

documenting similar patterns of activity in this region in young and older adults. The 

current findings in dorsolateral PFC, however, appear inconsistent those reported by 

Murray and Ranganath (2007), as we observed retrieval-related activity in this region for 

both item and relational information. Future studies will need to address whether this 

apparent inconsistency is due to the stage of memory examined (encoding versus 

retrieval) or some other factor. 

Finally, we also examined neural regions showing a stronger correspondence to 

accurate memory in young adults than in older adults (young>old), as well as regions 

showing the opposite effect (old > young). For neural regions uniquely activated by 

young adults (i.e., young>old) during accurate memory retrieval, we observed activity in 

bilateral inferior and middle PFC, bilateral occipital cortex, and left hippocampus. These 

findings are consistent with several studies documenting retrieval-related activity in these 

regions in young adults (e.g., Badgaiyan et al., 2002; Bunge et al. 2004; Dobbins, et al., 

2002; Giovanello, Schnyer, and Verfaellie, 2004, 2009; Rugg,, Fletcher et al., 1999; 
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Velanova et al., 2003). For neural regions uniquely activated by older adults (i.e., old > 

young) during accurate memory retrieval, we observed bilateral superior and middle 

frontal gyri, as well as left middle temporal gyrus. As noted above, such age-related over-

recruitment, particularly in PFC, has been reported previously and may reflect frontal 

compensation, as it has been associated with underactivation in medial temporal and 

ventral visual cortex, as well as improved performance (e.g., Davis et al., 2007; Gutchess 

et al., 2005). These findings, known as the posterior-to-anterior shift in aging (PASA, 

Davis et al., 2007) have been observed previously under conditions of age-related under 

recruitment in posterior regions (i.e., MTL and ventral visual cortex). The current 

findings document the presence of the PASA pattern under conditions of age-related 

reductions in processing specificity. 

In summary, our data showed that left posterior ventrolateral PFC and bilateral 

hippocampal activity was modulated by the extent to which a retrieval task depended on 

relational processing in younger, but not older, adults. These findings suggest a reduction 

in ventrolateral PFC and hippocampal specificity with normal aging, and might help to 

understand such phenomena of normal aging as increased susceptibility to memory 

distortion. A number of studies have shown that older adults are sometimes more prone 

to making memory errors that reflect generic or nonspecific memory for previously 

studied information (e.g., Dodson and Schacter, 2002; Jacoby and Rhodes, 2006; 

Koutstaal and Schacter, 1997). It will be interesting to examine whether susceptibility to 

such memory errors is related to the kind of reduced specificity of PFC and hippocampal 

processing documented here. Elsewhere we have provide evidence that hippocampal 

dysfunction may be implicated in some memory errors committed by older adults 
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(Giovanello, et al., 2010), but further research is need to examine whether reduced 

specificity of hippocampal or PFC processing also contributes to mistakes that older 

adults make when attempting to remember past events.  
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Table 1. Group Characteristics 

Measure          Young (n = 16)          Old (n = 16) 

Age           22.8 (3.0)          69.6 (2.3) 

Gender     8/16 female 11/16 female 

Education 15.8 (0.04) 15.9 (2.2) 

MMSE   - 29.7/30 (0.06) 

California Verbal Learning Test - 13/16 (2.5) 

Controlled Oral Word Association Test - 44.9 (14.6) 

WAIS-R Mental Arithmetic    - 14.1/19 (2.0) 

WAIS-R Mental Control - 6/6 (0.8) 

WAIS-III Backward Digit Span - 8.1/14 (2.3) 

WMS-R Logical Memory I - 39.9/50 (9.0) 

WMS-R Verbal Paired Associates I   - 19.2/24 (4.3) 

Wisconsin Card Sorting Task (categories)   

   

Note: Standard deviations are in parentheses. For the California Verbal Learning Test, the 

measure reported is the number of items retrieved on the long delay cued recall test.  
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Table 2. Proportion of studied and unstudied stimuli endorsed as “old” and corrected 

accuracy (hits – false alarms) as a function of age. Standard deviations are shown in 

parentheses.       

 Young Old 

Item Memory   

     Recombined Items (Hits) .74 (.14) .71 (.17) 

     Old Item/New Item (False alarm) .26 (.15) .17 (.11) 

     New Items (False Alarms) .05 (.08) .05 (.09) 

   

Relational Memory   

     Intact Pair (Hits) .87 (.10) .91 (.09) 

     Recombined Pair (False Alarms) .08 (.10) .12 (.12) 

     New Pair (False Alarms) .02 (.03) .02 (.05) 

 

 

Item Accuracy .69 (.15) .66 (.18) 

Relational Accuracy       .79 (.16)                    .79 (.17) 
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Table 3. Regions of significant neural activity during accurate retrieval in young and 
older adults. 
  
     MNI 

coordinates 
Location Hemisphere    BA             x        y      z t-value 

Common Neural Activity for Young and Older adults  
Inferior frontal gyrus L 44 -42 6 33 7.09 
 L 47 -39 33 0 6.70 
Thalamus L n/a -12 -18 9 5.76 
Inferior frontal gyrus L  45 -54 24 21 5.10 
Middle frontal gyrus R 10 39 57 0 4.91 
Superior parietal L 7 -30 -69 42 4.88 
Lingual gyrus R 19 24 -60 -3 4.86 
Inferior temporal gyrus L 20 -48 -45 -18 4.61 
Middle frontal gyrus L 46 -45 51 0 4.58 
Inferior frontal gyrus L 47 -45 36 -6 4.50 
Hippocampus R n/a 24 -21 -9 4.46 
Superior Occipital gyrus L 19 -24 -78 24 4.43 
Middle frontal gyrus L 6 -42 9 54 4.39 
 
Neural Activity greater for Younger than Older Adults 
Inferior frontal gyrus R 47 39 27 −6 7.08 
Occipital cortex R 19 15 −78 15 7.04 
Inferior frontal gyrus R 47 33 33 0 5.53 
Superior parietal L 7 −30 −63 48 5.61 
   −36 −57 48 5.52 
Middle frontal gyrus L 6 −45 0 54 5.44 
   −39 6 51 5.43 
   −30 −9 51 5.34 
Occipital cortex R 18 6 −78 18 5.26 
Occipital cortex L 19 −18 −78 15 5.21 
Inferior frontal gyrus L 47 −36 27 3 5.15 
   −36 27 −9 5.11 
Hippocampus L n/a −24 −21 −9 4.63 
        

  

Neural Activity greater for Older than Younger adults 
Middle temporal gyrus L 21 -51 -42 -3 6.30 
   -63 -39 -3 4.85 
Middle frontal gyrus R 10 42 60 -6 5.31 
Middle frontal gyrus L 9 -36 12 36 4.75 
Superior frontal gyrus R 6 39 -12 30 4.60 
Superior frontal gyrus L 10 -33 60 0 4.48 
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FIGURE CAPTIONS 

Figure1. Event-related task design with alternating blocked task periods of relational 

memory (“together previously?”) and item memory (“both old?”). Abbreviations: IP - Intact 

Pair, RP - Rearranged Pair, NP - New Pair, RI - Rearranged Items, OI - Old/New Items, and 

NI - New Items. 

 

Figure2. Neural activity in right hippocampus, left ventrolateral prefrontal cortex, 

and left dorsolateral prefrontal cortex during accurate retrieval of item information 

and relational information in young and older adults. In each region, the mean 

percent signal change is graphed for each memory condition and standard errors 

are shown. Abbreviations: IP - Intact Pair, RP - Rearranged Pair, NP - New Pair, RI - 

Rearranged Items, OI - Old/New Items, and NI - New Items. 

 

 


