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Abstract

This paper addresses the problem of computing the value of information in settings in which the

people using an autonomous-agent system have access to information not directly available to the

system itself. To know whether to interrupt a user for this information, the agent needs to determine

its value. The fact that the agent typically does not know the exact information the user has and so

must evaluate several alternative possibilities significantly increases the complexity of the value-of-

information calculation. The paper addresses this problem as it arises in multi-agent task planning

and scheduling with architectures in which information about the task schedule resides in a sepa-

rate “scheduler” module. For such systems, calculating the value to overall agent performance of

potential new information requires that the system component that interacts with the user query the

scheduler. The cost of this querying and inter-module communication itself substantially affects sys-

tem performance and must be taken into account. The paper provides a decision-theoretic algorithm

for determining the value of information the system might acquire, query-reduction methods that

decrease the number of queries the algorithm makes to the scheduler, and methods for ordering the

queries to enable faster decision-making. These methods were evaluated in the context of a collabo-

rative interface for an automated scheduling agent. Experimental results demonstrate the significant

decrease achieved by using the query-reduction methods in the number of queries needed for reason-
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ing about the value of information. They also show the ordering methods substantially increase the

rate of value accumulation, enabling faster determination of whether to interrupt the user.

1 Introduction

Advances in autonomous-agent capabilities have the potential to significantly increase the power of
multi-agent planning and scheduling systems [4, 54]. Such capabilities could be especially useful in
highly dynamic environments in which the schedule of multiple participants must be coordinated, the
individuals are separated geographically or there is limited communications bandwidth [59, 57, 32].
These characteristics arise, often all together, in a range of important application settings, including
first-response [58, 50], planetary exploration, cleanup of hazardous sites and military conflicts [33].
The complex, stochastic nature of changes in these settings and the pace at which they happen make it
unlikely that any single individual or agent could have a complete global view of a scheduling problem
[48, 61]. As a result, a combination of localized reasoning and group coordination mechanisms are
required for planning and scheduling decisions [53, 58, 4]. Autonomous agents that operate as a team,
suggesting alternative courses of action to each other and negotiating to find a solution, could help people
operating in such environments to achieve team objectives more effectively [27, 49, 43].

In this paper, we use the term “fast-paced environment” to refer to a multi-agent task environment that
changes rapidly so that task schedules are frequently, often continuously, being revised; “coordination
management system” to refer to a system in which a set of autonomous agents supports the coordinated
scheduling of a group of people, who may be distributed geographically, working together to accomplish
a shared task; “automated scheduling agent” (ASA) to refer to the individual autonomous agents that
this system comprises; and “owner” to refer to the person whom the ASA directly assists (e.g., the leader
of some group). The overarching goal to which this paper contributes is that of building ASAs able to
coordinate modifications to their owners’ task schedules as the environment changes, thus enabling the
people carrying out tasks to focus on actual task performance [61, 5].

Figure 1 illustrates the key characteristics of a coordination management system operating in a fast-
paced environment. It shows several different types of teams — firefighters, policemen and medical
personnel — working together. Each ASA manages the schedule of one of these teams, with the owner
being, for example, the team leader of the first-response team or the unit commander of the firefighters.
The ASAs’ responsibility is limited to scheduling tasks. The tasks themselves are executed by people,
either an owner or one of the units overseen by an owner. As shown by the dotted boxes in the figure,
each ASA has full visibility of its own team’s schedule, which it manages. It has only partial visibility of
the other teams’ schedules, as indicated by gaps and question marks. To support team coordination, the
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ASAs cooperate, and their goal is to maximize some general objective function. For example, medical
staff may be partially synchronized with the schedule and planned activities of firefighters and vice versa,
and their shared objective function might be successfully evacuating all injured from the arena.

ASA

owners

Legend

Team objective function

Manage

Manage

?
?

?
?

?

?

?
?

Manage

Manage

?
?

?

Figure 1: A 4-team rescue effort coordination scenario.

As this example illustrates, in coordination management domains, scheduling information and con-
straints are distributed, and each ASA has a different view of the tasks and structures that constitute the
full multi-agent problem. Each ASA needs to reason about changes in the timing or outcome of tasks,
not only for its owner’s team’s tasks, but also in light of potential effects on other ASAs’ owners’ tasks.
In fast-paced domains, there may be severe time pressures, and typically ASAs must make decisions in
real time, concurrently with their owners’ (or their owners’ units’) execution of tasks.

The knowledge that ASAs have of their team’s performance as they execute tasks and the envi-
ronment in which they are working significantly influences the quality of the schedules a coordination
management system produces. Such information as changes in physical surroundings and the status of
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the different people or other agents working on a distributed, coordinated task, may affect scheduling
constraints, either relaxing them or imposing new ones that better reflect the actual situation. Much of
this kind of information may be outside the purview of an ASA, i.e., beyond what an ASA can sense
on its own. Importantly, the people whose work ASAs are helping to coordinate may have more timely,
accurate information about the state of the environment than their ASAs. For example, a human driver
can see changes in weather conditions that affect route selection as they occur, while current automated
navigation systems cannot. A scientist may be able to induce that a colleague, whose children go to the
same school as his, will be unavailable to meet, because there is a school play at the proposed meeting
time. Although such information may eventually be revealed to the system (e.g., when the scientist’s
scheduling assistant finds out that the colleague is unavailable for the meeting), the ASA does not have
the same immediate access to it as its owner.

If an ASA could obtain new, task-execution-relevant information without incurring any costs on
its or its owner’s part, it would always choose to get the information as soon as possible. Typically,
however, there are costs to gaining such information. In particular, to ask for information, the ASA needs
to interrupt the owner. Interruptions are disruptive in nature, degrading performance [12, 19, 22, 20,
61], and both parties incur interaction-related resource costs (e.g., communication costs, computational
resources). As a consequence of such costs, the interruptions required to obtain more current information
from an owner must be managed appropriately; they cannot simply be triggered automatically or they will
overburden people [50, 48, 10, 7]. The research in this paper supports the development of a collaborative
interface (CI) for an ASA that queries the owner only if the net expected benefit of the interaction
is positive, i.e., if the expected value of the information it would request multiplied by the expected
probability that the owner has such information is greater than the cost of the interruption [18, 11]. It
addresses in particular the problem of effectively computing the value of information an owner may
have.1

Determining the value of information requires scheduling and task knowledge, because information is
valuable only to the extent it influences schedule changes. In many contexts in which ASAs operate, such
task and scheduling knowledge resides in a scheduler module which is external to the CI [5, 42, 53]. This
separation of the scheduler in the systems’ architecture enables other ASA modules to use the scheduler
for reasoning about task schedules. It also follows common modular system design principles for sharing
functionality that is needed by multiple modules rather than duplicating it in each module. As a result of
this architecture, however, the CI needs to query the scheduler to assess the impact of information on a
schedule, as illustrated in Figure 2. For instance, to determine the changes in the optimal schedule that
result from changes in the duration of a task that the owner is currently executing, the CI must query

1Related work has addressed the calculation of the costs of interruption and determining the probability that an owner has
the necessary information, both of which depend on the owner’s state [45, 11, 12, 52].
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the scheduler for a new schedule which merges the new task duration into the current world state. To
avoid degrading overall system performance, the CI must consider the resource demands it makes on the
scheduler. A key challenge to ASA design is thus to develop methods that support the calculation of
value of information while consuming as few scheduler resources as possible.

Scheduler
(Scheduling Expertise)

Collaborative 
Interface (CI)

(Interruption Decision)

User
(Encapsulating 

external information)

interruption

information

query

schedule

ASA Module X

ASA Module Y

query

query
schedule

schedule

ASA

Figure 2: CI’s Relationship with the owner and the scheduler.

We note that this kind of reasoning challenge is not restricted to scheduling systems or even to multi-
agent systems. It arises in any situation in which the determination of the value of information requires
the help of a separate entity (system or person) that is able to evaluate the effect of different possibilities
on a given decision in a way the decision-maker cannot do. For instance, it would arise for a patient who
needs to decide whether to have an elective biopsy requiring complex surgery. Different biopsy findings
will affect the proposed treatment and thus the expected benefit to the patient. To make a decision, the
patient needs, in effect, to query the physician for each possible outcome (and its probability) and the
treatment associated with it.

This paper makes three major contributions. First, it presents a decision-theoretic algorithm for de-
termining the value of information that may be obtained from an external source, in this case, the ASA’s
owner. The approach addresses the challenge of calculating this value when doing so depends on in-
voking, repeatedly, a separate system module. Second, it describes two novel methods for dealing with
computational resource constraints on querying the scheduler. The goal of these two methods is to en-
able the CI to activate the scheduler more efficiently, by decreasing the number of queries required for
calculating the exact value of a specific piece of information the owner may have. Third, it describes two
methods that enable the CI to reduce the number of queries when it needs to determine only whether the
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value of information necessarily exceeds (or necessarily is less than) the cost of obtaining the informa-
tion.

The algorithm generalizes to other situations in which the computation of information value requires
that a separate module be invoked to evaluate new situations. The other methods generalize to situations
in which some regularity exists in the way an increase or a decrease in the value of different outcome
characteristics affects whether knowing the outcome has a non-zero value. In particular, although the
paper addresses the problem of calculating value of information in a multi-agent setting, the methods
apply as well to single-agent scheduling when an agent is responsible for multiple, linked threads of
activity. For instance, they would be useful if resources rather than people were being scheduled. The
greater the parallelism and interdependency, the more likely information about one task will affect some
part of the schedule of other tasks and the greater number of tasks that may be affected. The challenges
are thus highlighted in the multi-agent case.

In the next section, we provide an overview of the ASA decision-making environment, introduc-
ing terminology we will use throughout the paper. Section 3 presents the principles underlying the
computation of the value of information. Section 4 describes mechanisms for improving the efficiency
of the scheduler-querying process when the CI needs the exact value of information and also for set-
tings in which the CI needs to calculate only whether the information value exceeds a given threshold.
Experimental results for all of these methods are given in Section 5, which also briefly describes the
Coordinators application domain in which they were tested and the basic architecture of the CI module.
Section 6 discusses related work and Section 7 concludes.

2 The Basic Decision Making Setting

For exposition purposes, we will use as an example an expanded description of the first-response-type
effort of fighting a fire. Multiple fire companies arrive at the scene, each with its own set of tasks. These
different tasks are interleaved as part of what must be a highly coordinated team effort to control the fire.
For instance, the schedule of the Engine (pumper) arriving first would include stretching a fire hose called
the “attack line” to the appropriate entrance of the structure in preparation for making an attack on the
fire. This task would need to be coordinated with the main task of the first ladder-truck that arrives at the
scene, which has responsibility for ventilation of the structure that is burning. The tasks scheduled to be
executed by the different companies vary highly in their level of complexity. Many can be decomposed
into such actions as choosing a firefighting strategy and managing the fire streams while coordinating
the ventilation efforts, until the fire is suppressed. These actions might further decompose to subtasks
which involve several companies (e.g., advancing hoselines and evaluating interior conditions) and can
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be performed in many ways, each associated with different outcomes. For example, the ventilation task,
which releases heat and smoke, can be performed in the form of vertical ventilation or positive pressure
ventilation. The first is labor intensive and is therefore likely to be time-consuming. The second is less
labor intensive and should be quick to initiate, but it requires substantially more resources. Other tasks,
e.g., stretching a fire hose, are not further divisible.

The success of the fire attack crew entering the building depends on the success of the ventilation
effort. In some cases, only a successful ventilation of the structure will enable the entry of the fire
attack crew; otherwise, a different firefighting strategy will need to be chosen. Similarly, a standpipe
stretch from a stairway entrance to the floor on fire requires the availability of three firefighters using
three lengths of 2½” hose. As these examples illustrate, the quality of performance of a task typically
depends on the quality of performance of other tasks. Teams’ plans constantly change. For example,
the firefighters’ current plan might be interior attack — inserting a team of firefighters into the burning
structure, in an attempt to extinguish a blaze from inside the structure, minimizing property damage from
fire, smoke and water. This approach requires a minimum of four fully-equipped firefighters: an entry
team of at least two to enter the structure and fight the fire, and two standing by to rescue or relieve the
entry team. If the entry team cannot extinguish the blaze, the plan may change to an “exterior attack”, a
method of extinguishing a fire which does not involve entering the structure.

As is typical in AI planning systems, we represent tasks in a hierarchical task structure, with each task
decomposing into subtasks. Because there may be different ways to perform a task, the representation
allows for different decompositions of a task. For presentation purposes, we will subsequently refer to the
overall group task (e.g., getting control of the fire) as the group activity. We distinguish tasks that cannot
be further decomposed from tasks that further decompose, using the term atomic task for the former
and complex task for the latter. We note that atomic tasks may encompass efforts by multiple agents
and hence are not “basic level” in the sense of executable at will by an individual. They are, however,
not decomposed into constituents in the domain model. In the remainder of the paper, the unmodified
term “task” will be used only to refer to atomic tasks, because the paper focuses mostly on reasoning
about such tasks. In addition to decomposition, the task representation includes the inter-task relations
“enables”, “disables”, “facilitates” and “hinders”. For instance, it would use “enable” to represent the
dependence of the success of the fire attack crew entering the building on the success of the ventilation
effort.

The representation of atomic tasks includes several properties essential for ASA scheduling and
performance calculations. In particular, the task model associates with each task temporal properties
(in particular “duration”) and “quality characteristics” that capture such aspects of performance as cost,
resources consumed and benefit. In dynamic environments, the plan for a group activity or any of its
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constituent subtasks may or may not succeed, and the outcome of different ways of doing a particular
task will vary in quality (e.g., consume more or fewer resources, produce a better product). For example,
advancing a line from the stairwell might have different effectiveness and duration, depending on whether
or not the hallway is smoke-filled.

As is common in scheduling systems for dynamic environments [15, 43, 54, 5, 2], the ASA maintains
an active schedule for the team which reflects their current plan. Figure 3 gives an example of an active
schedule for the fire-fighting task.2 When task outcomes occur that differ from those represented in
the active schedule, ASAs must adjust the schedule to reflect this changed reality. To adjust schedules
appropriately, ASAs need to know when tasks have been successfully carried out (“task completion”) or
not (“task failure”) regardless of whether the task is directly assigned to their owner or not. They also
need to know a range of outcome characteristics of task execution, including actual execution duration
and any quality properties relevant to assessing team performance or affecting the execution of other
tasks as part of the group activity. As ASAs have scheduling capabilities, but not sensors, and they
are involved only in scheduling and not task execution, the only way they can come to know that a
task has been completed (which is essential for them to be able to provide scheduling assistance) is
for owners to provide this information. Thus, we assume the overall operating environment for ASAs
is one in which owners recognize and agree to the requirement that they provide such task-completion
information when a task is finished. (For instance, this reporting requirement is standard operating
procedure in such domains as first responders, where each unit reports execution both for synchronization
and control purposes.) Successful task completion is modeled by the issuing of an execution completion

(EC) message. If an ASA does not receive such an execution completion indication immediately after
one of the possible duration-outcome times has elapsed (which is an implicit indicator that this duration
is no longer possible), then it must update the probability of the remaining potential outcomes of the
task, increasing them proportionally.

During task execution, an ASA may also communicate with its owner to obtain new task-related
information. By obtaining more accurate information about a task’s potential outcomes prior to task
completion, an ASA decreases its uncertainty; it is able to refine the probabilities associated with differ-
ent possible task outcomes sooner. As in related work that deals with obtaining similar schedule-related
information from users [49], this paper assumes that the information owners provide is reliable, e.g., that
they provide the actual outcome. At the end of Section 3, we briefly describe the possibility of handling
situations in which the owner can provide only partial information and is unable to provide the actual
outcome.

We can now formally define a scheduling problem T .3 T comprises a set of tasks applicable to
2The examples given in this section and the following one are simplified and given for illustrative purposes.
3For convenience, we have added a table at the end of the paper summarizing the notation used in this paper.
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Engine 1
(pumper)

Truck 
(ladder)

Engine 2

M: arrive at 
scene

M2: arrive 
at scene

M3: arrive at 
scene

M5: ventilate 
the structure

M4: stretch 
fire hose

M6: advance 
hose‐line

M7: assemble 
high rise line

M9: Evaluate 
interior condition

M8: backup 
Engine 2 crew

M4: stretch fire 
hose

Active Schedule Task Outcomes

current time

O1:    0.3        15          50      10        yes

O2:    0.2        25          30       8         yes

O3:    0.1        15         100     15        yes

O4:    0.1        25           0        0          no

O5:    0.3         2            0        0          no

prob duration quality length success?

enables

Figure 3: Active schedule and possible task outcomes examples.

the problem domain, relationships among those tasks, outcome values for each task, quality accumu-
lation methods and an active schedule. Any task M ∈ T has multiple possible outcomes. Each pos-
sible outcome o ∈ M has an a priori occurrence probability as estimated by the ASA, P (o), where∑

oi∈M P (oi) = 1, ∀M ∈ T . Outcomes are defined by the values they assign to a set of outcome charac-
teristics, each representing a different aspect of task performance. The particular characteristics captured
in a task’s outcome, as well as their values, may vary by application and even within different tasks in the
same application. For example, the right side of Figure 3 illustrates outcomes for the task of stretching
a fire hose that is in the fire-fighting active schedule to the left. Each outcome is characterized by its
duration, the depth of penetration into the building as achieved by the team with the hose (denoted by
“length”), and by whether or not the task executed successfully or not. The outcome of the task of the
Engine arriving at the scene, on the other hand, may be characterized by different parameters, such as its
duration, the company size and the type of equipment brought with it.

The active schedule, denoted S, includes the tasks of T that are planned to be executed.4 A task
M ∈ T that is not in the active schedule is an alternative that can be used if a scheduling revision is
required. As shown in Figure 3, the active schedule includes tasks that have already been executed (e.g.,
arrival of the ladder Truck). They are included because these tasks impose scheduling constraints as a
result of their relationships with other tasks (e.g., enable) and the way they contribute to overall task
performance.

Schedule S uses only a hypothetical central value (usually the mean) for each outcome characteristic
of a task, because schedulers cannot handle the scheduling dynamics of the exponentially large set of

4Even if the problem is over-constrained, the scheduler can potentially produce a schedule, which in the worst case will
be associated with zero quality, with the expectation that the problem will evolve (e.g., it will receive some new information).
In such cases, receiving the actual outcome of tasks ahead of time may be extremely useful.
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possible outcomes combinations [56]. (Their architectures typically require a single distinct outcome for
each task [15, 56, 35, 53].) During the performance of a group activity, the quality of its active schedule,
henceforth “quality of the schedule”, is derived from the quality properties of its constituent tasks (actual
quality if the task has been executed, else hypothetical value) using quality accumulation functions.
This schedule quality needs to be recalculated whenever the actual outcome of a task is revealed or the
schedule is revised.

This formal setting enables us to state more succinctly the two key challenges addressed in this paper:
Determining the value of knowing the actual outcome oa of a task M , if this information is received at
a time t that is prior to completion of M ’s execution, given a scheduling problem T , the set of possible
outcomesO and the a priori outcome distribution P (oi); and designing efficient techniques for reasoning
about that value in settings in which an external scheduler must be queried.

3 Calculating Information Value

This section describes the general framework for reasoning about the value of information that is known
by an owner but not his/her ASA. It then describes principles which form the basis for a recursive al-
gorithm that computes the value of such information. The algorithm follows the canonical information-
theoretic approach according to which the value of a given piece of information is defined as the dif-
ference in expected value between the system performance with and without this piece of information
[21]. As the previous two sections have explained, however, the problem environment in which the CI
calculates the value of information (VOI) and the system context in which it operates have characteristics
that lead to challenges not addressed in prior work. First, the algorithm must iterate through all possible
values (e.g., all possible durations), because the CI does not know the actual value the owner will provide
(e.g., that the action will take longer than some possible durations in the model). Second, to compute
the system’s performance without this piece of information requires, in essence, that the CI consider all
possible futures allowed by the distribution of task outcomes, i.e, reason hypothetically about schedule
changes that would ensue when it subsequently learns that some possible outcome is not the actual out-
come. This process of reasoning about possible “eliminated outcomes” and other dynamically changing
properties of the schedule could consume significant scheduler resources if done in the obvious, most
straightforward manner.

The algorithm described in this section addresses these challenges, providing effective computa-
tion of the value of information through intelligently interleaving the calculation of possible schedules
with and without information from the user in a single iterative sequence of queries. Within each iter-
ative step, the value of all outcomes associated with the same duration is calculated, and the additional
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scheduling constraints that are required for calculations in the next step are generated. The algorithm
thus avoids unnecessarily recalculating schedule segments that are in common for different potential
outcomes. Furthermore, as described in Section 4, the two query-reduction methods we define, which
work by identifying in advance outcomes associated with zero contribution to the value of information,
significantly reduce the number of queries to the scheduler.

As discussed in Section 6, these techniques are novel both with respect to work in AI on interrup-
tion in human-computer interaction and adjustable autonomy and with respect to prior approaches to
value-of-information calculation in a range of other settings. While the idea of improving the value-
of-information computation by identifying redundant calculations is not new [63, 6], the improvements
achieved in prior work depend on properties unique to the domain of application or to connections among
data elements and do not address the temporal reasoning challenges that ASAs face.

3.1 The Value of Information from an External Source

The value of obtaining the actual outcome of task M at time t is the difference between the expected
performance of the team if it continues to use the current active schedule and its expected performance
if it revises the schedule at time t based on the actual outcome of M [21]. A schedule based on the
actual outcome of M is less uncertain than one based only on a distribution of possibilities, making the
schedule going forward with this new information of higher quality than the schedule without it. As a
result, the expected value of obtaining the actual outcome is necessarily non-negative. Furthermore, the
earlier the ASA knows the actual outcome of a task, the greater the usefulness of this information, as it
provides more flexibility in scheduling revisions.

For instance, if an owner knows that the task currently executing will definitely fail, early notification
of the ASA will allow it to immediately generate an alternative active schedule. In the example in Figure
3, if the Truck team owner estimates that efforts to ventilate the structure will fail and conveys this
information to the ASA, the schedule can be revised to include an external attack rather than the planned
interior attack. Furthermore, if this owner supplies this information before the start of execution of
the task, then the ASA can change the schedule in a way that entirely avoids executing the task. This
information may also be of benefit to other ASAs, if their owners’ tasks either are part of a common
complex task or are enabled by this task (e.g., Engine 2 in Figure 3). If the ASA notifies other owners’
ASAs of this change, then the schedules of any owners whose tasks are affected by this task’s outcome
can also be changed earlier, rather than waiting for the failure to occur. Without such advance notice, the
ASAs may lose flexibility in choosing alternative schedules as well as valuable task-execution time. The
calculation of the expected value of external information therefore requires determining the influence of
that information on the entire team’s schedule.
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The CI does not know what information the owner has, only that the owner has (or may have) relevant
information. It thus must compute the value of information without knowing the actual value the owner
will provide. For instance, in the firefighting example, the system might benefit from knowing the arrival
time of a backup Engine, and it may know that the owner knows this information, but it does not know
(for instance) that the owner knows it will arrive in five minutes. Unlike in prior work in AI, which has
depended on having in-hand the piece of information Ψ which it is calculating the value of (e.g., Ψ is
3pm at the theater) [19, 22, 20, 61], the CI must iterate through all possible values of Ψ. This iterative
process is complicated by the fact that for each possible outcome, multiple queries must be sent to the
scheduler. While some tasks may be associated with a small set of outcomes (e.g., arrival time depends
only on whether traffic is mild, heavy or jammed), others may have numerous possible outcomes. For
example, the task of assembling a high-rise 2½” line (the standard hose line in most fire departments)
can have numerous duration and quality outcomes due to delays encountered while carrying different
sections, flaking the line or when connecting the sections, or inefficiencies of the team in attaching the
nozzle and securing it.
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Figure 4: Execution-completion-based rescheduling.

The calculation is further complicated by the fact that the active schedule is continuously updated
as a result of the receipt or absence of execution completion messages over time. These execution-
completion-based reschedulings may significantly alter the actual team’s performance in executing the
group activity, and consequently calculating the benefit of receiving the information becomes more com-
plex.
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This process is demonstrated in Figure 4, which is based on the active schedule in Figure 3. The
upper schedule represents the active schedule of three ASA owners (represented as agents A, B and C).
The task for which information is required is M , the first task of agent A, which is currently executing.
Task M has three possible duration values (denoted dM1 , dM2 and dM3 ). Currently, its duration in the
active schedule is represented by a single value (e.g., the mean of the three possible durations). If the
agents obtain, at time t, the actual duration outcome of method M , they can update their schedules.
The potential scheduling changes include the rescheduling of tasks M4−M9 and possibly terminating
tasks M , M2 or M3, all of which are executing at time t. In the absence of information from an owner,
rescheduling is based only on the receipt of execution completion messages, or the lack thereof. Several
different reschedulings may occur, depending on the actual outcome of M , as shown in the bottom
schedules.

If the actual duration outcome of M is dM1 (bottom left schedule), then upon receiving the execution
completion message at time dM1 , the ASAs can generate a new schedule from that point onwards. The
remaining tasks in agent A’s schedule may be rescheduled (e.g., replacing the order of execution of tasks
M8 and M4). Agents B and C gain little because M2 in agent B’s schedule has already been executed
and M3 in agent C’s schedule has already progressed significantly. If the actual duration outcome of
M is dM2 (bottom middle schedule), then at time dM1 the ASA can revise the schedule relying on the
fact that no execution completion message has been received. The flexibility for rescheduling at this
point includes all the tasks that have not started executing. The only flexibility for tasks that are already
executing is that they can be dropped. In the example given in the figure, the rescheduling that takes
place at time dM1 (based on the fact that the duration of task M is either dM2 or dM3 ) results in replacing
M6 with task M15. The execution completion message will, in this case, be received at time dM2 , and
the ASAs can generate a new schedule from that point onwards. As a result, the remaining tasks in
agent A’s schedule may be rescheduled. However, M2 in agent B’s schedule has already been executed,
M5 in agent B’s schedule has already started executing, M3 in agent C’s schedule has already been
executed and M15 in that agent’s schedule has come a long way in its execution path. The agents have
lost the flexibility to change their schedules until dM2 , and the rescheduling that takes place at time dM2
is constrained by the rescheduling that took place at time dM1 and the tasks executed up to dM2 . Similar
rescheduling occurs if the actual duration of M is dM3 .

The expected performance of the team if it does not receive information from the owner must there-
fore be calculated based on continuous revisions of the current schedule due to elimination of outcomes
and the final revision upon the receipt of the actual outcome (as part of the execution completion mes-
sage). We refer to the schedule produced based on updates associated exclusively with the receipt or ab-
sence of execution completion messages as the “execution-completion-based schedule (EC-based sched-
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ule)”.

3.2 The Querying Algorithm

As a result of the complications described in the preceding section, the algorithm we define uses a
Bayesian-decision-theoretic based approach for calculating the value of information an owner may have
[41, 3, 8]. For each possible task outcome, it considers the consequences associated with getting this
specific information before execution completion (or failure), and, alternatively, through execution-
completion-based reasoning; it weighs each possibility’s contribution by the probability it will occur.
The algorithm queries the scheduler iteratively, while emulating the re-scheduling dynamics that would
result at each stage, to determine the value of information an owner may have.

Before giving the algorithm itself, we illustrate the calculation for a task M , which has k potential
outcomes, with k′ ≤ k different duration values {d1, ..., dk′} sorted by their length. If M is scheduled
to start executing at the current time, the goal is to calculate the value of knowing the actual outcome of
M at some time t which is during M ’s execution. For exposition purposes, we begin by assuming t is
the current time, and we later explain the changes needed to calculate the value at any time during the
execution of the task.

Since the CI does not know which of the task’s outcomes is the outcome known to the owner, the ex-
pected value to the system of receiving the actual outcome of taskM at time t, denoted V (interact, t,M),
is the sum of the values gained for all possible outcomes, weighted by each outcome’s a priori proba-
bility. We use St(T, I, Sched) to denote the schedule that the scheduler produces if it receives at time
t a scheduling problem T associated with the active schedule Sched and the new information I , which
is a subset of O that includes all outcomes that are still valid. The information I can either be a sin-
gle outcome (e.g., when the user specifies the actual outcome) or a set of several remaining outcomes
(e.g., when some outcomes can be eliminated due to the time that has elapsed). Sched encapsulates
all the constraints imposed by former scheduling and re-schedulings. Denoting the quality of schedule
St(T, I, Sched) by St(T, I, Sched).quality and the value of the duration characteristic of any outcome
oi by oi.dur, the expected value of obtaining the actual outcome of task M at time t, is given by:

V (interact, t,M) =
k′∑
i=1

∑
oj .dur=di

P (oj)
(
St(T , oj , Sched).quality− (1)

St+di(T , oj , St+di−1
(T,O − {ow|ow.dur ≤ di−1}, ..., St+d1(T,O − {ow|ow.dur ≤ d1}, Sched))...).quality

)
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Equation 1 sums over each possible outcome of task M the difference between the quality of the
schedule produced by the scheduler at time t if it knows that outcome oi is the actual outcome and the ex-
pected quality of the schedule produced if it does not have this information at time t. This difference is the
difference in value that results from obtaining this specific information from the owner. The second term
in the summation corresponds to the case where task execution is completed at t+oj.dur, at which point
this information becomes available to the ASA anyway. The quality St+di(T , oj, St+di−1

(...)).quality is
the quality of the schedule produced by the scheduler at time (t+oj.dur), where the input used for gener-
ating this schedule is based on the scheduling updates that will have taken place up to time (t+ oj.dur).
As illustrated in Figure 4, by time t + oj.dur, the scheduler has lost some flexibility in scheduling,
because none of the tasks that started execution between time t and time t+ oj.dur can be re-scheduled.

If t is not the current time, the same analysis holds with minor revisions. For instance, consider the
case where task M , which is already executing at time t, is the task for which the CI needs to calculate
the value of knowing its actual outcome. If task M started executing at time tstart < t, then any outcome
associated with a duration shorter than the time elapsed from tstart (i.e., any outcome oj for which
oj.dur < t− tstart) is no longer valid. Any other outcome oi ∈ {o|o.dur ≥ t− tstart} thus has a revised
occurrence probability,

P (oi)
′ =

P (oi)∑
oi∈{o|o.dur>t−tstart} P (oi)

(2)

This probability-update process is managed by the ASA based on the absence of an execution com-
pletion message before time t. Therefore, the same principles described above, taking the revised prob-
abilities for each outcome of M , hold for calculating the value of obtaining at time t the actual outcome
of a task M that is currently executing.

The calculation of the improvement in quality that would result from learning that a possible outcome
oa is the actual outcome therefore requires two types of queries to the scheduler: (1) a query that assigns a
probability of 1 (complete certainty) to outcome oa initially; and (2) a constrained query that incorporates
the results of re-scheduling processes that occur up to time t + oa.dur and then assigns a probability of
1 to outcome oa.

Algorithm 1, given in pseudo-code, embodies the principles described in Section 3.1, and captured in
Equation 1, for calculating the value of obtaining the actual outcome of a task before the task completes
execution. Once the CI module calculates this quality value gain, it can multiply it by the probability
that the owner really does have information about the actual outcome [45], and, if the result is greater
than the estimated cost associated with obtaining it, initiate an interaction.

The core of the Algorithm 1 computation is: (a) the calculation of the differences in the expected
quality with and without information about the outcomes associated with the shortest duration; and (b)
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if execution exceeds the shortest possible duration outcome, recursive execution of the algorithm on the
new schedule to obtain the quality of the revised group schedule for the reduced problem. The input for
the algorithm is a scheduling problem, T (with an active schedule, denoted T.Sched), a task M (with a
new outcome distribution) and the time t when M ’s actual outcome can potentially be obtained from the
external source. It is with the recursive Step 13 that the algorithm emulates the re-scheduling process
used by the ASA’s EC-based scheduling.

Algorithm 1 GetV alue(T,M, t) - Calculating the value (in group quality terms) of obtaining the actual
outcome of a task.
Input: T - a scheduling problem; M - A task from T that we are working on; t - the time at which M ’s actual outcome is

obtained from the owner;
Output: V - the expected improvement in group activity quality if the owner provides the actual outcome at time t.
1: Set V alue = 0;
2: if M has no outcomes then
3: return 0
4: end if
5: Set O′ = {oi|oi ∈M ∧ oi.dur = min{o.dur|o ∈M}}
6: for any oi ∈ O′ do
7: Set V alue = V alue+ P (oi)(St(T, oi, T.Sched).quality − St+oi.dur(T, oi, T.Sched).quality)
8: end for
9: Set T.Sched = St+min{o.dur|o∈M}(T, {oi|oi ∈M} −O′, T.Sched)

10: Set Premain = 1−
∑

oi∈O′ P (oi)
11: Set P (oi) = P (oi)/Premain ∀oi ∈M −O′
12: Remove from M the set of outcomes O′

13: return V alue+ Premain ∗GetV alue(T,M, t)

The algorithm stores the value accumulated through its execution in the variable Value. It identifies
outcomes associated with the minimal duration and stores them in O′ (Step 5). The value contributed by
each outcome inO′ is calculated directly using the calls St(T, oi, T.Sched) and St+oi.dur(T, oi, T.Sched)

(Step 7). The first call obtains the outcome oi at time t and thus does not impose any scheduling con-
straints beyond that time. The second call obtains the outcome oi at time t + oi.dur; thus the schedule
produced is constrained by any tasks scheduled between time t and t+ oi.dur.

Upon completing this calculation, the algorithm generates the EC-based schedule resulting from the
elimination of all outcomes associated with the minimum duration outcome (i.e., those stored in O′)
(Step 9). This schedule is used in the recursive calls to generate EC-based scheduling constraints. The
probability of the remaining outcomes is updated (Steps 10-12) and the outcomes in O′ are removed
from the task (Step 12) in preparation for the recursive call in Step 13. The input to the recursive
call thus includes an active schedule (as part of T ) with all the scheduling revisions that would have
occurred due to the elimination of the outcomes with the minimum duration outcome. Therefore, any
call to compute St+oi.dur(T, oi, T.Sched) in the recursive execution will be constrained by the EC-based
schedules produced by recursive calls for time intervals (t,t + oi.dur). Calls to St(T, oi, T.Sched), on
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the other hand, will not be affected by scheduling revisions made in the active schedule since these all
relate to times later than t. In the remainder of the paper, we refer to St(T, oi, T.Sched) as “the non-
constrained schedule” and to St+oi.dur(T, oi, T.Sched) as “the constrained schedule”. The stopping rule
for the recursive execution is when no more outcomes remain in M (Steps 2-4).

The total number of queries sent to the scheduler through the recursive executions of this algorithm
is 2 ∗ |O| + |D|, where |O| is the number of possible outcomes and |D| is number of possible duration
outcomes of the task. This total is derived as follows: (a) two queries (constrained and non-constrained)
for each outcome (making a total of 2 ∗ |O|), (see Step 7); and (b) one query for each duration outcome,
to generate the schedule that realizes the elimination of that duration outcome as time elapses (Step 9).
We note that the size of O is potentially exponential in the number of outcome characteristics (where
duration is one of them), and that the ratio between |O| and |D| is mostly domain-dependent.

The adaptation of Algorithm 1 for the case in which the owner is only able to provide a revised distri-
bution of values (or eliminate a subset of the outcomes), requires several rather straightforward changes
and engenders one modeling challenge. The main change is in the generation of the non-constrained
schedules, i.e., those schedules that are currently generated using the call St(T, oi, T.Sched).quality in
Step 7. These schedules will need to be generated separately, as each different distribution of outcomes
that the owner might supply will now result in a different sequence of EC-based schedule updates during
task execution. The generation of such EC-based schedules follows the logic in Step 9 of the algorithm.
This change adds |D − 1| queries for calculating the value of each revised probability distribution that
the owner might supply. It also requires that the EC-based schedule generation process (currently exe-
cuted in Step 9) be executed separately, as a preliminary step rather than being interleaved as part of the
regular execution. This latter change does not engender an increase in the number of queries required, as
compared to the current algorithm design. The difference between the quality of the two schedules needs
to be weighted according to the probability of receiving a specific revised distribution of outcomes. The
challenge, which we describe in Section 7, is the need to model the probabilities of the possible revised
distributions.

4 Improving Efficiency

Algorithm 1 requires repeated querying of the scheduler, which is a resource-intensive task. As a result,
techniques that decrease the number of queries that the CI issues for reasoning about the value of infor-
mation can significantly improve ASA performance. In this section, we introduce two complementary
types of heuristic methods, each of which significantly reduces the number of queries sent to the sched-
uler. These methods take advantage of a “time-critical change” concept, which is defined in this section,
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to reduce the number of outcomes for which the scheduler needs to be queried. They do so without
compromising accuracy (i.e., they either provide the exact value of information or reliably determine
if that value is above or below a pre-defined threshold); they are heuristic in the sense that we cannot
guarantee the amount of improvement they will provide. Methods of the first type are useful for situa-
tions in which the CI needs to compute the exact value of information; it reduces the number of queries
by intelligently selecting the sequence of outcomes for which queries are generated and re-evaluating
the effectiveness of further queries based on the results obtained from the scheduler. Methods of the
second type are useful when the CI needs to determine only whether the value of information necessarily
exceeds (or necessarily is less than) a given threshold value (e.g., the cost of obtaining the information
from the owner).

4.1 Value Calculations

As described in earlier sections, new owner-provided information improves scheduling quality by allow-
ing scheduling modifications that are likely to result in better performance given the actual world state.
Information obtained at time t has value only if it leads some agents to change their task schedule in a
way that they could not have done based only on an EC-based schedule. If no ASA changes its owner’s
schedule in comparison to an EC-based schedule, then there is no value in receiving that specific outcome
ahead of time and its contribution to the overall weighted sum in Equation 1 is zero. Given a possible task
outcome o, we may classify changes in the active schedule that result from knowing the actual outcome
of the task is o into “time-critical” changes and “non-time-critical” changes. A time-critical change is
a change in the active schedule that cannot be made in the active schedule only from an EC message or
a lack thereof. The existence of a time-critical change indicates that the ASA’s learning about a task’s
actual outcome o from an owner will yield a positive value for the ASA. A non-time-critical change

is a change that can be made in the schedule even if the information regarding the actual outcome o is
received after the task finishes executing. Formally, the definition of a time-critical change is as follows:

Definition 1 For an initial problem T , its current schedule Sched, and a specific actual outcome o of

task M ∈ T : Any scheduling differences between the schedules St(T, o, Sched) and St+o.dur(T, {oi|oi ∈
M}, Sched) in the interval (t, t+ o.dur) are time-critical changes.

For the scheduling situation illustrated in Figure 4, the only possible time-critical changes for out-
comes of duration dM1 are for those tasks that are executing or are planned to be executed prior to time
t+dM1 . Therefore, only changes in the execution of tasks M , M2 and M3 before t+dM1 that result from
receiving the information that the task will have duration dM1 are time-critical changes. If the schedules
St(T, oi, T.Sched) and St+oi.dur(T, oi, T.Sched) are identical during (t, t+ dM1 ), then whatever the plan
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is in the non-constrained schedule for time t + dM1 and later, the same schedule can be devised at time
t + dM1 as a result of obtaining the execution completion message at that time. Similarly, only changes
between the constrained and non-constrained schedules in the intervals (t, t + dM2 ) and (t, t + dM3 ) are
time-critical changes for duration outcomes dM2 and dM3 , respectively.

Time-critical changes affect the value of obtaining the actual outcome oi at time t, while non-time-
critical ones do not. If only N (N ≤ |O|) outcomes are actually associated with time-critical changes
then the theoretical minimum number of queries to the scheduler required to calculate the value of in-
formation is 2 ∗ N + |D|, where the |D| additional constrained queries are required for the re-planning
procedure as before and the 2∗N queries (N constrained andN non-constrained ones) are for calculating
the quality differences for those outcomes that yield time-critical changes.

The first query-reduction method we present, the “Time-critical scanner”, uses the fact that time-
critical changes are all that matter for identifying non-zero-value differences in the summation in Equa-
tion 1. The difference in quality between the constrained and non-constrained schedules is necessarily
positive if there are time-critical changes between the two at any time prior to t+ oi.dur. Otherwise, the
difference is necessarily zero.

To reduce the number of unnecessary queries to the scheduler, the Time-critical scanner orders sched-
uler queries as follows: First it requests the EC-based schedule for each possible duration outcome of
the task. Then it sends the scheduler all of the non-constrained queries (based on St(T, oi, T.Sched)).
Finally, it initiates a constrained query (St+oi.dur(T, oi, T.Sched)-based) only for those outcomes oi, as-
sociated with a time-critical change in the schedule that results from the non-constrained query. The
method takes advantage of the fact that the identification of time-critical changes can be reduced to
comparing the non-constrained schedule of each outcome with the EC-based schedule correlated with
that outcome’s duration.5 The validity of such a comparison derives from the fact that all of the EC-
based constrained schedules that are produced for outcomes associated with the same duration outcome
d are similar. The number of queries generated overall when using the Time-critical scanner method is
|O|+ |D|+ N , which may be derived as follows: (a) |D| queries for generating the EC-based schedule
as in Algorithm 1; (b) |O| queries for obtaining the non-constrained schedules of the different outcomes;
and (c) N constrained queries to calculate the quality differences for those outcomes associated with
time-critical changes. For instance, in the example given in Figure 3, if only two out of the five outcomes
are associated with time-critical changes (i.e., |D| = 3, |O| = 5 and N = 2) then instead of executing
13 queries, the CI will need to execute only 10 queries.

This approach decreases the number of queries required for calculating the value of information, but it
is still far from the theoretical minimum required number of queries (2 ∗N + |D|). A further significant

5The comparison applies only to tasks scheduled prior to t+ oi.dur.
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reduction in the number of queries may be obtained by utilizing a regularity that often exists. The
occurrence of time-critical changes in the schedule resulting from specific outcomes bears a relationship
to their relative position in the outcomes space. The regularity reflects the fact that if two outcomes o and
o′ have identical values for all of their outcome characteristics except for one characteristic j (formally,
o′.vi = o.vi ,∀i 6= j, and o′.vj = o.vj , where o.vi denotes the value of the i-th outcome characteristic of
outcome o of Task M ) and the added value of knowing each of these outcomes a priori was calculated
to be zero, then the value of knowing a priori any other outcome o′′ placed between the two along the j
axis in the outcome space (i.e., satisfying o.vi = o′.vi = o′′.vi,∀i 6= j and min(o.vj, o

′.vj) < o′′.vj <

max(o.vj, o
′.vj)) is also zero.

quality

Duration
q1

q2

q3

q4

d1 d2 d3 d4 d5

quality

Duration
q1

q2

q3

q4

d1 d2 d3 d4 d5

(a) (b)

Figure 5: A hypothetical task-outcome space where each outcome is defined by a (duration, quality) pair.
The gray area represents outcomes associated with time-critical changes. The arrows in the right-hand
graph represent the sequence of queries generated using the Outcome-space scanner.

To better understand the regularity, consider Figure 5(a) which portrays an outcome space in which an
outcome is defined merely by duration and quality characteristics for a task M with 5 distinct possible
duration outcomes, 4 distinct quality outcomes and 16 outcomes overall.6 Now, consider an arbitrary
outcome o = (di, qj) that is not associated with time-critical changes. Although this outcome is not
associated with time-critical changes, its neighboring outcomes in the outcomes space, (di, qj+k) or
(di+k, qj), k > 0, may be associated with time-critical schedule changes (e.g., (d4, q4) is not associated
with time-critical schedule changes while (d4, q1) and (d5, q4) are). Table 1 illustrates some ways in
which an increase or a decrease in the duration or quality results in time-critical schedule changes (both
in the executing ASA’s and in other ASAs’ schedules). Now consider an outcome o′, which is different

6The decision of whether or not all possible combinations of different values result in a valid outcome or not is domain-
dependent. In the case of more than two outcome characteristics, the outcome space representation is a multi-dimensional
space.
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Changes in the executing ASA’s
own schedule

Changes in other ASAs’ schedules

duration ↑ Task M exceeds deadline and is
thus replaced by task M ′

TaskM1 (enabled byM ) cannot start on time,
and is thus replaced with M2

duration ↓ The execution of task M can now
be delayed and a new task M ′ can
be scheduled before it

Task M1, enabled by M , is added to the
schedule, and consequently task M2 that en-
ables M1 needs to be added

quality ↑ Will never result in a time-critical
change in the ASA’s schedule

Task M1, enabled by the success of M , is
added to the schedule, and consequently task
M2 that enables M1 needs to be added

quality ↓ Task M is replaced by task M ′

(which has a better quality)
A task M1 which is likely to fail due to the
poor performance of M is replaced by task
M2

Table 1: Time-critical schedule changes due to new information about taskM ’s quality and duration (Mj

denotes a task that is currently non-scheduled).

from outcome o only in the value of the duration outcome. If o′ is associated with time-critical changes,
then any other outcome o′′ differing from o only in its duration outcome, for which o′′.dur > o′.dur (if
o′.dur > o.dur) or o′′.dur < o′.dur (if o′.dur < o.dur) is also necessarily associated with time-critical
changes. The same holds for changes only in the values of the quality characteristic.

This ripple effect happens if an increase or a decrease in the value of characteristic j consistently
increases or consistently decreases the schedule quality. It is explained by the fact that the rationale used
for changing the schedule when realizing that the actual value of an outcome characteristic i is v′i, rather
than vi remains valid also in the transition from vi to v′′i (keeping all the other outcome characteristics
values fixed). For example, if the scheduler determines that a reduction in the duration of a task, in
comparison to the hypothetical value, will change the schedule in a way that some of the changes are
time-critical changes, then necessarily knowing that the duration of the task is going to be even shorter
results in time-critical changes.

The regularity suggests that the space of outcomes for which time-critical schedule changes occur in
the outcome space (marked by a gray background in Figure 5(a)) typically wraps around the space repre-
senting the outcomes for which no time-critical schedule changes occur. This regularity can be exploited
for reducing the number of queries made to the scheduler by considering the value-of-information cal-
culation as a “game” defined as follows:7 The player is given a multi-dimensional matrix representing
the space of possible outcomes. Each element in the matrix may be associated either with time-critical
changes or not. At each game stage, the player needs to determine which element of the matrix to query
next. For each element queried, an indication is received of whether that element is associated with

7The use of the term “game” is due to the resemblance to the famous guessing game, “Battleship”.
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time-critical schedule changes. If two matrix elements along the same axis are found not to be associ-
ated with time-critical changes, then all outcomes between them (i.e., differing only in having a value
of that outcome characteristic that is between the values of that characteristic in the two outcomes) are
also not associated with time-critical schedule changes. The goal is to identify the matrix elements that
are associated with time-critical changes (marked in gray in Figure 5) while querying as few elements as
possible that are not associated with time-critical changes. A pre-processing stage for the system before
playing this game is to generate the |D| constrained schedules, based on which the time-critical changes
will be identified for each outcome queried during the game.

Thus, instead of using the mechanism described in the former subsection for identifying outcomes
in which time-critical schedule changes occur, we can construct a heuristic method for solving the game
described above. We call this method “Outcome-space scanner”. Several simple efficient algorithms
can be used for playing this game. Algorithm 2 is one of them. For exposition purposes, we use C
to denote the set of outcome characteristics and Ci to denote the set of exclusive values that the i-th
outcome characteristic obtains. The algorithm stores the accumulated value in the variable V alue. The
array flag[] is used to mark the outcomes for which the value of knowing that outcome in advance has
already been calculated or inferred based on the regularity which is the basis for this approach. The array
marginal[] is used to store the value associated with each outcome.

The algorithm works on a two-dimensional matrix defined by the possible values of the last two
outcome characteristics, C|C|−1 and C|C|. Each element of the matrix potentially represents an outcome
of the task. If the task has more than two outcome characteristics, the values of the remaining |C −
2| outcome characteristics are picked according to the selection rule specified in Step 6. Here, the
representation o1 ≺ o2 is used for defining the case where o2 has a value greater than that of o1 for the
first outcome characteristic for which the two differ in their value (i.e., having a greater value for the
i-th outcome characteristic overrides having a lower value in any of the j-th outcome characteristics,
j > i). Once the two-dimensional matrix is defined by the selection of o, the algorithm iterates over it,
attempting to uncover the boundaries of the area representing the outcomes for which no time-critical
schedule changes occur.

We demonstrate the algorithm using the example given in Figure 5(b). The iterative process is man-
aged with the variablesHrzDirection, V rtDirection,Hrz and V rt. The first two reflect the horizontal
and vertical direction of movement in the matrix and the last two determine the actual position. The direc-
tion of movement is determined by the data structure Corners and the variable Corner. The first holds
a set (x, y, h, v) which determines an initial position (x, y) in the matrix (i.e., a corner) and the direction
of movement horizontally and vertically (h, v). We begin with the outcome associated with the lowest
values of the two outcome characteristics defining the matrix by setting Corner to zero (Step 7) and
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Algorithm 2 Outcome-space scanner - Calculating the expected value (in group quality terms) of ob-
taining the actual outcome of a task.
Input: T - a scheduling problem; M - The task we are working on; t - the time to obtain M ’s actual outcome from owner;
Output: V - the expected improvement in group activity quality if receiving the actual outcome from the owner at time t.
1: Set V alue = 0; // Initialize supporting variables
2: For all 1 ≤ i ≤ |O| Set flag[i] = false; marginal[i] = −1;
3: Set Corners = {(0, 0, 1, 1), (|C|, 0,−1, 1), (|C|, |C|,−1,−1), (0, |C|, 1,−1)};
4: Set AdvanceCorner = false; AdvanceColumn = false;

// As long as some outcome values are not determined, pick a bi-dimentional matrix of outcomes
5: while ∃ flag[i] == false do
6: Set o = {o|o ≺ oi∀(oi ∈ O)&&flag[i] == false};
7: Set Corner = 0; Hrz = 0; V rt = 0; HrzDirection = 1; V rtDirection = 1;

// Iterate over outcomes starting from all four corners of matrix
8: while Corner < 4 do
9: if ∃oi = (o.v1, ..., o.v|C|−2, C|C|−1[Hrz], C|C|−2[V rt]) ∈ O then

10: Set marginal[i] = GetDifference(T, oi); flag[i] = true;
11: Set V alue = V alue+marginal[i] ∗ P (oi)

// Identify all outcomes that comply with the regulatory mechanism
12: if marginal[i] == 0 then
13: while ∃(j, l, w) satisfying (marginal[j] == 0)&& (oj .vm == oi.vm,∀m 6= l)&&

(ow.vm == oi.vm,∀m 6= l)&&(min(oi.vl, oj .vl) ≤ ow.vl ≤ max(oi.vl, oj .vl)) do
14: Set flag[w] = true; marginal[w] = 0;
15: end while

// Switch to the next corner/column
16: if V rt == Corners[Corner][1] then
17: Set AdvanceCorner = true;
18: else
19: Set AdvanceColumn = true;
20: end if
21: end if
22: Set V rt = V rt+ V rtDirection;

// If needed, advance to next column
23: if (V rt ∈ {−1, |C|})||(AdvanceColumn) then
24: Set V rt = Corners[Corner][1]; Hrz = Hrz +HrzDirection; AdvanceColumn = false;
25: end if

// If needed, advance to next corner
26: if (Hrz ∈ {−1, |C|})||(AdvanceCorner) then
27: Set Corner = Corner + 1; Hrz = Corners[Corener][0]; V rt = Corners[Corener][1];

HrzDirection = Corners[Corener][2]; V rtDirection = Corners[Corener][3];
AdvanceCorner = false;

28: end if
29: end if
30: end while
31: end while
32: return V alue ;

calculate the value of receiving a priori that outcome (Step 10). The calculation uses the function GetD-

ifference, which extracts the value based on the constrained and non-constrained queries (implementing
Step 7 of Algorithm 1), but it first checks the existence of time-critical changes in the schedule resulting
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from knowing the outcome and avoids sending the second query if one exists. To avoid the need to regen-
erate the EC-based schedule used in St+oi.dur(T, oi, T.Sched) each time, the entire EC-based schedule
can be produced once, at the beginning of the process, requiring |D| queries to the scheduler (using a
method similar to the one introduced in Algorithm 1). The calculated value, multiplied by the a-priori
probability of that outcome, is added to V alue (Step 11). If the value stored in marginal is zero (i.e.,
the algorithm reaches an outcome that does not involve time-critical schedule changes), the algorithm
attempts to identify all outcomes bounded by the selected outcome and other outcomes in the outcome
space that have already been identified to have a zero value (Steps 12-15). The value of any outcome of
the latter type is set to zero and the outcome is marked as processed (in flag). Also, if the value of an
outcome is zero, then the values of the binary variables AdvanceColumn and AdvanceCorner are set,
in order to indicate that a change in the column or corner to continue with is required (Steps 16-20).

The remainder of the algorithm (Steps 22-28) handles the advancement within the column. In par-
ticular it handles column switch and corner switch for effectively iterating around the area that wraps
around the one representing the outcomes for which no time-critical schedule changes occur. A column
switch occurs when reaching an outcome that does not involve time-critical schedule changes or scan-
ning all elements of a column. A corner switch occurs when reaching an outcome that does not involve
time-critical schedule changes which is placed on the first or last rows of the matrix or scanning all
columns in a given direction). 8

The execution terminates when the added-value of all outcomes has been incorporated in the calcu-
lation. An alternative stopping rule can be based on a maximum number of queries allocated for the
calculation by the ASA or once the accumulated value exceeds the cost of obtaining the information.
Such a stopping rule can be implemented simply by adding such constraints to the condition checked in
Step 10.

The Outcome-space scanner is guaranteed to send at most the same number of queries to the sched-
uler as the Time-critical scanner method does (|O| + |D| + N ). In the worst case, when there are no
outcomes associated with time-critical changes, and thus none that can be discarded from the value cal-
culation, it requires sending 2|O| + D queries to the scheduler, similar to Algorithm 1 and to the Time-
critical scanner method. However, as the number of queries that are not associated with time-critical
changes increases, the Outcome-space scanner reliably tags more outcomes associated with a zero value,
resulting in a two-fold benefit. First, the scheduler does not need to be sent the non-constrained query
for these outcomes. Second, it increases the probability of identifying other outcomes as associated with
a zero value without sending the scheduler any further queries related to these outcomes. The method’s
best case performance is when all the outcomes not associated with time-critical changes are aligned

8Depending on the dimensions of the problem, it may be better to scan rows instead of columns, but that process is
analogous.
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along the same axis in the outcome space, in which case it will generate only 2N + |D| + 2 queries to
the scheduler, which is only two more than the theoretical optimal bound discussed above. This latter
number is derived as follows: (a) |D| queries for generating the EC-based schedule as in Algorithm 1;
(b) N queries for obtaining the non-constrained (and N for the constrained) schedules of all outcomes
associated with time-critical changes; and (c) two single queries to learn that the two outmost outcomes
of the sequence of outcomes not associated with time-critical changes are such.

4.2 Value Accumulation

The ultimate goal of calculating the value of information is deciding whether this value exceeds the cost
of obtaining such information. Therefore, an alternative to calculating the exact value of information is
determining merely that this value is greater than that cost. By determining that the value of information
exceeds a pre-defined threshold (cost) with only a partial set of queries, a CI can make a decision using
fewer scheduler resources. For example, consider the scenario given in Table 2. For each of four possible
outcomes of a task, the table depicts the a priori probability, the quality of the schedule produced if this
outcome is known to be the actual outcome, the quality of the schedule without obtaining this information
until EC time and the difference between the two. The first column numbers the paired queries to the
scheduler required for producing the schedule value with and without knowing about the outcome, and
the last column is the weighted sum accumulated to this point (i.e., the sum given in Equation 1 up to
the current outcome). For example, the weighted accumulated value after executing queries 5-6 is 13,
which is the sum of the product of the probability and difference values in the first three rows. If the cost
of obtaining the information is less than 25, then the actual outcome should be obtained. In this case,
if the cost of obtaining the information is in the interval (13-25), then deciding it is worthwhile to get
the information requires executing all 8 queries. However if the cost is in the intervals (4-13) and (0-4),
then realizing the usefulness of obtaining the information requires 6 and 4 queries, respectively. Now
consider a different ordering of query execution according to which the CI first executes queries 7-8 and
then queries 5-6 (and finally queries 3-4). In this case, realizing the usefulness of obtaining the actual
outcome for costs of (0-12) requires only 2 queries, and for costs of (12-21) and (21-25) only 4 and 6
queries, respectively.

For any given cost of interruption, the new ordering allows a decision to be made with fewer queries.
This alternative ordering has an additional advantage when the number of queries that can be executed
is limited (due to time constraints or ASA computational resource limitations). For example, if the cost
of interruption is 20 and the ASA is allowed to execute only 4 queries, then with the original ordering,
the wrong conclusion is reached and the information is not requested from the user. In contrast, with the
alternative ordering the usefulness of obtaining the actual outcome can be realized and the right decision
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Queries Outcome Probability Quality with information Quality without information Difference Weighed accumulated added value
1-2 o1 0.2 20 20 0 0
3-4 o2 0.2 40 20 20 4
5-6 o3 0.3 40 10 30 13
7-8 o4 0.3 40 0 40 25

Table 2: A possible order of executing the queries associated with the outcomes of hypothetical task M .

is made.
As this example shows, the order in which a CI sends queries to the scheduler affects its ability to

minimize the number of queries that need to be sent to the scheduler in order to make a decision. Ideally,
the CI would send queries in such a way that the weighted accumulated added value (last column in Table
2) at each step of the process is maximized. Doing so would enable it to reach a decision with the fewest
number of queries to the scheduler. The ordering of the pairs of queries according to their weighted
added value is a “gold standard”, which, unfortunately, is only a theoretical ideal. Although this gold
standard cannot be achieved, because the values of the different query pairs are not known a priori, it is
a useful benchmark for evaluating methods aiming to produce an effective ordering of queries.

An effective ordering of queries also facilitates early identification (and elimination) of non-beneficial
attempts to obtain external information. The sooner the CI is able to determine that information about a
task outcome has an expected value lower than the cost of obtaining that information, the sooner the CI
can “drop” the calculation. Realizing that the value of information is lower than the cost of obtaining it
is facilitated by having an upper bound for the expected accumulated weighted value of that information.
For example, if the gold standard ordering is used, then each subsequent pair of queries yields a smaller
difference than those obtained for pairs preceding it. Denoting the value of the difference calculated as
part of the summation used in Equation 1 for the j-th query pair by Fj yields: Fj ≥ Fj+1∀0 < j < |O|,
and

∑|O|
j=1 Fj = V (interact, t,M). Thus, the accumulated expected value of the |O| − j query pairs

remaining after executing the j-th query pair is at most the sum of their probabilities multiplied by
the difference that was calculated for the j-th pair. Formally, the upper bound for the expected value
of interacting with the owner based on the calculation of j query pairs according to the gold standard
sequence, denoted Vj(interact, t,M), is

Vj(interact, t,M) =

j∑
i=1

FiP (oi) + Fj

|O|∑
i=j+1

P (oi). (3)

The upper bound given by Equation 3 is strictly decreasing as a function of j and converges to the value
V (interact, t,M) calculated using Equation 1. Figure 6 illustrates this process.9

9Since the gold standard is a theoretical sequence, the CI can only estimate the upper bound. The accuracy of the esti-
mation may be improved by using exponential smoothing to estimate the maximum marginal value of the remaining query
pairs.
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Figure 6: Depiction of upper bound convergence (Equation 3). The upper bound gets tighter upon the
execution of any query pair until finally reaches the exact value of information.

Methods may be designed to effectively re-order the queries sent to the scheduler in a way that gen-
erally reduces the number of queries needed in order to reach any intermediate accumulated weighted
value. We present two new heuristic methods for effectively sequencing the queries for value accumula-
tion purposes. These methods, denoted Duration scanner and Potential-impact scanner, aim to prioritize
outcomes that are more likely to result in substantial values at each stage of the querying process.
Duration scanner: This method starts by executing a query pair for the outcome o ∈ M having the
highest probability of occurrence (P (o) ≥ P (o′)∀o′ ∈ M ). It then considers the set O′ of outcomes
with the same values as o for the full set of outcome characteristics, except for having a greater duration
outcome (i.e., O′ = {o′|o′.vi = o.vi∀vi 6= dur ∧ o′.dur > o.dur}). The querying process continues for
all outcomes in the set, sequentially, according to the duration characteristic value, in ascending order,
until either the difference between the group activity’s quality of the two queries forming the pair is zero
or the set O′ is empty.10 It recurs by choosing the outcome with the highest probability of occurrence
among those that have not yet been queried. The idea is that since the Fi values are weighted in Equation
1 according to the probability of the outcome, moving between outcomes with greater probabilities may
be beneficial.

Figure 7(a) illustrates a possible execution of the Duration scanner, based on the hypothetical task-
outcome space that is given in Figure 5. In this example, the (d4, q1) outcome is the one associated with
the highest probability of occurrence and therefore is the first to be queried. Outcome (d5, q1) is queried
next as it is the subsequent one in terms of duration value. In the absence of any more outcomes with the

10The decision to “crawl” along the duration axis is based on the idea that the duration characteristic is inherent in the
scheduling domain and is usually the characteristic that most constrains scheduling.
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Figure 7: Value of information calculation with (a) Duration scanner (left-hand-side) and (b) Potential-
impact scanner (right-hand-side), based on the hypothetical task-outcome space that is given in Figure
5.

same quality outcome and greater duration outcome, however, the next outcome to be queried is (d2, q3)

which is associated with the highest probability among those that have not been queried. Consequently
(d4, q3), which is the next in line in terms of its duration outcome value (and with the same quality
outcome value), is queried. This continues, in the same way, until all outcomes have been queried.
Potential-impact scanner: This method makes use of the time-critical change concept, identifying zero-
valued outcomes in the context of the multi-dimensional outcome space. It attempts to predict the relative
added-value of different outcomes according to their place in the outcome space and uses this prediction
to order queries. The distance in the outcome space of an outcome from the hypothetical outcome that is
used by the scheduler for constructing the active schedule (either max, min or mean) is used as a measure
of the magnitude of the added-value of knowing that this outcome is the actual outcome of the task. The
idea is that outcomes with extreme characteristic values in comparison to the hypothetical outcome used
by the scheduler are more likely to account for substantial added-value. After each query and scheduler
response, the Potential-impact scanner attempts to determine if there are additional outcomes that can
now be associated with zero added-value, based on the regularity discussed in Section 4.1.

Algorithm 3 specifies the pseudo-code of the Potential-impact scanner. The algorithm stores the
accumulated value in the variable V alue. It first calculates the distance in the outcome space of each
outcome from the hypothetical outcome (denoted hypothetic) used by the scheduler (Step 2). The
distance of each outcome characteristic from the hypothetical value is normalized according to the range
of possible values to this outcome characteristic and stored in the array dist. The greater this value,
the more likely that receiving this outcome a priori will result in substantial scheduling revision. The
array flag is used for marking outcomes that have not been processed yet. At each step, the outcome
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Algorithm 3 Potential-impact scanner - Accumulating value (in group quality terms) of obtaining the
actual outcome of a task.
Input: T - a scheduling problem; M - The task we are working on; t - the time to obtain M ’s actual outcome from the

owner; hypothetic: the hypothetical outcome that is currently used by the ASA;
Output: V - the expected improvement in group activity quality if receiving the actual outcome from the owner at time t.
1: Set V alue = 0;
2: Set dist[i]=

√∑N
j=1((oi.vj−hypothetic.vj)/(max(o1.vj , ..., o|O|.vj)−min(o1.vj , ..., o|O|.vj)))2, ∀oi ∈M

3: For all 1 ≤ i ≤ |O| Set flag[i] = false; marginal[i] = −1
4: while ∃ flag[i] == false do
5: Set i = ArgMaxi(dist[i] ∗ P (oi));
6: Set marginal[i] = GetDifference(T, oi); flag[i] = true;
7: V alue = V alue+marginal[i] ∗ P (oi)
8: if marginal[i] == 0 then
9: For any (j, l, w) satisfying (marginal[j] == 0)&&(oj .vm == oi.vm,∀m 6= l)&&

(ow.vm == oi.vm,∀m 6= l)&&(min(oi.vl, oj .vl) ≤ ow.vl ≤ max(oi.vl, oj .vl)),
Set flag[w] = true; marginal[w] = 0;

10: end if
11: end while
12: return V alue

with the highest product of its normalized distance from the hypothetical outcome and its probability is
chosen (Step 5), and the value of receiving that outcome a priori is calculated (Step 6). The calculation
uses the function GetDifference, similar to its use in Algorithm 2, to extract the value associated with
each outcome based on the constrained and non-constrained queries. Also, as in Algorithm 2, to avoid
the need to regenerate the EC-based schedule used in St+oi.dur(T, oi, T.Sched) each time, the entire EC-
based schedule can be produced once, at the beginning of the process, requiring only |D| queries to the
scheduler (using a method similar to the one introduced in Algorithm 1). The value attributed to the
selected outcome is stored in the array marginal.

If the value stored in marginal is zero, then the algorithm attempts to identify all outcomes bounded
by the selected outcome and other outcomes in the outcome space that have already been identified to
have a zero value (see Steps 8-10), in a way similar to the one used in Algorithm 2. The value of any
outcome of the latter type is set to zero and the outcome is marked as processed (in flag). The execution
terminates when the added-value of all outcomes has been incorporated in the calculation.

Figure 7(b) illustrates a possible execution of the Potential-impact scanner, based on the hypothetical
task-outcome space that is given in Figure 5. The black circle represents the hypothetical outcome used
by the schedule for scheduling purposes. In this example, the first outcome to be queried is (d4, q2) as
the product of its normalized distance from the hypothetical outcome and its probability is the highest.
Then (d1, q2) is queried, for the same reasons. At this point, the value of (d2, q2) and (d3, q2) can be
determined as zero even without querying based on the outcome-space regularity discussed above. The
next outcome to be queried is (d2, q4) and so on.
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The Duration scanner and the Potential-impact scanner have several properties worth highlighting.
First, they reflect the goal of finding out as soon as possible whether information should be obtained
from the user. Second, the use of these methods does not change the correctness of the information-
value calculation and the resulting decision regarding obtaining it. As described above, if necessary,
all query pairs will be used and the same value reached as the calculation without the methods. Third,
they execute in polynomial time (linear in the number of possible outcomes). Thus, if either of these
methods substantially reduces the number of queries that need to be executed, its computational cost will
be negligible, because query execution time is several factors of magnitude greater than the polynomial
time cost of these methods.

5 Empirical Investigation

The algorithms and heuristic methods described in this paper were designed and tested within the con-
text of a large multi-agent planning and scheduling system, the Coordinators Project [58, 5, 53, 30, 4].
This project aimed to construct intelligent cognitive software agents able to assist fielded units in adapt-
ing their mission plans and schedules as their situations changed. Typical sources of potential owner-
provided information in this application are coordination meetings (e.g., used for reporting status of task
execution), open communications that the owner overhears (e.g., if a radio is left open, the owner may
hear messages associated with other teams in the area) and direct communication with other owners par-
ticipating in a joint task (through which an individual often learns informally about the status of actions
being executed by others). An owner’s prior experience in similar situations could also be a source of
task-outcome related information [47, 43]. The scheduling problem that arises in Coordinators is known
to be difficult (NP-hard even in its deterministic version) and not easily modeled and solved by tradi-
tional solvers for planning and scheduling [56]. The dynamic nature of the environment makes it even
harder since as the scale of the problem increases, it becomes infeasible to calculate and store an optimal
set of policies corresponding to the different states the system can be in as the different uncertainties are
resolved [31].

In the first subsection, we briefly describe the Coordinators Project, which provided the implemen-
tation context and testbed environment for the approach to calculating value as described in this paper.
Subsequent subsections establish the usefulness of calculating information value, and the improvement
in efficiency yielded by the query-reduction methods both for calculating the value of information and
value accumulation. While we would have liked to compare our results to alternative approaches to co-
ordination autonomy in the Coordinators project, the other teams that focused on CI addressed different
problems (e.g., the cost of interruption) and were not comparable.
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5.1 Systems Context

Although a variety of approaches were taken in the design of ASAs for the Coordinators Project [39,
35, 42, 53], they all included four key modules: a single-agent scheduler; a component (called “Ne-
gotiation”) for communicating and coordinating scheduling with the ASAs of other owners; a module
that determined how to allocate an ASA’s reasoning resources (“Metacognition”); and a coordination
interface (“coordination autonomy”). Planning and scheduling problems were represented in Coordi-
nators using cTAEMS structures [27, 35], which can be used to define multi-agent hierarchical tasks
with probabilistic expectations on their outcomes.11 cTAEMS is an instance of the general hierarchi-
cal task model representation described in Section 2, and we detail here only the specializations that
are important for the description of the experiments and their results. The main elements of cTAEMS
structures are (atomic, single-agent) tasks, inter-action dependency links, and functions for percolating
task-performance measures up the hierarchy as tasks are executed. The multiple possible discrete out-
comes of a task represent its possible durations and quality characteristics. In general, the quality of a
task represents the contribution of performance of that action to the overall team effort and is execution-
dependent. It contributes to the quality of its parent task by means of a quality accumulation function
(QAF). If a task violates its temporal constraints, it is considered to have failed and yields a zero quality.
Task interactions are represented by non-local effects links (NLEs) such as enablement and facilitation.

The algorithms and methods described in this paper were developed for the coordination interface of
the SRI cMatrix architecture [13, 53], illustrated in Figure 8, and tested in this context. Figure 8 shows
the connections among cMatrix modules. As illustrated, the architecture separates the scheduler and CI
modules, and numerous modules interact with the scheduler. The CI module is responsible for deciding
intelligently when and how to interact with the owner. The scheduler is the key resource used by the
CI module. The Metacognition module also affects the CI as it controls the computational resources
allocated to different ASA modules. The methods developed in this paper address the challenges raised
by the need for the CI to take into account the resource constraints of the scheduler and Metacognition
allocation.

The basic CI architecture is given in Figure 9. The “owner profiling” and “owner state monitoring”
components track the owner’s interruptibility preferences and costs as well as managing interactions
with the owner [45, 47]. The “Event Handler” manages interactions with the Metacognition module
and determines (future) times at which there is a high probability the owner will have new information
that may affect system performance. For example, an owner is more likely to know the probability
of success of a (future) task shortly prior to the task’s execution than further from its execution time.

11This language is described in the paper for presentation purposes only. The algorithm and methods developed in the
paper could be used with other representations without any adaptation.
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Figure 8: The cMatrix Coordinators architecture. The Coordination Autonomy is the CI.

The “Interaction Evaluator” evaluates the benefit of interacting with the owner at a particular time. If
the expected benefit is positive, then an interaction with the owner is initiated and monitored by the
“Interaction Handler”. The mechanism and algorithms presented above enable the Interaction evaluator
to activate the scheduler efficiently in order to estimate the value of a specific piece of task or environment
information.
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Figure 9: The CI architecture.
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5.2 Validating the Usefulness of Information Value Calculation

Our CI module implementation was successfully integrated into the cMatrix Coordinators ASA and
evaluated in a real-time simulation environment created for the Coordinators project. Figure 10 depicts
the number of times the CI attempted to obtain the actual outcome of a task and the average improvement
in team quality as a function of the interaction cost. These results are based on an initial test of the CI
module that was done as part of its being integrated into a full ASA system. The test used 30 typical
cTAEMS problems. The goal of this test was to demonstrate the benefit of obtaining the actual outcome
from the user. The CI was not limited by the number of queries it could send the scheduler, because this
test was not concerned with reducing the number of queries made to the schedule. Likewise, the owner
interruption “cost” was taken to be known to the system. Each problem was tested with different cost
values, in order to verify the expected effect of this variable on the number of interactions initiated and
the benefit obtained. There was no attempt to model the cost of interrupting the user.

The results demonstrate that the improvement in the average quality of the group activity from learn-
ing the actual outcome early (from an owner) can be significant. While in many cases there was no sched-
ule change, the improvement in schedule quality was substantial in those cases for which the schedule
was updated as a result of the new information. Similarly, when the cost of interaction is relatively high,
the CI did not find interaction with the owner to be worthwhile in any of the test scenarios. The improve-
ment in quality when the interruption cost is zero provides an upper bound for the improvement that
can be achieved. The improvement in quality decreases as the interaction cost increases, as the potential
increase in schedule quality to be gained by interacting with the user is outweighed by the associated
costs.
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Figure 10: Average schedule quality improvement and number of interactions initiated as a function of
the interruption (“interaction”) cost.
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5.3 Query Reduction

To evaluate the query reduction and value accumulation methods, we used the Coordinators’ constraint-
based scheduler [56] which enabled the execution of extensive testing without the overhead of the full
Coordinators simulation system. These experiments used the test suite that the Coordinators project used
to evaluate different ASA architectures.

For each test case, the CI picked a random time in the schedule and activated the value-of-information
calculation mechanism for the specific task that was scheduled to be executed by this ASA’s owner at
that time. The use of a randomly selected time was meant to overcome the possible effect of timing
on the results. Tasks executed at final stages of the schedule are likely to have a small number of time-
critical changes for any of their outcomes. As a result, both the Time-critical scanner and Outcome-space
scanner will produce substantial improvement in comparison to Algorithm 1. In tasks scheduled early in
the process, there is much room for improvement in the schedule. As a result, more outcomes are likely
to be associated with time-critical changes, and consequently there is a more modest improvement in the
number of queries that need to be sent to the scheduler.

The following techniques from Sections 3 and 4 were compared: (a) Order scanner: evaluating
all outcomes using Algorithm 1; (b) Time-critical scanner: sending a non-constrained query for each
outcome and then sending constrained queries as necessary; and (c) Outcome-space scanner: using
the game-based algorithm described in Section 4. In addition, we calculated the theoretical minimum
number of queries needed (2 ∗ N + |D|) for each problem, denoted “Theoretical” in describing results
and in the results graphs.

The results are based on the complete Coordinators test suite of 2093 problems. In reporting re-
sults we use the Coordinators project division into classes based on such parameters as the scale of the
scheduling task, the number of agents, and the number and type of interdependencies (NLEs) between
tasks. Each class represents different problem characteristics and complexity. While the magnitude of
the improvement varies with problem-class, the ordering of the performance of the different methods
holds uniformly across all classes of problems (i.e., does not depend on the Coordinators problem class).
The classes are:

• Class 1 (299 problems) - minimal dependency between tasks (no “enables” nor “facilitates” NLEs).

• Class 2 (360 problems) - substantial dependency between tasks, mostly in terms of “facilitates”
NLEs.

• Class 3 (408 problems) - substantial dependency between tasks, mostly in terms of “enables”
NLEs.
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• Class 4 (309 problems) - problems characterized by temporal tightness; Large range of number of
methods used in each problem.

• Class 5 (361 problems) - missions with synchronization points.

• Class 6 (356 problems) - missions with synchronization points and substantially large numbers of
“facilitates” and “enables” NLEs.

Figure 11(a) depicts the average number of queries used by the CI for calculating the value of in-
formation as a percentage of the number of queries used by Algorithm 1, according to problem class.
As shown in the graph, the Outcome-space scanner provides the greatest improvement and is very close
to the theoretical minimum. For problems of classes 5 and 6, both the theoretical minimum and the
Outcome-space scanner produce very few queries. This result is explained by the fact that in many prob-
lems in these classes a feasible solution did not exist, due to an over-constrained problem. As a result,
many of the tasks’ outcomes were associated with zero values, and they were easy for the Outcome
scanner to find.

Figure 11(b) depicts the additional overhead, in percentages, of each method in comparison to the
theoretical minimum number of queries, with the number of possible quality outcomes as the controlled
variable, for all 2093 problems. This graph shows that while the overhead of the Order scanner and Time-
critical scanner methods increases (though modestly) as the number of possible outcomes increases,
the Outcome-space scanner algorithm exhibits constant improvement as a function of the number of
outcomes. The intuitive explanation for this phenomena is that when there are more outcomes, the task
is more likely to have sequences of outcomes associated with non-time-critical changes of the type the
Outcome-space scanner method detects (and thus eliminates the need to send queries for). Furthermore,
the number of outcomes in each such sequence, for which no queries are sent, will be greater. Therefore,
even though an increased number of queries is sent when there are more outcomes, the relative additional
overhead actually decreases. For 9 quality outcomes, the Outcome-space scanner has only a 23% average
overhead compared to the theoretical minimum number of queries.

5.4 Value Accumulation

To evaluate the methods developed for improving value accumulation, we used the same 2093 cTAEMS
problems and the same division into classes. For each test case, the CI again chose a random time in
the schedule and activated the value-of-information calculation mechanism for the specific task that was
scheduled to be executed by the ASA’s owner. The value calculation process was repeated several times,
each time using a sequence of queries generated by a different method (Order scanner, Time-critical
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Figure 11: # of interactions initiated for calculating the value of information according to the different
methods.

scanner, Outcome-space scanner, Duration scanner and Potential-impact scanner). In addition, the gold
standard sequence was extracted and its value was computed.

One difficulty that needed to be resolved in this case is measuring the effectiveness of a sequencing
method. Figure 12(a) illustrates the challenge of defining good measures of performance for sequencing
methods. It gives hypothetical curves of the accumulated value (vertical axis) of different possible meth-
ods for ordering a sequence of |O| query pairs needed to calculate the value of information about the
actual outcome of a task.12 Each accumulated value curve is a non-decreasing function of the number of
query pairs executed, because each query contributes a non-negative value to the sum. Furthermore, all
of the curves eventually reach the same value because the accumulated value always reaches the actual
value of obtaining the information, V (interact, t,M), after all 2|O| queries are executed.

In terms of accumulated weighted value, a sequence X of query pairs dominates a sequence Y of
query pairs if

∑j
i=1 FiP (oMi ) according to sequence X is greater than or equal to the equivalent sum

according to sequence Y ∀j ≤ |O|. The difficulty of finding a good metric for performance is that while
some sequences are always better or always worse than others, other sequences satisfy partial dominance.
For example, sequence A in Figure 12(a) dominates all other sequences, sequence B is dominated by
all other sequences and sequence E dominates sequence C. In contrast, curve C dominates D if the
interruption cost is smaller than c1, but D dominates C otherwise.

12The figure contains |O| queries overall, because the |D| constrained queries required for reproducing the EC-based
schedule are executed regardless of the ordering.
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Figure 12: (a) Value accumulated as a function of the number of query pairs sent; (b) PAV α and
AUTCα metrics.

The only sequence that always dominates all other sequences is the unrealizable gold standard se-
quence (sequence A in the example illustrated in Figure 12(a)). To compare the effectiveness of differ-
ent sequencing methods, performance measures should reflect how close the sequences produced using
each method are to the gold standard. For the ASA problem, they should also place more emphasis on
the weighted value accumulated by queries early in the sequence, because the sooner the interruption
decision is made, the greater the saving of ASA and scheduler resources in the value of information
calculation process.

We used three types of metrics to evaluate a method’s effectiveness in ordering the queries sent to the
scheduler. The first metric, which we call First Moment (FM ), is calculated by Equation 4:

FM =

|O|∑
i=1

(|O| − i)
i∑

j=1

FjP (o
M
i ) (4)

In Equation 4, the weighting of the summed differences decreases as the number of query pairs executed
for obtaining them increases. This metric assesses the desirability of giving more emphasis to values
accumulated early in the sequence.

The other two metrics, which are illustrated in Figure 12(b), are percentile-based. For each percentile
α of the queries in a sequence, they calculate the Percentage of Accumulated Value (PAV α) achieved
(out of the total expected value, V (interact, t,M)) and the Area Under the Truncated Curve (AUTCα)
that was obtained. The PAV α measure provides a snapshot of how much value has been accumulated
after α percent of the total number of queries were executed; it thus measures how close a sequence
gets to the gold standard after α percent of the queries needed to calculate V (interact, t,M) are made.
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Figure 13: Performance of the different value accumulation methods using different metrics.

The greater the PAV α value, the better the performance of the method. The AUTCα measure gives
some indication of the shape of the curve up to the α percentile of queries. In particular, it indicates the
rapidness of its asymptotic behavior (concavity of the curve), which is a good indicator of the portion
of the value achieved during initial queries. The AUTCα value integrates into one measure the ability
of the sequence to accumulate substantial values at the beginning of the process and the value obtained
after a specified number of queries.

These three metrics complement each other, as they emphasize different desirable characteristics
of value accumulation: performance in time, focus on initial stages and time to reach a percentage of
the overall value. They enable a comprehensive evaluation when used together. For relatively small
α values, the PAV α and AUTCα metrics give the best indication of a method’s ability to efficiently
accumulate value early in the calculation. Furthermore, they relate directly to the initial values accumu-
lated. Therefore, they are ideal candidates for assessing the efficiency of a method for early elimination
of non-fruitful interactions (by constructing an upper bound for the value of information as illustrated in
Figure 6).13

The greater the value achieved according to these metrics, the more accurate a decision to terminate
early the calculation of the value of obtaining information about a task. Ideally, we would want a method
that would perform best for all the metrics, but such a method is theoretically infeasible since for every
measure we can find different sequences that will favor different methods.

13Alternatively, we could have considered a class of FM -like metrics that emphasize the early queries to different degrees.
The more emphasis on the early queries, the more like PAV α and AUTCα for small values of α. To provide a more diverse
set of metrics, we made the conservative choice of a linear FM -metric.
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Figure 13 shows the performance of each method using the three metrics: FM , PAV α andAUTCα.
For PAV α and AUTCα we used α = 25, 50 and 75. Since the magnitude of the accumulated value is
problem-dependent, a mechanism for normalizing the performance of each method had to be constructed.
We used the value accumulated using the gold standard sequence for that purpose. It is the vertical axis
in Figure 13.

As reflected in Figure 13, the Potential-impact scanner dominates all other methods according to the
FM and the AUTC metrics. It also dominates the other methods for the PAV metric with the 25th
percentile. The dominance of the method is statistically significant (p < 0.01). There is no statistical
significance to the difference between the performance achieved by the Potential-impact scanner and the
Outcome-space scanner for the PAV 50 and PAV 75 metrics. Thus, the Potential-impact scanner can be
considered to weakly dominate the Outcome-space scanner (i.e., it guarantees at least as good a result).
The dominance of the Potential-impact scanner over the other methods when using the PAV 25 metric is
especially important since this result relates to the stage at which the termination of the process will have
the most impact in terms of the number of queries to the scheduler that can be avoided. Furthermore,
it is notable that the Potential-impact scanner manages to accumulate more than 50 percent of the value
accumulated by the gold standard by the 25th percentile of queries required for calculating the value
of information. Overall, the results suggest that the Potential-impact scanner is the best choice for
constructing the value of information in the general setting this paper considers.

The results from the experiments using the constraint-based scheduler provide additional comparative
assessments of the methods developed for calculating the value of information (Order scanner, Time-
critical scanner and Outcome-space scanner). (a) Of these three methods, the Outcome-space scanner
is the most efficient in terms of value accumulation (cross-metric). (b) Surprisingly, the Time-critical
scanner does not improve the value accumulation rate in comparison to Order scanner alone, despite
its advantage in identifying zero-valued outcomes. The one exception is with the FM metric. (c) In
the important initial stages of the process (PAV25 and AUTC25), the simple Duration scanner performs
better than the Outcome-space scanner.

To further examine the relative performance of the Outcome-space scanner and the Potential-impact
scanner methods at early stages, we analyzed how results varied by the six classes of problems used in
analyzing the value-of-information experiments. Figure 14 shows the performance of these two methods
for each problem group, using the PAV and AUTC measures for the 25th percentile. As the graphs
show, the dominance of Potential-impact scanner does not depend on any specific problem characteris-
tics, with one exception: For group 6, when the PAV 25 measure is used, the Outcome-space scanner
performs slightly better on average. This anomaly may be explained by the unique characteristics of the
problems in group 6: They had relatively many facilitation relationships, causing these problems to be
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Figure 14: Outcome-space scanner and Potential-impact scanner value accumulation comparison.

associated with a small value of information in the first place. Also, as discussed above, in many of the
problems of this class a feasible solution did not even exist for many of the outcomes. (A significantly
small number of problems (13) in this group had a positive value to begin with.)

6 Related Work

Automated planning and scheduling is an active research area in AI, in particular in intelligent au-
tonomous agents [54, 27]. A significant focus recently has been in the area of distributed scheduling
systems, using various mechanisms aimed at optimizing the global quality of the system, including ne-
gotiation frameworks based on market economies [24], game theoretic algorithms and global or shared
evaluation functions [34]. The essential difference between these efforts and the work described in this
paper is that they focus on improving the efficiency of producing a schedule and the effectiveness of
the schedule produced. They, therefore, relate more directly to the problem addressed by the ASA’s
scheduler module than to the CI.

Although most scheduling and planning systems research has overlooked issues of calculating the
value-of-information, both in general and for architectures that require querying an external scheduler,
several approaches to “mixed initiative planning” have considered related issues, including developing
agents to assist groups carrying out a complex task in their scheduling and task allocation, eliciting
guidance from people to direct planning, and providing appropriate information alerts. We discuss efforts
in each area.

The research on agent-assisted scheduling of complex group activities most relevant to this paper was
done within the framework of “Electric Elves”. This project developed a system that coordinated day-to-
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day activities and was implemented and used by a research group at USC/ISI [49, 7]. The central research
question addressed in this work was developing methods for determining when to transfer decision-
making control from the electric elf to the user. Scerri et. al formalize choice of time to transfer control
as an expected-utility maximization problem modeled in a Markov Decision Process (MDP). In this
model, choices of which domain action to take are interleaved with choices to interact with the user (a
different kind of action) and scheduling is handled only implicitly. While this solution was successful
for Electric Elves, an MDP-based approach to ASA design is severely challenged by the complex plans
and scheduling interactions in the domain. In particular, the Coordinators’ ASA scheduling problem is
potentially exponential in the tasks and outcomes, depending on intertask relations and QAFs. MDP-
based approaches were taken on the Coordinators project. They focused on developing techniques for
heuristically guiding the enumeration of a subspace of the full MDP, as for even a single-agent cTAEMS
MDP, full enumeration was impractical [36, 2]. In addition, it is not clear that the integration of reasoning
about scheduling with reasoning about which domain action or transfer-of-control action to take could be
adapted to the ASA setting in which reasoning about the schedule is done by a separate module. We note
that as the methods developed in this paper focus on reducing the number of calls made to the scheduler,
they might be usefully deployed in constructing an MDP.

Other research on ASA-user interaction in planning domains has considered the possibility of elicit-
ing advice from users to guide the system’s planning efforts using this guidance to reduce the planner’s
(or scheduler’s) solution space [30, 37]. This approach rests on the premise that people have good in-
tuitions about how to solve certain planning (or scheduling) problems and that a planner working with
a person can come up with better solutions than either operating alone. Several other mixed initiative
approaches deploy collaborations between people and agents to produce better solutions for complex
problems [38, 1]. This work is complementary to ours.

Other research has considered autonomous agents providing assistance to human planners by pro-
viding information alerts at appropriate times [40, 61, interalia]. These works, however, focus mainly on
the human side of the human-computer interaction and consider, for instance, the cognitive load created
by requests to provide information or alerting the person to important events.

Taking a broader view, we note that computing the value of information is an inherent part of
decision-making under uncertainty and therefore is commonly found in mechanisms designed for meta-
reasoning for search, in selecting measurements to make prior to choosing a course of action, and in
managing the exploration vs. exploitation tradeoff [55]. It offers a systematic treatment to various prob-
lems, ranging from active learning and observation selection to user interaction [23, 25]. In particular,
it has been used as a sensitivity analysis technique to rate the usefulness of various information sources
and to decide whether pieces of evidence are worth acquisition before actually using them [29]. We
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therefore review related work on calculating the value of information in several intersecting domains,
emphasizing the main differences both in terms of the problem for which the value of information needs
to be calculated and the methods used.

One such area is “feature/observation selection” (also referred to as “set selection” and “prediction
models for active learning” [64, 6]). In this problem setting, the decision maker needs to decide on the
subset of expensive observations that will be made [29, 26, 25]. The value of acquiring a set of features
involves comparing the system performance with and without the information. Similar to our case, the
calculation requires taking an expectation over the possible values of the features in the set [6]. In our
case, however, the calculation of this value is substantially complicated by the temporal aspect, especially
the additional constraints that may be applied when information is not received early. In feature-selection
based models the value calculation for a given set of values is much simpler because these models need
to determine the state of the world only at the current time step. The majority of these methods assume
that the information is evaluated “in isolation” and the value always derives from a single immediate
act of the decision maker immediately after he receives the information. Even in models that consider
sequential acquisition of observations [29, 25], all of the information collected is used for supporting a
single decision (or determination of a world state). The temporal aspect comes into consideration only
in the sense that probabilistic updates are used for evaluating the value in sampling additional sources
of information. Therefore, the value of any given subset of values can be calculated simply as the value
of the best selection (or decision) that can be made based on the information available. Consequently,
these works tend to suggest solutions for dealing with the number of sets that need to be evaluated, which
are exponential in the size of the feature set, rather than with the efficiency of the individual calculation
of the value of each set. As a result, they usually suggest approximations, based on exploiting the
statistical significance of large samples [14] using the central-limit theorem [29] or the strong junction
tree framework [9].

Other work in this area focuses on improving the process of computing the value of information by
identifying redundant calculations, or make use of the intermediate computation results. For example,
Zhang et. al [63] present a method for incremental computation of the value of perfect information in
stepwise-decomposable influence diagrams. Bilgic and Getoor [6] introduce two techniques for sharing
computations between different subsets of features based on information caching and utilizing paths in
the underlying Bayesian network. While the idea of identifying computation overlaps in the processes
of evaluating the difference, thus avoiding those overlaps, is similar, the ability to identify such overlaps
results from unique properties of influence diagrams, which are important representations for decision
making but not used in scheduling. These methods thus cannot be applied in our domain.

Research on human-computer interaction has considered the value of supplying a user with infor-
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mation that is currently known only by the system. The primary goal of such work is to balance the
expected value of information with the attention-related costs of disruption [52]. Work in this area dif-
fers from our work in three ways. First, in this work the agent has information needed by the person
rather than the reverse, and there is thus no need to deal with uncertainty about the information (i.e., to
consider a range of different possibilities). Second, their primary concern is when to interrupt users to
provide help or information [19, 22, 60, 28]. These efforts focus almost entirely on modeling the user’s
attentional state, with the goal of intelligently choosing the best time to interrupt (minimize the resulting
interference) [17, 19] and the ensuing frustration they cause [22]. Third, it commonly assumes that it is
straightforward to calculate the value to the user of the information. For example, Horvitz et. al obtain
the benefit, which they term “the value of message information”, through user preferences encoded in
the system (e.g., the value of getting to a meeting or not) [20]. Others assume that users will change
their actions in a pre-determined manner when they get new information. The temporal aspect of the
decision, which in our work is reflected by the rescheduling dynamics that occur in the absence of such
information, is considered only in calculating interference costs and not in calculating benefits [19].

Other work that directly addresses the problem of estimating the value of information that the user
can supply is in non-temporal domains, making the calculation of the value of information simpler.
For example, Yakout et. al [62] introduce a framework for user-assisted data repair, that selectively
acquires user feedback on suggested updates. The calculation in this case does not involve any temporal
constraints, and the efficiency of the approach derives from understanding the mutual effects of the
different observations in terms of the validity of the data that the system has. Fleming and Cohen [11, 12]
use a utility-based quantitative approach to designing systems that are capable of making decisions about
when to ask a user to provide additional information to improve problem solving. Their work focuses
on modeling the cost of “bothering” the user repeatedly. Here again, despite focusing on schedule
generation, the value-of-information calculation does not consider temporal dynamics or changes in
schedule that would occur even if the user did not supply the information.

Continual computation is a research area in which a related value-of-information concept is used
[51, 16]. In continual computation, the value of a particular computation is determined by whether its
result is useful in solving the next problem. This value is affected primarily by the arrival of problem
instances that could use such calculations. In contrast, we have the task schedule and and know the next
task to be executed, and the main challenge is the efficient computation of the value of information.

Finally, work by Rosenfeld et al. [43], building on our earlier work [44, 46], estimates the expected
utility gain from owner-provided information. This work takes a machine learning approach, correlating
the value of information of different patterns and properties of the problem as a whole. It differs from
the work described in this paper in focusing mainly on the value of new information about scheduling
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constraints rather than on information about outcomes. While the method was shown to be effective in
determining when additional information about constraints would not be helpful (i.e., would produce
zero value), the machine learning models aiming to identify when information would be helpful had a
low rate of precision in predicting value and a high false positive rate, and were thus only moderately
useful.

7 Conclusions and Future Directions

This paper addresses the problem of computing the value of information in uncertain dynamic environ-
ments in which people are supported in their work by an autonomous-agent scheduling system. As they
carry out their tasks, these people have access to information that is not directly available to the agent,
but is important for effective agent reasoning. The paper considers this problem as it arises in multi-
agent coordinated scheduling-system architectures in which the expertise needed for reasoning about
alternative schedules is contained within a separate scheduler module.

The methods presented in the paper are applicable to any scheduling-systems context in which a
computer agent needs to reason about requesting task-outcome information from an external source,
whether that source is a person or a computer system, when there is some significant cost to obtaining
such information. In particular, there is no dependency of the algorithms, methods for reducing queries
or results on a particular ASA-system design. They are useful for any ASA implementation that uses
a separate scheduling module. The only constraint is that the scheduler be consistent (i.e., if it gets the
same problem repeatedly, it supplies the same feasible solution). Furthermore, the basic approach is
general and applies to any scheduling problem in which there are multiple, linked threads of activity,
regardless of the number of agents involved in executing tasks. The greater the degree of parallelism and
number of interdependencies among threads, the more likely information about one task will affect other
parts of the schedule and the more threads may be affected.

The paper defines a decision-theoretic algorithm that reasons hypothetically about the impact of dif-
ferent task outcomes on schedule revisions, to determine the value of information. It importantly handles
the complicating information conditions that the particular task outcome that obtains (or may obtain) is
not known to the system, and that this actual outcome will be obtained at a later time that is less useful
for replanning (Section 3). The algorithm handles the complex, recursive reasoning needed to accurately
infer the schedule that would result if the system does not receive the information immediately (from
the external source), but only later, when it receives notice that task execution has completed (or failed)
or when some possible task-duration interval has been exceeded. Through the recursive use of prior
calculations, the algorithm emulates these dynamics efficiently. To address the challenge of reducing
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demands on the scheduler, the paper presents two-types of query-reduction methods. One type, which
is useful when the exact value of information must be computed, aims to eliminate as many extraneous
scheduler queries as possible. The second, which is useful when the system needs to determine only
whether the information has a value that necessarily exceeds the cost of obtaining it, orders queries so
that information value is accumulated as rapidly as possible.

To evaluate the efficiency of these methods in decreasing the number of queries to the scheduler, we
carried out a comprehensive set of empirical investigations using the extensive data set generated for the
Coordinators project, which exemplifies environments in which schedules are dynamically, and often
continuously, being revised. The empirical results, which are presented in Section 5, clearly establish
the usefulness of the recursive decision-theoretic algorithm defined in Section 3 and the effectiveness of
both types of query-reduction methods. In particular, both methods yielded significant reductions. The
Time-critical scanner, which filters queries depending on whether there has been a change in relevant
tasks, is applicable regardless of the structure of the scheduling problem. The Outcome-space scanner
approach, which translates the problem of generating queries into a game and then attempts to minimize
the score of that game, produced a greater reduction; it depends, however, on the scheduling problem
exhibiting monotonicity in the effect of changes in task outcomes on the overall team effort.

The two value-accumulation methods, which are applicable when the system needs to determine only
whether the value of information exceeds a certain threshold, were also shown to be efficient in accumu-
lating most of the value associated with a task’s outcome early in the querying process (Section 5). Both
methods take a greedy approach to determining the order of queries, emphasizing different aspects of
the outcome. While the Duration scanner emphasizes the duration of tasks, the Potential-impact scanner
emphasizes the distance from the hypothetical outcome according to which the schedule was initially
constructed. For this evaluation, we defined three new, complementary metrics for comparing the rate at
which the heuristics accumulate value. The experimentation reveals that the Potential-impact scanner is
the more efficient of the two.

One important extension of this work is the adaption of the proposed algorithm and methods to the
situation in which owners have only partial information. For instance, they may be able only to eliminate
some possible outcomes or to otherwise refine the ASA’s outcome distribution model, but not to identify
a single outcome. As described in Section 3, the changes required for augmenting Algorithm 1 for
this case are quite straightforward, and similar issues arise in revising the query reduction and value
accumulation methods. There is however one external modeling challenge that limits the applicability in
such settings. In theory, there is an infinite number of probability distributions that can be assigned to the
set of possible outcomes. Even if we consider the restricted case in which the owner can eliminate some
outcomes, the number of possibilities is combinatorial in the number of outcomes. Domain modeling
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would require computing probabilities for each of these possibilities. Furthermore, the probability that
the owner would provide any particular revised distribution (or set of discrete probabilities) depends not
only on the task environment, but also on the owner. That is, one needs to model the likelihood that the
owner will have various kinds of information, whereas such modeling is not required when assuming
the owner has the actual outcome. For example, the owner might easily eliminate rain with fog and
rain without fog outcomes if the actual outcome is sunny weather, but it is much less likely he could
distinguish (predictively) between these two outcomes, if one of them is indeed the actual outcome.

Another set of extensions involves computing various owner-related characteristics, including the
probability that an owner has the necessary information and the cost of an interruption for a particular
owner and context. Such characteristics depend not only on the problem state, but also on the owner’s
state. Research in interruption management [17, 19] and initial work in the Coordinators’ setting [45]
provide a good foundation for these investigations.

The formulation of an outcome model requires domain expertise. In the Coordinators’ project it was
assumed that domain experts were available who could provide this information. More generally, the
provision of an outcome model might require the deployment of techniques from machine learning.

Finally, there is the problem of discounting the value of information about tasks that are planned for
further in the future. While the methods suggested in this paper remain valid for these tasks, the dynamic
nature and long time-horizon of some scheduling problems engender uncertainty about whether a task
will remain on the schedule by the time it is currently planned to be executed. Therefore, the value of
knowing the outcome of such tasks may need to be discounted in some way.
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Notation Meaning
T A scheduling problem - consists of a set of tasks applicable to the problem domain,

relationships among those tasks, outcome values for each task,
quality accumulation methods and an active schedule.

M A task - the basic scheduling entity with which ASAs work.
o An outcome of a task - defined by the values it assigns to a set of outcome charac-

teristics (e.g., duration, cost, performance level, resources consumed), each repre-
senting a different task performance quality aspect.

P (o) The a priori probability of outcome o.
o.dur The value of the duration characteristic of outcome o.
O The set of possible outcomes of a task.
t The time when the actual outcome of a task can be obtained from the external

source.
k The number of potential outcomes of a task.
k′ The number of distinct duration outcomes of a task (k′ = |D|).
St(T, I, Sched) The schedule that the scheduler produces if it receives at time t a scheduling prob-

lem T associated with the active schedule Sched and the new information I .
St(T, I, Sched).quality The quality of the schedule St(T, I, Sched).
I New information I which gives the actual outcome of task M .
Sched The active schedule.
D A vector of the possible duration outcomes of a task.
Fi The value of the difference calculated as part of the summation used in Equation 1

for the j-th query pair.
Order scanner, Time-
critical scanner, Game

Methods for calculating the value of obtaining the actual outcome of a task.

Duration scanner,
Potential-impact scan-
ner

Methods for efficient value accumulation as part of calculating the value of obtain-
ing the actual outcome of a task.

FM , PAV α, AUTCα Value accumulation measures.

Table 3: Summary of notation.
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