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Abstract

This paper presents a methodology to study implied cost of capital’s (ICC) measure-
ment errors, which are relatively unstudied empirically despite ICCs’ popularity as
proxies of expected returns. By applying it to the popular implementation of ICCs
of Gebhardt, Lee, and Swaminathan (2001) (GLS), I show that the methodology
is useful for explaining the variation in GLS measurement errors. I document the
first direct empirical evidence that ICC measurement errors can be persistent, can
be associated with firms’ risk or growth characteristics, and thus confound regres-
sion inferences on expected returns. I also show that GLS measurement errors and
the spurious correlations they produce are driven not only by analysts’ systematic
forecast errors but also by functional form assumptions. This finding suggests that
correcting for the former alone is unlikely to fully resolve these measurement-error
issues. To make robust inferences on expected returns, ICC regressions should be
complemented by realized-returns regressions.

Keywords: Expected returns, implied cost of capital, measurement errors.
JEL: D03, G30, O15, P34

∗charles.cy.wang@hbs.edu. I am grateful to Nick Bloom, Han Hong, Dave Larcker, and Charles
Lee for their advice and support on this project. I also thank Travis Johnson, Paul Ma, Jim Naughton,
Maria Ogneva, Eric So, Luke Stein, Johannes Stroebel, Xu Tan, Gui Woolston, participants of the
Stanford applied economics seminar, the Stanford Joint Accounting and Finance seminar, and seminar
participants in Columbia GSB, Harvard Business School, and Stanford GSB for their helpful comments
and suggestions.



1 Introduction

The implied cost of equity capital (ICC), defined as the internal rate of return that

equates the current stock price to discounted expected future dividends, is an increasingly

popular class of proxies for the expected rate of equity returns in accounting and finance.1

Three primary factors have contributed to the rise in ICCs’ popularity over the past fifteen

years. First, ICCs have intuitive appeal, in that they are anchored on the discounted-

cash-flow valuation model. Second, unlike realized returns or the traditional factor-based

models, ICCs are forward-looking and utilize forecasts of a firm’s future fundamentals

(e.g., consensus analyst forecasts of future earnings). Third, ex-post realized returns and

the traditional factor-based models are often considered too noisy.2

This intuitive appeal has given rise to a body of literature that uses ICCs to study

the cross-sectional variations in expected returns, whereby researchers run regressions of

ICCs on various firm characteristics or regulatory events to make inferences on expected

returns.3 However, the unknown properties of ICC measurement errors—the difference

between the ICC and the (unobserved) true expected returns—represents a challenge to

the use of ICCs and the inferences from regression results. When interpreting regressions

of ICCs on firm characteristics, the researcher is uncertain of whether the regression

coefficients capture the systematic associations of firm characteristics with expected re-

turn or with ICC measurement errors. Adjudicating between these possibilities requires

1That is, ICCs are the êri,t that solves

Pi,t =

∞∑
n=1

Et [Di,t+n]

(1 + êri,t)
n ,

where Pi,t is firm i’s price at time t, and Et [Di,t+n] is the time t expectation of the firm’s dividends in
period t+ n.

2Fama and French (1997) noted that these factor-based estimates are “unavoidably imprecise” and
that empirical problems “probably invalidate their use in applications.” Consistent with this assessment,
the recent evidence of Lee, So, and Wang (2012) documents that these factor-based estimates perform
poorly relative to other classes of ex ante measures of expected returns, such as ICCs, in terms of
cross-sectional and time-series measurement-error variance.

3For example, Botosan (1997) studies the impact of corporate disclosure requirements; Chen, Chen,
and Wei (2009) and Chen, Chen, Lobo, and Wang (2011) examine the impact of different dimensions of
corporate governance; Daske (2006) examines the effect of adopting IFRS or US GAAP; Dhaliwal, Krull,
Li, and Moser (2005) examines the effects of dividend taxes; Francis, LaFond, Olsson, and Schipper
(2004) study the effects of earnings attributes; Francis, Khurana, and Pereira (2005) study the effects of
firms’ incentives for voluntary disclosure; Hail and Leuz (2006) examine the effect of legal institutions
and regulatory regimes; and Hribar and Jenkins (2004) examine the effect of accounting restatements.
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an understanding of the properties of ICC measurement errors. For example, if ICC

measurement errors are classical—independently and identically distributed with zero

mean—then in large sample the estimated regression coefficients reflect associations of

firm characterisitcs with expected returns. On the other hand, to the extent that ICC

measurement errors are systematically correlated with firm characteristics, researchers’

inferences may be confounded by spurious correlations with measurement errors.

Ex ante, I expect two primary sources of ICC measurement errors, each of which

has the potential to be systematically associated with firm characteristics and thus to

confound regression inferences. The first source of ICC measurement errors is forecast

errors of future fundamentals (e.g., cashflows or earnings). To the extent that such

forecasts are systematically biased toward certain types of firms, the resulting ICCs can

be expected to contain measurement errors that are correlated with the characteristics

of such firms. For example, La Porta (1996); Dechow and Sloan (1997); Frankel and Lee

(1998); and Guay, Kothari, and Shu (2011) show that consensus analyst EPS (as well as

long-term growth) forecasts tend to be more optimistic for growth firms. Thus, all else

equal, ICCs constructed using these analyst forecasts could produce measurement errors

that are systematically more positive for growth firms than for value firms.

A second source of ICC measurement errors is model misspecification, which results

from erroneous assumptions embodied in the functional form that maps information and

prices to expected returns. If the extent of model misspecificaton varies with firm type,

ICC measurement errors can be expected to be correlated with firm characteristics even

if forecasts of future earnings are unbiased. For example, Hughes, Liu, and Liu (2009)

show that when expected returns are stochastic but ICCs implicitly assume constant

expected returns, ICCs differ from expected returns and ICC measurement errors can

be correlated with firms’ risk and growth profiles, even if forecasts of future cash flows

are perfectly rational. As a consequence, despite a concerted effort to understand and

mitigate the impact of systematic forecast biases on ICC measurement errors (e.g., Easton

and Sommers, 2007; Hou, Van Dijk, and Zhang, 2012; Guay et al., 2011; Mohanram and

Gode, 2012), it is still possible for ICCs to produce measurement errors—resulting from
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model misspecification—that are systematically correlated with firm characteristics and

confound inferences.

Because the empirical properties of ICC measurement errors are relatively unknown,

and because their effects and implications are critical to empirical research that seeks

to understand cross-sectional variation in expected returns, Easton (2009) concluded

in his survey of ICC methodologies that “as long as measurement error remains the

Achilles’ Heel in estimating the expected rate of returns, it should be one of the focuses

of future research on these estimates.” (p.78) Echoing such sentiments, Lambert (2009)

commented that “[there are likely] biases and spurious correlations in estimates of implied

cost of capital. The next step should be to try to develop procedures to try to correct for

these problems.” The goal of this paper is to shed light on the cross-sectional properties

of ICC measurement errors and to document their drivers that could lead to spurious

inferences in regressions.

The paper presents, for a type of expected return proxies, a procedure for estimating

the cross-sectional associations between their measurement errors and firm characteristics;

such an associations are important in understanding the properties of regression depen-

dent variables. By applying this procedure to one of the most popular implementations

of ICCs, colloquially known as GLS in recognition of its authors (Gebhardt et al., 2001), I

show that the methodology is useful to explain GLS measurement errors. I also document

four findings that contribute to the ICC literature. First, I present the first evidence that

ICC measurement errors can be persistent, with an median annual AR(1) parameter of

0.48 for GLS measurement errors. Second, I document that GLS measurement errors are

systematically cross-sectionally associated with firm risk and growth characteristics, such

as market capitalization, book-to-market ratio, 3-month momentum, analyst coverage,

and analyst long-term growth forecasts, characteristics that are commonly thought to

explain the cross-sectional variation in expected returns. Third, I show that GLS mea-

surement errors are driven not only by errors arising from analyst forecast biases but

also by errors arising from the assumption of constant expected returns implicit in ICCs.

Finally, I show that these measurement errors lead to spurious inferences in regression

3



settings, and that they can explain some puzzling associations previously documented in

the literature, such as the negative association between GLS and stock price momentum.

The empirical evidence presented in this paper has important implications for em-

pirical research using ICCs. First, empirical results involving cross-sectional regressions

of ICCs on firm characteristics are likely confounded by spurious correlations between

ICC measurement errors and firm characteristics. Thus, research questions about the

effects of certain firm characteristics or economic environments on firms’ expected rate of

returns cannot be answered satisfactorily without understanding or correcting for the po-

tential spurious effects of measurement errors. Second, methodologies for mitigating ICC

measurement errors such as portfolio grouping and instrumental variables are limited in

effectiveness since common grouping variables or instruments (e.g., market capitalization

and book-to-market ratio) are likely correlated with the measurement errors, as is the

case of GLS. Third, correcting for systematic analyst forecast errors alone is inadequate

in fully addressing ICC measurement errors, since the latter are also driven by errors

arising from model misspecification (e.g., the implicit assumption of constant expected

returns). As a result, I argue for the necessity of complementing any ICC regressions

with regressions using realized returns to establish a robust association between expected

returns and firm characteristics.

Section 2 of the paper describes the theoretical model and lays out the estimation

procedures. Section 3 presents the empirical results. Section 4 discusses the implications

of the paper’s findings, and offers some practical recommendations for researchers.

2 Theoretical Model and Empirical Methodology

2.1 Motivation

To identify the relevant firm characteristics (zi,t) that explain cross-sectional variation

in the (unobserved) expected rate of equity returns over the next period,

eri,t ≡ Et (ri,t+1) , (1)

4



researchers typically examine the empirical association between some proxy of expected

returns (êri,t+1) and firm characteristics, where

êri,t = eri,t + wi,t (2)

and wi,t is the proxy’s measurement error. The standard approach assumes that expected

returns are linear in firm characteristics (3) with standard OLS assumptions on residuals.

Assume too that measurement errors of expected return proxies are linear in certain firm

characteristics with standard assumptions on residuals (4).

eri,t = δ0 + δTzi,t + εeri,t (3)

wi,t = β0 + βTxi,t + εwi,t (4)

where (εwi,t, ε
er
i,t)˜iid (0, 0) ;

(εwi,t, ε
er
i,t) and (zi,t,xi,t) uncorrelated

Because expected returns are not observable, researchers’ use of proxies implies that they

will not be able to directly estimate the coefficients of interest, δT . Thus it is easy to

see that associations between measurement errors and firm characteristics may produce

biases and spurious inferences about δT .

Without loss of generality, suppose for illustration that zi,t = xi,t = Sizei,t, where

Sizei,t is firm i’s log of market capitalization at the beginning of period t. Then, equations

(2), (3), and (4) imply the following relation between the expected-returns proxy and Size.

êri,t = (δ0 + β0) + (δ + β)Sizei,t +
(
εeri,t + εwi,t

)
If measurement errors are associated with Size (i.e., β 6= 0) then a regression of the

expected-returns proxy on Size produces a biased estimate of δ, a bias resulting from

the spurious correlation between Size and the measurement error (β) that confounds the

researcher’s inferences on expected returns.
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2.2 Model

As the preceding example illustrates, making inferences about unobserved expected

returns requires an understanding of the measurement errors in the proxies used. This

section develops a methodology to estimate the systematic cross-sectional association

between ICC measurement errors and firm characteristics in regression settings under

the linearity assumptions of (3) and (4). To do so, I impose structure on the time-

series behavior of expected returns and measurement errors, structure that allows me to

separate these two components of a proxy. In particular, I model both expected returns

and the proxy measurement errors to follow AR(1) processes, with persistence parameters

of φi and ψi and with (potentially) correlated innovations ui,t+1 and vi,t+1, respectively:

eri,t+1 = µui + φieri,t + ui,t+1; (5)

wi,t+1 = µvi + ψiwi,t + vi,t+1; (6)

where (ui,t, vi,t)
′ ∼ iid

(
(0, 0)′ , Σuv

)
,Σuv invertible; (7)

|φi| , |ψi| ∈ (0, 1) ; and (8)

φi 6= ψi. (9)

The AR(1) assumption on expected returns (5) captures the idea that expected re-

turns are persistent and time-varying.4 This assumption is common in modeling interest

rates (e.g., Cochrane, 2001; Duffie and Lando, 2001) and in modeling expected returns

of equities (e.g., Conrad and Kaul, 1988; Poterba and Summers, 1988; Campbell, 1991;

Pástor, Sinha, and Swaminathan, 2008; Binsbergen and Koijen, 2010; Pástor and Stam-

baugh, 2012; Lyle and Wang, 2013), and is broadly consistent with the observation that

returns are predictable. By contrast, the AR(1) assumption about measurement errors

is a new assumption in the literature meant to capture the possibility that measurement

errors could be persistent and time-varying. This assumption has great intuitive appeal,

4As noted in Campbell (1990) and Campbell (1991), the AR(1) assumption on expected returns need
not restrict the size of the market’s information set, and in particular does not assume that the market’s
information set contains only past realized returns. The AR(1) assumption merely restricts the way
in which consecutive periods’ forecasts relate to each other, and it is quite possible that each period’s
forecast is made using a large set of variables.
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particularly for studying the measurement errors of ICCs that rely on analyst forecasts of

future fundamentals. Because analysts can be slow to incorporate new information (e.g.,

Lys and Sohn, 1990; Elliot, Philbrick, and Wiedman, 1995; Guay et al., 2011; So, 2013),

for example due to an anchoring-and-adjustment heuristic, their forecasts and the result-

ing ICCs may tend to exhibit persistent (but time-varying) errors. Another possibility

is that persistent model misspecification errors gives rise to persistent and time-varying

measurement errors.

Note that both AR(1) parameters are assumed to be constant across time for a firm

in the set up; moreover, while the persistence parameter of expected returns (φi) is firm-

specific, the persistence of expected-returns-proxy measurement errors (ψi) is implicitly

firm- and model-specific (i.e., dependent on the model that generates the proxy). Finally,

I make the regularity assumption that the two processes are stationary (8), and the

identifying assumption that, for each firm, the AR(1) parameters are not equal to each

other (9). The necessity of the last assumption will become clear in the next section.

2.3 Empirical Methodology

The above setup yields a proxy for ICC measurement errors with desirable properties.

Substitution of (5) and (6) into (2) and some simple algebraic manipulations produce

ŵi,t:
5

êri,t+1 − φiêri,t
ψi − φi︸ ︷︷ ︸
ŵi,t(ψi,φi)

=

(
µui + µvi
ψi − φi

)
︸ ︷︷ ︸

αi

+ wi,t +
ui,t+1 + vi,t+1

ψi − φi
(10)

= β0 + βTxi,t + αi +

(
εi,t +

ui,t+1 + vi,t+1

ψi − φi

)
(11)

by the linearity assumption of (4).

5To show the algebraic steps:

êri,t+1 = eri,t+1 + wi,t+1 by definition of expected-returns proxy

= (µui + φieri,t + ui,t+1) + (µvi + ψiwi,t + vi,t+1) by AR(1) assumptions

= (µui + µvi) + φieri,t + ψiwi,t + (ui,t+1 + vi,t+1)

= (µui + µvi) + φiêri,t + (ψi − φi)wi,t + (ui,t+1 + vi,t+1)

Thus êri,t+1 − φiêri,t = (µui + µvi) + (ψi − φi)wi,t + (ui,t+1 + vi,t+1)

Clearly, to arrive at the expression for ŵi,t (ψi, φi) requires the identifying assumption of (9): φi 6= ψi.
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Assuming for the present that the AR(1) parameters are observed by the researcher,

ŵi,t (ψi, φi) is an empirically observable proxy for ICC measurement errors and, by equa-

tion (10), contains three components: (1) a firm-specific constant (αi); (2) the unobserved

measurement error (wi,t); and (3) iid mean 0 AR(1) innovations.

Under the linearity assumption relating ICC measurement errors to firm character-

istics (4), the measurement-error proxy can be written in the form of a standard fixed

effects model (11), for which there exist standard panel data techniques to estimate the

slope coefficients of interest, βT (e.g., Wooldridge, 2002). Thus, one can estimate βT , the

associations between measurement errors and firm characteristics (xi,t), by estimating a

fixed-effects regression ŵi,t (ψi, φi) on xi,t.
6

Finally, to make inferences about the association [i.e., slope coefficients δT of (3)] be-

tween the (unobserved) expected rate of returns and firm characteristics—the researcher’s

ultimate goal—requires a simple modification to the expected-returns proxy: subtract

ŵi,t (ψi, φi) from the expected-returns proxy.

êri,t − ŵi,t (ψi, φi) = eri,t + wi,t − αi − wi,t −
ui,t+1 + vi,t+1

ψi − φi
by eqns (2), (10)

= −αi + eri,t +
ui,t+1 + vi,t+1

φi − ψi
(12)

= δ0 + δTzi,t − αi +

(
εeri,t +

ui,t+1 + vi,t+1

φi − ψi

)
(13)

by linearity assumption of eqn (3)

By equation (12), the modified expected-returns proxy (êri,t − ŵi,t) also contains three

components: (1) a firm specific constant (−αi); (2) the unobserved expected returns

(eri,t); and (3) iid mean 0 AR(1) innovations. Compared to the definition of an expected-

returns proxy (2), the key feature in this modification is the removal of the measurement

error term in equation (12).

As with ŵi,t, under the linearity assumption relating expected returns to firm char-

acteristics (3), the modified expected-returns proxy can be expressed (13) in the form of

6Alternatively, if the fixed effects can be assumed to be uncorrelated with firm characteristics xi,t,
then βT can be estimated by a standard OLS regression of ŵi,t on xi,t.
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a standard fixed-effects model, for which there exist standard panel-data techniques to

estimate the slope coefficients of interest (δT ). Thus, to estimate the associations between

expected returns and firm characteristics (zi,t)—i.e., the slope coefficients δT—researchers

can estimate fixed-effects regressions of êri,t − ŵi,t on zi,t.

The above procedures for estimating the associations of firm characteristics with ICC

measurement errors and with expected returns implicitly rely on known AR(1) parame-

ters. In practice, they need to be estimated. Appendix A details an estimation procedure

for these AR(1) parameters under the setup of the model.

In the following section, I apply these estimation procedures to GLS, a popular imple-

mentation of ICCs, and show that: (1) this paper’s methodology is useful in explaining

the variations in GLS measurement errors; (2) GLS measurement errors are persistent;

(3) GLS measurement errors are correlated with firm characteristics commonly thought

to be associated with expected returns; (4) GLS measurement errors are driven not only

by analyst forecast biases but also by modeling assumptions of constant expected returns;

and (5) jointly, the two sources of GLS measurement errors lead to spurious inferences in

regression settings.

3 Empirical Results

3.1 The Expected-Returns Proxy: GLS

This paper uses GLS to study the properties of ICC measurement errors for three

reasons. First, it is one of the most widely used implementations of ICCs; second, it

is one of the “top performing” proxies of expected returns (Lee et al., 2012); third, it

contains several interesting features, detailed below, that can contribute to measurement

errors but that also provide some of the intuitions I use to check the efficacy of this

paper’s empirical methodology for explaining GLS measurement errors.

GLS is a practical implementation of the residual income valuation model7 with a

7Also known as the Edwards-Bell-Ohlson model, the residual income model simply re-expresses
the dividend discount model by assuming that book value forecasts satisfy the clean surplus relation,
EtBi,t+n+1 = EtBi,t+n + EtNIi,t+n+1 − EtDi,t+n+1, where EtBi,t+n, EtNIi,t+n, and EtDi,t+n, are the
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specific forecast methodology, forecast period, and terminal value assumption. Appendix

B details the derivation of GLS from the residual income model. To summarize, the time

t GLS expected-returns proxy for firm i is the êrglsi,t that solves

Pi,t = Bi,t +
11∑
n=1

Et[NIi,t+n]

Et[Bi,t+n−1]
− êrglsi,t(

1 + êrglsi,t

)n Et [Bi,t+n−1] +

Et[NIi,t+12]

Et[Bi,t+11]
− êrglsi,t

êrglsi,t

(
1 + êrglsi,t

)11Et [Bi,t+11] , (14)

where Et [NIi,t+1] and Et [NIi,t+2] are estimated using median analyst FY1 and FY2 EPS

forecasts (FEPSi,t+1 and FEPSi,t+2) from the Institutional Brokers’ Estimate System

(I/B/E/S), and where Et [NIi,t+3] (FEPSi,t+3) is estimated as the median FY2 ana-

lyst EPS forecast times the median analyst gross long-term growth-rate forecast from

I/B/E/S. For those firms with no long-term growth forecasts, GLS uses the growth

rate implied by the one- and two-year-ahead analyst EPS forecasts—i.e., FEPSi,t+3 =

FEPSi,t+2 (1 + FEPSi,t+2/FEPSi,t+1). In estimating the book value per share, GLS

relies on the clean surplus relation, and applies the most recent fiscal year’s dividend-

payout ratio (k) to all future expected earnings to obtain forecasts of expected future

dividends—i.e., EtDt+n+1 = EtNIt+n+1 × k. GLS uses the trailing 10-year industry me-

dian ROE to proxy for
Et[NIi,t+12]

Et[Bi,t+11]
. Finally, for years 4–12, each firm’s forecasted ratio of

expected net income over expected beginning book value is linearly interpolated to the

trailing 10-year industry median ROE.

I compute GLS for all U.S. firms (excluding ADRs and those in the “Miscellaneous”

category in the Fama-French 48-industry classification scheme) from 1976 to 2010, com-

bining price and total-shares data from CRSP, annual financial-statements data from

Compustat, and data on analysts’ median EPS and long-term growth forecasts from

I/B/E/S. GLS is computed as of the last trading day in June of each year, resulting in a

sample of 75,055 firm-year observations.

In Table 1 summary statistics on GLS in my sample are reported and contrasted

with realized returns, an ex-post proxy for ex ante expected returns. Panel A reports

annual cross-sectional summary statistics, including the total number of firms, the median

time t expectation of book values, net income, and dividends in t+ n.

10



value and standard deviation of GLS, the average and standard deviation of 12-month-

ahead realized returns, the risk-free rate, and the implied risk premium, computed as the

difference between the median GLS and the risk-free rate. I use as the risk-free rate the

one-year Treasury constant maturity rate on the last trading day in June of each year.8

Panel B reports summaries of the Panel A data by five-year sub-periods and for the entire

sample period. For example, columns 2-7 of Panel B reports the averages of the annual

median and standard deviation of GLS, the averages of the annual mean and standard

deviation in realized returns, the average of the annual risk-free rate, and the average of

the annual implied risk-premium over the relevant sub-periods.

Overall, the patterns and magnitudes shown in Table 1 are consistent with prior im-

plementations of GLS (e.g., Gebhardt et al., 2001). Panel B shows that, over the entire

sample period the mean value of GLS (10.25%) is close to the mean value of realized

returns (10.23%). But unlike realized returns, whose average cross-sectional standard

deviation is 47.67%, GLS exhibits far less variation, with an average cross-sectional stan-

dard deviation of 4.34%. This contrast highlights one of the widely-perceived advantages

of ICCs, that it is a less noisy (i.e., lower measurement error variance) proxy for expected

returns compared to ex-post realized returns; consistent with this view, a comparison

of the time-series variation in columns 2 and 4 in Panel A reveals that average annual

realized returns exhibits greater variability than median annual GLS.

3.2 Estimation of AR(1) Parameters φi and ψglsi

Using GLS, I estimate the AR(1) parameters of expected returns and measurement

errors [from (5) and (6) respectively] following the methodology outlined in Appendix

A. I show that the expected-returns persistence parameter for a firm (φi), under the

model dynamics, is identified by the equation cri (s+ 1) = φi × cri (s), where cri(s) ≡

Cov
(
ri,t+s, êr

gls
i,t

)
is the covariance between firm i’s realized annual returns from t+s−1

to t + s and GLS in period t. The expected-returns AR(1) parameter can be estimated

from the slope coefficient of an OLS regression of {ĉri (s+ 1)}Ts≥1 on {ĉri (s)}Ts≥1, where

8Obtained from the website of the Federal Reserve Bank of St. Louis: http://research.

stlouisfed.org/fred2/series/DGS1/
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ĉri(s) is the sample analog of cri(s). I also show that the GLS measurement-error per-

sistence parameter for a firm (ψglsi ) is identified by the equation ci (s) − cri (s+ 1) =

ψi × [ci (s− 1)− cri (s)], where ci (s) ≡ Cov
(
êrglsi,t+s, êr

gls
i,t

)
is the s-th order sample au-

tocovariance of the firm’s GLS. The measurement-error persistence parameter can be

estimated from the slope coefficient of an OLS regression of {ĉi (s)− ĉri (s+ 1)}Ts≥1 on

{ĉi (s− 1)− ĉri (s)}Ts≥1, where ĉi (s) is the sample analog of ci (s).

Estimates of industry-specific persistence parameters, using Fama and French (1997)

48-industry classification, are reported in Table 2. Panel B of Table 2 reports the esti-

mated persistence parameters, the t-statistics, and R2 for each of the 48 Fama-French

industries (excluding the “Miscellaneous” category), and Panel A reports summary statis-

tics across all industries. These estimates are produced using sample industry-specific

covariances and autocovariances for up to 19 lags.9 In every industry the estimated

persistence parameters for expected returns are positive and bounded between 0 and 1,

consistent with expectations and with findings in the prior literature that expected re-

turns are persistent and time-varying. Across the 47 industries in the sample, the mean

(median) industry AR(1) parameter for expected returns is 0.55 (0.56), with a standard

deviation of 0.21, mean (median) t-statistics of 3.82 (3.35), and mean (median) R2 from

the linear fit of 36.39% (34.88%).

Table 2 also reports the first estimates, to my knowledge, of ICC measurement-error

persistence in the literature. I find the measurement errors of GLS to be persistent and

time-varying, but on average less persistent than expected returns. The mean (median)

industry AR(1) parameter for GLS measurement errors is 0.47 (0.48), with a standard

deviation of 0.18, mean (median) t-statistics of 3.05 (3.03), and mean (median) R2 from

the linear fit of 29.23% (28.93%). Finally, the last two columns of Table 2 reports the

differences and absolute value of the differences between the expected returns and mea-

surement error AR(1) parameters—i.e., ψ̂gls − φ̂. Panel B shows that for 38 of the 47

9For each industry l and for lags s = 1, ..., 19, I estimate ĉrl(s) ≡ Ĉov
(
ri,t+s, êr

gls
i,t

)
∀i ∈ l and

ĉl (s) ≡ Ĉov
(
êrglsi,t+s, êr

gls
i,t

)
∀i ∈ l. These estimated covariances, {ĉrl (s)}19s≥1 and {ĉrl (s)}19s≥1, are

then used to estimate the industry-specific expected-returns and GLS measurement-error persistence
parameters.
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industries in the sample, this difference is negative, so that expected returns are more

persistent than measurement errors; the mean (median) difference, reported in Panel A,

is -0.07 (-0.08), with a standard deviation of 0.14. The last column in Panel A sum-

marizes the abolute differences to give a sense of the magnitudes of the denominator in

constructing ŵ: the mean (median) absolute difference is 0.13 (0.11), with a standard

deviation of 0.09.10

With these industry-based AR(1) parameters estimates, I construct the GLS measurement-

error proxy:

ŵglsi,t

(
ψ̂glsi , φ̂i

)
≡
êrglsi,t+1 − φ̂iêr

gls
i,t

ψ̂glsi − φ̂i
. (15)

Using this proxy as the dependent variable, I estimate the cross-sectional associations

between GLS measurement errors and firm characteristics via fixed-effects regressions,

following (11).

3.3 Cross-Sectional Variation in GLS Measurement Errors

3.3.1 GLS Measurement Errors and Firm Characteristics

Table 4 reports results from a pooled fixed-effects regression of the GLS measurement-

error proxy, ŵglsi,t , on ten firm characteristics that are commonly hypothesized explain the

cross-sectional variation in expected returns and that have been widely used as explana-

tory variables in the ICC literature: Size, defined as the log of market capitalization (in

$millions); BTM, defined as the log ratio of book value of equity to market value of eq-

uity; 3-Month Momentum, defined as a firm’s realized returns in the three months prior

to June 30 of the current year; DTM, defined as the log of 1 + the ratio of long-term

debt to market capitalization; Market Beta, defined as the CAPM beta and estimated

for each firm on June 30 of each year by regressing the firm’s stock returns on the CRSP

value-weighted index using data from 10 to 210 trading days prior to June 30; Standard

Deviation of Daily Returns, defined as the standard deviation of a firm’s daily stock re-

10With the exception of two industries, Healthcare and Shipbuilding, the absolute differences in AR(1)
parameters exceed 0.01. Excluding these industries does not qualitatively change the empirical results
of this paper.
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turns using returns data from July 1 of the previous year through June 30 of the current

year; Trailing Industry ROE, defined as the industry median return-on-equity using data

from the most recent 10 fiscal years (minimum 5 years and excluding loss firms) and

using the Fama-French 48-industry definitions; Analyst Coverage, defined as the log of

the total number of analysts covering the firm; Analyst Dispersion, defined as the log

of 1 + the standard deviation of FY1 analyst EPS forecasts; and Analyst LTG, defined

as the median analyst projection of long-term earnings growth. All analyst-based data

are reported by I/B/E/S, as of the prior date closest to June 30 of each year. Summary

statistics of the main dependent and independent variables are reported in Table 3.

We include industry dummies following the estimation methodology (11) and year

dummies to account for time effects. The computation of regression coefficients standard

errors requires two steps. First, I account for within-industry and within-year clustering

of residuals by computing two-way cluster robust standard errors (see Petersen, 2009;

Gow, Ormazabal, and Taylor, 2010), clustering by industry and year. Second, since the

AR(1) parameters are estimated, I account for the additional source of variation (arising

from the first-stage estimation) following the bootstrap procedure of Petrin and Train

(2003).11 All coefficients and standard errors have been multiplied by 100 for ease of

reporting, so that each coefficient can be interpreted as the expected percentage point

change in GLS measurement errors associated with a 1 unit change in the covariate.

Table 4 finds empirical evidence that GLS measurement errors are significantly asso-

ciated with characteristics relevant to the firm’s risk and growth profile (e.g., Size, BTM,

and Analyst LTG) and with characteristics relevant to the firm’s information environ-

ment (e.g., Analyst Coverage and Analyst Dispersion). Columns 1 and 2 report a positive

(negative) association between Size (BTM and 3-Month Momentum) and GLS measure-

ment errors, but no significant associations exist with DTM, Market Beta, Standard

11The methodology adds an additional term—the incremental variance due to the first-stage

estimation—to the variance of the parameters obtained from treating
(
φ̂i, ψ̂

gls
i

)
as the true

(
φi, ψ

gls
i

)
.

Specifically, I generate 1000 bootstrap samples from which to estimate 1000 bootstrap AR(1) parameters.
I then re-estimate the regressions using the bootstrapped AR(1) parameters (i.e., using the 1000 new
bootstrap dependent variables). Finally, the variance in regression parameter estimates from the 1000
bootstraps is added to the original (two-way cluster robust) variance estimates (which are appropriate
when φ and ψ are observed without error). These total standard errors are reported in Table 4.
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Deviation of Daily Returns, or Trailing Industry ROE. Column 3 considers only analysts-

based variables, and finds a negative (positive) association between Analyst Dispersion

(Analyst Coverage and Analyst LTG) and GLS measurement errors. When combining

analyst and non-analyst regressors, I find Size, BTM, 3-Month Momentum, Analyst Cov-

erage, and Analyst LTG to be significantly associated with GLS measurement errors.

In specifications that include both Size and Analyst Coverage (e.g., columns 4 and 5),

the coefficients on Size and their statistical significance attenuate, compared to specifi-

cations that do not include Analyst Coverage (e.g., columns 1 and 2), probably due to

the relatively high correlation (72%) between Size and Analyst Coverage. Interpreting

the specification in column 5, I find that, all else equal, a 1 unit increase in the firm’s

BTM (3-Month Momentum) is associated with an expected 2.24 (8.20) percentage point

decrease in GLS measurement errors, with significance at the 10% (10%) level, and a 1

unit increase in a firm’s Analyst Coverage (Analyst LTG) is associated with an expected

1.97 (2.25) percentage point increase in GLS measurement errors, with significance at the

5% (5%) level. Overall, this evidence is consistent with GLS measurement errors leading

to spurious correlations in regression settings.

The results of Table 4 are consistent with the findings in the accounting literature on

the biases in analysts’ forecasts. For example, the empirical findings that analysts tend to

issue overly optimistic forecasts for growth firms (e.g., Dechow and Sloan, 1997; Frankel

and Lee, 1998; Guay et al., 2011) imply that growth (lower BTM ) firms tend to have

higher ICCs and, all else equal, should produce more positive ICC measurement errors—

consistent with the negative coefficients on BTM in Table 4. The empirical literature

also finds that high LTG estimates may capture analysts’ degree of optimism (La Porta,

1996), implying that firms with high LTG projections tend to have higher ICCs and,

all else equal, should produce more positive ICC measurement errors—consistent with

the positive coefficients on Analyst LTG in Table 4. However, bias in analysts’ forecasts

may not be the only drivers of GLS measurement errors, since these firm characteristics

(e.g., Size and BTM ) can also influence measurement errors through functional form

misspecification, for example through the implicit ICC assumption of constant expected
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returns.12 The next section will show that both of the these sources of are important in

explaining variations in GLS measurement errors.

3.3.2 GLSMeasurement Errors, Analyst Forecast Optimism, and Term Struc-

ture

Whether GLS measurement errors are driven entirely by analysts’ forecast biases has

important implications for the empirical solutions for improving the expected-returns

proxy. This section tests the roles of analyst forecast errors and the implicit assumption

of a constant expected return (Hughes et al., 2009) in driving GLS measurement errors.

Ex ante, I expect ICC measurement errors (w) to be increasing with the degree of

earnings-forecast optimism Ê − E. The intuition is easy to see in the dividend discount

model: holding prices and fundamentals (i.e., true expected returns) fixed, an increase in

forecasted cash flows (the numerator) in some future period mechanically increases the

implied cost of capital (the denominator), thereby making the measurement errors—the

difference between the ICC and the underlying expectation of returns—more positive.

I also expect ICC measurement errors to be increasing in the slope of the term struc-

ture in expected returns (i.e., a violation of the constant expected returns assumption).

The ICC represents some weighted average of the expected rates of returns over time

12To illustrate, let

w (x) = f̂
(
p, Ê (x) , x

)
− f (p,E, x)

where f̂ is a function mapping prices and forecasts of earnings to an ICC, f is the function mapping
prices and “true” expectations of earnings to “true” expected returns, and w is the measurement error.
Let x be some firm characteristic that is relevant in determining the functional forms of expected returns
and ICCs, and that also affects the degree of optimism in earnings forecasts Ê.

A simple first-order Taylor approximation of w around x = 0 yields the following expression

w ≈
[
f̂
(
p, Ê(0), 0

)
− f (p,E, 0)

]
+
[
f̂E

(
p, Ê(0), 0

)
Êx (0) + f̂x

(
p, Ê(0), 0

)
− fx (p,E, 0)

]
x,

so that the marginal effect of the firm characteristic x on measurement errors is approximated by:

w′ ≈ f̂E
(
p, Ê(0), 0

)
Êx (0) +

[
f̂x

(
p, Ê(0), 0

)
− fx (p,E, 0)

]
.

This expression says that a change in the firm characteristic x affects ICC measurement errors in two
ways: through its effect on the forecast of earnings (the first term on the right) and through the functional
form effect (the second and third terms on the right).

It is also difficult to sign w′ for some arbitrary characteristic x. While f̂E is positive, the signs of Êx,
f̂x, and fx are ambiguous. For any arbitrary firm characteristic, therefore, there is no clear prediction
on how it will be associated with ICC measurement errors.
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[
∑∞

j=1 ωjEt (rt+j)]. To the extent that the term structure of expected returns is more

upward sloping—i.e., that expected rates of return further into the future increase the

weighted average—the ICC is expected to over-state the expectation of returns over the

next period [Et (rt+1)]. Thus, all else equal, ICC measurement errors are more positive

for firms with more positive-sloping term structures in expected returns.

I begin by testing the relation between GLS measurement errors and the degree of

optimism in analyst forecasts; doing so requires unbiased forecasts for earnings expec-

tations. For this purpose I adopt the mechanical earnings-forecast model of Hou et al.

(2012), which produces benchmark earnings forecasts in a two-step process: first, esti-

mate historical relations between realized earnings and firm characteristics by running

historical pooled cross-sectional regressions; second, apply the historically estimated co-

efficients on current firm characteristics to compute the model-implied expectation of

future earnings.13

This characteristic-based mechanical forecast model is a useful benchmark for study-

ing analyst forecast optimism. Hou et al. (2012) show that these mechanical earnings

forecasts closely match the consensus analyst forecasts in terms of forecast accuracy, but

exhibit lower levels of forecast bias and higher levels of earnings response coefficients,

suggesting that the mechanical forecasts are closer to the true expectations of earnings.14

Relatedly, So (2013) employs a very similar earnings-forecast model and finds that the me-

chanical forecasts provide a useful benchmark for identifying systematic and predictable

analyst forecast errors which do not appear to be reflected in stock prices.

Denoting Hou et al.’s time t mechanical forecasts of FYt+τ EPS as Êj,t+τ , I define

the following analyst optimism variables: for τ = 1, 2, 3, FYτ Forecast Optimism is the

difference between the analyst FYτ median EPS forecast and Êj,t+τ . A benchmark for

a firm’s average long-run earnings is also necessary to obtain empirical measures for

the level of optimism in the terminal earnings forecast in GLS. I use the average of

13Appendix B explains my implementation and estimation of Hou et al. (2012)’s mechanical forecast
model.

14These authors define forecast bias as realized earnings minus forecast earnings (standardized by
market capitalization for model-based forecasts and by price for I/B/E/S forecasts); they define forecast
accuracy as the absolute value of forecast bias.
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FY3, FY4 and FY5 mechanical forecasts [i.e., (Êj,t+3 + Êj,t+4 + Êj,t+τ )/3] as the long-

run benchmark, and define Terminal Forecast Optimism as the difference between the

implied FY12 earnings and the long-run benchmark.15 Finally, following the literature,

I also create scaled versions of the optimism variables, scaling by total assets and by the

standard deviation in analyst FY1 earnings forecasts.

It is worth highlighting a couple of interesting features of GLS, features that yield

some intuitions about the expected relations between GLS measurement errors and ana-

lyst forecast optimism and that facilitate the assessments of my empirical methodology

and results. The first such feature is the important role of the FY3 earnings forecast.

GLS forecasts the ratio of expected net income to expected book value from FY4 to

FY11 by linearly interpolating from the forecasted FY3 ratio to the trailing industry

median ROE. Holding constant the accuracy of the terminal forecast, to the extent that

FY3 earnings forecasts are overly optimistic, the subsequent years’ forecasts will also be

upwardly biased. Therefore, the degree of optimism in FY3 forecasts is expected to play

an especially important role in explaining GLS measurement errors. A more obvious fea-

ture of GLS is the important role of the terminal value assumption; all else equal, GLS

measurement errors are expected to be positively associated with the degree of optimism

in the terminal earnings forecast.

Table 5 reports results from a pooled fixed-effects regression of GLS measurement-

error proxy, ŵglsi,t , on FY1, FY2, and FY3 Forecast Optimism and Terminal Forecast

Optimism. Year and industry fixed effects are included throughout, and the computation

of standard errors as well as the reporting conventions are identical to Table 4. Columns

1-3 use the unscaled optimism variables, and columns 4-6 (7-9) use the scaled optimism

variables, scaling by total assets [standard deviation of FY1 analyst forecasts]. Consis-

tent with intuition, GLS measurement errors are associated positively and significantly

(at the 1% level) with FY3 Forecast Optimism (columns 1, 4, and 7), and positively and

15The use of the average of FY3, FY4, and FY5 as a benchmark need not follow from the assump-
tion that such an average represents a good levels forecast of the firm’s long-run earnings. Under the
assumption that the difference between the GLS terminal EPS forecast and the long-run benchmark
is proportional to the difference between the GLS terminal EPS forecast and the true but unobserved
expected long-run EPS, variations in Terminal Forecast Optimism may still be informative about the
degree of terminal forecast optimism.
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significantly (at the 5% level) with Terminal Forecast Optimism (columns 2, 5, and 8),

regardless of scaling.16 In specifications that include all optimism variables (columns 3,

6, and 9), FY3 Forecast Optimism appears to be more important in explaining measure-

ment errors, as its coefficient remains associated positively and significantly (at the 5%

level) with GLS measurement errors, while the coefficient on Terminal Forecast Optimism

is attenuated and no longer statistically significant at conventional levels. Interpreting

the coefficients in column 3, I find that a one dollar increase in analysts’ FY3 Forecast

Optimism is associated with an expected 1.14 percentage-point increase in GLS mea-

surement errors, with statistical significance at the 5% level; a one dollar increase in

Terminal Forecast Optimism is associated with an expected 22 basis-point increase in

GLS measurement errors, but the coefficient is not statistically significant at the conven-

tional levels. Measures of FY1 and FY2 Forecast Optimism are not significant in any

of the specifications in Table 5, which is unsurprising in that for GLS the bias in FY3

earnings forecasts has disproportionate influence on GLS measurement errors.

Table 6 considers jointly the influence of analyst forecast optimism and the implicit

assumption of constant expected returns on GLS measurement errors. In particular,

I use a proxy from the work of Lyle and Wang (2013), who develop a methodology

for estimating the term structure of expected returns at the firm level based on two firm

fundamentals: BTM and ROE. Their model assumes that the expected quarterly-returns

and the expected quarterly-ROE revert to a long-run mean following AR(1) processes,

and produces empirical estimates of a firm’s expected returns over all future quarters. I

approximate the slope of the term structure (Term) as the difference between the long-

run expected (quarterly) returns from the expected one-quarter-ahead returns following

the model of Lyle and Wang (2013).

Table 6 replicates the fixed-effects regressions of Table 5, but includes as additional

controls Size, BTM, 3-Month Momentum, and Term. Qualitatively the results with re-

spect to analyst forecast optimism remain unchanged, but the coefficients and their sta-

tistical significance attenuate slightly relative to Table 4. The attenuation is probably

16In untabulated results, I find that scaling forecasts by price yields qualitatively identical results to
those of Table 5.
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due to the partial capture of analyst optimism by the controls—for example, the afore-

mentioned empirical observation that analysts are overly optimistic about higher-growth

(e.g., lower BTM ) firms. Moreover, I find consistent evidence that the constant term

structure assumption is important in driving GLS measurement errors. In all specifica-

tions, the steeper the slope in the term structure of expected returns, the more positive

are GLS measurement errors, with all coefficients on Term being statistically significant

at the 5% level.

The results of Table 5 are consistent with the intuition built on an understanding of

GLS’s unique features, and these results provide evidence that the methodology devel-

oped in this paper are useful for explaining the variations in GLS measurement errors.

Table 5 suggests that optimism in analyst FY3 forecasts, optimism in the terminal earn-

ings forecasts, and the constant expected return assumption are significant drivers of

GLS measurement errors. However, FY3 Forecast Optimism appears to have a greater

influence than Terminal Forecast Optimism, both in the magnitude of its association and

in its statistical significance.17 To my knowledge, the empirical results of Tables 4–6 are

the first direct empirical evidence broadly in support of the theoretical results of Hughes

et al. (2009).

3.3.3 Sorting Future Returns

A potential concern with interpretation of the preceding results is that the regression

coefficients (e.g., Table 4) could be driven by the measurement errors in the estimates

of GLS measurement errors. Though these concerns are mitigated by Tables 5 and 6

that report results consistent with one’s intuition about the sources of GLS measure-

ment errors, this section reports on further tests showing that the empirical methodology

presented in this paper is informative about GLS measurement errors.

Section 2.3 shows that if ŵglsi,t is indeed informative about GLS measurement errors’

cross-sectional associations with firm characteristics, then a modified version of GLS

(êrmglsi,t ≡ êrglsi,t − ŵglsi,t ) is informative about the cross-sectional association between ex-

17This may be due to the possibility that earnings forecast optimism can be measured with greater
precision in the short run than in the long run.

20



pected returns and firm characteristics. In particular, if the paper’s model is valid for

GLS, then a fixed-effects regression of Modified GLS (ModGLS) on firm characteristics

produces regression coefficients that better capture the systematic associations between

expected returns and firm characteristics than regressions using GLS. To test this pre-

diction, I construct proxies of expected returns using historically estimated regression

coefficients on firm characteristics estimated using ModGLS, and compare them with

similarly estimated expected return proxies but estimated using GLS. I expect those

proxies constructed from historically estimated associations between ModGLS and firm

characteristics to exhibit a greater ability to sort future returns.

I follow a two step procedure to create expected return proxies using historically

estimated associations between ModGLS and firm characteristics. First, in each year (t)

regress ModGLS on firm characteristics using three years’ data from t− 1 to t− 3 (with

year and industry fixed effects), and obtain estimated coefficients δ̂t−1.
18 Second, apply

the coefficients δ̂t−1 on current values of covariates Xt to obtain expected returns (Fitted

ModGLS) over the next year.

I consider three sets of covariates (corresponding to the significant covariates in the

three regression specifications of Table 9 presented in the next section). Model 1 is a

three-factor model with

Xt = {Sizet, BTMt, Momentumt} ;

Model 2 is a five-factor model with

Xt = {Sizet, BTMt, Momentumt, DTMt, StdRett} ;

and Model 3 is an seven-factor model with

Xt = {Sizet,BTMt,Momentumt,DTMt, StdRett, AnalystDispersiont, AnalystLTGt}.19

18The regression requires a 1-year lag since the dependent variable, êrmglsi,t ≡ êrglsi,t − ŵi,t
(
ψ̂glsi , φ̂

)
,

requires êrmglsi,t+1. Recall that ŵi,t

(
ψ̂glsi , φ̂

)
=

êrglsi,t+1−φ̂iêr
gls
i,t

ψ̂gls
i −φ̂i

.
19Because of the high degree of correlation between Size and Analyst Coverage, I use only the former
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After estimating the Fitted ModGLS using this procedure, I sort them into decile port-

folios and summarize the average realized 12-month-ahead returns within each decile. I

compare these average returns to those produced by decile portfolios formed by GLS (i.e.,

by decile ranking êrglsi,t ) and Fitted GLS, which is created following the above two-step

procedure but using GLS as the dependent variable. Again, if the regression coefficients

estimated using ModGLS better capture the systematic relations between expected re-

turns and firm characteristics, then I expect Fitted ModGLS to sort future returns better

than does Fitted GLS. As a performance metric, I compare the average decile spread—

i.e., the average difference in the realized 12-month-ahead returns between the top and

bottom decile portfolios—over the period from June 30, 1979 to June 30, 2010.20

Table 7 Panel A (B) compares the realized 12-month-ahead market-adjusted (size-

adjusted) returns between GLS, Fitted GLS, and Fitted ModGLS decile portfolios, which

are formed annually.21 The Fitted ModGLS sorts future returns best, producing substan-

tially larger decile spreads (reported in row 1) than either GLS or Fitted GLS. Panel A

(B) finds the average market-adjusted (size-adjusted) annual decile spread for GLS to

be 1.4% (-0.30%), with time-series t-statistic of 0.43 (-0.95), suggesting that those firms

with the highest values of GLS do not on average have realized returns that are statisti-

cally different from those with the lowest values of GLS.22 Similarly, in none of the three

models does Fitted GLS exhibit significant ability to sort future market- or size-adjusted

returns.

In contrast, Fitted ModGLS exhibits economically and statistically significant ability

to sort future returns in each of the three models. Fitted ModGLS estimated using Model

1, 2, and 3 produces average decile spreads in market-adjusted (size-adjusted) returns of

11.16% (9.23%), 9.37% (7.58%), and 8.51% (6.69%), with all spreads statistically different

from 0% at the conventional levels. Finally, tests of the hypotheses that the decile spreads

even though in Table 9 the coefficients on Analyst Coverage are significant.
20The first year for which I obtain Fitted ModGLS estimates is 1979, since our overall sample begins

in 1976 and obtaining Fitted ModGLS estimates requires data from 1976 to 1978.
21Market adjustment is performed using the value-weighted CRSP market index; size adjustments are

performed using CRSP size deciles, formed at the beginning of each calendar year.
22Time-series t-statistics are computed using the time-series standard deviation of annual decile

spreads.
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produced by Fitted ModGLS are no different from those produced by GLS (reported in

row 3) or Fitted GLS (reported in row 4) are rejected at the conventional levels in all

cases, whether using a standard t-test or the Wilcoxon signed-rank test, suggesting that

Fitted ModGLS exhibits superior return-sorting ability.

Table 8 repeats the exercise presented in Table 7, but considers decile portfolios formed

within each year and each Fama-French industry. In other words, Table 7 compared

the relative performance of GLS, Fitted GLS, and Fitted ModGLS in sorting future

returns for the cross-section of stocks; Table 8 compares how they sort within-industry

returns. Overall the results of Table 8 are consistent with those of Table 7. GLS and

Fitted GLS exhibit no economically or statistically significant within-industry return-

sorting ability. In contrast, Fitted ModGLS exhibits significant within-industry return-

sorting ability in each of the three models, with decile spreads that are economically and

statistically significant and that are statistically different from those produced by GLS or

Fitted GLS. In summary, the results of Tables 7 and 8 support the hypothesis that the

methodology developed in this paper is informative about GLS measurement errors and

provides empirical evidence that regressions using Modified GLS produce coefficients that

better capture the systematic relations between expected returns and firm characteristics.

3.4 Expected Returns and Firm Characteristics

Having established the efficacy of this paper’s methodology in explaining GLS mea-

surement errors, I will now assess the quality of inferences about the associations between

expected returns and firm characteristics in regressions using GLS. In Table 9 Panels A,

B, and C, I estimate fixed-effects regressions of expected return proxies on firm char-

acteristics widely hypothesized to be associated with the expected rate of returns. For

ease of interpretation, I follow Gebhardt et al. (2001) and standardize each explanatory

variable by its cross-sectional annual mean and standard deviation. Year and industry

fixed effects are included in each regression and the reporting conventions are as specified

in Table 4.

Columns 1 and 2 of each panel report fixed-effects regression coefficients estimated
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using GLS and ModGLS, respectively. In keeping with the model proposed in this paper

and by the evidence reported from Tables 4–8, regressions using ModGLS should be more

informative about the systematic relations between expected returns and firm character-

istics than regressions using GLS. Panel A considers Size, BTM, and 3-Month Momentum

as covariates, as in Model 1 of Tables 7 and 8. Consistent with expectations from prior

literature, I find in Panel A, column 1 a negative (positive) association between GLS

and Size (BTM ), with the coefficients being statistically significant at the 1% (1%) level.

Unexpectedly, the association between GLS and 3-Month Momentum is negative and

statistically significant at the 1% level, which is inconsistent with the well-documented

momentum effect (e.g., Jegadeesh and Titman, 1993; Chan, Jegadeesh, and Lakonishok,

1996) that would predict a positive coefficient. The negative association between GLS and

momentum is probably an artifact of how GLS (and ICCs more generally) is constructed.

Since price and êrglsi,t are inversely related by construction (14), holding expectations of

future fundamentals fixed, firms with greater recent price appreciation may also tend to

have lower values of GLS.

Column 2 of Panel A estimates fixed-effects regression coefficients of ModGLS on Size,

BTM, and 3-Month Momentum. The coefficients on Size and BTM remain negative and

positive, respectively, similar to the column 1 results using GLS, though the estimated

magnitudes differ. In contrast, the coefficient on 3-Month Momentum reverses in sign:

it is positive and statistically significant at the 10% level, consistent with predictions

of the momentum phenomenon. Consistent with the empirical evidence in Table 4, that

GLS measurement errors are more negative for higher momentum firms, the negative and

significant coefficients on 3-Month Momentum in column 1 probably capture Momentum’s

associations with GLS measurement errors.

Table 9, Panel B adds four more firm characteristics to the covariates of Panel A: Mar-

ket Beta, DTM, StdDev of Daily Returns, and Trailing Industry ROE. In column 1, using

GLS as the dependent variable, the coefficients on Size, BTM, and 3-Month Momentum

are very similar to those reported in Panel A, column 1 in terms of both magnitudes

and statistical significance. Moreover, GLS is associated negatively and significantly (at
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the 1% level) with Market Beta, and positively and significantly with DTM, StdDev of

Daily Returns, and Trailing Industry ROE (all at the 1% level). The results on Market

Beta and Trailing Industry ROE are unexpected. If CAPM were true, I would expect the

relation between expected returns and Beta to be positive; if CAPM does not describe

the cross-sectional variation in expected returns, or if the estimation of Beta is too noisy,

I expect no association with expected returns. It is also unclear whether a positive as-

sociation should exist between a firm’s expected returns and its Trailing Industry ROE.

This is probably a mechanical artifact of the way GLS is constructed. Since GLS uses

the Trailing Industry ROE in its terminal value assumptions, higher Trailing Industry

ROE mechanically yields higher values of GLS, all else equal.

Panel B, column 2, which uses ModGLS as the dependent variable, also shows that

the inclusion of the four additional variables has little impact on the coefficients on

Size, BTM, and 3-Month Momentum: all three coefficients remain very similar to those

reported in Panel A, column 2, in terms of both magnitudes and statistical significance.

As in Panel A, the coefficient on 3-Month Momentum reverses in sign, from negative

and significant in column 1 to positive and significant in column 2. Moreover, Panel B,

column 2, reports coefficients on DTM and StdDev of Daily Returns that are positive and

significant, consistent both with expectations and with column 1. Unlike in column 1, the

coefficient on Market Beta is no longer statistically different from 0, though its magnitude

is larger; nor is the coefficient on Trailing Industry ROE any longer statistically different

from 0, with magnitudes that are substantially attenuated toward zero. This evidence,

combined with the results of Table 4, suggests that the associations of GLS with Beta

and Trailing Industry ROE are probably influenced by systematic measurement errors in

GLS.

Table 9, Panel C, adds to the covariates in Panel B three analyst-based variables:

Analyst Coverage, Analyst Dispersion, and Analyst LTG. The addition of these variables

does not substantially change the magnitudes or significance of the coefficients on the

non-analyst variables in column (1) compared to Panel A. Moreover, I find that GLS

is positively and signficantly (at the 1% level) associated with Analyst Dispersion and
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Analyst LTG. The coefficient on Analyst Coverage is negative, but not statistically dif-

ferent from 0, probably due to collinearity between Size and Analyst Coverage. The

positive association between GLS and Analyst LTG is unexpected and inconsistent with

the empirical observation that firms with high LTG estimates tend on average to have

lower returns (e.g., La Porta, 1996). This positive association is probably a mechanical

artifact of how GLS is calculated. Recall that GLS uses median analyst forecasts of FY1,

FY2, and FY3 EPS; however, the FY3 forecast is imputed by applying Analyst LTG

projections to the median FY2 EPS forecast. To the extent that larger values of Analyst

LTG tend to be too extreme, as argued by La Porta (1996), GLS’s forecasts of FY3

earnings will also be too optimistic. In other words, the positive association between

GLS and Analyst LTG probably reflects the degree of optimism in FY3 forecasts.23 With

the exception of Size, the addition of analyst variables in Panel C does not substantially

change the magnitudes or significance of the coefficients on the non-analyst variables in

column 2 relative to those in Panel A. The attenuation in the coefficient and significance

of Size is not surprising, given the relatively high correlation (72%) between Analyst

Coverage and Size. Consistent with column 1, I find ModGLS to be associated positively

and significantly (at the 1% level) with Analyst Dispersion; however, unlike column 1

and consistent with expectations, the coefficient on Analyst LTG reverses in sign and

becomes negative and statistically significant at the 5% level. This evidence, combined

with the results of Table 4, suggest that the associations between GLS and Analyst LTG

are probably influenced by systematic measurement errors in GLS.

A natural question arising from the above results—that GLS likely suffers from spuri-

ous correlations through dependent-variable measurement errors—is whether mitigating

earnings-forecast biases could improve regression inferences. The results of Tables 5 and 6

suggest that earnings-forecast optimism is not the sole driver of GLS measurement errors;

column 3 of each panel in Table 9 addresses this question explicitly. Specifically, column

3 uses as the dependent variable MechGLS, another proxy of expected returns that imple-

ments GLS but uses the benchmark earnings forecasts of Hou et al. (2012). In general, the

23In untabulated results, I find that the measures of FY3 Forecast Optimism used in this paper are
positively and significantly associated with Analyst LTG.
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regression coefficients using MechGLS are directionally similar to those estimated using

GLS, but the magnitudes and statistical significance may differ. In all three panels, for

example, the coefficients on Size and BTM are substantially larger in magnitude than

those estimated using GLS, and generally closer to the coefficients on Size and BTM

reported in column 2. Many of the surprising coefficients estimated using GLS persist

in regressions using MechGLS: 3-Month Momentum and Market Beta remain negative

and significant (both at the 1% level), while Trailing Industry ROE remains positive and

significant (at the 1% level) in all relevant panels. Interestingly, in Panel C, column 3,

the association between MechGLS and Analyst LTG is negative, reversing in sign from

column (1), though the coefficient is not statistically different from 0 at the conventional

levels. In summary, MechGLS appears to resolves some puzzling associations between

GLS and firm characteristics, but many of the unexpected associations persist, consistent

with the view that the spurious correlations between firm characteristics and GLS mea-

surement errors do arise solely from analysts’ earnings-forecast errors; they could also be

due to errors arising from functional form assumptions.

Finally, in Table 9, column 4 of each panel estimates regressions using 12-month-ahead

realized returns as an ex-post proxy for expected returns. Realized returns is defined as

the sum of expected returns and news (see, e.g., Campbell, 1991; Vuolteenaho, 2002).

The latter component represents realized returns’ errors in measuring ex ante expected

returns, but these measurement errors (i.e., “news”) have some advantageous proper-

ties. Realized returns provide unbiased estimates of expected returns since, as Lewellen

(2010) notes, the latter is defined as the expectation of realized returns conditional on

information known prior to the period. Thus the measurement errors of realized returns

have zero mean and, by the definition of news, cannot be systematically predictable.

With a sufficiently long panel dataset, regressions of realized returns are not expected to

be influenced by spurious correlations via dependent-variable measurement errors. The

disadvantage of using realized returns stems from the high variance in its measurement

errors (both in the cross section and in time series), which is consistent with the sub-

stantially larger cross-sectional and time-series standard deviations compared to those of
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GLS, as shown by comparing average values of columns 3 and 5 in Table 1, Panel A, and

by comparing the variability of columns 2 and 4 in Table 1, Panel A. Thus, compared to

GLS, the use of realized returns is expected to reduce the precision with which researchers

can estimate associations between expected returns and firm characteristics.

Comparing the regression coefficients estimated using realized returns to those that use

alternative proxies of expected returns, I find that the coefficients in column 4 align most

closely in terms of sign, magnitude, and statististical significance with those in column

2 estimated using ModGLS. Like column 2, column 4 finds a positive and significant

coefficient on 3-Month Momentum across all three panels, and no statistical significance

in the coefficients on Market Beta and Trailing Industry ROE. However, regressions of

realized returns in Panels B and C do not obtain statistical significance in DTM, StdDev

of Daily Returns, Analyst Dispersion, or Analyst LTG, though these coefficients have the

same signs as in column 2.

Overall, the estimates in column 4 help bolster the hypothesis that regression coeffi-

cients estimated using GLS (or MechGLS) are influenced by spurious correlations with

the dependent variable’s measurement errors, and that the problem is unlikely to be fully

resolved by accounting for systematic earnings-forecast biases. Given the results of Table

9 and the puzzling associations between GLS and certain firm characteristics, it is unsur-

prising that regression coefficients estimated using ModGLS produce proxies of expected

returns that exhibit superior return-sorting ability in Tables 7 and 8.

4 Summary, Implications, and Conclusion

This paper presents a methodology for assessing the cross-sectional associations be-

tween measurement errors in expected-return proxies and firm characteristics, and a

methodology for making inferences about expected returns in light of such systematic

measurement errors. I show that the paper’s methodology is useful in explaining measure-

ment errors of GLS, one of the most popular implementations of ICCs, and I document

several findings contributing to the ICC literature. The paper reports the first empirical
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evidence that ICC measurement errors are persistent and time-varying, and that GLS

measurement errors are systematically associated with certain firm characteristics com-

monly assumed to be associated with expected returns. Finally, I find evidence that

many unexpected associations between GLS and firm characteristics, such as 3-Month

Momentum, Market Beta, Trailing Industry ROE, and Analyst LTG, are likely driven by

spurious correlations with dependent variable measurement errors rather than underlying

economics.

These empirical findings have three important practical implications for researchers

who use ICCs as proxies for expected returns. First, regression results reliant on cross-

sectional regressions of ICCs on firm characteristics may be influenced by spurious asso-

ciations with dependent-variable measurement errors. This observation may explain such

puzzling associations as the negative association between ICCs and momentum (e.g.,

Guay et al., 2011) and the positive association between ICCs and trailing industry ROE

(e.g., Gebhardt et al., 2001).

This implication also raises questions about the efficacy of assessing the quality of ICCs

by comparing the associations between firms’ risk characteristics and ICCs (e.g., Botosan

and Plumlee, 2005; Botosan, Plumlee, and Wen, 2011) in regression settings. To the

extent that regression coefficients reflect spurious correlations between ICC measurement

errors and risk characteristics, it is unclear whether or why ICCs that exhibit stronger

associations with presumed risk characteristics are necessarily better. For example, ICCs

whose measurement errors are strongly correlated with characteristics such as Size and

BTM need not be better proxies of expected returns; to make such an assessment requires

further definition of the researcher’s preferences over ICC measurement-error properties.

Second, the empirical results documented in this paper suggest that standard methods

for addressing measurement errors, namely portfolio grouping and instrumental variables,

may have limited effectiveness. The idea behind grouping is to form portfolios of firms

with similar expected returns, so that measurement errors (presumed to be random)

cancel out on average at the portfolio level. Ideally, groups should be formed to minimize

the within-group variation and maximize the across-group variation in expected returns.
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In practice, since expected returns are not observed the formation of grouping portfolios

often involves the use of firm characteristics such as Size and BTM (e.g., Easton and

Monahan, 2005), which are assumed to be correlated with expected returns but not with

measurement errors. Clearly, the usefulness of this methodology is limited by the extent

to which the grouping variables are systematically associated with measurement errors, or

the extent to which measurement errors fail to cancel out in portfolios. In the case of GLS

(i.e., Table 4), since average measurement errors are systematically different for firms of

different Size and BTM, differences in average GLS values across portfolios formed on

these variables are likely confounded by the portfolio differences in average measurement

errors, raising doubts about the efficacy of such grouping methods.

The instrumental variables (IV) approach to addressing measurement errors may also

be of limited effectiveness for ICCs. The idea behind the IV approach is to fit ICCs with a

set of variables, the instruments, that are correlated with expected returns but not mea-

surement errors. The usefulness of this approach depends on the validity and usefulness

of the instruments; the best instrument are those that exhibit strong correlations with

expected returns and no correlations with measurement errors. Firm characteristics like

Size and BTM are commonly-used instruments for ICCs (e.g., Gebhardt et al., 2001; Eas-

ton and Monahan, 2005), but again the evidence in Table 4 suggests that these variables

(among others) violate the exclusion restriction (i.e., uncorrelatedness with measurement

errors) in the case of GLS, raising doubts about the usefulness of the IV approach.

Third, the empirical results of this paper also suggest that mitigating systematic errors

in analyst forecasts is unlikely to fully address ICC measurement errors and resolve the

spurious correlation problem in regressions. The intuition is that even if expectations

of future earnings were unbiased, errors arising from functional form assumptions (e.g.,

the constant discount rate assumption implicit in all ICC models) could also lead to

measurement errors that are systematically associated with firm characteristics. In light

of the above implications that (1) regressions using ICC as dependent variables may be

confounded by spurious correlations with measurement errors and (2) standard methods

for mitigating measurement errors may have limited usefulness, how do researchers use
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ICCs to make inferences about the relations between unobserved expected returns and

firm characteristics?

Making inferences on unobserved variables is a notoriously difficult task. In studying

the properties of unobserved expected returns and in choosing among proxies of expected

returns, researchers need to evaluate the trade offs in the proxies’ measurement error

properties. The choice between any ICC and realized returns is a tradeoff between bias

and efficiency. Realized returns is by definition the sum of ex ante expected returns and

news, the measurement errors. Though these measurement errors are noisy, they cannot,

by definition of news, be systematically biased (i.e., zero mean) or predictable over time.

On the other hand, ICCs such as GLS may be less noisy, but their measurement errors

are systematically biased over time and associated with firm characteristics. Thus, the

common justification for using ICCs for studying expected returns—that ICCs are far

less noisy than realized returns—is insufficient without a better understanding of the

biases embedded in ICC measurement errors. This paper provides a methodology for

making inferences about expected returns using GLS, but I argue that, in general, to

convincingly establish an association between expected returns and firm characteristics

using ICCs, it is necessary for researchers to complement ICC regressions with regressions

using realized returns. Caution should be applied in particular when ICC regressions and

realized returns regressions produce statistically significant regression coefficients with

opposite signs, as these likely indicate evidence of spurious correlations with dependent

variable measurement errors.

In summary, ICCs are an intuitively appealing class of expected-return proxies with

the potential to help researchers better understand the cross-sectional variation in ex-

pected returns. However, much remains unknown about the sources of their measure-

ment errors and how to correct for them; thus their use in regression settings should

be interpreted with caution. This paper’s methodology has the potential for explaining

variations in GLS measurement errors, and produces direct empirical evidence that GLS

measurement errors lead to spurious inferences in regression settings. To echo the sen-

timents of Easton (2009) and Lambert (2009), future research on ICCs should focus on
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better understanding the sources of ICC measurement errors and devising for ways to

correct them.
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Appendix

A Estimating AR(1) Parameters

To estimate the AR(1) parameters, first relate future realized returns to ex ante
conditional expected returns. Recall that the conditional expectation by definition is
optimal in the sense of minimizing mean squared errors (e.g., Angrist and Pischke, 2008,
pp.32-33).

ri,t+1 = eri,t + δi,t+1 (A1)

Under the definition of conditional expected returns it follows that unexpected returns,
or forecast errors (δi,t+1), are uncorrelated with the levels of conditional expected returns
in time-series (as well as exhibit no autocorrelation).24 Under this assumption, the AR(1)
parameters can be identified by writing down and manipulating the time-series autoco-
variance functions of expected returns proxies and the time-series covariance between
realized returns and expected returns proxies.

A.1 Time-Series Expected-Returns Proxy Autocovariance

It can easily be shown that the 1st, 2nd, and 3rd order expected-returns proxy auto-
covariance functions are given as follows: 25

ci(0) ≡ V ar (êri,t)

= φ0
i [V ar (eri,t) + Cov (eri,t, wi,t)] + ψ0

i [V ar (wi,t) + Cov (eri,t, wi,t)] ,

ci(1) ≡ Cov (êri,t+1, êri,t)

= φ1
i [V ar (eri,t) + Cov (eri,t, wi,t)] + ψ1

i [V ar (wi,t) + Cov (eri,t, wi,t)] ,

ci(2) ≡ Cov (êri,t+2, êri,t)

= φ2
i [V ar (eri,t) + Cov (eri,t, wi,t)] + ψ2

i [V ar (wi,t) + Cov (eri,t, wi,t)] .

It follows that the sth order autocovariance function for a firm i is given by

ci(s) ≡ Cov (êri,t+s, êri,t) (A2)

= φsi [V ar (eri,t) + Cov (eri,t, wi,t)] + ψsi [V ar (wi,t) + Cov (eri,t, wi,t)] .

Note that (A2) also shows that êri,t is a covariance stationary process.

24This formulation is similar to that of Fama and Gibbons (1982), who related the observed ex-post
real interest rate to the unobserved ex ante expected real interest rate as:

it − πt = (it − πet ) + (πet − πt) ,

with
(
it+1 − πet+1

)
= φ (it − πet ) + vt+1,

where it is the nominal interest rate and πet and πt are the ex-ante expected and ex-post realized inflation,
respectively. The authors argue that if people form forecasts of inflation efficiently, then the forecast
error wt ≡ πet − πt should be uncorrelated with its own lagged values or with the ex ante real interest
rate. In other words, if the ex ante inflation forecasts embody all ex ante predictability, then the forecast
errors should be uncorrelated with its past values and with the ex ante forecasts.

25For simplicity, we have suppressed the index k, which indexes the expected-returns proxy model.
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A.2 Time-Series Realized Returns—Expected-Returns Proxy
Covariance

To derive the covariance between realized returns s periods ahead and current ex-
pected returns, I turn to the returns decomposition of equation (A1). Substituting in the
definition of expected-returns proxies [eqn (2)], one can relate realized returns two years,
three years, and four years from now to the current period’s expected returns as follows:

ri,t+1 = eri,t + δi,t+1,

ri,t+2 = φieri,t + ui,t+1 + δi,t+2,

ri,t+3 = φ2
i eri,t + (ui,t+2 + φiui,t+1) + δi,t+3.

Or, more generally, realized returns s years from now can be related to the current
period’s expected returns as

ri,t+s = φs−1i eri,t +
s−2∑
n=0

φni ui,t+n+1 + δt+s.

Using this decomposition, the 1st, 2nd, and 3rd degree time-series covariance between
realized returns and expected-returns proxy are

cri(1) ≡ Cov (ri,t+1, êri,t)

= φ0
i [V ar (eri,t) + Cov (eri,t, wi,t)] ,

cri(2) ≡ Cov (ri,t+2, êri,t)

= φ1
i [V ar (eri,t) + Cov (eri,t, wi,t)] ,

cri(3) ≡ Cov (ri,t+3, êri,t)

= φ2
i [V ar (eri,t) + Cov (eri,t, wi,t)] .

Similarly, the kth order return-proxy covariance for a firm i is given by

cri(s) ≡ Cov (ri,t+s, êri,t) (A3)

= φs−1i [V ar (eri,t) + Cov (eri,t, wi,t)] .

A.3 Identifying AR(1) Parameters

Combining the above functions ci(s) and cri(s), the following relations are obtained:

ci (s)− cri (s+ 1) = ψi × (ci (s− 1)− cri (s)) , and (A4)

cri (s+ 1) = φi × cri (s) for s ≥ 1. (A5)

Thus, using sample estimates ĉi(s) and ĉri(s), ψi can be estimated from a time-series
regression of {ĉi (s)− ĉri (s+ 1)}Ts≥1 on {ĉi (s− 1)− ĉri (s)}Ts≥1; similarly, φi can be esti-

mated from a time-series regression of {ĉri (s+ 1)}Ts≥1 on {ĉri (s)}Ts≥1.
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B Residual Income Model and GLS

This paper’s estimation of a firm’s expected rate of equity returns follows the method-
ology of Gebhardt et al. (2001) (GLS), a valuation model based on the residual-income
model that re-expresses the dividend-discount model:

Pi,t =
∞∑
n=1

Et [Di,t+n]

(1 + êri,t)
n .

By assuming that forecasts of book values satisfy clean surplus relation, i.e.,

EtBi,t+n+1 = EtBi,t+n + EtNIi,t+n+1 − EtDi,t+n+1,

where EtBi,t+n, EtNIi,t+n, and EtDi,t+n, are the time t expectation of book values, net
income, and dividends in t+ n, the dividend-discount model can be rewritten as

Pi,t = Bi,t +
∞∑
n=1

Et [NIi,t+n]− êri,tEt [Bi,t+n−1]

(1 + êri,t)
n .

= Bi,t +
∞∑
n=1

Et[NIi,t+n]

Et[Bi,t+n−1]
− êri,t

(1 + êri,t)
n Et [Bi,t+n−1] .

Practical implementation of RIM requires explicit forecasts and a terminal-value esti-
mate. GLS forecasts future earnings and book values for 12 years and makes a terminal-
value assumption based on the trailing industry median ROE. GLS is the êrglsi,t that solves

Pi,t = Bi,t +
11∑
n=1

Et[NIi,t+n]

Et[Bi,t+n−1]
− êrglsi,t(

1 + êrglsi,t

)n Et [Bi,t+n−1] +

Et[NIi,t+12]

Et[Bi,t+11]
− êrglsi,t

êrglsi,t

(
1 + êrglsi,t

)11Et [Bi,t+11] ,

where Et [NIi,t+1] and Et [NIi,t+2] are estimated using median I/B/E/S analyst FY1 and
FY2 EPS forecasts (FEPSi,t+1 and FEPSi,t+2) and where Et [NIi,t+3] (FEPSi,t+3) is
estimated as the median FY2 analyst EPS forecast times the median analyst gross long-
term growth-rate forecast. For those firms with no long-term growth-rate forecasts, GLS
uses the growth rate implied by the one- and two-year-ahead analyst EPS forecasts—i.e.,
FEPSi,t+3 = FEPSi,t+2 (1 + FEPSi,t+2/FEPSi,t+1). In estimating the book value per
share, GLS relies on the clean surplus relation and applies the most recent fiscal year’s
dividend-payout ratio (k) to all future expected earnings to obtain forecasts of expected
future dividends: i.e., EtDt+n+1 = EtNIt+n+1×k. GLS uses the trailing 10-year industry

median ROE to proxy for
Et[NIi,t+12]

Et[Bi,t+11]
. Finally, for years 4–12, each firm’s forecasted ratio

of expected net income over expected beginning book value is linearly interpolated to the
trailing 10-year industry median ROE.
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C Mechanical Forecast Model

This table reports the average regression coefficients and their time-series t-statistics
from annual pooled regressions of one-year-ahead through five-year-ahead earnings on a
set of variables that are hypothesized to capture differences in expected earnings across
firms. Specifically, for each year t between 1970 and 2010, I estimate the following pooled
cross-sectional regression using the previous ten years (six years minimum) of data:

Ej,t+τ = β0+β1EVj,t+β2TAj,t+β3DIVj,t+β4DDj,t+β5Ej,t+β6NEGEj,t+β7ACCj,t+εj,t+τ

where Ej,t+τ (τ = 1, 2, 3, 4, or 5) denotes the earnings before extraordinary items of firm
j in year t+ j, and all explanatory variables are measured at the end of the year t; EVj,t
is the enterprise value of the firm (defined as the sum of total assets and market value
of equity minus the book value of equity); TAj,t is total assets; DIVj,t is the dividend
payment; DDj,t is a dummy variable that equals 0 for dividend payers and 1 for non-
payers; NEGEj,t is a dummy variable that equals 1 for firms with negative earnings and
0 otherwise; and ACCj,t is total accruals scaled by total assets, where total accruals are
calculated as the change in current assets plus the change in debt in current liabilities
minus the change in cash and short-term investments and minus the change in current
liabilities. R2 is the time-series average R-squared from annual regressions.

Mechanical Forecast Model Coefficients

Yrs Cons EV TA DIV DD E NEGE ACC R2

1 2.097 0.010 -0.008 0.327 -2.251 0.756 0.963 -0.017 0.855
(5.36) (44.83) -(33.65) (37.83) -(3.47) (162.04) (2.27) -(8.93)

2 3.502 0.013 -0.009 0.487 -3.191 0.680 3.143 -0.019 0.798
(6.51) (40.52) -(27.40) (39.45) -(3.68) (98.27) (2.73) -(7.68)

3 14.855 -0.001 0.002 0.610 -10.001 0.337 1.397 0.010 0.466
(23.05) (5.65) (0.30) (42.83) -(9.48) (50.71) (0.61) (0.60)

4 21.346 0.000 0.002 0.503 -13.631 0.231 -0.713 0.008 0.336
(29.45) (4.78) (0.07) (36.95) -(11.70) (36.41) -(0.76) (2.11)

5 26.535 -0.001 0.003 0.445 -16.003 0.173 -3.038 0.008 0.261
(33.44) -(3.16) (6.44) (33.51) -(12.76) (27.59) -(2.13) (1.43)
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Table 1. Summary Statistics on Expected Return Proxies

Table 1, Panel A, reports, for all firm-year observations at the end of June of each year from
1976 to 2010, (1) the total number of observations, (2) the annual median value of GLS, (3)
the standard deviation of GLS, (4) the mean 12-month-ahead realized returns, (5) the standard
deviation of 12-month-ahead realized returns, (6) the 12-month risk-free rate, and (7) the implied
risk premium, calculated as the difference between median GLS and the risk-free rate. Risk-free
rates as of the last trading day in June each year are obtained from the Federal Reserve Bank of
St. Louis’s one-year Treasury constant-maturity-rate series (http://research.stlouisfed.
org/fred2/data/DGS1.txt). Panel B reports, for each five year interval from 1976 to 2010, (1)
total firm-year observations, (2) the average of the annual median GLS value, (3) the average
annual standard deviation of GLS, (4) the average of the annual mean 12-month-ahead realized
returns, (5) the average of annual standard deviations of 12-month-ahead realized returns, (6)
the average annual risk-free rate, and (7) the average annual implied risk premium.

Panel A: Summary Statistics, by Year

(1) (2) (3) (4) (5) (6) (7)
Median StdDev Mean StdDev RF Implied

Year Obs GLS GLS Returns Returns Rate Premium

1976 529 11.75% 3.85% 7.71% 28.47% 6.46% 5.29%
1977 655 12.19% 3.55% 12.56% 32.50% 5.72% 6.47%
1978 792 12.36% 2.80% 11.01% 29.34% 8.38% 3.98%
1979 1,069 13.19% 5.45% 10.35% 37.59% 9.40% 3.79%
1980 1,091 13.72% 6.70% 35.37% 45.60% 8.49% 5.23%
1981 1,137 13.09% 12.32% -15.55% 29.05% 14.87% -1.78%
1982 1,189 14.46% 7.22% 75.08% 75.36% 14.34% 0.12%
1983 1,249 10.44% 3.93% -9.59% 29.54% 9.70% 0.74%
1984 1,503 12.33% 3.30% 23.10% 42.38% 12.30% 0.03%
1985 1,508 11.20% 3.75% 27.51% 47.26% 7.71% 3.49%
1986 1,543 9.67% 3.24% 8.09% 37.66% 6.41% 3.26%
1987 1,641 9.71% 3.46% -5.78% 32.74% 6.77% 2.94%
1988 1,661 10.59% 3.82% 10.45% 41.58% 7.50% 3.09%
1989 1,707 10.60% 4.30% 2.31% 44.24% 8.12% 2.48%
1990 1,746 10.52% 3.88% 1.50% 39.83% 8.05% 2.47%
1991 1,776 10.13% 4.04% 11.18% 46.90% 6.32% 3.81%
1992 1,883 9.68% 4.37% 19.47% 58.02% 4.05% 5.63%
1993 2,097 9.06% 3.35% 1.21% 37.05% 3.45% 5.61%
1994 2,567 9.67% 3.11% 14.39% 54.05% 5.51% 4.16%
1995 2,774 9.60% 3.87% 18.33% 57.87% 5.65% 3.95%
1996 3,046 9.23% 3.28% 17.93% 49.88% 5.70% 3.53%
1997 3,284 8.78% 3.66% 16.70% 53.11% 5.67% 3.11%
1998 3,401 8.73% 3.29% -8.33% 68.40% 5.38% 3.35%
1999 3,277 9.43% 3.99% -7.09% 119.70% 5.07% 4.36%
2000 3,006 10.30% 5.24% 15.92% 63.93% 6.08% 4.22%
2001 2,714 8.94% 4.63% 2.62% 51.12% 3.72% 5.22%
2002 2,606 8.59% 3.65% -0.30% 54.12% 2.06% 6.53%
2003 2,674 8.64% 3.57% 28.36% 60.68% 1.09% 7.55%
2004 2,842 8.14% 2.76% 9.32% 38.14% 2.09% 6.05%
2005 2,975 8.24% 3.23% 9.63% 42.71% 3.45% 4.79%
2006 3,092 8.27% 3.37% 13.36% 37.67% 5.21% 3.06%
2007 3,104 8.07% 3.02% -21.17% 40.70% 4.91% 3.16%
2008 3,071 9.69% 6.31% -26.36% 37.57% 2.36% 7.33%
2009 2,855 9.84% 6.63% 20.36% 55.59% 0.56% 9.28%
2010 2,991 9.73% 4.90% 28.41% 48.21% 0.32% 9.41%
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Table 1. Continued

Panel B: Summary Statistics, by 5-Year Intervals

(1) (2) (3) (4) (5) (6) (7)
Median StdDev Mean StdDev RF Implied

Year Obs GLS GLS Returns Returns Rate Premium

1976-1980 4,136 12.64% 4.47% 15.40% 34.70% 7.69% 4.95%
1981-1985 6,586 12.30% 6.10% 20.11% 44.72% 11.78% 0.52%
1986-1990 8,298 10.22% 3.74% 3.31% 39.21% 7.37% 2.85%
1991-1995 11,097 9.63% 3.75% 12.92% 50.78% 5.00% 4.63%
1996-2000 16,014 9.29% 3.89% 7.02% 71.00% 5.58% 3.71%
2001-2005 13,811 8.51% 3.57% 9.93% 49.35% 2.48% 6.03%
2006-2010 15,113 9.12% 4.85% 2.92% 43.95% 2.67% 6.45%

All 75,055 10.25% 4.34% 10.23% 47.67% 6.08% 4.16%
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Table 2. AR(1) Parameters

Table 2, Panel A, reports summary statistics on the expected-returns (φ) and GLS measurement-
error (ψ) AR(1) parameters of equations (5) and (6), estimated by OLS regressions of equations
(A4) and (A5) by Fama-French 48 industry. T (φ) and R2(φ) [T (ψ) and R2(ψ)] are the White-
robust t-statistics and R2 from the estimation of (A5) [(A4)]. ψ − φ and |ψ − φ| are the
difference and the absolute value of the difference between the GLS measurement error and
expected return persistence parameters. Panel B reports the AR(1) parameter estimates for
each of the Fama-French industries.

Panel A: Summary of Industry-Based AR(1) Parameters

Exp Ret AR(1) Parameter Meas Error AR(1) Parameter Diff
Statistic φ T (φ) R2(φ) ψ T (ψ) R2(ψ) ψ − φ |ψ − φ|

Min 0.0411 0.2295 0.0033 0.0091 0.0391 0.0001 -0.3435 0.0050
P25 0.3432 2.1741 0.1484 0.3625 1.7783 0.1687 -0.1435 0.0482
Mean 0.5296 3.8999 0.3517 0.4583 3.1198 0.2900 -0.0651 0.1241
Median 0.5609 3.3547 0.3488 0.4759 3.0334 0.2923 -0.0669 0.1017
P75 0.6993 4.6066 0.5060 0.6115 4.3487 0.4124 -0.0145 0.1824
Max 0.8828 10.9994 0.8041 0.7902 6.4917 0.6107 0.3198 0.3435
Std Dev 0.2288 2.7517 0.2372 0.2046 1.6772 0.1724 0.1496 0.0928

Panel B: Parameters by Industry

Exp Ret AR(1) Parameter Meas Error AR(1) Parameter Diff
Statistic φ T (φ) R2(φ) ψ T (ψ) R2(ψ) ψ − φ |ψ − φ|

Aero 0.4924 1.4347 0.2087 0.4465 1.3351 0.1742 -0.0460 0.0460
Agric 0.4711 2.2308 0.2099 0.3711 3.3389 0.2767 -0.1000 0.1000
Autos 0.5151 2.7750 0.3128 0.4329 1.8321 0.1815 -0.0822 0.0822
Banks 0.8167 7.0113 0.6573 0.6819 3.9986 0.5143 -0.1349 0.1349
Beer 0.7508 5.0177 0.6177 0.5939 2.6149 0.3526 -0.1568 0.1568
BldMt 0.5090 5.0311 0.3621 0.4769 2.4830 0.2333 -0.0321 0.0321
Books 0.7444 5.4945 0.6688 0.6006 3.9898 0.5084 -0.1438 0.1438
Boxes 0.7399 6.6686 0.6952 0.6693 5.1139 0.4931 -0.0705 0.0705
BusSv 0.4505 2.7653 0.2999 0.1070 0.4482 0.0120 -0.3435 0.3435
Chems 0.5949 4.6537 0.4504 0.4576 2.0130 0.1955 -0.1373 0.1373
Chips 0.3223 2.2446 0.1202 0.2906 1.3173 0.0744 -0.0317 0.0317
Clths 0.6328 4.3476 0.4461 0.4865 3.0449 0.2184 -0.1464 0.1464
Cnstr 0.4620 2.0148 0.2367 0.3237 2.0405 0.2055 -0.1383 0.1383
Coal 0.7656 4.5033 0.5877 0.7273 4.5135 0.5504 -0.0383 0.0383
Comps 0.3781 1.8807 0.1395 0.6979 4.4980 0.4603 0.3198 0.3198
Drugs 0.7062 4.5281 0.4996 0.5782 4.3736 0.4578 -0.1280 0.1280
ElcEq 0.1028 0.3467 0.0105 0.2784 1.2560 0.0907 0.1757 0.1757
Enrgy 0.3852 2.1174 0.1484 0.5676 4.3891 0.4124 0.1824 0.1824
FabPr 0.3432 2.3309 0.1261 0.2000 1.4481 0.0452 -0.1433 0.1433
Fin 0.5364 3.7767 0.3488 0.6508 3.1820 0.3935 0.1144 0.1144
Food 0.8191 9.8812 0.8041 0.5600 3.7785 0.2949 -0.2591 0.2591
Fun 0.6958 6.1236 0.4761 0.6289 5.0342 0.4673 -0.0669 0.0669
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Table 2. Continued

Panel B (Continued): Parameters by Industry

Exp Ret AR(1) Parameter Meas Error AR(1) Parameter Diff
Statistic φ T (φ) R2(φ) ψ T (ψ) R2(ψ) ψ − φ |ψ − φ|

Gold 0.2417 1.3176 0.0619 0.1617 0.9536 0.0262 -0.0800 0.0800
Guns 0.7118 4.6066 0.5096 0.6753 4.3238 0.4557 -0.0365 0.0365
Hlth 0.6247 3.3483 0.3939 0.6300 3.3628 0.4000 0.0053 0.0053
Hshld 0.8828 7.3571 0.7210 0.7902 4.5180 0.5166 -0.0926 0.0926
Insur 0.4990 2.2594 0.2495 0.2249 1.3071 0.0723 -0.2741 0.2741
LabEq 0.0411 0.2295 0.0033 0.0091 0.0391 0.0001 -0.0320 0.0320
Mach 0.5561 2.9528 0.3136 0.5416 2.9643 0.3066 -0.0145 0.0145
Meals 0.5621 3.1310 0.3261 0.3805 1.7783 0.2140 -0.1816 0.1816
MedEq 0.6993 4.3783 0.5025 0.3891 2.5130 0.2037 -0.3102 0.3102
Mines 0.3395 1.4655 0.1184 0.2224 1.6248 0.1092 -0.1171 0.1171
Paper 0.6955 5.1242 0.5705 0.4237 2.0416 0.1787 -0.2717 0.2717
PerSv 0.5376 4.2492 0.2867 0.3737 2.0180 0.1679 -0.1639 0.1639
RlEst 0.3084 1.2982 0.1005 0.2589 1.2772 0.0865 -0.0495 0.0495
Rtail 0.5306 3.3547 0.2879 0.4425 2.4520 0.2276 -0.0881 0.0881
Rubbe 0.1609 0.5405 0.0213 0.3625 5.4105 0.3819 0.2016 0.2016
Ships 0.5609 4.5336 0.3134 0.5659 4.8124 0.3657 0.0050 0.0050
Smoke 0.7008 2.8130 0.5060 0.4462 1.7586 0.2806 -0.2546 0.2546
Soda 0.7843 7.8869 0.7112 0.7321 6.1354 0.5750 -0.0522 0.0522
Steel 0.5933 3.1018 0.3580 0.5280 4.2941 0.4547 -0.0653 0.0653
Telcm 0.8814 10.9994 0.7755 0.7797 4.5611 0.6107 -0.1017 0.1017
Toys 0.2426 0.7131 0.0166 0.2895 3.1156 0.0894 0.0469 0.0469
Trans 0.2845 1.2631 0.0800 0.4759 6.4917 0.4690 0.1914 0.1914
Txtls 0.6671 4.4126 0.4218 0.6223 3.8049 0.3311 -0.0447 0.0447
Util 0.7431 6.4281 0.6762 0.5424 2.7154 0.2893 -0.2007 0.2007
Whlsl 0.6088 4.5118 0.3513 0.5696 3.0334 0.3120 -0.0392 0.0392
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Table 3. Sample Summary Statistics

Table 3 reports sample distributional statistics for the primary independent and dependent
variables used in this study. Size is the log of market capitalization (in $millions); BTM is the
log of the ratio of book value of equity to market value of equity; 3-Month Momentum is a firm’s
realized returns in the three months prior to June 30 of the year in question; DTM is the log of
1 + the ratio of long-term debt to market capitalization; Market Beta is estimated for each firm
on June 30 of each year by regressing the firm’s stock returns on the CRSP value-weighted index
using data from 10-210 trading days prior to June 30; Standard Deviation of Daily Returns is
the standard deviation of a firm’s daily stock returns using returns data from July 1 of the
previous year until July 30 of the current year; Trailing Industry ROE is the industry median
ROE using data from the most recently available ten fiscal years (as of June 30 of each year)
and Fama-French industry definitions; Analyst Coverage is the log of 1 + the number of sell-
side analysts covering the firm (as reported in I/B/E/S); Analyst Dispersion is the log of 1
+ the standard deviation of analyst FY1 forecasts (as reported in I/B/E/S); Analyst LTG is
the (gross) analyst long-term growth estimate (reported in I/B/E/S) or, for firms without such
forecasts and with positive FY1 forecasts, the implied (gross) growth rate from the analyst
median FY1 EPS forecast to the analyst median FY2 EPS forecast. FY1 (FY2) [FY3] Forecast
Optimism is the difference between I/B/E/S median analyst forecasted FY1 (FY2) [FY3] per-
share earnings and the projections of the mechanical forecast model; FY1 (FY2) [FY3] Forecast
Optimism / Assets is FY1 (FY2) [FY3] Forecast Optimism divided by total assets per share
using total assets from the most recently available data (as of June 30); FY1 (FY2) [FY3]
Forecast Optimism / Analyst StdDev is FY1 (FY2) [FY3] Forecast Optimism divided by the
standard deviation of analyst forecasts of FY1 EPS. Term is the difference between the long-
run expected return and the one-quarter ahead expected return, following the methodology of
Lyle and Wang (2013). ŵglsi,t is the measurement-error proxy, the primary dependent variable of
interest, computed as

ŵgls
i,t ≡(êrglsi,t+1−φ̂iêr

gls
i,t )/(ψ̂gls

i −φ̂i)

where the AR(1) parameters are estimated as described in Table 2.
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Variable 5th Pctile 25th Pctile Median Mean 75th Pctile 95th Pctile StdDev N

Size 3.2761 4.6557 5.9415 5.8113 7.0748 9.1205 1.7780 75,055
BTM -2.2338 -1.2001 -0.7473 -0.6695 -0.2071 0.4824 0.8644 75,055
3-Month Momentum 0.0000 0.0124 0.2691 0.1394 0.3810 0.9743 0.3686 75,055
DTM -0.2800 -0.0763 0.0578 0.0322 0.1573 0.4651 0.2546 75,039
Market Beta -0.0083 0.4025 0.8447 0.7746 1.2074 1.9764 0.6060 71,422
StdDev of Daily Returns 0.0119 0.0182 0.0291 0.0253 0.0358 0.0593 0.0156 75,055
Trailing Industry ROE 0.0981 0.1168 0.1270 0.1279 0.1378 0.1526 0.0171 75,055

Analyst Coverage 0.0000 0.6931 1.4937 1.6094 2.3026 3.0910 0.9811 75,037
Analyst Dispersion 0.0000 0.0100 0.0861 0.0392 0.1044 0.3221 0.1276 75,055
Analyst LTG 1.0446 1.1050 1.2995 1.1500 1.2250 1.5390 1.8850 75,055

FY1 Optimism -1.4025 -0.2435 0.1588 0.1592 0.5403 1.6385 1.4908 73,884
FY2 Optimism -1.5886 -0.1737 0.3191 0.3417 0.8256 2.0683 1.6173 73,884
FY3 Optimism -3.0071 -0.2973 0.3979 0.4828 1.2166 3.1773 3.7569 73,884

FY1 Optimism / Assets -0.0672 -0.0063 0.0128 0.0059 0.0304 0.1101 0.1875 73,835
FY2 Optimism / Assets -0.0610 -0.0035 0.0251 0.0147 0.0490 0.1514 0.2308 73,835
FY3 Optimism / Assets -0.1404 -0.0076 0.0315 0.0205 0.0653 0.1961 0.7334 73,835

FY1 Optimism / Analyst StdDev -23.5343 -2.2687 4.3612 2.3362 10.1292 39.4040 29.9899 59,799
FY2 Optimism / Analyst StdDev -25.6145 -1.0086 7.9980 4.8920 15.7399 55.0904 35.0595 59,799
FY3 Optimism / Analyst StdDev -40.2376 -0.8458 10.7405 8.0338 23.8887 72.5512 53.2109 59,799

Terminal Optimism -2.8945 0.6249 3.1654 2.4330 4.8766 11.5870 5.1368 73,884
Terminal Optimism / Assets -0.1227 0.0132 0.2671 0.1102 0.2573 0.7681 2.1229 73,835
Terminal Optimism / Analyst StdDev -26.1256 10.2174 75.8682 39.1776 100.6350 309.4016 143.9744 59,799

Term -0.3098 -0.0019 0.0268 0.0540 0.1177 0.2462 0.2481 60,750

ŵglsi,t -2.5627 -0.5520 -0.3444 -0.1776 -0.0366 0.5013 1.6785 62,208
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Table 4. ICC Measurement Errors and Firm Risk and Growth Characteristics

Table 4 reports OLS regressions of GLS measurement-error proxy on firm characteristics. All
variables are as defined in Table 3. Year and FF48 industry fixed effects are included throughout.
Two-way cluster robust standard errors, clustered by FF48 industry and by year and adjusted for
first-stage estimation noise, appear in parentheses immediately below the coefficient estimate.
All coefficients and standard errors are multiplied by 100. Levels of significance are indicated
by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

(1) (2) (3) (4) (5)

Size 1.6057 ** 1.3286 * 0.9039 0.6252
(0.738) (0.724) (0.658) (0.669)

BTM -2.4508 * -2.3049 * -2.3409 * -2.2417 *
(1.457) (1.395) (1.362) (1.314)

3-Month Momentum -8.9592 ** -8.8014 * -8.4182 * -8.2024 *
(4.464) (4.633) (4.314) (4.510)

DTM -1.7967 -1.7186
(2.086) (2.052)

Market Beta 1.6927 1.4739
(1.340) (1.302)

StdDev of Daily Returns -42.0994 -59.7358
(58.880) (58.829)

Trailing Industry ROE 43.8398 47.2509
(148.404) (150.234)

Analyst Coverage 3.7488 *** 2.0898 ** 1.9687 **
(1.499) (1.032) (0.862)

Analyst Dispersion -7.6161 * -5.2338 -4.7855
(4.438) (3.788) (3.427)

Analyst LTG 2.3011 *** 2.3023 *** 2.2532 **
(0.896) (0.892) (0.906)

Observations 61,040 58,588 61,044 61,034 58,582
Adj. R2 0.8032 0.8055 0.8038 0.8045 0.8068
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Table 5. ICC Measurement Errors and Analyst Earnings Forecast Optimism

Table 5 reports OLS regressions of the GLS measurement-error proxy on various measures of analyst FY1, FY2, and FY3 Forecast Optimism as
defined in Table 3. Year and FF48 industry fixed effects are included throughout. Two-way cluster robust standard errors, clustered by FF48
industry and by year and adjusted for first-stage estimation noise, appear immediately below the coefficient estimate in parentheses. All coefficients
and standard errors are multiplied by 100. Levels of significance are indicated by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

Unscaled Optimism Scaled Optimism, by Assets Scaled Optimism, by Std of Forecast
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Terminal Forecast Optimism 0.4524 *** 0.2197 3.9529 ** 2.0636 0.0139 *** 0.0073
(0.137) (0.202) (1.837) (2.002) (0.005) (0.006)

FY1 Forecast Optimism -0.8076 -0.6360 -28.2524 -22.5523 -0.0449 -0.0297
(0.695) (0.663) (17.949) (17.163) (0.031) (0.035)

FY2 Forecast Optimism -0.9536 -1.1331 -3.4460 -8.7684 -0.0621 -0.0750
(0.996) (0.995) (14.722) (15.062) (0.052) (0.057)

FY3 Forecast Optimism 1.3751 *** 1.1387 ** 19.3636 *** 15.6922 ** 0.0814 *** 0.0685 **
(0.493) (0.522) (0.068) (6.282) (0.030) (0.029)

Observations 60,026 60,026 60,026 59,786 59,786 59,786 50,593 50,593 50,593
Adj. R2 0.8048 0.8041 0.8048 0.8067 0.8060 0.8069 0.8094 0.8088 0.8094
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Table 6. ICC Measurement Errors, Analyst Earnings Forecast Optimism, and Term Structure

Table 6 reports OLS regressions of the GLS measurement-error proxy on various measures of analyst FY1, FY2, FY3, and Terminal Forecast
Optimism as defined in Table 3. Panel B includes Size, BTM, 3-Month Momentum, and Term as controls. Year and FF48 industry fixed effects are
included throughout. Two-way cluster robust standard errors, clustered by FF48 industry and by year and adjusted for first-stage estimation noise,
appear immediately below the coefficient estimate in parentheses. All coefficients and standard errors are multiplied by 100. Levels of significance
are indicated by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

Unscaled Optimism Scaled Optimism, by Assets Scaled Optimism, by Std of Forecast
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Terminal Forecast Optimism 0.2314 0.0644 3.7920 * 1.8764 0.0084 * 0.0040
(0.159) (0.217) (1.974) (2.237) (0.005) (0.006)

FY1 Forecast Optimism 0.2265 0.2613 -9.4353 -6.1555 -0.0115 -0.0043
(0.868) (0.867) (13.399) (14.476) (0.030) (0.034)

FY2 Forecast Optimism -2.6903 -2.7037 -19.5308 -21.1550 -0.0787 -0.0849
(1.702) (1.700) (16.756) (17.728) (0.057) (0.060)

FY3 Forecast Optimism 1.923 ** 1.8263 ** 22.3786 ** 17.6782 * 0.0687 ** 0.0613 **
(0.801) (0.873) (9.361) (9.106) (0.029) (0.028)

Size 1.0926 1.397 * 1.0721 1.2580 * 1.6800 *** 1.3566 * 1.2064 * 1.4928 ** 1.2173 *
(0.761) (0.834) (0.784) (0.697) (0.665) (0.700) (0.635) (0.699) (0.637)

BTM -1.9595 -2.076 -1.9603 -2.0939 -1.4452 -1.7278 -2.1485 -2.1738 -2.0637
(1.554) (1.597) (1.552) (1.466) (1.122) (1.398) (1.489) (1.539) (1.513)

3-Month Momentum -8.3062 * -8.7471 * -8.3113 * -8.4864 * -8.6387 ** -8.3624 * -9.1427 * -9.4116 * -9.1148 *
(4.499) (4.631) (4.499) (4.610) (3.687) (4.493) (5.099) (5.162) (5.093)

Term 9.4083 ** 9.3665 ** 9.3959 ** 8.8732 ** 8.7997 ** 8.8106 ** 9.3856 ** 9.4133 ** 9.4552 **
(4.194) (4.209) (4.206) (3.911) (3.913) (3.901) (4.134) (4.175) (4.180)

Observations 48,460 48,460 48,460 48,287 48,287 48,287 41,179 41,179 41,179
Adj. R2 0.8068 0.8062 0.8069 0.8086 0.8081 0.8087 0.8106 0.8101 0.8106
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Table 7. Cross-Sectional Sorting of Future Returns – by Year

Table 7, Panel A (B), reports average annual 12-month-ahead realized market-adjusted (size-
adjusted) returns for each decile portfolio, formed annually using GLS, Fitted GLS, and Fitted
Modified GLS. Fitted GLS [Modified GLS] in year t is obtained in a two-step process: (1)
regress GLS [Modified GLS] on a set of firm characteristics using the previous three years’ data,
from t − 3 to t − 1, where t ranges from 1979 to 2010; (2) apply the estimated coefficients on
the covariates at t. Model 1 includes three covariates: Size, BTM, and 3-Month Momentum;
Model 2 adds DTM and StdRet to Model 1; and Model 3 adds Analyst Dispersion and Analyst
LTG to Model 2. All variables are as defined in Table 3. In each panel, row 1 reports the
average annual spread in realized 12-month-ahead returns between the 10th and 1st deciles of
expected returns proxies; row 2 reports the time-series t-statistics in the annual spread of row
1; row 3 reports the t-statistics from a t-test (Wilcoxon signed-rank test) of the null hypothesis
that the average annual decile spread produced by Fitted Modified GLS deciles is equal to the
average annual decile spread produced by GLS deciles; row 4 reports the t-statistics from a
t-test (Wilcoxon signed-rank test) of the null hypothesis that the average annual decile spread
produced by Fitted Modified GLS deciles is equal to the average annual decile spread produced
by Fitted GLS deciles.

Panel A: Market-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS Fitted GLS ModGLS

1 0.0151 0.0248 -0.0102 0.0294 -0.0043 0.0265 -0.0060
2 0.0169 0.0125 0.0068 0.0153 0.0099 0.0178 0.0165
3 0.0252 0.0250 0.0230 0.0249 0.0219 0.0205 0.0186
4 0.0262 0.0383 0.0280 0.0260 0.0206 0.0276 0.0206
5 0.0381 0.0306 0.0239 0.0345 0.0372 0.0420 0.0383
6 0.0395 0.0378 0.0349 0.0472 0.0308 0.0480 0.0337
7 0.0478 0.0457 0.0539 0.0441 0.0528 0.0422 0.0445
8 0.0606 0.0533 0.0453 0.0466 0.0421 0.0451 0.0517
9 0.0591 0.0476 0.0512 0.0532 0.0575 0.0606 0.0609
10 0.0291 0.0419 0.1014 0.0363 0.0894 0.0272 0.0792

(1) Decile 10− 1 0.0140 0.0171 0.1116 0.0068 0.0937 0.0007 0.0851
(2) T -Statistic 0.4252 0.4847 3.3692 0.1952 2.8020 0.0201 2.5754

(3) H0: Fitted ModGLS=GLS 3.12 (2.94) 3.16 (3.09) 2.83 (2.64)
(4) H0: Fitted ModGLS=FittedGLS 3.31 (2.95) 3.25 (2.62) 3.03 (2.49)

Panel B: Size-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS GLS ModGLS

1 0.0076 0.0211 -0.0158 0.0259 -0.0107 0.0226 -0.0127
2 0.0105 0.0070 0.0014 0.0091 0.0029 0.0111 0.0093
3 0.0187 0.0172 0.0146 0.0176 0.0149 0.0138 0.0122
4 0.0189 0.0309 0.0192 0.0158 0.0116 0.0183 0.0112
5 0.0286 0.0218 0.0137 0.0246 0.0284 0.0330 0.0290
6 0.0306 0.0277 0.0250 0.0373 0.0206 0.0377 0.0239
7 0.0345 0.0339 0.0432 0.0342 0.0417 0.0316 0.0337
8 0.0471 0.0395 0.0334 0.0325 0.0291 0.0312 0.0387
9 0.0434 0.0302 0.0343 0.0380 0.0415 0.0434 0.0458
10 0.0046 0.0156 0.0764 0.0098 0.0651 0.0020 0.0542

(1) Decile 10− 1 -0.0030 -0.0055 0.0923 -0.0161 0.0758 -0.0206 0.0669
(2) T -Statistic -0.0951 -0.1693 3.6639 -0.5146 2.8973 -0.6564 2.4756

(3) H0: Fitted ModGLS=GLS 3.29 (2.97) 3.51 (3.05) 3.02 (2.75)
(4) H0: Fitted ModGLS=FittedGLS 3.57 (3.12) 3.57 (2.99) 3.24 (2.90) 49



Table 8. Cross-Sectional Sorting of Future Returns – By Year and Industry

Table 8, Panel A (B), reports average annual 12-month-ahead realized market-adjusted (size-
adjusted) returns for each decile portfolio, formed annually and within each FF48 industry using
GLS, Fitted GLS, and Fitted Modified GLS. Fitted GLS [Modified GLS] in year t is obtained
in a two-step process: (1) regress GLS [Modified GLS] on a set of firm characteristics using the
previous three years’ data, from t− 3 to t− 1, where t ranges from 1979 to 2010; (2) apply the
estimated coefficients on the covariates at t. Model 1 includes three covariates: Size, BTM, and
3-Month Momentum; Model 2 adds DTM and StdRet to Model 1; and Model 3 adds Analyst
Dispersion and Analyst LTG to Model 2. All variables are as defined in Table 3. In each
panel, row 1 reports the average annual spread in realized 12-month-ahead returns between the
10th and 1st deciles of expected returns proxies; row 2 reports the time-series t-statistics in the
annual spread of row 1; row 3 reports the t-statistics from a t-test (Wilcoxon signed-rank test)
of the null hypothesis that the average annual decile spread produced by Fitted Modified GLS
deciles is equal to the average annual decile spread produced by GLS deciles; row 4 reports the
t-statistics from a t-test (Wilcoxon signed-rank test) of the null hypothesis that the average
annual decile spread produced by Fitted Modified GLS deciles is equal to the average annual
decile spread produced by Fitted GLS deciles.

Panel A: Market-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS GLS ModGLS

1 0.0126 0.0263 0.0036 0.0308 0.0043 0.0268 0.0025
2 0.0186 0.0211 0.0137 0.0178 0.0257 0.0211 0.0249
3 0.0243 0.0200 0.0209 0.0230 0.0226 0.0226 0.0185
4 0.0233 0.0244 0.0311 0.0235 0.0268 0.0266 0.0352
5 0.0456 0.0324 0.0277 0.0280 0.0279 0.0267 0.0256
6 0.0268 0.0445 0.0329 0.0329 0.0315 0.0437 0.0323
7 0.0662 0.0492 0.0416 0.0545 0.0439 0.0470 0.0443
8 0.0576 0.0398 0.0442 0.0488 0.0433 0.0488 0.0413
9 0.0494 0.0451 0.0612 0.0551 0.0544 0.0572 0.0592
10 0.0332 0.0572 0.0888 0.0441 0.0850 0.0366 0.0827

(1) Decile 10− 1 0.0206 0.0309 0.0852 0.0133 0.0807 0.0098 0.0802
(2) T -Statistic 0.8208 1.2115 3.5691 0.4586 3.1609 0.3451 3.3088

(3) H0: Fitted ModGLS=GLS 2.97 (2.90) 3.10 (2.97) 3.17 (2.86)
(4) H0: Fitted ModGLS=FittedGLS 2.75 (2.69) 3.63 (3.09) 3.69 (3.25)

Panel B: Size-Adjusted Returns

Model 1 Model 2 Model 3
Fitted Fitted Fitted Fitted Fitted Fitted

Decile GLS GLS ModGLS GLS ModGLS GLS ModGLS

1 0.0067 0.0214 -0.0018 0.0260 -0.0017 0.0218 -0.0039
2 0.0118 0.0142 0.0064 0.0105 0.0194 0.0137 0.0186
3 0.0172 0.0120 0.0119 0.0144 0.0131 0.0147 0.0095
4 0.0132 0.0166 0.0219 0.0156 0.0183 0.0186 0.0270
5 0.0363 0.0237 0.0184 0.0186 0.0181 0.0170 0.0164
6 0.0166 0.0343 0.0220 0.0235 0.0209 0.0335 0.0216
7 0.0544 0.0373 0.0307 0.0426 0.0325 0.0363 0.0327
8 0.0452 0.0269 0.0322 0.0341 0.0303 0.0346 0.0288
9 0.0340 0.0280 0.0450 0.0401 0.0379 0.0407 0.0423
10 0.0094 0.0305 0.0644 0.0179 0.0622 0.0112 0.0594

(1) Decile 10− 1 0.0027 0.0091 0.0662 -0.0081 0.0638 -0.0106 0.0633
(2) T -Statistic 0.1167 0.3935 3.4726 -0.3195 3.3975 -0.4185 3.4402

(3) H0: Fitted ModGLS=GLS 2.84 (2.58) 3.19 (2.66) 3.11 (2.58)
(4) H0: Fitted ModGLS=FittedGLS 3.02 (2.99) 4.03 (3.27) 3.76 (3.31) 50



Table 9. Expected Returns and Firm Characteristics

Table 9 reports OLS regressions of proxies of expected returns on various measures of character-
istics associated with a firm’s risk profile or information environment. Columns 1− 4 use GLS,
Modified GLS (ModGLS), GLS formed using Mechanical Forecasts (MechGLS), and realized
returns over the next 12 months (Returns) as the proxy of expected returns. Panels A, B, and
C differ by the firm characteristics considered. Each explanatory variable is standardized by
its annual average and standard deviation. Year and FF48 industry fixed effects are included
throughout. Two-way cluster robust standard errors, clustered by FF48 industry and by year
and adjusted for first-stage estimation noise, appear immediately below the coefficient estimate
in parentheses. All coefficients and standard errors are multiplied by 100. Levels of significance
are indicated by ∗, ∗∗, and ∗∗∗ for 10%, 5%, and 1%, respectively.

Panel A

Expected (1) (2) (3) (4)
Sign GLS ModGLS MechGLS Returns

Size (−) -0.6957 *** -3.4004 *** -2.0823 *** -2.5561 ***
(0.116) (1.288) (0.267) (0.978)

BTM (+) 1.2995 *** 3.3184 *** 1.7430 *** 2.7889 ***
(0.161) (1.253) (0.191) (1.100)

3-Month Momentum (+) -0.3481 *** 1.8951 * -0.3295 *** 2.2666 ***
(0.044) (1.065) (0.104) (0.799)

Observations 61,027 61,027 55,786 61,027
Adj. R2 0.4128 0.8046 0.2822 0.1166

Panel B

Expected (1) (2) (3) (4)
Sign GLS ModGLS MechGLS Returns

Size (−) -0.4725 *** -2.5426 ** -1.7987 *** -2.3925 ***
(0.112) (1.213) (0.313) (0.955)

BTM (+) 1.1624 *** 3.0511 ** 1.5379 *** 2.2843 ***
(0.160) (1.242) (0.184) (0.915)

3-Month Momentum (+) -0.3950 *** 1.8053 * -0.3745 *** 2.2743 ***
(0.030) (1.081) (0.092) (0.746)

Market Beta (+ or 0) -0.1120 *** -1.2381 -0.4855 *** -0.1655
(0.041) (0.867) (0.102) (0.757)

DTM (+) 0.5665 *** 1.2474 * 0.5601 *** 0.8990
(0.102) (0.639) (0.135) (0.814)

StdDev of Daily Returns (+) 0.5445 *** 1.4080 ** 0.5127 0.1152
(0.088) (0.695) (0.351) (1.343)

Trailing Industry ROE (0) 0.8931 *** 0.2497 0.8417 *** -2.0227
(0.101) (2.418) (0.055) (1.308)

Observations 58,576 58,576 54,063 58,576
Adj. R2 0.4722 0.8069 0.3029 0.1152
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Table 9. Continued

Panel C

Expected (1) (2) (3) (4)
Sign GLS ModGLS MechGLS Returns

Size (−) -0.4227 *** -1.3344 -1.6508 *** -2.6033 **
(0.103) (1.136) (0.316) (1.318)

BTM (+) 1.1669 *** 2.9224 ** 1.5467 *** 2.2025 **
(0.148) (1.213) (0.177) (0.926)

3-Month Momentum (+) -0.3926 *** 1.6488 * -0.3894 *** 2.2865 ***
(0.033) (0.973) (0.092) (0.746)

Market Beta (+ or 0) -0.0981 ** -1.1466 -0.4706 *** -0.1898
(0.040) (0.805) (0.102) (0.758)

DTM (+) 0.5290 *** 1.1866 * 0.5615 *** 0.8601
(0.098) (0.622) (0.137) (0.815)

StdDev of Daily Returns (+) 0.4037 *** 1.7487 ** 0.5247 0.1026
(0.086) (0.712) (0.349) (1.341)

Trailing Industry ROE (0) 0.8850 *** 0.1867 0.8352 *** -2.0216
(0.103) (2.428) (0.056) (1.311)

Analyst Coverage (−) -0.0659 -2.0284 ** -0.1874 0.1151
(0.078) (0.887) (0.122) (0.725)

Analyst Dispersion (?) 0.2070 *** 0.7824 * -0.0066 0.3719
(0.038) (0.422) (0.071) (0.465)

Analyst LTG (−) 1.3463 *** -3.2639 ** -0.0285 -0.1616
(0.072) (1.585) (0.052) (0.248)

Observations 58,570 58,570 54,063 58,570
Adj. R2 0.5669 0.8079 0.3032 0.1152
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