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Abstract 

Are real-world objects represented as bound units? While a great deal of research has 

examined binding between the feature dimensions of simple shapes, little work has 

examined whether the featural properties of real-world objects are stored in a single 

unitary object representation. In a first experiment, we find that information about an 

object's color is forgotten more rapidly than the information about an object's state (e.g. 

open, closed), suggesting that observers do not forget objects as entirely bound units. In a 

second and third experiment, we examine whether state and exemplar information are 

forgotten separately or together. If these properties are forgotten separately, then the 

probability of getting one feature correct should be independent of whether the other 

feature was correct. We find that after a short delay, observers frequently remember both 

state and exemplar information about the same objects, but after a longer delay, memory 

for the two properties becomes independent. This indicates that information about object 

state and exemplar are forgotten separately over time. We thus conclude that real-world 

objects are not represented in a single unitary representation in visual memory.  
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When we perceive a visual scene, we experience an organized and coherent set of 

objects and surfaces, not the disjointed patches of color or light that fall on the retina. We 

also appear to remember coherent, meaningful units: Moments after perceiving an office 

scene, for example, we might remember seeing objects such as a chair, a cup, and a 

person. In our subjective experience, it may seem that we perceive and remember each 

object as a coherent and integrated unit. However, a central question at the core of object 

representation is whether an object is actually represented as completely bound unit, or 

whether it is represented with separable properties or dimensions. 

Research on visual working memory has often claimed that the units of memory 

representation are bound objects (e.g., Cowan, 2001; Gajewski & Brockmole, 2006; Luck 

& Vogel, 1997; Vogel, Woodman & Luck, 2001).  For example, in their seminal study 

Luck and Vogel (1997) found that observers are equally good at remembering simple 

objects that vary along four features (color, size, orientation and shape) as objects that 

vary along only a single feature (color or orientation alone), suggesting that working 

memory capacity may be limited by the number of objects rather than the number of 

visual features that can be stored. This suggests that the units of memory are bound object 

representations. Since Luck and Vogel (1997), this strong object-based account of 

working memory representations has been shown to be too strong (e.g., Olson & Jiang, 

2002; Wheeler & Triesman, 2002), but a significant amount of data nevertheless 

demonstrates a benefit to encoding multiple features of the same object (Fougnie, 

Asplund & Marois, 2010; Luria & Vogel, 2011; Olson & Jiang, 2002; Xu, 2002), 

supporting the claim that visual working memory is at least partly object-limited rather 

than limited only by storage of independent visual features (for a review see Brady, 
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Konkle & Alvarez, 2011). However, there is also strong evidence that memory 

representations are not truly stored as a bound unit, and different features can be 

represented independently over short delays (Fougnie & Alvarez, 2011; Stefurak & 

Boynton, 1986) or long-delays (Hanna & Remington, 1996).   

Most of the work on the boundedness of object representation has examined only 

very simple objects made up of geometric shapes and colors. Much less work has 

examined whether real-world objects are represented as bound units.  Since familiar real-

world objects are more natural stimuli for the visual system, they might have more bound 

representations than objects that are made up of entirely dissociable low-level features 

that seem to be stored independently even at the lowest levels of the visual system (e.g., 

orientation, color, spatial frequency: Magnussen, 2000) and which can be attended 

separately at encoding (Maunsell & Treue, 2006). Research on object recognition and 

long-term memory provide some proposals regarding the underlying representations of 

real-world objects (e.g., DiCarlo & Cox, 2007; Diana, Yonelinas & Ranganath, 2007; 

Hummel, 2000; Riesenhuber & Poggio, 2000). In particular, these models typically 

assume "bound" representations of real-world objects.  For example, view-based models 

of object representation tend to treat object representations as holistic, since storing a 

snapshot of an object from a particular view necessarily includes all the properties of that 

object in a single representation (Bulthoff & Edelman, 1992; Riesenhuber & Poggio, 

1999; Tarr & Bulthoff, 1995).  Further, most approaches to object recognition start from 

the assumption that object representations are independent of factors like lighting and 

size and rotation, but include all of the object’s parts and properties together as the end-

state of the ventral visual pathway (e.g., DiCarlo & Cox, 2007).  
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Similarly, long-term memory research typically makes a distinction between 

familiarity --a kind of holistic item memory-- and recollection, or memory for the 

episodic details and context of an item (Diana, Yonelinas & Ranganath, 2007; 

Ranganath, Yonelinas, Cohen, Dy, Tom, & D'Esposito, 2004). This distinction implicitly 

treats objects as unitary, where familiarity processes operate over object representations 

that do not require any binding, while recollection processes help retrieve information 

about how objects are bound to their contexts.   

Thus, much of the existing literature – from object recognition, long-term 

memory, and visual working memory – treats real-world objects as though they are 

represented as a single bound unit. However, existing research on object representation 

does not directly address whether features of real-world objects are stored independently 

or as a single bound unit; and research from simple objects points to the possibility of 

independent representations of separate properties (Fougnie & Alvarez, 2011; Hanna & 

Remington, 1996; Stefurak & Boynton, 1986).  

In the present study, we sought to empirically examine the assumption that 

different properties of a real-world object are represented as a single bound unit, as 

opposed to being represented as independent features.  Furthermore, we sought to do so 

in a way that controlled for effects at encoding and retrieval that can falsely make objects 

look independent or bound (e.g., attention to only one property at encoding; or being 

more attentive on some trials than others). We used the logic that, if a single bound 

representation of an object exists, then all of the object's features will be remembered or 

forgotten together. By contrast, if we observe that different properties are forgotten 

independently of each other, this would imply independent storage of the properties. 
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While we do not know the underlying features of object representation, we can examine 

observers’ ability to remember different object properties, such as an object’s state, color, 

or exemplar (see Brady, Konkle, Alvarez & Oliva, 2008).  For example, observers can 

distinguish whether a door is open or closed (change of state), whether it is blue or red 

(change of color), or whether it is an ornate wooden door or a plain metal door (change of 

exemplar).  While these object properties are not likely to reflect primitive features for 

the visual system, they are semantically meaningful properties. We can thus use them to 

examine whether memory for different object properties may be supported in memory by 

different underlying features and thus whether different properties may be forgotten 

separately.   

In Experiment 1, we varied object color and object state properties, and examined 

whether observers forget one property more than the other over time.  If so, this result 

would suggest that objects are not represented as single bound units with an all-or-none 

representation of object color and object state.  In Experiment 2, we directly examined 

how memory for one property of an object (exemplar) was tied to memory for another 

property of an object (state) when observers were tested in a surprise memory task.   In 

both experiments, which vary in paradigm, analysis method, and conditions of intentional 

and unintentional memory encoding, we find evidence for independent forgetting of 

different object properties. In Experiment 3, we show that we can artificially induce 

apparently bound object representations by varying the strength of encoding for different 

objects, such that observers are likely to encode both properties of some objects and 

neither property of other objects. Together, these results demonstrate that real-world 

objects are not represented as a single bound unit in visual memory and that object 
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representations can falsely appear bound after short delays because of encoding and 

retrieval factors. 

 
 

EXPERIMENT 1 

In a first experiment, we examined whether an object's state and an object's color 

are represented in a single bound representation, or are represented as independent 

properties. To examine this, we looked at whether observers differentially forget these 

object properties over time.  We had observers study real-world objects and then we 

tested their memory for the color and state of each object after either a short delay or a 

long delay. We reasoned that different rates of forgetting for different object properties 

would suggest that the properties were stored independently. For example, if the ability to 

detect both kinds of changes was equal at short delay, but the ability to detect one kind of 

change decreased more than the other with increased delay, this would provide evidence 

that different object properties are forgotten separately. 

 
Methods 

Participants 

43 naïve observers were recruited from the MIT participant pool (age range 18-

35) and received 5 dollars for their participation. All gave informed consent. 21 of the 

observers participated in the short-delay condition and 22 of the observers participated in 

the long-delay condition. 

Stimuli 

Object images were chosen from a previously published set of stimuli (Brady, 

Konkle, Alvarez & Oliva, 2008), supplemented with additional images from a 
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commercially available database (Hemera Photo-Objects, Vol. I & II) and internet 

searches using Google Image Search. Overall, 100 categorically-distinct objects were 

selected, and for each of these objects two state-change images (differing in pose or 

configuration of parts) were selected. These objects were chosen such that they consisted 

of largely a single color, and this color was not intrinsic to the meaning of the object 

(e.g., the object would be recognizable in any color; see Figure 1 for example stimuli). In 

addition, we collected 200 other categorically-distinct objects that differed from those in 

the main set, but which were also recognizable in any color. These served as filler stimuli 

that would not be tested.  

To create the final set of stimulus images, the hue of each object image was 

rotated to make it a random color. Hue is represented on a color wheel from 0-360 deg, 

so the rotation required choosing a random angle for a given image, and then adding that 

angle to the hue of each pixel for that image. Finally, for those images in the main set, we 

created two sets of images: one in the randomized color, and one in a color 180 degrees 

in hue space from that color.  Pilot testing showed that a rotation of 180 degrees in hue 

space led to an approximately equal degree of difficulty in the color forced-choice as in 

the exemplar forced-choice, and using such a large change in hue space also makes errors 

more likely to be due to cases of forgetting the object’s color rather than memory 

precision decreases (Awh, Barton & Vogel, 2007; Alvarez, Konkle, Brady, Gill & Oliva, 

2009).  This left us with a final set of 100 categories, each of which consisted of four 

images (two state-change images, each present in two different colors), and an additional 

set of 200 randomly colored filler objects. 
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Procedure 

 General procedure. Observers were told to remember each object they saw as 

well as possible. Before the experiment began they were given examples of the kind of 

forced-choice comparisons they would see, one example each of a state change and a 

color change. All observers sat approximately 60 cm from a 21" monitor.  Objects were 

always shown at 7.5° visual angle. The experiment took approximately 20 minutes to 

complete. 

 Short-delay condition.  Observers completed 100 trials each. Each trial started 

with a study display consisting of 3 objects arranged in a circle around a fixation cross. 

The objects were shown for 1.5s, followed by a fixation cross for 1s. Observers were then 

presented with a two-alternative forced-choice. Two images were presented on the left 

and right side of the screen (see Figure 1) and observers were told to indicate which was 

present on the study display. Observers pressed ‘Z’ if they had seen the left image, and 

‘M’ if they had seen the right image. Then, after a brief (2.5s) delay the next trial began 

automatically.  

The three items on the study display always contained two objects from the filler 

stimulus set and one object from the main stimulus set. The item on the subsequent test 

display was the one from the main stimulus set, presented in either two colors (color 

change condition) or two states (state change condition). The location (left/right) of the 

correct answer was counterbalanced across observers, as was whether a given object was 

tested with a state change or a color change, and which particular state and color image 

was the studied image and which was the foil image. 

Long-delay condition. The long-delay condition consisted of a study phase and a 

test phase. In the study phase, observers were shown 340 objects one at a time for 1s each 
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at the center of the display. 100 of these objects were from the main stimulus set, 200 

were filler objects, and 40 were back-to-back repeats of the filler objects. All items in the 

study stream were presented in a random order, and the subset of filler objects (40 of 

200) that were repeated was randomized across observers. During the study phase, 

observers were told both to encode each object into memory and to press the space bar 

when an object repeated. This repeat-detection task served to ensure that observers were 

attending to each of the images.  

In the test phase, observers completed 100 two-alternative forced-choice memory 

tests. Each of the 100 objects observers had seen from the main stimulus set was tested in 

the same manner as in the short-delay condition, again counterbalanced such that all 

objects were tested equally often in both the state and color conditions across observers.  

 
Results 

Two participants were excluded from the long-delay condition for failing to 

perform the back-to-back repeat detection task satisfactorily (d' = 0.9 and 2.5; mean d' for 

remaining subjects was 4.2 with standard deviation 0.5).  One participant was excluded 

from the short-delay condition for failing to complete the task. Thus 20 participants from 

both the short- and long-delay conditions were entered into the final analyses. 

Overall performance at the two-alternative forced choice task in the short-delay 

condition was 78.8% for color and 76.7% for state. In the long-delay condition, average 

performance was 67.8% for color and 72.5% for state.  These results are plotted in Figure 

2. Thus, there was a greater decrement in performance for color than for state with 

increasing delay (4% versus 11%).  
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To examine the reliability of these effects, we ran a 2x2 mixed ANOVA with 

state/color test as the within-subject factor and short/long delay as the between-subject 

factor.  Participants had lower performance after a long-delay relative to a short-delay 

(main effect of delay: F(1,38)=7.74, p=0.008,  ƞ2
p = 0.14). We found no main effect of 

test type (F(1,38)=0.87, p=0.35, ƞ2
p = 0.02), suggesting neither state nor color tests were 

more difficult on average. However, we found a significant delay x test-type interaction 

(F(1,38)=5.52, p=0.02, ƞ2
p = 0.13), indicating a greater decrease in memory for color 

properties than for state properties as more time elapsed between study and test. In other 

words, color information is forgotten more than state information with a delay.  

 
Discussion 

We presented observers with real-world objects and then tested their memory for 

the objects' colors and state after either a short-delay or a long-delay. We found that 

observers' ability to detect a color change decreased markedly over time, whereas their 

ability to detect a change in object state remained relatively stable. These results 

demonstrate that observers are not forgetting each object as a bound unit, but instead 

forget some properties more quickly than others. These findings suggest independent 

storage of different object properties in memory. 

By including a short-term memory condition in addition to a long-term memory 

condition, we show that observers do not generally encode one feature preferentially over 

another (c.f. Hanna & Remington, 1996) and that our test comparisons are equally 

difficult for observers in each dimension. Thus, we find that object color information is 

being lost from memory more quickly even though it is just as likely to be initially 

encoded and equally likely to be retrieved after a short delay.  
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An alternative interpretation of these results is that color information was never 

bound to object identity to begin with, even at a short delay. For example, in the short-

delay condition observers’ may have simply remembered the three colors that were 

present on the study display without binding them to the identity of the objects.  Such a 

lack of binding even in the short-delay condition could explain why color was lost more 

quickly than state information. Under this account, the different decay rates for color and 

state information occur because color was not bound to the object in the first place, 

whereas state information is more integrated with the object representation and is 

therefore retained longer. Importantly, this account is consistent with the main claim 

suggested here – namely that objects are not stored in memory with all their features 

integrated into a unitary representation. 

Our objects were purposefully chosen such that they did not have diagnostic 

colors – that is, color was not a cue to the identity of the object. Thus, maintaining the 

color of each object in memory was expected to be difficult, as it was an arbitrary 

property that had to be bound into the object representation (and color is known to benefit 

object recognition when it is diagnostic, but not when it is arbitrary: Naor-Raz, Tarr, & 

Kersten, 2003; Tanaka & Bunosky, 1993; Price & Humphreys, 1989). In the same way 

that objects that meaningfully connect to existing knowledge are easier to remember than 

objects that do not (e.g., Wiseman & Neiser, 1964; Konkle, Brady, Alvarez & Oliva, 

2010), meaningful features within an object may be easier to remember than arbitrary 

properties of objects. However, this manipulation does not necessitate our finding that 

different properties are forgotten at different rates. For example, we could have found 

that having to bind an arbitrary color into the object representation makes the entire 
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bound representation more fragile or more likely to fall apart, resulting in a loss of 

performance in both the color and state comparisons. Alternatively, we could have found 

that it was difficult or impossible to match performance in the short-delay condition for 

the two dimensions. For example, observers may have had difficulty encoding arbitrary 

information like color into memory in the first place. Instead, we find that the color 

information is initially encoded well, but is then selectively forgotten while state 

information is preserved. This suggests that the actual underlying memory representation 

is not stored as a bound unit, even while controlling for independence resulting from 

encoding or retrieval factors.  

 
 

EXPERIMENT 2 

In Experiment 1, we used the fact that different properties of an object are 

forgotten at different rates to infer that the two properties are stored independently. In 

Experiment 2, we sought to examine more directly whether two object properties are 

remembered in a single bound representation or stored separately. To do so, we directly 

tested whether both properties of an object are remembered and forgotten together in 

long-term memory, or whether they tend to be remembered and forgotten independently. 

For example, if observers remember seeing a glass of orange juice, do they systematically 

remember what kind of glass it was as well as how much juice was in it?  How often do 

they forget only the shape of the glass or only the amount of juice? To examine this, we 

used two properties that have been shown to be forgotten at approximately the same rate 

(object state and object exemplar: see Brady et al. 2008), and looked at the probability of 
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remembering one property given an observer remembered the other property about the 

same object (the dependence between the two properties).  

In general, interpreting raw dependence scores (e.g., conditional probabilities) is 

complicated by a number of confounding factors, and is not a pure measure of how bound 

two properties are in the memory representation. For example, observers may be likely to 

either remember or forget both properties of an object because their overall attentiveness 

or fatigue level changed over the course of the experiment.  Since both properties of the 

same object necessarily occur at the same point in time (they are both a part of the same 

object), this can make object representations look more bound than they truly are. In 

addition, successfully remembering one property may help in the retrieval of the other 

even if they are stored independently (e.g., encoding specificity; Tulving & Thompson, 

1973), again introducing overestimates of boundedness.  

On the other hand, the degree of boundedness can also be underestimated if there 

are differences in the difficulty of the exemplar and state comparisons. For example, any 

random variability in the degree of precision required for the state and exemplar 

comparisons across objects  - causing state errors without exemplar errors for some 

objects, and vice versa for others - will masquerade as independent forgetting of features, 

underestimating the degree of boundedness in memory. 

To avoid confounds from such encoding, retrieval, and stimulus factors, the 

critical manipulation in this experiment is to examine how memory performance changes 

over time. This holds confounding factors constant, and also gives time for observers to 

forget some of the objects’ properties. If the object properties are stored and forgotten 

independently, over time observers should be more likely to remember only a single 



BINDING IN VISUAL MEMORY   15 
 

property.  In other words, the dependence between the object properties should decrease 

over time.  In contrast, if the object properties are stored and forgotten together, then over 

time memory for the two object properties should have the same level of dependence.  By 

taking into account how dependence changes with delay, we can observe not only how 

dependent the properties are on each other initially, but also whether the objects are 

forgotten in a bound or independent manner.  

Thus, we tested observers' long-term memory performance after a short-delay (30 

min) and their long-term memory performance after a long-delay (3 days) and examined 

whether the dependence between object properties decreased or stayed the same. Any 

decrease in dependence between the two object properties over time could not be caused 

by either encoding or retrieval factors, which were identical at the two delays. Thus, 

change in dependence over time allows us to infer whether two object properties are 

stored in a single unitary representation or stored independently. 

 
 
Methods 

Participants 

30 naïve observers were recruited from the MIT participant pool (age range 18-

35) and received 5 dollars for their participation. All participants gave informed consent. 

15 of the observers participated in the short-delay condition and 15 of the observers 

participated in the long-delay condition.  

 
Stimuli 

Object images were chosen from previously published sets of stimuli (Brady, 

Konkle, Alvarez & Oliva, 2008; Konkle, Brady, Alvarez & Oliva, 2010), supplemented 
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with additional images from a commercially available database (Hemera Photo-Objects, 

Vol. I & II) and internet searches using Google Image Search. Overall, 120 basic-level 

categories of object were selected, and for each of these categories we selected two 

matching state images for each of two category exemplars. This yielded 120 object 

categories with 4 images each (2 exemplars x 2 states; see Figure 3).  

 
Procedure 

The experiment consisted of a study phase and a test phase. In the study phase, 

observers were shown 120 objects one at a time for 200ms each at the center of the 

display with a 1800ms ISI. During the presentation of the objects, they judged the 

physical size of the object (whether it was larger or smaller than a particular container 

they were shown, which was slightly smaller than a shoebox). 

Following this task, they were given a surprise long-term memory task, either 

immediately following the study period (short-delay) or after a 3-day delay (long-delay). 

In the long-delay condition, observers were told immediately after the study period they 

would need to return in 3 days to perform memory tests. We used a surprise memory test 

and a 3 day delay to ensure that observers’ performance was off ceiling at short delay and 

decreased substantially between the short and long delay, given that previous work has 

shown observers are quite good at these comparisons even after 5 hours of studying a 

large number of objects (Brady et al. 2008). To probe which properties of each object 

were encoded, a 4-alternative forced choice test display was presented for each object, 

consisting of two exemplars (one familiar, one novel), each in two states (one familiar, 

one novel).  Observers used the mouse to click on which of the 4 images they believed 

they had seen previously. After choosing an image, they separately reported how 
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confident they felt (high or low) on both the state comparison and the exemplar 

comparison. The next trial then began automatically. There was no feedback. 

 
 

Data Analysis – Calculating the Dependence Score 

To address our main hypothesis, we examined the level of dependence between 

observers’ reports of the state and exemplar properties. To do so, we calculated how 

much more likely observers were to get one property correct (e.g., state) if they got the 

other property correct than if they got it incorrect, taking into account the contributions of 

random guessing.  In order to convert this into a dependence measure (% dependent), we 

first formalized two models: a fully-independent model in which the properties are stored 

and forgotten independently, and a fully-bound model in which the properties are always 

stored and forgotten together.  Then, we quantified where our observed data fell in 

between the predictions of the two models. Finally, for our critical comparison, we 

examined how this dependence score for the two properties changed between the short 

and long-delays.   

 In the fully-independent model (referred to as D=0 below), there is never any 

benefit for memory of the state property given that exemplar was remembered, because 

the two properties are independent. Thus, no matter what the overall percent correct is, 

for an independent model of these two properties, the added memory benefit to one of 

remembering the other is 0: 

 
0)|(0 =+

= exemplarstatepD
 

 In the fully-dependent model (referred to as D=1 below), if the exemplar 

information is remembered, then the state information will always be remembered.  If all 
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the objects were remembered, then the increased memory performance for state 

information given exemplar information will go from chance (0.5) to remembered (1.0), 

for a maximal added benefit of 0.50.  However, if observers do not remember an object, 

we assume they guess randomly from amongst the 4 items on the test display, and thus 

this guessing is independent for the two properties.  As a consequence, even in the case of 

a fully-bound underlying representation, random guessing for forgotten items will bring 

the added benefit down from 0.50.  To account for this random guessing, we computed 

the guessing-adjusted fully-bound model, based conceptually on  that of Gajewski and 

Brockmole’s (2006) model of boundedness in short-term memory, as follows. 

 First we estimate the percent remembered (R) for each property, based on the 

overall percent correct: 

12)( −= pcpcR    

This formula treats memory as high-threshold and takes into account that any overall 

percent correct (pc) was achieved not only because items were remembered, but also 

sometimes items were forgotten but guessed correctly (Macmillan & Creelman, 2005).  

The “adjusted percent remembered” R estimates how often observers truly remember a 

property, after accounting for fortunate guesses and is calculated based on overall 

performance and chance (here 50% for each property).   

 Then, for any a given percent correct, the expected p+ (state|exemplar) according 

to the bound model can be calculated: any time observers remember the property (R% of 

the time), they should have complete dependence (p+ (state|exemplar) =0.5), and anytime 

they forget a property (1-R% of the time), guessing should cause complete independence 

(p+ (state|exemplar)=0).  Thus, while in theory a fully-bound representation would have a 
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p+ (state|exemplar) of 0.5, once we take into account guessing, the dependence expected 

in a fully bound model (referred to as D=1 below) varies as a function of overall percent 

correct (see Appendix A for derivation and simulation code): 

 
1)(
)()|(1 +

=+
= pcR

pcR
exemplarstatepD  

These expected dependences between properties in a fully-independent model and in a 

fully-bound model are plotted in Figure 4 as solid black lines.   

 Based on these models, for each observer we computed how dependent 

performance was between the state and exemplar conditions.  This number could be a 

value between 0 (fully independent) and 1 (fully-dependent), and was computed based on 

the percentage of the way between the independent and bound model predictions the 

observers’ )|( exemplarstatep+  was at the observed percent correct. Since the fully 

independent model always predicts )|(0 exemplarstatepD
+
= = 0, this reduces to simply: 

)|(
)|(

1 exemplarstatep

exemplarstatep
D

D
+
=

+

=  

where D is the dependence score of the observer, )|( exemplarstatep+ is how much more 

likely the observer was to get the state correct if they got the exemplar correct, and 

)|(1 exemplarstatepD
+
= is the bound model prediction at the observers' percent correct. 

 
Results 

Two participants were excluded from the long-delay condition for failing to 

perform the size judgment cover task satisfactorily. Thus, 15 participants from the short-

delay and 13 from the long-delay condition were entered into the final analysis.  
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Overall performance at the task was estimated separately for exemplar and state 

comparisons (e.g., whether observers indicated the correct exemplar independent of what 

state they chose, and whether they indicated the correct state, independent of what 

exemplar they chose). In the short-delay condition performance was 78.7% for exemplar 

and 72.3% for state. In the long-delay condition, average performance was 66.6% for 

exemplar and 63.0% for state.  

To address our main hypothesis, we examined the level of dependence between 

the two properties. After a short delay, we found that observers showed 46.6% 

dependence of state on exemplar (S.E.M. 9.7%) and 27.4% dependence of exemplar on 

state (S.E.M. 4.9%), both significantly different from zero (t(14)=3.8, p=0.0003, Cohen’s 

d=1.2, and t(14)=5.6, p=0.00006, d=1.45, respectively). The asymmetry between 

state|exemplar and exemplar|state is a result of the slightly different overall performance 

in the two conditions. After a three-day delay, we found that observers showed 13.4% 

dependence of state on exemplar (S.E.M. 14.1%) and 7.6% dependence of exemplar on 

state (S.E.M. 8.7%), neither significantly different than zero (t(12)=0.97, p=0.36, d=0.27 

and t(12)=0.87, p=0.40, d=0.24, respectively). In addition, these values of dependence 

were lower than those observed in the short-delay condition (state given exemplar: 

t(26)=1.99, p=0.057, d=0.75, exemplar given state: t(26)=2.06, p=0.05, d=0.78). These 

results show that the features were remembered more independently over time. 

Importantly, by comparing dependence rather than raw conditional probabilities, we 

remove the main effect of observers' decreased performance at a longer delay and adjust 

for the fact that guessing is necessarily independent. 

 



BINDING IN VISUAL MEMORY   21 
 

Confidence 

In addition to choosing which of the four stimuli observers believed they had 

seen, observers also gave us confidence judgments separately for the state and exemplar 

properties of the object. Thus, after observers chose their answer, we highlighted two of 

the objects (the one they chose and the change-of-state object) and they indicated how 

sure they were that the correct answer was the one they chose and not the other object 

(low or high confidence); then we did the same for the change-of-exemplar object. 

Overall, observers’ confidence was well calibrated: accuracy was higher when 

confidence was high (M=84% SEM=+/- 2.6% in the short-delay condition, and M=74% 

+/- 2.4% in the long-delay condition), than when confidence was low (61% +/- 1.7%, and 

58% +/-1.3 in the short- and long-delay conditions, respectively). 

Thus, we could also examine the degree of independence in memory 

representations by examining observers’ self-reported memory strength rather than their 

percent correct. In particular, if observers said they had high confidence in one 

comparison (e.g., state), how likely were they to also have high confidence in the other 

(e.g., exemplar)? This metric is informative because it helps confirm that changes in 

guessing are not the source of the increased independence after a delay. 

Subjects confidence decreased overall at long delay compared to short delay 

(chance of reporting high confidence: short delay, M=64.9%, SEM=4.6%; long delay, 

M=46%, SEM=4.2%). Importantly, this decrease appeared to be independent for state 

and exemplar properties. In particular, an observer's chance of reporting high confidence 

on one feature if they reported high confidence on the other feature was 82% (SEM = 

3.1%) after a short delay, and 62% (SEM = 3.9%) after a long delay. This decrease in 
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dependence from short-delay to long-delay was significant (t(26)=4.04, p<0.001, 

d=1.53). However, an observer’s chance of reporting high confidence if they reported 

low confidence in the other feature did not differ across delay (short delay: M=38.9%, 

SEM=6.1%, long delay: M=31.9%, SEM=3.4%; difference not significant, t(26)=0.95, 

p=0.35, d=0.36). To compare how much more likely subjects were to report high 

confidence on one feature given they did so on the other, we computed an odds ratio. In 

the short-delay condition, the odds ratio was 10.9 (+/-1.1), reflecting observers’ having 

10 times the odds of reporting high confidence in one property if they had high 

confidence in the other; in the long-delay condition this odds ratio was only 4.1 (+/-1.1), 

a significant difference (p<0.01). This indicates that observers’ likelihood of having high 

confidence for both features decreased with delay, even after discounting the general 

tendency for observers to have lower confidence after a delay. 

Thus, these data show that observers’ confidence also grows more independent 

with time, in addition to their percent correct. As delay time increases, high confidence 

on one feature is less likely to co-occur with high confidence on the other feature. 

 

How independent are these features?  

The results indicate that state and exemplar information features are forgotten at 

least partially independent and that the underlying representation of these features is not 

fully bound. Can we quantify how independent the underlying memory representations 

for state and exemplar information must be from these data? 

After a short-delay, we find a 46% dependence of state on exemplar.  At one 

extreme, this could mean that memory representations for state and exemplar information 
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are 46% overlapped; however, some percent of this dependence could also be attributed 

to “encoding correlation”, e.g. how likely observers are to encode or retrieve both 

properties of a given object due to other factors (like attention), even though the 

underlying memory representations are actually independent.  Thus there is a spectrum of 

possibilities for the true feature independence, shown in Figure 5 (red line), with 46% 

boundedness and 0% encoding correlation at one extreme, and 0% boundedness and 46% 

encoding correlation at the other (see formal model specification in Appendix B)  

In the long-delay conditions, we find a 14% dependence of state on exemplar 

memory. The same logic also allows us to break down the 14% boundedness observed 

into components that reflect both the true overlap in the features and the correlations due 

to encoding conditions, after taking into account the forgetting observed after the short 

delay. The full spectrum is shown in Figure 5 (blue line).   

Critically, we can find the combination of feature boundedness and encoding 

correlations that simultaneously fit both the short and long delay conditions.  The 

combined fit is shown in Figure 5 (black X).  The only model that fits both delay 

conditions requires nearly 100% independent forgetting of the features.  

The best fit parameters for explaining both the short delay and long-delay data 

suggest 97% independence between state and exemplar properties with r=0.63 correlation 

of the likelihood of initially encoding the two properties about the same object. In fact, 

when simulating what we would expect from complete independent forgetting (100% all 

of the initial dependence coming from encoding), we find that our dependence measure 

should go from 46% to 14% when percent correct drops from 72% to 63%.  This almost 

exactly matches the data we observe in Experiment 2. Thus, the current experiment 
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provides strong evidence that the forgetting is almost totally independent, even though 

there is an initial dependence in how likely observers are to remember both the state and 

exemplar properties after a short-delay. 

 

Discussion 

In Experiment 2, observers were required to remember both the state and 

exemplar of an object, and we examined whether observers remember both properties 

together, or whether they forget the two properties separately. To examine this, we 

calculated the conditional probability of remembering one property given successful 

memory for the other, taking into account the independence of guessing. Interpreting a 

given level of dependence between the properties is difficult because this dependence can 

be influenced by a number of encoding and retrieval factors rather than simply the 

boundedness of the representation. Thus, we examined the change in this dependence 

over time, reasoning that any increase in independence of the two object properties with 

increased delay could not be caused by either encoding or retrieval factors, which were 

identical at the two delays, and must be caused by independent forgetting of the 

properties over time.  

We found that at short delays, there was significant dependence between the two 

properties – observers were more likely than chance to remember both the state and 

exemplar of a particular object (46% bound). However, at a long delay this dependence is 

markedly decreased (14% bound). This suggests that much of the initial dependence 

observed at short delays is due to encoding or retrieval factors, like the fact that all the 

features of a given object are presented at the same time and spatial location. However, 
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ultimately the two properties of an object are forgotten separately. A straightforward 

model of how much of the dependence was caused by correlations at encoding vs. 

boundedness in the memory representation indicated that almost all of the dependence 

was due to correlations at encoding, since forgetting appeared to be completely 

independent. This suggests that the initial dependence we observe between the two 

properties may be solely due to encoding and retrieval factors like differential attention 

on different trials. Thus, our data suggest almost totally independent storage of different 

object properties in memory. 

The model of memory used in the calculation of dependence is a high threshold 

model. We believe this is reasonable, even if it is not entirely uncontroversial (e.g., Parks 

& Yonelinas, 2007; Wixted, 2007). In particular, we are asking people to recollect 

specific details of the objects, and our forced-choice comparisons require observers to 

choose between objects that are quite different from each other. Such large differences 

between the correct item and foil item seem to result in all-or-nothing memory retrieval 

in other features, like color (Brady et al. submitted). However, our conclusions do not 

depend on the high threshold nature of the model. In particular, forced-choice tasks in 

general are less sensitive to the distinction between signal detection and high-threshold 

models because with little bias, there is little dependence on the particular shape of the 

response operating characteristic curve that distinguishes these models (Macmillan & 

Creelman, 2005). Furthermore, in Appendix C we show that even if the underlying 

memory signal is better characterized by signal detection, our high-threshold model 

nevertheless does a reasonable job of characterizing the dependence between the 

properties. There seems to be no crucial difference between a high threshold and signal 
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detection model in examining the dependence between properties, which inherently 

depend not on the model of successful vs. unsuccessful memory performance (the 

distinction between signal detection and high threshold models) but on the dependence 

between performance with one stimulus and another. 

 

EXPERIMENT 3 

The data from Experiment 2 strongly suggest that the forgetting of separate 

features is independent, and that the initial dependence we observe between properties at 

short delays is driven by encoding factors which lead observers to encode both properties 

about some objects and neither property about others. We hypothesized that this 

correlation in initial encoding probability could result from attentional differences over 

the course of the experiment. Thus, observers may be likely to either encode or fail to 

encode both properties of an object because their overall attentiveness or fatigue level 

changes over the course of the experiment. Since both properties of the same object 

necessarily occur at the same point in time and space, this could make object 

representations appear more bound than they truly are, particularly at short delays. In 

Experiment 3, we sought to test this directly by artificially increasing the likelihood of 

such encoding disparities. Specifically, we varied the display time of the objects, where 

some objects were presented for a longer duration than other objects. We expected the 

degree of dependence to be the same for short-presentation and long-presentation items 

analyzed separately, but that combining the data across presentation durations would 

make object representations appear more dependent. Such a pattern would highlight the 

fact that variability in the quality with which different objects are encoded will artificially 
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inflate the observed dependence between features - a limitation we addressed in 

Experiments 1 and 2 by measuring forgetting over time.  

Methods 

Participants 

11 naïve observers were recruited from the Harvard University participant pool 

(age range 18-35) and received 5 dollars for their participation. All participants gave 

informed consent. None of the participants had taken part in Experiment 2. 

 
Procedure 

The experiment was identical to the short-delay condition of Experiment 2, with 

one exception: For each observer, a random half of the objects were displayed for a short 

duration (150ms) and a random half of the objects were displayed for a long duration 

(500ms). All other methods were identical to Experiment 2. 

 

Results 

As in Experiment 2, overall performance at the task was quite good, with 

performance at 85.2% correct for exemplar and 76.1% for state. The dependence scores 

computed separately for the short-presentation and long-presentation conditions were not 

significantly different (state|exemplar: 34% vs. 45%, t(10)=0.62,  p=0.55, d=0.19; 

exemplar|state: 29% vs. 31%, t(10)=0.14, p=0.88, d=0.05), and on average were 

comparable to the short-delay condition of Experiment 2. However, when all the items 

were analyzed together, we found a 77.4% dependence of state on exemplar (S.E.M. 

8.5%) and 43.6% dependence of exemplar on state (S.E.M. 5.6%). These dependence 
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levels were greater than the dependence scores observed in the short-encoding duration 

and long-encoding duration computed separately (state|exemplar: t(10)=4.3, p=0.002, 

d=1.29,  exemplar|state: t(10)=1.7, p=0.11, d=0.51), as well as those observed in 

Experiment 2 (46.6% and 27%, respectively): state|exemplar, t(24)=2.3, p=0.03, d=0.90; 

exemplar|state, t(24)=2.2, p=0.04, d=0.86. These results suggest that increasing the 

disparity in how well particular objects are encoded can artificially increase the estimated 

dependence between properties. 

 
Discussion 

In Experiment 3, we manipulated whether observers had more or less time to 

study an object, in order to simulate the effects of stronger or weaker encoding that might 

naturally happen when studying a stream of items presented for equal durations.  

Critically, we found that feature representations were equally dependent whether items 

were presented for a short or long duration, but that combining these trials together leads 

to an increased dependence estimate.   

These data suggests that factors like differential attention on different trials can 

cause dependence between properties. This highlights the fact that the observed 

dependence between two properties can be driven not only by the true underlying 

dependence, but also by encoding and retrieval factors like differential attention on 

different trials.  These results help put the results of Experiment 2 into context. In 

Experiment 2 we observed 46% dependence at the short delay, but only 14% dependence 

at the long delay.  We assume that the true underlying dependence of these two features 

does not change over time; thus these two properties are at most 14% bound, with 

simulations putting this number closer to 0% bound.  The results of Experiment 3 show 
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how the 46% boundedness observed in short delay could be so high due solely to the 

contributions of encoding and retrieval factors. Together with Experiments 1 and 2, these 

results suggest almost totally independent storage of different object features in memory. 

 

GENERAL DISCUSSION 

Across three experiments, we investigated whether different properties of real-

world objects are represented with a single unitary object representation or whether they 

are represented independently. In Experiment 1, we showed observers arbitrarily colored 

real-world objects in different states, and tested their memory for these properties 

immediately or after a delay.  We found that, over time, arbitrary color information about 

the object was forgotten much more rapidly than the more meaningful state information. 

For example, people remembered they saw an upright lawn chair (as opposed to a 

reclined lawn chair), but not whether it was yellow or blue.  This suggests that objects are 

not forgotten as bound units, but instead some object properties are forgotten more 

quickly than others. 

In Experiment 2, we showed observers a set of categorically-distinct objects that 

varied in two dimensions (object exemplar and state). We then probed observers' memory 

for state and exemplar information after either a short-delay or long-delay. After a short 

delay, observers frequently remember both properties about an object, but after a long 

delay memory for these properties was more independent. For example, after a short 

delay people were likely to remember that the cookie they saw was a chocolate chip 

cookie with a bite out of it; however, after more time, they were prone to confuse the 

cookie with an oatmeal-raisin cookie (exemplar information forgotten) but still remember 
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that the cookie they saw had a bite out of it (state information remembered), or vice 

versa. This suggests that different object properties are forgotten independently over 

time, even within the same object. In fact, the forgetting we observed over time in 

Experiment 2 appeared to be almost entirely independent for the two properties.  

In Experiment 3, we asked whether the initial dependence we observe between 

the properties at short delays derives from encoding and retrieval factors like attentional 

differences over the course of the experiment. We increased the heterogeneity of the 

initial encoding of the objects by showing some for shorter durations and some for longer 

durations. We found that increasing encoding disparity among objects leads to an inflated 

estimate of dependence. 

Together, these data indicate that observers do not store a single unitary object 

representation in memory: instead, some object properties persist while other properties 

are forgotten, and observers tend to forget different properties independently of each 

other for individual objects.  Furthermore, while there is often a dependence between 

how likely observers are to remember different properties of the same object, we show 

that this is likely to be due to encoding factors rather than reflecting a bound underlying 

memory representation.  

Below we discuss how independent storage of different object properties can have 

important repercussions for theories that advocate binding in both visual working 

memory and in long-term memory, as well as for models of object recognition, all of 

which tend to assume unitary object representations. 
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Object representations are not unitary 

The existing literature on object binding in perception and visual working 

memory has tended to focus on perceptual binding, in particular, the binding of different 

low-level features such as orientation and color into coherent, bound objects. For 

example, feature integration theory proposes that we recognize low-level visual features 

like color and orientation in parallel across the visual field, but binding these features 

together into coherent objects requires attention (Treisman, 1998).  Given the role of 

attention in this perceptual binding, it may not be surprising that much of the literature on 

visual working memory finds that features seem to be bound into objects in memory 

(e.g., Luck & Vogel, 1997), since (i) attention tends to be directed to all of the features of 

a particular object once that object is attended (Scholl, 2001; O'Craven, Downing & 

Kanwisher, 1999), and (ii) those objects we attend are likely to be the ones we remember 

(e.g., Chun, 2011; Rensink, O'Regan & Clark, 1997).  Thus, attention may be one 

encoding factor that often makes object representations appear bound, particularly in 

perception or after a short-delay: if a particular object is attended, all of its features are 

attended, and those features will all be remembered well; by contrast, all the features of 

an unattended object will not be well remembered1. This role of attention during 

encoding could make even representations that are inherently independent and separable 

appear to be bound, as we found in Experiment 3. In addition to attention, other encoding 

and retrieval factors, like the fact that successfully remembering one property may help in 

the retrieval of the other even if they are stored independently (e.g., encoding specificity; 

                                                
1 For an analogous idea that encoding factors like attention may cause the same items to be remembered in 
both implicit and explicit memory, see Turk-Browne, Yi and Chun, 2006. 
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Tulving & Thompson, 1973), are all likely to impact the degree to which two 

independent properties of an object look bound. 

Thus, we believe that existing evidence suggesting bound representations in 

visual working memory (e.g., Gajewski & Brockmole, 2006) may reflect, at least in part, 

shared encoding factors rather than truly unitary memory representations. In support of 

this idea, recent evidence suggests that observers may often remember one feature of an 

object but not another, even in simple stimuli like colored oriented lines (e.g., Bays, Wu 

& Husain, 2011; Fougnie & Alvarez, 2011; Stefurak & Boynton, 1986).  Further, 

remembering multiple features of the same object can come at a significant cost relative 

to remembering only a single feature (Fougnie, Asplund & Marois, 2010). 

In addition, it is possible to observe independence between features like color and 

orientation even in long-term memory. For example, observers can remember which 

shapes they saw without any impairment from a change in the color of the object between 

study and test (Hanna & Remington, 1996), suggesting independent representations of 

these features. However, because they used simple low-level features and told observers 

in advance what the memory tests would be like, Hanna and Remington (1996) may have 

caused observers to attend to only a single property of the visual objects during the study 

phase (e.g., using feature-based attention: Maunsell & Treue, 2006). Thus, their results 

could reflect encoding strategies rather than independence in the underlying memory 

representations.  Similarly, encoding the features independently could play a role in the 

independence observed in much of the existing work in visual working memory (e.g., 

Stefurak & Boynton, 1986). In the present experiments, we ensured that both properties 
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were equally relevant to the observer, and still found independent forgetting of these 

properties. 

By examining binding with real-world objects we were able to examine memory 

not only in the short-term but also at longer intervals. This is challenging to do when 

using meaningless or simplified stimuli as in previous approaches. In addition, by not 

telling people in advance about the memory test (in Experiments 2 and 3) and using 

properties that are not low-level and thus cannot be attended too separately, we can avoid 

the potential for observers to selectively encode one property over another. Thus, we 

believe that the method used in the current experiments – examining dependence between 

features not only at a single delay interval but examining how it changes over time – may 

be critical to understanding whether seemingly bound representations are just a 

consequence of encoding and retrieval factors rather than reflecting the true underlying 

structure of memory.  By examining a change in dependence between properties over 

time, this approach allows us to examine the structure of memory representations while 

holding constant any dependence between properties induced by encoding and retrieval 

factors. 

Binding and perceptual integrality 
 

In the present experiments, we use object properties that are relatively high-level: 

object state, object exemplar and object color. This allows us to examine whether our 

memory representations for different properties are unitary, rather than whether our 

perception of two properties is unitary, as in the classic distinction between integral and 

separable dimensions (Garner, 1977). For example, using simple stimuli it can be shown 

that hue and shape are 'separable' dimensions, such that, for example, hue does not 
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necessarily impact the perception of shape (Garner, 1977; Maddox, 1992). By contrast, 

hue and brightness are 'integral' dimensions, such that across a wide range of tasks hue is 

seen to automatically impact judgments of brightness and vice versa (Garner & Felfoldy, 

1970; Maddox, 1992). In the present experiments, rather than examining dimensions that 

are perceptually integral we examine properties that can be perceived separately and must 

be bound in memory. We can thus ask whether we form bound memory representation 

out of perceptually distinct features. This is a different approach than that taken in the 

existing literature on holistic representations of real-world objects; for example, some 

evidence suggests that faces are represented holistically as integral units rather than as 

bound but ultimately independent features of eyes, noses, and mouths (e.g.Tanaka & 

Farah, 1993; although see Reinitz, Morrissey & Demb, 1994 for evidence that holistic 

face encoding is may depend on attention at encoding).  

Binding objects to contexts  

Much of the literature examining binding with real-world objects has focused on 

binding objects to context. For example, in visual cognition it has been found that scene 

context can function as a retrieval cue for object details (Hollingworth, 2006); that 

memory for the spatial position of objects in scenes is better when the scene is presented 

during testing (Mandler & Johnson, 1976; Hollingworth, 2007); and that memory for 

object details and memory for the scene viewpoint are stored independently, rather than 

as a bound unit in memory (Varakin & Loschky, 2010). More broadly, long-term 

memory for individual items and objects is generally found to be independent of memory 

for the associations between items and the associations between items and contexts (e.g., 

Ceraso, Kourtzi & Ray, 1998; Mather, 2007; Marshuetz, 2005; Johnson & Raye, 2000). 
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In fact, many models of memory suppose that the hippocampus and prefrontal cortex are 

critically involved only in the 'binding' aspects of memory important for remembering 

associations between various elements of an event, but are not involved in memory for 

individual objects (Davachi & Wagner, 2002; Mitchell, Johnson, Raye & D'Esposito, 

2000; Ranganath, Cohen, Dam & D'Esposito, 2004). These theories treat memory for 

objects as holistic, and memory for events as requiring binding between disparate 

elements to form a true episodic memory. 

In the current work we find that even memory for individual objects –often used 

as 'items' in such memory studies – are not holistic, and instead separate visual and 

semantic properties of objects are forgotten separately. This implies the recognition of a 

real-world object is not a holistic process, and instead requires association and binding 

between separate visual and semantic properties in order for an object to be entirely 

remembered. Depending on the stimuli used, many experiments that claim to be isolating 

a binding mechanism by contrasting memory for objects versus memory for the context 

in which such objects were seen may be failing to do so, as even their non-binding 

condition may depend critically on binding processes within objects (see Davachi, 2006 

for a discussion of within-versus between object binding and the role of hippocampus). 

While there are likely differences between within-object binding and across object-

binding (for example, emotion seems to differentially impact these processes: Mather, 

2007), the role of binding for features within real-world objects is critical to the 

interpretation of such memory studies. 
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Object representations and object recognition  

As both visual long-term memory and object recognition are thought to depend on 

the same high-level object representations (Palmeri & Tarr, 2008), memory errors like 

those in the current data may be able to usefully inform models of object recognition by 

elucidating the underlying object representation. In particular, one of the object properties 

we use in the current experiments is object state, which we define as a change in the pose 

or configuration of an object's parts (see Brady, Konkle, Alvarez & Oliva, 2008). This 

aspect of object representation has rarely been addressed in the existing literature on 

visual memory, and is likely to be an important component of object recognition: many 

everyday objects contain moveable units which affect the semantics or functional uses of 

an object while keeping visual information similar and not resulting in a change in 

identity of an object. Studying memory for changes in the configuration or pose of an 

object's parts is interesting because part-based representation is an important point of 

debate in the literature on object recognition and view-based vs. more structured 

representations of objects (e.g., Tarr & Palmeri, 2008).  

While our findings do not directly address whether separate parts within an object 

are forgotten separately, the independence of state changes from color or exemplar 

changes lends some credence to structural models of object representation where 

configurations of parts are explicitly represented independently of each other and could 

therefore be separately forgotten in memory (Hummel, 2000), as opposed to view-based 

theories which tend to assume holistic object representations (although see Ullman, 2007) 

and theories in which visual recognition is thought to proceed by increasingly complex 

conjunctions forming new features until an entire object is represented, which also tend to 
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assume holistic object representations (DiCarlo & Cox, 2007; Serre, Wolfe, Bileschi, 

Riesenhuber & Poggio, 2007).  

 

Conclusion 

So what is the format of real-world object representations? We find independent 

forgetting of information about an object’s color, information that distinguishes different 

exemplars of the same category, and information that distinguishes changes in object 

state.  This suggests that the underlying visual features that we rely on to distinguish 

these different changes are distinct and are forgotten separately. These results 

demonstrate that real-world objects are not represented as a single bound unit in visual 

memory. Furthermore, while there is often a dependence between how likely observers 

are to remember different properties of the same object, this appears to be due to 

encoding factors rather than reflecting a bound underlying memory representation.  
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Figure 1. Methods of Experiment 1. (a) In the short-delay condition, observers were 
shown 3 objects at a time and then tested on a single one of these objects. Either the color 
or state of one of the objects was tested with a two-alternative forced choice, and which 
property of which object would be tested was not known in advance. (b) In the long-delay 
condition, all of the objects were shown, one at a time, and then observers were tested on 
one third of these objects. This test could be for either the color of the state of one of 
these studied objects. During the study period, observers also had to detect back-to-back 
repeats to ensure they were attending to the images.  The two-alternative test displays 
were the same in the short- and long-delay conditions.  
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Figure 2. Results of Experiment 1 (a) Percent correct at forced-choice comparisons for 
state and color in both the short and long delay groups. After only a short delay, the color 
tests are slightly easier than the state tests. After a long delay, observers perform 
considerably worse on the color tests than the state tests. (b) Decrement with delay for 
state and color. Observers' performance gets slightly worse for the state property with a 
delay, but considerably worse for the color property. 
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Figure 3. Methods of Experiment 2. (a) Observers were presented with pictures of 
objects one a time. While viewing the objects, their task was to indicate for each object 
whether it was smaller or larger than a container they were given. They were not told 
there would be a memory test for the objects. (b) In the short-delay condition, after 
finishing the size judgments for each object observers were immediately told there would 
be a memory test and were tested on the objects they had seen after the study phase. In 
the long-delay condition, they were told there would be a memory test but they came 
back in 3 days to complete it. Each test trial consisted of a 4-alternative choice, with 
images of two different exemplars each in two different states. Observers’ task was to 
click on which of the 4 images they had previously seen.  
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Figure 4. Results of Experiment 2 for the state condition. (a) Given some level of 
performance in memory for the state of the object (x-axis), the y-axis, shows how much 
more likely you are to remember the state if you remember the exemplar of the object 
than if you do not. If the two properties are completely bound in memory, the expected 
conditional probability is represented by the solid black line. If the two properties are 
remembered completely independently the expected conditional probability would be 0 at 
every point on the x-axis. In the short delay, the performance on state tests given the 
exemplar memory indicated some dependence, shown in the dashed red line.  If memory 
for object state and exemplar information maintain this dependence relationship over a 
delay, then performance in the long-delay condition would fall somewhere on this red 
dashed line.  However, in the long-delay condition, there was a significantly lower 
dependence, plotted with the curve shown in dashed-blue. Note that this figure shows the 
model fit to the group data for illustrative purposes; for analysis purposes, the model was 
fit to each single subjects memory performance and statistics were performed over 
the parameter estimates. (b) Observers in the short-delay condition have more 
dependence between the two properties than observers in the long-delay condition, even 
after adjusting for the change in percent correct. 
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Figure 5. Best fit models that vary in both the memory boundedness and the correlation 
between state and exemplar encoding. Both the short-delay (red line) and long-delay 
(blue line) conditions can be fit by assuming a correlation at encoding, a bounded 
memory representation, or any mixture of the two. However, the combined data can only 
be fit by assuming that nearly all of the forgetting is independent e.g., that the 
dependence results from correlations at encoding (black X).  
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Appendix A 
 
 
 Here we derive specific predictions for the dependence between state and 

exemplar accuracy given a fully bound model (dependence(D)=1), correcting for the fact 

that guessing is independent between features by definition. 

 If memory representations are bound, then the probability of getting the state 

correct given you get the exemplar correct will be depend on whether you remember the 

item or not. In general: 

)(
2
1)(

)(
4
1)(

)|(

)(
)()|(

1

1

pcGpcR

pcGpcR
exemplarstatep

exemplarp
exemplarstatep

exemplarstatep

D

D

+

+
=

∩
=

=

=

 

On the other hand,  observers’ should get the state comparison correct when they fail to 

get exemplar comparison correct only if they guess it correctly, since the bounded model 

posits the two memories are never recalled independently: 
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Correspondingly, p+(state|exemplar), the amount more likely an observers is to get state 

correct if they get exemplar correct than if they get exemplar incorrect, is the subtraction 

of these two terms: 
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The following is Matlab code to simulate the bound model using Monte Carlo methods: 
 
nSubjects = 15; 
nItems = 120; 
  
percentCorrList = 0.5:0.01:1.0; 
for percI = 1:length(percentCorrList) 
  percentCorr = percentCorrList(percI); 
   
  % Do 500 simulations at each percent correct 
  for m=1:500 
     
    % What percentage of items should we remember? 
    R_mean =  2*percentCorr - 1; 
     
    % Generate simulated data with that number of items remembered 
    R = rand(nSubjects, nItems)<=R_mean; 
     
    % Generate independent guesses for state and exemplar 
    G_S = rand(nSubjects, nItems)<=0.50; 
    G_E = rand(nSubjects, nItems)<=0.50; 
     
    % We get a comparison correct if we remember it or guess correctly 
    stateCorrect = R | G_S; 
    exempCorrect = R | G_E; 
     
    % Save condition probability (increased likelihood of getting 
    % state given you also get exemplar): 
    condProb(m, percI) = mean(stateCorrect(exempCorrect==1))... 
      - mean(stateCorrect(exempCorrect==0)); 
  end 
end 
 
% Plot function 
plot(percentCorrList, mean(condProb)); 
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Appendix B 
 
 

To quantify the degree of independence between the underlying memory 

representations for state and exemplar information, we asked what percentage of the 

forgetting between our short- and long-delay conditions appears to be independent 

forgetting rather than correlated, bound forgetting. In particular, we model memory 

representations that (a) are truly independent and are thus forgotten independently, but 

are correlated at initial encoding; and (b) representations that are bound and thus always 

forgotten together. We then estimate what proportion of bound vs. independent 

representations is needed to best explain the data from both the short- and long-delay 

condition.  

Critically, we find the combination of feature boundedness and encoding 

correlations that simultaneously fit both the short and long delay conditions requires 

nearly 100% independent forgetting of the features (almost no truly bound 

representations). Pseudocode (in the style of Matlab code) for this simulation is presented 

below: 

 
% PARAMETERS: 
% ----------- 
percentCorrectAtShortDelay = 0.72; 
lossInPercentCorrectWithDelay = 0.09; 
  
initialCorrelation = 0.65; 
amountTrulyBound = 0.03; 
  
% SHORT DELAY: 
% ------------ 
  
% Sample initially correlated, yet ultimately independent state 
% and exemplar memories (of size [nSubs, nItems]) 
[Smem, Emem] = CreateCorrelatedUniforms(initialCorrelation, 
[nSubs,nItems]); 
  
S_mean =  2*percentCorrectAtShortDelay-1; 
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S = Smem <= S_mean; 
  
E_mean =  2*percentCorrectAtShortDelay-1; 
E = Emem <= E_mean; 
  
% Simulate bound memories 
Rmem = rand(nSubs,nItems); 
R_mean =  2*percentCorrectAtShortDelay-1; 
R = Rmem <= R_mean; 
  
% Compute independent guesses for state and exemplar 
G_S = rand(nSubs,nItems)<=0.50; 
G_E = rand(nSubs,nItems)<=0.50; 
  
% Mix trials from bound and independent memories in appropriate ratio: 
useBoundForTrial = rand(nSubs,nItems) <= amountTrulyBound; 
  
% And calculate overall percent correct for state & exemplar: 
stateCorrect = (~useBoundForTrial & S) | (useBoundForTrial & R) | G_S; 
exempCorrect = (~useBoundForTrial & E) | (useBoundForTrial & R) | G_E; 
  
% Now calculate conditional probability for short delay: 
condProb_ShortDelay = mean(stateCorrect(exempCorrect==1)) ... 
  - mean(stateCorrect(exempCorrect==0)); 
  
 
% LONG DELAY: 
% ------------ 
  
% Now forget some memories -- forget independent memories 
independently: 
numItemsToForget = round(nItems*(lossInPercentCorrectWithDelay)); 
for j=1:size(S,1) 
  available = Shuffle(find(S(j,:)==1)); 
  S(j,available(1:numItemsToForget)) = 0; 
end 
  
for j=1:size(E,1) 
  available = Shuffle(find(E(j,:)==1)); 
  E(j,available(1:numItemsToForget)) = 0; 
end 
  
% ... and forget bound memories in a bound fashion: 
for j=1:size(R,1) 
  available = Shuffle(find(R(j,:)==1)); 
  R(j,available(1:numItemsToForget)) = 0; 
end 
  
% Now calculate percent correct/condProb again: 
G_S = rand(subs,items)<=0.50; 
G_E = rand(subs,items)<=0.50; 
  
stateCorrect = (~useBoundForTrial & S) | (useBoundForTrial & R) | G_S; 
exempCorrect = (~useBoundForTrial & E) | (useBoundForTrial & R) | G_E; 
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% Now calculate conditional probability for long delay: 
condProb_LongDelay = mean(stateCorrect(exempCorrect==1)) ... 
  - mean(stateCorrect(exempCorrect==0)); 
  
  
 

 

Figure A1. Best fit models that vary in both the memory boundedness and the correlation 
between state and exemplar encoding. (A, B) Both the short-delay and long-delay 
conditions can be fit by assuming a correlation at encoding, a bounded memory 
representation, or any mixture of the two. (C) However, the combined data can only be fit 
by assuming that nearly all of the forgetting is independent (i.e., that the dependence 
results almost entirely from correlations at encoding). This is because observers’ 
dependence decreases much more rapidly than would be expected by a model with bound 
memory representations. The best fit parameters for explaining both the short delay and 
long-delay data suggest 97% independence between state and exemplar properties with a 
correlation of r=0.63 in the initial encoding of state and exemplar properties. 

 

Using this model we can compute predictions for each combination of 

boundedness and encoding correlation, given the percent correct we observe for short- 

and long-delay. We can then compare the condition probability predicted by those 

models to that we actually observe and compute an error term (root mean square error). 

These raw errors are plotted in Figure 1A; the minimum error values are plotted in Figure 

5 in the main text.  
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Appendix C 
 

Our model of how bound a memory representation appears is based on a high-

threshold memory model. In particular, we assume that observers successfully remember 

some proportion of the items and have no information about others. Such high-threshold 

models provide reasonable fits to recollection data (Yonelinas, 1999; Parks & Yonelinas, 

2007) and thus should be sufficient to distinguish between our bound and independent 

hypotheses, even if ultimately signal detection may be a better model of recollection 

processes (e.g., Wixted, 2007). In addition, forced-choice tasks in general are less 

sensitive to the distinction between signal detection and threshold models because, when 

there is little response bias, there is little dependence on the particular shape of the 

response operating characteristic curve that distinguishes these models (Macmillan & 

Creelman, 2005). Although these points mitigate concerns over using a high-threshold 

model, it is also possible to examine our data using signal detection.  

In particular, we can model a bound hypothesis as reflecting a single underlying 

memory signal. Specifically, the correct item’s memory strength would be reflected by a 

normal distribution centered at d-prime, with the three distractors each centered around 0.  

This framing of our task is in line with a signal detection model of the Deese-Roediger-

McDermott task (e.g., Wixted & Stretch, 2000; Macmillan & Creelman, 2005). The 

independence hypothesis, by contrast, would be modeled as reflecting two underlying 

memory signals: a state familiarity signal, and an exemplar familiarity signal. Thus, the 

underlying memory signal must be considered in a two dimensional space, where the 

correct item’s memory signal is reflected by a normal distribution centered at (state-d-
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prime, exemplar-d-prime), and the distractors are centered at (state-d-prime, 0), 

(exemplar-d-prime, 0), and (0,0).  

To model performance in our task, we must convert these underlying memory 

strengths into a model of our particular 4-alternative forced-choice comparison. In the 

case of a straightforward 2AFC task with unrelated targets and foils, d-prime = sqrt(2) * 

z(pc), where z is the inverse cumulative normal distribution function (Macmillan & 

Creelman, 2005). This is because the distance between two orthogonal normal 

distributions, each centered at d-prime, is sqrt(2) * d-prime. To generalize to our higher-

dimensional stimuli and 4-alternative task, we can simulate the process that leads to this 

formula by using Monte Carlo methods. In particular, in the 2AFC case, we can sample a 

large number of memory strengths from a normal distribution centered at d-prime and 

from one centered at 0, and, for each pair, ask how likely the greater memory strength is 

to be from the correct item, rather than the foil. To generalize to the 4AFC case we can 

simply sample from each of the 4 items’ memory strengths and once again ask how likely 

the item with the highest memory strength is to be correct on state and/or exemplar to 

determine a percent correct. 

For the independent model, a decision must be made about how observers’ pool 

information from the two memory signals to choose a single answer. There are at least 

two possibilities: (a) they choose the item with the largest summed familiarity signal; (b) 

they choose the item whose combined memory signal is most likely to have come from 

an “old” item, e.g., according to the likelihood ratio (Irwin & Hautus, 1997). In the 

current model, this means the item most likely to have been generated by a normal 

distribution centered at (state-d-prime, exemplar-d-prime).  
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Figure A2.  (A). Results if the independence model relies upon summed familiarity 
choice rule. (B) Results if independence model relies upon likelihood ratio choice rule. In 
each plot, the different lines correspond to different underlying percent correct/d-prime in 
the simulated data.  The dashed black line corresponds to equality, x=y. 

 

Finally, we can take these modeled 4AFC choices and ask, if we fit our high-

threshold model to these data, how bounded does the result look?  In particular, we can 

mix samples from the bound model and the independent model together in a certain ratio, 

simulating partially bound memory representations, and ask whether our high-threshold 

model can accurately recover the percent bounded that is simulated according to the 

signal detection model. We find that it can (Figure A2). While the recovered 

boundedness scores do systematically deviate from the modeled boundedness, they do so 

in a well-behaved, linear fashion that differs little based on the underlying percent 

correct/d-prime of the model. Thus, even if signal detection is a better model of the 

underlying memory traces and decision process, our conclusions remain unaffected: the 

dependence of state and exemplar decreases systematically over time and does so at a rate 

much greater than we would expect by the decrease in percent correct or, 

correspondingly, d-prime. 


