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 Abstract 

Influential theories of visual working memory have proposed that the basic units of 
memory are integrated object representations. Key support for this proposal is provided by 
the ‘same object benefit’: it is easier to remember multiple features of a single object than 
the same set of features distributed across multiple objects. Here we replicate the object 
benefit, but demonstrate that features are not stored as single, integrated representations. 
Specifically, participants could remember ten features better when arranged in five objects 
compared to ten objects, yet memory for one object feature was largely independent of 
memory for the other object feature. These results rule out the possibility that integrated 
representations drive the object benefit, and require a revision of the concept of object-
based memory representations. We propose that working memory is object-based in regard 
to the factors that enhance performance, but feature-based in regard to the level of 
representational failure.   
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 It is much easier to remember a set of visual features that are arranged into a small 

number of objects than to remember the same set of features distributed across multiple 

objects (Delvenne & Bruyer, 2004; Luck & Vogel, 1997; Olson & Jiang, 2002; Vogel et al., 

2001; Wheeler & Treisman, 2002).  For example, it is easier to remember 5 colors and 5 

orientations that appear in the same 5 objects than it is to remember the same 10 features 

on separate objects (Olson & Jiang, 2002; Xu, 2002) (Figure 1).  The finding that working 

memory improves with fewer discrete objects (Olson & Jiang, 2002; Xu, 2002) has been 

used as evidence that the representations that underlie working memory are object-based 

(Luck & Vogel, 1997; Vogel et al., 2001). According to this theory, working memory can 

store a small, fixed number of objects, and therefore integrating multiple features into a 

single object representation enables more features to be stored.  

 However, the improvement for object displays does not necessarily imply the storage 

of integrated, object-based representations. It is possible that there is a cost to representing 

additional objects–hence the benefit of encoding information from fewer objects–but that 

memory representations themselves consist of non-integrated collections of features (Bays, 

Wu, Husain, 2011; Kyllingsbæk & Bundesen, 2007; Wheeler & Treisman, 2002; Fougnie 

& Alvarez, 2011; Stefurak and Boynton 1986; but see Gajewski & Brockmole, 2006; Irwin 

& Andrews, 1996). To directly address this question, it is necessary to measure memory for 

multiple features of the same object. If the object-benefit were due to the features being 

stored as an integrated object, then memory of one feature would be dependent on, and 
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indicative of, whether that item's other feature was stored. Thus, in the present study we 

measured memory for color and orientation when both features appeared on the same 

object, versus when the features appeared on different objects, while probing memory for 

both color and orientation within the same trial. This procedure enables us to assess 

whether there is an object-benefit, and whether features are stored as an integrated unit, 

within the context of a single study.  

 

Methods 

 Twenty-one participants were asked to remember five colors and five orientations 

where each feature was in a distinct object (10–object condition) or where objects were 

defined by color-orientation conjunctions (5–object condition).  Conditions were 

presented in separate 90-minute sessions (540 trials) and session order was random.   

10–object displays– Five black isosceles triangles and five colored circles were 

presented in a ring (3.5° radius) interleaved around fixation. Triangles appeared at 

positions corresponding to 0°, 72°, 144°, 216°, and 288°. Circles appeared at positions 

corresponding to 36°, 108°, 180°, 252°, and 324°. Each triangle had angles of 30°, 75°, and 

75°, and sides subtending 0.6°×1.38°×1.38° (visual angle) and the orientation of each 

triangle’s small angle was assigned a random orientation (2°–360°, in 2° steps).  Each circle 

(.5° radius) was assigned one of 180 equiluminant colors evenly distributed along a circle in 

the CIE L*a*b*color space (centered at L=54, a=18, b=-8, with a radius of 59).   
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5–object displays– Five triangles defined by color and orientation were presented in 

evenly spaced position along an imaginary ring (3.5° radius) from fixation.  

 A trial consisted of a 1200ms sample presentation, followed by a 900ms retention 

interval, followed by non-speeded color and orientation reports (in a random order) (Figure 

1).  During feature reports a solid white circle indicated the to-be-reported location.  

Participants were asked to adjust the task-relevant feature to match the sample item 

corresponding to the cued location. Participants adjusted probe color by selecting a value 

along a circular color wheel (6° radius, centered on fixation).  The selected value was 

determined by the angle of the cursor position in reference to fixation.  While cursor 

position was hidden, participants knew the currently selected value since the color of the 

probe stimulus was continuously updated to the selected color.  For orientation reports, 

the orientation of the small angle was determined by mouse position in reference to the 

probed item.  The probe stimulus was continuously updated to match the selected 

orientation. A black indicator line appearing on the outer edge of the response wheel 

indicated the selected color or orientation value. To encourage participants to store 

features in an integrated fashion, in the 5–object condition participants adjusted the color 

and orientation of a single item before submitting a response (see also Fougnie & Alvarez, 

2011; Bays, et al., 2011).  In this condition, participants could switch between adjusting 

color or orientation by clicking the mouse. Feedback in degrees of error for each feature 

was provided after both reports.   
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 For data analysis we utilized the distribution of errors to estimate the proportion of 

guess and memory responses and the precision of memory responses for each feature (Zhang 

& Luck, 2008). Figure 2 shows an error distribution for a representative participant’s color 

response errors. Our analysis method assumes that a participant responds in one of two 

states: memory or guess response. On trials in which a participant guesses the response will 

be random relative to the true value.  Over many trials this will lead to a uniform 

distribution of response error. On trials in which a participant responds from memory we 

assume that responses will be normally distributed around the correct value, with the width 

of this distribution signifying the fidelity of memory. We use the observed error 

distribution to find the best fitting weighted mixture of a uniform and a circular normal 

distribution (for an example see the red line in Figure 2) (using maximum likelihood 

estimation). The estimated weighting of the uniform versus normal distribution 

corresponds to the proportion of guess and memory responses in the data.  The estimated 

width of the normal distribution corresponds to the precision of memory for that 

condition.  

 

Results & Discussion 

 

Each condition was modeled as a weighted mixture of a circular normal and a 

uniform distribution in order to estimate the proportion and precision of memory 

responses (Figure 2; Zhang & Luck, 2008).  Figure 3A shows the model-fitted response 
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error distributions for each condition derived from averaging the best fitting parameter 

values for each participant. There were higher proportions of memory responses (and fewer 

guess responses) for 5–object displays (color 62.0%, orientation 47.2%) than 10–object 

displays (33.0% color, 23.0% orientation, both t’s > 6, both p’s < .001) (Figure 4A shows 

the values averaged across features)1. The proportion of memory responses for 5–object 

displays was approximately double that of 10–object displays (103.1% increase) even 

though feature load was equivalent. Displays with 5 objects also had slightly improved 

fidelity (lower standard deviation of the memory response distribution) for orientation 

(21.4° versus 26.1°, p < .005), but not for color (p = .41). These findings replicate past work 

showing that participants can store twice as many features when two features are conjoined 

into a single object (Luck & Vogel, 1997; Olson & Jiang, 2002; Vogel, et al., 2001; Xu, 

2002).  

We then asked whether this benefit for fewer objects occurred because participants 

are able to store twice as many features when an object shared two features because those 

features were integrated into a single representation.  If so, then when a participant guessed 

for one feature of an object, they would be highly likely to guess on the object’s other 

feature as well.  To test this possibility, we performed an additional modeling analysis that 

only included trials where participants guessed on the objects other feature (where guesses 

were classified as responses more than three standard deviations away from the correct 

value; Fougnie & Alvarez, 2011). Figure 3B shows the participant averaged response error 

distributions both for analyses including all trials (solid lines) and for analyses including 
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only the trials in which participants guessed on the object’s other feature (dashed lines). 

Integration would predict that the dashed lines would be uniform and have no central 

Gaussian component (0% memory responses).  However, we found that participants were 

only slightly more likely to guess when they did not know the objects’ other feature. We 

observed a high proportion of memory responses for color given an orientation guess 

(52%, only a 15% drop) and orientation given a color guess (33%, only a 32% drop), 

providing strong evidence for largely independent storage of features. These findings 

suggest that the improvement in performance for fewer objects did not arise entirely from 

integrating features into a single object representation.  If feature integration fully 

explained the improvement in performance in the 5–object condition then the percent 

increase in memory responses in the 5–object condition should be equivalent to the degree 

to which representations were integrated.  Yet, the estimate of degree of integration of 

features (22.8%, estimated by measuring the average decrease in memory responses 

including only trials were participants guess on the other feature) was drastically lower than 

the percent increase in feature storage capacity (103.1%), t(20) = 8.1, p< .001 (Figure 4B).  

Furthermore, these values — degree of integration and percent increase in storage capacity 

— were not even correlated with each other within subjects (r2 = .11, p> .1)2 (Figure 5).  

We cannot conclude that the two measures are completely unrelated, particularly since 

small correlations may be difficult to observe reliably with only 21 participants. However, 

the lack of any correlation is further evidence that the object benefit is (at most) minimally 

influenced by the degree of feature integration.  
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We should note that while some experiments have observed weaker object benefits 

than found in the present study (e.g. Olson & Jiang, 2002) these effects were still greater 

than the integration observed here. Thus, our findings suggest that even a ‘weak-object’ 

benefit (Olson & Jiang, 2002) is not necessarily consistent with partial integration of 

features into object-based representations.  

One concern is that low integration is due to memory failures that arise during the 

response period, with the effort of trying to retrieve the first feature causing forgetting of 

the second feature. An increase in the guess rate for the second response could give rise to 

apparent evidence of independent feature memory because retrieval-induced guesses for 

the second response could occur on trials in which participants did not guess for the first 

response. Importantly, the change in guess rate between the first (57%) and second (54%) 

response, while significant (p=.005), was too small to explain the feature independence that 

was observed.  Furthermore, even when participants guessed on their first response, they 

still showed good memory for the second response. Indeed, participants were only 24.8% 

more likely to guess on the second response if they guessed on the first response (compared 

to how often participants guessed on the second response in all trials)3. Since it can be 

safely assumed that the act of retrieving the second feature would not impair the subject’s 

ability to answer about the first, the independence of feature memory can be attributed to 

nature of the memory representations rather than to an artifact of the testing procedure.  
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Another possible explanation for the independence between features is that the 

probe in the previous trial might lead participants to store fewer colors or orientations than 

they are able to store4. For example, participants may prioritize orientation at the 

expense of color in trials that immediately follow trials in which the first response probe 

asked for an orientation judgment, and vice-versa. However, we found equivalent 

independence for each feature regardless of the report order of the previous trial (color, p = 

.19; orientation, p = .59).  

The memory load for the 5–object condition was slightly greater than the capacity of 

four items estimated by many studies on the limits of working memory (e.g. Cowan, 2001; 

Luck & Vogel, 2001, Vogel et al., 2001).  We considered whether the independence 

between features was due to the supra-capacity demands of the task. Specifically, one might 

suggest that while a participant can store four integrated object representations, any 

additional information would be retained in a feature-independent fashion. However, this 

account would predict much higher estimates of integration than were observed (at least 

80%). In fact, given the overall performance (54.6% memory responses) and the degree of 

integration (22.8%) the maximum number of integrated representations consistent with 

the present data is less than one item (.62; 54.6% * 22.8% * 5). To further address this 

concern we conducted an additional experiment on 11 new participants that compared 

performance for remembering 8 features in 4 or 8 objects. Importantly, while the load of 

the 4–object condition was now within standard measures of working memory capacity, we 
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still observed an object benefit (95.1%) that was larger than the degree of integration 

(23.1%), t(10) = 3.87, p < 005.  The degree of integration was equivalent across studies (t = 

.01, p = .99) suggesting that integration is not influenced by the memory load.  

Previous studies have shown this independence across features to be resilient to 

methodological details such as encoding duration (Fougnie & Alvarez, 2011) and the 

method of probe response (Bays et al., 2011; Fougnie & Alvarez, 2011). Yet, by showing a 

large object-based benefit and largely independent feature storage in the same context the 

present findings go significantly beyond previous work in placing constraints on the cause 

of this feature independence and to rule out alternative explanations. Consider that any 

aspect of the 5–object condition that would lower measures of integrated features (such as 

response order effects) would also produce an equivalent drop in the observed object 

benefit, were that benefit driven solely by the storage of integrated objects. Therefore, by 

showing a large object-based benefit and largely independent feature storage in the same 

context the present findings go significantly beyond previous work and cannot be 

reconciled with the standard view that the object benefit reflects multiple features being 

integrated into a single object representation.  

To explain how we can observe evidence for an object benefit in the same context as 

evidence for independent failures of memory we propose a major departure from previous 

theories of visual working memory, which have proposed that memory limitations arise 

entirely from the availability of some limited-commodity resource that's either quantized 
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into slots (Zhang & Luck, 2008) or continuously divisible (Alvarez & Cavanagh, 2004; 

Bays & Husain, 2008; Wilkin & Ma, 2004). Here we propose that stochastic noise 

processes impose an important additional constraint on memory — above and beyond any 

limits due to the availability of a limited commodity (slots or resources). On this account, 

the survival of memory representations is probabilistic, and therefore can be different even 

for two objects that received equal resources. The co-occurrence of an object-benefit 

without the integration of object features can be accommodated by this probabilistic feature 

store framework with two assumptions: (1) the number of objects represented is one of 

many factors that increase the amount of stochastic noise in the system, and (2) feature 

representations can fail independently (i.e., are not integrated).  

The present results suggest that there is reduced likelihood of representational 

failure in the 5–object condition relative to the 10–object condition but that the locus of 

failure is still independent features rather than coherent objects. One reason why 

representations may be more likely to fail when attempting to store more objects is that our 

working memory system may be assisted by a top-down reactivation or rehearsal mechanism 

that acts in an object-based fashion to decrease representational failure (Schneider, 1999). 

While more items competing for representation may lead to an increased probability of 

representational failure for all features, we suggest that these failures are stochastic and 

occur independently (Huang, 2010). This probabilistic feature store account fits well with 

neural models of memory representation. For example, there is strong evidence that the 
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biophysical processes that underlie maintenance of memory representations are stochastic 

and noisy (Ma, Beck, Latham, & Pouget, 2006; Rolls, 2008; Rolls & Deco, 2010; Tegner, 

Compte, & Wang, 2002; Treves, Panzeri, Rolls, Booth, & Wakeman, 1999; Wang, 2001) 

and that the neural substrates of memory for precise perceptual judgments are the neural 

regions involved in coding stimulus identity during perception (Harrison & Tong, 2009; 

Serences, et al., 2009). If representations for different features of objects are sustained in 

independent, noisy neural populations but are assisted by a reactivation mechanism that 

acts in an object-based fashion, then this could produce object-based benefits without 

storage of object-based representations. On this view, features that are coded independently 

perceptually and neurally (so called separable dimensions, Cant et al., 2008; Drucker, Kerr, 

& Aguirre, 2009; Garner, 1974; Livingstone & Hubel, 1988), such as color and 

orientation may have largely independent instances of representational failure, whereas 

integral features such as height and width (Garner, 1974) may fail together.  

 This account places the locus of working memory limitations at storage rather than 

at encoding or perception.  Past work has suggested that object-based limitations arise 

during storage, not encoding, in part because the effects is observable across a range of 

encoding intervals (Vogel, et al., 2001) and across methods of stimulus presentation (e.g. 

placing features at the same spatial positions; Fougnie, Asplund, & Marois, 2010; Lee & 

Chun, 2001). Indeed, in a separate study on 6 participants we still observed a sizeable 

object benefit when we doubled the encoding duration for each condition (2400ms; p < 



	   14	  

.05). However, it’s possible that there are encoding limitations that are not resolved by the 

amount of time for encoding information, and that these limitations are reduced with 

fewer discrete objects. The present results would still imply that the factors that influence 

encoding capability would be distinct from the nature of the encoding representations.  

Specifically, it is possible that the encoding of features may be probabilistic and 

independent (Vul & Rich, 2010; Kyllingsbæk & Bundesen, 2007) but that encoding is 

more likely to be successful for each feature when there are fewer objects. Thus, regardless 

of the source of the object benefit, by demonstrating an object benefit in the same context 

as independent failures of features, the present study highlights that determining which 

factors influence representational failure does not necessarily inform us about the nature of 

the underlying representations. This insight will require modification to existing models 

and theories (e.g. Cowan, 2001; Luck & Vogel, 1997) and more broadly in how we 

conceive of representational limitations.   
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Footnotes 

1 A large object benefit was also observed when comparing responses for the feature that was probed first 
ruling out retrieval costs (Woodman & Vecera, 2011) as driving the object benefit. 	  

2  Both measures showed split-half reliability—measures for odd trials were correlated with measures for even 
trials, (degree of integration, r = .59, p < .05; percent increase in capacity, r = .43, p < .05).  Note that the 
split-half reliability measure drastically reduces the number of trials contributing to the model and will 
underestimate the maximum correlation you could observe between the measures.  To increase the number 
of trials included in the estimate of degree of integration the criteria for classifying guess trials was reduced 
to 1 standard deviation. 

3 The measure of integration in this analysis is determined by how often participants guessed on the second 
response. Therefore, worse performance for the second response could lead to an overestimate of the degree 
of integration.  Importantly, this analysis will never underestimate the degree of integration.  

4 We thank Geoff Woodman for pointing out this concern.
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Figure captions 

Figure 1: Trial timeline (left to right) for the 5-object condition (top row) and 10-object condition 

(bottom row).  On some trials participants were asked to report color before orientation.   

Figure 2: Histogram of color response errors for the 10–object condition of a representative 

participant.  Response error distributions were fit with a mixture of a uniform and a Von Mises 

distribution (red line; Zhang & Luck, 2008) in order to estimate the frequency and precision of 

memory responses.  

Figure 3: Modeled response error distributions using the average of the best fitting parameter 

values for each participant.  A: Response error distributions for the 5-object (solid lines) and 10-

object (dotted lines) conditions for color (red) and orientation (blue) responses.  B: Response error 

distributions for all trials of the 5-object condition (solid lines) compared to the subset of trials 

where participants guessed for the other feature of that object (dotted lines) for color (red) and 

orientation (blue) responses.  

Figure 4: (A) The parameter estimates of the percent memory responses for the 10-object and 5-

object conditions averaged across participants. (B) A comparison of the percent increase in 

memory responses for 5-object compared to 10-object displays (object benefit; left bar) and the 

percent decrease in memory responses in the 5-object condition given that a participant guessed on 

the object’s other feature (degree of integration; right bar).  Note that if the object benefit was 

caused by participants storing integrated representations then these two measures should be 

identical.   
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Figure 5: Scatter plot of participants increase in memory responses for 5-object compared to 10-

object displays (X axis) and the percent decrease in memory responses given that a participant 

guessed on the object’s other feature (Y axis).  These two measures were not significantly correlated 

(r2 = .11). 
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