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Abstract

Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many
PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different
cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis.
We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in
nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and
treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but
not glucose, sulfate, or phosphate suppressed the phenotype of the double DtreYZDtreS mutant. Exogenous trehalose or
ammonium nitrate does not suppress the growth defect of the double DtreYZDtreS mutant by suppressing the plant
defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but
most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the DtreYZDtreS in trans.
Surprisingly, the growth defect of the double DtreYZDtreS double mutant was suppressed by various Arabidopsis cell wall
mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even
though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors.
An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a
process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the
intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a
highly conserved ‘‘house-keeping’’ anabolic pathway (trehalose biosynthesis) as a potent virulence factor that allows it to
replicate in the intercellular environment of a leaf.
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Introduction

The ubiquitous bacterium Pseudomonas aeruginosa is a Gram-

negative opportunistic pathogen that infects a wide diversity of

hosts. For example, P. aeruginosa strain PA14 is infectious in several

model genetic hosts including the plant Arabidopsis thaliana [1], the

insect Drosophila melanogaster [2], and the nematode Caenorhabditis

elegans [3]. Using these model hosts, we and others have sought to

identify PA14 virulence-related factors that play key roles in

pathogenesis with the goal of elucidating conserved mechanisms

underlying the pathogenic process and to determine whether the

spectrum of virulence-related genes in a multi-host opportunistic

pathogen are distinct from the virulence genes in more specialized

pathogens [1–7]. Our work to date suggests that PA14 virulence

depends primarily on genes that are part of a conserved P.

aeruginosa genome [8] rather than on an arsenal of host-specific

virulence-related factors [8,9].

One of the most unusual and unexpected features of P. aeruginosa

is its ability to infect both plants and animals. Because plant cells

are distinguished from metazoan cells primarily by their rigid and

tough cellulosic walls, we reasoned that P. aeruginosa pathogenesis

in plants may rely on plant-specific virulence factors related to the

plant cell walls. Presumably as a consequence of these tough plant

cell walls, most bacterial foliar pathogens replicate extracellularly

in intercellular spaces and subvert plant cellular processes such as

sugar transporters to obtain nutrients from mesophyll cells rather
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than attempting to directly breech plant cell walls. For example,

Xanthomonas oryzae pv oryzae utilizes the Type III secretion system to

inject transcriptional activators into plant mesophyll cells that

upregulate the expression of sugar transporters that are not

normally expressed in these cells [10].

In this paper, we report that the non-reducing disaccharide

trehalose, made of two glucose residues joined by an atypical a,a-

1,1-glucoside linkage, is a key virulence factor for P. aeruginosa

PA14 pathogenesis in Arabidopsis leaves, but is not required for

virulence in nematodes, flies, or mice. Trehalose is a common

metabolite that has been shown to be involved in conferring

tolerance to a variety of environmental stresses in diverse

prokaryotic and eukaryotic species [17,25,26]. In PA14, trehalose

is synthesized by enzymes encoded in two adjacent predicted

operons, treYZ and treS, that utilize distinct mechanisms of

synthesis. Deletion of these trehalose biosynthetic genes results in

a highly attenuated non-pathogenic phenotype that can be rescued

by trehalose and by various ammonium and nitrate sources, but

not by sucrose or glucose. In addition, Arabidopsis mutants

defective in the synthesis of the cell wall polymer xyloglucan also

suppress the non-pathogenic phenotype of P. aeruginosa trehalose

mutants. These data suggest that trehalose promotes the acqui-

sition of nitrogen-containing nutrients and that the xyloglucan

component of the plant cell wall is involved in this process, thereby

allowing P. aeruginosa to replicate in the nutrient-poor intercellular

spaces in a leaf. Our data show how pathogens can utilize what are

normally considered to be ‘‘house-keeping’’ functions, such as the

wide-spread ability to biosynthesize trehalose, as a potent virulence

factor that allows them to replicate in the particular environment

of a host.

Results

Trehalose production by PA14 is required for virulence in
Arabidopsis

Reasoning that the tough cellulosic walls of plant cells may pose

a unique challenge to plant pathogens, we surveyed the fully

sequenced and annotated P. aeruginosa PA14 genome [4] to

determine whether canonical cell wall degrading enzymes

including cellulases, xylanases, and pectinases are encoded in the

genome. In susceptible ecotypes (wild accessions) of Arabidopsis, P.

aeruginosa PA14 causes soft-rot symptoms [1], typically caused by

pathogens that secrete pectinases and other hydrolytic cell wall

degrading enzymes. Moreover, PA14 infection causes extensive

degradation of Arabidopsis mesophyll cell walls including the

generation of ‘‘holes’’ approximately the diameter of P. aeruginosa

through which the bacteria enter host cells [11]. We thus expected

that the PA14 genome would encode a variety of cell wall

degrading enzymes (CWDEs). However, our survey of the PA14

genome identified only a single, candidate cellulase, identified

ambiguously as ‘‘cellulase/peptidase’’ (PA14_36500). Although

PA14_36500 was upregulated two and three days post-inoculation

in planta, correlating with the development of disease symptoms

(Figure S1A), a transposon insertion in PA14_36500

(PA14_36500::MAR2xT7), in-frame deletion of the cellulose/

peptidase gene (DPA14_36500), or in-frame deletion of a putative

cellulase/peptidase operon (DPA14_36480-36520) did not cause a

significant attenuation in virulence in Arabidopsis leaves (Table

S1).

Because PA14_36500, which encodes the putative cellulose/

peptidase, was induced during plant infection and because genes

are often functionally clustered on bacterial genomes, we sought to

identify genes adjacent to PA14_36500 that are co-regulated with

PA14_36500. This led to the identification of a set of 38 genes

(42.23 kb region; PA14_36375 to PA14_36830) spanning the

cellulase/peptidase gene that is coordinately down-regulated in an

mvfR (multiple virulence factor regulator) mutant grown under

various culture conditions [12,13]. Importantly, the quorum

sensing-associated transcriptional regulator MvfR is required for

maximum PA14 virulence in Arabidopsis [7]. Consistent with the

in vitro transcriptional profiling data, cellulase/peptidase

PA14_36500 expression was significantly reduced in planta in an

mvfR mutant (Figure S1B).

Besides the putative cellulase/peptidase, the PA14_36375–

36830 42.23 kb region encodes putative glucanolytic enzymes

(PA14_36590, PA14_36630, PA14_36740) as well as two closely

linked predicted operons (http://www.pseudomonas.com),

PA14_36570-36630 consisting of six genes, and PA14_36710-

37640 consisting of three genes, referred to hereafter as the ‘‘treYZ’’

and ‘‘treS’’ operons, respectively, that encode enzymes involved in

two different trehalose biosynthetic pathways (Figure 1; Table S2).

TreY and TreZ convert maltodextrins into trehalose in a two-step

enzymatic reaction [14], whereas TreS catalyzes conversion of

maltose into trehalose in a single reaction [15] (Figure S2). In

addition to treY (PA14_36605) and treZ (PA14_36580), the

predicted treYZ operon contains glgA (PA14_36570), malQ

(PA14_36590), hypothetical gene (PA14_36620) and glgX

(PA14_36630). glgA, malQ, glgX encode enzymes with a putative

role in a-1,4-linked glucan synthesis (glgA) and degradation (malQ,

glgX), that could serve as precursors for trehalose synthesis. In

addition to treS, the treS operon contains a predicted a-amylase

(PA14_36740), and glgB (PA14_36710), a predicted a-1,4-branch-

ing enzyme (Figure 1).

The 42.23 kb PA14_36375–36830 region containing 38 genes

is highly conserved among several sequenced P. aeruginosa strains

that were examined and the treYZ and treS operons are conserved

among pseudomonads in general (Table S2).

We utilized a previously constructed non-redundant PA14

transposon insertion mutant library [16] to determine whether

particular PA14 genes in the 38-gene region promote pathogenesis

in Arabidopsis. Among 16 transposon insertions in 16 different

genes that were available in the library, two were significantly

Author Summary

Pseudomonas aeruginosa is an opportunistic human
bacterial pathogen that infects a wide range of plants
and animals, including the model laboratory plant
Arabidopsis thaliana. P. aeruginosa utilizes many of the
same virulence-related factors to infect both plants and
animals. However, because plants have fundamentally
different cellular architecture than animals, we hypothe-
sized that P. aeruginosa synthesizes specific factors
required for infecting plants but not animals. We found
that synthesis of the sugar molecule trehalose, an unusual
dimer of glucose, is required for plant but not animal
pathogenesis. Although P. aeruginosa mutants defective in
trehalose synthesis are non-pathogenic in Arabidopsis,
Arabidopsis mutants that lack the polysaccharide xyloglu-
can in their cell walls can be infected by P. aeruginosa
trehalose mutants. Moreover, application of ammonium
nitrate overcomes the requirement for trehalose for
infecting an Arabidopsis leaf. Our data suggest that
trehalose promotes the acquisition of nitrogen-containing
nutrients, thereby allowing P. aeruginosa to replicate in the
nutrient-poor intercellular spaces in a leaf. This work shows
how an opportunistic pathogen has repurposed a highly
conserved ‘‘house-keeping’’ function (trehalose biosynthe-
sis) as a potent virulence factor.

P. aeruginosa Requires Trehalose for Virulence
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attenuated in virulence. These mutants, with insertions in glgA and

treZ, exhibited a decrease in virulence of 20 and 16 fold,

respectively, as measured by in planta growth (Table S1). glgA

and treZ are the first two genes in the treYZ operon, pointing to an

important role for trehalose in the infectious process.

To further investigate whether the trehalose operons and/or

other genes in the 38-gene cluster are required for virulence, we

constructed an in-frame deletion of the entire 42.23 kb region

(referred to hereafter as D42) by homologous recombination. In

contrast to insertions in glgA and treZ, which exhibited at most a 20

fold decrease in growth compared to wild-type, the D42 mutant

exhibited severe attenuation in virulence, affecting growth of PA14

infiltrated into Arabidopsis leaves about 120 fold and preventing

the appearance of pathogenic symptoms (Figure 2A). Similar

results were obtained with four independently constructed D42

mutants (data not shown), demonstrating that the non-pathogenic

phenotype was caused by the deletion of the 42.23 kb region.

Importantly, the D42 mutant does not appear to be slow growing

or to be generally deficient in a variety of phenotypes associated

with virulence in P. aeruginosa. The D42 deletion mutant was not

auxotrophic, grew at the same rate as wild-type PA14 in a variety

of minimal and rich media, and had no observable phenotypes

with respect to the production of pyocyanin (Figure S3), motility,

or biofilm formation (Table S3), and similar results were obtained

Figure 1. Annotation of a 42.23 kb region of the P. aeruginosa PA14 genome encoding 38 genes (PA14_36375–36830) and
schematic representation of transposon and deletion mutants used in this study. Colors depict trehalose biosynthetic genes (red),
glucanolytic genes (blue) and glucan synthesis genes (yellow). Numbers below the genes correspond to PA14 gene locus tags (http://ausubellab.
mgh.harvard.edu/pa14sequencing). On the top of the Figure, vertical arrows indicate the positions of MAR2xT7 transposon insertions [16], and on the
bottom, horizontal arrows denote the extent of in-frame deletion mutants.
doi:10.1371/journal.ppat.1003217.g001

Figure 2. Attenuation of D42 and trehalose biosynthetic mutants in Arabidopsis leaves and suppression of attenuation of trehalose
mutants with exogenous trehalose. (A) Columbia (Col-0) ecotype plants were infiltrated with PA14 wild-type or D42. Leaves were harvested 3
days after infiltration and bacterial counts determined as described in Materials and Methods. Representative photographs of infected leaves were
taken 3 days after infiltration. Four independently constructed D42 mutants exhibited the same dramatic non-pathogenic phenotype in Arabidopsis
leaves. The experiment was repeated more than three times. (B, C) Before the infiltration of leaves with PA14 wild-type or PA14-derived deletion
mutants, trehalose (Tre) at the indicated concentrations was added to bacterial suspensions. In panel B, the trehalose concentration was 2.5 mg/ml.
The leaves were harvested 3 days post-infiltration (dpi) and bacterial counts determined as described in Materials and Methods. Data represent the
mean of bacterial titers 6 SE of six leaf disks excised from 6 leaves of 3 plants. Letters above bars denote statistically significant differences (P,0.05,
Fisher’s PLSD test). See Figure 1 for a description of the mutants. The experiments in (B) and (C) were repeated four times and two times, respectively.
doi:10.1371/journal.ppat.1003217.g002

P. aeruginosa Requires Trehalose for Virulence
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with a second independently-constructed D42 mutant (Figure S3;

Table S3). Because independently-constructed D42 mutants

exhibited the same phenotypes, one of the D42 mutants was

chosen for subsequent experiments.

We next constructed several smaller deletions within the 42 kb

region to determine which of the 38 encoded genes are primarily

responsible for the severe avirulent phenotype of D42:

DPA14_36375-36560 (sub-region I) contains a deletion of the

cellulase/peptidase operon and several adjacent genes, and

DPA14_36570-36700 (sub-region II) and DPA14_36710-36830

(sub-region III) contain deletions of the treYZ and treS genes,

respectively, including some neighboring genes (Figure 1).

Deletion of sub-region I that includes the putative cellulase/

peptidase gene had a modest 3.3 fold reduction in virulence. In

contrast, deletion of sub-region II that contains the treYZ operon

had a much more significant effect on virulence (28.7 fold decrease

in growth; Figure S4), whereas deletion of sub-region III that

contains the treS operon caused a 5.9 fold decrease in growth

(Figure S4). These experiments suggested that the treYZ and treS

operons play a significant role in PA14 pathogenesis in

Arabidopsis.

To corroborate the involvement of the trehalose genes in plant

pathogenesis we constructed DPA14_36570-36630 (DtreYZ) and

DPA14_36710-36740 (DtreS) containing deletions of only the two

putative operons containing the treYZ and treS genes, respectively,

and DPA14_36570-36630;PA14_36710-36740 (DtreYZDtreS) con-

taining deletions of both of the trehalose biosynthetic operons

(Figure 1). Deleting either the putative treYZ or the treS operons

(Figure 2B) had approximately the same effects as deleting the

more extensive corresponding subregions II or III, respectively

(Figure S4), and deleting both trehalose operons resulted in an

approximately 50 fold decrease in virulence compared to the

approximate 120 fold decrease observed with the D42 mutant

(Figure 2B). These data show that the treYZ and treS operons play a

key role in pathogenesis in Arabidopsis leaves, but that genes in the

42 kb region in addition to those involved in trehalose biosynthesis

also play a role in plant pathogenesis.

Further evidence suggesting an important role for trehalose

biosynthesis in plant pathogenesis was obtained by measuring the

levels of trehalose synthesized in vitro by PA14 wild-type and

trehalose biosynthetic mutants. While wild-type PA14 synthesized

readily detectable levels of trehalose, there was approximately 50%

less trehalose in the DtreS mutant, and there were undetectable

levels of trehalose in the glgA, treZ, DtreYZ, DtreYZDtreS, and D42

mutants (Table 1). These data show that the treYZ and treS operons

encode enzymes involved in trehalose biosynthesis. These data

also suggest that treS operon may be dependent on treYZ for

trehalose production, as reported previously [17]. When we

compared the levels of trehalose synthesized in vitro (Table 1) and

the extent of growth of the various strains in Arabidopsis leaves

(Figure 2B; Table S1), we found an excellent positive correlation

coefficient (R2 = 0.87).

Importantly, we found that co-infiltration of the PA14 trehalose

mutants and pure trehalose essentially completely suppressed the

avirulent phenotypes of the DtreYZ, DtreS, and DtreYZDtreS mutants

and mostly suppressed the phenotype of the D42 mutant

(Figures 2B and 2C). However, 0.25 mg/ml trehalose also rescued

the D42 mutant almost as well as 2.5 mg/ml, and 0.025 mg/ml

trehalose partially suppressed the growth defect of the D42 mutant

(Figure 2C). These data indicated a requirement for trehalose for

PA14 virulence in planta, potentially at physiologically relevant

concentrations.

In summary, the data in this section shows that the DtreYZ,

DtreS, and DtreYZDtreS mutants are less virulent in planta, that they

either synthesize undetectable (DtreYZ and DtreYZDtreS) or reduced

(DtreS) levels of trehalose, that their level of virulence positively

correlates with the level of trehalose they synthesize, and that their

reduced virulence phenotype can be suppressed by exogenous

trehalose. These data demonstrate that the virulence deficient

phenotypes of the DtreYZ, DtreS, and DtreYZDtreS mutants are a

consequence of the inability of these strains to synthesize trehalose,

thereby correlating the genotype of these mutants with their

avirulent phenotypes.

Trehalose biosynthetic genes are not required for
virulence in metazoans

As described in the Introduction, PA14 infection models have

previously been established in C. elegans [3], D. melanogaster [18],

and mice [19,20], as well as in other metazoans. Interestingly, the

DtreYZDtreS double trehalose mutant was not less virulent in a C.

elegans killing model or in a murine acute pneumonia model. In

fact, the DtreYZDtreS appeared to be slightly more virulent in the

metazoan hosts (Figure 3). Similar results were obtained with the

D42 mutant in these two models as well as in a D. melanogaster

ingestion model and in a chronic oropharyngeal colonization

model in transgenic mutant mice lacking the cystic fibrosis

transmembrane conductance regulator protein (see Materials

and Methods for the mutant description)(Figure S5). These data

suggest that trehalose appears to be specifically required for plant

but not for metazoan pathogenesis. In the sections that follow, we

considered several hypotheses concerning the role of trehalose in

promoting the virulence of P. aeruginosa during the infectious

process in plants but not in animals.

Specific Arabidopsis cell wall mutants suppress the
phenotype of PA14 trehalose mutants

Since a major difference between plant and animals cells is the

plant cellulosic cell wall, we reasoned that trehalose may function

in a process that involves the plant cell wall. Because PA14

infection in Arabidopsis leaves causes extensive degradation of

mesophyll cell walls [11], we first investigated the possibility that

trehalose enhances the activity of cell wall degrading enzymes

(CWDEs). We tested whether trehalose enhanced the activity of a

variety of commercial CWDEs to hydrolyze partially purified

Arabidopsis cell walls in vitro to generate reducing sugars, which

were measured using the Somogyi-Nelson assay [21,22]. However,

we were not able to conclusively demonstrate that trehalose

enhanced the activity of the CWDEs tested (data not shown).

Table 1. Trehalose levels in the trehalose mutants.

Strains Trehalose (mg/ml)

1. PA14_36570::MAR2xT7 (glgA) not detected

2. PA14_36580::MAR2xT7 (treZ) not detected

3. DPA14_36570-36630 (DtreYZ) not detected

4. DPA14_36710-36740 (DtreS) 0.21260.015

5. DPA14_36570-36630;PA14_36710-36740 (DtreYZtreS) not detected

6. DPA14_36375-36830 (D42) not detected

7. WT 0.44460.003

P. aeruginosa strains were grown at 37uC in MinA medium supplemented with
0.5 M NaCl. Trehalose was extracted and quantified enzymatically as described
in Materials and Methods. See Figure 1 for a description of the mutants. Data
represent the mean 6 SE of two replicate samples and are representative of at
least three independent experiments.
doi:10.1371/journal.ppat.1003217.t001

P. aeruginosa Requires Trehalose for Virulence
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We next reasoned that if trehalose interacts with the plant cell

wall, specific Arabidopsis cell wall mutants might suppress the

phenotype of the DtreYZDtreS mutant. We tested the growth of

wild-type PA14 and the DtreYZDtreS mutant in several Arabidopsis

cell wall mutants involved in xyloglucan (mur2-1, mur3-2, xxt1/

xxt2), arabinose (mur4-1), or cellulose (mur10-2) synthesis. Remark-

ably, the DtreYZDtreS mutant grew to the same titer as wild-type

PA14 in an xxt1/xxt2 double mutant that completely lacks

xyloglucan in its cell walls and in a mur4-1 mutant that has

decreased levels of arabinose in pectins, xylans, and xyloglucans

[23] (Figure 4). Similar results were obtained with the D42 mutant;

i.e., the Arabidopsis xxt1/xxt2 mutant completely suppressed and

the mur4-1 mutant mostly suppressed the avirulent phenotype of

the D42 mutant (Figure S6).

We ruled out the possibility that the Arabidopsis cell wall

mutants suppress the avirulent phenotype of the PA14 trehalose

mutants simply because they are generally more susceptible to

pathogen attack. As shown in Figure 5A, the cell wall mutants did

not exhibit enhanced susceptibility to the P. syringae pv. tomato

strain DC3000, a well-studied bona fide Arabidopsis pathogen. The

Arabidopsis cell wall mutants were also not more susceptible to a

DC3000 hrcC mutant (Figure 5B), which is greatly impaired in

virulence, or to the bean pathogen P. syringae pv. phaseolicola strain

3121 (Figure 5C), which is not normally pathogenic in

Arabidopsis. Consistent with these data, we also showed that the

xxt1/xxt2 mutant, which exhibits the most severe cell wall defect of

the Arabidopsis mutants tested, mounts a normal defense response

when challenged with the flagellin peptide flg22 (Figure 5D). Flg22

elicits so-called ‘‘pattern triggered immunity’’ in Arabidopsis.

When Arabidopsis leaves are pre-infiltrated with flg22, flg22 exerts

a protective effect against subsequent infection with P. syringae

DC3000 [24]. As shown in Figure 5D, flg22 elicits the same level

of protection against P. syringae DC3000 in xxt1xxt2 plants as in

wild-type plants.

Ammonium and nitrate but not glucose or sucrose
suppress the phenotype of trehalose mutants

As described in the Introduction, because bacterial plant

pathogens primarily replicate in the intercellular spaces in a leaf,

they need to acquire nutrients from plant mesophyll cells. We

therefore tested whether trehalose may be involved in the

acquisition of a variety of nutrient sources including carbon,

nitrogen, sulfur and phosphorous. If this were the case, we

reasoned that co-infiltration of particular nutrients with the

DtreYZDtreS or the D42 mutant would suppress their non-

pathogenic phenotypes.

Co-infiltration of the DtreYZDtreS double mutant with glucose

(Figure 6) or co-infiltration of the D42 mutant with glucose or

sucrose (Figure S7A) did not rescue the attenuated phenotype in

the Arabidopsis leaf assay. These experiments showed that the

Figure 3. The DtreYZDtreS mutant is more virulent than wild-type PA14 in nematodes and mice. (A) C. elegans are more susceptible to
killing by DtreYZDtreS than PA14 wild-type (P,0.0001). Mutant fer15;fem1 C. elegans animals were exposed to P. aeruginosa strains and survival was
determined as described in Materials and Methods. Data at each time point correspond to the average of three plates per strain, each with
approximately 40 animals per plate, and are representative of two independent experiments. (B) The D42 mutant is more virulent than wild-type
PA14 in a murine acute lung infection model. See Materials and Methods for details of infection protocol. The median CFU/gram of lung tissue of
mice infected with DtreYZDtreS is 2-fold higher than with wild-type PA14 18 hours post intranasal infection (P,0.05, Mann-Whitney U test). Data are
representative of two independent experiments.
doi:10.1371/journal.ppat.1003217.g003

Figure 4. The in planta growth defect of the PA14 DtreYZDtreS
mutant in Arabidopsis is suppressed by cell wall mutations.
Growth of PA14 wild-type and the DtreYZDtreS mutant 3 days post
infiltration in Arabidopsis cell wall mutants mur2-1, mur3-2, mur4-1,
mur10-2 and xxt1/xxt2. Data represent the mean of bacterial titers 6 SE
of six leaf disks excised from 6 leaves of 3 plants. Letters above bars
denote statistically significant differences (P,0.05, Fisher’s PLSD test).
The experiments were repeated at least two times.
doi:10.1371/journal.ppat.1003217.g004
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DtreYZDtreS or the D42 mutant is not limited by carbon. The fact

that trehalose but not glucose or sucrose suppressed the phenotype

of the D42 mutant also shows that the putative cellulase/peptidase

and other hypothetical glucanolytic enzymes encoded in the 38

gene region deleted in the D42 mutant do not play a critical role in

supplying a carbon source to PA14.

We also entertained the possibility that PA14 could accumulate

trehalose as a storage sugar, analogous to glycogen or starch, and

then hydrolyze trehalose using the enzyme trehalase

(PA14_33450, treA) and utilize the resulting glucose as a carbon

source, thereby promoting virulence. We ruled out this possibility,

however, by showing that co-infiltration of a double D42treA::

MAR2xT7 mutant (which cannot metabolize trehalose) with

trehalose rescued the non-pathogenic phenotype similarly as co-

infiltration of the D42 mutant with trehalose (Figure S7B). We

also confirmed that the D42treA::MAR2xT7 cannot metabolize

trehalose and utilize it as a carbon source (see Materials and

Methods).

Finally, we tested various salts to determine whether they would

suppress the phenotypes of the DtreYZDtreS (Figure 6) or the D42

mutant (Figure S8). Interestingly, ammonium and nitrate ions

almost completely suppressed the lack of growth phenotype of the

DtreYZDtreS (Figure 6) or the D42 mutant (Figure S8), whereas

sulfates and phosphates did not have a significant effect.

The data in this section suggest that trehalose enhances access to

nitrogen sources during an Arabidopsis infection. An alternative

model is that ammonium nitrate (as well as trehalose) suppresses

the avirulent phenotype of the PA14 trehalose mutants by

suppressing the plant defense response. To test this possibility,

we tested whether infiltration of leaves with trehalose or

ammonium nitrate resulted in enhanced susceptibility to P. syringae

DC3000 (Figure 7A), the DC3000 hrcC mutant (Figure 7B), or P.

syringae pv. phaseolicola strain 3121 (Figure 7C); however, neither

trehalose nor ammonium nitrate increased the susceptibility to any

of these strains. Moreover, infiltration of trehalose or ammonium

nitrate did not block the ability of flg22 to elicit protection against

infection by P. syringae DC3000 (Figure 7A).

Trehalose does not appear to function as a stress-
response molecule either in vivo or in vitro

Trehalose is well-studied as a so-called compatible solute, which

is defined as a molecule that functions as an osmolyte and helps an

organism survive osmotic stress. We therefore tested whether other

di- and trisaccharide compatible solutes would suppress the

avirulent phenotype of the D42 mutant. Indeed, as shown in

Figure S9, both maltose and maltotriose functioned similarly to

trehalose in allowing the D42 mutant to grow in planta, albeit

somewhat less efficiently than did trehalose.

Figure 5. Arabidopsis cell wall mutants are not more susceptible to virulent or non-pathogenic P. syringae strains and the xxt1/xxt2
mutant mounts an effective innate immune response. Growth of (A) P. syringae pv. tomato strain DC3000 (B) P. syringae pv. tomato strain
DC3000 hrcC (C) P. syringae pv. phaseolicola strain 3121 three days post infiltration in Arabidopsis cell wall mutants mur2-1, mur3-2, mur4-1, mur10-2
and xxt1/xxt2 and Col-0 wild-type and (D) P. syringae pv. tomato strain DC3000 three days post infiltration of Col-0 and xxt1/xxt2 mutant preinfiltrated
with 1 mM flg22 for 24 hours. Data represent the mean of bacterial titers 6 SE of six leaf disks excised from 6 leaves of 3 plants. Letters above bars
denote statistically significant differences (P,0.05, Fisher’s PLSD test). Absence of letters indicates no statistically significant differences. The
experiments were repeated at least two times.
doi:10.1371/journal.ppat.1003217.g005
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Given these results, we next considered the hypothesis that

trehalose enhances the virulence of PA14 by ameliorating a variety

of environmental stresses [17,25,26]. However, the D42 mutant

was not more susceptible than wild-type PA14 to osmotic stress in

response to 0.5 M NaCl (Figure 8A). As a positive control for the

osmotic stress experiment, we constructed an in-frame deletion of

a predicted (http://www.pseudomonas.com) three-gene operon

(PA14_19350-19370) responsible for the synthesis of a major

organic osmoprotectant in P. aeruginosa, N-acetylglutaminylgluta-

mine amide (NAGGN) [27]. As expected, the DPA14_19350-

19370 mutant (DNAGGN) was more susceptible to 0.5 M NaCl

than wild-type PA14 or the D42 mutant (Figure 8A).

We further tested whether trehalose functions to protect PA14

from osmotic stress in vitro by comparing its ability to enhance growth

in minimal medium supplemented with 0.5 M NaCl compared to

the well-studied osmoprotectant molecule betaine [27]. In vitro,

betaine rescued the growth of PA14, D42, and the DNAGGN mutant

in 0.5 M NaCl whereas trehalose had no effect (Figure S10A). We

also tested whether betaine would rescue the D42 mutant for in planta

growth, similarly to trehalose. However, as shown in Figure 8B,

betaine had no significant effect in rescuing D42 growth in planta,

showing that the ability of trehalose to rescue D42 in planta is not

likely due to the fact that it is functioning to protect D42 from

osmotic stress. In contrast to D42, the DNAGGN mutant, which is

very susceptible to osmotic stress in vitro, had no significant

impairment in growth in planta (Table S1). These data show that

the D42 mutant is not highly susceptible to osmotic stress and that

trehalose does not play a major role as an osmoprotectant in PA14.

As an alternative to functioning as an osmoprotectant, we

investigated whether trehalose protects PA14 from reactive oxygen-

mediated stress generated as a consequence of the plant innate

immune response. However, we found no significant difference

between the D42 mutant and wild-type PA14 with respect to

tolerance to paraquat or hydrogen peroxide (Figures 8C and 8D,

respectively). Because a P. aeruginosa zwf mutant has been reported to

be hyper-sensitive to paraquat-mediated killing [28], we also tested

a PA14 zwf::MAR2xT7 mutant [16] as a positive control for

determining the sensitivity of PA14 and D42 to paraquat. As shown

in Figure 8C, the zwf mutant exhibited enhanced susceptibility to

Figure 6. The in planta growth defect of the DtreYZDtreS double
mutant is suppressed by ammonium or nitrate ions. Leaves of
four-week-old Arabidopsis Col-0 plants were infiltrated with PA14 wild-
type or with D42 co-inoculated with various solutions of phosphate,
sulfate, nitrate, or ammonium salts at 1 mM. Suppression of the growth
defect of D42 with 2.5 mg/ml trehalose (Tre) and 1.25 mg/ml glucose
(Glc) were tested as positive and negative controls, respectively. Data
represent the mean of bacterial titers 6 SE of six leaf disks excised from
6 leaves of 3 plants. Letters above bars denote statistically significant
differences (P,0.05, Fisher’s PLSD test). The experiments were repeated
at least two times.
doi:10.1371/journal.ppat.1003217.g006

Figure 7. Trehalose or ammonium nitrate does not suppress the Arabidopsis flg22-mediated defense response and does not make
Arabidopsis more susceptible to non-pathogenic P. syringae strains. (A) Growth of P. syringae pv. tomato strain DC3000 three days post
infiltration of Col-0 plants pretreated for 24 hours with 1 mM flg22, 1 mM trehalose, 1 mM ammonium nitrate individually or with a mixture of flg22
with trehalose or ammonium nitrate. (B) P. syringae pv. tomato strain DC3000 hrcC or (C) P. syringae pv. phaseolicola strain 3121 were co-inoculated
with 1 mM trehalose or 1 mM ammonium nitrate and bacterial counts determined 3 days post infiltration. Glucose or glucose plus ammonium nitrate
were included as controls. Data represent the mean of bacterial titers 6 SE of six leaf disks excised from 6 leaves of 3 plants. Letters above bars
denote statistically significant differences (P,0.05, Fisher’s PLSD test). Absence of letters indicates no statistically significant differences. The
experiments were repeated at least two times.
doi:10.1371/journal.ppat.1003217.g007
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paraquat in vitro, but did not exhibit an impaired growth phenotype

in planta (Table S1). These data show that it is unlikely that trehalose

functions to protect PA14 from oxidative stress.

In addition to oxidative and osmotic stress, we also tested

whether the D42 mutant is susceptible to pH or temperature stress,

displayed a defect in biofilm formation under osmotic stress, or

was deficient in the generation of persister cells in the presence of

antibiotics. However, wild-type PA14 and the D42 mutant were

indistinguishable in all of these tests (Figure S10B–E).

Trehalose functions extracellularly
The data in the previous section suggest that trehalose does not

function intracellularly to protect PA14 from a variety of stresses

during free-living growth. To provide evidence that trehalose

functions extracellularly, we tested whether wild-type PA14

‘‘complements’’ the growth defect of PA14 trehalose mutants in

planta. Specifically, we co-inoculated Arabidopsis leaves with equal

mixtures of wild-type PA14 and the DtreYZDtreS double trehalose

mutant carrying plasmids that express GFP or DsRed, respectively

(Figure 9A). Dramatically, co-inoculation of wild-type PA14 with

DtreYZDtreS completely rescued the growth defect of DtreYZDtreS

(Figure 9A), strongly suggesting that trehalose is most likely acting

extracellularly and not internally within PA14 cells. Similar results

were obtained when PA14 expressing GFP was mixed with the

D42 mutant expressing DsRed (Figure 9B, left panel). In this latter

experiment, to make sure that the expression of red or green

fluorescent protein does not affect bacterial strain viability, we also

carried out an experiment in which the plasmids expressing

fluorescent proteins were switched in wild-type PA14 and the

D42 mutant and obtained the same result (Figure 9B, right

panel).

Discussion

In this study, we report that synthesis of the disaccharide trehalose

by the multi-host opportunistic pathogen P. aeruginosa is required for

plant pathogenesis, but not for pathogenesis in at least three

metazoan hosts, mice, D. melanogaster or C. elegans. Trehalose has

been extensively characterized as a stress-response molecule that

protects cells from osmotic, oxidative, and other environmental

stresses. Surprisingly, however, our data suggest that trehalose does

not function internally in P. aeruginosa to alleviate a variety of stresses

that P. aeruginosa might encounter in its interaction with a plant host.

Trehalose also does not function as a major osmoprotectant molecule

for P. aeruginosa. Instead, because nitrate and ammonium ions, but not

glucose, sucrose, or betaine, suppress the non-pathogenic phenotype

of trehalose mutants in planta, we propose that trehalose may function

to promote the acquisition of nitrogen-containing nutrients, thereby

allowing P. aeruginosa to replicate in the intercellular spaces in a leaf.

Moreover, because Arabidopsis cell wall mutants also suppress the

non-pathogenic phenotype of the trehalose mutants, it is possible that

the plant cell wall normally functions directly or indirectly as a barrier

to block nutrient uptake by extracellular bacteria.

Trehalose as a virulence factor for plant and animal
pathogens

An important result from this work is that in contrast to many

other bacteria and fungi, trehalose appears to have very little effect

Figure 8. The D42 mutant is not more susceptible to osmotic or oxidative stress. (A) Growth of D42, DNAGGN and PA14 wild-type under
osmotic stress in vitro. Cells were grown at 37uC in MinA medium supplemented with 0.5 M NaCl. Data represent the mean 6 SE of 3 replicates. (B)
The in planta growth defect of D42 is suppressed by trehalose but not betaine. See Figure 2 for experimental details. Data represent the mean 6 SE
of six replicate samples. (C) In vitro survival of PA14 wild-type, D42, and a PA14 zwf::MAR2xT7 mutant cultured for three days in MinA medium
supplemented with various concentrations of paraquat (PQ). (D) Survival of PA14 wild-type and D42 in LB medium containing 1 M or 2 M hydrogen
peroxide added directly to overnight cultures grown for 14 h (inoculum, zero time point on x axis). Cells were further incubated for 8 h at 37uC. 3 M
H2O2 was a lethal dose. All experiments in Figure 8 were repeated at least two times.
doi:10.1371/journal.ppat.1003217.g008
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on protecting P. aeruginosa PA14 from a variety of diverse stresses,

including osmotic, oxidative, pH, antibiotic, and temperature

stress, and yet trehalose mutants are highly impaired in virulence

in Arabidopsis. Instead of trehalose, our data show that N-

acetylglutaminylglutamine amide (NAGGN) and glycine-betaine

appear to be the primary stress response molecules in P. aeruginosa,

in agreement with published data showing that osmotically

stressed P. aeruginosa cultures accumulate NAGGN and glycine-

betaine [27,29]. Specifically, we found that a DNAGGN mutant

was highly impaired in growth under osmotic stress and that

exogenously added glycine-betaine, but not trehalose, protected

D42, DNAGGN, and wild-type PA14 from osmotic stress

(Figures 8A and S10A). Importantly, however, even though

glycine-betaine is a potent stress protection molecule in vitro, it did

not rescue the D42 mutant in vivo (Figure 8B). Conversely, the

DNAGGN or a zwf mutant, which are highly susceptible to osmotic

or oxidative stress, respectively, were not impaired in plant

infection (Table S1). These data suggest that trehalose does not

play a role as a stress protection molecule in P. aeruginosa during

plant infection.

Does trehalose function as a virulence factor for other bacterial

phytopathogens in addition to P. aeruginosa? As shown in Table S2,

the treYZ and treS trehalose biosynthetic operons are highly

conserved among pseudomonads, including P. syringae, but it is not

known whether trehalose functions as a virulence factor in these

species. A recent study showed that deletion of P. syringae trehalose

biosynthetic genes resulted in lowered fitness on the surface of

plant leaves, but whether this was due to reduced virulence or

increased susceptibility to hyperosmotic stress is not known [17].

What is the explanation for our observation that P. aeruginosa

does not require trehalose for pathogenesis in at least three diverse

metazoan hosts (mice, insects, and nematodes), and in fact may be

a detriment for infection? In contrast to plants, mammals do not

synthesize trehalose [30], and it is likely that trehalose, which is a

stable and non-reactive molecule, has little effect on mammalian

cells, at least at relatively modest concentrations. In the case of

insects, trehalose is a major component of the hemolymph.

Trehalose is also synthesized by C. elegans, where it accumulates

during the formation of desiccation-resistant dauer larvae [31] and

exogenous trehalose promotes C. elegans longevity [32]. Thus in the

case of flies and worms, trehalose is beneficial and it appears

unlikely that the additional levels of trehalose that are synthesized

by P. aeruginosa would have a significant physiological affect. The

apparent hypervirulence of the trehalose mutants in metazoan

models of infection may simply be the result of increased fitness of

the strain, which conserves energy by not synthesizing trehalose.

Role of plant cell walls in PA14 infection
Because Arabidopsis cell wall mutants suppress the non-

pathogenic phenotype of trehalose mutants, it seems likely that

the virulence-enhancing role of trehalose is mediated through the

plant cell wall. Can we attribute the lack of a particular plant cell

wall polymer as playing a key role in the suppression of the non-

pathogenic phenotype of the trehalose mutants? As shown in

Figures 4 and S7, several Arabidopsis mutants that we tested either

completely (xxt1/xxt2 and mur4-1) or partially (mur2-1, mur3-2, and

mur10-2) suppressed the phenotype of the trehalose mutants. A

common feature of all of the cell wall mutants that we tested

(Figures 4 and S6) is that they exhibit alterations in xyloglucan, the

most abundant hemicellulose in the walls of dicotyledonous plants.

The xxt1/xxt2 mutant completely lacks xyloglucan [33], mur2-1

and mur3-2 display altered side chains in xyloglucan [34,35], mur4-

1 has decreased levels of arabinose in xyloglucan [23], and mur10-2

exhibits alterations in xyloglucan remodeling throughout the plant

Figure 9. PA14 trehalose mutants are rescued in trans in planta by wild-type PA14. (A) Four-week-old Arabidopsis Col-0 plants were
inoculated with a 1:1 mixture of PA14 wild-type carrying pSMC2 (GFP) and the DtreYZDtreS mutant carrying pAA100 (DsRed) at a total concentration
of 3.56102 CFU/cm2 leaf area. As a control the strains were inoculated individually. (B) In the left panel, four-week-old Arabidopsis Col-0 plants were
inoculated with a 1:1 mixture of PA14 wild-type carrying pSMC2 (GFP) and the D42 mutant carrying pAA100 (DsRed) at a total concentration of
66102 CFU/cm2 leaf area. As a control the strains were inoculated individually. In the right panel, PA14 wild-type carried pAA100 and the D42 mutant
carried pSMC2. Three days post infiltration, leaves were harvested and CFU determined by counting colonies using a Zeiss Stemi SV6 dissecting
microscope fitted with a dual GFP/RFP filter. Data represent the mean of bacterial titers 6 SE of six leaf disks excised from 6 leaves of 3 plants and are
representative of three independent experiments.
doi:10.1371/journal.ppat.1003217.g009
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[36]. Interestingly, wild-type PA14 grew significantly less in mur3-2

than in Col-0 plants, showing that mur3-2 is more resistant to PA14

than wild-type plants. Thus, the fact that the trehalose mutants

grew to the same extent in mur3-2 as in Col-0 (Figures 4 and S6)

suggests that mur3-2 also partially suppresses its growth defect.

These data suggest that xyloglucan may be a key component of the

cell wall that affects the virulence of P. aeruginosa.

At the mechanistic level, it is not necessarily the case that the

rigid plant cell wall is functioning, for example, simply as a

physical barrier that blocks the ability of P. aeruginosa to extract

nutrients from the cytoplasm of mesophyll cells. If the primary role

of trehalose is to facilitate nutrient uptake, the source of the

nutrients could be the apoplastic fluid or even components of the

cell wall itself, such as specific cell-wall associated proteins.

Importantly, the enhanced susceptibility of the Arabidopsis cell

wall mutants to the P. aeruginosa trehalose mutants is not simply a

consequence of enhanced susceptibility to pathogens in general or

the inability of the cell wall mutants to elicit an effective defense

response. As shown in Figure 5, the cell wall mutants are not more

susceptible to virulent or non-pathogenic P. syringae strains and

appear to mount an effective innate immune response when

challenged with the flagellin peptide flg22.

How does trehalose promote P. aeruginosa virulence?
Specialized bacterial foliar phytopathogens primarily replicate

in the intercellular spaces between mesophyll cells. It is poorly

understood which plant-derived nutrients are critical for bacterial

growth in this environment as well as the mechanisms utilized by

pathogens to obtain nutrients from their hosts. The majority of

these pathogens utilize type III effectors not only to suppress the

host innate immune response [37,38] but also to extract nutrients

[10] from mesophyll cells. Interestingly, however, the P. aeruginosa

type III secretion system is not necessary for pathogenesis in plants

[6] and it seems unlikely that a broad host range pathogen such as

P. aeruginosa would encode host-specific effectors that subvert the

Arabidopsis sugar export system analogously to the Xanthomonas

effectors that activate glucose efflux in mesophyll cells [10].

Indeed, it also seems highly unlikely that any particular P.

aeruginosa strain has extensively co-evolved with any particular host

[4,9]. Instead, our finding that P. aeruginosa utilizes trehalose as a

major virulence factor for plant pathogenesis is consistent with our

studies with P. aeruginosa as a C. elegans pathogen, which have

shown that the majority of virulence related factors required to

infect nematodes correspond to genes that encode conserved

global transcriptional regulators or ‘‘house-keeping’’ genes that

encode enzymes involved in conserved metabolic processes [4,9].

Trehalose biosynthesis is highly conserved. All pseudomonads

(Table S2) and at least 30% of sequenced prokaryotic genomes

encode presumptive trehalose biosynthetic enzymes (J. Urbach

and F. Ausubel, unpublished data). It appears that P. aeruginosa has

capitalized on what is mostly likely an ancient biosynthetic

pathway to promote plant pathogenesis.

How does trehalose promote pathogenesis in an Arabidopsis

leaf? Trehalose can serve as a carbon and energy source for

growth of many bacteria and fungi including P. aeruginosa [25,39].

However, we have shown that sucrose and glucose do not suppress

the phenotype of P. aeruginosa trehalose mutants and co-inoculation

of a double D42treA::MAR2xT7 mutant (which cannot metabolize

trehalose) with trehalose rescues the non-pathogenic phenotype

similarly as co-inoculation of the D42 mutant with trehalose

(Figure S6). These data suggest that either the level of carbon is not

limiting or that trehalose is not involved in carbon acquisition. In

addition, experiments designed to determine whether trehalose

promotes activity of CWDEs failed to provide evidence that

trehalose plays a significant role in cell wall degradation, with the

caveats, however, that the experiments we carried out were done

in vitro with commercial CWDEs and that in our particular assay a

relatively low level of trehalose – enhanced hydrolysis would have

not been detected.

Does trehalose function as a general toxin to disrupt host

cellular processes? A number of studies have shown that

exogenously applied trehalose can have a major negative impact

on seedling growth and development [40–42]. On the other hand,

the concentrations of trehalose used in these seedling experiments

(from 30 mM to 100 mM) were significantly higher than the levels

that would be expected to be encountered under natural

conditions. By way of contrast, in our experiments we used

mature four-week old plants and substantially lower concentra-

tions of trehalose (most often 1 mM). In mature plants, trehalose

did not have a toxic effect as evidenced by the lack of any visible

symptoms following trehalose (1 mM) infiltration (data not shown).

Importantly, in our experiments, trehalose concentrations as low

as 0.74 mM largely suppressed the non-pathogenic phenotype of

the D42 mutant and 0.074 mM had a significant effect (Figure 2C).

Taken together, our data indicate that trehalose does not have a

toxic effect on mature plants in the P. aeruginosa - plant infection

model.

Does trehalose upregulate PA14 virulence genes expression? If

so, it would have to specifically upregulate genes required for plant

pathogenesis because as shown in Figures 3 and S5, PA14

trehalose mutants are not less virulent in nematodes, flies, or mice.

However, we do not favor this explanation. As shown in Figures 6,

S8, and S9, nitrate, ammonium, maltose and maltotriose

functioned similarly to trehalose in suppressing the inability of

the PA14 trehalose mutants to grow in planta. It seemly highly

unlikely that all three sugars as well as nitrate and ammonium

would function similarly to each other as signaling molecules.

Since the non-pathogenic phenotype of P. aeruginosa trehalose

mutants can also be suppressed by ammonium nitrate, we propose

that trehalose promotes the acquisition of nitrogenous compounds

and that nitrogen is limiting in the intercellular environment. The

intercellular spaces in leaves are mostly filled with air [43] and very

little is known about the mechanisms that plant pathogens utilize

to obtain nutrients in this dry environment. Nitrogen limitation

during P. aeruginosa infection in plants has been reported previously

[44,45]. One way that trehalose could promote nitrogen

acquisition is by modulating host nitrogen metabolism, thereby

diverting nitrogen-containing compounds to invading P. aeruginosa

cells. Several in planta studies have shown that trehalose-6-

phosphate (T6P) plays a key role in the regulation of carbon and

nitrogen metabolism [41,46,47] and is associated with altered cell

wall structure and starch accumulation [48–50]. In our study,

preliminary transcriptional profiling analysis has shown that

infiltration of trehalose into Arabidopsis leaves at a concentration

that is effective in rescuing the trehalose mutants (1 mM) has only

a very modest effect on Arabidopsis gene expression (S. Djonovic

and F. Ausubel, unpublished data). In addition, we showed that

trehalose or ammonium nitrate does not modulate plant defense

responses, since infiltration of ammonium nitrate or trehalose into

Arabidopsis leaves did not make them more susceptible or resistant

to virulent or non-pathogenic P. syringae strains or interfere with

their ability to mount an effective innate immune response when

challenged with the flagellin peptide flg22 (Figure 7). Finally,

another way that P. aeruginosa could use trehalose to promote

nitrogen acquisition is by generating a high local concentration of

trehalose to create an osmotic gradient that causes an efflux of

nitrogen containing nutrients from neighboring plant cells,

perhaps in conjunction with P. aeruginosa-encoded pore forming
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toxins. The data in Figure 9, which shows that trehalose functions

externally to P. aeruginosa, is consistent with these proposed models.

Conclusions
We have found that P. aeruginosa-synthesized trehalose plays a

key role as a virulence factor during infection of plant leaves.

Although the mechanistic details remain to be elucidated, our data

suggest that a role of trehalose during the infectious process

involves the procurement of nitrogen-containing molecules. In

contrast to specialized plant pathogens that utilize highly evolved

Type III virulence effectors to promote virulence, the multi-host

opportunistic pathogen P. aeruginosa, which is not likely to have co-

evolved with particular plant hosts, appears to have repurposed a

highly conserved anabolic pathway (trehalose biosynthesis) as a

potent virulence factor.

Materials and Methods

Ethics statement
Experiments with mice were carried out in strict accordance

with the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

animal protocol was approved by the Harvard Medical Area

Institutional Animal Care and Use Committee (Permit Number:

404). All efforts were made to minimize suffering.

Bacterial strains and media
P. aeruginosa strain UCBPP-PA14 [1], P. syringae pv. tomato strain

DC3000 [51], and P. syringae pv. phaseolicola strain 3121 [52] have

been described. A nonpolar hrcC mutant of P. syringae strain

DC3000 (CUCPB5112) was obtained from A. Collmer and B.

Kvitklo, Cornell University. Escherichia coli strain SM10 lpir was

used for triparental mating [53]. Strains were routinely maintained

at 37uC on Luria-Bertani (LB) agar plates or cultured in LB broth

supplemented with appropriate antibiotics as needed. The

concentrations of antibiotics were: ampicillin or carbenicillin,

50 mg/ml for E. coli or 300 mg/ml for P. aeruginosa; and rifampicin

100 mg/ml. Minimal medium (M63) or modified minimal A

medium (MinA) that contained glucose (0.3%) [39] were also used

for the growth of P. aeruginosa.

Generation of in-frame PA14 deletion mutants
The DPA14_36375-36830 deletion mutant (D42) was construct-

ed using a 2.25 kb sequence containing regions immediately

flanking the deleted region that was generated by a standard 3-step

PCR protocol using FastStart Taq DNA Polymerase (Roche,

Germany) and cloned into the KpnI and BamHI sites of pEX18Ap

[54] creating plasmid pEX18PA14_36375-36830D1. The result-

ing plasmid was used to introduce the deleted PA14_36375-36830

region into the wild-type PA14 genome by homologous recom-

bination [53]. Similar strategies were used to construct other

deletion mutants. For DPA14_36375-36560, DPA14_36570-36630,

DPA14_36570-36700, DPA14_36710-36740, DPA14_36710-

36830, and DPA14_19350-19370, 12.64-, 10.58-, 16.28-, 7.50-,

12.81-, and 4.78 kb wild-type sequences were deleted by recombi-

nation using 1.30, 1.27, 1.06, 1.28, 1.30, and 1.26 kb fragments,

respectively, containing the relevant flanking sequences. A double

mutant lacking both trehalose operons was constructed by

recombining the deleted treS operon in pEX18PA14_36710-

36830D1 into the DPA14_36570-36700 (treYZ) mutant background.

A double D42treA mutant was constructed by recombining the D42

deletion in pEX18PA14_36375-830D1 into a treA::MR2xT7 trans-

poson insertion mutant [16]. We confirmed that treA::MR2xT7

mutant could not grow when provided trehalose as sole carbon

source in diluted LB and that treA::MR2x7 could not hydrolyze

trehalose to glucose using the Somogyi-Nelson assay [21,22].

All deletion mutants were confirmed by PCR analysis and

sequencing.

Generation of fluorescently labeled bacterial strains
PA14 wild-type and the D42 mutant were transformed with

pSMC2 carrying green fluorescent protein (GFP) [55]. To

construct strains expressing red fluorescent protein (RFP), a

variant of DsRed2, DsRed.T3(DNT), from Vibrio fischeri [56] was

transferred (on a 719 bp SphI – XbaI fragment from pVSV208)

into the SphI – XbaI sites of pUCP19 [57] generating pUCP19/

DsRed.T3(DNT), which was designated pAA100. pAA100 was

transformed into PA14 wild-type and D42 by electroporation.

Motility and growth assays
Twitching and swimming motility assays were performed as

previously described [58]. To compare growth rates of wild-type

and mutants, the cultures were grown at 37uC overnight in LB,

centrifuged, washed and resuspended into minimal medium

(M63). Bacterial growth was monitored in vitro by plating and

counting CFU/ml at 3-, 6- and 9- hour time points. Growth rate

(h21) was calculated using the equation for exponential growth:

m = (lnN12lnN0)/(t12t0), where N0 and N1 equal bacterial abun-

dance (CFU/ml) at the beginning (t0) and end (t1) of the

exponential growth phase. Each experiment was repeated at least

twice with similar results.

Plant material and growth of plants
Arabidopsis ecotypes Columbia (Col-0) was obtained from the

Arabidopsis Biological Resource Center (Columbus, OH). Plants

were grown on 30-mm Jiffy-7 peat pellets (Jiffy Products,

Shippagan, New Brunswick, Canada) in a Conviron E7/2

chamber (Winnipeg, Manitoba, Canada) set at a 23uC/20uC
day/night regime with a 12-h photoperiod at a light intensity of

100 mE m22 s21 and 60% relative humidity. Arabidopsis cell wall

mutants were obtained from the Arabidopsis Biological Resource

Center: mur2-1 (AT2G03220; CS8565), mur3-2 (AT2G20370,

CS8567), mur4-1 (at1g30620, CS8568), mur10-2 (at5g17420,

CS8578), and an xxt1/xxt2 double T-DNA insertion line

(at3g6272; SALK_119658C/at4g02500; SALK_1013080) as pre-

viously published [33].

Arabidopsis pathogenicity assays
Plant infection assays were carried out as previously described

[1] with some modifications. P. aeruginosa strains were grown in LB

medium overnight, subcultured and grown to an OD600 of 2.5.

Cells were centrifuged, washed and resuspended in 10 mM

MgSO4. Leaves of four-week old plants were inoculated with a

16105 CFU/ml suspension of PA14 wild-type or various PA14

mutants, which corresponds to 16103 CFU/cm2 leaf area.

Infected plants were incubated in a growth chamber at 28uC
with a 12-h photoperiod at a light intensity of 60 mE m22s21 and

90% relative humidity. Six to eight leaves were harvested from

three to four plants for CFU determination. Each experiment was

repeated at least two to four times with similar results. Co-

inoculation of bacteria with betaine, trehalose or sucrose (Sigma,

St. Louis, MO) was performed as described above. Before

inoculation of leaves, betaine, trehalose, glucose, or sucrose was

added to bacterial suspensions at the indicated concentrations, or

various phosphate, sulfate, nitrate, or ammonium salts were added

at 1 mM. Trehalose was initially added at 2.5 mg/ml, but after we

carried out dose response curves and found that 0.25 mg/ml
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(0.74 mM) was an effective concentration, subsequent experiments

were carried out using 1 mM trehalose.

Infection assays with P. syringae strains were performed the same

way as with P. aeruginosa with a few exceptions. The temperature in

the growth chamber was 22uC and bacterial strains were cultured

in King’s B medium (protease peptone, 10 mg/ml; glycerol,

15 mg/ml; K2HPO4, 1.5 mg/ml; MgSO4, 5 mM, pH 7.0) until

late logarithmic phase. Elicitation assays were performed by

infiltration of leaves with 1 mM flg22, 1 mM trehalose, 1 mM

glucose or 1 mM ammonium nitrate (or in combinations) 24 hours

prior to bacterial inoculation.

Metazoan pathogenicity assays
C. elegans slow killing assays were performed as previously

described [3]. Briefly, PA14, D42, or DtreYZDtreS mutants were

grown overnight in LB and 10 ml of each liquid culture was spread

onto 3 SK plates (modified NGM medium; [3]). The plates were

incubated at 37uC for 24 hours and then at 25uC for 20–24 hours.

35–45 fer-15;fem-1 sterile L4 nematodes were picked to the SK

plates seeded with PA14, D42, or DtreYZDtreS and the plates were

incubated at 25uC. Live and dead animals were counted daily for

approximately 8 days. A worm was scored dead when it no longer

responded to touch.

Infection survival assays in D. melanogaster were conducted with

D. melanogaster strains w[118] (Bloomington stock #6326) or

Oregon R, which were grown under non-crowded conditions on

standard cornmeal-molasses medium. Fly husbandry and infec-

tions were carried out at 25uC, 70% humidity, 12 hours light

cycle. For infections assays, P. aeruginosa was grown aerated at 37uC
in LB medium containing 50 mg/ml rifampicin, and subcultured

to an OD600 = 2.3–2.5. The bacterial culture was diluted to a final

concentration 80% LB, 4% sucrose, 50 mg/ml rifampicin and

36108 CFU/ml and 7 ml of infection mixture was pipetted onto

sterilized cotton balls at the bottom of clean, empty fly vials. 25

male flies, 4 days old, were added and their survival monitored

several times a day.

Mouse experiments complied with institutional and federal

guidelines regarding the use of animals in research. For the acute

pneumonia model, a modified version of a previously described

method of intranasal inoculation of anesthetized mice was utilized

[19]. Briefly, 6- to 8-week-old female C3H/HeN mice (Harlan)

were sedated with ketamine and xylazine and then 10 ml of a

bacterial suspension was applied to each nostril. Bacterial

suspensions were prepared in PBS (OD600 = 0.5) after overnight

growth of frozen stock on TSA. Doses were determined by serial

dilution and plating on MacConkey agar (1.56107 CFU/20 ml for

PA14, 1.46107 CFU/20 ml for D42). After 18 hr, mice were

euthanized with carbon dioxide and then lungs and spleens were

removed, weighed, and homogenized in 1 ml of 1% proteose

peptone in water. Viable counts were determined by serial dilution

and plating.

For the chronic oropharyngeal colonization model in transgenic

CF mice, we utilized mouse strain Cftrtm1Unc-TgN(FABP-CFTR)

(denoted FABP-CFTR), which has a stop codon in the murine cftr

gene (S489X) but also expresses human CFTR in the gut

epithelium due to transgenic introduction of human Cftr under

the control of the fatty acid binding protein (FABP) promoter [59].

These FABP-CFTR mice have been bred into the FVB/N genetic

background (breeding pairs were initially provided by Dr. J.

Whitsett, University of Cincinnati). These FABP-CFTR mice are

susceptible to chronic oropharyngeal colonization with P. aeruginosa

after exposure in the drinking water [20]. To establish coloniza-

tion, age- and gender-matched mice were given oral levofloxacin

in their drinking water for 5 days, followed by gentamicin for 2

days, followed by bacteria (either PA14 or the D42 mutant)

suspended in water at 107 CFU/ml. Bacterial levels in the

drinking water were unchanged at the end of 7-day exposure.

Throat cultures were then taken every 1–2 weeks using a swab

inserted into the oropharynx of mice anesthetized with isofluorane.

The swab was placed in 1 ml tryptic soy broth and incubated at

37uC for 3 hours. Next, 1 ml of nitrofurantoin (2 mg/ml) was

added to suppress the growth of any contaminating Enterobacter

spp., which can interfere with detection of P. aeruginosa. The culture

was incubated overnight at 37uC and then subcultured overnight

on cetrimide agar. All mice in both groups (n = 9 for the D42

mutant, n = 8 for PA14 WT) had positive throat cultures after

colonization. Mice were then followed for survival.

Bioinformatic analysis of PA14_36375-36830 genes
To assign putative functions to genes within the block of

PA14_36375 through PA14_36830, each protein in the 42 kb

cluster was used as a query in a BLAST or PSI-BLAST homology

search. In the process of assigning putative functions, several types

of information were taken into account: homologous proteins with

experimentally assigned function; homologous proteins with

computationally predicted function; matches to HMMs from

conserved domain databases; and the genomic/operon context of

close homologs.

The protein and nucleotide sequences of prokaryotic genomes

were obtained from NCBI (ftp://ftp.ncbi.nih.gov/genomes/

Bacteria/). Additionally, two P. aeruginosa genomes (P. aeruginosa

2192; P. aeruginosa C3719) were obtained from the Broad Institute

of Harvard and MIT (http://www.broadinstitute.org/annotation/

genome/pseudomonas_group/MultiHome.html).

To identify orthologs to PA14_36375-36830 genes, two criteria

were used. First, putative ortholog pairs were required to be

reciprocal best hits, with an e-value less than or equal to 0.0001 for

best hits of the PA14 proteins against compared protein sets, and

an e-value less than or equal to 0.001 for reciprocal best hits

against the PA14 protein set. Secondly, the putative orthologs

were required to align for at least 80 percent of their lengths and

have less than a 20% difference in protein sequence lengths,

thereby conserving overall domain structure. Of these constraints,

the e-value and sequence length constraints are very permissive,

whereas the requirement for alignment length is stringent.

Trehalose quantification assay
P. aeruginosa strains were grown at 37uC in MinA medium with

0.5 M NaCl to an early stationary phase. Trehalose was extracted

from a 19 ml culture by pelleting the cells, resuspending in 0.5 ml

water, and heating at 95uC for 20 min [60]. The concentration of

trehalose in the supernatants was determined using an enzymatic

assay by converting trehalose to glucose with trehalase and then

measuring the glucose using a trehalose assay kit (Megazyme

International Ireland Limited). The pre-existing glucose in each

sample was determined in a control reaction without trehalase and

subtracted from the total glucose. The experiment was repeated at

least twice with similar results.

Stress response, resistance and biofilm assays
Osmotic stress sensitivity: P. aeruginosa was grown at 37uC in MinA

containing 17 mM glucose [39], washed and subcultured into

MinA containing 0.5 M NaCl. Bacterial growth was monitored by

plating CFU. Persistence assay: This assay was performed as

previously described [61]. Briefly, persisters were determined by

exposure of stationary cultures to antibiotics at concentrations

exceeding the corresponding bacterial minimal inhibitory concen-

trations (MICs). The antibiotics were used at the following
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concentrations: 6 mg/ml tobramycin, 2 mg/ml ciprofloxacin and

3 mg/ml carbenicillin. Oxidative stress resistance: Hydrogen peroxide

was added directly to an overnight culture grown for 14 h in LB

medium and the cells were incubated for 8 h at 37uC. The

following concentrations of hydrogen peroxide were used: 1 M

(non-lethal), 2 M (sub-lethal), and 3 M (lethal dose). To test

sensitivity to paraquat (Sigma, 856177), overnight MinA cultures

were diluted 100 fold in MinA containing different amounts of

paraquat (0.1, 1 and 10 mM) and cultured for three days. pH stress:

Cultures were grown to stationary phase in LB medium that had

been titrated with HCl to pH 4, 5, 6, or 7. Thermotolerance: Small

volumes of stationary phase cells were heated in Eppendorf tubes

in a heating block at different temperatures and incubation times,

then rapidly diluted and plated. Biofilm formation: Biofilm attach-

ment assays were performed using wild-type PA14, D42 and

DPA14_19350-19370 (DNAGGN) cultures grown in 96-well poly-

vinylchloride (PVC) plates as described previously [62]. Overnight

cultures were diluted 1/100 in MinA medium or MinA medium

supplemented with 0.5 M or 0.75 M NaCl. Aliquots of 100 mL

were dispensed into the wells of PVC microtiter plates and

incubated at 37uC. Attachment was detected by staining with 1%

crystal violet dissolved in water. Dye not associated with bacteria

was removed by rinsing with water. Bacteria-associated dye was

solubilized using 95% ethanol and absorbance was determined at

550 nm. Each experiment was repeated at least twice with similar

results.

Statistical analysis
Statistical analyses in animal experiments were performed using

GraphPad Prism 5 software (La Jolla, CA) and a log rank (Mantel-

Cox) test to assess the significance of differential survival, and a

Mann-Whitney U non-parametric test for significance of CFU

data, which were not normally distributed. Statistics in all other

experiments was performed using analysis of variance (ANOVA)

and a Fisher’s PLSD test (Statview v. 5.0.1, SAS Institute, Cary,

NC).

Supporting Information

Figure S1 Expression of PA14_36500 encoding a putative

cellulase/peptidase in infected Arabidopsis leaves. Semiquantita-

tive RT-PCR was carried out as described in Materials and

Methods. (A) PA14_36500 transcript levels on various days post

infiltration (dpi) with PA14 wild-type. (B) PA14_36500 expression

in wild-type PA14 and a PA14 DmvfR mutant 2 days post-

infiltration. P. aeruginosa PA14 ribosomal protein L21 (rplU) was

used as a control for equal amounts of cDNA. The experiment was

repeated at least two times with similar results.

(TIF)

Figure S2 The 42 kb cluster encodes two independent pathways

for trehalose biosynthesis. In the top pathway, gene product 36605

(a putative maltooligosyltrehalose synthase) alters the regiochem-

istry of the terminal sugar linkage from alpha-1,4 to alpha-1,1; the

terminal disaccharide is subsequently cleaved by gene product

36580 (a putative maltooligosyltrehalose trehalohydrolase), releas-

ing trehalose. In the bottom pathway, gene product 36740 (a

putative alpha-amylase) cleaves the terminal disaccharide of the

alpha-1,4-glucan, releasing maltose. The alpha-1,4 linkage of the

maltose disaccharide is then isomerized to alpha-1,1 by gene

product 36730 (a putative trehalose synthase), yielding trehalose.

(TIF)

Figure S3 Pyocyanin production by D42 and PA14 wild-type.

Bacterial strains were streaked onto Pseudomonas agar P to assess

pyocyanin production (see Materials and Methods) and incubated

20 h at 37uC. Sectors: D42-1 and D42-2 (two independent D42

deletion constructs); phzM (phzM::MAR2xT7, negative control: a

pyocyanin-defective mutant); WT (PA14 wild-type). Characteristic

blue-green color indicates that the strain is proficient in pyocyanin

production.

(TIF)

Figure S4 Growth of P. aeruginosa D42, three sub-region in-frame

deletion mutants, and PA14 wild-type in Arabidopsis Col-0 leaves.

Plants were inoculated and incubated as described in Materials

and Methods. The leaves were harvested 3 days post-inoculation.

Data represent the mean of bacterial titers 6 SE of six leaf disks

excised from 6 leaves of 3 plants. Different letters above bars

denote statistically significant differences (P,0.05, Fisher’s PLSD

test). See Figure 1 for a description of the mutants.

(TIF)

Figure S5 The D42 mutant is more virulent than wild-type

PA14 in nematodes, insects, and mice. (A) C. elegans are more

sensitive to killing by the D42 mutant than PA14 wild-type

(P,0.004). Mutant fer15;fem1 C. elegans animals were exposed to P.

aeruginosa strains and survival was determined as described in

Materials and Methods. Data at each time point correspond to the

average of three plates per strain, each with approximately 40

animals per plate, and are representative of two independent

experiments. (B) D. melanogaster infected with D42 die faster than

flies infected with PA14 wild-type (P,0.03). D. melanogaster strain

Oregon R was infected with P. aeruginosa and approximately 25

flies per vial were scored several times a day for survival

throughout the time course of infection. Data are representative

of four independent experiments carried out with two different D.

melanogaster lines (Oregon R and w[118]). (C) The D42 mutant is

more virulent in a murine acute lung infection model. See

Materials and Methods for details of infection protocol. CFU/

gram of lung tissue of mice infected with D42 mutant is 3.8-fold

higher than with wild-type PA14 18 hours post intranasal infection

(P,0.01, Mann-Whitney U test). Data are representative of two

independent experiments. (D) FABP-CFTR transgenic mice are

more susceptible to killing by D42 mutant than by PA14 wild-type

after oropharyngeal colonization (P,0.04, log rank test). All mice

in both groups (n = 9 for D42; n = 8 for PA14 WT) had positive

throat cultures for the duration of the experiment after initial

colonization by exposure to bacteria in drinking water for one

week.

(TIF)

Figure S6 The in planta growth defect of the D42 mutant is

suppressed by Arabidopsis cell wall mutants. Growth of PA14

wild-type or D42 3 days post infiltration in Arabidopsis cell wall

mutants mur2-1, mur3-2, mur4-1, mur10-2 and xxt1/xxt2. Data

represent the mean of bacterial titers 6 SE of six leaf disks excised

from 6 leaves of 3 plants. Letters above bars denote statistically

significant differences (P,0.05, Fisher’s PLSD test). The experi-

ments were repeated at least two times.

(TIF)

Figure S7 The growth of the D42 mutant in planta is not limited

by lack of a carbon source. (A) The growth of the D42 mutant in

planta is not suppressed by 1.25 mg/ml glucose or 2.5 mg/ml

sucrose. (B) Suppression of the growth defect of D42treA::

MAR2xT7 with trehalose in Arabidopsis leaves. Plants were

inoculated and incubated as described in Materials and Methods

and leaves were harvested 3 days post-inoculation. In (A) and (B),

data represent the mean of bacterial titers 6 SE of six leaf disks

excised from 6 leaves of 3 plants. Different letters above bars
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denote statistically significant differences (P,0.05, Fisher’s PLSD

test). The experiments were repeated at least two times.

(TIF)

Figure S8 The in planta growth defect of the D42 mutant is

suppressed by ammonium or nitrate ions. Leaves of four-week-old

Arabidopsis Col-0 plants were infiltrated with PA14 wild-type or

D42 as described in Materials and Methods except that the

infiltration solution contained various phosphate, sulfate, nitrate,

or ammonium salts at 1 mM. Suppression of the growth defect of

D42 with 2.5 mg/ml trehalose (Tre) and 1.25 mg/ml glucose (Glc)

were tested as positive and negative controls, respectively. Data

represent the mean of bacterial titers 6 SE of six leaf disks excised

from 6 leaves of 3 plants. Letters above bars denote statistically

significant differences (P,0.05, Fisher’s PLSD test). The experi-

ments were repeated at least two times.

(TIF)

Figure S9 Suppression of attenuation of D42 with exogenous

maltose and maltotriose. Col-0 plants were infiltrated with PA14

wild-type or D42 co-inoculated with maltose (M) or malotriose

(MT) at the indicated concentrations. Leaves were harvested 3

days post-infiltration. Data represent the mean of bacterial titers 6

SE of six leaf disks excised from 6 leaves of 3 plants. Letters above

bars denote statistically significant differences (P,0.05, Fisher’s

PLSD test). The experiment was repeated at least two times.

(TIF)

Figure S10 Response of D42 to various stress conditions. (A)

Rescue of D42, DNAGGN and PA14 wild-type with betaine but not

trehalose under osmotic stress in vitro. Cells were grown at 37uC in

MinA medium with 0.5 M NaCl (squares), or with 0.5 M

NaCl+1 mM betaine (Bet) (circles) or 1 mM trehalose (Tre)

(triangles). Data represent the mean 6 SE of 3 replicates. (B)

Thermotolerance. Survival of stationary phase bacteria after a

30 minute exposure to 53uC. Temperatures below 53uC were

non-lethal and above 56uC were 100% lethal. (C) Biofilm

attachment under osmotic stress. Overnight cultures were diluted

1/100 in MinA medium supplemented with 0.5 or 0.75 M NaCl.

Attachment assays were performed as described in Materials and

Methods. (D) Growth under pH stress. Cultures were grown to

stationary phase in LB medium adjusted to pH 4, 5, 6, or 7. (E)

Persistence assay. Persisters were determined by exposure of

stationary cultures (inoculum, time point zero on x axis) to 6 mg/

ml tobramycin, 2 mg/ml ciprofloxacin or 3 mg/ml carbenicillin.

The assay was performed as described in Materials and Methods.

Based on analysis of variance (ANOVA) and Fisher’s PLSD test

(P,0.05), there was no significant differences between D42 and

PA14 wild-type in any of the assays (A–E).

(TIF)

Table S1 Growth of P. aeruginosa mutants in Arabidopsis Col-0

leaves. Plants were inoculated and incubated as described in

Materials and Methods and leaves were harvested 3 days post-

inoculation. Data represent the mean of bacterial titers 6 SE of six

leaf disks excised from 6 leaves of 3 plants. Different superscript

letters denote statistically significant differences (P,0.05, Fisher’s

PLSD test).

(DOC)

Table S2 Predicted functions and orthologs of PA14_36375-

36830 genes across sequenced Pseudomonas genomes. Putative

functions of PA14_36375-36830 genes were assigned as described

in Materials and Methods. Genes of the reference taxon PA14 are

indicated in the left column (PA14 loci), and different pseudomo-

nad genomes are indicated on the top row. The presence of an

ortholog is indicated by a checkmark. Boxes of identical hue

indicate that the genes are contiguous in a particular genome, with

the lighter shades on the top strand, and darker shades on the

bottom strand. Checks in white boxes indicate an ortholog that is

not contiguous with other PA14_36375-36830 block orthologs.

(PDF)

Table S3 Growth, biofilm formation and motility of D42 and

PA14 wild-type. Growth rate (h21) of Pseudomonas strains in

minimal media (M63) was calculated by the equation for

exponential growth (see Materials and Methods). Biofilm forma-

tion was measured as attachment to polyvinylchloride plates in

absorbance units (OD550; see Materials and Methods). Swimming

and twitching motility are represented as a radius of a halo in cm

(see Materials and Methods). Two independent D42 deletion

constructs were tested. Data represent the mean 6 SE. Based on

analysis of variance (ANOVA) and Fisher’s PLSD test (P,0.05),

there was no significant differences between D42 mutant and

PA14 wild-type in any of the assays.

(DOC)
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