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Abstract

Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of
asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with
mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR
associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association
(EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or
containing SNPs with EMMA p-values ,0.001 were selected for further study in human GWAS. The results of the previously
reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study
centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following
validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human
AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated
with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-
04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at
rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at
rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-
03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating
asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human
asthma is to leverage mouse AHR association data.
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Introduction

Asthma is a common chronic respiratory disease with a rise in

prevalence over the past decades, affecting over 25 million

Americans and 300 million people world-wide [1,2]. Asthma is

characterized by airway hyperresponsiveness (AHR), a trait

distinguished by increased airway smooth muscle contractility in

response to certain exposures. The mouse is commonly used to

model the genetics of human diseases because mice are

physiologically similar to humans, the mouse genome has been

sequenced, and many tools exist that allow for direct testing of

genetic alterations in mice [3,4]. Although attempts to recreate all

of the features of human asthma in mice have not been successful

[5], many of the allergic asthmatic responses in mouse are similar

to the responses observed in humans [6,7]. The most common

asthma phenotype studied in the mouse is AHR, and several

regions that have been associated with mouse AHR are

homologous with genomic regions linked with asthma-related

phenotypes in human cohorts. For example, two linkage studies

[8,9] in mouse identified AHR quantitative trait loci (QTL) on

chromosome 7 that are homologous with human AHR QTL on

chromosome 19q observed in Hutterites and Chinese individuals

[10,11]. Mouse AHR QTL observed on chromosome 17 in three

studies [9,12,13] overlap with human chromosome 6p QTLs

identified in four studies of asthma and allergic phenotypes

[14,15,16,17]. Thus, it is likely that mouse and human share

genetic variants that predispose both species to asthma-related

phenotypes, and mouse AHR is an appropriate phenotype to

identify some of these shared genetic variants.

Genome-wide association analysis of mouse inbred strains can

provide a cost effective complement to traditional QTL methods

[18,19]. Such methods leverage the fact that laboratory mouse

strains, whose lineage is well known, are nearly isogenic due to

their inbred origin [20] and therefore, share large haplotype blocks

that are identical by descent. Assuming that phenotypic differences

observed between mouse strains are due to different variants

inherited within ancestral haplotypes, regions associated with a

trait can be narrowed by comparison of haplotypes across many

strains. The ability to narrow such regions efficiently is made

possible by genetic resources and bioinformatics tools, including

dense SNP sets for mouse strains [21,22] and association

algorithms [18,19]. Studies using mouse strain surveys have been

successful in identifying genes relevant to human disease, such as

HDL levels in blood [18]. A previous in silico QTL study of

baseline AHR in 36 female mouse strains identified eight possible

regions that could underlie differences in AHR among strains [23].

The results of this study have not been extensively validated or

evaluated in humans.

The genetic basis of asthma has been widely studied in humans

[24]. Most recently, multi-center, multi-cohort genome-wide

association studies (GWAS) of asthma have been carried out in

Europeans and diverse North American populations [25,26].

These and other GWAS have begun to identify loci (e.g. IKZF3-

ZPBP2-GSDMB-ORMDL3 locus, HLA-DQ, IL1RL1, IL18RL1,

IL33, TSLP, SLC22A5, SMAD3, and RORA) that are consistently

associated with asthma at statistical thresholds that leave little

doubt the results are truly significant. However, it is likely that

some of the findings that do not meet genome-wide significance

levels in these GWAS represent true associations that are

biologically relevant for asthma. The question of how to

distinguish true associations among the false positive ones is

challenging. In this work, we address this challenge by using

mouse baseline AHR association measures and searching among

previously published nominally significant EVE Consortium

GWAS meta-analysis results [26] to identify genes that may be

associated with asthma. After attempting to confirm our results in

three additional asthma GWAS and two AHR GWAS, we found

that the Kv channel interacting protein 4 (KCNIP4) is likely to be

related to asthma and AHR.

Results

Figure 1 is an overview of our study design. Measures of

baseline AHR in 31 mouse strains found that there was up to a

4.2-fold change in AHR slope across strains, with the smallest

slope (i.e. 0.40 SEM 0.10) corresponding to the C57BL/6J strain

and the largest slope (i.e. 1.67 SEM 0.20) corresponding to the

KK/H1J strain [Figure 2]. The complete AHR phenotype results

are freely available as project ‘‘Berndt1’’ in the Mouse Phenome

Database of the Jackson Laboratory. The EMMA results for AHR

slope did not contain any P-values that were significant after

correction for multiple comparisons (i.e. ,0.05/281,300 = 1.8e-

07) [Figure 3]. Nonetheless, some genomic regions had P-values

that were nominally significant and may indicate true associations

with AHR slopes. The set of 227 mouse genes within 50 kb of

SNPs with EMMA P-values ,0.001 was selected for further study.

Of the 227 top mouse genes, 145 had human orthologs,

according to the human-mouse HomoloGene map utilized.

Results from the EVE GWAS based on all samples and specific

to race/ethnic groups were obtained for all SNPs within 50 kb of

KCNIP4 as an Asthma Gene
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the set of 145 genes. A subset of 35 genes had at least one SNP

with a P-value ,0.001 in the EVE European American, African

and Caribbean American, Latino American and/or all subjects’

GWAS. The results in the vicinity of these 35 genes were explored

more carefully to ensure that 1) the AHR slope phenotype

distribution approximately matched the genotype distribution

across mouse strains, 2) the mouse association results were based

on SNPs with minor allele frequency .2/31, and 3) the

association results were supported by a region of LD in both

mouse and human. Two regions that included a total of five genes

met these criteria: 1) KCNIP4, a 1220.19 kb-long gene that was

covered (including 50 kb on either end) by 1,766 EVE combined

meta-analysis SNPs, and 2) PDZD2/GOLPH3/MTMR12/ZFR, a

732 kb-long region that was covered (including 50 kb on either

end) by 697 EVE European American analysis SNPs [Figure 4].

The smallest mouse EMMA p-values for these two regions were

9.1e-04 for Kcnip4 and 8.4e-04 for Pdzd2/Golph3/Mtmr12/Zfr. The

genotype distribution for mouse SNPs with these P-values in the

corresponding regions are shown in Figure 5. The EVE P-values

supporting the KCNIP4 association were from the combined meta-

analysis, and the lowest P-value (2.9e-04) was for SNP rs6833065.

The EVE P-values supporting the PDZD2/GOLPH3/MTMR12/

ZFR region of association were from the European American

results, and the lowest P-value (5.5e-04) was for SNP rs17526969.

We next attempted to replicate the asthma association findings

in two human cohorts: Sepracor/LOCCS/LODO/Illumina and

GABRIEL. We found that there was gene level replication for

KCNIP4, and, considering the genomic interval spanning four

genes, some regional replication for the PDZD2/GOLPH3/

MTMR12/ZFR association [Figure 6]. Each asthma GWAS had

a different top hit in each region, and only KCNIP4 showed

evidence of SNP-level replication at a nominally significant

threshold [Table 1]. Based on the replication results in GABRIEL

and Sepracor/LOCCS/LODO/Illumina, we attempted to repli-

cate the KCNIP4 findings in DAG. The lowest EVE P-value of

2.9e-04 at rs6833065 did not replicate in Sepracor/LOCCS/

LODO/Illumina or DAG, and data for this SNP was not available

in GABRIEL. The lowest GABRIEL association at rs469177 (P-

value 1.0e-03) was nominally significant in EVE and DAG, but not

Sepracor/LOCCS/LODO/Illumina. The lowest Sepracor/

LOCCS/LODO/Illumina association at rs7664617 (P-value

1.5e-03) was nominally significant in EVE, but data for this SNP

was not available in GABRIEL or DAG. The lowest combined P-

value across the four asthma GWAS was 1.1e-04 for rs4697177,

while the three SNPs with nominally significant P-values in 3/4

GWAS were rs4697177, rs6448072, and rs6856781. The allelic

frequencies and odds ratios for the top KCNIP4 SNPs are shown in

Table 2 and Table 3, respectively.

Because the mouse phenotype measured, baseline AHR, is not a

precise surrogate of human asthma, we also attempted to measure

the association of top EMMA SNPs with another related

phenotype for which GWAS data are available: human AHR

among asthmatics. Of the top two regions, KCNIP4 and PDZD2/

GOLPH3/MTMR12/ZFR, only KCNIP4 had gene-level replication

Figure 1. Study overview. Mouse association study (in pink): (A) Baseline AHR slope measures were obtained for 31 mouse strains, and these were
(B) used to perform an association study using EMMA software. (C) Mouse genes near or containing SNPs with p-values ,0.001 were selected for
follow-up study in human GWAS datasets. Integration of mouse results with human data (in blue): (D) HomoloGene maps were used to obtain human
homologous genes corresponding to the top mouse genes. (E) Genes with SNPs having p-values ,0.001 in the combined EVE meta-analysis or within
race/ethnic specific GWAS were selected for (F) replication in other human GWAS.
doi:10.1371/journal.pone.0056179.g001
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in the SHARP AHR GWAS at a nominally significant level in the

same regions as the asthma GWAS studies [Figure 7]. At a SNP

level, there was no overlap between the strongest associations with

asthma vs. AHR in either the SHARP or DAG AHR GWAS

[Table 1].

Discussion

Many risk-modifying loci have been identified via human

GWAS studies for a wide range of complex diseases, including

asthma [27]. Over time, the number of loci identified has grown,

due in part to the greater statistical power of studies conducted.

The primary way in which increased statistical power has been

achieved is to conduct large-scale meta-analyses based on cohorts

from many smaller studies. While the number of associations that

pass genome-wide significance thresholds has increased, it is likely

that some true associations that represent biologically important

processes underlying diseases are present among the nominally

significant ones. Approaches to identify true associations that are

not among results meeting genome-wide significance levels in

GWAS include attempts to replicate nominally significant findings

in independent populations [26,28], to conduct functional studies

of top-ranked associations [29,30], and to use gene-based [31] and

pathway-based [32] methods. In this work, we have attempted to

use a mouse genome-wide association analysis based on a strain

survey of baseline AHR to identify asthma associations in humans.

The top two regions identified based on having mouse EMMA

P-values ,0.001 and EVE meta-analysis P-values ,0.001 were

KCNIP4 and PDZD2/GOLPH3/MTMR12/ZFR. While there was

some evidence of gene- or regional-level replication for both sites

among the GABRIEL and Sepracor/LOCCS/LODO/Illumina

asthma GWAS studies, only the KCNIP4 gene had evidence of

replication at individual SNPs. Additionally, only KCNIP4 SNPs

were nominally associated with AHR among asthmatics in the

SHARP AHR GWAS, indicating that this gene may be related to

both baseline AHR (i.e. AHR in the absence of asthma) and

asthma. Thus, we selected KCNIP4 as the final candidate for

replication in DAG. We found that there was additional gene-level

and SNP-level replication for KCNIP4 with asthma in DAG, and

gene-level replication for KCNIP4 with AHR in DAG.

In addition to the nominal associations we observed, other

studies have observed KCNIP4 SNP associations with asthma-

Figure 2. Baseline AHR slope phenotype distribution among 31 mouse strains. The AHR slope, displayed along the y-axis, was computed
as the slope of the resistance measures vs. log-transformed methacholine concentrations for each mouse strain. Names for each mouse strain are
displayed along the x-axis.
doi:10.1371/journal.pone.0056179.g002

Figure 3. Manhattan plot of mouse AHR slope EMMA results.
The x-axis denotes position along each chromosome. The y-axis
denotes –Log10(P) corresponding to EMMA P-values. None of the P-
values are significant after corrections for multiple comparisons, but all
those with nominal P-values ,0.001 were selected for further study.
doi:10.1371/journal.pone.0056179.g003

KCNIP4 as an Asthma Gene
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related phenotypes. First, a small GWAS of toluene diisocyanate-

induced asthma in Koreans (84 cases and 263 controls) found that

KCNIP4 SNP rs4697192 had a P-value of 6.11e-05 for association

under a recessive model [33]. Second, a family-based GWAS of

change in lung function in response to glucocorticoid therapy

among 118 asthmatics found that KCNIP4 SNP rs4282162 had a

P-value of 0.028 under a recessive model of inheritance, but

attempts to replicate this result in three independent populations

were unsuccessful [30]. Neither of these SNPs was among those

considered in Table 1. In a follow-up study of the first EVE meta-

analysis GWAS, all SNPs with meta-analysis P-values ,0.001 in

the combined sample or ,1e-04 in the race/ethnic-specific

analyses were selected for replication [28]. Five KCNIP4 SNPs,

including rs6833065 that is in Table 1, were among the SNPs

genotyped in nine different replication populations of diverse

origin (4 European American, 4 African American, 5 Latino

American), comprised of 7202 cases, 6426 controls, and 507 case-

parent trios. None of the KCNIP4 SNPs replicated the primary

EVE findings. Taken together, the KCNIP4 association results

from the current study and three previous ones suggest that if the

nominally significant associations found represent a true relation-

ship between this gene and asthma, then there is not a clear single

functional variant underlying this relationship. Rather, there are

weak effects observed at multiple sites that implicate the gene. It is

possible that more thorough genotyping of KCNIP4 in the

populations where single or few SNPs did not replicate primary

findings would uncover regions of association that further support

gene- or SNP-level replication. Future studies may also be able to

investigate whether KCNIP4 variants are associated with AHR

among non-asthmatics, as the mouse data found that KCNIP4

variants were associated with baseline AHR.

Based on the mouse and human association results, the Kv

channel interacting protein 4 (KCNIP4) emerged as the gene most

likely to be related to asthma and AHR. Current information for

this gene was gathered with the AceView tool [34]. KCNIP4 is

found on human chromosome 4, at 4p15.32, covering 1220.19 kb,

from 21950417 to 20730227 (NCBI 37, August 2010). The protein

encoded by KCNIP4 was first identified in a study searching for

proteins that interacted with presenilins, which are linked to early-

onset Alzheimer’s disease [35]. KCNIP4 was found to interact with

Figure 4. Top regions of association in mouse and human. Mouse plots near (A) Kcnip4 and (B) Pdzd2/Golph3/Mtmr12/Zfr contain –Log10 of
EMMA p-values vs. position along the corresponding mouse chromosome. Corresponding human homologous plots near (C) KCNIP4 and (D) PDZD2/
GOLPH3/MTMR12/ZFR. The x-axis denotes position along corresponding human chromosome, while the y-axis denotes –Log10(P) corresponding to
EVE p-values for the combined sample GWAS (C) or European American GWAS (D). LD between the SNPs with the lowest P-value to other SNPs in the
human plots are denoted in colors and were computed according to HapMap Phase 2 CEU data using LocusZoom [55].
doi:10.1371/journal.pone.0056179.g004
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Figure 5. Mouse genotypes for SNPs with P-value ,0.001 in the top two association regions. A) Kcnip4 and B) Pdzd2/Golph3/Mtmr12/Zfr.
Each column corresponds to a mouse strain, ordered as displayed in Figure 2, such that AHR slope increases from left to right.
doi:10.1371/journal.pone.0056179.g005

Figure 6. Top regions of association in two independent human asthma GWAS. KCNIP4 association in A) Sepracor/LOCCS/LODO/Illumina
and C) GABRIEL. PDZD2/GOLPH3/MTMR12/ZFR association in B) Sepracor/LOCCS/LODO/Illumina and D) GABRIEL. The x-axis denotes position along
corresponding human chromosome, while the y-axis denotes –Log10(P). LD between the SNPs with the lowest P-value to other SNPs in the plots are
denoted in colors and were computed according to HapMap Phase 2 CEU data using LocusZoom [55].
doi:10.1371/journal.pone.0056179.g006

KCNIP4 as an Asthma Gene
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the voltage-gated potassium channel subunit Kv4, as well as the

presenilin PSEN2, and to be mostly expressed in brain. Based on

its structure, KCNIP4 belongs to the recoverin branch of calcium

binding proteins, characterized by having 4 EF-hand motifs, the

first of which does not bind calcium. In addition to being expressed

in brain, KCNIP4 is expressed in other tissues, including human

skeletal muscle. Previous studies of peptides that bind to the EF-

hands of calmodulin and other proteins that modulate intracellular

calcium levels have found that these calcium sensors may be

therapeutic targets for asthma [36]. For example, intratracheal

pretreatment of guinea pigs with a calcium-like peptide (i.e.

CALP1) that binds the EF-hands of calmodulin prior to ovalbumin

challenge, prevented the development of AHR and attenuated the

increased radical production by alveolar inflammatory cells of

ovalbumin-challenged guinea pigs [37]. Thus, one possible

mechanism by which KCNIP4 may influence asthma and AHR

is via modulation of intracellular calcium.

Mouse is a species that is commonly used in the study of asthma

genetics. Most genome-scale association studies of asthma in

mouse have been linkage studies that identified QTL for AHR

[8,9,12,13]. More recently, in silico QTL approaches have been

employed. In a study that characterized baseline AHR in female

mice from 36 strains and then used haplotype association mapping

(HAM) to identify chromosomal regions associated with AHR,

eight peaks on six chromosomes (i.e., 3, 5, 8, 12, 13, 14) with

nominal association p-values were suggested as interesting for

additional study [23]. The peak on chromosome 13 at 34.7 Mb

was found to coincide with previous mouse AHR QTL results and

was explored further to identify 29 candidate genes. Our mouse

results do not support seven of the eight peaks found in the

previous paper, but they do support the previous association on

chromosome 13: our EMMA results had a peak of 25 SNPs with

P-value 5.2e-04 in the range chr13:36611438–36707895. Human

associations for this region most strongly support the phenylalanyl-

tRNA synthetase 2, mitochondrial (FARS2) gene as involved in

asthma, with an EVE Latino American p-value of 6.4e-04 at

rs9502304. However, the associations at this SNP were not

significant among European Americans or African Americans,

leading to a combined EVE meta-analysis p-value of 0.07 and

exclusion as a top gene candidate in the current study. For the

current study, some of the phenotype data reported by Leme et al

[23] was utilized, but we extended this data by including AHR

measures from male mice. Overall, we included data for 31 strains

that had available AHR slope measures in mice of both genders

and available genotype data. In addition to utilizing more

phenotype data, we used a newer association method (i.e. EMMA)

and more complete strain genotypic data than did the previous

study. The primary advantage of EMMA vs. HAM is that EMMA

takes the known genetic similarity between strains into account to

control for population structure effects. The genome-wide

genotype data for mouse strains used in the current study were

for 281,300 SNPs, rather than 70,000 used in the previous report.

Despite these improvements, our mouse association data still

suffers from limitations. First, we are limited to a relatively small

number of strains over which the range of AHR does not vary

greatly. While the variability of AHR within strains seems to be

significantly lower than that across strains, it may be the case that

additional measures within strains would result in more precise

phenotypes that have less within-strain variability and that

increasing the number of strains phenotyped would provide a

greater range of AHR variability across strains. Second, the

phenotype studied, baseline AHR, may not be the best phenotype

to characterize asthma susceptibility. For example, measures of

AHR after mice are sensitized to ovalbumin may result in greater

phenotype heterogeneity across strains and/or less heterogeneity

within strains. Such limitations likely led the current mouse study

to have insufficient statistical power to detect associations passing

multiple comparisons correction. In addition to increasing the

number of strains characterized and including additional pheno-

types, future mouse genetic studies of asthma may be greatly

improved with resources from the Collaborative Cross [38].

Translating mouse association results to the human genome is

challenging at a genome-wide scale because of incomplete

knowledge of the human/mouse genome map. We chose a

gene-based analysis because the orthologous regions available in

HomoloGene are the most accurately mapped ones, and also

because such genes are most likely to be functionally relevant to

phenotypes that are expressed in both mouse and human. It is

Table 1. Top KCNIP4 SNP Associations.

SNP CHR BP A1 A2
EVE
P-value

GABRIEL
P-value

SLLI
P-value

DAG
P-value

Combined
Asthma P-value

SHARP AHR
P-value

DAG AHR
P-value

rs4697177 4 20369187 G T 3.0E202 1.0E203 1.9E–01 2.3E–02 1.1E–04 6.7E–01 2.0E–01

rs4696975 4 20927269 A T 1.5E–01 – 2.0E–01 3.1E–03 4.9E–03 3.3E–01 3.3E–01

rs6833065 4 21127809 C T 2.9E–04 – 2.2E–01 2.2E–01 1.1E–03 9.1E–01 5.2E–01

rs2279674 4 21129348 G T 5.4E–04 4.1E–01 2.3E–01 2.2E–01 3.6E–03 9.0E–01 5.2E–01

rs1870626 4 21141706 C G 9.3E–04 – 2.2E–01 2.0E–01 2.5E–03 8.9E–01 5.1E–01

rs11947661 4 21163270 A C 1.3E–01 – 4.6E–01 5.8E–01 3.4E–01 2.3E–03 1.4E–01

rs402802 4 21181943 A G 4.1E–01 1.2E–01 7.8E–01 4.4E–01 4.1E–01 2.0E–01 2.1E–03

rs10034603 4 21339051 G T 7.3E–04 – 4.3E–02 – 3.6E–04 7.0E–01 –

rs7378252 4 21343887 A C 7.4E–04 – 3.9E–02 5.3E–01 1.1E–03 7.3E–01 6.9E–01

rs6448072 4 21352329 C T 6.8E–03 4.6E–02 3.6E–02 5.3E–01 2.2E–03 8.3E–01 7.1E–01

rs6856781 4 21368864 C T 1.1E–02 4.1E–02 3.8E–02 – 1.2E–03 7.2E–01 –

rs7664617 4 21471526 C G 2.0E–02 – 1.5E–03 3.8E–01 8.9E–04 7.3E–01 4.1E–01

Table includes SNPs that have EVE P-value ,0.001, are the lowest in individual GWAS (indicated in bold), or have nominally significant (i.e. P-value,0.05) replications in
three of four asthma GWAS. P-values in asthma replication GWAS are 1-sided, based on the effect direction in EVE, to ensure that associations reported have effects in
consistent directions. Fisher combined P-values are based on the populations with available results. *SLLI = Sepracor/LOCCS/LODO/Illumina.
doi:10.1371/journal.pone.0056179.t001
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possible that mouse genes excluded by the HomoloGene mapping

are determinants of baseline AHR in mice. Thus, future studies

with improved mouse/human genome maps may uncover

additional regions of interest.

In summary, integration of genome-wide association results for

a mouse strain survey of baseline AHR with human asthma and

AHR GWAS results suggests that KCNIP4 is a gene related to both

asthma and AHR. Functional studies are required to validate the

potential involvement of this gene in asthma and to understand

how specific SNPs may modulate asthma susceptibility and/or

AHR.

Methods

Mouse Airway Responsiveness Measures
A survey of AHR was conducted in males of 33 mouse strains,

to augment a survey of AHR that was previously conducted in

females of 36 mouse strains [23]. AHR was measured by gathering

a baseline resistance reading for 6–10 mice per strain and gender,

followed by a reading after administration of saline, and

sequentially increasing concentrations of methacholine (1, 3, 10,

30 mg/ml) administered via nebulizer through a tracheostomy

[23]. AHR was quantified as the slope of the resistance vs. log-

transformed methacholine concentration.

Mouse in silico Association Mapping
Of the 33 mouse strains with AHR phenotype data in males and

the 36 mouse strains with AHR phenotype data in females, a

subset of 31 strains overlapped and had genome-wide genotype

data available. This subset of 31 mouse strains with AHR

measures in both males and females and with available genotype

data was used to conduct association analyses. The association of

SNPs with AHR was measured using Efficient Mixed Model

Association (EMMA) software [19], which uses a linear mixed

model with a variance component using a kinship matrix that is

based on the genetic similarity between strains to control for

population structure effects. The genotype data for the mouse

strains was part of the ‘‘Subspecific Origin and Haplotype

Diversity in the Laboratory Mouse’’ project of the Jackson

Laboratory available at http://cgd.jax.org/datasets/popgen/

diversityarray/yang2011.shtml [39]. Autosomal chromosome

association results obtained with male and female mice were

utilized. Monomorphic and singleton SNPs were excluded, and

the final dataset contained association results for 281,300 SNPs.

Primary Human Asthma GWAS
The primary group of subjects consisted of participants of the

EVE consortium, which comprises nine research teams in the

USA with genome-wide association data for diverse asthma

cohorts [26]. Briefly, 4,867 European Americans (1,486 cases,

1,539 controls, and 620 trios), 4,644 Latinos (606 cases, 792

controls, and 1,082 trios), and 3,447 African Americans (1,154

cases, 1,054 controls, and 413 trios) recruited through clinics and

health systems in the U.S., Puerto Rico, Mexico, and Barbados

were used in a meta-analysis of GWAS of asthma. The previously

generated meta-analysis results for .2 million SNPs, based on

genotyped or HapMap Phase 2 imputed data, for all subjects, as

well as those limited to European American, African American,

and Latino American groups were utilized. The test statistic to

assess association of SNPs with asthma was based on a linear

combination of normally distributed test statistics weighted by the

square root of individual study sample sizes. Significance of this

test statistic was assessed using standard normal approximations

[26,28].
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Replication Human Asthma GWAS
1) Sepracor/LOCCS/LODO/Illumina. This cohort con-

sisted of 531 non-Hispanic white cases with mild to severe asthma

from three adult asthma populations: (1) a medication trial

conducted by Sepracor, Inc., US [40,41]; (2) the Leukotriene

Modifier or Corticosteroid Salmeterol (LOCCS) study [42]; and

(3) the Effectiveness of Low Dose Theophylline as an Add-on

Treatment in Asthma (LODO) trial [43]. Cases were matched

with 660 population controls obtained from Illumina’s IconDB

resource (http://www.illumina.com/science/icontroldb.ilmn) us-

ing the genetic matching (GEM) algorithm [44]. Genome-wide

genotyping of cases was performed on the Illumina 610 quad

platform. Genome-wide genotyping of controls was performed on

the Illumina HumanHap 550K v3 platform. Genotypes of SNPs of

interest that were not captured by the genotype data were inferred

using imputation with the Markov Chain Haplotyping software

(MaCH) [45] based on HapMap Phase 2 Release 22 data [46].

The ratio of the empirically observed dosage variance to the

expected (binomial) dosage variance for imputed SNPs utilized

was greater than 0.3, indicating good quality of imputation.

Dosage data was used to compute association statistics with

PLINK [47]. The corresponding genetic inflation factor was 1.04,

demonstrating minimal population stratification.

Table 3. Effect Sizes of Top KCNIP4 SNP Associations.

SNP
Reference
Allele EVE GABRIEL SLLI DAG SHARP AHR DAG AHR

rs4697177 G 0.95 [0.87, 1.03] 0.94 [0.90, 0.98] 0.92 (0.09) 0.87 0.98 [0.88, 1.09] 0.12

rs4696975 A 1.06 [0.93, 1.22] – 1.13 (0.15) 1.44 1.10 [0.91, 1.32] 0.17

rs6833065 C 1.13 [1.03, 1.22] – 1.07 (0.09) 1.06 1.01 [0.90, 1.13] 20.06

rs2279674 G 0.88 [0.81, 0.96] 1.00 [0.95, 1.04] 0.93 (0.09) 0.95 0.99 [0.88, 1.11] 20.06

rs1870626 C 1.12 [1.02, 1.21] – 1.08 (0.09) 1.06 1.01 [0.90, 1.13] 20.06

rs11947661 A 1.02 [0.94, 1.10] – 1.01 (0.08) 0.99 0.84 [0.76, 0.94] 0.12

rs402802 A 1.04 [0.96, 1.13] 1.02 [0.98, 1.06] 0.94 (0.08) 1.01 1.07 [0.96, 1.19] 20.27

rs10034603 G 0.92 [0.85, 1.00] – 0.86 (0.09) – 1.02 [0.92, 1.14] –

rs7378252 A 1.07 [0.99, 1.16] – 1.16 (0.09) 0.99 0.98 [0.88, 1.09] 20.04

rs6448072 C 0.93 [0.85, 1.01] 0.97 [0.93, 1.01] 0.86 (0.09) 1.01 1.01 [0.91, 1.13] 20.03

rs6856781 C 1.07 [0.98, 1.16] 1.04 [1.00, 1.08] 1.17 (0.09) – 0.98 [0.88, 1.09] –

rs7664617 C 0.94 [0.86, 1.03] – 0.78 (0.09) 0.98 1.02 [0.92, 1.13] 0.07

Odds ratios are shown for asthma (EVE combined cohort, GABRIEL, Sepracor/LOCCS/LODO/Illumina (SLLI), and DAG) and for AHR (SHARP AHR for change in LnPC20,
DAG AHR for change in Ln(Slope)). EVE, GABRIEL, and SHARP include 95% confidence intervals. SLLI includes standard errors.
doi:10.1371/journal.pone.0056179.t003

Figure 7. Top regions of association in a human AHR GWAS. (A) KCNIP4 and (B) PDZD2/GOLPH3/MTMR12/ZFR associations in SHARP. The x-
axis denotes position along corresponding human chromosome, while the y-axis denotes –Log10(P). LD between the SNPs with the lowest P-value to
other SNPs in the plots are denoted in colors and were computed according to HapMap Phase 2 CEU data using LocusZoom [55].
doi:10.1371/journal.pone.0056179.g007
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2) GABRIEL. This European consortium-based GWAS of

asthma consisted of 10,365 persons with physician-diagnosed

asthma and 16,110 unaffected persons, all of whom were matched

for ancestry [25]. Publicly available results for the random-effects

pooled analysis that tested for association using the entire study

population with asthma were used [Available at http://www.cng.

fr/gabriel/results.html].
3) Dutch asthma GWAS (DAG). This cohort was comprised

of 920 DAG subjects with doctor-diagnosed asthma and docu-

mented AHR and 985 controls [48,49]. Genotyping was

performed using the Hapmap 317K platform or Illumina 370

Duo Chip. Tests of association were performed via logistic

regression using PLINK.

Human AHR GWAS
1) SHARP. A GWAS of AHR, quantified as the natural log of

the dosage of methacholine causing a 20% drop in FEV1, was

performed with 994 non-Hispanic white asthmatic subjects from

the Childhood Asthma Management Program (CAMP) [50], and

subsets of clinical trials within the Childhood Asthma Research

and Education (CARE) network [51], and the Asthma Clinical

Research Network (ACRN) [52] participating in the NHLBI SNP

Health Association Resource Asthma Resource project (SHARP)

[53]. Genome-wide SNP genotyping for SHARP subjects was

performed by Affymetrix, Inc. (Santa Clara, CA) using the

Affymetrix Genome-Wide Human SNP Array 6.0. Imputation of

all SNPs available in HapMap Phase 2 Release 22 CEU data

using MaCH [45] was performed. The primary GWAS was based

on imputed SNPs with minor allele frequency (MAF) .0.05 and a

ratio of empirically observed dosage variance to the expected

(binomial) dosage variance greater than 0.3, indicating good

quality of imputation. The association of SNPs with LnPC20 was

measured with a linear regression model using dosage data as

implemented in PLINK.
2) Dutch asthma GWAS (DAG). This cohort was comprised

of 650 DAG subjects with doctor-diagnosed asthma and docu-

mented AHR [48,49]. All subjects had smoking history and steroid

use data available at the time of the AHR test. Participants with a

history of AHR but in remission during the test were excluded.

Remission was defined as not on steroids and without 20% or

greater fall in FEV1 during the AHR test. The AHR test was

conducted using histamine or methacholine as a stimulus. AHR

was quantified as the difference between FEV1 at baseline and at

the dose step at which a 20% or greater FEV1 drop was achieved,

divided by the dose of stimulant used (slope). Because two

protocols were used, one with a 30-second tidal breathing method

and a second with a 2-minute tidal breathing phase, the AHR

slopes measured with the 30-second tidal breathing method were

divided by 4, in order to compensate for the 4 times greater

duration of administration of stimulus. Slope values were log-

transformed so that they would follow a normal distribution.

Genotyping was performed using the Hapmap 317K platform or

Illumina 370 Duo Chip. Tests of AHR association were performed

via linear regression, with smoking and inhaled/oral steroid use as

covariates using PLINK.

Each study was approved by its respective Institutional Review

Board, which ensured that all procedures followed were in

accordance with the ethical standards of the responsible committee

on human experimentation. Informed consent was obtained for all

study participants.

Integration of Mouse and Human GWAS Results
Mouse gene coordinates were mapped to the human genome

using the mouse comparative homology map data corresponding

to Mouse Build 37.2, Human Build 37.2 and HomoloGene file

from April 15, 2011 available at ftp://ftp.ncbi.nih.gov/pub/

homology_maps/ [54]. After selection of orthologous genes, the

list of genes was restricted based on having an EVE meta-analysis

P-value ,0.001 in one of the race/ethnic-specific analyses or in

the combined GWAS. Plots of human association results near

specific genes were created using LocusZoom with the hg18/

HapMap Phase II CEU GenomeBuild/LD Population [55].

Combined P-values with replication populations were computed

using Fisher’s combined probability method [56] where hypothesis

tests in replication populations had one-sided alternatives, based

on the direction of the association in EVE, so that SNPs with

association tests in opposite directions would not produce

inappropriately small P-values. Analyses were carried out using

the R computing environment [57].
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Analyzed the data: BEH KS AB ASL. Wrote the paper: BEH SJS RSZ

DSP DLD EKS GC STW.
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