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EDITORIAL

Reading and writing omes

Molecular Systems Biology 9: 642; published online 22 January 2013; doi:10.1038/msb.2012.75

‘Systems Technologies’ are increasingly potent drivers of
biological research. Molecular Systems Biology will be illus-
trating this evolution with a new Reviews Series highlighting
key technologies in systems medicine, genome-scale, compu-
tational, quantitative and synthetic biology. The series is
launched with a review from the Snyder group on reading
human omes (Soon et al, 2013) and a companion review on
writing genomes from Harvard’s Wyss Institute (Esvelt and
Wang, 2013).

Past achievements, future milestones

Exponential improvement in reading and writing technologies
(Carr and Church, 2009) (1.5-fold/year since 1960s, 6-fold per
year since 2005) created a series of breakthroughs: The first
genome read was MS2 in 1976 (phiX in 1977); first written was
hepatitis C virus in 2000 (Blight et al, 2000) (polio in 2002).
The first bacterial genome read was Helicobacter in 1994
(Haemophilus in 1995). The first genome transplanted from
in vitro DNA into radically foreign cytoplasm was Synechocys-
tis into Bacillus in 2005 (then Mycoplasma mycoides into
similar cytoplasm in 2007). Significantly, so far, no vertebrate
genome has been fully read, due to repetitive regions, and no
new organism function has been achieved by genome-scale
writing. We expect to see breakthroughs on both fronts
in 2013.

Utility beyond research feeding more
research

The first widely used genetic engineering vector was pBR322,
constructed and sequenced 1977-1978, parts of which are still
present in modern vectors. This enabled dissection of
previously recalcitrant biological systems via pure compo-
nents and swiftly lead to commercial production of a stream of
human proteins, including insulin, interferons, epo and
therapeutic antibodies. Proteins still constitute the fastest
growing category of new therapeutics. Comparative genomics,
metabolic engineering and systems biology (Schirmer et al,
2010) have resulted in factories already at production-scale for
chemicals, fuels and pharmaceuticals.

What next for reading omes?

Some say that due to other costs, the plummeting human
genome price will stop at $1000, but the million-fold cost
improvement changes not only how we read our once-in-a-
lifetime inherited genomes, but also how we can measure our
day-to-day immunome response to our microbiome, cancer

transcriptome and allergome. Portable nanopore devices with
minimal sample handling and 100-kbp reads could enable real-
time environmental air and food monitoring. Nanotags seem
ready to greatly improve raw sequencing accuracy (Kumar
et al, 2012) and detection of modified bases (Korlach and
Turner, 2012). Another technology with a potentially huge
impact on systems biology will be fluorescent in situ sequen-
cing, enabling studies of not just single cells, but subcellular
and multicellular features, and reveal tumor and develop-
mental cell-to-cell heterogeneity. Combined with super-
resolution fluorescent microscopy, in situ measures will reveal
the 3D structure of genomes, epigenomes and cells (Beliveau
et al, 2012). This allows us to go beyond ENCODE (Bernstein
et al, 2012) and ‘Organs-on-chips’, which pragmatically
employ cancer-like cells and primary cells from poorly
documented human sources, to well-defined open-access
personal genome cells (Ball et al, 2012), engineered human
cells and even human plus bacterial cells in synthetic gut
ecosystems (Kim et al, 2012).

From reading to diagnostics

Will we need $100 000 to interpret our $1000 genome?
Certainly not. Automation of data analysis workflows and
minimization of false-positive diagnostic outcomes already
deliver full genome interpretation for $400 per genome
(a fraction of the $4000 raw sequence). Interpretation will
expand from simple Mendelian models to multigenic, multi-
environmental component systems models. This transition
will benefit from shareable integrated ‘precision medicine’
data sets on individuals (not averages). Despite the increase in
actionable gene tests from a few in 1990–2700 today, a vocal
few insist that personal genomics is not worth it. Yes; DNA like
many other diagnostics may not reveal anything new, but you
don’t know until you look. We should not restrict gene tests by
family history, as many afflicted are the first in their family.
Notably as we learn to better control environmental factors,
the genetic component (heritability) of a disease can increase
(unbounded by previous association studies or twin studies
conducted before the reduction in environmental compo-
nents). Ironically, the push for larger cohorts in the name of
statistical power, results in confounding via lumping of
disparate types. Focusing instead on phenotypic extremes
(positive and negative) can result in clearer diagnostics,
preventatives and therapies applicable across the whole
spectrum. Furthermore, systems approaches focused on
causality rather than correlation seem quite promising, even
with cohorts as small as N¼ 1. Examples of going from
genome-wide analyses to treatment are accumulating (e.g.,
Nic Volker, the Beery twins, Mike Snyder, John Lauerman).
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What next for writing omes? Genomic and
epigenomic grand challenges

The first question is why? Why genome-wide rather than a few
genes? Genome engineering enables non-standard amino
acids, safety isolation and multi-virus resistance (Isaacs et al,
2011). Making one genome at a time at high cost (albeit
decreasing) misses a key advantage not available to other
engineering fields, which is the ability to use system knowledge
and clever selections on billions of genomes. Construction of
such billions benefits from synthesis of raw oligos on chips and
using combinatorial multiplex automated genome engineering.
For more difficult organisms, we need extra guidance for
genomic and epigenomic reprogramming via Zn-Fingers,
TALEs or CRISPR (Mali et al, 2012). We will see growing use
of sequencing to quantitate phenotypes of large libraries (of
codons, cis-regulatory signals, etc) and library-by-library
measures (antibodies versus antigens, RNA versus protein,
etc). The ability to synthesize and deliver complex mixtures
(Kim et al, 2011) of mRNAs, miRNAs, siRNAs and gRNAs put us
on the verge of a transition matrix among all normal and
pathological epigenomic states, and therapies (Figure 1).

From writing to therapeutics

Just as proteins are ‘smarter’ than small molecules, cells are
smarter still. Genetic therapy has transitioned from random
viral payload integration in the 1990 s to precise targeting
today. A Zn-finger-nuclease targeting CCR5 DNA is a promising
treatment for AIDS now in phase 2 trials. Also remarkable is the
extension of the concept of enhancing drugs and devices—such
as cognitive enhancers—to the notion of enhancing gene
therapies that will ‘cure’ people of their common genotype
using a minor variant—rather than the older goal of fixing rare
genetic diseases using the common variant.

In conclusion, reading and writing technologies are now
extending across a broad range of physical and multiplexing

scales. Combining multiplexing at the sequence level with
parallelized sample processing provide biologists with system-
wide functional testing approaching with sufficient power to
match the large-scale hypothesis generation that typically
results from ome data.
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