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Abstract

Nucleotide-binding domain leucine-rich repeat (NLR) protein complexes sense infections and trigger robust immune
responses in plants and humans. Activation of plant NLR resistance (R) proteins by pathogen effectors launches convergent
immune responses, including programmed cell death (PCD), reactive oxygen species (ROS) production and transcriptional
reprogramming with elusive mechanisms. Functional genomic and biochemical genetic screens identified six closely related
Arabidopsis Ca2+-dependent protein kinases (CPKs) in mediating bifurcate immune responses activated by NLR proteins,
RPS2 and RPM1. The dynamics of differential CPK1/2 activation by pathogen effectors controls the onset of cell death.
Sustained CPK4/5/6/11 activation directly phosphorylates a specific subgroup of WRKY transcription factors, WRKY8/28/48,
to synergistically regulate transcriptional reprogramming crucial for NLR-dependent restriction of pathogen growth,
whereas CPK1/2/4/11 phosphorylate plasma membrane-resident NADPH oxidases for ROS production. Our studies delineate
bifurcation of complex signaling mechanisms downstream of NLR immune sensors mediated by the myriad action of CPKs
with distinct substrate specificity and subcellular dynamics.
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Introduction

The first line of nonself recognition and immune responses in

multicellular organisms is triggered by conserved pathogen- or

microbe-associated molecular patterns (PAMPs/MAMPs) through

pattern recognition receptors (PRRs). MAMPs, such as bacterial

flagellin and peptidoglycan (PGN) or fungal chitin, are perceived

by cell-surface receptors to mount PAMP/MAMP-triggered

immunity (PTI) for broad-spectrum microbial resistance in plants

[1,2]. Successful pathogens acquired virulence effectors to suppress

PTI. To confine or eliminate pathogens, plants further evolved

polymorphic R proteins to directly or indirectly recognize effectors

and initiate effector-trigger immunity (ETI) accompanied with

localized PCD and systemic defense signaling [3,4,5,6,7]. The

most common R proteins are intracellular immune sensors with

the nucleotide-binding domain (NB) and leucine-rich repeat

(LRR), a structural feature shared by mammalian NOD-like

receptors that perceive intracellular MAMPs and danger signals to

initiate inflammation and immunity [6,8,9,10,11,12]. Whether

and how distinct intracellular and cell-surface immune sensors

trigger overlapping or/and differential primary immune signaling

responses are still largely open questions.

In Arabidopsis thaliana, NLR protein RPS2 initiates resistance

upon recognition of Pseudomonas syringae effector AvrRpt2, whereas

RPM1 recognizes two sequence-unrelated effectors, AvrRpm1

and AvrB. With a few exceptions, NLR proteins do not interact

directly with pathogen effectors, but instead monitor perturbation

of host proteins by pathogen effectors to mount defense responses

[3,4,5,6,7,8,9,10]. For instance, AvrRpt2 degrades Arabidopsis

RIN4 protein to activate RPS2 signaling, whereas AvrRpm1

and AvrB induce RIN4 phosphorylation via host kinases to initiate

RPM1 signaling [13,14,15,16]. Although several plant NLR

proteins, such as barley MLA10 [17], tobacco N [18] and

Arabidopsis RPS4 [19,20], require effector-induced nuclear trans-

location for immune signaling, RPS2 and RPM1 are anchored to

the plasma membrane to elicit immune responses [15,21]. Potato

Rx protein requires both nuclear and cytoplasmic localizations for

full immunity [22,23]. Apparently, different NLR proteins deploy

distinct mechanisms in multiple subcellular compartments to

activate complex downstream signaling. The molecular link

between the activated NLR proteins and the diverse downstream

signaling events that lead to PCD activation, ROS production and

transcriptional reprogramming has remained elusive.

Ca2+ is an essential and conserved second messenger in nearly

every aspect of cellular signaling programs. Ca2+ influx is a

prerequisite for PCD triggered by AvrRpm1/AvrB-RPM1 and

AvrRpt2-RPS2 interactions [24,25,26]. How the Ca2+ signal is

sensed and transduced upon NLR protein activation has remained
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obscure. There are three major types of Ca2+ sensors in plants,

including calmodulin (CAM), calcineurin B-like proteins and

calcium-dependent protein kinases (CPKs) [27,28,29]. It has been

shown that Arabidopsis CAM-like protein CML24 is required for

nitric oxide (NO) production and AvrRpt2-mediated PCD [26].

CPKs have been identified ubiquitously throughout the plant

kingdom and share a protein kinase domain with high sequence

homology to the mammalian multifunctional CAM-dependent

protein kinases, suggesting their dual function as Ca2+ sensors and

signal transducers [27,29]. Tobacco CPKs play essential roles in

PCD induced by Avr9-Cf9 interaction, in which Cf9 encodes a

cell-surface receptor with an N-terminal LRR domain [30,31].

Potato StCPK4 and StCPK5 directly phosphorylate and activate

NADPH oxidase RBOHB (Respiratory Burst Oxidase Homo-

logue B) [32]. There are 34 CPKs in Arabidopsis genome, which

can be classified into four groups (I–IV) based on sequence

similarity [27]. Recently, four Arabidopsis CPKs (CPK4/5/6/11)

have been identified to play important roles, together with the

MAPK cascades, in relaying primary MAMP immune signaling

[33]. Distinct from the rapid and transient increase of cytosolic

Ca2+ concentration induced by MAMPs [34,35,36], inoculation

with bacteria carrying avrRpm1, avrB or avrRpt2 triggered a much

prolonged and sustained increase of cytosolic Ca2+ concentration

accompanied with PCD in Arabidopsis leaves [25,26]. It remains

enigmatic how the distinct calcium signatures are sensed and

relayed for differential and overlapping immune responses in ETI

and PTI signaling.

In the present study, we have identified six Arabidopsis CPKs in

sensing and transducing Ca2+ signatures dynamically activated by

RPS2 and RPM1 upon AvrRpt2 and AvrRpm1/AvrB elicitation,

respectively. The specificity and redundancy of individual CPKs in

NLR signaling events, including CPK4/5/6/11 in orchestrating

immune gene expression, CPK1/2/4/11 in ROS production, and

CPK1/2/5/6/ in PCD, were revealed by integrative biochemical,

cellular, functional genomic and genetic analyses. Apparently,

specific CPKs are engaged in diverse immune responses via

phosphorylation and activation of different substrates in distinct

subcellular compartments. Functional genomic screens identified a

specific subgroup of WRKY transcription factors that act

synergistically with CPKs in primary NLR signaling. Sustained

activation of CPK4/5/6/11 phosphorylates WRKY8/28/48 for

transcriptional reprogramming of immune genes, whereas CPK1/

2/4/11 phosphorylate NADPH oxidases for ROS production and

contribute to PCD. Our results reveal bifurcate NLR signaling

mechanisms through specific, overlapping and prolonged actions

of CPKs in concert with distinct substrates in multiple subcellular

compartments.

Results

PCD and immune gene activation triggered by bacterial
effectors

To elucidate early signaling events in plant ETI, we have

deployed an Arabidopsis mesophyll protoplast system in which

pathogen-encoded individual effector genes are expressed to

monitor specific and temporal responses. The cell-autonomous

and synchronized elicitation in a homogeneous cell population by

a single pathogen effector circumvents the complex responses

simultaneously activated or/and repressed by a large array of

MAMPs and effectors in intact plant-pathogen interactions

[37,38]. Expression of effector gene, avrRpm1, avrB or avrRpt2, in

protoplasts triggered distinct kinetics of PCD as detected by Evan’s

blue staining (Figure 1A). The PCD induced by AvrRpm1 or AvrB

was observed as early as 2 hr post-transfection (hpt), whereas the

PCD induced by AvrRpt2 was evident at 16 hpt, reminiscent of

observations with the actual plant-pathogen interactions (Figure

S1A) [39]. PCD was not detected in the corresponding NLR

mutants rpm1 and rps2 (Figure 1A). Effector-induced PCD was

accompanied by enhanced nuclear fragmentation visualized by

fluorescent YO-PRO-1 iodide staining (Figure S1B), consistent

with a previous report based on direct effector protein delivery

[38].

We performed a genome-wide transcriptome analysis of

protoplasts expressing avrRpm1 or avrRpt2, and identified WRKY46

as an early marker gene in convergent ETI signaling (data not

shown). The WRKY46 transcript was strongly induced in

protoplasts expressing avrRpm1, avrB or avrRpt2 in an RPM1 or

RPS2 dependent manner (Figure 1B and S1C). The induction of

WRKY46 by effectors was further confirmed with plants infected

by P. syringae DC3000 (Pst) carrying avrRpm1 or avrB (Figure 1C)

and in dexamethasone-inducible avrRpt2 transgenic plants

(Figure 1D and S1D). Similar to the endogenous gene, the

promoter of WRKY46 fused to a firefly luciferase reporter gene

(LUC) was strongly activated by AvrRpm1, AvrB or AvrRpt2 in

protoplasts (Figure 1E). Notably, unlike PCD, effector-induced

WRKY46 activation was observed to follow with similar kinetics, as

early as 2 hpt, suggesting distinct mechanisms governing PCD and

immune gene activation.

Differential CPK activation in ETI signaling
To elucidate the signaling mechanisms underlying PCD and

gene activation triggered by different bacterial effectors, we first

explored chemical inhibitors affecting various Ca2+ channels.

Consistent with previous reports, the calcium-channel blocker,

LaCl3, suppressed effector-mediated PCD in Arabidopsis leaves

inoculated with Pst avrRpm1 or avrRpt2 (Figure S2A) [24,25].

Interestingly, effector-mediated PCD was also significantly dimin-

ished in the presence of ruthenium red (RR), which inhibits Ca2+

release from internal stores (Figure S2A). The similar effects of

calcium-channel blockers were observed in protoplasts expressing

AvrRpm1, AvrB or AvrRpt2 (Figure 1F), validating the responses

Author Summary

Distinguishing self from non-self is the fundamental
principle of immunity. Nucleotide-binding leucine-rich
repeat (NLR) proteins were first identified in plants as
disease resistance proteins and were recently found to
play essential roles in mammalian innate immunity and
inflammation. NLR protein complexes sense intracellular
pathogenic effectors in plants and microbial patterns and
danger signals in humans, but the signaling mechanisms
upon NLR activation remain elusive. Using the Arabidopsis-
Pseudomonas interaction as a model system, we discov-
ered the molecular link between NLR immune sensors and
the convergent immune responses triggered by distinct
pathogen effectors. Integrated functional genomic and
biochemical genetic screens identified six closely related
Ca2+-dependent protein kinases (CPKs) that orchestrate
bifurcate NLR immune signaling via distinct substrate
specificity and subcellular dynamics. The CPK1/2 regulate
the onset of programmed cell death; CPK4/5/6/11 phos-
phorylate specific WRKY transcription factors to regulate
immune gene expression crucial for NLR-dependent
restriction of pathogen growth, whereas CPK1/2/4/11
phosphorylate NADPH oxidases for the production of
reactive oxygen species. Our studies decode the complex
signaling mechanisms via the myriad action of CPKs
downstream of NLR immune sensors.

CPKs Control Bifurcate NLR Signaling
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in whole leaves and mesophyll single-cell system. These Ca2+

inhibitors also suppressed effector-mediated WRKY46 promoter

activation (Figure 1G). Thus, both external and internal sources of

Ca2+ are essential in ETI signaling.

To investigate the potential involvement of CPKs in ETI

signaling, we developed an in-gel kinase assay using histone as a

general substrate. Interestingly, different effectors activated two

major groups of putative endogenous CPKs with distinct

molecular masses and kinetics in a Ca2+ dependent manner

(Figure 2A). The activation of 72-kDa CPKs by AvrRpm1 or AvrB

appeared stronger and occurred earlier (2 hpt) than the corre-

sponding responses induced by AvrRpt2 (3 hpt), whereas the

activation of 60-kDa CPKs displayed similar kinetics triggered by

three effectors (Figure 2A). The differential CPK activation is

unlikely due to the differences in the expression levels and timing

of effector expression (Figure S2B). In light of the observation that

AvrRpm1/AvrB-RPM1 interaction triggers a more rapid cell

death than the AvrRpt2-RPS2 interaction (Figure 1A and S1A),

we hypothesized that the 72-kDa CPKs were likely involved in

regulating PCD. Importantly, effector-mediated kinase activation

was not observed in the corresponding rpm1 and rps2 mutants

(Figure 2B and S2C), reinforcing the requirement for host immune

sensors in transducing Ca2+ signaling. The weak response

mediated by AvrB-TAO1 [40] and AvrRpm1-RPS2 [41] might

be below the threshold of detection for CPK activation. The

activation of CPKs by bacterial effectors was further confirmed in

Arabidopsis plants inoculated with Pst, Pst avrRpm1 or avrRpt2

(Figure 2C). Notably, bacterial flagellin-mediated CPK activation

is rather transient and peaks within 5–15 min [33]. In contrast,

coincident with sustained cytoplasmic Ca2+ elevation, effector-

triggered CPK activation lasted for hours (Figure 2A) [25,26]. In

addition, unlike flagellin, AvrRpm1 and AvrRpt2 did not induce

strong MAPK activation (Figure 2D and S2D), indicating

differential early signaling events in PTI and ETI. Kinase inhibitor

K252a and Ca2+ channel blockers, LaCl3 and RR, substantially

abolished the activation of putative CPKs (Figure 2E), further

confirming the requirement of Ca2+ signaling in the kinase

activation. Catalase, a decomposer of H2O2, or NO scavenger

CPTIO and NO synthase inhibitor L-NNA had no effects on the

kinase activation (Figure 2E), implying that the CPK activation

likely occurs upstream or independently of ROS and NO

signaling, which are induced upon Pst avrRpm1 or avrRpt2 infection

in Arabidopsis leaves [24,26,42].

Functional genomic screen of CPKs in ETI signaling
The predicted molecular mass of CPK1 and CPK2 in group I

matches the putative 72-kDa CPKs whose activation kinetics was

coincident with the onset of effector-triggered PCD, whereas the

majority of the remaining CPKs falls into the range of molecular

mass of 60-kDa [27]. We reasoned that if any specific CPK

Figure 1. The requirement of Ca2+ signaling in ETI. (A) AvrRpm1-, AvrB- and AvrRpt2-induced cell death was detected by Evan’s blue staining
at different time points after transfection in WT, rpm1 or rps2 protoplasts. Ctrl is a control vector. Data are shown as mean 6 SD. (B) AvrRpm1, AvrB
and AvrRpt2 activated endogenous WRKY46 expression in protoplasts. The transfected protoplasts were collected 6 hpt for real-time RT-PCR analysis.
The expression of WRKY46 was normalized to the expression of UBQ10. The data are shown as the mean 6 SE from three independent biological
replicates. (C) Induction of WRKY46 by Pst avrRpm1 and avrB infection in plants. Plant leaves were hand-inoculated with control or bacteria at
16107 cfu/ml. The samples were collected 6 hpi for real-time RT-PCR analysis. The expression of WRKY46 was normalized to the expression of UBQ10.
The data are shown as the mean 6 SE from three independent biological replicates. (D) Induction of WRKY46 in dexamethasone (DEX)-inducible
avrRpt2 transgenic plants and protoplasts. The WRKY46 expression was detected 6 hr after DEX treatment with real-time RT-PCR analysis. The
expression of WRKY46 was normalized to the expression of UBQ10. The data are shown as the mean 6 SE from three independent biological
replicates. (E) AvrRpm1, AvrB and AvrRpt2 activated WRKY46 promoter in protoplasts. The pWRKY46-LUC was co-transfected with avrRpm1, avrB, or
avrRpt2, or a vector control in protoplasts and samples were collected at indicated time points. The UBQ-GUS was included as an internal transfection
control. The relative luciferase activity was normalized with GUS activity. (F) AvrRpm1, AvrB and AvrRpt2-induced cell death was suppressed by
calcium inhibitors in Arabidopsis protoplasts. The avrRpm1, avrB, or avrRpt2 was co-transfected with UBQ-GUS and incubated with 1 mM LaCl3, 1 mM
GdCl3 or 10 mM RR. The samples were collected 16 hpt, and the cell death ratio was presented as the percentage of GUS activity repression in
effector-transfected cells compared to control-transfected cells. (G) Effector-induced WRKY46 promoter activity was suppressed by calcium inhibitors
in protoplasts. The samples were collected 6 hpt. The above experiments were repeated at least four times with similar results.
doi:10.1371/journal.ppat.1003127.g001

CPKs Control Bifurcate NLR Signaling

PLOS Pathogens | www.plospathogens.org 3 January 2013 | Volume 9 | Issue 1 | e1003127



functions in ETI signaling, its constitutively active (CPKac) form

lacking the autoinhibitory domain [33] would likely activate ETI

marker gene WRKY46 in the absence of effectors. We performed a

functional genomic screen by co-expressing individual CPKac with

pWRKY46-LUC in protoplasts. Among the 23 CPKs that are well

expressed in Arabidopsis leaves [33], only specific CPKacs,

CPKac3, 4, 5, 6, 10, 11 and 30, induced pWRKY46-LUC

expression two to four fold (Figure 2F). The expression level and

kinase activity of CPKac3 are relatively higher than the other

CPKacs [33]. Notably, CPKac4, 5, 6 and 11 belong to a closely

related clade in subgroup I [27]. The molecular mass of CPK4, 5,

6, and 11 is around 60 kDa [33], which matches 60-kDa CPKs

activated by effectors. Thus, CPK4, 5, 6, and 11 were chosen for

the further studies. The kinase-dead mutants of CPKac4, 5 and 11

did not activate pWRKY46-LUC expression (Figure 2G). CPKac1

and 2, which are likely involved in PCD regulation, did not

significantly induce pWRKY46-LUC (Figure 2F).

WRKY transcription factors act synergistically with CPKs
in ETI signaling

Compared to the strong activation by effectors (Figure 1E),

CPKacs only moderately activated the WRKY46 promoter. We

hypothesized that additional factors may be involved to act

synergistically with CPKs for WRKY46 promoter activation in ETI

signaling. Bioinformatics analysis of the putative promoter region

(1.5 Kb upstream of the translational start codon) of WRKY46

identified four W-box elements that are recognized by WRKY

transcription factors (Figure 3A) [43]. Compared to the wild-type

reporter, the mutation of W1 or W4 attenuated AvrRpt2-

mediated activation of pWRKY46-LUC (Figure 3A), suggesting

the involvement of WRKYs in ETI signaling.

The 75 Arabidopsis WRKY genes were classified into three groups

with group II further divided into five subgroups [44]. We carried

out a second functional genomic screen to identify WRKY

candidates that could function synergistically with specific CPKs in

ETI signaling. Representative WRKYs induced by Pst avrRpt2 from

each WRKY group (Figure S3A) [43] were co-expressed with

CPKac5 in protoplasts for the activation of pWRKY46-LUC

reporter. Remarkably, co-expression of CPKac5 and WRKY48

in subgroup IIc strongly induced the WRKY46 promoter to the

same extent as that activated by effectors (Figure 3B). Consistently,

CPKac4, 6 and 11, close family members of CPKac5, but not

CPKac1 and 2 that were unable to activate WRKY46 promoter

(Figure 2F), also exhibited synergistic activity with WRKY48 to

induce pWRKY46-LUC (Figure 3C and S3B). WRKY8 and 28,

closely related to WRKY48 in subgroup IIc, also strongly

activated pWRKY46-LUC when co-expressed with CPKac4, 5, 6

Figure 2. The involvement of CPKs in ETI. (A) Effectors activated endogenous CPKs in protoplasts. Protoplasts were collected at indicated time
points after transfection with Ctrl, avrRpm1, avrRpt2, or avrB. The kinase activity was analyzed with an in-gel kinase assay using histone type III-S as a
substrate in the presence of 0.2 mM CaCl2 or 2 mM EGTA. RBC (RuBisCo) is a loading control by Western blot with an a-RBC antibody. (B) Effector-
mediated CPK activation depended on the corresponding host NLR proteins in protoplasts. The in-gel kinase assay was performed 2 hpt. (C)
Activation of CPKs by Pst avrRpm1 or avrRpt2 in plants. Four-week old Arabidopsis plants were inoculated with Pst, Pst avrRpm1 or avrRpt2 at
16108 cfu/ml. The samples were collected 2 hpi for in-gel kinase assay with histone type III-S as a substrate. (D) Differential activation of MAPKs by
flagellin and effectors in protoplasts. Ctrl, avrRpm1, or avrRpt2-transfected cells were incubated for 3 hr before treatment with 1 mM flg22 (22-amino-
acid peptide of flagellin) for 10 min and subjected for an in-gel kinase assay using MBP as substrate. (E) Activation of CPKs in the presence of different
chemical inhibitors in protoplasts. The concentration of inhibitors: K252a, 0.2 mM; LaCl3, 1 mM; RR, 10 mM; Catalase, 0.5 mg/ml; L-NNA, 100 mM;
CPTIO, 100 mM. (F) Functional genomic screen of CPKacs in protoplasts. The pWRKY46-LUC was co-transfected with individual CPKacs to determine
the activation of WRKY46 promoter. The data are shown as the mean 6 SE (n = 3) and the asterisk (*) indicates a significant difference between CPKac
and control (p,0.05). (G) Kinase dependence of WRKY46 promoter activation by CPKacs in protoplasts. ‘‘m’’ indicates the kinase-dead mutants of
CPKacs. The above experiments were repeated three to four times with similar results.
doi:10.1371/journal.ppat.1003127.g002

CPKs Control Bifurcate NLR Signaling
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or 11, but not their kinase-dead mutants (Figure 3D and 3E),

suggesting potentially overlapping functions of WRKY8, 28 and

48 in ETI signaling. Consistently, the expression of WRKY8, 28

and 48 preceded that of WRKY46 upon Pst avrRpt2 infection (Fig,

S3C). Together, our results indicate that CPK4, 5, 6 and 11 play

overlapping or redundant roles in immune gene regulation via

specific WRKY transcription factors.

Direct phosphorylation of WRKYs by CPKs
To determine whether CPKs could directly phosphorylate

WRKYs for their functional synergism, we purified full-length

CPKs as Glutathione-S-Transferase (GST) and WRKYs as

Maltose-Binding Protein (MBP) fusion proteins from E. coli and

carried out in vitro kinase assays. Significantly, CPK4, 5 and 11, but

not the kinase-dead mutants, were able to phosphorylate WRKY8,

28 and 48 in a Ca2+ dependent manner (Figure 4A, 4B and S4A).

The conserved DNA-binding WRKY domain of WRKY8, 28 and

48 could be directly phosphorylated by CPK4, 5 and 11, but not

by 10 and 30 (Figure 4C, 4D and data not shown). The amino acid

sequence surrounding T247 and T248 of WRKY48 [basic-X-T-

T-X-X-X-X-hydrophobic (h)-basic] closely matches an optimal

phosphorylation substrate target of CPKs (basic-h-X-basic-X-X-

S/T-X-X-X-h-basic) [27]. Indeed, both T247 and T248 were

phosphorylated by CPKs in vitro with mass spectrometry (MS)

analysis (Figure 4E and S4B). Interestingly, T248A, but not

T247A, abolished the phosphorylation of the WRKY48 DNA

binding domain by CPK4 and 5 (Figure 4D), suggesting the

functional importance of T248 in WRKY48. T248 in WRKY48 is

conserved in WRKY8 and 28 (Figure S3A). Importantly, T199 in

WRKY28, corresponding to WRKY48 T248, was also phosphor-

ylated by CPK5 with MS analysis (Figure S4C).

Phosphorylation of NADPH oxidases by CPKs
ETI signaling is often associated with a rapid production of

ROS generated by plasma membrane-resident NADPH oxidases

encoded by RBOH genes in plants. Arabidopsis rbohD rbohF double

mutants showed decreased ROS production and PCD in response

to Pst avrRpm1 infection [45]. Potato StCPK4 and 5 phosphory-

lated StRBOHB and activated ROS production in tobacco leaves

[32]. Surprisingly, CPKac5 and 6, the closest orthologs of StCPK4

and 5, only displayed weak phosphorylation activity on the

cytoplasmic N-terminus of RBOHD or RBOHF (Figure 4F).

However, CPKac1, 2, 4 and 11, but not the kinase-dead mutants,

strongly phosphorylated the cytoplasmic N-terminus of RBOHD

and RBOHF in an immunocomplex kinase assay (Figure 4F). The

weak phosphorylation activity of CPKac5 and 6 on RBOHD and

RBOHF was unlikely due to their overall kinase activities (Figure

S4D). This finding was further substantiated by the full-length

CPK11 phosphorylation of RBOHD and RBOHF in a Ca2+-

dependent manner with an in vitro kinase assay (Figure S4E).

StCPKs phosphorylated StRBOHB at residues Ser-82 and Ser-97

[32], corresponding to Ser-133 and Ser-148 in Arabidopsis

RBOHD. Mutation of Ser-148, but not Ser-133, to alanine

reduced the RBOHD phosphorylation by CPK2, 4 and 11

(Figure 4G), indicating Ser-148 as an important phosphorylation

site of RBOHD by CPKs. The data suggest that specific Arabidopsis

CPKs play an important role in ROS production by phosphor-

ylating NADPH oxidases.

Figure 3. Synergism of CPKs and WRKYs on WRKY46 promoter activity. (A) Requirement of W-boxes for WRKY46 promoter activity in
protoplasts. The WT or mutant WRKY46 promoter was co-transfected with avrRpt2 or a vector control. The scheme represents the positions of four W-
boxes in the WRKY46 promoter. (B) Functional genomic screen of WRKYs in protoplasts. The representative WRKY from different groups were co-
transfected with CPKac5 for the activation of WRKY46 promoter. The bottom panel shows the expression of individual HA epitope-tagged WRKYs
detected by Western blot. (C) Synergistic activation of WRKY46 promoter by WRKY48 and specific CPKacs in protoplasts. (D) Synergistic activation of
WRKY46 promoter by WRKY28 and specific CPKacs in protoplasts. ‘‘m’’ indicates the kinase-dead mutants of CPKacs. (E) Synergistic activation of
WRKY46 promoter by WRKY8 and specific CPKacs in protoplasts. ‘‘m’’ indicates the kinase-dead mutants of CPKacs. The above experiments were
repeated three times with similar results.
doi:10.1371/journal.ppat.1003127.g003
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CPK phosphorylation enhances WRKY binding to
W-boxes

The GFP fusions of CPK4, 5, 6 and 11 were observed in both

cytoplasm and nucleus [33], whereas WRKY8 and 48 were

mainly detected in the nucleus [46,47]. Since CPKs directly

phosphorylated WRKYs, we examined the localization of CPK-

GFP upon effector elicitation. Interestingly, co-expressing with

AvrRpt2 enriched the strong and bright nuclear CPK5-GFP

signals (Figure 5A). The enriched nuclear GFP signal was not due

to the cleavage of CPK-GFP by AvrRpt2 (Figure S5A). Similarly,

expression of AvrRpt2 under the control of a dexamethasone-

inducible promoter within 2 hr was able to stimulate both CPK4-

GFP (Figure S5B) and CPK5-GFP (Figure S5C) nuclear localiza-

tion. Subcellular fractionation further confirmed a quantitative

increase of CPK5-HA protein in the nucleus in the presence of

AvrRpt2 (Figure 5B). The purity of subcellular fractionations was

confirmed with a-histone H3 antibody for nuclear proteins and

coomassie blue staining of rubisco carboxylase (RBC) for proteins

excluded from the nucleus (Figure 5B). The data suggest that

AvrRpt2 stimulates CPK5 nuclear translocation, where CPK5

phosphorylates specific WRKYs to regulate target gene transcrip-

tion. The biological importance of phosphorylation was reinforced

by that mutation of T248, a CPK phosphorylation residue in the

DNA binding domain of WRKY48, partially compromised its

ability to activate pWRKY46-LUC in the presence of CPKac4, 5 or

11 (Figure 5C).

WRKYs bind to the W-boxes of target genes to regulate

transcription. We show that WRKY48 proteins bound to the

DNA oligos consisting of four W-boxes from WRKY46 promoter in

a gel mobility shift assay (Figure 5D and S6A) and quantitative

chromatin immunoprecipitation-polymerase chain reaction

(ChIP-PCR) assay (Figure 5E). The binding appears specific as

WRKY48 proteins did not bind to the mutated W-boxes

(Figure 5D), and the binding was largely reduced with the

addition of unlabeled specific oligos, but not with nonspecific

oligos (Figure S6B). Importantly, phosphorylation of WRKY48 or

28 by CPK5 further enhanced its binding to the W-boxes

(Figure 5D and S6C). Apparently, phosphorylation is essential for

Figure 4. CPKs phosphorylate WRKYs and RBOHs. (A) Phosphorylation of WRKYs by CPK5 in vitro. MBP-WRKY fusion proteins were used as the
substrates for GST-CPK5 in an in vitro kinase assay in the presence of 1 mM Ca2+. Phosphorylation was analyzed by autoradiography (top panel), and
the protein loading was shown by Coomassie blue staining (CBS) (bottom panel). 5 m is a kinase-dead mutant of CPK5. (B) Phosphorylation of WRKYs
by CPK11 in vitro. 11 m is a kinase-dead mutant of CPK11. (C) Phosphorylation of WRKY DNA binding domains by different CPKs in vitro. (D) T248 is
required for WRKY48 DNA binding domain phosphorylation by CPKs in vitro. (E) WRKY48 T248 is phosphorylated by CPKs with MS analysis.
Sequencing of a doubly charged peptide ion at m/z 531.22 that matches to CTpTVGCGVK of WRKY48. The confident b2 and b3 ions as well as y7 ion
provide strong evidence for phosphorylation of the third Thr residue. (F) CPKacs phosphorylated RBOHD and RBOHF with an immunocomplex kinase
assay. The FLAG-tagged CPKacs or the kinase-dead mutants (m) were expressed in protoplasts, and immunoprecipitated with an a-FLAG antibody for
an in vitro kinase assay using GST-RBOHD or GST-RBOHF as a substrate. The proteins of RBOHD and RBOHF were shown, and the expression of
individual CPKacs was detected by Western blot (bottom panel). (G) S148 is an essential phosphorylation site of RBOHD by CPKs in vitro. * indicates
phosphorylated RBOHD. The numbers below indicate the relative phosphorylation level compared to WT RBOHD (set as 1) as quantified by Image J.
The above experiments were repeated three times with similar results. The MS analysis was repeated twice.
doi:10.1371/journal.ppat.1003127.g004

CPKs Control Bifurcate NLR Signaling

PLOS Pathogens | www.plospathogens.org 6 January 2013 | Volume 9 | Issue 1 | e1003127



the enhanced binding activity since the kinase-dead mutant

CPK5m did not potentiate WRKY28 binding to the W-boxes

(Figure S6C). Consistently, an in vitro assay revealed that CPK5

directly pulled down WRKY8 or 48, suggesting a physical

interaction between specific WRKYs and CPKs (Figure 5F).

Together, the data support the synergistic roles of specific CPKs

and WRKYs in WRKY46 activation in ETI signaling.

Compromised ETI signaling and pathogen resistance in
cpk mutants

To examine the genetic importance of specific CPKs in ETI

signaling, we characterized Arabidopsis loss-of-function cpk mutants.

In addition to our previously identified cpk5, cpk6 and cpk11 single

mutants and the cpk5,6 double mutants [33], we isolated cpk1

(Salk_096452) and cpk2 (Salk_059237) single mutants from the

Salk T-DNA insertion collection (Figure S7A). RT-PCR analysis

confirmed that both cpk1 and cpk2 were null mutants with

undetectable full-length transcripts (Figure S7A). We did not

observe overt phenotypes for any single mutants (cpk1, 2, 5, 6 and

11) in response to Pst avrRpm1 or avrRpt2 infections (data not

shown). We further generated the cpk1,2 double mutants and the

cpk1,2,5,6 quadruple mutants by genetic crosses. These mutants

did not display any obvious growth defects under normal growth

conditions. Importantly, AvrRpm1-stimulated WRKY28 phos-

phorylation by endogenous CPKs was reduced in the cpk5,6

mutants with WRKY28 fusion protein as a substrate in an in-gel

kinase assay (Figure 6A).

The in planta bacterial multiplication of Pst avrRpm1 or avrRpt2

increased about five to ten fold in the cpk5,6 and cpk1,2,5,6, but not

cpk1,2 mutants, compared to that in WT plants (Figure 6B). The

disease symptom was also more severe in the cpk5,6 and cpk1,2,5,6

mutants than that in WT and cpk1,2 mutants (Figure S7B). The

increased susceptibility of the cpk5,6 mutants to Pst avrRpm1 or

avrRpt2 was not due to a general defect in basal defense (Figure

S7C). NLR proteins were divided into TIR (Toll-interleukin 1

receptor)-domain-containing and CC (coiled-coil)-domain-con-

taining classes. Interestingly, the cpk5,6 and cpk1,2,5,6 mutants

were also more susceptible to the infection by Pst avrRps4,

mediated by TIR-type NLR RPS4 (Figure S7D). Consistently,

AvrRps4 activated expression of WRKY46 promoter (Figure S7E).

The data suggested the involvement of CPK5 and 6 in disease

resistance mediated by both CC- and TIR-type NLRs. However,

the cell death triggered by Pst avrRpm1 and avrRpt2 was partially

compromised only in the cpk1,2,5,6, but not in the cpk1,2 or cpk5,6

mutants (Figure S7F). We further quantified PCD using an

electrolyte leakage assay. Consistently, compared to WT plants,

cpk1,2,5,6 mutants showed a diminished increase in conductance,

due to the release of electrolytes during cell death upon Pst

avrRpm1 infection (Figure 6C). Thus, CPK5 and 6 play roles in

pathogen resistance, whereas CPK1 and 2 together with CPK5 and

6 are likely involved in the control of PCD in ETI signaling.

To obtain further genetic evidence of specific CPKs in ETI-

mediated transcriptional reprogramming, we examined immune

gene expression by pathogen effectors in cpk mutants. The

Figure 5. CPKs enhance WRKY binding to the W-boxes. (A) Subcellular localization of CPK5 in protoplasts. CPK5-GFP was co-transfected with
avrRpt2 or a vector control, and CPK5-GFP localization was observed with a confocal microscope 12 hpt. The nucleus was indicated with a co-
transfected nuclear-localized RFP. Bar = 50 mm. (B) Subcellular fractionation of CPK5 in protoplasts. CPK5-HA was co-transfected with avrRpt2 or a
vector control. Total protein extracts (T) were separated into nuclear (N) and soluble (S) fractions. CPK5 expression was detected by Western blot with
an a-HA antibody. The purity of the nuclear and soluble fractions was demonstrated with a-Histone H3 antibody and CBS for RuBisCO (RBC). (C) T248
was required for WRKY48 synergistic activation with CPKs on WRKY46 promoter in protoplasts. The protein expression of WRKY48 and its T248A
mutant was shown in the insert. (D) CPK5 enhanced WRKY48 binding to the W-boxes in vitro. The recombinant WRKY48 protein was incubated with
32P-labeled W-boxes or mutated W-boxes (mW-boxes) probe in a gel mobility shift assay. CPK phosphorylation of WRKY48 was performed prior to
DNA binding assay. (E) WRKY48 bound to the endogenous WRKY46 promoter regions enriched with W-boxes in protoplasts. Fragment A to F were
ChIP-PCRed with primers across WRKY46 promoter and gene body. W1 to W4 indicate the positions of W-boxes corresponding to Figure 3A. CAB1 is a
control gene. +1 is the transcriptional start site. Data are shown as mean 6 SD. The input control for each primer pair was shown on the bottom. (F)
In vitro pull down of WRKYs and CPK5. MBP was the control for MBP-fused WRKY proteins with a HA tag. GST was the control for GST-fused CPK5
proteins. MBP-WRKY48-HA, MBP-WRKY8-HA or MBP proteins were incubated with GST or GST-CPK5 beads, and the beads were collected and washed
for Western blot of immunoprecipitated proteins with an a-HA antibody. The above experiments were repeated three times with similar results.
doi:10.1371/journal.ppat.1003127.g005
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WRKY46 induction by Pst avrRpm1, avrB, or avrRpt2 was abolished

in the cpk5,6 mutants, but not cpk1,2 mutants (Figure 6D),

consistent with the role of CPK5 and 6 in phosphorylating specific

WRKYs. Similarly, the WRKY46 transcripts induced by AvrRpm1

or AvrB in protoplasts were reduced in cpk5,6 mutants (Figure

S7G). Infection of plants with Pst avrRpm1, avrB, or avrRpt2 also

induced strong induction of SID2 gene, which was diminished in

cpk5,6 mutants (Figure 6E). Consistent with CPK1 and 2

phosphorylating RBOHD and RBOHF in vitro (Figure 4F), the

ROS production induced by Pst avrRpm1 or avrRpt2 was reduced in

cpk1,2 double mutants (Figure 6F). Together, these data provide

genetic evidence that Ca2+ signaling via specific CPKs plays

pivotal roles in the diverse downstream signaling and pathogen

resistance mediated by distinct intracellular NLR immune sensors.

WRKY 8 and WRKY48 as positive regulators in convergent
ETI signaling

To reveal the function of WRKYs in ETI signaling, we

characterized the loss-of-function wrky mutants. The wrky8-1

(Salk_107668), wrky8-2 (Salk_050194) and wrky48 (Salk_066438)

mutants are null alleles with undetectable full-length transcripts

(Figure S8A) [46,47], whereas the available T-DNA insertion lines

of wrky28 (Salk_007497 and Salk_092786) mutants did not

significantly reduce its transcript level (data not shown). Signifi-

cantly, the wrky8-1, wrky8-2 and wrky48 mutants were partially

immunocompromised to Pst avrRpm1, avrRpt2 and avrB infection.

The bacterial population in the wrky mutants was about five to ten

fold more than that in WT plants 4 days post infection (dpi)

(Figure 7A and S8B). The disease symptom was also more

pronounced in the wrky mutants than that in WT plants (Figure

S8C). The wrky8-1, wrky8-2 and wrky48 mutants did not affect the

PCD induced by Pst avrRpm1 or avrB (Figure S8D). Our results

suggest that WRKY8 and 48 play positive roles in plant ETI-

mediated disease resistance. These findings are in contrast to the

negative regulation of WRKY8 and 48 in plant basal defense to Pst

infection (Figure S8E) [46,47]. Apparently, the same transcription

factors may serve distinct functions in plant PTI and ETI signaling

or in response to different pathogens.

We further examined immune gene expression by pathogen

effectors in wrky mutants. The WRKY46 and SID2 induction by Pst

avrRpm1, avrB, or avrRpt2 was diminished in the wrky8-1 and wrky48

plants (Figure 7B and 7C). Similarly, the effector-mediated

activation of WRKY46 transcripts was reduced in the wrky8-1

and wrky48 protoplasts (Figure S8F). The physiological and genetic

analyses with cpk and wrky mutants thus substantiate the specific

and overlapping functions of CPKs in phosphorylating distinct

substrates for the bifurcate control of immune gene activation,

PCD and ROS production (Figure 7D).

Discussion

Plants have evolved sophisticated innate immune systems to

effectively defend pathogen attacks without specialized immune

cells and the adaptive immune system. Polymorphic plant NLR R

proteins are intracellular immune sensors that recognize pathogen-

encoded effectors to initiate complex immune responses, including

a sustained increase in cytosolic Ca2+ concentration, transcrip-

tional reprogramming, production of ROS, and PCD. Recent

studies have advanced our understanding of NLR protein

functions in terms of effector recognition, subcellular localization

and structural determination, but the molecular mechanisms

leading to the convergent immune responses upon NLR activation

remain enigmatic [8,9,11,48]. In this study, we uncovered the

Figure 6. The compromised immune responses in cpk mutants. (A) Effector-induced WRKY28 phosphorylation was abolished in cpk5,6
mutant protoplasts. An in-gel kinase assay using fusion protein of MBP-WRKY28 DNA binding domain as a substrate was performed with protoplasts
transfected with AvrRpm1 or a control vector. The equal protein loading was shown by CBS. (B) The cpk5,6 mutant plants were compromised in
effector-mediated disease resistance. Plant leaves were hand-inoculated with Pst avrRpm1 or avrRpt2 at 56105 cfu/ml. The bacterial growth was
measured 4 dpi. The data are shown as mean 6 SE of three repeats, and the asterisk (*) indicates a significant difference with p,0.05 when
compared with data from WT plants. (C) Pst avrRpm1-induced electrolyte leakage in plants. Plant leaves were hand-inoculated with Pst avrRpm1 at
16108 cfu/ml, and leaf discs were excised at the indicated time points. The data are shown as the mean 6 SE (n = 3) and the asterisk (*) indicates a
significant difference between cpk1,2,5,6 and WT (p,0.05). (D) Effector-induced WRKY46 expression was reduced in cpk mutant plants. WRKY46
expression was detected in plants 6 hr after hand-inoculation with bacteria at 16107 cfu/ml. The expression of WRKY46 was normalized to the
expression of UBQ10. The data are shown as the mean 6 SE from three independent biological replicates. * indicates a significant difference with
p,0.05 when compared with data from WT plants. (E) Effector-induced SID2 expression was reduced in cpk mutant plants. (F) H2O2 production was
compromised in the cpk1,2 mutant plants. The leaves were hand-inoculated with H2O, Pst, Pst avrRpm1 and avrRpt2 at 56107 cfu/ml, and excised at
24 hpi for DAB staining to detect H2O2 production. The above experiments were repeated three times with similar results.
doi:10.1371/journal.ppat.1003127.g006

CPKs Control Bifurcate NLR Signaling

PLOS Pathogens | www.plospathogens.org 8 January 2013 | Volume 9 | Issue 1 | e1003127



molecular consequences of sustained Ca2+ elevation, which leads

to bifurcate signaling events controlled by specific and overlapping

CPKs through phosphorylation of distinct substrates upon NLR

protein activation. Two major groups of CPKs were dynamically

activated by bacterial effectors AvrRpm1, AvrB and AvrRpt2.

Functional genomic and biochemical analyses revealed that

CPK4, 5, 6 and 11 were involved in immune gene activation,

whereas CPK1 and 2, and likely 4 and 11 played key roles in the

control of ROS generation, and CPK1, 2, 4, 5, 6 and 11 together

contributed to PCD. CPK4, 5, 6 and 11 phosphorylated WRKY8,

28 and 48, leading to enhanced WRKY protein binding to the W-

boxes of specific target gene promoters for transcriptional

regulation, whereas CPK1, 2, 4 and 11 in vitro phosphorylated

RBOHD and RBOHF for ROS production. Genetic and

physiological characterization of multiple knockout mutants

substantiated the biochemical data as cpk5,6, wrky8 and wrky48

mutants were compromised in immune gene activation and

disease resistance, cpk1,2 mutants were impaired in effector-

induced oxidative burst and cpk1,2,5,6 mutants were defective in

PCD. Taken together, our studies decode the specific functions of

individual CPKs in the control of differential ETI responses

(Figure 7D). Our findings offer a potential molecular link for the

uncoupled PCD and restriction of pathogen growth upon NLR

activation [11,19,20,49].

The rapid increase of cytosolic Ca2+ concentration has been

observed in plants response to MAMPs or pathogen effectors [50].

Apparently, each signal elicits a specific calcium signature with

unique kinetics, magnitude, duration and cellular compartment

distribution. MAMPs, such as flagellin and PGN, activate Ca2+

increase for 5–15 min [34], coincident with transient CPK

activation [33]. However, Pst avrRpm1 or avrB elicited a Ca2+

transient increase with a maximum about 10 min followed by a

sustained increase peaked around 2 hr after infection [25].

Treatment of La3+, Gd3+ and RR significantly suppressed

AvrRpm1- and AvrRpt2-mediated gene activation and cell death

(Figure 1F, 1G and S2A), indicating that both extracellular and

intracellular Ca2+ release contributes to ETI signaling. It has been

suggested that cyclic nucleotide-gated channels (CNGCs) function

in conducting Ca2+ to mediate PCD [24,26]. Interestingly,

Arabidopsis dnd (defense no death) and hlm1 (hr-like lesion mimic)

mutants, carrying mutations in CNGC2 and CNGC4 genes,

exhibited aberrant PCD depending on genetic backgrounds and

growth conditions [51,52,53]. The constitutive PR1 activation and

enhanced pathogen resistance in the dnd and hml1 mutants may be

a consequence of low intrinsic Ca2+ levels due to CNGC mutations.

It will be interesting to determine whether specific CNGCs are

responsible for CPK-WRKY activation and the immune gene

induction. Future studies may elucidate the precise functions of

Figure 7. The compromised immune responses in wrky mutants. (A) The bacterial growth in wrky8 and wrky48 mutant plants. Plant leaves
were hand-inoculated with Pst avrRpm1 or avrRpt2 at 56105 cfu/ml. The bacterial growth was measured 4 dpi. The data are shown as mean 6 SE of
three repeats, and the asterisk (*) indicates a significant difference with p,0.05 when compared with data from WT plants. (B) Effector-induced
WRKY46 expression was reduced in wrky mutant plants. WRKY46 expression was detected in plants 6 hr after hand-inoculation with bacteria at
16107 cfu/ml. The expression of WRKY46 was normalized to the expression of UBQ10. The data are shown as the mean 6 SE from three independent
biological replicates. * indicates a significant difference with p,0.05 when compared with data from WT plants. (C) Effector-induced SID2 expression
was reduced in wrky mutant plants. (D) A model of bifurcate NLR immune signaling via specific and overlapping CPKs. TTSS: type III secretion system.
The above experiments were repeated three to four times with similar results.
doi:10.1371/journal.ppat.1003127.g007
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various CNGCs and other Ca2+ channels in mediating distinct

Ca2+ signatures of extracellular and internal origins upon NLR

activation.

WRKYs are a group of plant specific transcription factors

involved in transcriptional reprogramming during various biolog-

ical processes, in particular plant defense responses [44]. A large

number of the Arabidopsis WRKY genes are transcriptionally

activated upon pathogen infection [43]. Genetic analyses have

indicated many WRKYs function as negative regulators in plant

defense. For example, WRKY11 or 17 loss-of-function rendered

plant more resistant to Pst infection [54]. Similarly, wrky8 or 48

mutants were more resistant, while overexpressors were more

susceptible to Pst infection [46,47]. Despite unclear molecular

mechanism of WRKY8 and 48 in plant basal defense, it is likely

that WRKY8 and 48 act as repressors of plant PTI signaling.

Surprisingly, our results suggest that WRKY8 and 48 play positive

roles in ETI signaling since the wrky8 or 48 mutants were

compromised in effector-mediated disease resistance and defense

gene activation (Figure 7A, 7B and 7C). Consistently, WRKY8, 28

and 48 were quickly and strongly activated upon Pst avrRpt2

infection independently or upstream of SA signaling [43]. The

distinct functions of WRKYs in PTI and ETI signaling could be

regulated at transcriptional, translational and post-translational

levels in response to different stimuli. Alternatively, differential

phosphorylation events mediated by distinct kinases could

modulate the different immune responses in PTI and ETI

signaling.

It has been suggested that PTI and ETI share downstream

signaling machineries and hormonal networks [55]. Genome-wide

gene expression profiling suggests that CPK4, 5, 6 and 11 mediate

convergent signaling triggered by multiple MAMPs [33]. Our

current study also revealed the involvement of these CPKs in ETI

signaling. However, a transient Ca2+ increase and CPK activation

were observed upon MAMP treatment, whereas effectors induced

sustained CPK activation (Figure 2A) [33]. Thus, the timing,

amplitude and duration of differential CPK activities appear to

dictate their substrate specificity and differential transcriptional

reprogramming in ETI and PTI signaling. MAPK activation is a

convergent MAMP signaling event [2]. MAPKs play pivotal roles

and also act in parallel or synergistically with CPKs in the control

of early MAMP responsive genes [33]. However, the role of

MAPK cascade in ETI signaling remains unclear. We observed a

strong activation of CPKs but little MAPK activation by bacterial

effectors in a gene-for-gene dependent and cell-autonomous

manner (Figure 2A, 2B, 2C and 2D), suggesting a predominant

role of CPKs in ETI signaling mediated by RPM1 and RPS2 in

Arabidopsis. It is possible that elevated CPK signaling may

compromise MAPK activation in ETI signaling [56]. Neverthe-

less, the current data imply that activation of distinct PRRs,

namely cell-surface receptor kinases recognizing MAMPs and

intracellular NLR proteins recognizing pathogen-encoded effec-

tors, initiates differential early signaling events, which trigger both

overlapping and specific immune responses to maximize plant

defense against pathogen attacks.

Materials and Methods

Plant growth conditions, chemical treatments and
bacterial inoculation

Arabidopsis wild-type (Col-0), cpk and wrky mutant plants were

grown in pots containing soil (Metro Mix 360 ) in a growth room

at 23uC, 60% relative humidity and 75 mE m22 s21 light with a

12 hr photoperiod for approximately 4 weeks before protoplast

isolation or bacterial inoculation. T-DNA insertion mutants cpk1

(Salk_096452), cpk2 (Salk_059237), wrky8-1 (Salk_107668), wrky8-2

(Salk_050194) and wrky48 (Salk_066438) were obtained from

Arabidopsis Biological Resource Center (ABRC), and confirmed

by PCR and RT-PCR analyses. The higher order cpk mutants

were generated by genetic crosses.

Different Pst DC3000 strains were grown overnight at 28uC in

the KB medium containing rifamycin (50 mg ml21) or in

combination with kanamycin (50 mg ml21). Bacteria were pelleted

by centrifugation, washed, and diluted to the desired density. The

leaves were hand-inoculated with bacteria using a needleless

syringe, collected at the indicated time for bacterial counting or for

RNA isolation. To measure bacterial growth, two leaf discs were

ground in 100 ml H2O and serial dilutions were plated on KB

medium with appropriate antibiotics. Bacterial colony forming

units (cfu) were counted 0, 2 or 4 days post incubation (dpi) at

28uC. Each data point is shown as triplicates.

At least three independent repeats were performed for all

experiments. The representative data with similar results were

shown. The statistic analysis was performed using the general

linear model of SAS (SAS Institute, Inc., Cary, NC) with mean

separations by least significant difference (LSD).

Protoplast transient assay and identification of WRKY46
as a marker gene in ETI signaling

Protoplast isolation and transient expression assay were

conducted as described [37]. In general, protoplasts were collected

6 hpt for promoter activity, protein expression and kinase assays.

For reporter assay, UBQ10-GUS was co-transfected as an internal

transfection control, and the promoter activity was presented as

LUC/GUS ratio. Protoplasts transfected with empty vector were

used as effector controls.

To identify early immune genes in ETI signaling, 5 ml

protoplasts at a density of 26105/ml were transfected with

500 ul AvrRpm1, AvrRpt2 or a control vector (2 ug/ul). The

protoplasts were collected 3 hrs after transfection for RNA

isolation, cDNA and cRNA synthesis. The cRNA was fragmented

for Affymetrix GeneChip (ATH1) hybridization, washing, staining

and scanning at Partners HealthCare Center for Personalized

Genetic Medicine (Boston, MA). Data analyses with Affymetrix

GeneChip Operating Software (GCOS) and GeneSpring identi-

fied WRKY46 as one of the highest induced genes by avrRpm1 and

avrRpt2 in two independent biological repeats.

Plasmid construction, recombinant protein isolation and
kinase assays

Arabidopsis CPK and WRKY genes were amplified by PCR from

Col-0 cDNA, and introduced into a plant expression vector with

an HA or FLAG epitope-tag at the C terminus. Point mutations of

pWRKY46-LUC, WRKY8, WRKY28 and WRKY48 were generated

by a site-directed mutagenesis kit (Stratagene). The primer

sequences for cloning and point mutations are listed in Table S1.

Different CPKs and WRKY constructs were sub-cloned into a

modified GST pGEX4T-1 (Pharmacia) or MBP fusion protein

expression vector pMAL-C2 (New England BioLabs) with BamHI

and StuI digestion and transformed into E. coli strain BL21 (DE3).

Expression of GST and MBP fusion proteins and affinity

purification were performed with standard protocol, and in vitro

kinase assay was carried out as described [57]. Immunocomplex

kinase assay was conducted as described [37].

MS analysis
The in vitro phosphorylation for MS analysis was performed in a

10 mL reaction containing 20 mM Tris?HCl, pH 7.5, 10 mM
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MgCl2,100 mM NaCl, 3 mM CaCl2, 1 mM DTT and 0.1 mM

ATP. The fusion proteins of 1 mg CPK4 and 1 mg CPK5 were

used to phosphorylate 10 mg of GST fusion proteins of WRKY48

DNA binding domain, and 1 mg CPK5 was used to phosphorylate

10 mg of MBP fusion proteins of WRKY28 DNA binding domain.

The reaction was performed for 3 hr at room temperature with

gentle shaking, and stopped by adding 46SDS loading buffer. Six

individual reactions were combined and separated by 10% SDS-

PAGE gel. The gel was stained with Thermo GelCode Blue Safe

Protein Stain and distained with dH2O. The corresponding bands

were cut for MS analysis, which was performed according to Avila

et al. [58]. Briefly, gel bands were in-gel digested with trypsin

overnight, and phosphopeptides were enriched for liquid chroma-

tography-MS/MS analysis with a LTQ Orbitrap XL mass

spectrometer (Thermo Scientific). The MS/MS spectra were

analyzed with Mascot (Matrix Science; version 2.2.2), and the

identified phosphorylated peptides were manually inspected to

ensure confidence in phosphorylation site assignment.

CPK in-gel kinase assay
200 ul protoplasts were transfected with 20 ul effector DNA

(2 ug/ul), and incubated at RT for 2–6 hr. Protoplasts were lysed

in 25 ml of extraction buffer (50 mM Hepes-KOH [pH 7.6],

2 mM EDTA, 10 mM b-glycerophosphate, 20% glycerol, 1 mM

Na3VO4, 1 mM NaF and 1% triton X-100). Protoplast exacts with

equal amount of protein were fractioned in a 10% SDS-

polyacrylamide gel with 0.25 mg/ml histone type III-S (Sigma).

The gel was washed three times for 1 hr with washing buffer

(25 mM Tris-HCl [pH 7.5], 0.5 mM DTT, 5 mM NaF, 0.1 mM

Na3VO4, 0.5 mg/ml BSA and 0.1% triton X-100), and then

incubated for 18 hr with three changes of renaturation buffer

(25 mM Tris-HCl [pH 7.5], 0.5 mM DTT, 5 mM NaF, 0.1 mM

Na3VO4). After equilibration of the gel for 30 min in the reaction

buffer (25 mM Tris-HCl [pH 7.5], 0.2 mM CaCl2, 12 mM

MgCl2, 1 mM DTT and 0.1 mM Na3VO4), the kinase reaction

was performed for 1 hr in the reaction buffer with 50 mCi [c-32P]

ATP. The reaction was stopped and washed 6 times by 5% TCA

and 1% sodium pyrophosphate for 6 hr. The gel was dried and

visualized by autoradiography.

Plant cell death assays
For hypersensitive response (HR) assays, the leaves of 4-week-

old plants were hand-inoculated with different bacteria at

16108 cfu/ml, and the cell death for each genotype was calculated

as the percentage of leaves showing typical HR response to total

leaves inoculated.

For trypan blue staining, leaves were collected 8 hpi for Pst

avrRpm1 and 16 hpi for Pst avrRpt2, and stained with trypan blue in

lactophenol (Lactic acid: glycerol: liquid phenol:distilled wa-

ter = 1:1:1:1) solution. The stained leaves were destained with

95% ethanol/lactophenol solution, and washed with 50% ethanol.

For electrolyte leakage assays, eight leaf discs (0.5 cm diameter)

were excised from the WT or cpk mutants infiltrated with bacteria

and pre-floated in 10 ml of ddH2O for 10–15 min to eliminate

wounding effect. The ddH2O was then exchanged and electrolyte

leakage was measured using a conductivity meter (VWR;

Traceable Conductivity Meter) with three replicates per time

point per sample (n = 8). The YO-PRO-1 iodide was purchased

from Molecular Probes/Invitrogen.

Electrophoretic mobility shift assay
Electrophoretic mobility shift assay (EMSA) was conducted as

described [47] with modifications. Briefly, a pair of complemen-

tary single-stranded synthetic oligonucleotides (1.25 mM each) was

end-labeled at 37uC with [c-32P] ATP for 1 hr using T4 DNA

polynucleotide kinase. The labeled oligonucleotides were mixed

and annealed in TE buffer (pH 7.5) with 0.1 M NaCl at 65uC for

15 min, followed by gradual cooling to room temperature. After

annealing, the double-stranded oligonucleotide probes were

purified with QIAquick Nucleotide Removal kit (Qiagen). Binding

reaction contains 1 ml of poly-dIdC (Roche) at 1 mg/ml, 2 ml of 56
Binding buffer (4% glycerol, 1 mM MgCl2, 0.5 mM EDTA,

0.5 mM DTT and 10 mM Tris-HCl, pH 7.5), 1 ml of labeled

probe (approximately 20,000 cpm), 1 ml cold competitor (if

needed), 0.1 ml 1006 BSA (10 mg/ml) and 2.5 mg recombinant

proteins. DNA-protein complexes were allowed to form at room

temperature for 30 min and resolved on a 5% native polyacryl-

amide gel in 0.56TBE. The gel was dried and exposed on X-ray.

For the effect of CPK phosphorylation on WRKY binding

activity, the MBP-WRKY proteins were subjected to the

phosphorylation assay by CPKs for 1 hr prior to EMSA.

Detection of ROS production
Histological H2O2 production in WT and cpk mutants upon

infection with different Pst strains was examined according to the

DAB staining method [59] with modifications. Briefly, WT and cpk

mutant leaves were hand-inoculated with different Pst strains at

56107 cfu/ml for 24 hr. The leaves were excised and subsequent-

ly immersed in 1 mg/ml DAB (3,39-diaminobenzidine, Sigma)

(pH 3.8) solution with low vacuum pressure for 30 min, followed

by an overnight incubation at room temperature in the dark. The

stained leaves were fixed and cleared in alcoholic lacto-phenol

(95% ethanol : lactic acid : phenol = 2 : 1 : 1) at 65uC, rinsed once

with 50% ethanol, and twice with H2O. The destained leaves were

stored in 50% glycerol or subjected to microscope observation.

Subcellular localization and nuclear fractionation
C-terminal GFP fusion of CPK5 was co-transfected with a

vector control or avrRpt2. Protein localization was observed 12 hpt

with a confocal microscopy. The nucleus was indicated with a co-

transfected nuclear-localized RFP.

The transfected protoplasts (2 ml at a concentration of 46105/

ml) were lysed with 1 ml extraction buffer (20 mM Tris-HCl,

pH 7.0, 25% glycerol, 250 mM sucrose, 20 mM KCl, 1 mM

EDTA, 5 mM spermidine, 30 mM b-mercaptoethanol, 16
cocktail protease inhibitors and 1% Triton X-100), and incubated

on ice for 10–15 min. The cytoplasmic and nuclear fractions were

separated by centrifugation at 1000 g for 10 min at 4uC. The

cytoplasmic fraction was aliquoted and frozen at 280uC. The

nuclear fraction was washed three times with the nuclei

resuspension buffer (20 mM Tris-HCl, pH 7.0, 25% glycerol,

2.5 mM MgCl2, 1 mM EDTA, 5 mM spermidine, 30 mM b-

mercaptoethanol, 16cocktail inhibitors, and 0.5% Triton X-100),

and resuspended in 20 ml resuspension buffer.

In vitro pull down assay
HA tagged MBP-WRKY48, MBP-WRKY8 and MBP proteins

were pre-incubated with 5 ml prewashed glutathionine agrose

beads (Sigma) in 150 ml incubation buffer (10 mM Hepes, pH 7.5,

100 mM NaCl, 1 mM EDTA, 10% glycerol, and 0.5% Triton X-

100) at 4uC for 1 hr with gentle shaking. After spinning down at

13,000 rpm for 5 min, the supernatant was transferred and

incubated with prewashed GST, GST-CPK5 beads at 4uC for

another 1 hr in the presence of 1 mM CaCl2. The beads were

collected and washed four times with washing buffer (10 mM

Hepes, pH 7.5, 100 mM NaCl, 1 mM EDTA, 10% glycerol, and

0.1% Triton X-100) and once with 50 mM Tris?HCl, pH 7.5.
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The immunoprecipitated proteins were analyzed by Western blot

with an a-HA antibody.

Real-time RT-PCR
Total RNA was isolated from leaves or protoplasts after

treatment with TRIzol Reagent (Invitrogen). Complementary

DNA was synthesized from 1 mg of total RNA with 0.1 mg oligo

(dT) primer and reverse transcriptase (New England BioLabs).

Real-time RT-PCR analysis was carried out using iTaq SYBR

green Supermix (Bio-Rad) supplemented with ROX in an ABI

GeneAmp PCR System 9700. The expression of immune genes

was normalized to the expression of UBQ10. The primer

sequences of different effectors and RT-PCR are listed in Table

S1.

Protoplast ChIP assays
5 ml of protoplasts were transfected with WRKY48-HA or

WRKY8-HA and incubated for 4 hrs. Cells were crosslinked with

1% formaldehyde for 20 min and quenched by glycine for 5 min.

Nuclei were extracted freshly as described [60] and the rest of

ChIP was performed as described (http://sites.bio.indiana.edu/

,pikaardlab/Protocols%20page.html) with some modifications.

Bioruptor (Diagenode) was used for sonication and DNA was

eluted with 1% SDS and 0.1 M NaHCO3 at 65uC for overnight.

Anti-HA antibody (Roche) was used. The quantitative PCR

primers have similar efficiency. The relative enrichment fold

changes were calculated by normalizing % input of each primer

pair against the control gene primer (CAB1).

Supporting Information

Figure S1 Effector induced cell death and gene activa-
tion in protoplasts and plants. (A) Hypersensitive response

(HR)-induced by Pst avrRpm1 and avrRpt2 in plants. Arabidopsis

leaves were inoculated with bacteria at 16108 cfu/ml. HR was

indicated with the percentage of wilting leaves of total inoculated

leaves (n.20) at the different time points after inoculation. Pst

inoculation was used as a control. (B) Effector-induced cell death

and nuclear fragmentation detected by YO-PRO-1 iodine staining

at 16 hpt in protoplasts. (C) AvrRpm1, AvrB and AvrRpt2

activated endogenous WRKY46 expression in protoplasts. The

transfected protoplasts were collected 3 hpt for RT-PCR analysis.

The expression of Actin was used as a control. (D) Induction of

WRKY46 expression in dexamethasone (DEX)-inducible avrRpt2

transgenic plants and protoplasts. The WRKY46 expression was

detected 3 hr after DEX treatment.

(TIF)

Figure S2 Ca2+ signaling in effector-triggered immuni-
ty. (A) Pst avrRpm1 and avrRpt2-induced cell death was suppressed

by LaCl3 or RR treatment in plants. Arabidopsis leaves were

inoculated with bacteria at 16108 cfu/ml in the presence of 2 mM

LaCl3 or 20 mM RR. The cell death was shown by Trypan blue

staining and % indicates the percentage of wilting leaves of total

inoculated leaves (n.20). (B) Expression of effectors in Arabidopsis

protoplasts. HA epitope tagged AvrRpt2, AvrRpm1 or AvrB was

transfected in protoplasts and cells were collected at the indicated

time for Western blot. To avoid cell death, AvrRpt2 was expressed

in rps2, and AvrRpm1 and AvrB were expressed in rpm1 mutant

protoplasts. (C) AvrRpt2-mediated CPK activation depended on

RPS2 in protoplasts. The in-gel kinase assay using histone type III-

S as substrate was performed 3 hpt. (D) Differential activation of

MAPKs by flagellin and effectors in protoplasts. Ctrl, avrRpm1, or

avrRpt2-transfected cells were incubated for 1 or 2 hr before the

treatment with 1 mM flg22 for 10 min and subjected for an in-gel

kinase assay using MBP as substrate.

(TIF)

Figure S3 CPK and WRKY on WRKY46 promoter
activity. (A) Alignment of DNA binding domains of WRKYs

used in this study. The green box indicates the conserved

Threonine (T) residue in WRKY48, 8 and 28. (B) Synergism of

CPK4 and WRKYs on WRKY46 promoter activity in protoplasts.

The representative WRKYs from different groups were co-

transfected with CPKac4 for the activation of WRKY46 promoter.

(C) Induction of WRKY8, 48, 28 and 46 by Pst and Pst avrRpt2 at

2 hpi in plants. Plant leaves were hand-inoculated with control or

bacteria at 26107 cfu/ml. The samples were collected 2 hpi for

real-time RT-PCR analysis. The expression of WRKY8, 48, 28 and

46 was normalized to the expression of UBQ10. The data are

shown as the mean 6 SE from three repeats.

(TIF)

Figure S4 Phosphorylation of WRKY and RBOH by
CPKs. (A) Phosphorylation of WRKYs by CPK4 in vitro. The

recombinant MBP fusion proteins of WRKY8, 28 and 48 were

used as the substrates for GST-CPK4 in an in vitro kinase assay in

the presence of 1 mM Ca2+. (B) MS analysis identified WRKY48

T247 as a phosphorylation site by CPKs. Sequencing of a doubly

charged peptide ion at m/z 531.21 that matches to

CpTTVGCGVK of WRKY48. The confident b2 and b3 ions

as well as y7 ion provide strong evidence for phosphorylation of

the second Thr residue. (C) MS analysis identified WRKY28

T199 as a phosphorylation site by CPK5. Sequencing of a triply

charged peptide ion at m/z 406.84 that matches to

CTpTQKCNVK of W28. The confident b3 ion as well as y72+

ion provide strong evidence for phosphorylation of the third Thr

residue. (D) Phosphorylation activity of CPKacs and CPKs on

histone type III-S in vitro. FLAG-tagged CPKacs or WT CPKs

were expressed in protoplasts and immunoprecipitated with a-

FLAG antibody. The kinase activity was determined by in vitro

assay using histone as a substrate. (E) Phosphorylation of RBOHD

and RBOHF by CPK11 in vitro. The in vitro kinase assay was

conducted in the presence of 1 mM Ca2+. BAK1, the kinase

domain of receptor kinase BAK1, was used to show phosphory-

lation specificity.

(TIF)

Figure S5 Effector AvrRpt2 stimulates CPK nuclear
localization. (A) Expression of CPK4-GFP and CPK5-GFP in

the presence of AvrRpt2-HA in protoplasts. Protoplasts were co-

transfected with CPK4-GFP or CPK5-GFP and a vector control

or AvrRpt2-HA, and expressed for 12 hrs. CPK expression was

detected by Western blot with an a-GFP antibody, and AvrRpt2

expression was detected by an a-HA antibody. (B) AvrRpt2

stimulates CPK4-GFP nuclear localization in protoplasts. Proto-

plasts were co-transfected with CPK4-GFP and a vector control

(Ctrl) or pTA7001-DEX-AvrRpt2. After expression for 10 hrs, the

cells were treated with 10 mM of DEX for 2 or 3 hrs prior to

observation of GFP localization. Bar = 50 mm. (C) AvrRpt2

stimulates CPK5-GFP nuclear localization in protoplasts.

(TIF)

Figure S6 Specificity of WRKYs binding to the W-boxes.
(A) Sequences of WT W-boxes probe and mutant W-boxes probe

(mW-boxes). The W-box sequences corresponding to the WRKY46

promoter are underlined, and nucleotides in WT probe in blue

were mutated in the mutant probe and colored in red. (B)

Specificity of WRKY48 binding to the W-boxes in vitro. The

recombinant WRKY48 protein was incubated with 32P-labeled
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W-boxes in a gel mobility shift assay. Specific competitor (S. C.)

was non-labeled W-boxes oligonucleotide. Non-specific competi-

tor (N.C.) was a random oligonucleotide. (C) Kinase activity is

required for CPK-enhanced WRKY28 binding to the W-boxes in

vitro. CPK phosphorylation of WRKY28 was conducted prior to

DNA binding assay.

(TIF)

Figure S7 Analysis of cpk mutants. (A) T-DNA insertion

sites and RT-PCR analysis in cpk1 and cpk2 mutants. (B) The

disease phenotype of WT and cpk mutant plant by Pst avrRpm1 or

avrRpt2 infection. Plant leaves were hand-inoculated with bacteria

at 56105 cfu/ml. The picture was taken at 5 dpi. (C) The cpk5,6

mutant plants were compromised in avrRpm1- and avrRpt2-

mediated disease resistance. Plant leaves were hand-inoculated

with Pst, Pst avrRpm1 or Pst avrRpt2 at 56105 cfu/ml. The bacterial

growth was measured 2 dpi. The data are shown as mean 6 SE of

three repeats, and the asterisk (*) indicates a significant difference

with p,0.05 when compared with data from WT plants. (D) The

cpk5,6 mutant plants were compromised in avrRps4-mediated

disease resistance. Plant leaves were hand-inoculated with Pst

avrRps4 at 56105 cfu/ml. The bacterial growth was measured

3 dpi. The data are shown as mean 6 SE of three repeats, and the

asterisk (*) indicates a significant difference with p,0.05 when

compared with data from WT plants. (E) AvrRps4 activated

WRKY46 promoter in protoplasts. The pWRKY46-LUC was co-

transfected with AvrRpm1, AvrRps4 or a vector control in

protoplasts and samples were collected at 6 hpt. The UBQ-GUS

was included as an internal transfection control. The relative

luciferase activity was normalized with GUS activity. (F) The

cpk1,2,5,6 mutant plants diminished effector-mediated cell death.

Plant leaves were hand-inoculated with Pst avrRpm1 or avrRpt2 at

16108 cfu/ml. The cell death ratio was recorded for avrRpm1 at

8 hpi and avrRpt2 at 16 hpi. The leaves were further stained with

trypan blue to detect cell death. (G) Effector-induced WRKY46

expression was reduced in cpk mutant protoplasts. WRKY46

expression was detected in protoplasts 3 hpt by real-time RT-PCR

analysis. The expression of WRKY46 was normalized to the

expression of UBQ10. The data are shown as the mean 6 SE from

three independent biological replicates.

(TIF)

Figure S8 Analysis of wrky mutants. (A) T-DNA insertion

sites and RT-PCR analysis in wrky8 and wrky48 mutants. (B) The

bacterial growth of Pst avrB in wrky mutant plants. Plant leaves

were hand-inoculated with Pst avrB at 56105 cfu/ml. The

bacterial growth was measured at 3 dpi. The data are shown as

mean 6 SE of three repeats, and the asterisk (*) indicates a

significant difference with p,0.05 when compared with data from

WT plants. (C) The disease phenotype of WT and wrky mutant

plants by Pst avrRpm1 or avrRpt2 infection. Plant leaves were hand-

inoculated with different bacteria at 56105 cfu/ml and the

pictures were taken at 6 dpi. (D) The cell death of wrky mutant

plants. Plant leaves were hand-inoculated with Pst avrRpm1 or avrB

at 16108 cfu/ml. The cell death ratio was recorded at 10 hpi, and

indicated with the percentage (%) of wilting leaves of total

inoculated leaves. (E) The wrky mutant plants are resistant to Pst

infection. Plant leaves were hand-inoculated with Pst at

56105 cfu/ml. The bacterial growth was measured at 3 dpi.

The data are shown as mean 6 SE of three repeats, and the

asterisk (*) indicates a significant difference with p,0.05 when

compared with data from WT plants. (F) Effector-induced

WRKY46 expression was reduced in wrky mutant protoplasts.

WRKY46 expression was detected in protoplasts 3 hpt by real-time

RT-PCR analysis. The expression of WRKY46 was normalized to

the expression of UBQ10. The data are shown as the mean 6 SE

from three independent biological replicates.

(TIF)

Table S1 Primers used in this study.

(DOC)
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