

Heart-rate independent myocardial T1-mapping using combined saturation and inversion preparation pulses

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Weingärtner, Sebastian, Mehmet Akcakaya, Sophie Berg, Kraig V Kissinger, Warren J Manning, and Reza Nezafat. 2013. Heart- rate independent myocardial t1-mapping using combined saturation and inversion preparation pulses. Journal of Cardiovascular Magnetic Resonance 15(Suppl 1): P46.
Published Version	doi:10.1186/1532-429X-15-S1-P46
Accessed	February 19, 2015 11:59:41 AM EST
Citable Link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:11235652
Terms of Use	This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms- of-use#LAA

(Article begins on next page)

POSTER PRESENTATION

Heart-rate independent myocardial T1-mapping using combined saturation and inversion preparation pulses

Sebastian Weingärtner^{1,3*}, Mehmet Akcakaya¹, Sophie Berg¹, Kraig V Kissinger¹, Warren J Manning^{1,2}, Reza Nezafat¹

From 16th Annual SCMR Scientific Sessions San Francisco, CA, USA. 31 January - 3 February 2013

Background

Myocardial T1 mapping remains a challenging task due to restrictions imposed by cardiac and respiratory motion. Modified Look-Locker Inversion Recovery (MOLLI) [1] is widely used for 2D cardiac T1-mapping. In MOLLI, the spin-lattice relaxation curve is sampled several times after a single magnetization preparation. The ECG triggered imaging induces a disturbance in the relaxation curve, which varies based on the heart rate. Hence, MOLLI T1 measurements show strong correlations to the heart rate especially in pre-contrast. We developed a novel T1 mapping sequence that enables heart-rate invariant myocardial T1 mapping.

Methods

Figure 1 shows the schematic of the proposed SAturation Pulse Prepared Heart rate independent Inversion-REcovery sequence (SAPPHIRE). A saturation pulse is inserted right after the R-wave of selected heart-cycles. This dephases the magnetization in the imaging volume and eliminates the need for recovery periods after the magnetization preparation. The saturation pulse is followed by an

Figure 1 Sequence diagram depicting the SAPPHIRE T1-mapping sequence: a saturation pulse is performed after the R-wave to erase the magnetization history. It is followed by the inversion pulse and a single-shot image readout. To extend the range of applicable inversion times the data readout of some SAPPHIRE experiments is performed in the heart-cycle after the magnetization preparation. Additionally the first heart-cycle is performed without magnetization preparation and the last heart-cycle with the saturation pulse only. This increases the effective inversion times and improves the T1 fit.

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA

Full list of author information is available at the end of the article

© 2013 Weingärtner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

inversion pulse after a variable delay to create various T1 weighted contrasts in the images. Eleven SAPPHIRE images are acquired, where each magnetization preparation is followed by a single-shot imaging in the same heart-cycle. Six additional SAPPHIRE images are acquired with longer inversion times, by performing the data sampling in the heart-cycle after the magnetization preparation. The first heart cycle is performed without any prepulses, to provide a spin-density weighted image, which facilitates the T1-fit.

SAPPHIRE T1-mapping was compared to MOLLI in phantom measurements and in healthy volunteers. A bottle phantom with a T1 of ~1300 ms was imaged using both T1-mapping sequences at various simulated ECGs with different heart-rates. Furthermore, pre-contrast T1-maps in five healthy volunteers were acquired using SAPPHIRE T1-mapping and MOLLI.

Results

In the phantom measurements SAPPHIRE T1-mapping is in good agreement with MOLLI measurements at a simulated heart-rate of 60 bpm (Relative difference: <2%). The SAPPHIRE T1-times, as depicted in Figure 2a), showed no significant correlation with the heart rate (r = -0.10), while MOLLI is highly correlated (r=-0.99). The T1 times in myocardium and the blood pool of the LV of the volunteers showed no significant difference between the two sequences (p = 0.20, p = 0.10). Figure 2b) shows exemplary T1-maps of two subjects. SAPPHIRE T1-mapping required slightly longer breath holds (16-23s SAPPHIRE vs. 12-17s MOLLI).

Conclusions

SAPPHIRE T1-mapping enables heart rate independent myocardial T1-mapping. The heart-rate invariance is

achieved by applying a combination of saturation and inversion pulses as magnetization preparation.

Funding

Deutsche Telekom Stiftung; NIH:R01EB008743-01A2; NIH: K99HL111410-01.

Author details

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA. ³Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.

Published: 30 January 2013

Reference

1. Messroghli:. MRM 2008.

doi:10.1186/1532-429X-15-S1-P46

Cite this article as: Weingärtner *et al.*: **Heart-rate independent** myocardial **T1-mapping using combined saturation and inversion preparation pulses.** *Journal of Cardiovascular Magnetic Resonance* 2013 **15** (Suppl 1):P46.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central