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Research has consistently shown that control is critical to psychological functioning, with
perceived lack of control considered to play a crucial role in the manifestation of symptoms
in psychiatric disorders. In a model of behavioral control based on non-human animal work,
Maier et al. (2006) posited that the presence of control activates areas of the ventromedial
prefrontal cortex (vmPFC), which in turn inhibit the normative stress response in the dorsal
raphe nucleus and amygdala.To test Maier’s model in humans, we investigated the effects
of control over potent aversive stimuli by presenting video clips of snakes to 21 snake
phobics who were otherwise healthy with no comorbid psychopathologies. Based on prior
research documenting that disrupted neural processing during the anticipation of adverse
events can be influenced by different forms of cognitive processing such as perceptions
of control, analyses focused on the anticipatory activity preceding the videos. We found
that phobics exhibited greater vmPFC activity during the anticipation of snake videos when
they had control over whether the videos were presented as compared to when they had
no control over the presentation of the videos. In addition, observed functional connectiv-
ity between the vmPFC and the amygdala is consistent with previous work documenting
vmPFC inhibition of the amygdala. Our results provide evidence to support the extension
of Maier’s model of behavioral control to include anticipatory function in humans.

Keywords: controllability, anticipation, vmPFC, amygdala, fMRI, PPI, phobia

INTRODUCTION
Emotion and cognition interact in numerous ways that affect
psychopathology. Importantly, resilience has the potential to sig-
nificantly mitigate human suffering related to psychopathology
(Garmezy, 1971; Masten, 2001, 2011; Casey, 2011). The capac-
ity to perceive control, to identify controllable situations, and to
exert effortful control is involved in the complex process leading
to resilience (Staudinger et al., 1995; Chorpita and Barlow, 1998;
Kumpfer, 1999; Maier et al., 2006; Eisenberg and Sulik, 2012).
Moreover, perceived control can dampen emotional responses to
aversive events, which in turn would mitigate any impairing effects
of emotion on cognition. Indeed, controllability has been a core
concept in empirical and theoretical work on psychopathology
(e.g., Freud, 1936; Mandler and Watson, 1966; Barlow, 2002) and
resilience (Kumpfer, 1999; Zimmerman et al., 1999; Bandura et al.,
2003; Yi et al., 2005; Rutter, 2008).

Although multiple aspects of controllability are distinctively
human (Abramson et al., 1978; Bandura, 1989; Bandura et al.,
2003), research with non-human animals has provided impor-
tant insights about the mechanisms involved in behavioral con-
trol. Influential work in non-human animals has demonstrated

differential behavioral phenotypes in response to electrical shock
dependent on the animal’s perception that it can or cannot
escape/avoid the shock (Overmier and Seligman, 1967; Seligman
and Maier, 1967; Seligman et al., 1968; Seligman and Beagley,
1975; Seligman et al., 1975). The inescapable response phenom-
enon, termed learned helplessness (Seligman et al., 1975), has
generated numerous lines of research. The extension of Selig-
man’s learned helplessness model to humans (Hiroto and Selig-
man, 1975) required refinement precisely because humans are a
meaning-making species and attribute helplessness to a cause,
whether “stable or unstable, global or specific, and internal or
external” (Abramson et al., 1978, p. 49). This reformulation made
Bandura’s (1969, 1977, 1986, 1997) social learning and social
cognitive theories essential for an understanding of causal attribu-
tions, including controllability, when humans perceive themselves
to be helpless under adverse or potentially adverse circumstances.
This led to demonstrations that affective self-regulation (which
may be perceived as internalized/implicit control) is essential to
positive psychological adaptation (Bandura et al., 2003; Eisenberg
and Sulik, 2012). Thus, any cogent extension of non-human ani-
mal research to human neurobiology must acknowledge the role of
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social cognition/self-efficacy in making causal attributions about
perceived helplessness in humans.

Research on external control in non-human animals has uncov-
ered many of the neurobiological mechanisms involved (Weiss,
1991; Maier et al., 2006). This provides insights into which neu-
roanatomical structures should be investigated in explorations of
control in humans. In particular, increased serotonergic response
in the dorsal raphe nucleus (DRN) is necessary for learned help-
lessness (Maier et al., 1993, 1995); input to the DRN is almost
exclusively from the infralimbic and prelimbic areas of the ven-
tromedial prefrontal cortex (vmPFC; Jankowski and Sesack, 2004;
Gabbott et al., 2005); and activation of the vmPFC decreases the
learned helplessness response, whereas inhibition of the vmPFC
increases the learned helplessness response (Amat et al., 2005,
2006). Furthermore, activity in the vmPFC inhibits the norma-
tive stress response in relevant midbrain, limbic, brainstem, and
cortical areas such as the DRN (Amat et al., 2005) and amygdala
(Maier et al., 2006). These findings led Maier et al. (2006) to posit
that the presence of control and top-down feedback by the vmPFC
are critical for resilient behavior.

Research extending these findings to the human vmPFC has
been minimal. Two fMRI studies on pain have demonstrated
alterations in the neural response to pain when subjects perceive
that they have control over the duration of the painful stimulus
(Salomons et al., 2004; Wiech et al., 2006). Of particular impor-
tance for investigating controllability in humans is anticipatory
function, as the ability to anticipate threatening situations is crit-
ical to the survival of any organism. The capacity of anticipating
the future is further highlighted in Bandura’s views on self-efficacy
and resilience, with an emphasis on predicting beneficial as well
as aversive consequences, setting goals, and planning actions to
arrive at desired outcomes (Bandura, 1989; Bandura et al., 2003).
In humans, excessive anticipation of negative events has been
shown to be maladaptive and to contribute to psychiatric disorders
(Mackiewicz et al., 2006; Nitschke et al., 2006, 2009; Straube et al.,
2007; Sarinopoulos et al., 2010). Therefore, we posit that the debil-
itating effects of anxious anticipation in psychiatric disorders may
be the result of, or compounded by, the perceived uncontrollabil-
ity of the event. Furthering our understanding of the relationships
between control and anticipation are of paramount importance in
human research and the development of therapeutic interventions
that can increase resilience.

To investigate the neural underpinnings of controllability in
humans, we designed a study that robustly elicited aversion in a
scenario that provided a strong test of control. A sample of 21
snake phobics who were otherwise healthy with no comorbid psy-
chopathologies viewed video clips of moving snakes. On half the
trials, an anticipatory cue indicated that they could avert the video
presentation (controllable) if they responded quickly enough to a
target. For the other half of the trials, the cue indicated that their
response times to the target had no impact on the video presenta-
tion (uncontrollable). The controllable condition is tightly linked
to the concept of perceived control, which has been identified as
central to resilience research.

We hypothesized heightened vmPFC activity during the antic-
ipation of controllable snake (cS) videos and increased functional
connectivity of the vmPFC with the amygdala (Carlsson et al.,

2004; Larson et al., 2006; Maier et al., 2006; Straube et al., 2006;
also reviewed in Etkin and Wager, 2007). In the current study,
connectivity was operationalized using a new method of context-
dependent connectivity (McLaren et al., 2012) building on psy-
chophysiological interactions (PPI; Friston et al., 1997; Gitelman
et al., 2003). Support for these hypotheses would demonstrate that
Maier et al.’s (2006) model of behavioral control over responses to
stress and aversion extends to anticipatory responses in humans,
which has important consequences on how emotion modulates
cognition.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-one snake phobic participants (17 females, mean age 21.8,
range 18–46), without any comorbid psychopathologies, were
recruited to this study from the University of Wisconsin at Madi-
son undergraduate population and surrounding community. All
participants were right-handed and neurologically normal. Partic-
ipants were diagnosed with specific phobia (of snakes) using the
Structured Clinical Interview for the DSM-IV (SCID; First et al.,
2002) and had never taken any prescribed psychotropic medica-
tions or participated in behavioral therapy. Participants provided
informed written consent and were paid for their participation.
The study was approved by the University of Wisconsin-Madison
Health Sciences Institutional Review Board in accordance with the
Declaration of Helsinki.

EVENT-RELATED EXPERIMENTAL PARADIGM
Each trial began with an anticipation epoch containing a colored
letter cue signal plus a variable delay period (Figure 1). The S cue
indicated that a phobogenic stimulus of a snake video clip (e.g.,
one snake crawling) might follow. The F cue indicated that a neu-
tral stimulus of a fish video clip (e.g., one fish swimming) might
follow. Each video was equalized for several physical attributes
(brightness, contrast, scene complexity, and movement). Videos
were selected from 90 videos (30 snake videos, 27 fish videos, and
33 disgust videos) that were rated by 19 adults (7 females) with a
median age of 25.5 (range 19–58). Participants rated each video
for: valence, arousal, fear, disgust, certainty (of viewed content),
complexity, familiarity. The 78 videos in the present study were
selected based on the stability of their ratings. Examples of each
video type can be found in the Supplemental Material. Videos were
presented to participants using the entire viewing area provided
by a Silent Vision System (Avotec, Inc., Jensen Beach, FL, USA).

The anticipation epoch was further divided into a perceived
controllable and a perceived uncontrollable condition. A blue cue
indicated the participant had control over whether the video would
be seen or not (controllable trial), while a yellow cue indicated the
participant had no control over whether the video would be seen
or not (uncontrollable trial). After the variable delay period, a
target red square was presented that the participant was told to
press a button to as quickly as possible. For all trials, the instruc-
tions were the same: “Press the button as fast as possible when
the target red square appears.” The target was followed by either
a video clip or a fixation cross. When a participant had a control-
lable trial they were informed that if they responded fast enough
to the red target square, they would see a fixation cross instead of
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FIGURE 1 | Example trials. Left: a controllable snake trial where participant
did not press the button fast enough and saw a video of a snake (left branch)
or where participant pressed the button fast enough and did not see a video
of a snake (right branch). Right: an uncontrollable snake trial where participant
saw a video of a snake (left branch) or where participant did not see a video of
a snake (right branch). The cue, presented for 3 s, was either yellow indicating
an uncontrollable trial or blue indicating a control trial. The letter S indicated
the potential video contained a snake. Following the cue, a fixation cross

appeared for 1–7 s. We modeled the anticipation period as the time of the cue
plus fixation cross. Following the fixation cross, a red square would appear,
and the participant pressed a button as quickly as possible. Depending on the
trial type and speed of the response, either a video or fixation cross would
appear for 3 s. This was followed by another fixation cross for 1–7 s. If the
participant saw a video, then they had 5 s to answer a rating question using a
Likert scale. The scale was followed by a final fixation cross for 1–5 s before
the onset of the next trial.

the video; however, if they were not fast enough, they would see a
video. When a participant had an uncontrollable trial, they were
informed a video clip would follow on half the trials and a fixa-
tion cross would follow on the other half of the trials. To ensure
that participants were only able to avoid the videos on approxi-
mately 50% of the control trials, the target presentation time was
adjusted on a trial-by-trial basis using DMDX software (Jonathan
Forster, University of Arizona). If a participant failed to respond
fast enough to avoid the video on one trial, the target presentation
of the subsequent trial was lengthened by 17–149 ms. Conversely,
if a participant responded fast enough to avoid the video, the
target presentation of the subsequent trial was shortened by 16–
100 ms. Videos were presented for 3 s followed by a variable delay
period. Following the presentations of videos, one Likert online
rating about the nature of the stimulus was collected per trial: (a)
valence; (b) arousal; (c) disgust; and (d) fear. Participants had 5 s
to make their rating, which was then followed by a variable inter-
trial interval. Colors and rating questions were counterbalanced.
In summary, this manuscript focuses on four conditions: (1) cS,
anticipation epoch that precedes a potential snake video where
the participant can avoid the video; (2) cF, anticipation epoch that
precedes a potential fish video where the participant can avoid the

video; (3) uS, anticipation epoch that precedes a potential snake
video where participant response does not affect video presenta-
tion; (4) uF, anticipation epoch that precedes a potential fish video
where participant response does not affect video presentation.

DATA ACQUISITION
All participants underwent fMRI scanning during four runs of
the experimental paradigm consisting of 132 trials. The break-
down of trial types was as follows: 22 controllable snake (cS), 22
uncontrollable snake (uS), 22 controllable fish (cF), and 22 uncon-
trollable fish (uF). Two weeks prior to fMRI scanning, participants
underwent a mock scan during which they viewed an abbreviated
version of the experimental paradigm using different videos from
those used in the actual fMRI scan. Of note, disgust trials were
also included in the paradigm, with the D cue indicating that a
disgust video clip (e.g., moving maggots, vomiting) might follow.
The corresponding 22 controllable and 22 uncontrollable disgust
trial types were modeled at the first-level, but not utilized in the
group analyses. Disgust trials were not analyzed at the group level
because participants’ self-reports during debriefing immediately
following the fMRI scan revealed mixed responses on how they
viewed the disgust trials, including morbid fascination and excited
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curiosity. Moreover, the behavioral responses to the target did not
show the expected pattern of reduced reaction times to control-
lable than uncontrollable aversive stimuli. Thus, the disgust trials
were excluded because they were not universally aversive.

A 3.0 Tesla GE SIGNA Scanner (Milwaukee, WI, USA)
with a quadrature birdcage head coil was used to collect
anatomical and functional images. Two sagittal GRE field maps
were acquired in order to correct warping of the experimen-
tal echo planar imaging (EPI) scans around tissue-air inter-
faces such as the forehead, the brainstem, and the sinuses
(Cusack et al., 2003), with the following parameters: repeti-
tion time (TR)= 700 ms, echo time (TE)1/TE2= 7/10 ms, field-
of-view (FOV)= 24 cm, flip angle= 60˚, number of excitations
(NEX)= 1, matrix= 256× 128, 30 sagittal slices of 4.0 mm, and
a gap of 1.0 mm. Functional data was collected using a sagit-
tal, T2∗-weighted, blood oxygen-level dependant (BOLD) EPI
sequence with the following parameters: TR= 2 s, TE= 30 ms,
FOV= 24 cm, flip angle= 90˚, NEX= 1, matrix= 64× 64, voxel
size= 3.75 mm, 30 slices, slice thickness= 4.0 mm, gap= 1.0 mm.
Each of the four functional runs was 267 TRs. Finally, we collected
a 3D T1-weighted inversion-recovery fast gradient echo sequence
with the following parameters: TR= 8.9 ms, TE= 1.8 ms, inver-
sion time= 600 ms, FOV= 24 cm, flip angle= 10˚, NEX= 1,
matrix= 256× 192, voxel size= 0.9375 mm, 124 slices, slice thick-
ness= 1.2 mm.

IMAGE PREPROCESSING
Images underwent the following preprocessing steps in Analysis
of Functional Neuroimages (AFNI; Medical College of Wisconsin,
WI, USA): (1) slice time correction; (2) motion correction; (3)
field map correction; and (4) conversion to percent signal change.

FIRST-LEVEL TASK ACTIVATION ANALYSES
General linear models (GLM) in SPM8 (University College Lon-
don, UK) were used to derive single subject activations. The design
matrix was formed by separately convolving the canonical HRF
from SPM8 with the presence of the stimuli for the anticipa-
tion, video, and rating periods. For anticipation, the presence was
defined as the time between the cue onset and the target red square,
which could be thought of as an epoch. The design matrix also
included the motion parameters, a constant term, autoregressive
(AR1) term, and a high-pass filter. In AFNI, the contrast images
for each anticipation period (cS, uS, cF, uF) were spatially nor-
malized to the Talairach atlas (Talairach and Tournoux, 1988) and
resampled to 1 mm3 voxels.

SECOND-LEVEL TASK ACTIVATION ANALYSIS
Hypotheses examining differences in neural activation during the
anticipation of controllable and uncontrollable snake and fish
videos were tested using planned contrasts in AFNI. Significant
clusters (p < 0.05) were defined as clusters contained at least 224
contiguous voxels with a p-value of p < 0.005 or at least 337 con-
tiguous voxels with a p-value of p < 0.01 based on 3dClustSim
(AFNI) within a controllability mask (“Nitschke_Lab” in the
peak_nii toolbox)1.

1http://www.nitrc.org/projects/peak_nii

FIRST-LEVEL PSYCHOPHYSIOLOGICAL INTERACTIONS ANALYSES
Percent signal change images were spatially normalized to the
Talairach atlas (Talairach and Tournoux, 1988), resampled to
2 mm isotropic voxels, and smoothed with a 6 mm FWHM Gauss-
ian filter. Generalized psychophysiological interactions (gPPI)
were used to evaluate context-dependent connectivity, based on
their improved sensitivity and specificity in detecting connectiv-
ity effects (McLaren et al., 2012), with the vmPFC. The vmPFC
seed region was defined as a 3-mm radius sphere around the peak
voxel of the cS minus uS contrast (Talairach: 5, 46,−7). We used
the automated gPPI toolbox2 to estimate the PPI effects for each
subject. This analysis was limited to the 12 participants who had
full coverage in the region based on the mask generated by SPM8,
rather than using variable seed regions for each participant. These
12 did not differ from the remaining nine participants for sex or
age (all ps > 0.10).

SECOND-LEVEL PSYCHOPHYSIOLOGICAL INTERACTIONS ANALYSIS
Hypotheses examining functional connectivity via PPI were tested
using one-sample t -tests of contrasts comparing two conditions
(equivalent to paired t -tests). Significant clusters (p < 0.05) were
defined as clusters contained at least 35 contiguous voxels with
a p-value of p < 0.005 based on 3dClustSim within a control-
lability mask (“Nitschke_Lab” in the peak_nii toolbox, see text
footnote 1).

RESULTS
BEHAVIORAL RESULTS
As a manipulation check for perceived control, we tested whether
reaction times differentiated the controllable and uncontrol-
lable conditions. A 2× 2 repeated-measures ANOVA examin-
ing controllability and stimulus revealed a significant inter-
action (p= 0.038). Post hoc paired t -test analyses of this
interaction revealed that cS reaction times (mean= 458.77 ms;
SEM= 24.89 ms) were significantly faster than uS reaction
times (mean= 481.91 ms; SEM= 28.01 ms; p= 0.003). By con-
trast, there was not a significant difference between cF
(mean= 488.15 ms; SEM= 27.30 ms) and uF reaction times
(mean= 494.89 ms; SEM= 27.47 ms; p= 0.367). Additional com-
parisons revealed that cS reaction times were significantly faster
than cF reaction times (p < 0.001) and that uS reaction times were
significantly faster than uF (p= 0.035). These results show that
controllability had a larger effect when the stimulus was aversive.

fMRI ACTIVATION RESULTS
A paired t -test revealed greater anticipatory activation in the
vmPFC for cS compared to uS (Figure 2, Tables 1 and 4). No other
significant clusters were found for this comparison, nor were any
significant clusters found in the opposite direction.

A paired t -test revealed greater anticipatory activation dur-
ing the uF compared to cF in the posterior mid-cingulate cor-
tex (pMCC), the right anterior insula, and the pons (Table 4).
No significant clusters were found in either the vmPFC or
amygdala, nor were any significant clusters found the opposite
direction.

2http://www.nitrc.org/projects/gppi
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Within these regions, no interactions were found between con-
trollability and stimuli, suggesting that the controllability effects
were sub-threshold for non-aversive stimuli. Interestingly, there

FIGURE 2 | Anticipatory ventromedial prefrontal cortex (vmPFC)
response showing the effect of controllability. Top: cortical surface
renderings of the controllable snake (cS) minus uncontrollable snake (uS)
contrast using multi-fiducial mapping in CARET with the strongest voxel
within 2.5 mm of the surface (Van Essen, 2005). Results were thresholded
at p < 0.05 cluster corrected. Brighter colors represent stronger effect or
more overlap between the surfaces in the multi-fiducial map and can be
interpreted as the most likely area of a strong effect. Bottom: the BOLD
response in the cluster for cS, uS, and their difference. Error bars are SEM.

was an interaction in the left anterior insula (Table 4). Post hoc
paired t -test analyses were conducted using values extracted from
the left anterior insula cluster. These revealed that activity during
cS was greater than that during uS (p= 0.015), whereas the activ-
ity during uF was greater than during cF (p= 0.004). Anticipatory
activity during cS was greater than cF (p= 0.002), whereas the
comparison for activity during uS compared uF was not significant
(p= 0.624).

Valence effects collapsing across controllability were also
assessed. A paired t -test revealed greater activity during the S
compared to F in the vmPFC, the pregenual anterior cingulate
cortex (pACC), a cluster spanning the anterior mid-cingulate cor-
tex (aMCC), and ACC, a second cluster in the aMCC, bilateral
anterior insula, and bilateral thalami (Figure 3, Tables 2 and 4).
No significant effects were found in the opposite direction.

Table 1 | Anticipation of controllable snake videos > uncontrollable

snake videos.

Cluster

size (mm3)

Peak

locationa

Talairach

coordinates

Peak

t -statistic

p-Value

x y z

389 vmPFC −5 61 −10 4.613 <0.001

vmPFC 5 46 −7 4.612 <0.001

vmPFC 2 56 −11 3.796 <0.001

aTable includes all significant peaks of activation that are more than 8 mm apart

within significant clusters (p < 0.05 corrected). vmPFC, ventromedial prefrontal

cortex.

FIGURE 3 | Anticipatory activations showing the effect of stimulus.
Cortical surface renderings of snake (S) minus fish (F) contrast using
multi-fiducial mapping in CARET with the strongest voxel within 2.5 mm of
the surface (Van Essen, 2005). Results were thresholded at p < 0.05
cluster corrected. Bottom: heightened anticipatory activity reflected in

greater activation in the ventromedial prefrontal cortex (vmPFC) (A),
bilateral anterior insula (B,C), pregenual anterior cingulate cortex (ACC) (D),
regions spanning from the ACC to the anterior mid-cingulate cortex
(aMCC) (E), and bilateral aMCC (F) preceding snake videos compared to
fish videos (S > F).
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Table 2 | Anticipation of snake videos > fish videos.

Cluster size (mm3) Peak locationa Talairach coordinates Peak t -statistic p-Value

x y z

2727 Right thalamus 13 −9 13 5.534 <0.001

Right thalamus 7 −27 6 5.339 <0.001

Right thalamus 19 −14 17 5.335 <0.001

Right thalamus 13 −20 16 4.738 <0.001

Right thalamus 2 −6 8 3.841 <0.001

Right thalamus 3 −19 9 3.418 0.001

Right thalamus 17 −13 4 3.240 0.002

737 Left thalamus −1 −7 8 4.082 <0.001

Left thalamus −10 −3 12 3.939 <0.001

Left thalamus −16 −11 17 3.608 <0.001

Left thalamus −16 −10 7 3.418 0.001

Left thalamus −6 −17 15 3.083 0.003

781 Left thalamus −14 −25 12 3.714 <0.001

Left thalamus −15 −15 12 3.131 0.003

669 Left anterior insula −29 24 4 4.249 <0.001

Left anterior insula −39 20 10 3.588 <0.001

Left anterior insula −35 11 3 3.574 0.001

Left anterior insula −30 17 −6 3.272 0.002

Left anterior insula −31 24 13 2.936 0.004

548 Right anterior insula 36 22 4 3.933 <0.001

495 vmPFC 18 37 −8 4.727 <0.001

vmPFC 20 45 −8 4.265 <0.001

475 pACC −4 32 26 4.717 <0.001

518 aMCC −4 17 42 3.685 <0.001

ACC −5 26 37 2.777 0.006

729 aMCC −6 2 45 3.504 0.001

aMCC 6 3 47 3.090 0.003

aTable includes all significant peaks of activation that are more than 8 mm apart within significant clusters (p < 0.05 corrected). ACC, anterior cingulate cortex; aMCC,

anterior mid-cingulate cortex; pACC, pregenual anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex.

fMRI CONTEXT-DEPENDENT CONNECTIVITY/GPPI RESULTS
A paired t -test revealed that the vmPFC contributed more to
the activity in the pMCC during cS compared to uS (389 mm3;
Table 4). There were no significant clusters where the connectivity
was greater during uS compared to cS.

A paired t -test revealed that the vmPFC contributed more to
the activity in the bilateral amygdala, pMCC, posterior cingu-
late, and bilateral thalami during cS compared to cF (Figure 4,
Tables 3 and 4). There were no significant clusters where the
connectivity was greater during cF compared to cS.

A paired t -test did not reveal any significant connectivity
differences with the vmPFC between uS and uF.

DISCUSSION
This paper reports the first exploration of the neural basis for
mediating the impact of perceived controllability on the anticipa-
tory response to aversive stimuli. We found that in humans the
vmPFC region is critical to behavioral control while anticipating
aversive stimuli. Moreover, this area showed strong functional cou-
pling with the amygdala, consistent with prior work implicating
it in top-down regulation of the amygdala (Phelps et al., 2004;

Urry et al., 2006; Johnstone et al., 2007; Maier and Watkins, 2010).
This extends to humans the behavioral control model that Maier
et al., 2006 based on their work with animals, the core of which
emphasizes vmPFC regulation of the amygdala, and other brain
areas that respond to stress. Based on our work and others results,
we conclude that these brain regions are involved in mediating the
impact of perceived control on emotional responses to adversity
that can have enhancing or impairing effects on various domains
of cognitive function.

Experiments dating back to the 1960s and 1970s have docu-
mented the effects of perceived control on behavioral responses
(Seligman, 1975; Weiss, 1991; Barlow, 2002; Maier et al., 2006).
These studies are pivotal because they demonstrated that: (1)
there is a potential temporal dependence in learned helpless-
ness (Overmier and Seligman, 1967; Seligman et al., 1975); (2)
learned helplessness can be mitigated by prior escapable trials
that induce perceived control (Seligman and Maier, 1967); and
(3) learned helplessness can be reversed by showing that shocks
are escapable (Seligman et al., 1968). These findings provided the
impetus for investigating the neural basis for learned helpless-
ness. Petty et al. (1994) demonstrated that learned helplessness
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FIGURE 4 | Functional connectivity using generalized
psychophysiological interactions (gPPI). Top: significantly greater
connectivity during controllable snake (cS) compared to uncontrollable
snake (uS) shown in a coronal slice through the amygdala and thalamus.
Results were thresholded at p < 0.05 cluster corrected. Bottom: plots for
the left and right amygdala clusters showing the PPI values. Error bars are
SEM. a.u.= arbitrary units.

correlated with serotonin levels in the vmPFC post-shock, but
not basal pre-shock level, providing evidence that changes occur
during the stressor. Subsequent studies demonstrated that vmPFC
activity during inescapable shock correlated with later social explo-
ration/escape behavior (Amat et al., 2005, 2006; Christianson et al.,
2009) and that inhibiting vmPFC activity during, but not after, a
forced swim test prevented the learned helplessness behavior the
following day (Scopinho et al., 2010). Similar findings led Maier
et al. (2006) to posit that the presence of control and its activation
of the vmPFC are critical in determining behavior. In essence, the
vmPFC modulates the stress response by top-down feedback.

The present study utilized a novel design to investigate the
circuitry recruited by behavioral control in humans by expos-
ing snake phobics to the very object on which their diagno-
sis is based. When they anticipated the snake videos, only the
vmPFC showed a differential response between controllable and
uncontrollable trials. Thus, the vmPFC has substantial poten-
tial to provide top-down feedback and aid in down regulation
of the amygdala and stress-related responses. Consistent with
this idea, we observed changes in connectivity with a num-
ber of brain regions, most notably the amygdala. In sum, the
exact significance of the vmPFC is the implementation of per-
ceived control in humans via its regulation of the stress response
system.

Although the direction of the association between the vmPFC
and amygdala cannot be conclusively determined on the basis
of PPI alone (Friston et al., 1997; Banks et al., 2007), vmPFC
inhibition of the amygdala is of considerable significance for

translational neuroscience. Hypothetically, the vmPFC controls
decrements in fear response and strengthens extinction mem-
ory formation (Quirk and Mueller, 2008). Non-human animal
research has consistently demonstrated this top-down inhibition
of the amygdala by the vmPFC during fear extinction (Morgan
et al., 1993; Milad and Quirk, 2002; Quirk et al., 2003; Rosenkranz
et al., 2003; Delgado et al., 2008). Verifying vmPFC inhibition
of the amygdala in humans will require further development of
fMRI-based causality models (Etkin et al., 2006; McFarlin et al.,
2012). Using dynamic causal modeling to indicate directional-
ity between these regions in humans, Etkin et al. (2006) were
able to demonstrate that pregenual ACC activity (adjacent to the
vmPFC activity found here) predicted reductions in amygdala
activity when the previous trial was incongruent (more emo-
tional conflict). Structural equation modeling (SEM) on time-
series data has provided further support for medial PFC regulation
of the amygdala (Meyer-Lindenberg and Zink, 2007). Despite not
directly assessing causality, the present study extends prior work
documenting heightened amygdala responses in specific phobia
(Etkin and Wager, 2007) by highlighting the importance of the
vmPFC and its connectivity with the amygdala for both the devel-
opment and treatment of specific phobic (Maier and Watkins,
2010).

Additionally, a growing number of studies have implicated the
vmPFC in emotional functions other than regulation (Hartley
et al.,2011; Myers-Schulz and Koenigs,2012). More specifically, the
vmPFC region found here corresponds to the perigenual vmPFC
section described by Myers-Schulz and Koenigs (2012) to be
involved in positive affect. The identification of this area provided
further support for the hypothesis that this area is involved in the
psychologically beneficial effects provided during the anticipation
of behavioral control over an aversive stimulus in phobics, per-
haps related to down regulation of the amygdala and stress-related
responses by the vmPFC.

Precisely because excessive anticipation of negative events has
been shown to be maladaptive and contribute to psychiatric disor-
ders (Mackiewicz et al., 2006; Nitschke et al., 2006, 2009; Straube
et al., 2007; Sarinopoulos et al., 2010), this study investigated the
neural basis for perceived control in humans to provide the prover-
bial“missing links”between learned helplessness (Seligman, 1975),
social cognitive theory (Bandura, 2002), and the neuroscientific
basis of resilience (Curtis and Cicchetti, 2003). As demonstrated
by Seligman and colleagues, it is the perception of control that
determines the behavioral response to a stressor. In particular,
high resilience – the knowledge and prior experience of escapable
shocks – reduced the learned helplessness behavior (Overmier and
Seligman, 1967; Seligman and Maier, 1967). Furthermore, an ani-
mal’s resilience can be increased through behavioral treatment
(Seligman et al., 1968). Thus, humans have an innate ability to
change their capacity to perceive and exert control, in part due to
their unique ability to attribute causality to aversive events that
directly contribute to resilience (Abramson et al., 1978). The cen-
tral role of perceived control in resilience (Staudinger et al., 1995;
Chorpita and Barlow, 1998; Kumpfer, 1999; Maier et al., 2006) in
conjunction with findings here indicate a prominent role for the
vmPFC in the neurobiology of resilience. Coupling the neural cir-
cuitry for perceived control in humans with the underappreciated
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Table 3 | gPPI: functional connectivity between vmPFC and ROI during anticipation of controllable snake videos > controllable fish videos.

Cluster size (mm3) Peak locationa Talairach coordinates Peak t -statistic p-Value

x y z

984 Right ventral amygdala 23 −7 −12 6.028 <0.001

Right extended amygdala 13 −11 −10 4.021 0.001

784 Left ventral amygdala −19 −5 −16 4.773 <0.001

Left extended amygdala −27 −11 −10 4.699 <0.001

2832 Left pMCC −13 −21 32 5.634 <0.001

Left PCC −11 −35 36 4.743 <0.001

504 Right PCC 15 −33 32 4.900 <0.001

3672 Left thalamus −9 −9 10 4.695 <0.001

Left thalamus −13 −19 0 4.282 <0.001

Right thalamus 11 −3 10 4.012 0.001

Left thalamus −13 −27 8 3.889 0.001

Left thalamus −17 −31 0 3.869 0.001

Left thalamus −23 −25 0 3.816 0.001

Left thalamus −13 −19 16 3.734 0.002

Right thalamus 3 −11 6 3.529 0.002

472 Right thalamus 21 −23 0 3.926 0.001

Right thalamus 15 −23 16 3.402 0.003

Right thalamus 21 −31 10 3.147 0.005

312 Right PCC 5 −47 42 3.533 0.002

aTable includes all significant peaks of activation that are more than 8 mm apart within significant clusters (p < 0.05 corrected). pMCC, posterior middle cingulate

cortex; PCC, posterior cingulate cortex.

Table 4 | Summary of results.

Anatomical location Paired t -tests

cS-uS cF-uF (cS-uS)-

(cF-uF)

S-F cS-uS cS-cF

LH RH LH RH LH RH LH RH LH RH LH RH

ACC +

aMCC + +

pACC +

pMCC − +

PCC + + +

vmPFC + + +

Anterior insula − − + +

Amygdala

Ventral amygdala + +

Extended amygdala + +

Thalamus + + + +

Pons − −

NOTES: black, fMRI results; red, gPPI results; +, significant positive cluster; −, significant negative cluster; ACC, anterior cingulate cortex; aMCC, anterior mid-

cingulate cortex; pACC, pregenual anterior cingulate cortex; PCC, posterior cingulate cortex; vmPFC, ventral medial prefrontal cortex; LH, left hemisphere; RH, right

hemisphere.

potential of human resilience points to the necessity of neuro-
science in designing studies to enhance resilience in the face of
adversity (Garmezy, 1971; Masten, 2001, 2011; Huber and Mathy,
2002; Casey, 2011).

LIMITATIONS
Signal dropout was observed in a number of subjects in the
vmPFC as is commonly reported in other studies. In the present
study, the dropout extended into our functionally defined ROI
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in nine subjects, which led them to be excluded from the PPI
analysis. Although the smaller sample limits the generalizability of
the PPI results, it is unlikely that excluding these subjects biased
the results because the extent of signal dropout was not associ-
ated with differences with demographic or psychological variables.
Moreover, reducing the sample limits the statistical power for
detecting the hypothesized effect here, lending support for the
importance of the functional coupling found in the small sam-
ple. Another limitation is that we were not able to test whether
the effects observed here for anticipation were also present for the
video presentation. Analogous analyses for the video period were
not possible due to insufficient trials per cell: only half the trials
included a video as a result of the experimental manipulation of
controllability.

CONCLUSION
This first study of behavioral control investigating anticipatory
responses directly extends Maier’s model of behavioral control
to humans. The anticipatory vmPFC activation observed for per-
ceived control has ramifications for the emotional response to
aversive events and consequent effects of emotion and cogni-
tive function. A new advance in functional connectivity, gPPI
(McLaren et al., 2012), provided evidence of the dynamic rela-
tionships between nodes of the network, in particular the

vmPFC and amygdala. The identification in humans of these
brain areas in perceived controllability under aversive condi-
tions clearly suggests that resilience is not only ordinary (Mas-
ten, 2001), but innate and potentially universal. As such, a
neurological mechanism has evolved in humans to enable cop-
ing with extreme adversity, whether natural or social, and to
perceive the controllability of our environment and emotional
responses.
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