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Abstract

Degeneration of cerebral white matter is commonly observed in aging, and the associated degradation in neural
connectivity contributes to cognitive decline in older adults. Vascular dysfunction has been implicated as a potential
mechanism for general age-related neural tissue deterioration; however, no prior study has examined the direct relationship
between cortical vascular health and subcortical white-matter integrity. In this work, we aimed to determine whether blood
supply to the brain is associated with microstructural integrity of connective tissue, and whether such associations are
regionally specific and mainly accounted for by aging. We examined the association between cerebral blood flow (CBF) in
the cortical mantle, measured using arterial spin labeling (ASL), and subcortical white-matter integrity, measured using
diffusion tensor imaging (DTI), in a group of healthy adults spanning early to late adulthood. We found cortical CBF to be
significantly associated with white-matter integrity throughout the brain. In addition, these associations were only partially
tied to aging, as they remained even when statistically controlling for age, and when restricting the analyses to a young
subset of the sample. Furthermore, vascular risk was not a prominent determinant of these effects. These findings suggest
that the overall blood supply to the brain is an important indicator of white-matter health in the normal range of variations
amongst adults, and that the decline in CBF with advancing age may potentially exacerbate deterioration of the connective
anatomy of the brain.
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Introduction

Degeneration of the cerebral white matter is widely observed in

aging, and has been associated with cognitive dysfunction [1–8].

Prior studies demonstrated strong associations between white-

matter microstructural properties and cortical tissue health [9–14],

especially in fibre structures connecting the affected cortical areas

[11,15,16]. White-matter degeneration has also been associated

with vascular risk factors and diseases such as stroke and

hypertension [17,18]. In particular, vascular disease can contrib-

ute to white-matter lesion formation (e.g. [19–22]), and reduced

CBF may induce periventricular white-matter leukoaraiosis [23].

However, to date, there remains a gap of knowledge on the extent

to which cortical blood supply is associated with tissue integrity in

non-lesioned, normal-appearing white matter in the healthy-

control population, or on whether such associations exist in the

absence of vascular risk factors.

Diffusion tensor imaging (DTI) can provide measures of white-

matter tissue microstructural integrity [24,25], including fractional

anisotropy (FA), and axial (AD) and radial (RD) diffusivity [26,27].

Animal studies suggest that these parameters may be differentially

sensitive to various histological properties. For example, reduced

FA concomitant with increases in RD has been associated with

demyelination [27,28], while an increase in both AD and RD has

been associated with Wallerian degeneration [26]. DTI-based

observations of white-matter microstructural changes have con-

sistently been associated with non-demented aging [24,25,29–36]

and neurological diseases such as Alzheimer’s disease [14,32,37–

41], cerebral small vessel disease [21] and amyloid angiopathy

[42].

Prior studies in the area have primarily focused on the

association between CBF and white-matter lesions. While an

individual’s risk for cerebrovascular diseases increases with age (for

review see [43]), recent studies demonstrate that cerebrovascular

properties may already be tied to neuronal health in individuals

with low disease risk (within the normal range of inter-individual

variations). For instance, even in normotensive or mildly

hypertensive individuals alone, elevated blood pressure was

associated with reduced white-matter integrity [44–47]. It is

known in the literature that vascular pathology precedes neuro-

degeneration in aging. Animal data reveal a decrease in vascular

diameter in aging [48]. Moreover, immunohistochemical studies

of periventricular veins, revealed an increase in vessel-wall

thickness and vessel tortuosity in otherwise healthy white matter

as part of normal aging [49]. Yet, no prior study has examined

whether there is a general association between CBF and the
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integrity of normal-appearing white matter in healthy adults, and

whether any such associations exist in the absence of vascular risk

and advanced aging.

The goal of this study is to examine the relationship between

cortical blood supply and the integrity of connective brain tissue in

a healthy aging population. Specifically, we aimed to investigate:

(1) whether cortical CBF positively correlates with sub-cortical

white-matter microstructural health in normal aging, (2) whether

this relationship can be largely explained by the presence of

vascular risk, and (3) whether this relationship is specific to the

regions exhibiting the most significant age associations in white-

matter integrity. We hypothesized a strong association between

cortical CBF and white-matter integrity, and one largely tied to

aging and vascular risk. In contrast to prior studies that examined

systemic vascular measures, we utilized quantitative CBF, a

spatially specific metric of blood supply, measured using arterial-

spin labeling (ASL) MRI. Moreover, we examined herein

associations between CBF and tissue integrity in normal-appearing

white matter as opposed to lesioned tissue. Our large healthy adult

cohort allowed us good access to the age dependence of the

measured effects, and our findings reveal potentially essential

aspects of the premorbid maintenance of neural-tissue integrity,

particularly the importance of effective blood flow regulation to

brain health beyond the confines of diseases and advanced aging.

Materials and Methods

Participants
We studied 105 cognitively healthy participants, (46 men/59

women), aged between 23 and 88 years, and categorized as young

(YA, age ,40), middle-aged (MA, 40# age ,60) and older adults

(OA, age $60). We summarize the demographics in Table 1. The

younger and middle-aged adults were recruited through the

Massachusetts General Hospital and local community. Older

adults were recruited through the Harvard Cooperative Program

on Aging (http://www.hebrewseniorlife.org/research-harvard-

coop-for-researchers), local senior centers, hospital resources and

the local community. The older adults were cognitively healthy

and were excluded if they had major neurologic or psychiatric

illnesses. Individuals were also excluded for a variety of medical

conditions including traumatic injury, cancer within the nervous

system, significant substance abuse, or any other major health

disorder as well as use of medications associated with substantial

effects on cognitive abilities. Participants with mild forms of

hypertension, hyperlipidemia, or type-2 diabetes were not

excluded from this sample, but were noted for their conditions

as vascular risk factors (Table 2). All diagnoses were by self report

and, when available, based on quantitative laboratory test results.

In addition, blood pressure was measured during the visit for each

participant. All participants were cognitively healthy and scored

.24 on the Mini Mental Status Exam (MMSE [50]), with the

exception of one participant scoring 23. Detailed cognitive

assessments are listed in Table 3. None of the participants suffered

from severe depression, one reported moderate depression, and

seven did not report on depression. All participants provided

informed consent as required by the internal review board of our

institution, and were imaged using a Siemens Trio 3 Tesla system

(Erlangen, Germany) employing a 12-channel phased-array head

coil for reception and body-coil for transmission. The acquisition

details are summarized in later sections.

Cerebral Blood Flow
MRI acquisition. CBF measurements were made using a

FAIR QUIPSS II pulsed ASL (ASL) sequence [51]. The tag and

control slab thicknesses were 140 mm and 340 mm, respectively,

leaving 100 mm margins at either end of the imaging slab to

ensure optimal inversion profile. The QUIPSS II saturation pulse

was applied to a 100 mm slab inferior to the imaging region with a

10 mm gap between the adjacent edges of the saturation and

imaging slabs. Flow crusher gradients were applied with a

threshold of 100 cm/s. Other imaging parameters were: 64664

in-plane matrix, 24 slices and 3.463.465 mm3 voxels. The ASL

acquisitions each consisted of 104 frames (52 tag and 52 control),

with TI1 = 600 ms and TI2 = 1600 ms, chosen to accommodate a

wide range of flow rates. The scans used a repetition time (TR) of

4 s, and an echo-time (TE) of 12 ms resulting from a L partial

Fourier echo-planar imaging (EPI) readout. The acquisition time

per slice was 42 ms. A 2D gradient-echo EPI scan (with TR set to

10 s) was used to estimate the equilibrium magnetization of

arterial blood.

Data processing. The raw ASL time-series were motion-

and drift-corrected using FSL’s FLIRT (http://fsl.fmrib.ox.ac.uk/

fsl/flirt). To minimize BOLD-contamination, the control-tag

difference images were calculated using surround subtraction

[52]. Longitudinal (T1) relaxation due to the slice-dependent

transit delay was compensated based on the per-slice acquisition

time. The ASL volumes were then averaged across time and scans

(2 scans/session) to maximize signal-to-noise (SNR), following

which quantitative CBF maps were obtained based on the single-

compartment Standard Kinetic Model [53]. The equilibrium

arterial-blood magnetization was computed as the intensity in the

calibration scan adjusted for longitudinal (T1) and transverse

relaxation (T2
*) differences as well as the blood-tissue water

partition coefficient (l). Typical values for proton density, labeling

efficiency, l, T1 and T2* were assumed for all grey matter based

on prior literature, as described in [54,55].

To enable surface- and ROI-based analyses, the ASL data were

resampled to a 1 mm3 voxel size and registered to the native-space

T1-weighted anatomical images using boundary-based registration

[56], as described in our previous work [57,58]. To facilitate

group-analysis, the anatomical-registered ASL data were sampled

onto a cortical surface atlas using spherical registration. Group-

mean CBF maps were generated using non-rigid high-dimensional

spherical averaging [59].

White-Matter Microstructure
MRI acquisition. The diffusion-weighted images were ob-

tained using a twice-refocused spin echo sequence [60]: 64 slices,

TR/TE = 7920/83 ms, 2-mm isotropic voxels, 60 directions,

b = 700 s/mm2, with 10 volumes at a b-value of zero.

Data processing. The DTI data were motion- and eddy-

current corrected, and subsequently used for computing fractional

anisotropy (FA), axial (AD) and radial (RD) diffusivity using the

FSL Diffusion Toolbox. Voxel-wise DTI group-analyses were

performed using the white-matter skeletonization procedure which

is part of Tract-Based Spatial Statistics (TBSS [61]). Each subject’s

FA volume was registered to the group-average white-matter

skeleton (defined at an FA threshold of 0.2), and the resulting

aligned images were utilized in the voxel-wise group statistics. The

transformation matrices derived for the FA maps were applied to

the diffusivity and T2-intensity (b = 0) volumes for matched

processing of all image volumes. The use of the TBSS skeleton

allowed us to exclude regions of significant white-matter degen-

eration from the group analysis.

Cortical Thickness
MRI acquisition. A 3D anatomical scan was acquired using

multi-echo MPRAGE [62], with 1 mm isotropic resolution,

White Matter DTI and Cortical CBF in Aging
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TR = 2530 ms, TI = 1000 ms, TE = 1.64, 3.50, 5.36 and 7.22 ms,

field of view = 2566256 mm (sagittal), matrix

size = 25662566176, bandwidth = 651 Hz/pixel and an acceler-

ation factor = 2 (GRAPPA).

Data processing. Cortical thickness measures were utilized

as covariates in the cortical-surface analysis to control for any

potential partial-volume contamination in CBF data. Thickness

assessments were performed using FreeSurfer (http://surfer.nmr.

mgh.harvard.edu), whereby cortical thickness was calculated as the

closest distance from the grey2/white-matter boundary to the

grey/CSF (cerebrospinal fluid) boundary at each vertex on the

tessellated surface, as described previously [63].

Statistical Analysis
Per-voxel white-matter analyses. The DTI-derived micro-

structural parameters were regressed against age and CBF of all

participants based on the general linear model (GLM), with age

and CBF entered as continuous variables, and controlling for

image intensity in the b = 0 volumes. The statistical significance of

the regression was corrected for multiple comparisons using the

permutation method [64,65], implemented through FSL’s rando-

mise. The corrected statistical maps were thickened around the

TBSS skeleton for visualization purposes. We also performed two

types of subgroup analyses: (1) after excluding individuals with

vascular risk factors (i.e. hypertension, hyperlipidemia and

diabetes), and (2) including only younger and middle-aged adults.

These analyses examined whether vascular risk or age were

predominant factors contributing to the association between CBF

and white-matter integrity. In addition, we controlled for the

presence of vascular risk as a categorical variable in a multi-variate

GLM analysis. Analyses were performed both with and without

controlling for variance due to age to further assess the importance

of age in the observed associations.

Cortical surface-based analysis using white-matter

regions-of-interest. To assess the spatial specificity of the

associations between white-matter microstructural integrity and

CBF, we chose as ‘‘seed’’ the corpus callosum, a structure

exhibiting a wide range of age effects along its axis. We divided the

callosum into 3 sub-regions (the genu, body and splenium) to

examine potential anatomical heterogeneity in the correspondence

between cortical CBF and white-matter integrity in these regions-

of-interest (ROIs). The association between cortical CBF and DTI

parameters in each callosal segment (extracted from TBSS maps

deprojected to each subject’s native-space) was computed using a

GLM analysis, regressing out covariations in cortical thickness.

Outliers were identified based on the standardized residuals and

removed prior to the regression analyses. The statistical tests

involved spatial smoothing along the cortical surface using a

circularly symmetric Gaussian kernel with a full-width at half-

maximum (FWHM) of 6 mm. Correction for multiple compari-

sons in the surface-based analyses was performed based on

Random-Field Theory [66], implemented through FreeSurfer.

Furthermore, we subsequently performed a similar set of analyses,

substituting cortical thickness for CBF, to determine whether the

observed effects were specific to CBF or generalizable to cortical

morphometry.

ROI analysis. To compare the regional strengths of CBF-

and age-associations in white matter, we performed the Steiger’s

Z-Test in representative ROIs. We also used a multi-variate GLM

approach to quantify the prediction power of age and CBF (both

Table 1. Demographic information for young (YA), middle-aged (MA) and older (OA) participants.

Group N Age [yrs] All Age [yrs] Men Age [yrs] Women Education [yrs]

YA 15 (9 M/6 F) 30.065.9 29.966.5 30.165.6 16.060.5

MA 46 (19 M/27 F) 51.965.8 50.566.2 52.965.4 16.562.8

OA 44 (18 M/26 F) 71.967.9 75.967.4 69.067.1 17.263.2

doi:10.1371/journal.pone.0056733.t001

Table 2. Quantitative measures of vascular risk in middle-age and older adults.

Vascular Risk
Fraction of
Subjects

Blood Pressure
[mmHg] HDL [mg/dL] LDL [mg/dL] Glucose [mg/dL]

Middle-Aged Hypertension 2.1%

Hyperlipidemia 12.8% 89.461.1 56.463.4 116.066.1 90.561.7

Type 2 Diabetes 2.1%

Data unavailable 4.3% 53.2% 59.6% 59.6% 59.6%

Older Adults Hypertension 23.3%

Hyperlipidemia 32.6% 97.261.4 52.861.5 119.566.0 92.261.2

Type 2 Diabetes 9.3%

Data unavailable 4.7% 60.5% 53.5% 53.5% 44.2%

Values are listed as mean 6 standard error.
[mg/dL] = milligrams per decilitre of blood.
[mmHg] = millimetres mercury.
Blood pressure: mean-arterial blood pressure (normal range: 80,102 [mg/dL]).
HDL (cholesterol): high-density lipoprotein (normal range: .40 [mg/dL]).
LDL (cholesterol): low-density lipoprotein (normal range: 100,130 [mg/dL]).
Glucose: fasting plasma level (normal range: 70,100 [mg/dL]).
doi:10.1371/journal.pone.0056733.t002

White Matter DTI and Cortical CBF in Aging
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as continuous variables) in terms of microstructural integrity in

specific white-matter ROIs, as summarized in Eq. (1).

FA~b1
:agezb2

:CBFze

AD~b1
:agezb2

:CBFze

RD~b1
:agezb2

:CBFze

8><
>:

ð1Þ

In addition, we included the DTI parameters in the GLM for each

ROI, as shown in Eq. (2),

FA~b1
:agezb2

:CBFzb3
:ADzb4

:RDze

AD~b1
:agezb2

:CBFzb3
:FAzb4

:RDze

RD~b1
:agezb2

:CBFzb3
:FAzb4

:ADze

8><
>:

ð2Þ

with b as the regression coefficients and e being the noise term.

The GLM results corresponding to Eqs. (1) and (2) are shown in

Tables 4 and 5, respectively. Finally, in select ROIs, we used two-

factor analysis of variance (ANOVA) to assess potential interac-

tions between age, CBF and white-matter DTI parameters (see

Table 6). In the ANOVA, age was converted into a categorical

variable (i.e. young, middle-aged and old), while CBF remained as

a continuous variable.

Partial-volume effects. In view of the fact that multiple

tissue structures may experience volume reductions in aging, we

made every effort to minimize the contribution of atrophy in our

results. In the subcortical white-matter analysis, the use of the

TBSS skeleton minimized potential partial-volume effects with

non-fibre tissues as well as confounds due to crossing or

degenerating fibres. In the surface analyses involving CBF

measurements, we controlled for cortical thickness at each vertex.

Results

Associations between CBF and Age
The mean CBF across the cortical mantle decreased with

advancing age at a rate of approximately 0.38%/year (p,0.05,

controlled for concurrent cortical atrophy). Significant regional

associations between age and CBF were found in the superior

frontal and parietal, mid-inferior temporal, insular, precuneus and

cingulate regions, as presented in Figure S1 (Supplementary

Materials). These findings are in agreement with previously

reported patterns of age-associated decline in CBF (Chen et al.,

2011). All of the subjects in this prior study were involved in the

current study, along with 19 additional participants.

Associations between White-Matter Microstructure and
Age

Reductions in FA were observed with advancing age (as

reported in prior work), with statistically significant effects found

in the corpus callosum, corona radiata, cingulum, superior

longitudinal fasciculus, internal capsule and uncinate fasciculus

(Figure 1A, shown in blue). FA decrease generally overlapped with

diffusivity increase. Age-associated increases in axial diffusivity

(AD) were more limited spatially (with fewer voxels exceeding the

statistical threshold for significance), particularly in contrast to the

relatively widespread increases in radial diffusivity (RD). Anterior

Table 3. Health status in all participants.

Metric Mean

MMSE 28.261.7

Systolic Pressure [mmHg] 128.6617.0

Diastolic Pressure [mmHg] 74.369.0

TRAILSA: time (s) (#errors) 40.2616.8 (0.28660.535)

TRAILSB: time (s) (#errors) 88.8645.1 (0.57160.836)

BDI 5.6265.75

Data not available 20%

MMSE: Mini-Mental Status Exam.
TRAILSA: Trail Making Test A.
TRAILSB: Trail Making Test B.
BDI: Beck Depression Inventory.
doi:10.1371/journal.pone.0056733.t003

Table 4. Multi-variate general linear modeling of white-
matter structural integrity, age and CBF: Significance of fit
obtained from multi-variate general linear model including
individual white-matter microstructural parameters as a
function of CBF and age.

Structure Parameter Age CBF

Genu FA p,0.01* p = 0.04*

AD p,0.01* p,0.01*

RD p,0.01* p = 0.03*

Body FA p = 0.05* p,0.01*

AD p = 0.11 p = 0.35

RD p,0.01* p,0.01*

Splenium FA p = 0.75 p = 0.09

AD p = 0.02* p = 0.02*

RD p = 0.62 p = 0.06

The asterisk indicates statistical significance.
doi:10.1371/journal.pone.0056733.t004

Table 5. Multi-variate general linear modeling of white-
matter structural integrity, age and CBF: Significance of fit
obtained from multi-variate general linear model, where each
white matter microstructural parameter (i.e. FA, AD or RD) is
modeled a function of CBF and age with the remaining
parameters as covariates.

Structure Parameter Age CBF

Genu FA p,0.01* p = 0.05*

AD p,0.01* p,0.01*

RD p,0.01* p = 0.18

Body FA p = 0.35 p = 0.19

AD p = 0.52 p = 0.12

RD p = 0.04* p = 0.79

Splenium FA p = 0.28 p = 0.21

AD p,0.01* p = 0.01*

RD p = 0.20 p = 0.69

For example, the model for FA used AD and RD as covariates. The asterisk
indicates statistical significance.
doi:10.1371/journal.pone.0056733.t005

White Matter DTI and Cortical CBF in Aging
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regions of the corpus callosum exhibited the strongest statistical

effects, as shown in the scatter plots in Figure 1B. We noted a

considerable CBF variability in each age group. Also, the results

shown in Figure 1 involve subjects with vascular risk factors.

Associations between White-Matter Microstructure and
CBF

As hypothesized, cortical CBF was strongly associated with

subcortical white-matter microstructural parameters (Figure 2A).

In general, higher global cortical CBF was associated with higher

FA as well as lower diffusivity. More specifically, AD and RD

demonstrate different sensitivities, with the former being more

confined to anterior white-matter regions. This spatial dependence

in the association between CBF and DTI parameters was

supported by the regional ANOVA results shown in Table 6.

The relationship between white-matter microstructure and CBF

was also plotted for the risk-free subjects alone (dashed red lines,

excluding subjects with hypertension, hyperlipidemia and diabetes.

These fits show statistical similarity with the whole-group fits,

evident from the overlapping intervals of confidence for the fits.

However, FA in the genu and splenium of the callosum ceased to

be significantly correlated with CBF once subjects with risk factors

were removed (Figure 2B). Nonetheless, as confirmed at the per-

voxel level in Figure 2C, after controlling for the presence of

vascular risk, the association with CBF became diminished but

largely unaltered for all of the DTI parameters.

The similarities and differences between CBF- and age-effects

are quantitatively illustrated in Figure 3, in regions exhibiting the

most significant associations with the two factors. The age and

CBF associations are shown as regional-average correlation values,

corrected for multiple comparisons. In particular, all of these ROIs

exhibited more significant age-associations in terms of FA, but

more significant CBF-associations in terms of RD. On the other

hand, the behaviour of AD was more spatially heterogeneous. This

spatial dependence in the observed effects is further demonstrated

statistically through the multi-variate GLM analysis (Table 4), in

which the genu of the corpus callosum was more strongly

associated with both age and CBF than the splenium. This was

confirmed in the multi-variate analysis involving all DTI

parameters, as shown in Table 5. By including all DTI parameters

in the GLM, the association between CBF and each DTI

parameter becomes statistically weakened (as shown in Supple-

mentary Figure S3) but still significant (as shown in Table 5 for the

callosal ROIs).

Figure 1. Associations between age and white-matter microstructure. (a) Aging was associated with significant decreases in fractional
anisotropy (FA) (shown in blue, top panel) and increases in axial (AD) and radial diffusivity (RD) (shown in red-yellow), notably in the corpus callosum,
corona radiata, cingulum, superior longitudinal fasciculus, internal capsule and uncinate fasciculus (the white matter skeleton is shown in green). (b)
Relationship between age and DTI measures in the corpus callosum; the DTI measures were extracted from regions of interest defined in each
participant’s native-space DTI volume. Each filled circle represents an individual subject, colour-coded for the subject’s global mean CBF. In the
corpus callosum, the age-effect was most pronounced in the anterior portions. Significant age-correlations are indicated by asterisks. Note that while
the CBF values show age trends (more blue to the right of the plots), there is considerable variability in CBF within age groups.
doi:10.1371/journal.pone.0056733.g001

White Matter DTI and Cortical CBF in Aging
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To determine whether the observed associations between CBF

and white-matter integrity were primarily due to aging, we entered

age as a covariate into the GLM. Although this resulted in a

reduction in the observed associations between CBF and white-

matter integrity, regional associations remained strong, with

substantial overlap between regions of CBF-related FA reduction

and RD increases (Figure 2A). In addition, our two-way ANOVA

in the callosum, which exhibits considerable heterogeneity of

effects, showed no significant interaction between age and CBF in

relation to the white-matter variations (see Table 6).

To further explore the potential influence of age on the CBF-

DTI associations, we examined this association in healthy young

and middle-aged individuals alone (age = 25 to 55 years), thus

avoiding the precipitous changes in white matter volume in old

age. These analyses demonstrated that white-matter structural

integrity is significantly correlated with mean cortical CBF even

when excluding the elderly (Figure 4B), further supporting the idea

that the observed associations between cortical CBF and white-

matter structure are found within the normal range of inter-

individual variations, and are not accounted for by age.

Figure 2. Correlation between DTI parameters and mean cortical CBF, without controlling for age. (a) The white-matter TBSS skeleton is
shown in green. Cortical CBF was positively associated with white matter FA (shown in red-yellow), and negatively associated with AD and RD (shown
in blue). Also, the association between DTI parameters and CBF was more evenly distributed throughout the callosum, also confirmed in the regional
data plots in (b). (b) The relationship between mean cortical CBF and DTI measures in the corpus callosum, with the 95% confidence interval outlined
by the shaded region. Each symbol represents one subject, colour-coded for age, with different symbols representing subjects with different vascular
risk factors. The relationship between white-matter microstructure and CBF was also plotted for the risk-free subjects alone (dashed red lines), with
the 95% confidence interval delimited by solid red lines. These fits show statistical similarity with the previous fits, evident from the overlapping
intervals of confidence delimited by solid red lines. Significant CBF-correlations are indicated by asterisks (black for all subjects, red for risk-free
subjects only). (c) Controlling for the presence of vascular risk resulted in limited changes in the observed associations between white-matter
integrity and cortical CBF.
doi:10.1371/journal.pone.0056733.g002
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Differences between the Age- and CBF-Associations with
White-Matter Integrity

The statistical differences between the strengths of the CBF-

and age-association with the white-matter DTI parameters are

shown in Figure 3 for select ROIs, which were most strongly

associated with our regressors (either age or CBF). First, it is

evident that the age- and CBF-associations only partially

overlap in space. While FA was more significantly correlated

with age, both AD and RD were more strongly associated with

CBF, more so for RD than for AD. Based on our observations

in the corpus callosal ROIs, FA and RD are strongly but

inversely correlated (see Figure S2 in Supplementary Materials).

The two-factor ANOVA results (Table 6) showed no clear

evidence of interaction between age and CBF in this context, or

for a combination of the two factors to better predict DTI

parameter behaviour than each factor alone.

Spatial Specificity of the Association between White-
Matter Health and CBF

To probe the anatomical specificity of the associations between

DTI parameters and cortical CBF, we correlated regional DTI

measures from the corpus callosum with cortical CBF maps

(Figure 5). The callosum was chosen because its highly heteroge-

neous variations along its axis in terms of its association with age as

well as CBF. Correlations between regional callosal microstructure

and cortical CBF were significant and spatially selective. In

general, FA was positively and diffusivity negatively correlated

with regional CBF. Also, mean DTI parameters in the genu of the

callosum were significantly associated with CBF in the superior

frontal (lateral and medial), inferior temporal, superior lateral

parietal and precuneal areas. In contrast, the body of the callosum

was mainly associated with CBF in medial frontal and precuneal

regions, and less so with CBF in the superior parietal region. In

addition, FA and diffusivity in the splenium were for the most part

not significantly correlated with cortical CBF in this analysis.

Lastly, controlling for age diminished the statistical significance

but did not eliminate the above associations with CBF (Figure 5B).

We performed a similar set of analyses substituting cortical

thickness for CBF to determine whether the observed effects were

specific to CBF or generalizable to cortical morphometry. In

contrast to the CBF associations, the cortical thickness associations

were predominantly accounted for by age (data not shown).

Discussion

This study demonstrated a significant relationship between

cortical blood supply (assessed via cortical CBF) and subcortical

white-matter integrity (assessed via fractional anisotropy and

diffusivity). Importantly, these associations were observed in

healthy-appearing white matter. Moreover, these effects were

not entirely explained by age or by vascular risk. In addition, these

associations were spatially selective and only partially coincide

with the white matter regions demonstrating the most significant

age-associations. It is important to note that the current data do

not permit us to ascribe causal or directional mechanisms of these

associations. However, these findings provide compelling evidence

for a link between cortical neurovascular physiology and white-

matter health, both as a part of normal aging as well as a part of

the intrinsic inter-individual variability that is not accounted for by

age.

Age-associated reductions in white-matter integrity were wide-

spread, but were more prominent anteriorly in structures such as

the corpus callosum, as consistently reported in prior work

[20,30,31,67]. In contrast, the association between cortical CBF

and white-matter integrity was more evenly distributed between

anterior and posterior regions of the callosum, suggesting

potentially distinct mechanisms underlying than found in aging.

Our findings also raise the possibility that the measured

associations reflect to a large degree physiological variability

among healthy individuals, not dominated by age but instead

influenced by other biological and environmental factors. In

contrast, the associations between cortical thickness and white-

matter microstructure were dominated by age-associated variance.

Ongoing work is exploring potentially mediating factors behind

these distinct observations.

Previous studies have found an association between white-

matter lesion formation and risk for neurovascular diseases

[68,69]. Also, periventricular white-matter lucency has been

linked to impaired cerebral autoregulation [16], potentially

associated with age-related arterial stiffening and attenuation of

autoregulatory capacity [70,71]. Although such associations have

been experimentally demonstrated in patients with type 1 diabetes

[72], the relationship between vascular health and white-matter

integrity has yet to be demonstrated in normal aging. Interestingly,

we noted that while certain vascular risk factors, such as

hypertension and diabetes, are associated with reduced CBF

[73,74], the inclusion of subjects with mild vascular risks did not

significantly alter the trends in the DTI-CBF relationship we

observed. This finding supports our view that vascular function

and white-matter integrity co-vary in a healthy adult population

irrespective of vascular impairment. Nonetheless, it is important to

note that CBF is one of many indices of cerebrovascular health.

For instance, while CBF is correlated with blood pressure [75],

CBF alone does not determine vascular reactivity or neurovascular

interactions. In our future work, we will examine more direct

mechanisms underlying the results reported here.

While all white-matter structural parameters exhibited strong

associations with age and with CBF, radial diffusivity (RD), a

potential indicator of myelo-degeneration in aging [27,28,76], was

more markedly associated with CBF (than with age) than the

remaining DTI parameters (results controlled for age). This

suggests that reductions in perfusion, or more generally, compro-

mised cerebrovascular health, may contribute to white-matter

damage through a ‘‘low-flow’’ or ‘‘low-grade’’ ischemic mecha-

nism [68,77]. This mechanism may be distinct from the primary

mechanism driving age-related axial diffusivity (AD) increases, as

axial diffusivity was more strongly related to age than to CBF.

Table 6. Significance (p-value) obtained from two-factor
ANOVA, assessing the relationship between FA, AD and RD in
the callosum.

Structure Parameter Age CBF Age 6CBF

FA p,0.01* p = 0.01* p = 0.45

Genu AD p,0.01* p,0.01* p = 0.29

RD p,0.01* p,0.01* p = 0.46

FA p = 0.06 p = 0.04* p = 0.85

Body AD p = 0.40 p = 0.08 p = 0.30

RD p = 0.02* p,0.01* p = 0.48

FA p = 0.81 p = 0.09 p = 0.53

Splenium AD p,0.01* p,0.01* p = 0.37

RD p = 0.50 p = 0.06 p = 0.26

Age was used to categorize the group into young, middle-aged and older
adults. The asterisk indicates statistical significance.
doi:10.1371/journal.pone.0056733.t006
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Also, the larger extent of RD association with CBF (when

compared to AD-associations) may indicate a preponderance of

myelin degeneration with advancing age. Additional work is

necessary to disentangle the potential mechanistic distinctions, and

to determine the link between these empirical observations and

specific histopathology.

It should be noted that CBF measurements reflect both

neuronal metabolic activity and vascular physiology, giving rise

to two alternative interpretations to our findings. Under the

metabolic hypothesis, white-matter integrity would impact neuro-

nal function in regions projected to by the affected tracts, leading

to a covariation between CBF and white-matter microstructure

Figure 3. Comparisons of correlations between age/CBF and white-matter microstructural integrity in the set of six ROIs showing
the most significant effects, namely the corpus callosum (genu, body and splenium), the superior corona-radiata, external capsule
and superior longitudinal fasciculus. While FA was more significantly related to age, AD and RD were more significantly associated with CBF. The
error bars represent the standard deviations, and asterisks indicate statistically significant differences between the age- and CBF associations.
doi:10.1371/journal.pone.0056733.g003
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only in anatomically connected tissue regions. While ongoing work

is examining this mechanism, we noted that the spatial patterns of

the measured DTI-CBF associations did not follow the fibre

structure of the affected white-matter regions, as demonstrated in

the corpus callosum, the structural connectivity of which is well

documented [78]. On the other hand, under a vascular hypothesis,

there may be a more general association between cerebral

perfusion and white-matter integrity, stemming from vascular

damage associated with normal aging [48,49]. However, associ-

ations between callosal microstructure and cortical CBF do not

reflect the known vascular supply routes to the various callosal

regions [79]. It is of note that the regions exhibiting significant

CBF-DTI links, namely the superior-frontal, medial-frontal,

temporal and precuneal regions, are also primary components of

the ‘‘default-mode network’’, associated with high glucose and

oxygen metabolism, as well as vulnerability to degeneration in

Figure 4. The correlation between DTI parameters and global cortical CBF, controlling for age. (a) The white-matter skeleton is shown in
green. The resulting associations (positive shown in red-yellow, negative shown in blue), were well-defined and consistent with the findings when
not controlling for age. There was substantial overlap between regions showing positive FA associations and negative RD associations with CBF. (b)
CBF-associations in a restricted age range. As an alternate way of assessing age-independence in the CBF-DTI associations, parameters of white-
matter structural integrity were significantly correlated with mean cortical CBF even when limited to an age-range between 25 and 55 years. Data is
shown for the genu of the corpus callosum. Again, each symbol represents one subject, colour-coded for age.
doi:10.1371/journal.pone.0056733.g004
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aging and in age-related diseases [80]. It is possible that the high

baseline perfusion in these regions biased the detection of the

associations. It is also possible that these highly metabolizing

regions are most sensitive to changes in global blood flow, which

impact the white-matter integrity in regions most vulnerable to

vascular insult (e.g. regions supplied by deep penetrating vessels)

[81]. Future work will probe associations among metabolic

demands, CBF, and white-matter integrity in detail through the

simultaneous measurement of hemodynamic and metabolic

variables. Irrespective of the mechanism underlying the observed

associations, our findings may provide important mechanistic

insight into understanding the age-associated decline in connective

tissue integrity [82,83].

A recent study examining the relationship between diffusivity

and CBF, both measured in the white-matter, found lower

perfusion in apparently healthier fibres, attributed to their higher

degree of myelination, hence lower energy demand and greater

impedance for vascular penetration [84]. However, as histological

studies of vascular anatomy demonstrate a continuous vascular

supply path between grey and white matter [85], highly perfused

white-matter should underlie highly perfused cortex in the same

vascular territory. Such a scenario would predict greater white-

matter integrity with higher CBF, as demonstrated here and in

prior PET work [23]. These contradicting findings represent

alternate models of how CBF relates to neural health, and remain

to be reconciled.

The current results should be interpreted in view of the

potential caveats. First, given the nature of diffusion-weighted

contrast, white-matter diffusivity may potentially contain contri-

butions from microvascular blood flow. However, within the

white-matter, blood vessels are oriented along the main fibre

direction [84]; hence, if the diffusivity measures had significant

perfusion contribution, one would expect high CBF to correspond

to high axial diffusivity, which was not the case here, precluding

significant vascular contribution. Secondly, both ASL and DTI are

intrinsically sensitive to subject-motion. However, motion would be

expected to result in global rather than these spatially specific biases,

suggesting that artifacts have limited influence. Thirdly, the older

adults in the current sample contained more women than men, with

the men being older than the women and blood pressure trends

were slightly lower than normative values in this age range

(compared with [86]). These factors may affect the generalizability

of these results. The levels of education seen in our older population

exceeded those of our other age groups, but not at a statistically

significant level. Fourthly, while prior literature associated AD and

RD to different histological features, such interpretations can be

influenced by technical limitations with regard to DTI acquisition

and analysis, therefore should be made with caution. Fifth, as a

caveat to the interpretation, while we have shown that certain

regions are more strongly associated with CBF than age, and vice

versa, our study does not demonstrate a quantitative causality. It is

possible, as we alluded to earlier, global cortical CBF is in part a

measure of cerebrovascular health, and the most vulnerable white-

matter regions would be associated with an overall decline in CBF,

irrespective of the spatial distribution of the latter. Finally, we note

that the reported associations were found in cross-sectional sample.

The longitudinal trajectories of CBF and DTI measures is

investigated in our ongoing work, and may provide information

about the causality of the associations investigated here.

Summary
Using DTI in conjunction with pulsed ASL perfusion imaging,

we found a link between cortical CBF and subcortical white-

matter microstructural health. The associations were regionally

specific, not simply accounted for by age or by vascular risk. These

findings provide support for a connection between cortical

Figure 5. Surface-based analyses of associations between regional DTI parameters in the corpus callosum and cortical CBF.
Significant positive associations are shown in orange-yellow, inverse associations are shown in blue. (a) Significant positive and spatially specific
associations between FA and CBF can be seen. In contrast, AD and RD were negatively correlated with cortical CBF. (b) Strong associations remained
after statistically controlling for age in the analyses. Regional associations did not follow patterns of known anatomy based on white-matter fibre
trajectories or known vascular structure. However, cortical regions where CBF was associated with white matter integrity did exhibit qualitative
similarities with the medial regions within the ‘‘default-mode’’ brain network.
doi:10.1371/journal.pone.0056733.g005
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vascular physiology and subcortical white-matter health, and may

have important implications for understanding the basic mecha-

nisms of neurodegeneration.

Supporting Information

Figure S1 The relationship between age and cortical
CBF in the studied cohort (N = 105). The lateral (top) and

medial (bottom) surfaces are shown for the left (L) and right (R)

cortical surface. Blue indicates a negative correlation, namely,

CBF becomes lower with increasing age. In order to minimize

partial-volume confound, this relationship has been controlled for

concurrent changes in cortical thickness.

(TIF)

Figure S2 Correlation matrix for DTI-derived white-
matter microstructural parameters. There was no clear

correlation trends between FA, AD and RD in the various white-

matter ROIs. RD is strongly and negatively correlated with FA

across these ROIs.

(TIFF)

Figure S3 Associations between cortical CBF and DTI
parameters of white-matter integrity, controlled for age
(left), contrasted with the results of a multivariate
analysis in which each DTI parameter is also modeled
as a function of the remaining DTI parameters (right).
The latter method results in a much weakened association between

the modeled parameter and CBF, which reflects the effect of CBF

independent that is unique to the modeled DTI parameter.

(TIFF)
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