
 

Selective Akt Inhibitors Synergize with Tyrosine Kinase Inhibitors
and Effectively Override Stroma-Associated Cytoprotection of

Mutant FLT3-Positive AML Cells

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Weisberg, Ellen, Qingsong Liu, Xin Zhang, Erik Nelson, Martin
Sattler, Feiyang Liu, Maria Nicolais, et al. 2013. Selective akt
inhibitors synergize with tyrosine kinase inhibitors and effectively
override stroma-associated cytoprotection of mutant flt3-positive
aml cells. PLoS ONE 8(2): e56473.

Published Version doi:10.1371/journal.pone.0056473

Accessed February 19, 2015 11:59:10 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10589791

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28942946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/10589791&title=Selective+Akt+Inhibitors+Synergize+with+Tyrosine+Kinase+Inhibitors+and+Effectively+Override+Stroma-Associated+Cytoprotection+of+Mutant+FLT3-Positive+AML+Cells
http://dx.doi.org/10.1371/journal.pone.0056473
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10589791
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Selective Akt Inhibitors Synergize with Tyrosine Kinase
Inhibitors and Effectively Override Stroma-Associated
Cytoprotection of Mutant FLT3-Positive AML Cells
Ellen Weisberg1*., Qingsong Liu2., Xin Zhang2, Erik Nelson1, Martin Sattler1, Feiyang Liu3,

Maria Nicolais1, Jianming Zhang2, Constantine Mitsiades1, Robert W. Smith1, Richard Stone1,

Ilene Galinsky1, Atsushi Nonami1, James D. Griffin1*, Nathanael Gray2

1Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America, 2Department of Biological

Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America, 3High Magnetic Field Laboratory, Chinese Academy of

Sciences, Hefei, Anhui, P.R. China

Abstract

Objectives: Tyrosine kinase inhibitor (TKI)-treated acute myeloid leukemia (AML) patients commonly show rapid and
significant peripheral blood blast cell reduction, however a marginal decrease in bone marrow blasts. This suggests
a protective environment and highlights the demand for a better understanding of stromal:leukemia cell communication.
As a strategy to improve clinical efficacy, we searched for novel agents capable of potentiating the stroma-diminished
effects of TKI treatment of mutant FLT3-expressing cells.

Methods: We designed a combinatorial high throughput drug screen using well-characterized kinase inhibitor-focused
libraries to identify novel kinase inhibitors capable of overriding stromal-mediated resistance to TKIs, such as PKC412 and
AC220. Standard liquid culture proliferation assays, cell cycle and apoptosis analysis, and immunoblotting were carried out
with cell lines or primary AML to validate putative candidates from the screen and characterize the mechanism(s) underlying
observed synergy.

Results and Conclusions: Our study led to the observation of synergy between selective Akt inhibitors and FLT3 inhibitors
against mutant FLT3-positive AML in either the absence or presence of stroma. Our findings are consistent with evidence
that Akt activation is characteristic of mutant FLT3-transformed cells, as well as observed residual Akt activity following FLT3
inhibitor treatment. In conclusion, our study highlights the potential importance of Akt as a signaling factor in leukemia
survival, and supports the use of the co-culture chemical screen to identify agents able to potentiate TKI anti-leukemia
activity in a cytoprotective microenvironment.
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Introduction

Resistance to TKIs in leukemia patients presents a significant

clinical challenge. As small numbers of leukemia cells have been

observed to persist in the bone marrow of TKI-treated patients,

despite rapid and dramatic clearance of peripheral blood blasts,

there is growing interest in determining the role of the bone

marrow microenvironment in the long-term survival of leukemic

stem cells. Indeed, the number of existing leukemic stem cells that

exhibit high survival ability on bone marrow stromal layers has

proven to be a significant prognostic indicator [1]. Of relevance,

we have found that media conditioned by human HS-5 stromal

cells, as well as a cocktail of cytokines secreted in high

concentrations by HS-5 stroma (including SCF, IL-6, IL-8, IL-

11, M-CSF and GM-CSF), were able to partially protect TKI-

treated chronic myeloid leukemia (CML) cells and AML cells

[2,3].

A subset of AML cells expresses a mutated form of the class III

receptor tyrosine kinase FLT3 (Fms-Like Tyrosine kinase-3; STK-

1, human Stem Cell Tyrosine Kinase-1; or FLK-2, Fetal Liver

Kinase-2) [4], which has inspired the development of a number of

small molecule inhibitors of mutant FLT3. However, FLT3

inhibitors tested thus far, including PKC412 (midostaurin) [5],

which is in late stage (Phase III) clinical trials, and the highly

potent and selective FLT3 inhibitor, AC220 (quizartinib) [6],

which is in early phase clinical trials, generally at best induce
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partial and transient clinical responses in patients when used

alone. In addition, we have found that bone marrow-derived

stroma diminishes the activity of both PKC412 and AC220 [7].

There is thus a need for identification and development of novel

therapies that can be effectively combined with TKIs to delay or

suppress leukemia progression, override stroma-associated drug

resistance, and increase patient survival.

We have recently identified the multi-targeted kinase inhibitor,

dasatinib, and dasatinib-like compounds as being able to

potentiate the activity of TKIs PKC412 and AC220 against

mutant FLT3-expressing cells cultured in the presence of

cytoprotective and cytokine-abundant stromal-conditioned media

(SCM) by performing a combinatorial drug screen using the

KIN001 library (Dr. Nathanael Gray) [7]. Our study also

highlighted the potential of Jak inhibitors to synergize with

PKC412 and AC220 as well as enhance their apoptotic activity

against mutant FLT3-expressing cells cultured in the presence of

SCM [7].

While the significance of stromal-derived growth factors in

viability enhancement and cytoprotection of leukemic stem cells

cannot be denied, not all hematologic malignancies can be rescued

from programmed cell death by secreted cytokines in the absence

of direct communication with the stromal cells themselves. As

examples, protection of AML cells and B-lineage ALL cells from

spontaneous and/or drug-induced apoptosis was observed to

depend on direct bone marrow fibroblast cell:leukemic cell

interaction [8–10]. Similarly, protection of CLL cells from

apoptosis depends on adherence of these cells to bone marrow

stromal layers [11], and adhesion between bone marrow stroma

and myeloma cells is necessary for protection of these cells from

drug-induced apoptosis [12]. Thus, the direct interaction between

stromal cells and leukemic cells is important to fully understand

the mechanisms driving stromal-mediated chemoresistance, as

well as for identification of integral signaling molecules as potential

therapeutic targets for overriding drug resistance.

To address this, we used an adherent stroma-based co-culture

system, as opposed to the SCM-based system used previously, as

the basis for a combinatorial drug screen designed to identify novel

kinase inhibitors able to potentiate the apoptosis-inducing effects

of PKC412 against adherent stroma-protected mutant FLT3-

positive cells (see schematic in Figure S1, which illustrates both the

adherent stroma-based screen used in this study as well as the

SCM-based chemical screen [7]). In parallel to the KIN001 kinase

inhibitor library, we also screened the LINCS kinase inhibitor

library, which is composed of inhibitors characterized as being

relatively potent and selective toward a limited range of kinase

targets.

Here, we identified selective Akt inhibitors, such as MK2206, as

able to effectively combine with FLT3 inhibitors, including

PKC412 and AC220, against mutant FLT3-expressing cell lines

or primary AML cells cultured in a cytoprotective stromal

environment. This synergy occurs both in the absence as well as

the presence of stroma or stromal-derived cytokines, and could

thus potentially be further investigated as a therapeutic for AML

as well as possibly delay/eradicate residual disease. In addition,

p38 MAPK inhibitors also positively combined with PKC412

against mutant FLT3-expressing cells protected by stroma.

Our findings suggest that the combination of kinase inhibitor-

enriched chemical libraries and the leukemia cell:stromal cell co-

culture assay could be useful for discovery of novel therapeutic

combinations for AML. This technical approach could also be

employed for identification of protein kinases with potential to be

exploited as novel therapeutic targets.

Materials and Methods

Kinase Inhibitor Focused Libraries (KIN001 and LINCS)
Two Kinase Inhibitor Focused Libraries (KIN001 and LINCS)

were chosen for screening to identify single agents with little-to-no

appreciable efficacy but that are able to synergize with PKC412

against the human mutant FLT3-expressing AML cell line,

MOLM14-luc+, cultured in the presence of adherent HS-5

stroma. The KIN001 Library was developed by Dr. Nathanael

Gray’s lab and is comprised of 188 commercially-available kinase

inhibitors as well as in-house developed diverse pharmacophore-

based kinase inhibitors targeting either active or inactive kinase

conformations. The chemical screening concentration was

660 nM, which is the same screening concentration as was used

previously when this library was used to identify kinase inhibitors

able to synergize with FLT3 inhibitors in the presence of SCM [7].

The LINCS library is available from Harvard Medical School/

NIH LINCS program (https://lincs.hms.harvard.edu/) and con-

tains 202 known selective and potent kinase inhibitors.

Cell Lines and Cell Culture
The human AML-derived, FLT3-ITD-expressing cell lines,

Molm14 [13] and MV4;11 [14], were provided to us by Dr. Scott

Armstrong, Dana Farber Cancer Institute, Boston, MA.

MOLM14 cells were transduced with the FUW-Luc-mCherry-

puro lentivirus as previously described [15]. Within the past six

months, mutant FLT3 expression and integrity in this line was

confirmed. The human AML-derived, FLT3-ITD-expressing cell

line, MOLM-13, was obtained from DSMZ (German Resource

Centre for Biological Material). MOLM-13 cells were also

engineered to express luciferase fused to neomycin phosphotrans-

ferase (pMMP-LucNeo) by transduction with a VSVG-pseudo-

typed retrovirus (MOLM13-luc+ cells), as previously described

[16]. The IL-3-dependent murine hematopoietic cell line, Ba/F3,

was transduced with FLT3-ITD-containing MSCV retroviruses

harboring a neomycin selectable marker, and selected for re-

sistance to neomycin [17]. Mutant FLT3-transduced cells were

selected for growth in G418 (1 mg/ml). Within the past six

months, mutant FLT3 expression and integrity in this line was

confirmed. The HS-5 stromal cell line was purchased from

American Type Culture Collection (ATCC) (Manassas, VA,

USA).

All cell lines were cultured with 5% CO2 at 37uC, at

a concentration of 26105 to 56105/mL in RPMI (Mediatech,

Inc., Herndon, VA) with 10% fetal bovine serum and supple-

mented with 2% L-glutamine and 1% penicillin/streptomycin.

AML Patient Cells
Mononuclear cells were isolated from AML patients (Table S1).

Mononuclear cells were isolated by density gradient centrifugation

through Ficoll-Plaque Plus (Amersham Pharmacia Biotech AB,

Uppsala, Sweden) at 2000 rpm for 30 minutes, followed by two

washes in 1X PBS. Freeze-thawed cells were then cultured in

liquid culture (DMEM, supplemented with 20% FBS) and then

tested in the presence of 50% SCM with different concentrations

of single and combined agents. All blood and bone marrow

samples from AML patients were obtained through written

consent under approval of the Dana Farber Cancer Institute

Institutional Review Board. The ethics committees approved the

consent procedure.

Chemical Compounds and Biologic Reagents
PKC412 was synthesized by Novartis Pharma AG, Basel,

Switzerland, and was dissolved in DMSO to obtain a 10 mM stock
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solution. Serial dilutions were then made, to obtain final dilutions

for cellular assays with a final concentration of DMSO not

exceeding 0.1%.

Dasatinib and AC220 were purchased from Haoyuan Chemex-

press (Shanghai, China). KIN112 and KIN113 were developed in

Dr. Gray’s lab (DFCI). KIN001 or LINCS library compounds

identified in the screen as able to synergize with PKC412 in the

presence of adherent HS-5 stroma were as follows: HMSL10035

(KIN001-102; Akt inhibitor); KIN001-200 (VX-702; p38 MAPK

inhibitor); HMSL10168 (LG168, VX0745; p38 MAPK inhibitor).

Akt and p38 MAPK inhibitors tested to assess the significance of

drugs identified in the chemical screen were as follows:

HMSL10167 (SB 203580; RWJ 64809, PB 203580; p38 MAPK

inhibitor); HMSL10060 (TAK-715; p38a inhibitor); HMSL10154

(AT7867; Akt inhibitor); HMSL10128 (GSK 690693; Akt in-

hibitor); and HMSL10057 (MK2206; Akt inhibitor) (Table S2).

The selective Akt inhibitors used in our study are very well-

characterized research tools that have been widely used in

different contexts (for inhibitor characteristics and background,

please see Table S2).

Cell Proliferation, Viability and Cell Cycle Analysis
The trypan blue exclusion assay (for quantifying cells prior to

seeding), Annexin-V-Fluos Staining Kit (Boehringer Mannheim,

Indianapolis, IN) (for apoptosis), and cell cycle analysis were

carried out as previously described [5]. Due to technical

convenience, SCM was used instead of adherent stroma for the

apoptosis and cell cycle assays. The Cell Titer Glo assay (Promega,

Madison, WI) (for proliferation) was used for proliferation studies,

and carried out according to manufacturer instructions.

Antibodies and Immunoblotting
For analysis of phospho- and total Akt and phospho- and total

GSK3b, MOLM14-luc+ cells were treated with drugs for two

hours before they were collected at 1100 rpm for 8 minutes. Cells

were lysed using M-PER lysis buffer (Pierce) supplemented with

phosphatase inhibitors and protease inhibitors (Roche) according

to the manufacturers’ instructions. Equivalent amounts of proteins

were loaded. For analysis of phospho- and total STAT5, phospho-

and total S6K, and phospho- and total MAPK, immunoblotting

was carried out as previously described [5].

The following primary antibodies were purchased from Cell

Signaling Technology (Danvers, MA): Anti-phospho-Akt (T308),

anti-phospho-Akt (S473), and anti-Akt. The following primary

antibodies were purchased from Sigma-Aldrich (St Louis, MO):

Anti-tubulin, anti-GSK3b, and anti-phospho-GSK3b. All anti-

bodies were used at 1:1000 dilution, except for anti-tubulin, which

was used at 1:5000. The following primary antibodies (for data

shown in supporting data section) were purchased from Cell

Signaling Technology (Danvers, MA): Phospho-STAT5 (Tyr 694)

(C11C5) (rabbit, #9359), used at 1:500, total STAT5 (rabbit,

#9363), used at 1:1000, phospho-p70 S6K (Thr389) (1A5) (mouse,

#9206), used at 1:300, total p70 S6K (49D7) (rabbit,#2708), used

at 1:1000, phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204)

(rabbit, #9101), used at 1:1000, total p44/42 MAPK (Erk1/2)

(3A7) (mouse, #9107), used at 1:1000. HRP conjugated secondary

antibodies were purchased from Promega and were used at

a dilution of 1:5000.

Drug Combination Studies
For drug combination studies, single agents were added

simultaneously at fixed ratios to mutant FLT3-expressing cells

cultured in the presence of adherent HS-5 stroma, 50–80% SCM,

or RPMI+10% FBS. Cell viability was determined using the

Trypan Blue exclusion assay to quantify cells for cell seeding, and

Cell Titer Glo for proliferation studies. Cell viability was expressed

as the function of growth affected (FA) drug-treated versus control

cells; data were analyzed by Calcusyn software (Biosoft, Ferguson,

MO and Cambridge, UK), using the Chou-Talalay method [18].

The combination index = [D]1 [Dx]1+ [D]2/[Dx]2, where [D]1
and [D]2 are the concentrations required by each drug in

combination to achieve the same effect as concentrations [Dx]1
and [Dx]2 of each drug alone. Values less than one indicate

synergy, whereas values greater than one indicate antagonism.

Calcusyn combination indices can be interpreted as follows: CI

,0.1 indicate very strong synergism; values 0.1–0.3 indicate

strong synergism; values 0.3–0.7 indicate synergism; values 0.7–

0.85 indicate moderate synergism; values 0.85–0.90 indicate slight

synergism; values 0.9–1.1 indicate nearly additive effects; values

1.10–1.20 indicate slight antagonism; values 1.20–1.45 indicate

moderate antagonism; values 1.45–3.3 indicate antagonism; values

3.3–10 indicate strong antagonism; values .10 indicate very

strong antagonism. Note: For some experiments, namely those in

which there was no observed single agent activity due to stromal

protection, combination indices could not be reliably calculated

using the Calcusyn software.

Human Adherent Stroma Validation Experiments
HS-5 human stromal cells (10,000/well) were determined in

a pilot study to be sufficient for maximum cytoprotection of

PKC412-treated MOLM14-luc+ cells (Figure S2). Stromal cells

were seeded 24 hours in advance of seeding MOLM14-luc+ cells

(4000/well), followed by drug treatments. The Bright Glo assay

(Promega, Madison, WI) was performed for co-culture assays to

selectively measure leukemia cell viability and was carried out

according to manufacturer’s instructions.

Results

Chemical Screen Identification of Inhibitors able to
Potentiate Effects of PKC412 against Mutant FLT3-
expressing Cells co-cultured with Adherent Human
Stromal Cells
In the present study, which is a direct and intentional extension

of our previous work [7], we set out to compare the use of SCM

and adherent stroma as the basis for a chemical screen geared

toward identification of drugs capable of overriding drug re-

sistance due to stromal influences. Specifically, we conducted an

unbiased combinatorial screen of 188 compounds comprising the

KIN001 chemical library in an attempt to identify kinase

inhibitors able to synergize with PKC412 against mutant FLT3-

positive cells co-cultured with adherent stroma. Similar to previous

findings using HS-5 SCM [7], three dual Src/Abl inhibitors-

dasatinib, KIN112, and KIN113- were identified as being able to

positively combine with PKC412 against MOLM14-luc+ co-

cultured with adherent HS-5 stroma cells as a replacement for

SCM (Figure S3). In addition to confirming previously published

findings, these results also validate the use of either SCM or

adherent stroma as part of a chemical screen approach to identify

agents able to override drug resistance due to a cytoprotective

microenvironment.

We also identified library-derived inhibitors of major signaling

pathways, including the allosteric Akt inhibitor, KIN001-102, as

able to positively combine with PKC412 against adherent stroma-

protected mutant FLT3-expressing cells (Figure 1A). In order to

validate whether or not Akt as a therapeutic target was important

for the observed higher percentage of killing of stromal-protected

cells when used in combination with PKC412, we tested a panel of

Akt and FLT3 Inhibition for Treatment of AML
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selective Akt inhibitor analogs against MOLM14-luc+ cells under

the same co-culture conditions. Similar to KIN001-102, the

selective Akt inhibitors, AT7867, GSK690693, and MK2206

positively combined with PKC412 against MOLM14-luc+ cells

cultured in either the presence of adherent HS-5 stroma

(Figure 1B, C) or HS-5 SCM (Figure 2), with combination indices

at ED75-ED90 suggestive of synergy (Figures 1 and 2).

To further validate the co-culture model for the combination

drug screen, we investigated the effects of single agents and

combination treatments on adherent stromal cells. This would

establish whether or not stromal cell killing (and hence removal of

the source of protective secreted cytokines) played a role in the

observed synergy between PKC412 and Akt inhibitors. To address

this, selective Akt inhibitors were tested against adherent HS-5

stroma directly. Compared to inhibitor effects against MOLM14-

luc+ cells, inhibitor activity against adherent stroma was consid-

erably weaker (Figure 1B, D). In addition, whereas PKC412

(40 nM) and selective Akt inhibitors (660 nM) were highly effective

alone and combined against Ba/F3 cells expressing mutant FLT3,

the same drugs at the same concentrations displayed little-to-no

appreciable effects against parental Ba/F3 cells and displayed little

activity in the presence of 15% WEHI as a source of IL-3 (Figure

S4). These data, taken together, suggest that drug activity observed

against mutant FLT3-expressing cells is due to on-target effects.

In addition to Akt inhibitors, positive hits from the chemical

library screens also included inhibitors of p38 MAPK inhibitors,

which positively combined with PKC412 against MOLM14-luc+
cells cultured in the presence of adherent HS-5 stroma (Figure S5).

However, the ability of p38 MAPK inhibitors to positively

combine with PKC412 was substantially diminished when mutant

FLT3-expressing cells were cultured in the presence of HS-5 SCM

as opposed to adherent stroma (Figure S5). There exists the

possibility that high levels of stromal-secreted cytokines may

negatively influence the synergizing potential of p38 MAPK

inhibitors with FLT3 inhibitors. Hence, Akt inhibitors may be

superior in terms of their overall combination potential and

general ability to override stromal-mediated drug resistance and

were therefore our main focus in this study.

Figure 1. Selective inhibitors of AKT positively combine with PKC412 in the presence of adherent HS-5 stroma against MOLM14-
luc+ cells. (A) Approximately two-day proliferation study performed with MOLM14-luc+ cells cultured in the presence of adherent HS-5 stroma
testing the combination of PKC412 and KIN001-102 versus each agent alone. (B) MOLM14-luc+ cells cultured in the presence of adherent HS-5 stroma
for approximately two days: PKC412 (40 nM)+/2 Akt inhibitors (660 nM). (C) Approximately two-day PKC412 treatment of MOLM14-luc+ cells
cultured in the absence and presence of human stroma. (D) Approximately two-day treatment of adherent HS-5 stroma: PKC412 (40 nM) +/2 Akt
inhibitors (660 nM). (E) Calcusyn combination indices derived from 4-point concentration proliferation experiments. The cut-off for nearly additive
effects (C.I.: 1.1) is marked by a dashed line.
doi:10.1371/journal.pone.0056473.g001
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FLT3 Inhibitor and Akt Inhibitor Combination Effects on
Cell Cycle Progression and Apoptosis of Stroma-
protected AML Cells
Synergy observed between PKC412 and KIN001-102 against

MOLM14-luc+ cells cultured in the presence of 50% SCM

correlated with induction of apoptosis, as drug combination-

treated cells showed the highest percentages of apoptotic cells

(Table 1). An increase in the G1 population was observed for

MOLM14-luc+ cells cultured for 24 hr in the presence of 50%

SCM and treated with PKC412 alone (approximately 86% of cells

were in G1/G0). Combination treatments led to approximately

89% of cells in G1/G0 (Table 1), which is a comparatively small

increase in percentage. In contrast, compared to PKC412 alone,

combination treatment of MOLM14-luc+ cells for 48 hr resulted

in substantially increased apoptosis (PKC412 alone: 27.1%

apoptosis, versus combination treatments: 41.3%-48.9% apopto-

sis) (Table 1 and Figure S6 Part I and II). Stromal protection was

evidenced by the fact that PKC412 treatment of MOLM14-luc+
cells in RPMI+10% FBS led to 47% viable cells (Table 2 and

Figure S7 Part I and II), whereas PKC412 treatment of

MOLM14-luc+ cells in the presence of SCM led to 71% viable

cells (Table 1 and Figures S6 Part I and II). These results suggest

that induction of apoptosis, more than cell cycle arrest, contributes

to the observed synergy between PKC412 and KIN001-102

against mutant FLT3-expressing cells cultured in a cytoprotective

stromal environment.

Synergy was observed between PKC412 and selective Akt

inhibitors against MOLM14-luc+ cells cultured in the presence of

RPMI+10% FBS (Figure 3). Synergy was also observed between

selective Akt inhibitors and the highly potent and selective FLT3

inhibitor, AC220, against mutant FLT3-positive leukemia cells

cultured in RPMI+10% FBS (Figure 4). The ability of selective Akt

inhibitors to positively combine with FLT3 inhibitors against

mutant FLT3-positive AML cells in the presence of RPMI+10%
FBS correlated well with induction of apoptosis, as the combina-

tion of PKC412 and KIN001-102 showed the highest percentages

of cell killing as compared to single agent effects (Table 2 and

Figure S7 Part I and II). After 48 hrs in RPMI+10% FBS,

however, the combination of PKC412 and KIN001-102 did not

lead to greater G1 arrest than PKC412 alone (40 nM) for

MOLM14-luc+ cells (Table 2).

Synergy between the selective Akt inhibitors and PKC412 was

additionally observed in Ba/F3-FLT3-ITD cells and the two

Figure 2. Selective inhibitors of AKT positively combine with PKC412 in the presence of SCM against MOLM14-luc+ cells. (A–D)
Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with PKC412 in the presence of HS-5 SCM. (E)
Approximately two-day PKC412 treatment of MOLM14-luc+ cells cultured in the absence or presence of HS-5 SCM (n= 2). (F) Calcusyn combination
indices derived from the 4-point concentration proliferation experiments shown in A-D. The cut-off for nearly additive effects (C.I.: 1.1) is marked by
a dashed line.
doi:10.1371/journal.pone.0056473.g002
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mutant FLT3-expressing human cell lines, MOLM13-luc+ and

MV4,11, cultured in the presence of RPMI+10% FBS (Figures 5

and 6, Table 3, Figure S8). Partial protection of PKC412-treated

MOLM13-luc+ cells was observed when cells were cultured in the

presence of HS-5 SCM (Figure 5), and combinations of selective

Akt inhibitors and PKC412 were synergistic against MOLM13-

luc+ cells cultured in the presence of HS-5 SCM (Figure 5,

Table 3).

Table 1. Effects of PKC412 and KIN001-102, alone and combined, on MOLM14-luc+ cell cycle progression (following 24 hours of
treatment) and apoptosis (following 48 hours of treatment) when cells are cultured in the presence of 50% HS-5 SCM.

Cell Cycle Progression Cell Viability

MOLM14-luc+Treatment % G1/G0 % G2M % S % Viable % Apoptotic % Necrotic

DMSO Control 67.95 6.270 25.78 84.70 14.00 1.400

PKC412 (40 nM) 86.24 3.070 10.68 71.00 27.10 2.000

KIN001-102 (165 nM) 71.27 5.090 23.64 81.50 17.30 1.200

KIN001-102 (330 nM) 73.81 4.750 21.44 80.90 17.70 1.400

KIN001-102 (660 nM) 77.79 4.910 17.30 77.80 20.30 2.000

PKC412 (40 nM)+KIN001-102 (165 nM) 88.87 2.980 8.150 57.30 41.30 1.400

PKC412 (40 nM)+ KIN001-102 (330 nM) 89.47 2.310 8.220 52.10 45.70 2.200

PKC412 (40 nM)+ KIN001-102 (660 NM) 89.11 3.880 7.010 47.30 48.90 3.900

Details of the assays used for these studies are provided in the Materials and Methods section.
doi:10.1371/journal.pone.0056473.t001

Figure 3. Selective inhibitors of AKT positively combine with PKC412 in RPMI+10% FBS against MOLM14-luc+ cells. (A–D)
Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with PKC412 in RPMI+10% FBS. (E) Calcusyn
combination indices. The cut-off for nearly additive effects (C.I.: 1.1) is marked by a dashed line.
doi:10.1371/journal.pone.0056473.g003
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Figure 4. Selective inhibitors of AKT positively combine with AC220 in RPMI+10% FBS against MOLM14-luc+ cells. (A–D)
Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with AC220 in RPMI+10% FBS. (E) Calcusyn
combination indices. The cut-off for nearly additive effects (C.I.: 1.1) is marked by a dashed line.
doi:10.1371/journal.pone.0056473.g004

Table 2. Effects of PKC412 and KIN001-102, alone and combined, on MOLM14-luc+ cell cycle progression (following 24 hours of
treatment) and apoptosis (following 48 hours of treatment) when cells are cultured in the presence of RPMI+10% FBS.

Cell Cycle Progression Cell Viability

MOLM14-luc+ Treatment % G1/G0 % G2M % S % Viable % Apoptotic % Necrotic

DMSO Control 56.10 9.320 34.58 92.50 6.900 0.600

PKC412 (40 nM) 86.94 1.50 11.56 46.90 52.70 0.400

KIN001-102 (165 nM) 59.60 7.360 33.04 92.00 7.800 0.300

KIN001-102 (330 nM) 61.03 9.010 29.96 91.80 8.000 0.200

KIN001-102 (660 nM) 61.93 7.030 31.05 90.90 8.800 0.300

PKC412 (40 nM)+KIN001-102
(165 nM)

85.22 3.430 11.35 31.50 68.30 0.200

PKC412 (40 nM)+ KIN001-102
(330 nM)

86.92 2.760 10.32 18.10 81.70 0.100

PKC412 (40 nM)+ KIN001-102
(660 NM)

81.11 3.160 15.73 16.90 82.80 0.300

Details of the assays used for these studies are provided in the Materials and Methods section.
doi:10.1371/journal.pone.0056473.t002
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Phospho-Akt Mediates Synergy Observed between
Allosteric Akt Inhibitor, KIN001-102, and PKC412
In order to verify observed combination effects in terms of

signaling, we examined the phosphorylation status of Akt following

either single agent treatment or combined drug treatment.

Immunoblots demonstrated that pAKT levels were inhibited to

a greater extent in MOLM14-luc+ cells cultured in the presence of

50% HS-5 SCM upon treatment with a combination of KIN001-

102 and PKC412, as compared to either drug alone (Figure 7).

The expression of GSK3b was additionally investigated as GSK3b
is a direct substrate of protein kinase Akt. These results suggest

that Akt activity is critical for maintaining stromal cytoprotection

under these conditions. In contrast to the robust drug combination

effect observed against phospho-Akt (S473) at lower concentra-

tions of KIN102, there was no apparent combination effect

observed between PKC412 (40 nM) and KIN102 (165 nM)

against phospho-S6K for MOLM14-luc+ cells cultured in the

presence of SCM (data not shown).

Similarly, no significant changes were observed in expression of

phosphorylated S6K in MOLM14-luc+ cells cultured in

RPMI+10% FBS and treated for 1 hr with PKC412 (5 nM)+/

2MK2206 (165 nM) (Figure S9). Each agent was tested at

respective concentrations that led to a substantial combination

effect in proliferation studies (Figure 3). PKC412 alone and

PKC412 combined with MK2206 decreased phosphorylation of

STAT5 to similar extents in these cells, and no significant changes

were observed in expression of phosphorylated MAPK between

single agent-treated and drug combination-treated cells (Figure

S9).

Ability of Akt Inhibitors to Potentiate the Activity of
PKC412 or AC220 against Primary AML Patient Cells
Cultured in the Presence of Cytoprotective SCM
In order to validate the stromal cell co-culture screening model,

we tested the lead drugs from the screening on primary AML

patient cells cultured in the presence of cytoprotective HS-5-

derived SCM. Several of these samples were confirmed to express

FLT3-ITD. Combination studies between PKC412 and KIN001-

102, AT7867, MK2206, and GSK690693, respectively, showed

the highest degree of cell killing in combination-treated, SCM-

protected primary AML cells as compared to any single agent (a

representative dose-response experiment for a highly drug-re-

Figure 5. Selective inhibitors of AKT positively combine with PKC412 in the absence and presence of HS-5 SCM against MOLM13-
luc+ cells. (A–B) Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with PKC412 in the presence of
RPMI+10% FBS. (C–D) Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with PKC412 in 80% HS-
5 SCM. (E) Treatment of MOLM13-luc+ cells with PKC412 in either RPMI+10% FBS or 80% HS-5 SCM.
doi:10.1371/journal.pone.0056473.g005
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sistant AML patient sample (#2) is shown in Figure 8A). Analysis

of the combinatorial effect with Calcusyn revealed synergy

(ED75:0.39202, ED90:0.55992) for PKC412+AT7867 against

mutant FLT3-positive AML#2.

Given the multiple targets of PKC412, we investigated the

ability of AC220, which has a very high selectivity index, to

combine with Akt inhibitors. A positive combination effect was

observed between AC220 and selective inhibitors of Akt against

MOLM14-luc+ cells cultured in the presence of HS-5-derived

SCM (Figure 8B). AC220 similarly combined positively with Akt

inhibitors against MOLM14-luc+ cells cultured in RPMI+10%
FBS with combination indices at ED75 and ED90 suggestive of

synergy (Figure 8C).

Selective Akt inhibitors were thus also tested for their ability to

potentiate the effects of AC220, as compared to PKC412, against

primary AML patient cells cultured in the presence of HS-5-

derived SCM. As shown in Figures 8D–F, PKC412 and AC220,

which were tested in parallel, resulted in the highest degree of

patient cell killing when either drug was used in combination with

Akt inhibitors as compared to any single agent against a panel of

primary AML samples. Of note, all drug treatments were

performed in the presence of SCM, which provides cytoprotective

cytokines and dampens inhibitor efficacy.

Discussion

Previous studies of ours suggest that TKI-dependent combina-

tion therapy likely represents a potentially useful approach to

counteracting both intrinsic and stroma-associated drug resistance

in leukemia patients [7,19,20,21]. With the recent discovery of

numerous FLT3 inhibitor-responsive serine/threonine and tyro-

sine phosphorylation sites uncovered in primary AML patient

bone marrow samples [22], identification of protein kinase

inhibitors that are able to enhance the potency of FLT3 inhibitors

makes intuitive sense.

Here, selective inhibitors targeting kinases involved in PI3K/

Akt and Ras/MEK/MAPK signaling were identified in a chemical

screen as synergizing with PKC412 against mutant FLT3-

expressing cells in the presence of adherent stroma. Akt inhibitors

synergized with FLT3 inhibitors in the presence of either SCM or

adherent stroma, as compared to p38 MAPK inhibitors, which

synergized with FLT3 inhibitors only in the presence of adherent

stroma. One possibility for this may be traced to the nature of

Figure 6. Selective inhibitors of AKT positively combine with PKC412 in RPMI+10% FBS against MV4,11 and Ba/F3-FLT3-ITD cells.
(A–C) Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with PKC412 in RPMI+10% FBS against
MV4,11 cells. (D–F) Approximately two-day proliferation studies performed with selective AKT inhibitors in combination with PKC412 in RPMI+10%
FBS against Ba/F3-FLT3-ITD cells.
doi:10.1371/journal.pone.0056473.g006
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stromal protection by SCM, characterized by highly concentrated

levels of stromal-derived cytokines.

Of relevance, studies have implicated Akt- and MAPK-

mediated signaling in stromal enhancement of leukemia cell

viability. For instance, co-culture of leukemia cells and bone

marrow-derived stroma has been shown to lead to activation of the

MAPK/ERK pathway and integrin-linked kinase (ILK), which

phosphorylates Akt [22]. ILK/Akt is likely critical for leukemia cell

survival in bone marrow, and thus inhibitors of ILK have been

proposed as an approach to simultaneously target both leukemia

cells and leukemia-activated stromal cells [23]. Additionally, p38

MAPK activation has been found to play a role in stroma-

dependent survival of B-CLL cells [24] and ALL cells [25].

In addition, continuous FLT3 inhibitor treatment leads to the

development of drug-resistant cells characterized by constitutive

activation of parallel downstream PI3K/Akt and/or Ras/MEK/

MAPK signaling pathways, which is believed to compensate for

the loss of FLT3 activity in terms of survival and growth [26]. In

support of this, constitutive activation of ERK/Akt/STAT

pathways has been observed in AML despite small molecule

inhibition of FLT3-ITD activity, suggesting that optimal treatment

of AML may require FLT3 inhibition combined with inhibition of

additional signaling pathways [27]. Dual inhibition of FLT3 and

Akt-mediated signaling, such as that conferred by the multiple

kinase inhibitor, KP372-1, has indeed been found to inhibit

primary AML cell growth with minimal effect on normal

progenitor cells [28].

Consistent with our results is the finding that Akt, p38MAPK,

and Erk activation correlates with development of resistance of

BCR-ABL-positive acute lymphoblastic leukemia (ALL) to niloti-

nib plus the farnesyltransferase inhibitor lonafarnib [28]. Inhibi-

tors of Akt and Erk combined respectively with nilotinib

diminished resistance. In contrast to our findings, however,

inhibition of p38 MAPK in this study increased TKI (nilotinib)

resistance [29].

Importantly, we observed synergy between selective Akt

inhibitors and FLT3 inhibitors in the absence of stroma as well

as its presence, suggesting that this synergy is not specific to

leukemia cells growing in a cytoprotective microenvironment. Of

significance, there are reports that have been and that are

continuing to be published that support the potential clinical

importance of inhibiting components of major signaling pathways

in combination with TKIs as a way to treat AML.

The identification of Akt and p38 MAPK inhibitors as able to

potentiate the effects of FLT3 inhibitors is at least in part

attributable to the use of the LINCS library to identify

comparatively ‘‘clean’’ kinase inhibitors, in contrast to the

chemical library screened previously [7], which included a number

of multi-kinase inhibitors such as dasatinib. A chemical library

composed of relatively selective inhibitors offers a significant

technical advantage in that it translates into easier elucidation of

mechanism of inhibition by a single agent and synergy between

agents as the drug targets are more well-defined and easier to

validate.

Our in vitro findings with cell lines and primary patient

samples, which closely reflect the genetic heterogeneity amongst

AML patients, warrant further testing and validation in preclinical

models of progressive leukemia and minimal residual disease. In

vivo models that reflect stromal cell interactions, however, are

fairly complex and are beyond the scope of this study. We are

planning to address these questions in future studies.

Table 3. Calcusyn software-derived combination indices.

Drug Combination Cell Line ED25 ED50 ED75 ED90

PKC412+MK2206 Ba/F3-FLT3-
ITD

0.73063 0.71787 0.70932 0.70100

PKC412+AT7867 Ba/F3-FLT3-
ITD

0.62418 0.65624 0.68996 0.72540

PKC412+GSK690693 Ba/F3-FLT3-
ITD

0.64287 0.72479 0.81965 0.92849

PKC412+MK2206
(2-day)

MOLM13 0.54469 0.52206 0.55200 0.71660

PKC412+MK2206
(3-day)

MOLM13 0.15758 0.22911 0.34332 0.55817

PKC412+AT7867
(2-day)

MOLM13 0.95116 1.02639 1.11056 1.20483

PKC412+AT7867
(3-day)

MOLM13 0.76889 0.26391 0.40983 0.64279

PKC412+GSK690693
(2-day)

MOLM13 0.97412 0.29241 0.33779 0.56141

PKC412+GSK690693
(3-day)

MOLM13 1.11399 0.79787 0.62777 0.57590

PKC412+MK2206
(SCM)

MOLM13 0.75681 0.23956 0.26180 0.29207

PKC412+GSK690693
(SCM)

MOLM13 0.91433 0.39599 0.51463 0.72551

PKC412+MK2206 MV4,11 0.84669 0.39562 0.43775 0.76686

PKC412+AT7867 MV4,11 0.45640 0.67869 1.08529 1.84914

Data shown here correspond to dose-response curves shown in Figures 5 and 6
and Figure S8. Interpretation of combination indices is provided in the Materials
and Methods section.
doi:10.1371/journal.pone.0056473.t003

Figure 7. Phospho-Akt mediates synergy observed between
allosteric Akt inhibitor, KIN001-102, and PKC412. Immunoblots
of protein lysates prepared from MOLM14-luc+ cells treated for 2 hours
with PKC412 (40 nM), KIN001-102 (165, 330, 660 nM), or a combination
of the two agents in the presence of 50% SCM. Data shown are
representative of two independent experiments in which similar results
were achieved.
doi:10.1371/journal.pone.0056473.g007
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In conclusion, selective inhibition of kinases such as Akt in

combination with FLT3 inhibitors in mutant FLT3-positive AML

patients may represent a novel approach to improving treatment

effects and patient survival. Findings presented here may provide

novel options for adjunctive therapy.

Supporting Information

Figure S1 Schematic of kinase inhibitor-focused chemi-
cal screen approaches. Stromal-conditioned media (SCM)- or

adherent stroma-based chemical libraries are used to identify

agents that are able to potentiate the effects of FLT3 inhibitors

against mutant FLT3-expressing cells cultured in a cytoprotective

microenvironment.

(TIF)

Figure S2 Co-culture pilot study. Approximately 1500

MOLM14-luc+ cells were tested in a two-day assay in the

presence and absence of HS-5 stroma seeded at 10,000 cells/well,

20,000 cells/well, and 40,000 cells/well.

(TIF)

Figure S3 Coculture chemical screen identification of
KIN001 library compound, dasatinib, and dasatinib-like
compounds, KIN112 and KIN113, as able to synergize
with PKC412 in the presence of adherent HS-5 stroma
against MOLM14-luc+ cells. (A–C) Approximately two-day

assays, validating the combination potential of the KIN001 co-

culture chemical screen identified agents (dasatinib, KIN112,

KIN113) to synergize with PKC412 against MOLM14-luc+ cells

in the presence of adherent HS-5 stroma. Approximately 5000

MOLM14-luc+ cells were seeded/well; approximately

10,000 HS-5 stromal cells were seeded/well. (D) PKC412

Figure 8. Ability of Akt inhibitors to positively combine with PKC412 or AC220 against AML patient samples in the presence of
cytoprotective SCM. (A) Approximately two-day proliferation study performed with a selective Akt inhibitor in combination with PKC412 in the
presence of HS-5 SCM against mutant FLT3-positive AML#2. (B) Approximately two-day combination studies: AC220 (0.4 nM) +/2 selective AKT
inhibitors (660 nM) against MOLM14-luc+ cells in the presence of 50% HS-5 SCM. (C) Approximately two-day combination studies: AC220 (0.4 nM) +/
2 selective AKT inhibitors (660 nM) against MOLM14-luc+ cells in the presence of RPMI+10% FBS. (D) Approximately two-day combination studies:
PKC412 (40 nM)+/2 selective AKT inhibitors (660 nM) against primary AML patient cells in the presence of 50% HS-5 SCM. (E) Approximately two-day
combination studies: AC220 (0.4 nM) +/2 selective AKT inhibitors (660 nM) against primary AML patient cells in the presence of 50% SCM. (F) Ability
of Akt inhibitors to positively combine with PKC412 or AC220 against primary AML cells in the presence of cytoprotective SCM. Patient information is
provided in Table S1.
doi:10.1371/journal.pone.0056473.g008
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treatment of MOLM14-luc+ cells cultured in the absence or

presence of adherent HS-5 stroma (n= 2). (E) Calcusyn combina-

tion indices. The cut-off for nearly additive effects (C.I.: 1.1) is

marked by a dashed line.

(TIF)

Figure S4 Treatment of parental Ba/F3 cells and Ba/
F3-FLT3-ITD cells with PKC412, alone and in combina-
tion with selective inhibitors of Akt. (A) Approximately

three-day drug treatment of parental Ba/F3 cells cultured in the

presence of IL-3 and Ba/F3-FLT3-ITD cells cultured in the

absence of IL-3. (B) Approximately three-day drug treatment of

Ba/F3-FLT3-ITD cells cultured in the presence of IL-3. PKC412

was used at 40 nM and selective AKT inhibitors were each used at

660 nM.

(TIF)

Figure S5 Selective inhibitors of p38 MAPK positively
combine with PKC412 against MOLM14-luc+ cells
cultured in the presence of adherent HS-5 stroma,
however not HS-5 SCM. Calcusyn combination indices. The

cut-off for nearly additive effects (C.I.: 1.1) is marked by a dashed

line.

(TIF)

Figure S6 Part 1. Annexin/pi staining corresponding to data

shown in Table 1: Effects of PKC412 (40 nM) and KIN001-102

(165, 330, 660 nM), alone and combined, on MOLM14-luc+ cell

apoptosis (following 48 hours of treatment) when cells are cultured

in the presence of 50% HS-5 SCM. Cells labeled ‘‘dying’’ are in

early apoptotic phase, and cells labeled ‘‘apoptotic’’ are in late

apoptotic phase. Part 2. Quantitative values corresponding to

data shown in Figure S6 (part 1): Effects of PKC412 (40 nM) and

KIN001-102 (165, 330, 660 nM), alone and combined, on

MOLM14-luc+ cell apoptosis (following 48 hours of treatment)

when cells are cultured in the presence of 50% HS-5 SCM. Cells

labeled ‘‘dying’’ are in early apoptotic phase, and cells labeled

‘‘apoptotic’’ are in late apoptotic phase.

(DOC)

Figure S7 Part 1. Annexin/pi staining corresponding to data

shown in Table 2: Effects of PKC412 (40 nM) and KIN001-102

(165, 330, 660 nM), alone and combined, on MOLM14-luc+ cell

apoptosis (following 48 hours of treatment) when cells are cultured

in the presence of RPMI+10% FBS. Cells labeled ‘‘dying’’ are in

early apoptotic phase, and cells labeled ‘‘apoptotic’’ are in late

apoptotic phase. Part 2. Quantitative values corresponding to

data shown in Figure S7 (part 1): Effects of PKC412 (40 nM) and

KIN001-102 (165, 330, 660 nM), alone and combined, on

MOLM14-luc+ cell apoptosis (following 48 hours of treatment)

when cells are cultured in the presence of RPMI+10% FBS. Cells

labeled ‘‘dying’’ are in early apoptotic phase, and cells labeled

‘‘apoptotic’’ are in late apoptotic phase.

(DOC)

Figure S8 Selective inhibitors of AKT positively com-
bine with PKC412 in RPMI+10% FBS against MOLM13-
luc+ cells. (A–C) Approximately three-day proliferation studies

performed with selective AKT inhibitors in combination with

PKC412 in RPMI+10% FBS against MOLM13-luc+ cells.

(TIF)

Figure S9 Investigation of phosphorylation of signaling
molecules downstream of FLT3. Immunoblots of protein

lysates prepared from MOLM14-luc+ cells treated for 1 hour with

PKC412 (5 nM), MK2206 (165 nM), or a combination of the two

agents in RPMI+10% FBS.

(TIF)

Table S1 Patient sample information. Patients shown here

were cultured in the presence of 50% HS-5 SCM, and treated

with different combinations of kinase inhibitors. *Patient in-

formation for AML patients 2 and 7 has been previously published

(Weisberg et al, 2012a, Leukemia).

(DOC)

Table S2 Selective AKT and p38 MAPK inhibitors. *Hirai

H, Soontome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K

et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor

efficacy by standard chemotherapeutic agents or molecular

targeted drugs in vitro and in vivo. Mol Cancer Ther

2010;9:1956-67. **Levy DS, Kahana JA, Kumar R. AKT

inhibitor, GSK690693, induces growth inhibition and apoptosis

in acute lymphoblastic leukemia cell lines. Blood 2009;113:1723-9.

***Grimshaw KM, Hunter LJ, Yap TA, Heaton SP, Walton MI,

Woodhead SJ, et al. AT7867 is a potent and oral inhibitor of AKT

and p70 S6 kinase that induces pharmacodynamic changes and

inhibits human tumor xenograft growth. Mol Cancer Ther

2010;9:1100-10.

(DOC)
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