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ABSTRACT

Alterations in cancer genomes strongly influence
clinical responses to treatment and in many
instances are potent biomarkers for response to
drugs. The Genomics of Drug Sensitivity in Cancer
(GDSC) database (www.cancerRxgene.org) is the
largest public resource for information on drug
sensitivity in cancer cells and molecular markers
of drug response. Data are freely available without
restriction. GDSC currently contains drug sensitivity
data for almost 75 000 experiments, describing
response to 138 anticancer drugs across almost
700 cancer cell lines. To identify molecular
markers of drug response, cell line drug sensitivity
data are integrated with large genomic datasets
obtained from the Catalogue of Somatic Mutations
in Cancer database, including information on
somatic mutations in cancer genes, gene
amplification and deletion, tissue type and tran-
scriptional data. Analysis of GDSC data is through
a web portal focused on identifying molecular bio-
markers of drug sensitivity based on queries of
specific anticancer drugs or cancer genes.
Graphical representations of the data are used
throughout with links to related resources and
all datasets are fully downloadable. GDSC provides
a unique resource incorporating large drug
sensitivity and genomic datasets to facilitate the
discovery of new therapeutic biomarkers for cancer
therapies.

INTRODUCTION

There is compelling evidence that alterations in cancer
genomes can strongly influence clinical responses to
anticancer therapies. Indeed, there are now several
examples where genomic changes can be used as molecular
biomarkers to identify patients most likely to benefit from
a treatment. For example, the use of drugs to target the
protein product of the BCR–ABL translocation in chronic
myeloid leukemia, or the BRAF gene in malignant
melanoma, has transformed the treatment of these
diseases and substantially improved survival rates (1,2).
Despite these notable successes, many cancer drugs in
use or development have not been linked to specific
genomic markers that could direct their clinical use to
maximize patient benefit. Moreover, even among appro-
priately selected patients, a poorly explained range of
clinical responses is observed (2,3). Thus, there exists a
need for the development of new and improved bio-
markers to guide therapies and ultimately improve
clinical responses.
Recent years have seen significant advances in our

understanding of the molecular nature of cancer (4).
This has been driven in part by advances in high-
throughput technologies and, in particular, DNA
sequencing technologies that allow us to sequence on a
scale that was previously unthinkable. In the near
future, sequencing efforts will provide a complete descrip-
tion of the genomic changes that occur in many cancer
subtypes. A complete list of the repertoire of cancer
genes will provide profound insights into the origins, evo-
lution and progression of cancer and will act as an impetus
for the development of new cancer therapies.
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To exploit this increased understanding, preclinical
studies that link the genomic complexity of cancer with
functional readouts such as drug sensitivity are required.
Cancer cell lines derived from naturally occurring tumours
have been generated from many different cancer types and
in many respects recapitulate the tissue type and genomic
context of cancer. They are a facile system for experimen-
tal manipulation and are a standard research tool in mo-
lecular biology and drug discovery. Significantly, several
studies have used cancer cell lines to link pharmacological
data with genomic information and helped define thera-
peutic biomarkers (5–7). Collectively, these studies have
demonstrated that pharmacogenomic profiling in cancer
cell lines can be used as a biomarker discovery platform to
guide the development of new cancer therapies.
The Genomics of Drug Sensitivity in Cancer (GDSC)

database (www.cancerRxgene.org) is designed to facilitate
an increased understanding of the molecular features that
influence drug response in cancer cells and which will
enable the design of improved cancer therapies. GDSC
holds and annotates large datasets on drug sensitivity in
cancer cells and links these data to detailed genomic in-
formation to facilitate the discovery of molecular bio-
markers of drug response. The website is designed to
provide straightforward access to querying the database,
and interactive graphical interfaces are used throughout to
provide readily interpretable summaries of data and
analyses.

DATABASE CONTENT

The GDSC database is based on three types of datasets as
described in the following sections.

Cell line drug sensitivity data

Cancer cell line drug sensitivity data are generated from
ongoing high-throughput screening performed by the
Cancer Genome Project at the Wellcome Trust Sanger
Institute (WTSI) and the Center for Molecular
Therapeutics at Massachusetts General Hospital using a
collection of >1000 cell lines (7). Compounds selected for
screening are anticancer therapeutics encompassing both
targeted agents and cytotoxic chemotherapeutics. They
are comprised of approved drugs used in the clinic,
drugs undergoing clinical development and in clinical
trials and tool compounds in early phase development.
They cover a wide range of targets and processes
implicated in cancer biology including receptor tyrosine
kinase signalling, cell cycle control, DNA damage
response and the cytoskeleton. Compounds are sourced
from commercial vendors or provided by collaborators
in academia, biotech and the pharmaceutical industry.
Cell line drug sensitivity is measured using fluorescence-

based cell viability assays following 72 h of drug treat-
ment. Dose–response curves are fitted to fluorescence
signal intensities over nine drug concentrations (2-fold
dilution series) to derive a multi-parameter signature of
drug response. Values reported on the website include
the half maximal inhibitory concentration (IC50), the

slope of the dose–response curve and the area under the
curve for each experiment.

The current release of GDSC (release 2, July 2012)
includes drug sensitivity data for 138 anticancer com-
pounds screened across a range of 329–668 cell lines per
drug (mean=525 cell lines per drug) representing 73 169
cell line–drug interactions. This is the largest public
resource available on drug sensitivity in cancer cells.
Screening is ongoing and the objective is to screen these
compounds, as well as additional compounds in the
future, across the entire collection of >1000 cell lines.
Data release occurs every 4 months and with each
release, these results are updated with new data for
existing drugs, as well as data for newly screened drugs.

Genomic datasets for cell lines

The total collection available for screening includes >1000
different cancer cell lines. These have been selected to rep-
resent the spectrum of common and rare types of adult
and childhood cancers of epithelial, mesenchymal and
haematopoietic origin. The cell lines have been extensively
genomically characterized as part of the cancer cell line
project from the Cancer Genome Project at the WTSI.
The genomic datasets currently available for each cell
line include information on somatic mutations in 75
cancer genes, genome wide gene copy number for ampli-
fication and deletion, targeted screening for seven gene
rearrangements, markers of microsatellite instability,
tissue type and transcriptional data. Using various statis-
tical approaches as described below, genomic datasets are
used together with drug sensitivity data for each cell line
to identify genomic biomarkers of drug response.
Genomic datasets within GDSC are obtained and
updated directly from the Catalogue of Somatic
Mutations in Cancer (COSMIC) database, a comprehen-
sive freely available resource for the annotation and pres-
entation of somatic mutations in cancer (8).

Analysis of genomic features of drug sensitivity

An essential component of the GDSC database is the sys-
tematic integration of large-scale genomic and drug sensi-
tivity datasets. To identify genomic markers of drug
response, we currently use two complementary analytical
approaches (7). A multivariate analysis of variance
(MANOVA) is used to correlate drug sensitivity (IC50

values and slope of the dose–response curve) with
genomic alterations in cancer including point mutations,
amplifications and deletions of common cancer genes,
cancer gene rearrangements and microsatellite instability.
The MANOVA identifies individual genomic features
associated with drug sensitivity and for each drug–gene
association reports a size effect and statistical significance
of the association.

We also apply elastic net regression, a penalized linear
modelling technique, to identify multiple interacting
genomic features influencing each drug response.
Genomic data used in the elastic net analysis include all
of those used in the MANOVA and also incorporate
genome-wide transcriptional profiles and tissue type. The
elastic net selects which of these features are associated
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with drug response as measured by IC50 values across the
cell line panel. For each drug, a feature list is built
comprised of mutations, transcripts and tissue with an
effect size assigned to each.

A more detailed description of the different
statistical analyses performed, as well as guidance on in-
terpreting the results, can be found on the ‘Help &
Documentation’ webpages under the ‘statistical analysis’
tab.

DATA ACCESS

Querying the GDSC database

The website is focused on presenting cell line drug sensi-
tivity data and genomic correlates of drug sensitivity.
Although data on the genomic characterization of the
cell lines are available through the GDSC website, these
data are presented in more detail within the COSMIC
database.

To facilitate data interpretation, graphical representa-
tions with interactive features are used wherever possible.
Querying the database is primarily based on either specific
screening ‘Compounds’ or ‘Cancer Genes’ in the ‘Browse
our data’ section of the homepage (Figure 1). Browsing by
‘Compounds’ displays a list of drug names together with
their associated synonyms, putative therapeutic target(s),
the number of cell lines screened for each drug (sample
size) and date of the most recent data update for each
compound. A link to the PUBCHEM database of
chemical structures is provided (9). By clicking a specific
drug name, users enter the individual drug page where
drug sensitivity and genomic correlation data are
presented.

Similarly, browsing ‘Cancer Genes’ leads to a list of
cancer genes identified by their HUGO name. This page
provides direct links to the COSMIC page for the gene

and to the UniProt databases for further protein informa-
tion (10). Clicking on the gene name accesses the drug
sensitivity and genomic correlation data on the individual
gene page.
It is also possible to query the database using a ‘Search’

function (Figure 1). The ‘Search’ box accepts queries
based on compound (including synonyms), cancer gene
or cell line name. An auto-completion feature enables
users to quickly select their drug, gene or cell line of
interest. The search result page lists matching compounds,
cancer genes or cell lines with links to the detailed drug/
gene page of the website. In the case of cell line matches,
links are provided to detailed cell line information within
COSMIC.

Data analysis and visualization

Screening data and genomic correlations are accessed
through specific drug or gene pages (Figures 2a and 3).
The top panel provides drug or gene information and links
to PUBCHEM, COSMIC and UniProt databases as
appropriate. Notably, the top panel also provides links
to relevant help pages to explain the data and analyses
performed. Additional information is also available from
the ‘Help & Documentation’ link found in the header at
the top of all pages. The actual screening data and
analyses are presented in the bottom panel of a drug/
gene page and are split into the following tabs: Volcano
plot, Volcano data, Elastic net (drug pages only), Scatter
plots and Download data.
A volcano plot is used to visualize the correlation of

drug sensitivity data with genetic events as calculated
using the MANOVA. The drug page shows a drug-specific
volcano plot, which represents how different genomic
changes influence response to a specific drug (Figure 2a).
The gene page shows a gene-specific volcano plot, which
represents the effect of a mutated cancer gene on the re-
sponses to all drugs analysed (Figure 3). For example, the

Compounds   Cancer genes Search 

(M)ANOVA data 
Volcano plot 
Volcano data 

Elastic net 
EN heatmap 

IC50 Scatter 
plots 

Querying the database 

Data analysis 

Downloads 

Genomics 
(e.g. mutations,  
copy number) 

Drug 
sensitivity 

(e.g. IC50, AUC) 
 

Statistical 
analyses 

MANOVA 
Elastic net 

Data  archive 

Data downloads 

Figure 1. A schematic representation of the GDSC database structure and content. Data are accessed in a hierarchical fashion by either querying by
screening compound or cancer gene of interest. This gives access to graphical representations of cell line drug sensitivity data and genomic correl-
ations of drug response in multiple formats through either drug- or gene-specific pages. All data are freely available for download either through
gene- or drug-specific pages, or as a whole through the download page.
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drug-specific volcano plot for the BRAF-inhibitor
PLX4720 shows that mutations in the gene BRAF are sig-
nificantly associated with sensitivity to this compound
(Figure 2a). Conversely, the gene-specific volcano plot
for BRAF shows that mutations in this gene are associated
with sensitivity to multiple drugs including several

different BRAF inhibitors (i.e. PLX4720, SB590885 and
AZ628) (Figure 3). In both cases, the x-axis represents the
magnitude of the effect of a gene–drug interaction on IC50

values across the cell lines screened and the y-axis is the
significance of the interaction (P-value). By hovering over
each circle, the following information is provided: genetic

Figure 2. Querying the GDSC database by compound name. Drug-specific pages demonstrate the effect of genomic features on cell line sensitivity to
a particular drug. In this example, we show the effect of genomic features on sensitivity to the BRAF-inhibitor PLX4720. (a) A volcano plot
representation of MANOVA results showing the magnitude (x-axis) and significance (P-value, log scale on inverted axis) for each cancer gene
association. Each circle represents a single drug–gene interaction and the size is proportional to the number of mutant cell lines screened for each
drug. For clarity, the y-axis is capped at P=1� 10�8 and a plus sign (+) next to a circle indicates that the P-value is smaller than this threshold. The
dashed red line represents a Benjamini–Hochberg multiple testing correction for significance and only significant associations are coloured either
green for drug sensitivity or red for resistance. (b) Elastic net analysis of genomic features associated with sensitivity to PLX4720. Features with
negative effect size are associated with drug sensitivity and features with positive effect size are associated with drug resistance (all features are
negative in this example). Mutation and tissue features are at the top of the heatmap to represent the presence (black) or absence (grey) of a
mutation/tissue subtype. Below this are gene expression and copy number features with blue corresponding to lower expression or copy number, and
red to indicate higher expression or copy number.

D958 Nucleic Acids Research, 2013, Vol. 41, Database issue



event sample size (i.e. the number of cell lines screened
with a specific mutation), effect size and P-value. By
clicking on an individual circle, it is possible to link to a
scatter plot of cell line IC50 values for this association (see
below). The volcano data tab represents the volcano plot
data as a sortable table. Three buttons at the top of the
table allow the download of the table in .csv, .tab or .xlsx
file format.

Similarly, the elastic net tab contains a graphical repre-
sentation of results from the elastic net analysis of drug
sensitivity (Figure 2b). For effective visualization, a
maximum of 10 significant features associated with drug
response are shown. These may include tissue type, muta-
tions in cancer genes, expression levels and gene copy
number. Each graphic contains three elements: a bar
plot of effect size for significant features (right-hand
side), a heatmap of genomic features (central panel) and
a second heatmap of IC50 values for the 20 least and most
sensitive cell lines (bottom). For example, the elastic net
analysis for BRAF-inhibitor PLX4720 identified muta-
tions in the BRAF gene, the tissue-type skin, as well as
several transcriptional features (BCL2A1, GYPC and
DAAM2) as associated with drug sensitivity (Figure 2b).
Unlike the MANOVA analysis, gene-specific correlations
for the elastic net analysis are not represented since the
EN describes how multiple genes affect drug sensitivity
together.

The ‘Scatter plots’ tab shows a plot of cell line IC50

values to a drug. IC50 values are split into two populations
according to a cell lines mutational status for a given gene
that is significantly associated with the drug response
(Figure 4). In the example provided, cell lines with a

BRAF mutation are on average more sensitive to
PLX4720 compared with BRAF wild-type cell lines
(Figure 4). The table in the middle shows the statistics
for the plot including sample size, and the mean and
median IC50 values for the two populations (mutated or
wild type). Additional functionality includes the ability of
users to select which drugs (or genes from the drug-specific
pages) to plot. It is possible to link directly to relevant
scatter plots by clicking on circles within the volcano
plot pages. Furthermore, by clicking on circles within
scatter plots, cell line IC50 values are directly linked to
the COSMIC database facilitating integration of drug sen-
sitivity data with detailed cell line information such a
tissue type, tumour histology and a description of cell
line origin and genotype.

Download data

As the emphasis of the website is on the graphical repre-
sentation of data both the volcano and scatter plots are
downloadable as either .png or .svg files. In addition, the
raw data are available to download in either .csv or .xlsx
format. As described below, it is possible to download the
data for a specific drug or gene on their associated pages,
or to download the data from all of our analyses in a series
of large spreadsheets.
On the drug page for a specific compound, the available

downloads include (i) sensitivity data for the drug (a table
of cell line IC50 values); (ii) genomic alterations in cell
lines; (iii) genomic correlations with MANOVA and (iv)
elastic net analysis of drug sensitivity. On a gene page a
single data download is available, containing the

Figure 3. Querying the GDSC database by cancer gene. Gene-specific pages show how a cancer gene mutation affects response to many drugs.
A volcano plot representation shows results of the MANOVA analysis for drug sensitivity associated with BRAF mutations.
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MANOVA correlation for how a gene correlates with
drug response across the entire panel of compounds.
Rather than downloading drug- or gene-specific data,

drug sensitivity and genomic datasets can also be directly
downloaded as a whole through the ‘Downloads’ page.
This can be directly accessed from the header on each
page. Downloadable files include (i) cell line tissue type,
drug sensitivity and genomic data used for the MANOVA;
(ii) the MANOVA results for all compounds; (iii) A
tissue-specific ANOVA to examine the effect of tissue
type on drug response; (iv) the elastic net results for all
compounds; (v) cell line genomic and transcriptional data
used for elastic net analysis and (vi) a continuously
updated list of cancer cell lines in our collection. Please
note that some of these files contain a large number of
columns and data will be lost if files are opened in Excel
2003 or earlier versions because the worksheet size is
limited to 256 columns. The ‘Downloads’ page also
provides access to archive files of previous data releases.

FUTURE WORK

The GDSC database will expand significantly in coming
years as the size and complexity of datasets increase. The
database currently contains data for �75 000 experiments
across 138 drugs and the amount of drug sensitivity data is
expected to increase in size 2–3-fold within the next 2 years
and even further in the future. This will include drug sen-
sitivity data for many new cell lines to bring the total
number to >1000 lines, and the inclusion of data

for hundreds of newly screened anticancer drugs.
Collectively, this will expand the number of different
cancer subtypes and genotypes represented within the
cell line collection, as well as the number of different
drug targets interrogated by screening compounds.

Additional developments will see the further genomic
characterization of the cell line collection to increase its
utility as a resource. Notably, this will include whole-
exome sequencing of all �22 000 coding genes across the
entire collection. Whole genome SNP6.0 copy number
data currently include �750 cell lines and this will be
expanded to include the entire cell line collection.
Similarly, basal transcriptional data are currently being
updated to include the entire cell line collection using
the latest Affymetrix human genome U219 mRNA expres-
sion array. These new genomic datasets, together with our
expanding drug sensitivity datasets, will be incorporated
into our analytical models to enhance our ability to
identify therapeutic biomarkers predictive of drug
response.

Large numbers of primary tumours across different can-
cer types are being extensively genomically characterized
by systematic efforts such as the International Cancer
Genomics Consortium. This will give us profound
insights into the molecular taxonomy of cancer and, for
the first time, enable us to directly assess the genomic
similarity of our cell line models to primary tumours.
Based on these comparisons, we will refine and expand
the cell line collection to ensure that they are as represen-
tative as possible of primary tumours. Similarly, it is

Figure 4. Scatter plot of cell line IC50 values and the effect of a cancer mutation. A scatter plot of cell line IC50 values for BRAF-mutated versus
wild-type cell lines following drugging with PLX4720. Each circle represents the IC50 value for an individual cell line plotted on a logarithmic scale
and the red line is the geometric mean of the population. Cell lines are colour coded to indicate whether the mutation is a coding mutation detected
by sequencing, or an amplification or deletion detected by copy number analysis. The lower and upper brown lines indicate the minimum and
maximum concentration in micro-molar of drug used for screening. Super-imposed on the scatter plot is a box-and-whisker plot showing the median,
interquartile ranges and max and min for each plot. The central panel contains statistics for the plot and the right-hand table allows users to select
which drug data to plot.
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increasingly clear that patient responses to therapy can be
highly variable even within pre-selected populations. We
intend to systematically interrogate mechanisms of intrin-
sic resistance to clinical drugs by enriching the cell line
collection with suitable in vitro models. An additional de-
velopment will be an increased emphasis on drug sensitiv-
ity screening of low passage primary cultures derived from
patient tumours. Collectively, these developments should
further enhance our ability to model drug response and
help address the fundamental question of intrinsic resist-
ance to clinical cancer drugs.

The expansion of the database will likely require the
development of new analytical tools to identify genomic
biomarkers of drug response. This will involve the devel-
opment of new statistical methods to interrogate the data
and is likely to include the incorporation of pathway and
tissue-based analyses of drug sensitivity. Similarly, the
expansion will require new tools for mining and
visualizing increasingly sophisticated and complex
analyses.

DISCUSSION

Here, we have presented the GDSC database as a new
resource for therapeutic biomarker discovery in cancer
cells. Key features of the database include the largest
resource of cell line anticancer drug sensitivity data
publically available. In addition, the GDSC database in-
tegrates large genomic datasets with drug sensitivity infor-
mation to identify putative therapeutic biomarkers for
further preclinical validation. These data are presented
using simple graphical representations and all data are
freely available for download. The GDSC database will
undergo significant expansion in coming years as drug
sensitivity and genomic datasets increase in size and
complexity.

The ultimate aim of the GDSC database is to facilitate
the development of new cancer therapies through the pre-
clinical identification of therapeutic biomarkers. The
current approach to development of new cancer therapies
is difficult, costly and time-consuming. For example, the
time taken to develop a new drug is often >10 years and
costs frequently exceed 1 billion US dollars. Moreover,
despite this substantial investment, the level of attrition
is very high with the majority of new drugs failing
during clinical trials (estimated to be between an 80–
95% failure rate) due to lack of efficacy or unacceptable
toxicity (11). The preclinical identification of therapeutic
biomarkers could significantly improve the design and
ultimate success of clinical trials by permitting smaller,
quicker and less costly trials in molecularly stratified
patient populations most likely to benefit from
treatment. By facilitating the preclinical identification of
putative therapeutic biomarkers, the GDSC database is a
valuable resource to enable the development of new ra-
tionally designed cancer therapeutic strategies incor-
porating molecular biomarkers.
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