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Abstract

Imputation has been widely used in genome-wide association studies (GWAS) to infer genotypes of un-genotyped variants
based on the linkage disequilibrium in external reference panels such as the HapMap and 1000 Genomes. However,
imputation has only rarely been performed based on family relationships to infer genotypes of un-genotyped individuals.
Using 8998 Framingham Heart Study (FHS) participants genotyped with Affymetrix 550K SNPs, we imputed genotypes of
same set of SNPs for additional 3121 participants, most of whom were never genotyped due to lack of DNA sample. Prior to
imputation, 122 pedigrees were too large to be handled by the imputation software Merlin. Therefore, we developed a
novel pedigree splitting algorithm that can maximize the number of genotyped relatives for imputing each un-genotyped
individual, while keeping new sub-pedigrees under a pre-specified size. In GWAS of four phenotypes available in FHS
(Alzheimer disease, circulating levels of fibrinogen, high-density lipoprotein cholesterol, and uric acid), we compared results
using genotyped individuals only with results using both genotyped and imputed individuals. We studied the impact of
applying different imputation quality filtering thresholds on the association results and did not found a universal threshold
that always resulted in a more significant p-value for previously identified loci. However most of these loci had a lower p-
value when we only included imputed genotypes with with $60% SNP- and $50% person-specific imputation certainty. In
summary, we developed a novel algorithm for splitting large pedigrees for imputation and found a plausible imputation
quality filtering threshold based on FHS. Further examination may be required to generalize this threshold to other studies.
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Introduction

There are two main types of genotypic imputation for GWAS

[1]. One type uses frequency and linkage disequilibrium (LD)

information of a reference panel such as HapMap or 1000

Genome Project to impute the genotypes of genetic variants not

included in the existing genome-wide genotyping. In the past few

years, LD-based genotype imputation has been widely applied to

GWAS that detected genetic associations for many complex

human traits. Between November 2008 and January 2012, there

were 252 publications that detected 2461 loci by using imputed

genotype data according to the GWAS catalog (http://www.

genome.gov/gwastudies).

The other type uses identity-by-descent (IBD) information in

families to impute genotypes of un-genotyped individuals using the

genotypes of their relatives. However, IBD-based genotype

imputation has not frequently been applied to GWAS with family

data. When phenotyped individuals exist who were not genotyped

– perhaps due to limited genotyping resources or lack of a DNA

sample – or poorly genotyped due to genotyping failure, poor
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quality DNA, or other reasons, IBD-based genotype imputation

can be used to impute genotypes of these individuals and thereby

increase sample size that potentially leads to better statistical

power for genetic association studies.

Chen and Abecasis [2] developed an IBD-based imputation

algorithm for GWAS, based on the Lander-Green [3] and Elston-

Stewart [4] algorithms, which was implemented in their software

package Merlin (http://www.sph.umich.edu/csg/abecasis/

Merlin/) [5]. Based on 90 parents and grandparents of the Centre

d’Etude du Polymorphisme Human pedigrees who were geno-

typed with 864360 single nucleotide polymorphisms (SNPs), they

imputed the same set of SNPs for 78 offspring who were only

genotyped with sparse genotypes (6728 SNPs). They observed an

increase in power to detect association by including the imputed

samples. Scuteri A. et al. [6] is another application of IBD-based

imputation. Yet, the usefulness of IBD-based imputation has not

been evaluated in studies with complex family relationships and

with some individuals lacking any genotypes.

In the present investigation, we apply and evaluate the IBD-

based imputation in the FHS that has recruited multiple

generations of participants since 1948. The FHS sample consists

of 14428 participants from 1538 pedigrees. Only 9274 have

genotypes (Affymetrix 550K SNPs) and are part of the SNP Health

Association Resource (SHARe). Among the rest, we imputed

genotypes for those who have at least one genotyped relative using

IBD-based imputation [2]. One challenge is that some large

pedigrees exceed the computational limit of the software Merlin.

Therefore, we propose a novel algorithm that uses kinship

coefficients for splitting and trimming each large pedigree into

multiple smaller sub-pedigrees and that can optimize the number

of genotyped relatives for each un-genotyped individual in the sub-

pedigrees.

After imputation, we evaluated how different imputation-quality

filtering measures affected the results of GWAS with top SNPs for

several phenotypes including Alzheimer disease, circulating levels

of fibrinogen, high-density lipoprotein cholesterol (HDL) and uric

acid. Using plausible imputation-quality thresholds, we conduct

GWAS using the sample consisting of both genotyped and

imputed individuals and compare with the GWAS results using

genotyped individuals only.

Results

Splitting and Trimming Pedigrees
After splitting and trimming 122 pedigrees with bit size [7] (bit

size = 2 * # non-founders – # founders – # un-genotyped

founder couples) over 20, we obtained 629 sub-pedigrees. In the

122 pedigrees, there were 1187 un- or poorly- genotyped

individuals with total 3068, 5405, and 3412, first, second, and

third degree well-genotyped (call rate greater than 90% and

heterozygous rate within +/25 standard deviation range from

mean) relatives, respectively. Poorly-genotyped individual is then

defined as an individual with call rate not greater than 90% and

heterozygous rate outside +/25 standard deviation range from

mean. In the 629 sub-pedigrees, 3060 (99.7%), 4431 (82.0%) and

1767 (51.8%) of the first, second, and third degree well-genotyped

relatives, respectively, are retained.

Genotype Imputation
Figure 1 presents the box plots of average imputation

certainty, the maximum of the posterior genotype probabilities

of imputed genotypes, across all SNPs for the overall 3121

imputed individuals and the imputed 1187 individuals. Overall,

the mean imputation certainty was 79.6% with standard deviation

(SD) 9.9%. Among the overall imputed sample, the Third

Generation sample had higher mean imputation certainty 86.8%

and lower SD (6.1%) than the other cohorts. When comparing the

imputation certainty from the all imputed sample to the 1187

sample in split sub-pedigrees, the sub-pedigree sample had a

higher mean certainty 83.7% and smaller SD 7.9%. Similarly, for

each generation, the mean generational imputation certainty in

the 1187 sample is higher than the 3121 sample. Figure 2
presents the mean imputation certainty plotted against minor

allele frequency (MAF). As expected, the imputation certainty

decreased as the MAF increased, because when the MAF is low,

most individuals are expected to carry the major allele homozy-

gote, which translates to a high posterior probability for the major

allele homozygote.

Figure 3 presents the scatter plot of MAF in the filtered

(person_specific imputation certainty greater than 50%) imputed

sample (Y axis) against MAF in well-genotyped sample (X axis),

where a cell represents the number of SNPs with MAFs that fall in

that cell. When the number of SNPs in a cell increases, the color of

the cell gets darker. Generally, data points are close to the 45

degree line. Among 403640 imputed SNPs, there are 23 and 368

SNPs with MAF difference (maximum 0.218) greater than 0.1 and

0.05, respectively, between well-genotyped and filtered imputed

samples.

GWAS with Genotyped Individuals
We first performed GWAS of Alzheimer disease, fibrinogen,

HDL and uric acid including the 8998 well-genotyped individuals

only. After filtering out SNPs with call rate less than 90%, HWE p-

value less than 1026 and MAF less than 0.05, we identified 8

independent loci (either on different chromosomes or at least

6:6|107 bps away from each other) using a genome-wide

significance threshold of 1.2561027 (Bonferroni correction of

403640 SNPs). In addition, the locus close to LIPC on

chromosome 15 for HDL – which did not reach genome-wide

significance – was included because it reached genome-wide

significance in the GWAS incorporating imputed individuals. The

results for 9 selected loci are presented in Table 1.

Evaluate the Effects of Different Imputation Certainty
Thresholds on GWAS Top Hits

Using GWAS top SNPs as positive controls, we evaluate how

the association results change with various thresholds for person-

specific certainty and SNP-specific certainty used to incorporate

genotypes of imputed individuals with that of genotyped individ-

uals. Figures S1, S2, S3, S4 present the results (-log10 p-value)

for Alzheimer disease, fibrinogen, HDL and uric acid. In each

plot, the horizontal line presents the results from GWAS using

genotyped individuals only. P-values from combined sample are

more significant than that of GWAS with genotyped individuals

only for most combinations of the person- and SNP-specific

certainty thresholds, except for rs4681 (Figure S2) and

rs10186236 (Figure S3). No combination of person- and SNP-

specific certainty threshold gives uniformly best results; also, there

is no clear relation between certainty thresholds and improvement

in p-value.

To incorporate genotypes of imputed individuals with that of

the genotyped individuals for GWAS, we choose the combination

of person-specific certainty threshold 0.5 and SNP-specific

certainty threshold 0.6 as a trade-off between quantity (sample

size) and quality. This combination generally gives slightly better

results than most of the other combinations based on our

evaluations using those top SNPs. Table 2 presents the mean

Family-Based Imputation in GWAS with Family Data
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imputation certainty for the top SNPs in the entire 3121 imputed

sample and in the person-specific certainty .0.5, SNP_specific

certainty .0.6 and phenotyped sample. By using these certainty

thresholds, the median of the mean certainty improves from 0.81

(with minimum 0.66) to 0.95 (with minimum 0.93) and the average

increased certainty is about 0.16. Of note, among the 3121

imputed individuals, there are 1481, 868, 467, and 116 individuals

with person-specific certainty above 0.3, 0.5, 0.7, and 0.9,

respectively.

GWAS Using Genotyped and Imputed Individuals
We use the combination of person-specific certainty threshold

0.5 and SNP-specific certainty threshold 0.6 to combine genotype

data of imputed with genotyped individuals. With the combined

data, we redo the GWAS for Alzheimer disease, fibrinogen, HDL

and uric acid, additionally adjusted for imputation status to

account for the potential phenotypic difference between genotyped

and imputed samples. The same filters (call rate ,90%, HWE p-

value ,1026 and MAF ,0.05) are applied as in 550K GWAS, so

we have the same SNPs for comparison. The results for the top

SNPs and the genomic control parameter l [8] from GWAS using

genotyped sample and that of using combined imputed- and

genotyped- sample are presented in Table 3. The l estimates

(1.02–1.03) show that no systematic inflation in test statistics is

observed. The increase in sample size varies from about 300 to

600, which leads to slight decrease in the standard error estimate

of the beta coefficient. Among the 9 independent loci, 7 loci

improve their statistical significance after including imputed

sample. Table 4 presents the improvement in statistical signifi-

cance level comparing the GWAS using the combined sample

versus using genotyped sample only. Except for fibrinogen, most of

the genome-wide significant SNPs have smaller p-values in GWAS

using combined sample. In addition, for both HDL and uric acid,

one additional SNP becomes genome-wide significant in GWAS

using combined sample. Figure 4 presents the –log10 p-value

scatter plots of GWAS using combined sample (Y axis) against

Figure 1. Box plots of imputation certainty in FHS imputed samples.
doi:10.1371/journal.pone.0051589.g001

Family-Based Imputation in GWAS with Family Data
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GWAS using genotyped sample (X axis). The figure shows that

except for Fibrinogen, most of the SNPs that reach genome-wide

significance have smaller p-values from GWAS using combined

sample, as we reported.

Discussion

Using FHS sample, we have demonstrated that imputation in

general improves statistical power for GWAS, even when the

imputed individuals have not been genotyped at all. Using GWAS

top hits identified with observed genotypes as positive controls, we

explored the effects of different quality control thresholds for

incorporating genotypes of imputed individuals on the association

results. In order to perform imputation for large pedigrees that are

too complex to be handled with realistic computing power, we

developed an algorithm for splitting and trimming large pedigrees

into sub-pedigrees that can optimizes the number of closest related

genotyped relatives for each un- or poorly- genotyped individual.

Unlike imputation of un-genotyped variants using external

reference, family-based imputation is to impute un- or poorly-

genotyped individuals. As these individuals do not have any

genotypes or good quality genotypes, one cannot compute the

actual imputation quality. Therefore imputation certainty is used

as imputation quality measure.

The fact that the Third Generation cohort has better

imputation certainty over the previous two generations is a result

of more Third Generation individuals having at least one

genotyped parent, or more genotyped relatives. The proportion

of imputed Third Generation subjects having at least one parent is

91.9%, versus 0.2% and 32.3% for imputed individuals in the

Original and Offspring cohorts, respectively. The average sum of

genotyped 1st, 2nd and 3rd degree relatives per imputed individuals

for the Original, Offspring and Third Generation cohorts among

the 3121 imputed sample are 6.1, 5.3 and 9.2, respectively. In

addition, the average sum of genotyped 1st, 2nd, and 3rd degree

relatives of the Original, Offspring and Third Generation cohorts

among the 1187 individuals are 7.9, 7.1 and 9.8, respectively. This

explains why the average imputation certainty is higher in 1187

individuals than in all 3121 individuals for each generation. The

fact that the 1187 sample in split sub-pedigrees has higher mean

imputation certainty than the rest imputed sample is due to

imputed individuals in large pedigrees (thus need splitting)

generally having more genotyped relatives, among whom, the

most informative ones are retained in the split sub-pedigrees

Figure 2. Scatter plot of imputation certainty against MAF.
doi:10.1371/journal.pone.0051589.g002

Family-Based Imputation in GWAS with Family Data
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created using our algorithm. When regressing imputation certainty

on the numbers of well-genotyped 1st, 2nd, and 3rd degree relatives,

the bit size and the number of members in sub-pedigree, the

numbers of genotyped 1st and 2nd degree relatives and the number

of members in sub-pedigree are positively associated with

imputation certainty with p-values 1:5|10{233, 3:6|10{23,

and 1:3|10{4, respectively. This indicates that most information

is contributed by the 1st degree genotyped relatives. As the

proposed algorithm relies on the relationships within a large

pedigree, results are sensitive to any pedigree misspecification in

nature.

The imputation works well as we only have 23 and 368 SNPs

with MAF difference (maximum 0.218) greater than 0.1 and 0.05,

respectively, between well-genotyped and filtered imputed sam-

ples. The 23 SNPs have average 498 Mendelian errors, which

suggests additional useful criterion for selecting SNPs for

imputation. If the whole 3121 imputed sample is used, MAF will

be in general underestimated. This reassures the necessity of using

imputation certainty filter and the validation of our GWAS results

using incorporated genotype data.

When incorporating imputed genotype data with observed

genotype data, we consider various combinations of thresholds of

person-specific certainty and SNP-specific certainty to filter out

genotypes and individuals with lower imputation certainty.

Although we have observed improved statistical significance for

most combinations of thresholds for most of the top SNPs, there

are still a few cases (rs4681 for fibrinogen and rs10186236 for

HDL) with no improvement for any threshold combinations.

Table 2 indicates that failure to strengthen the statistical

significance is not likely due to low imputation certainty, as the

average certainties in incorporated imputed individuals for rs4681

and rs10186236 are 97.1% (top 3rd) and 96.2% (top 4th),

respectively, and the improvement does not seem to be associated

with high imputation certainty. The lack of improvement may be

Figure 3. Scatter plot of MAF in well-genotyped sample and filtered (person_specific imputation certainty greater than 50%)
imputed sample.
doi:10.1371/journal.pone.0051589.g003

Family-Based Imputation in GWAS with Family Data
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due to heterogeneity in phenotypes between imputed and

genotyped individuals and/or noise in the imputed genotypes.

Even though family-based imputation can increase the sample size

that leads to power increase by theory, it also introduces noise due

to the uncertainty in the imputed genotypes. There is no

imputation certainty threshold combination that consistently gives

better results than other combinations. The thresholds (person-

specific certainty .0.5 and SNP-specific certainty .0.6) we have

adopted for our sample seem working well. It may be applicable

for other studies, but examination of the sensitivity is still

warranted when applied to a different study. In addition, as

shown in Figure 2, imputation certainty decreases as MAF

increases. One can thus take MAF into consideration when

applying SNP-specific imputation certainty threshold during

quality filtering.

With both imputed sample (person-specific certainty .0.5 and

SNP-specific certainty .0.6) and genotyped sample included in

GWAS of Alzheimer disease, fibrinogen, HDL and uric acid, the

statistical significance is strengthened for 7 out of 9 independent

genome-wide significant loci, or for 98 out of 146 genome-wide

significant SNPs, while the inflation measured by genomic control

factor (l) remains similar compared with GWAS using genotyped

individuals only. Among the 7 loci, APOC1 for Alzheimer disease

has the smallest number in sample size increase (Table 2), but its

proportion of reduction in standard error of beta is the largest and

so is its increase in statistical significance (Table 3). In general one

would expect the proportion of reduction in the standard error to

be similar to the proportion of increase in the square root of

sample size [9]. The disproportional change in this case is due to

that Alzheimer disease is more common in the added imputed

sample. There are 164 cases (5.1%) in 3192 genotyped individuals

and 30 cases (10.4%) in 288 added imputed individuals. Except for

the association between DPP10 locus and HDL, all other

associations have been previously reported or confirmed by

meta-analysis [10–13]. Figures S5, S6, S7, S8, S9, S10, S11,
S12, S13 are the regional association plots by SNAP [14] for the 9

loci based on GWAS using incorporated genotype data. rs4420638

is 340 bp and 10297 bp away from APOC1 and the well-known

APOE genes, respectively. In FHS 550K data, no SNP is

genotyped in APOE and no SNP is in high linkage disequilibrium

with rs4420638. Therefore, as shown in Figures S5 for incident

Alzheimer disease, rs4420638 is the only genome-wide significant

SNP in +/2200 kb region around itself. In addition, rs4420638 is

strongly associated with APOE with p-value 3.361028 as

previously reported [12] in FHS. The association between

rs1800588 (LIPC) and HDL becomes genome-wide significant

Table 1. Top SNPs (p-value ,1.25E-7) from GWAS of Alzheimer disease, fibrinogen, HDL and uric acid using 550K genotype data.

Trait SNP Chr Position{ ClosestRefGene HWE p callrate MAF* N beta se p

Alzheimer disease rs4420638{{ 19 50114786 APOC1 0.78 0.999 0.16 3192 0.856 0.124 5.96E-12

Fibrinogen rs4681 4 155710282 FGB 0.53 0.998 0.18 7271 10.009 1.446 4.48E-12

HDL rs3764261 16 55550825 CETP 0.04 0.982 0.31 7996 3.077 0.266 5.71E-31

rs1919484 8 19913956 LPL 0.11 0.981 0.27 7999 1.948 0.276 1.76E-12

rs10186236 2 115096721 DPP10 0.21 0.999 0.19 8128 21.647 0.307 7.79E-8

rs1800588 15 56510967 LIPC 0.65 1.000 0.22 8134 1.514 0.293 2.42E-7

Uric acid rs16890979 4 9531265 SLC2A9 0.01 0.998 0.25 8229 20.352 0.022 2.64E-59

rs2231142 4 89271347 ABCG2 0.76 0.999 0.11 8234 0.246 0.031 1.46E-15

rs1165205 6 25978521 SLC17A3 0.19 0.985 0.46 8096 20.105 0.019 4.34E-8

{Position in base pairs, based on NCBI build 36.1 (hg18).
*MAF is computed in genotyped and phenotyped sample.
{{rs4420638 is a marker of the APOE haplotype.
doi:10.1371/journal.pone.0051589.t001

Table 2. Mean imputation certainty of the top SNPs in the entire 3121 imputed sample and in the person-specific certainty .0.5,
SNP-specific certainty .0.6 and phenotyped sample.

Trait SNP
mean(sd) certainty in 3121 imputed
sample N{ mean(sd) certainty in N

Alzheimer disease rs4420638 0.838(0.162) 288 0.955(0.074)

Fibrinogen rs4681 0.824(0.161) 331 0.971(0.068)

HDL rs3764261 0.742(0.187) 512 0.928(0.128)

rs1919484 0.753(0.174) 524 0.930(0.117)

rs10186236 0.802(0.167) 431 0.962(0.072)

rs1800588 0.817(0.164) 419 0.951(0.092)

Uric acid rs16890979 0.769(0.170) 595 0.939(0.100)

rs2231142 0.884(0.142) 638 0.974(0.049)

rs1165205 0.658(0.199) 553 0.980(0.068)

{N: the number of phenotyped and imputed individuals with person-specific certainty .0.5 and SNP-specific certainty .0.6.
doi:10.1371/journal.pone.0051589.t002

Family-Based Imputation in GWAS with Family Data
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after including the imputed sample. Similarly, the association

between rs13148356 in SLC2A9 and uric acid becomes genome-

wide significant after imputation indicates that rs13148356 is also

a likely truly associated variant missed by analyzing genotyped

individuals only. The associations of rs4681 (FGB) with fibrinogen

and rs10186236 (DPP10) with HDL are slightly weakened, but the

latter association has not previously been reported.

Our results demonstrate that the proposed algorithm for

splitting and trimming large pedigrees for IBD-based imputation

worked well and that including the imputed sample with

genotyped sample in GWAS generally strengthened the associa-

tion signals for loci with associations that have already been well

established. We identified a plausible imputation quality filtering

threshold based on FHS. Further examination may be required to

generalize this threshold to other studies.

Materials and Methods

Algorithm for Splitting and Trimming Large Pedigrees
The basic steps of the proposed algorithm for splitting and

trimming large pedigrees are as follows: (i) form clusters of un-

genotyped individuals with their closest (first degree) un-genotyped

relatives; (ii) construct sub-pedigrees based on clusters; (iii) check

the bit size of the sub-pedigrees; and (iv) apply trimming if the bit

size is greater than desired. Details of the algorithm and a

Figure 4. Scatter plots of –log10(p-value) from 550K GWAS and GWAS using incorporated genotype data.
doi:10.1371/journal.pone.0051589.g004

Family-Based Imputation in GWAS with Family Data
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hypothetical example of applying the algorithm are described

below.

For each pedigree that needs size reduction,

1. Clustering un-genotyped individuals

1.1. Compute the number of un-genotyped first degree relatives

for each un-genotyped individual.

1.2. Form clusters by grouping un-genotyped first degree

relatives together until all un-genotyped persons are

clustered. We suggest starting from the un-genotyped

individual with fewest un-genotyped first degree relatives. It

is more efficient and can avoid large clusters that require

more trimming that may leave insufficient genotyped

individuals for imputation given a user specified bit size

limit.

2. Constructing sub-pedigrees based on un-genotyped clusters

2.1. Include genotyped blood relatives (kinship coefficient .0)

of each cluster member.

2.2. Include parents of current members (if not included).

2.3. Remove un-genotyped founder couples that only have one

child.

3. Checking bit size

3.1. If bit size is less than but not close to user specified, add

genotyped blood relatives of spouse. If bit size is greater

than user specified, do trimming. Otherwise, sub-pedigree

preparation is complete.

4. Trimming sub-pedigrees with bit size greater than user

specified

4.1. For each genotyped individual in a sub-pedigree, compute

the following scores using kinship coefficients. A genotyped

individual with more closest cluster members (score1

below) is more important for imputation and should not

be trimmed if not needed. The order of importance of the

scores is score1, score2, score3, score4, followed by score5.

a. score1: number of the closest cluster members (not

necessarily first degree)

b. score2: number of the 2nd closest cluster members

c. score3: number of the 3rd closest cluster members

d. score4: number of the 4th closest cluster members

e. score5: number of the 5th closest cluster members

4.2. Identify roots (bottom level of the current sub-pedigree;

roots should not be parents) that are not cluster members.

4.3. Rank the roots by scores.

4.4. Remove person or persons with the minimum rank

Table 3. Results of top SNPs (p-value ,1.25E-7) from GWAS of Alzheimer disease, fibrinogen, HDL and uric acid using 550K
genotype data and incorporated genotype data.

genotyped subjects only genotyped and imputed subjects

Trait SNP N MAF beta se p l N MAF beta se p l

Alzheimer
disease

rs4420638 3192 0.16 0.856 0.124 5.96E-12 1.02 3480 0.16 0.902 0.108 4.93E-17 1.03

Fibrinogen rs4681 7271 0.18 10.009 1.446 4.48E-12 1.03 7602 0.18 9.729 1.431 1.05E-11 1.02

HDL rs3764261 7996 0.31 3.077 0.266 5.71E-31 1.03 8508 0.32 3.155 0.259 3.15E-34 1.02

rs1919484 7999 0.27 1.948 0.276 1.76E-12 8523 0.27 2.020 0.270 7.59E-14

rs10186236 8128 0.19 21.647 0.307 7.79E-8 8559 0.19 21.577 0.301 1.62E-7

rs1800588 8134 0.22 1.514 0.293 2.42E-7 8553 0.22 1.548 0.288 8.09E-8

Uric acid rs16890979 8229 0.25 20.352 0.022 2.64E-59 1.03 8824 0.23 20.351 0.021 8.13E-61 1.02

rs2231142 8234 0.11 0.246 0.031 1.46E-15 8872 0.10 0.248 0.030 2.86E-16

rs1165205 8096 0.46 20.105 0.019 4.34E-8 8649 0.47 20.109 0.019 6.96E-9

doi:10.1371/journal.pone.0051589.t003

Table 4. Number of genome-wide significant SNPs (p-value ,1.25E-7) with improved statistical significance (smaller p-value) from
GWAS of Alzheimer disease, fibrinogen, HDL and uric acid using incorporated genotype data (new GWAS).

Trait # SNPs with smaller p/# SNPs with p,1.25E-7 in 550K GWAS
# SNPs with p,1.25E-7 in new GWAS but not in 550K
GWAS

Alzheimer disease 1/1 0

Fibrinogen 0/4 0

HDL 14/15 1

Uric acid 83/126 1

doi:10.1371/journal.pone.0051589.t004
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a. If a whole sibship is removed or only has one sib left,

remove their founder-parents, too.

b. Compute bit size and repeat step 4.4 until bit size is

less than user specified.

4.5. If bit size is less than user specified within 2 bits, trimming

is done; otherwise, add back latest removed genotyped

persons, so that the bit size is as close to and less than user

specified.

4.6. If a sub-pedigree is a subset of another sub-pedigree,

remove it.

Example: Consider the example pedigree presented in Figure 5
by kinship2 package (http://cran.r-project.org/web/packages/

kinship2/), the original pedigree (top left panel) has 34 pedigree

members and bit size of 36. A grey cell represents an individual

not offering consent to participate in a study of interest, a black cell

represents an individual to be imputed, and an empty cell

represents a genotyped individual. The number under each cell is

the individual ID. There are 7 individuals to be imputed in this

pedigree (IDs 104, 106, 107, 108, 120, 132, 135) and they form 4

clusters in the following order, the 1st by 107, the 2nd by 132 and

120, the 3rd by 135, the 4th by 104, 106 and 108. The other 3

panels in Figure 5 present the final 3 sub-pedigrees. Sub-pedigree

1 with bit size 20 is formed by the 2nd cluster. Sub-pedigree 2 with

bit size 20 is formed by the 3rd cluster. Sub-pedigree 3 with bit size

20 is formed by the 4th cluster and contains the sub-pedigree

formed by the 1st cluster. ID 132 appears in sub-pedigrees 1 and 2,

as ID 132 belongs to the 2nd cluster, genotypes imputed based on

sub-pedigree 1 will be used for ID 132. The pedigree splitting and

trimming scripts written in R are available on readers’ request.

Figure 5. Example for pedigree splitting and trimming.
doi:10.1371/journal.pone.0051589.g005

Family-Based Imputation in GWAS with Family Data

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e51589



Each resulting sub-pedigree is centered on one or more un-

genotyped individuals with as many closely related genotyped

relatives as possible. Between sub-pedigrees, there may be overlaps

of genotyped individuals or un-genotyped individuals. The

imputation is performed using one pedigree at a time; therefore,

overlapping is not an issue. But the original pedigrees should be

used in association analyses, not the split pedigrees.

The Framingham Heart Study (FHS) Sample
The FHS was initiated in 1948 with the enrollment of 5209 men

and women (referred to as the Original cohort) from Framingham,

MA, who underwent biennial examinations [15]. In 1971, 5124

children and spouses of these children of the Original cohort

(referred to as the Offspring cohort) were recruited and examined

approximately every four years [16]. In 2002, 4095 Third

Generation cohort participants were enrolled [17].

In 2007, genome-wide genotyping of SNPs was performed for

9274 individuals using an Affymetrix 550K SNPs platform; 8998

participants were well-genotyped, that is, call rate greater than

90% and heterozygous rate within +/25 standard deviation range

from mean. Among un-genotyped individuals and 276 poorly-

genotyped (not well-genotyped) individuals, 3121 (from 928

pedigrees) with at least one genotyped blood relative and with

consent for genetic studies, can be included for genotype

imputation. The 3121 individuals included 1990, 946 and 185

Original, Offspring and Third Generation cohorts, respectively.

All individuals included in this study provided written informed

consent, and study protocols were approved by the Institutional

Review Boards of Boston University. Merlin [5] was used in

genotype imputation, and we found the smallest bit size of the

pedigrees that Merlin failed to impute is 20. Therefore, we applied

the proposed algorithm to split and trim the 122 pedigrees with bit

size greater than 20 and used the split sub-pedigrees for

imputation.

Phenotype Definition and Measurement
The characteristics for each trait for the sample of genotyped

and imputed individuals are presented in Table 5. Alzheimer

disease was defined as previously described using NINCDS-

ADRDA criteria [18]. Fibrinogen was measured in the Original

cohort subjects during examination cycle 10 (1966–1968) using a

modified method of Ratnoff and Menzie [19], in the Offspring

cohort during examination cycle 5 (1991–1995) and in the Third

Generation cohort during examination cycle 1 (2002–2005) using

the Clauss method [20]. Serum urate was measured during the

first examination cycle of each cohort using an autoanalyzer with a

phosphotungstic acid reagent [21], and HDL was measured using

standard enzymatic method in the Original cohort during

examination cycles 11–13 (1970–76), in the Offspring cohort

during examination cycle 6 (1996–2000) and in the Third

Generation during examination cycle 1 (2002–2005).

Statistical Analyses, Genotype Imputation and Genotype
Incorporation

GWAS of continuous traits (fibrinogen, HDL and uric acid)

were performed using a linear mixed effects model with the

additive coding of SNP genotypes as a fixed effect and with

individual-specific random intercepts correlated according to the

kinship coefficient to account for residual familial correlations

[22]. Cox proportional hazards regression implemented in R

survival package was used to model incident Alzheimer disease

(starting at age 65 years); each pedigree was treated as a cluster

and the robust variance estimate was used [23]. All analyses were

adjusted for age, sex, generation status and imputation status if

imputed individuals were included.

Based on the genotypes of 8998 well-genotyped individuals with

Affymetrix 550K SNPs, we imputed genome-wide genotype data

for the additional 3121 individuals (sparse Illumina Infinium panel

genotyping of 5759 SNPs for 150 of them were also used in the

imputation). Imputation was performed for 403640 autosomal

SNPs with good genotyping quality, that is, call rate.0.97,

MAF.0.01 and Hardy Weinberg Equilibrium (HWE) p-val-

ue.1026, using split sub-pedigrees and original pedigrees with bit

size not greater than 20. The imputed genotype dosage data is

used in association analysis. The maximum of the posterior

genotype probabilities from genotype imputation was used as an

indicator of the imputation certainty at each SNP for each

imputed individual, which we also called SNP-specific certainty.

For each individual, we compute the proportion of SNPs with

the maximum posterior probability greater than 0.95, which is

used to define person-specific certainty. Applying person-specific

certainty threshold of 0.9 retains individuals with the proportion

greater than 0.9. In contrast, applying SNP-specific certainty

threshold of 0.6 retains individuals with imputation certainty

greater than 0.6 for each SNP – and different individuals may be

included for different SNPs.

Table 5. Sample characteristics of Alzheimer disease, fibrinogen, HDL and uric acid data in the genotyped and imputed sample.

Alzheimer
disease

Fibrinogen
(mg/dl) HDL (mg/dl)

Uric acid
(mg/dl)

Sample size 4200 8229 9453 10491

Phenotype 284 (6.8%) 321.2 (67.9) 52.6 (16.1) 5.3 (1.5)

Age 78.2 (8.2) 48.0 (12.0) 51.2 (13.2) 38.9 (9.8)

Sex (female) 2318 (55.2%) 4414 (53.6%) 5079 (53.7%) 5443 (51.9%)

Original cohort 1899 (45.2%) 1062 (13%) 2044 (21.6%) 1984 (18.9%)

Offspring cohort 2301 (54.8%) 3131 (38%) 3339 (35.3%) 4459 (42.5%)

Third Generation cohort NA 4036 (49%) 4070 (43.1%) 4048 (38.6%)

Imputed 978 (23.3%) 942 (11.4%) 1313 (13.9%) 2248 (21.4%)

Length of follow-up (years) 13.2 (8.2) NA NA NA

For continuous variables, mean value and standard deviation (in parenthesis) are presented, while for binary variables, the number of cases and its proportion (in
parenthesis) are presented.
doi:10.1371/journal.pone.0051589.t005
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To evaluate the effects of including imputed individuals in

association testing, various quality filtering thresholds of imputa-

tion certainty (0, 0.3, 0.5, 0.7 and 0.9 for person-specific certainty,

and 0.95, 0.9, 0.85, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0 for SNP-

specific certainty) are considered to incorporate imputed individ-

uals and their imputed genotypes with observed genotypes. Each

incorporated genotype dataset is used to test the association of 8

GWAS top SNPs for Alzheimer disease, fibrinogen, HDL and uric

acid that have been previously reported and serve as positive

control. We then selected the incorporated genotype dataset that

gave the most robust (in the sense that in most cases the results are

better than results from using genotyped sample) and improved (in

the sense that in most cases the results are better than results from

using other filtering thresholds) results at the 8 SNPs to conduct

GWAS of Alzheimer disease, fibrinogen, HDL and uric acid

adjusting for the same covariates with imputation status as an

additional covariate to account for the potential phenotypic

difference between genotyped and imputed samples.

Supporting Information

Figure S1 –log10(p-value) plot of rs4420638 at various
certainty thresholds for Alzheimer disease.

(TIFF)

Figure S2 –log10(p-value) plot of rs4681 at various
certainty thresholds for Fibrinogen.

(TIFF)

Figure S3 –log10(p-value) plot of rs3764261, rs1919484,
rs10186236, rs1800588 at various certainty thresholds
for HDL.

(TIFF)

Figure S4 –log10(p-value) plot of rs16890979, rs2231142,
rs1165205 at various certainty thresholds for uric acid.

(TIFF)

Figure S5 Regional association plot of rs4420638 for
Alzheimer disease using incorporated genotype data.
(TIFF)

Figure S6 Regional association plot of rs4681 for
Fibrinogen using incorporated genotype data.
(TIFF)

Figure S7 Regional association plot of rs3764261 for
HDL using incorporated genotype data.
(TIF)

Figure S8 Regional association plot of rs1919484 for
HDL using incorporated genotype data.
(TIF)

Figure S9 Regional association plot of rs10186236 for
HDL using incorporated genotype data.
(TIF)

Figure S10 Regional association plot of rs1800588 for
HDL using incorporated genotype data.
(TIF)

Figure S11 Regional association plot of rs16890979 for
uric acid using incorporated genotype data.
(TIF)

Figure S12 Regional association plot of rs2231142 for
uric acid using incorporated genotype data.
(TIF)

Figure S13 Regional association plot of rs1165205 for
uric acid using incorporated genotype data.
(TIF)
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