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Many of the basic genetic, physiolog-
ical, and clinical consequences associ-
ated with CF have been studied in 
great detail, making CF one of the 
most investigated diseases in modern 
medicine (Griesenbach and Alton, 
2011; Cohen and Prince, 2012). Dis-
covery of the CFTR gene in 1989 
was expected to lead to breakthroughs 
and new therapies. However, 23 yr 
later one can look at these new thera-
pies either with great enthusiasm for 
what has been developed or with dis-
appointment in the small number of 
truly new drugs. New formulations 
of older drugs, including aerosolized 
antibiotics for lung infection, and im-
provements in clinical management 
of symptoms have had a major impact 
on disease progression (Royce and 
Carl, 2011). Treatments such as hy-
pertonic saline, ibuprofen, and several 
vitamin and pancreatic supplements 
have also shown benefits in CF clini-
cal trials. Pulmozyme, which is human 

DNase aerosolized into the lungs to 
break up DNA associated with the sticky 
lung secretions in infected CF patients, 
was approved in 1993 based on clinical 
observations of the composition of CF 
mucus. However, only one truly new 
drug has been approved for CF patients, 
and its development was based on 
knowledge gained from the discovery of 
the CFTR gene and studies of CFTR 
protein function. This drug, Ivcaftor 
(Ramsey et al., 2011), improves lung 
function in the 4–5% of CF patients 
who bear a specific CFTR mutation, 
G551D. The G551D channel is present 
in the plasma membrane but has poor 
functionality. Numerous other drugs and 
therapies are in various stages of devel-
opment (http://www.cff.org/research/
DrugDevelopmentPipeline/), leading  
to hope for more improvements in the 
quality of life for CF patients (Cuthbert, 
2011); however, even among these drug 
candidates only a minority are directed 
toward modifying the mutant CFTR 
gene or modulating protein function.

CFTR functions in disease:  
the role of bicarbonate
Does this situation reflect the overall  
difficulty of modern drug development 

wherein development and approval of  
a new drug may take two decades or 
longer? Or does it reflect the complexity 
of CFTR function and subsequent disease 
manifestations (Cuthbert, 2011)? Likely 
both. Primarily studied and defined as a 
chloride ion channel–regulating mucosal 
fluid composition, CFTR can also trans-
port bicarbonate and can regulate the 
epithelial sodium channel ENaC, the 
outwardly rectifying chloride channel  
ORCC, and two inwardly rectifying 
K+ channels (ROMK1 and ROMK2). 
CFTR also transports ATP and glutathi-
one, and may regulate the pH of intra-
cellular organelles. The importance and 
impact of these various CFTR functions 
on CF pathogenesis are controversial.

However, it seems that the bicar-
bonate transport function of CFTR is 
central to one set of manifestations of 
CF: the thick mucus secretions in the 
GI tract and lung and the impacted ducts 
in the pancreas. GI problems are still a 
fundamental aspect of CF, although 
medical management via pancreatic en-
zymes and nutritional supplements has 
dealt with this problem relatively effec-
tively. Many, but not all, mouse models 
of CF mimic the GI pathology seen in 
untreated human CF disease (Guilbault 
et al., 2007), and CF mice must often 
be maintained on laxatives and liquid 
diets. CF pigs (Ostedgaard et al., 2011) 
and ferrets (Sun et al., 2010) also show 
GI disease, which manifests as meco-
nium ileus at birth and requires proper 
management. Cloning a wild-type Cftr 
gene in front of an intestinal-specific 
promoter led to proper synthesis of 
CFTR in the ferret GI tract and alle-
viated the GI manifestations of the 

Therapeutic intervention in cystic fibrosis (CF) remains a challenge, partly 
because of the number of organs and tissues affected by the lack of a func-
tional cystic fibrosis transmembrane conductance regulator (CFTR) protein. 
CF was originally regarded primarily as a gastrointestinal (GI) disease because 
of the failure to thrive and early death from malnutrition in infants with CF. 
However, successful interventions for the GI manifestations of CF have left 
chronic lung infections as the primary cause of morbidity and mortality. 
Despite a complex microbiology within the CF lung, one pathogen, Pseudomonas 
aeruginosa, remains the critical determinant of pulmonary pathology. Treatment 
and management of this infection and its associated symptoms are the major 
targets of extant and developing CF therapies. Understanding the multitude 
of effects of CFTR on mucosal physiology and susceptibility and progression 
of chronic lung disease, and how host immune responses fail to adequately 
control lung infection, will be essential for the development of improved 
therapies for CF.
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2012; Ratner and Mueller, 2012). Few 
provide an explanation for the highly 
specific association between CF and  
P. aeruginosa infection. My group over 
the past 15 yr has provided evidence that 
CFTR itself is a receptor for P. aeruginosa 
and that binding of this organism to 
CFTR activates host defenses needed 
to clear the organism from the lung 
(Campodónico et al., 2008; Fig. 1). The 
key component here is the recruit-
ment of polymorphonuclear neutro-
phils (PMN) to the lung, where they 
phagocytose and kill P. aeruginosa. Bind-
ing of the outer LPS core of nonmucoid 
P. aeruginosa to the first extracellular loop 
of CFTR initiates formation of lipid rafts 
incorporating molecules such as caveolin 
and major vault protein; lung epithelial 
cells then internalize the bacteria and 
release IL-1. This IL-1 signals through 
the IL-1 receptor and MyD88 adaptor 
protein, ultimately leading to NF-B 
nuclear translocation and synthesis of  
cytokines (e.g., IL-6, IL-8, CCL1) that 
recruit PMNs (Fig. 1; Reiniger et al., 
2007). In individuals with WT CFTR this 
process effectively controls P. aeruginosa  
lung infection. It is noteworthy that 
the mucoid, LPS rough P. aeruginosa that 
emerge as the main pathogen in CF do 
not bind CFTR because of alterations in 
the LPS outer core structure and over-
production of alginate (Massengale et al., 
2000). However, even in the presence of 
WT CFTR, in the absence of rapid and 
effective PMN lung recruitment (e.g., 
in neutropenic mice or MyD88-deficient 
mice; Koh et al., 2009), the lethal infec-
tious dose of P. aeruginosa applied to the 
nares plunges from ≥107 CFU to <60 
CFU, and for some strains as few as 10 
CFU is a lethal dose. Neutropenic and 
MyD88-deficient humans are at high risk 
for P. aeruginosa infections (von Bernuth  
et al., 2008; Kerr and Snelling, 2009).  
An early failure to clear P. aeruginosa may 
then allow bacterial attachment to and 
entry into stagnant CF mucus; this may 
be the next key step in establishment of 
chronic P. aeruginosa lung infection in CF, 
and the place where mucolytic agents or 
inhaled bicarbonate might be effective.

Once infection is established and 
bacterial levels increase, P. aeruginosa 
must evade adaptive immunity. Within the 

function decline in CF find P. aeruginosa 
infection to be the primary factor (Mott 
et al., 2012). Some papers have associ-
ated lung function decline with infection 
by methicillin-resistant S. aureus and 
Streptococcus milleri (Cohen and Prince, 
2012); and rapid declines in CF patients’ 
conditions have also been associated with 
Burkholderia infections (Courtney et al., 
2007). However, most of these later in-
fections occur in addition to preexisting 
P. aeruginosa infection. More recent 
high-throughput sequencing techniques 
revealed microbial DNA in lung secre-
tions of CF patients (Zemanick et al., 
2011); however, the actual impact of 
these diverse microbial communities 
on airway disease is mostly speculative. 
Overall, it is still mucoid P. aeruginosa 
that drives lung function decline in CF, 
and how this specificity is accounted for 
by defects in lung mucociliary transport 
is unexplained.

Would aerosolized bicarbonate have 
a therapeutic role in CF lung disease by 
allowing proper unfolding of airway 
mucins? Perhaps. Even if defective mu-
cociliary clearance does not underlie 
many of the manifestations of mucoid 
P. aeruginosa infection in CF, enhancing 
microbial clearance by promoting mu-
cociliary transport has potential. The 
success of hypertonic saline aerosoliza-
tion in improving the lung function in 
some but not all groups of CF patients 
supports the utility of developing strate-
gies to enhance mucociliary transport; 
however, recent investigations into 
how hypertonic saline inhalation therapy 
works suggests it also has antiinflamma-
tory and antimicrobial effects that could 
contribute to the benefit of this therapy 
(Reeves et al., 2012). Overall, we don’t 
know how much defective mucociliary 
transport contributes to initiation or 
progression of chronic P. aeruginosa in-
fection in CF, but as long as there is a 
safe means to aerosolize bicarbonate, 
there seems to be no reason not to try 
this strategy.

Establishment and progression  
of chronic lung infection
Many studies implicate immune system 
dysfunction in driving the progression of 
lung disease in CF (Cohen and Prince, 

disease; this strategy was also used to 
create transgenic CF mice with normal 
GI tract function (Zhou et al., 1994).

In 2008, Quinton proposed (Quinton, 
2008) that the highly compacted mu-
cins in intracellular granules are held 
together by Ca2+ and H+ cations, and 
that removal of these cations by bicar-
bonate is critical for mucin unfolding 
and expansion. Accordingly a bicar-
bonate transport defect such as that in 
CF would result in a HCO3

- anion-
poor extracellular milieu that could 
not remove the Ca2+ cations and would 
leave the mucins compacted, not read-
ily soluble, and thus poorly transport-
able, as shown in the mouse intestine 
(Garcia et al., 2009). In this issue of 
The Journal of Experimental Medicine, 
Gustafsson et al. confirm that bicar-
bonate plays a crucial role in increasing 
local pH and removing Ca2+ cations to 
facilitate unpacking of mucins secreted 
from goblet cells. They demonstrate 
that adding bicarbonate to CF mouse 
intestinal mucus led to normal mucin 
unfolding and function.

Mucociliary transport and chronic  
lung infection in CF
Can we exploit this knowledge of the 
importance of CFTR-secreted bicar-
bonate to treat other disease manifesta-
tions of CF? This depends, in part, on 
the degree to which poor mucus trans-
port plays a role in chronic infection and 
inflammation in the lungs of CF patients. 
Many investigators believe that defective 
mucus transport does contribute to CF 
lung disease (Clunes and Boucher, 2007), 
and numerous therapies directed at en-
hancing mucus transport have been de-
veloped or are under investigation. But 
there remains a fundamental problem 
with this hypothesis; it fails to explain 
the observation that infection with 
Pseudomonas aeruginosa, more specifically 
the mucoid phenotype of P. aeruginosa 
that emerges in the CF lung, is the 
predominant cause of pulmonary de-
cline in CF patients. Although a progres-
sion of pathogens, notably nontypable  
Hemophilus influenzae and Staphylococcus 
aureus, have been seen in early CF lung 
disease for years, the vast majority of  
papers examining correlates of lung 

http://jem.rupress.org/cgi/content/full/10.1084/jem.20120562
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Figure 1. Protection versus susceptibility to P. aeruginosa infection in lungs expressing wild-type or mutant CFTR. (A) Proposed factors 
responding to P. aeruginosa in the airway of humans with intact, wild-type CFTR. Some of the bacteria in normal mucus with properly unfolded 
mucins bind to CFTR in the plasma membrane, initiating rapid (2–15 min) IL-1 release; the resulting IL-1 triggers autocrine or paracrine signaling 
through the IL-1 receptor. Bacteria binding to CFTR also initiates formation of lipid rafts and recruitment of caveolin, major vault protein (MVP), 
and other proteins to the rafts; this is followed by bacterial internalization. These processes leads to MyD88-dependent activation and nuclear 
translocation of NF-B and regulated inflammatory responses involving production of IL-6 and IL-8 and increases in ICAM-1 and Gro-1 (CXCL1), 
all of which participate in recruitment of polymorphonuclear neutrophils (PMN) to the airway mucosa. The remaining, viable P. aeruginosa are 
phagocytosed and killed, and those entrapped within epithelial cells are carried out in the mucus. (B) On the CF airway surface, lack of functional 
CFTR, such as the F508 variant that is unable to make it to the plasma membrane, leaves the P. aeruginosa bacteria trapped in the mucus, which 
is dehydrated and more viscous because of the compacted mucins released from the secretory granules of goblet cells. PMN recruitment does 
occur, but in a dysregulated, uncoordinated, and slower fashion, and when the PMN do arrive their ability to phagocytose the P. aeruginosa cells 
trapped within the airway mucus is poor. The frustrated phagocytosis can lead to release of granule contents containing toxic factors. The PMN 
undergo necrosis instead of apoptosis, and this results in a failure to clear bacteria and resolve inflammation. The chronic infection is perpetuated 
by an ineffective adaptive immune response, allowing the progression of chronic infection, inflammation, and destruction of lung tissue.
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most desirous outcome of all for pre-
venting P. aeruginosa infection.

G. Pier is an inventor of a monoclonal antibody 
directed to the alginate antigen of P. aeruginosa. The 
antibody has been licensed by Brigham and Women’s 
Hospital (BWH) to Aridis Pharmaceuticals. As an 
inventor, G. Pier receives a share of licensing-related 
income (royalties and fees) through BWH. G. Pier’s 
interests were reviewed and are managed by BWH and 
Partners HealthCare in accordance with their conflict 
of interest policies.
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