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How deep is deep enough for RNA-Seq profiling
of bacterial transcriptomes?
Brian J Haas1, Melissa Chin1, Chad Nusbaum1, Bruce W Birren1 and Jonathan Livny1,2*
Abstract

Background: High-throughput sequencing of cDNA libraries (RNA-Seq) has proven to be a highly effective
approach for studying bacterial transcriptomes. A central challenge in designing RNA-Seq-based experiments is
estimating a priori the number of reads per sample needed to detect and quantify thousands of individual
transcripts with a large dynamic range of abundance.

Results: We have conducted a systematic examination of how changes in the number of RNA-Seq reads per
sample influences both profiling of a single bacterial transcriptome and the comparison of gene expression among
samples. Our findings suggest that the number of reads typically produced in a single lane of the Illumina HiSeq
sequencer far exceeds the number needed to saturate the annotated transcriptomes of diverse bacteria growing in
monoculture. Moreover, as sequencing depth increases, so too does the detection of cDNAs that likely correspond
to spurious transcripts or genomic DNA contamination. Finally, even when dozens of barcoded individual cDNA
libraries are sequenced in a single lane, the vast majority of transcripts in each sample can be detected and
numerous genes differentially expressed between samples can be identified.

Conclusions: Our analysis provides a guide for the many researchers seeking to determine the appropriate
sequencing depth for RNA-Seq-based studies of diverse bacterial species.
Background
In recent years, high throughput sequencing of cDNA
libraries (RNA-Seq) has emerged as a powerful technology
for profiling gene expression, discovering previously unan-
notated genes, and mapping transcriptome architecture in
a wide variety of bacterial species [1-11]. RNA-Seq offers
several advantages over hybridization-based approaches
such as microarrays, including a markedly higher sensitiv-
ity for low abundance transcripts, single nucleotide reso-
lution of transcript boundaries, and the means to profile
gene expression in strains for which genome sequences
and/or gene annotations are not available [12,13]. The
steadily decreasing cost of sequencing, the growing num-
ber of and accessibility to high-throughput sequencing
facilities, and the recent development of publicly available
bioinformatic tools for RNA-Seq data analysis have made
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reproduction in any medium, provided the or
RNA-Seq an increasingly attractive and popular method
for studying bacterial transcriptomes.
The relative abundances of individual transcripts in a

bacterial transcriptome can differ by several orders of
magnitude. In order to generate comprehensive tran-
scriptome profiles using RNA-Seq one must therefore
obtain a sufficiently large number of reads to detect
those biologically relevant transcripts that comprise a
relatively small proportion of the cDNA library. Detec-
tion and quantification of low abundance transcripts by
RNA-Seq can be enhanced in two main ways. First, the
total number of reads per library can be increased. Second,
the proportion of reads representing rare transcripts can be
increased by depleting abundant transcripts from total
RNA and/or depleting cDNAs representing these abundant
transcripts from cDNA libraries. This is often achieved by
targeted removal of ribosomal RNA (rRNA), which com-
prises 80-95% of bacterial transcriptomes, from total RNA
prior to cDNA library construction [14,15].
For many RNA-Seq-based projects, the budget for

sequencing costs, and thus the total number of reads
that can be obtained, is constrained. Thus, researchers
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.
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designing RNA-Seq experiments must often determine
the correct balance between sequencing depth (the num-
ber of reads per sample) and breadth (the number of
samples sequenced). For some applications of RNA-Seq
such as transcriptome mapping and annotation, the abi-
lity to detect rare transcripts is critical, and approaches
such as the ones described above for increasing the total
number of biologically relevant reads obtained per sample
play a central role. For other applications of RNA-Seq
breadth can often be more important than depth. Specifi-
cally, for experiments focused on comparing gene expres-
sion among various strains and/or growth conditions, the
inclusion of more strains, timepoints, biological replicates,
and/or growth conditions may be worth the tradeoff of
lower depth per sample, as it may provide additional bio-
logical insights and/or statistical confidence that is more
valuable than the ability to detect low abundance tran-
scripts in each sample.
In recent years, methods for incorporating barcoded

adapters into cDNA libraries have been developed that
allow reads derived from up to several dozen samples to
be sequenced in the same lane [16]. This approach, known
as multiplexing, enables researchers to flexibly vary the
number of samples sequenced per lane and thus obtain
the desired balance between the number of samples
included and the number of reads obtained per sample, in
particular when number of lanes of sequencing is budget
limited. However, the extent to which biologically relevant
information is gained or lost as sequencing depth is varied
has not been systematically examined. To address this we
have generated and analyzed a variety of RNA-Seq data-
sets to determine the number of reads needed to saturate
the transcriptome of E. coli and examined how reducing
sequencing depth affects the ability to detect and quantify
transcripts both within and between samples in diverse
bacterial species.

Results
Ultra-deep sequencing of the E. coli transcriptome
Previous studies have suggested that accurate quantification
of > 95% of transcripts in a mammalian cell line (including
splice junction level quantification) requires ~700 million
reads [17]; however, no estimate of the number of reads
needed to approach saturation of a bacterial transcriptome
has been reported. To address this question, we isolated
total RNA from a log phase culture of Escherichia coli K-12
which was then depleted of rRNA using the RiboZero kit
(Epicentere), converted to a strand-specific Illumina cDNA
library as described [14], and sequenced in one lane of
Illumina HiSeq. This produced a dataset of more than 306
million total reads aligning to the E. coli K-12 genome.
Over 97% of these reads corresponded to properly mapped
paired end reads, i.e. those corresponding to reads derived
from opposite ends of the same cDNA mapping no more
than 450 base pairs apart on the genome (the approximate
maximum size of cDNAs in the library – see Methods).
Properly mapped paired end reads were resolved into a
single fragment by filling in the gap between them (if any).
For pairs of reads that was not properly mapped, one read
was discarded and the remaining reads along with unpaired
reads were each treated as independent fragments. In total
this dataset contained approximately 156 million aligned
fragments with an average length of 159 nucleotides. rRNA
depletion in this sample was nearly complete, with less
than 0.15% of fragments aligning to rRNA-encoding genes
(Additional file 1: Table S1).
The proportion of annotated ORFs represented in

this dataset was very high, with all but 2 of 4149 ORFs
annotated in RefSeq covered by at least 1 fragment
(Additional file 2: Table S2). Coverage of the genome
also approached saturation, with at least 1 fragment map-
ping to over 94% of strand-specific genomic positions.
Importantly, the density of this coverage varied markedly
among different regions of the genome (Figure 1A). For
example, while 96% of bases within annotated ORFs were
detected by 10 or more fragments, only 60% of bases in
regions antisense to annotated ORFs were detected above
this cutoff. Similarly, the density of coverage was relatively
high for genes encoding non-coding RNAs (ncRNAs) and
relatively low in intergenic regions (Figure 1A).
As shown in Figure 1A, a surprisingly high proportion

of antisense and intergenic positions were covered by at
least 1 fragment. We reasoned that this could be due to
limitations in the method used to maintain strand speci-
ficity in our libraries [18,19]. In this method, dUTPs are
incorporated only into the second strand of cDNAs du-
ring cDNA synthesis and these dUTPs are then excised
prior to library amplification, ensuring that only the first
cDNA strand is efficiently amplified. Incomplete incor-
poration and/or excision of dUTPs would presumably
lead to low levels of antisense fragments corresponding
to the second strand of cDNAs. To assess the level of
second strand contamination in our samples, we compared
the average fragment coverage on the sense and antisense
strands of each annotated ORF with the expectation that
this coverage should be somewhat correlated if second
strand removal was incomplete. As shown in Additional
file 3: Figure S1, there was very little positive correlation
(R2 = 0.0004) between the fragment coverage of sense
and antisense strands, even among highly expressed
genes. In contrast, the correlation in the coverage of ORF
sense and antisense strands was much higher (R2=0.83)
when a similar rRNA-depleted E. coli cDNA library was
not subjected to dUTP excision prior to amplification
and sequencing. Thus, incomplete strand specificity in
our libraries does not seem to have contributed sig-
nificantly to the observed high coverage of antisense
positions.



Figure 1 Coverage of the E. coli K-12 genome by ultra-deep RNA-Seq data. Annotation of genomic positions as antisense ORF, non-coding
RNA (ncRNAs) intergenic (IGR), and antisense to ORFs or ncRNAs (AS) was based on gene annotations in the RefSeq and Rfam databases.
Positions on the opposite strand of genes were annotated as antisense only if no other genes were annotated at those positions. A) without
gDNA subtraction. B) with 0.5% gDNA subtraction. C) with 1% gDNA subtraction.
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Another explanation for the high coverage of antisense
and intergenic positions observed is that a much higher
proportion E. coli genome is transcribed than is suggested
by current gene annotations. Indeed, several recent studies
have demonstrated widespread transcription from the anti-
sense strand of protein-encoding genes in diverse bacteria
[20-23]. While in some cases these antisense transcripts
have been shown to play important regulatory functions,
two recent studies in Bacillus subtilis and E. coli K-12
suggest that many antisense RNAs derive from spurious
transcription initiation or incomplete transcription ter-
mination and may not be functionally relevant [24,25].
Thus many of the fragments aligning to intergenic regions
of the genome may correspond to non-specific trans-
cription initiation or leaky transcription termination of up-
stream genes. Other sequences from intergenic regions
may be derived from previously unannotated ncRNAs.
Recent studies suggest the prevalence of ncRNA genes has
likely been underestimated, even in well-studied bacteria
such as E. coli K-12 [7,26].
Finally, the nearly complete RNA-Seq read coverage of

the genome could also reflect contamination of our cDNA
libraries with a low amount of E. coli genomic DNA
(gDNA). While total RNA was subjected to 2 rounds of
DNase treatment and no gDNA was detected following 40
rounds of PCR prior to cDNA synthesis, it is possible that
removal of gDNA from our total RNA was not complete.
Similarly, reagents used after DNase treatment in library
construction may also have introduced low amounts of
E. coli gDNA contamination.
Taken together our findings suggest that a sequencing

depth of 156 million fragments is sufficient to saturate
the E. coli K-12 transcriptome but also yields numerous
fragments aligning to very rare and potentially non-
functional transcripts and/or to low-level contaminants
introduced during library construction.

Genome coverage of RNA-Seq data after background
subtraction
While read coverage of annotated E. coli genes was
nearly complete in the 156M read dataset, the possibility
of gDNA contamination raised concern that some of
these genes were not actually transcribed. To better esti-
mate the proportion of E. coli genes transcribed under
the conditions tested, we devised an algorithm to sub-
tract potential gDNA background from our RNA-Seq
dataset based on the assumption that, unlike reads
corresponding to cDNAs, the alignment of reads cor-
responding to gDNA would be uniformly distributed
across the E. coli genome. As shown in Figure 1B and
1C, background subtraction assuming 0.5% or 1% gDNA
contamination led to relatively modest decreases in ORF
and ncRNA coverage but to significant drops in coverage
of IGR and AS positions. Indeed, after applying a 1%
background subtraction, only 33% and 62% of AS and
IGR positions were covered at saturation, respectively,
compared to 90% and 92% of ORF and ncRNA position,
respectively. While the actual extent of gDNA contami-
nation is difficult to ascertain, the results of our PCR
screen prior to cDNA synthesis suggest it is unlikely to
be as high as 1%. Yet even with this high level of sub-
traction, at least 1 and 10 reads aligned to 98% and 95%
of annotated ORFs, respectively, suggesting that a very
high proportion of annotated E. coli genes are expressed
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at least at low levels during exponential growth in rich
media.
Of the 100 ORFs to which no reads aligned following

1% subtraction, several are near the minimum size cutoff
of cDNAs efficiently maintained during library construc-
tion. These include 4 of the 5 ibs toxic membrane pro-
teins that may indeed not be expressed under normal
growth conditions [27] (Additional file 2: Table S2).
Importantly, ORFs annotated as “predicted proteins” or
encoded within annotated prophages were enriched
more than 2- and 4-fold, respectively, among the un-
detected ORFs. Moreover, many undetected ORFs were
clustered in known operons, including 5 of 7 ORFs in
the rut operon involved in pyrimidine degradation [28],
5 of 6 ORFs in the cit operon encoding components of
Figure 2 Coverage of annotated E. coli K-12 ORFs by ultra-deep RNA-
fragments/ORF A) Coverage of ORFs by data derived from rRNA-depleted a
datasets of the rRNA-depleted sample.
an inactive citrate lyase [29], and 8 of 15 ORFs in the
phn operon required for use of phosphonate and phos-
phite as phosphorous sources [30] (Additional file 2:
Table S2). Some of the 100 ORFs not represented in our
RNA-Seq data have been shown to be expressed in other
studies conducted under different growth conditions,
suggesting the transcription of these genes is highly
repressed and/or the half-lives of these transcripts is very
short during exponential growth of E. coli K-12 in LB
medium.

Effect of ribosomal RNA depletion on RNA-Seq
transcriptome profiles
We next assessed to what extent rRNA depletion
increases detection of low expressed transcripts by
Seq data. In each plot, the X-axis denotes the minimum threshold of
nd undepleted samples. B) Coverage of ORFs by full and sampled



Haas et al. BMC Genomics 2012, 13:734 Page 5 of 11
http://www.biomedcentral.com/1471-2164/13/734
RNA-Seq. To this end, we constructed another Illumina
library derived from the same total RNA used to pro-
duce the initial rRNA-depleted dataset and sequenced
this library in a single Illumina HiSeq lane. While the
depleted and undepleted libraries yielded a similar num-
ber of total fragments, 82% number of fragments in the
undepleted sample aligned to rRNAs and the number of
fragments aligning to ORFs in this sample was more
than 8-fold lower than in the depleted sample.
As expected, the proportion of annotated ORFs detected

was higher in the depleted than the undepleted samples
(Figure 2A). However, even in the undepleted sample, at
least one fragment mapped to over 99% of annotated ORFs,
and over 96% of annotated ORFs were associated with 20
or more fragments. Moreover, the subset of ORFs detected
with a minimum of 10 fragments per ORF was only 2%
lower in the undepleted sample. Thus, in a dataset contain-
ing enough fragments to saturate the E. coli transcriptome,
the lack of rRNA depletion greatly reduced the number of
mRNA-derived fragments obtained but led to only a rela-
tively modest decrease in the proportion of annotated E.
coli ORFs detected.

Effect of decreased sequencing depth on RNA-Seq
transcriptome coverage in E. coli
To systematically assess how decreasing fragment counts
per sample affects the comprehensiveness of gene expres-
sion profiles, we developed scripts that randomly sampled
our 156 million fragment rRNA-depleted E. coli RNA-Seq
dataset to create datasets with decreasing numbers of
fragments. The ORF and genome coverage provided by
these datasets was then quantified and compared. To
ensure our sampling approach accurately simulated mul-
tiplexing, we re-sequenced the E. coli cDNA library, this
time multiplexed with 11 unrelated libraries in the same
HiSeq lane, producing a dataset with approximately 15
million total fragments. Importantly, both the levels of
genome coverage and the number of fragments per ORF
in this dataset correlated very well (R2 > 0.99) with those
of a dataset of 15 million fragments sampled from the
156 million fragment dataset.
As shown in Figure 2B, reducing the number of frag-

ments led to a decrease in the proportion of annotated
ORFs to which 1 or more fragments aligned. However,
this decrease was often relatively small compared to the
reduction in the number of fragments. For example,
decreasing the number of fragments over 15-fold from
156 to 10 million fragments led to only a 3% and 7% loss
in the number of ORFs detected with more than 5 and
10 fragments, respectively. Indeed, even with only 2 mil-
lion fragments, 96% and 84% of ORFs were covered by
at least 1 fragment and 5 fragments, respectively.
As shown in Figure 3A, positions within annotated

genes were nearly saturated by 50 million fragments,
and only relatively incremental increases in annotated
gene coverage were obtained above 10 million frag-
ments. A similar trend was observed in intergenic posi-
tions. As the number of fragment continues to increase
beyond 50 million, nearly all new positions detected
were within antisense regions of the genome, many of
which, as discussed above, may correspond to non-
functional spurious transcripts or gDNA contamination.
Indeed, in the background subtracted datasets, very few
new positions were detected in any category in datasets
with more than 50 million fragments (Figure 3B and
3C). Taken together, these findings suggest that 50 mil-
lion non-rRNA fragments yield nearly complete cover-
age of biologically relevant E. coli transcripts expressed
during log phase growth in LB. Moreover, they suggest
that vast majority of the E. coli transcriptome can be
detected under this growth condition even with datasets
of only 5-10 million non-rRNA fragments.

Effect of decreased sequencing depth on RNA-Seq
transcriptome coverage in M. tuberculosis and V. cholerae
The regulatory networks governing gene expression can
diverge significantly among different bacteria. Moreover,
patterns of gene expression can vary dramatically among
different growth conditions. To assess whether the rela-
tionship between sequencing depth and transcriptome
coverage described above extends beyond log-phase E.
coli K-12 cultures growing in LB, we repeated the analysis
above with RNA-Seq data derived from log phase LB cul-
tures of Mycobacterium tuberculosis (Figure 4), a species
whose GC content, gene content and organization, and
physiology are significantly diverged from those of E. coli.
Importantly, similar levels of coverage of annotated ORFs
and ncRNAs were seen in these M. tuberculosis data-
sets containing 5 and 10 million non-rRNA fragments
(Figure 4). We also analyzed RNA-Seq datasets containing
5 and 10 million non-ribosomal fragments derived from
log phase cultures of Vibrio cholerae growing in M9 min-
imal medium [3] and found similar levels of gene cover-
age, though coverage of antisense and intergenic regions
in these data was somewhat lower (Figure 4). These results
suggest that a sequencing depth of 5-10 million non-
rRNA fragments enables profiling of the vast majority of
transcriptional activity in diverse species grown under di-
verse culture conditions.

Using RNA-Seq to identify differentially expressed genes:
how important is depth?
In addition to its utility in profiling the transcriptome of a
single strain of interest, RNA-Seq is also a powerful tool for
comparing gene expression among different strains and/or
growth conditions. A recent study by Tarazona et al. exa-
mined the relationship between sequencing depth and the
reliable identification of changes in gene expression in



Figure 3 Coverage of E. coli K-12 genome as sequencing depth increases. Annotations of genomic positions was conducted as described in
the Figure 1 legend. The bar labeled “Total” represents all positions in the E. coli K-12 genome. A) without gDNA subtraction. B) with 0.5% gDNA
subtraction. C) with 1% gDNA subtraction.
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human RNA-Seq data [31] but to date no similar analysis
has been conducted for bacterial RNA-Seq data. To assess
how changes in sequencing depth influence RNA-Seq-
based analysis of differential gene expression in bacteria, we
sequenced rRNA-depleted total RNA isolated from LB
cultures of E. coli O157:H7 strain EDL933 (from hereon
referred to as EDL933) at the late exponential and early
stationary phases. cDNA libraries corresponding to 2 bio-
logical replicates for each time point were subjected to mul-
tiplexed sequencing using Illumina HiSeq to yield 25-30
million fragments per sample. Data between biological
replicates for each time point was were extremely well
correlated (R2 of fragments/ORF = 0.99). To examine the
impact of having fewer fragments on the results of



Figure 4 Coverage of various bacterial genomes by RNA-Seq
data with varying sequencing depth. Annotations of genomic
positions was conducted as described in the Figure 1 legend. 5M and
10M denote RNA-Seq databases with 5 and 10 million non-rRNA
fragments, respectively. Ec, Mt, and Vc correspond to E. coli K-12,
Mycobacterium tuberculosis, and Vibrio cholerae, respectively.

Figure 5 Effect of sequencing depth on the detection of
transcripts in two independent biological replicates. The
percent of all annotated ORFs detected by RNA-Seq above the
indicated RPKM thresholds in both replicates of EDL933 exponential
phase cultures.

Haas et al. BMC Genomics 2012, 13:734 Page 7 of 11
http://www.biomedcentral.com/1471-2164/13/734
differential expression analysis, we scaled down the counts
of fragments per gene from each dataset while retaining the
original values of relative gene expression.
We first used these sampled datasets to determine how

changes in sequencing depth influenced the detection of
transcripts in two independent biological replicates. As
shown in Figure 5, the total number of transcripts
detected in both replicates rose significantly as depth was
increased, particularly among lowly expressed genes. Im-
portantly, these increases began reaching an asymptote
around 13 million fragments, suggesting that additional
depth beyond this point did relatively little to increase
either the number or percent of all genes detected in both
biological replicates.
We next analyzed the full and sampled datasets with

DESeq, a variance-analysis package that uses a model
based on the negative binomial distribution to infer
statistically significant differences in gene-expression
from RNA-Seq data [32]. Based on the counts of gene-
mapped fragments derived from the full RNA-Seq data
set of ~25 million fragments per sample, DESeq identi-
fied 2486 genes (corresponding to 45% of all annotated
EDL933 genes) as being at least 2-fold up- or down-
regulated (P < 1×10-3). As shown in Figure 6A, reduc-
tions in sequencing depth correlated with a decrease in
the number of genes identified as differentially expressed
below this P-value cutoff. As expected, the effect of
decreased depth was most marked for genes whose
differential abundance between the two growth phases
was relatively small (Figure 6A). For example, a 10-fold
decrease in depth resulted in a loss of 38% of genes
2-5-fold differentially expressed but only 9% of genes
whose differential expression was greater than 10-fold.
However, even when the depth was reduced to 2.5-3
million fragments in each dataset, 1704 genes were iden-
tified as differentially regulated more than 2-fold with
P < 1×10-3. Our findings indicate that when data from
well-correlated biological replicates are included, 2-3
million fragments per sample enable a significant num-
ber of genes differentially expressed by 2-fold or more to
be identified with high statistical significance.
The ability to reliably identify differentially expressed

genes by RNA-Seq is affected by a variety of factors
aside from total sequencing depth that can vary signifi-
cantly from one experiment to another, including the
number of biological replicates included and the vari-
ation between them, the average abundance of differen-
tially expressed genes, and the magnitude of their
differential expression under the conditions tested. We
therefore repeated the analysis above with RNA-Seq data
that were distinct in several ways from the EDL933 data.
Specifically, these data were derived from V. cholerae
growing in M9 minimal medium or isolated from the
cecal fluid of 2 orally infected infant rabbits [3]. More-
over, the correlation between the 2 rabbit samples was
much lower than for the EDL933 in vitro samples
(R2=0.69). Finally, the total number of non-rRNA frag-
ments for these datasets was between 4 and 6 million,
significantly less than in the EDL933 datasets.
Despite these numerous differences, the impact of

reducing the number of fragments in the V. cholerae
and EDL933 datasets on the ability to detect differen-
tially expressed genes was very similar (Figure 6B). Im-
portantly, as we observed in the analysis of the EDL933
data, numerous genes were identified as differentially
expressed by at least 2-fold (P < 1×10-3) even with a
reduction of fragments to 2-3 million per sample. These



Figure 6 Effect of decreased sequencing depth on detection of differentially expressed genes by RNA-Seq. Differentially expressed genes
were identified by DESeq with P < 10-3. A) Comparison of EDL933 gene expression in exponential and stationary phase. The total number of
aligned non-rRNA fragments in these datasets ranged from 25-30 million. B) Comparison of V. cholerae gene expression in minimal media and
the rabbit cecum. The total number of aligned non-rRNA fragments in these datasets ranged from 4-6 million.
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included all 16 of the major V. cholerae colonization or
virulence factors identified as induced in the rabbit when
the full datasets were compared [3]. Strikingly, the differ-
ential expression of all but one of these major colonization
and virulence factors was detected (P < 1×10-3) even when
the total number of non-rRNA fragments was reduced
100-fold to 40,000-60,000 total fragments. While it is not
possible to accurately simulate how changes in depth will
affect RNA-Seq comparative gene expression analyses in
all cases, our findings indicate that in diverse species and
growth conditions and even with relatively low correlation
between biological replicates, 2-3 million fragments per
sample enable a significant number of genes differentially
expressed by 2-fold or more to be identified with high
statistical significance.

Discussion
We have conducted a systematic analysis of how
changes in sequencing depth affect analysis of bacterial
RNA-Seq data, both for profiling gene expression in a
single sample and for comparing gene expression among
different strains and/or growth conditions. Our findings
suggest that 5-10 million non-rRNA fragments are
sufficient to detect all but a few of the most low
expressed genes in diverse bacteria growing under a
variety of conditions. Moreover, we found that when the
number of non-rRNA fragments in E. coli exceeds 50
million, detection of biologically relevant transcripts all
but ceases and much of the additional coverage gained
appears to represent very rare transcriptional events
and/or gDNA contamination. We also found that when
RNA-Seq data from biological replicates is available, dif-
ferential expression of numerous genes can be detected
with high statistical significance even when the number
of fragments per sample is reduced to 2-3 million.
The optimal sequencing depth for an RNA-Seq based

study will vary considerably based on the scientific
objective of that study. For applications requiring a com-
prehensive transcriptome profile, coverage exceeding 10
million fragments per sample may be needed, with the
understanding that increasing depth can lead to detection
of sequences that may not represent bona fide transcripts.
Alternatively, the number and diversity of growth condi-
tions included in the analysis can be increased with the
expectation that, while the number of reads per sample
will be decreased, numerous transcripts whose abundance
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is low under one condition will be more highly expressed
and thus easier to detect under another condition. For
applications aimed at discovery of a relatively small num-
ber of previously unannotated genes to be subjected to ex-
perimental validation and/or functional characterization,
lower sequencing depth can provide sufficient sensitivity.
Indeed, a depth of 4 million non-rRNA fragments was
sufficient for identification of several dozen previously
unannotated ncRNAs in V. cholerae [3]. Similarly, even
with only 25,000-30,000 non-rRNA fragments per sample
we were able to identify 184 annotated genes in EDL933
whose abundance differed more than 2-fold between late
exponential and early stationary phases (P < 1×10-5). Thus,
our findings suggest that for many RNA-Seq based studies
in bacteria, the number of fragments needed to profile
gene expression in a single rRNA-depleted sample isolated
from a bacterial monoculture is far less than that pro-
duced in a single Illumina HiSeq lane. Indeed, our findings
suggest that at a certain point increased sequencing depth
may actually be detrimental to the accurate mapping of
biologically relevant transcripts, yielding reads that likely
represent contaminants in the cDNA library or the pro-
ducts of spurious transcriptional events.
A HiSeq lane typically produces about 150 million

paired end reads under current run conditions. Thus,
multiplexing 15-30 samples per lane will yield the 5-10
million reads per sample that are sufficient for most
applications of bacterial RNA-Seq. Indeed, our findings
suggest that for studies of differential gene expression,
even significantly higher levels of multiplexing result in
relatively modest decreases in sensitivity. For these types
of studies, the added biological information provided by
the inclusion of more strains, growth conditions, and/or
biological replicates may outweigh this loss of sensitivity
for detecting transcriptional changes in each pairwise
comparison of samples. Our findings also suggest that
for studies in which only a few samples are to be
sequenced in a single lane, a sufficient number of reads
may be obtained for samples that are not depleted of
rRNA and thus the time and cost associated with rRNA-
depletion may not be justified. Finally, for studies invol-
ving only one or two samples, such as pilot or proof-of-
principle experiments, lower throughput platforms such
as Illumina MiSeq platform may be more appropriate
than the HiSeq platform. MiSeq yields only about 7.5
million paired end reads per lane with a only a slightly
lower reagent cost than a lane of HiSeq but produces
data in a fraction of the time needed for a HiSeq run,
making it a good option for those seeking to quickly
obtain profiles of gene expression in only a few rRNA-
depleted samples.
The analysis we conducted was largely limited to data

derived from single bacterial strains grown in culture.
However, RNA-Seq is increasingly being used to study
the transcriptomes of bacteria growing in animal hosts
and/or as part of complex bacterial communities. Sam-
ples isolated from animal models are often contaminated
with a large amount of host RNA. In RNA derived from
microbial communities, transcripts corresponding to
particular strains of interest will often be greatly out-
numbered by those expressed by the numerous other
members of the community. Thus, in RNA-Seq data
representing mixed samples, the number of reads corre-
sponding to transcripts of interest can be orders of mag-
nitude lower than in data derived from a homogeneous
bacterial culture. Using RNA-Seq to unravel the dyna-
mics of bacterial gene expression in these complex and
biologically relevant samples will therefore require sig-
nificantly greater sequencing depth per sample, a robust
depletion of bacterial rRNA, host rRNA, and host
mRNA, and/or enrichment for transcripts of interest
through methods such as hybrid capture.

Conclusion
We have conducted a systematic analysis of how
changes in sequencing depth influence the profiling and
comparison of transcriptomes by RNA-Seq in diverse
bacterial species and growth conditions. Our findings
provide a guide for determining the appropriate sequen-
cing depth for a wide variety of RNA-Seq-based studies
of bacterial gene expression.

Methods
RNA extraction and processing
RNA was isolated by incubation by TRIzol (Invitrogen)
followed by passage through Direct-zol columns (Zymo
Research). Isolation of M. tuberculosis RNA included bead
beating during incubation with TRIzol [33]. Total RNA was
depleted of ribosomal RNA using the Ribo-Zero rRNA
Removal Gram-negative Kit (for E. coli and EDL933) and
Gram-negative Kit (for M. tuberculosis) (Epicentre) accor-
ding to the manufacturer’s protocol. mRNA-enriched RNA
isolated using Zymo RNA Clean & Concentrator columns
(Zymo Research) and treated with DNase using the
TURBO DNA-free kit (Ambion) according to the manufac-
turer's protocol. The RNA was then fragmented in a reac-
tion with 5X Fragmentation Buffer (Affymetrix) heated at
80°C for 6 minutes and purified using the Zymo RNA
Clean & Concentrator columns (Zymo Research).

cDNA synthesis
Unless otherwise indicated, all reagents in this section were
obtained from Invitrogen. For first strand cDNA synthesis,
RNA was incubated with random hexamers at 70°C for 10
minutes and then chilled on ice. The primer and RNA
template mix was then added to 5X FS Buffer, 0.1 M DTT,
10 mM dNTP mix, Actinomycin D (Sigma-Aldrich),
Superase-in (Ambion), and SuperScript III. This reaction
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was incubated at 25°C for 10 minutes and at 55°C for 1
hour, then chilled for 5 minutes on ice and cleaned up
using Zymo RNA Clean & Concentrator (Zymo Research).
The second strand cDNA synthesis reaction contained the
product of the first strand synthesis reaction, 5X FS Buffer,
5X SS Buffer, 0.1 M DTT, 10 mM dUTP mix (Affymetrix/
USB), RNase H, DNA Ligase (NEB), and E. coli DNA poly-
merase I (NEB). This reaction was incubated at 16°C for
2 hrs then placed on ice and terminated with 10 ul of 0.5
M EDTA. cDNA was then isolated from this reaction using
the MinElute PCR Purification Kit (Qiagen).

Illumina library construction and sequencing
cDNA fragments were end-repaired and phosphorylated,
followed by adenylation of 30ends and adapter ligation as
described [34] with the exception of replacing standard
paired end adapters with forked adapters containing
unique 8 base index sequences. Samples were gel size-
selected for 150-450bp fragment size (4% agarose, 85V,
3 hours.) Size-selected adaptor ligated cDNA was preincu-
bated with 1 ml Uracil-Nglycosylase (Applied Biosystems)
at 37°C for 15 minutes to remove uracils from the second
cDNA strand. Following incubation at 95°C for 5 minutes,
each sample underwent 18 cycles of PCR in 4 duplicate
reactions. Each set of 4 reactions was then combined and
purified using MinElute columns (Qiagen). Purified lib-
raries were profiled using the Agilent Bioanalyzer and
sequenced using the Illumina Hi-Seq platform to yield
76-101b paired end reads.

RNA-Seq data analysis
Reads were aligned to RefSeq reference genomes
(see Additional file 1: Table S1) using BWA [35] version
5.9. Gene annotations were obtained from RefSeq and
Rfam [36]. The overall fragment coverage of genomic
regions corresponding to features such as ORFs and
rRNAs was conducted as described [3].
In calculating the number of fragments aligning to each

feature, the paired-end strand-specific RNA-Seq reads were
assigned to these features based on their overlapping
genomic coordinates and strand orientation using a custom
PERL script. Counts of RNA-Seq fragments were computed
for each feature based on the paired-read mappings.
Fragments aligning to the DNA strand opposite from the
transcribed orientation of corresponding annotated features
were classified and counted as antisense. In the minority of
cases where only one read of a pair aligned to the genome,
the entire fragment was assigned to the overlapping feature.
Where each paired read of individual fragments aligned to
different features, each feature was assigned a partial frag-
ment count corresponding to 1/(number of mapped fea-
tures). Differentially expressed genes were identified using
the feature-assigned fragment counts for each replicate as
input to the DESeq software [32].
Genome sequence coverage by RNA-Seq alignments
was computed using a custom PERL script, where the
strand-specific nucleotide coverage (C) was incremented
at each nucleotide position spanned by a read or across
the range covered by the boundaries of an RNA-Seq
fragment inferred from a pair of properly mated paired
end reads. Background subtraction assuming a given
percent of genomic DNA contamination (pctBkg) was
performed as follows. The total strand-specific coverage
was computed by summing strand-specific nucleotide-
level coverage (Csum) observed across the genome. The
expected nucleotide-level coverage due to genomic DNA
contamination (Cbkg) was computed as:

Cbkg ¼ Csum � pctBkg=1000ð Þ

The effective nucleotide-level background-subtracted
coverage (Ceff ) values were computed as follows:

Ceff ¼ �
C � Cbkg <¼ 0ð Þ : 0;

C � Cbkg >¼ 1ð Þ : floor C � Cbkgð Þ;

0 < C � Cbkg < 1ð Þ : 1

with probability C � Cbkgð Þ else 0g

Additional files

Additional file 1: Table S1. Refseq accession numbers for strains
included in this study.

Additional file 2: Table S2. Reads per annotated ORF in 156M
fragment data set before and after background subtraction.

Additional file 3: Figure S1. Correlation of coverage of the sense and
antisense strands of annotated ORFs.
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