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Abstract

Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple
regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors
of smooth muscle cells (SMC) such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth
muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates
contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are
robustly upregulated downstream of transforming growth factor beta-1 (TGFb1), a known inducer of SMC contractility.
RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC) inhibited cell contractility under both basal and
TGFb1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown
did not alter expression of the contractile proteins a-SMA, calponin or SM22a. However, JunB silencing decreased levels of
Rho kinase (ROCK) and myosin light chain (MLC20). Moreover, JunB silencing attenuated phosphorylation of the MLC20
regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which
JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFb1. Together these findings
demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both
myosin and the actin cytoskeleton.
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Introduction

The function of hollow organs such as the urinary bladder is

dependent on appropriate contractility of smooth muscle (SM). In

response to pathologic stimuli, such as mechanical stress, or altered

innervation, smooth muscle cells (SMC) undergo phenotypic

changes that result in loss of differentiation markers, cellular

hypertrophy, increased production of extracellular matrix proteins

and eventual loss of contractile function [1]. Although the

consequences of such tissue remodeling are evident by the

prevalence of diseases associated with aberrant SM function, the

molecular mechanisms that regulate SM phenotype in hollow

organs other than the vasculature are still incompletely un-

derstood.

The AP-1 transcriptional complex has been implicated in

pathologic changes in smooth muscle exposed to injury. Previous

observations from our group implicated discrete AP-1 species as

mediators of PDGF-stimulated SMC migration [2] and stretch-

induced expression of fibrogenic proteins in visceral SMC [3]. In

addition, transforming growth factor-beta 1 (TGFb1) is a ubiqui-

tous cytokine and a key regulator of smooth muscle differentiation

in diverse organ systems (reviewed in [4]). Gene deletion studies in

mice revealed that loss of one allele of TGFb1 led to decreased

expression of canonical SM contractile proteins [5]. Alternatively,

SM-specific ablation of the type II TGFb receptor in smooth

muscle cells (SMC) during development led to compromised

differentiation of aortic SM and embryonic lethality [6]. Consis-

tent with a role for TGFb1 in contractile protein expression

regulation, elevation of TGFb1 in hollow organs has been linked

to alterations in muscle contractility through direct effects on SM

marker expression. TGFb1 has also been shown to upregulate

expression of profibrotic proteins that ultimately alter tissue

compliance [7–9]. In addition, TGFb1 can affect cell contractility
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by altering components of the actin cytoskeleton. Interestingly,

exposure of cells in culture to TGFb1 increases stress fiber

formation, which in turn can feed forward to regulate SM marker

expression in SMC in a RhoA-dependent manner [10], suggesting

functional interaction between the actin cytoskeleton and the

smooth muscle contractile apparatus.

AP-1 is known to mediate the effects of TGFb1 on target gene

expression in a variety of cell types [11]. TGFb1-stimulated

increases in AP-1 activity underlie expression of SM contractile

proteins, including a-SMA and SM22a [12,13]. Furthermore

pharmacologic inhibition of AP-1 with T-5224, a small molecule

inhibitor, can abrogate TGFb1-induced fibrosis [14]. However,

the role of AP-1 in regulating visceral SMC contractility has not

been explored. In this study, we investigated the functional

significance of AP-1 in regulating contractility in SMC. These

studies reveal a novel role for JunB as an effector of both basal and

TGFb1-stimulated contractility.

Materials and Methods

Ethics Statement
These studies were performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Animal Care and Use Committee of

Boston Children’s Hospital (11-03-1925R). All surgeries were

performed under isoflurane anesthesia and every effort was made

to minimize suffering.

Cell Culture
Primary human bladder smooth muscle cells (pBSMC) were

cultured in DMEM supplemented with 10% fetal bovine serum

(FBS, Valley Biomedical, Winchester, VA), 2 mM L-glutamine,

penicillin (100 U/ml), and streptomycin (100 mg/ml)(all from

Invitrogen, Carlsbad, CA) at 37uC in a humidified atmosphere of

95% air-5% CO2. All experiments were performed on cells

between passages 3 and 6.

Gel Contraction Assay
pBSMC at a density of 150,000 cells/ml were suspended in

a solution of neutralized rat tail type I collagen to a final

concentration of 1.2 mg/ml [15](BD Biosciences, San Jose, CA),

seeded in 24-well plates and placed at 37uC for 1 h to polymerize.

Following overnight equilibration in medium containing 0.5%

FBS, cells were treated with 2.5 ng/ml TGFb1 in medium

containing 0.5% FBS for 24 h. In selected experiments, cells were

co-incubated with TGFb1 and pharmacologic inhibitors of PI3K

(LY294002), Akt (triciribine), MEK (PD98059), p38 SAPK

(SB202190), JNK (SP600125) and Rho kinase (Y27632)(all at

10 mM). Following treatment, gels were released and the extent of

gel contraction was monitored over time on an imaging

workstation. In each case, the control condition was set to 100

percent and all other values were calculated relative to that.

Traction Force Microscopy
To measure pBSMC cell contraction, we implemented a re-

cently described technique called monolayer traction microscopy

[16]. Briefly, polyacrylamide gel substrates were prepared by

mixing acrylamide, bis-acrylamide (Bio-Rad, Hercules, CA), and

0.5 mm diameter yellow fluorescent beads (Invitrogen, Eugene,

OR) in ultrapure water. The mixture was then added to the center

of pretreated 20 mm diameter glass-bottomed wells of 6-well

plates (In Vitro Scientific, Sunnyvale, CA). After polymerization,

gel surfaces were activated by adding 200 ml of 1 mM sulfosucci-

nimidyl-6-(4-azido-2-nitrophenylamino)hexanoate solution

(Pierce, Rockford, IL) and exposed to UV light for 6 min. The

gels were then washed and ligated with collagen type I. The final

gel stiffness was 4 kPa. Following nucleofection with non-targeting

or JunB siRNA oligos, 100,000 pBSMC were added to gels and

incubated overnight in DMEM supplemented with 10% fetal

bovine serum. Following serum depletion for 24 h, cells were

treated without or with TGFb1 (2.5 ng/ml) for a further 24 h, at

which point contractile forces were measured. For each well, we

recorded a spatial map of fluorescent beads that were embedded

within the gel substrate directly underneath the pBSMC cells, as

described [16]. Following detachment of cells from substrates

using 0.05% trypsin, we obtained a second spatial map of the same

fluorescent beads. By comparing the two maps, monolayer

displacement fields could be calculated. From the monolayer

displacement field and with knowledge of substrate stiffness, we

computed the monolayer traction field as described previously

[16]. For each condition, we pooled traction values over all regions

of each monolayer and across all monolayers. From this pooled

set, we computed the median value and the standard error for

each treatment condition.

Transcription Factor ELISA
To examine activation of multiple AP-1 subunits concurrently,

we employed a commercially available AP-1 family Transcription

Factor ELISA (Active Motif, Carlsbad, CA). Nuclear extracts were

prepared from cells treated with 2.5 ng/ml TGFb1 (R&D

Systems, Minneapolis, MN) or vehicle for 8 or 24 h essentially

as described [2]. Protein was quantified using the BioRad DC

protein assay (BioRad Laboratories, Hercules, CA). Three to 5 mg
nuclear extracts were used in the TF ELISA, which was performed

according to the manufacturer’s instructions.

Immunofluorescence Staining
pBSMC were seeded on sterile glass cover slips in complete

medium at a density of 16105 cells per well in 6-well plates.

Twenty-four h later, cells were subjected to serum depletion for

a further 24 h in medium containing 0.5% FBS. Cells were treated

without or with 2.5 ng/ml TGFb1 for 24 h. Cells were fixed in

4% paraformaldehyde for 15 min at RT, rinsed with PBS 4 times

(3 min each) and blocked with PBS/1% BSA/0.1% Triton X-100

for 1 h at RT. Primary antibody to JunB (C37F9, Cell Signaling

Technology, Danvers, MA) at 1:200 dilution in PBS/1% BSA/

0.1% Triton X-100 was added and cells incubated overnight at

4uC in a moist chamber. Cells were rinsed 4 times with PBS

(5 min each), and Cy3-conjugated secondary anti-rabbit antibody

(1:500 dilution in PBS/1% BSA/0.1% Triton X-100) was added

for 1 h at RT, protected from light. Cells were rinsed 4 times with

PBS (5 min each) and mounted with Vectamount containing

DAPI prior to visualization of sections using a Zeiss Axioplan-2

fluorescence microscope (Carl Zeiss MicroImaging, Inc. Thorn-

wood, NY). For IIF staining of tissues, sections were deparaffinized

in xylene, rehydrated through graded ethanols, equilibrated in

PBS for 10 min and blocked for 1 h at RT in PBS/1% serum.

JunB antibody (1:100 in PBS/1% serum/1% BSA/3% Triton X-

100) was incubated with the sections overnight at 4uC in a moist

chamber. Subsequent processing of the sections was carried out as

described above.

Knockdown of JunB by siRNA
To target expression of JunB in pBSMC, ,2.46106 cells were

nucleofected with 100 pmol of either non-targeting (control) or

JunB-specific siRNA oligonucleotides (Dharmacon, Lafayette,

CO) using program A-033 on a Nucleofector IIN (Amaxa, Inc.,

JunB and the Actin Cytoskeleton in Visceral SMC
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Figure 1. TGFb1 induces contractility in bladder smooth muscle cells (BSMC). (A) Human bladder smooth muscle cells were seeded in
collagen gels and treated for 24 h with vehicle (Veh) or 2.5 ng/ml TGFb1, after which the gels were released from the sides of the well and the
resulting decrease in surface area monitored microscopically (top) and quantified (bottom). *p,0.05, t-test. The area of the gel under control
conditions is set to 100%. (B) Whisker plot of results from traction force microscopy of BSMC showing an increase in cell traction forces exerted with
TGFb1 treatment. The contractile response, measured quantitatively as enhanced traction (see Methods) was statistically significant (*p,0.05,

JunB and the Actin Cytoskeleton in Visceral SMC
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Gaithersburg, MD). Approximately 1.86105 cells from each

nucleofection reaction were seeded in plastic plates, in collagen

gels for gel contraction evaluation or on collagen-coated poly-

acrylamide gels for traction force microscopy. Extent of silencing

was determined by semi-quantitative RT-PCR using gene-specific

primers as described [2], or by immunoblot analysis.

Immunoblot Analysis
Following TGFb1 treatment, cells were lysed with 1X lysis

buffer (20 mM Tris-Cl (pH 7.5), 150 mM NaCl, 1% Triton X-

100, 0.5% SDS, 1 mM EDTA, 1 mM EGTA, 2.5 mM NaPPi,

1 mM b-glycerophosphate, 1 mM NaF, 1 mM Na3VO4, 1 mg/ml

leupeptin). To reduce viscosity, lysates were passed through a 30G

needle six times, followed by centrifugation at 16,0006g for

10 min at 4uC and quantification using the MicroBCA assay

(Pierce Chemical Co., Rockford, IL). Samples were resolved by

SDS-PAGE, electrotransferred to nitrocellulose membranes and

blocked with 10% dried milk in PBS/0.1% Tween 20 before

overnight incubation with primary antibodies. Membranes were

washed 3615 min in PBS/0.1% Tween 20, incubated with

species-specific secondary antibodies for 1 h at RT and signals

were visualized by enhanced chemiluminescence (SuperSignal

West Pico reagent, Pierce Chemical Co) and exposure of

membranes to film. Quantitation of protein levels was carried

out using data from at least three independent experiments

(representative blots are shown in inserts). Protein levels were

normalized to their respective GAPDH levels and expressed as

fold change relative to cells transfected with control siRNA and

not subjected to TGFb1 treatment, unless stated otherwise.

Assessment of F:G-actin Ratio
Alterations in the F:G-actin ratio in pBSMC treated with

control or JunB-targeted siRNAs were determined using the G-

actin/F-actin in vivo assay kit (Cytoskeleton, Inc., Denver, CO),

essentially according to the manufacturer’s instructions. Briefly,

cells were lysed in a buffer that solubilizes G-actin but renders F-

actin insoluble. Following high-speed centrifugation (100,0006g at

37uC for 1 h), F-actin was recovered in the pellet, whereas G-actin

Kruskal-Wallis test). The median value of traction and the interquartile range for both groups is shown. (C) BSMC were treated for 30 min with
inhibitors targeting the PI3-kinase/Akt (PI3K-i, Akt-i) mitogen-activated protein kinases (MEK-i, p38-i, JNK-i) or Rho-kinase (ROCK-i), followed by
treatment with vehicle (Control, upper panel of wells) or 2.5 ng/ml TGFb1 (lower panel) for 24 h and were monitored for changes in gel contractility.
Inhibition of signaling via the JNK and ROCK axes abrogated TGFb1-induced gel contraction. Quantification of changes in gel surface area for the
various inhibitors under conditions of TGFb1 treatment is indicated. (D) A transcription factor ELISA was carried out to assess differences in DNA-
binding activities of members of the AP-1 family of transcription factors, using nuclear extracts prepared from BSMC treated with 2.5 ng/ml TGFb1 for
24 h, or control cells. Fold changes are expressed relative to control which is set to 100%.
doi:10.1371/journal.pone.0053430.g001

Figure 2. JunB levels are increased in BSMC in response to TGFb1, and in an ex vivo model of rodent bladder distension. (A) BSMC
were treated with TGFb1 for the indicated times and assessed for JunB levels by immunoblotting. GAPDH is included as a loading control. (B)
Immunofluorescence analysis of BSMC showing increased JunB nuclear localization upon TGFb1 treatment for 24 h. (C) Sections from rat bladders
distended ex vivo for 8 h (injured) were stained sequentially with anti-JunB and Cy3-conjugated species-specific secondary antibody. Increased
nuclear fluorescent signal for both proteins was evident in the detrusor smooth muscle of stretch-injured specimens, but not of non-distended
(control) bladders.
doi:10.1371/journal.pone.0053430.g002

JunB and the Actin Cytoskeleton in Visceral SMC
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Figure 3. JunB silencing attenuates TGFb1-induced changes in cell contractility and cytoskeletal tension, but not induction of
markers of smooth muscle differentiation. (A) BSMC were nucleofected with non-targeting control siRNA or with siRNA against JunB (0.1 mM
and 1 mM) and assessed for JunB protein by immunoblotting (left panel, top). Effective knockdown of JunB was observed, with no change in c-Jun
levels, demonstrating specificity of the siRNA used. Proliferating cell nuclear antigen (PCNA) expression was used as a loading control. 1 mM JunB
siRNA reduced the levels of JunB mRNA by .80%, relative to non-targeting control siRNA, as assessed by semi-quantitative real-time PCR (right
panel) (B) Reduction in JunB protein levels by siRNA in BSMC under basal and TGFb1-stimulated conditions, demonstrated by immunoblotting. JunB
levels were normalized to their respective GAPDH levels and expressed as percentage change relative to cells transfected with control siRNA and not

JunB and the Actin Cytoskeleton in Visceral SMC
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remained in the supernatant. The pellet was resuspended in ice-

cold distilled water to the same volume as the supernatant and

incubated on ice with intermittent pipetting for 1 h in the presence

of 10 mM cytochalasin D in order to dissociate F-actin. Laemmli

buffer was added to equal volumes of the supernatant and the

resuspended pellet, which were then resolved by SDS-PAGE,

electrotransferred to nitrocellulose and probed with anti-actin

antibody.

Rodent Bladder Distension Models
An ex vivo model of bladder stretch injury was used as

previously described [17]. Briefly, 6–8 wk-old female rats were

subjected to TGFb1 treatment. A representative immunoblot and its corresponding quantitation are shown. (C) TGFb1-mediated induction of a-
smooth muscle actin (a-SMA) calponin and SM22a, markers of smooth muscle differentiation, was unaffected by silencing of JunB, as shown by
immunoblotting (left). Quantification of immunoblots is shown in the graph (right). Gel contraction assays (D) revealed that JunB knockdown
significantly reduced both basal and TGFb1-induced changes in cellular contractility. *p,0.05, t-test (E) Inhibition of JunB inhibits basal and TGFb1-
induced contraction. This inhibition of contraction, measured quantitatively as a reduction of traction (see Methods) was statistically significant
(*p,0.05, comparing siCtrl+ TGFb1 or siJunB-TGFb1 with siCtrl-TGFb1;ˆp,0.05 comparing siCtrl+ TGFb1 with siJunB+ TGFb1 Kruskal-Wallis test). The
median value of traction and the interquartile range across all tested groups is shown.
doi:10.1371/journal.pone.0053430.g003

Figure 4. JunB regulates proteins involved in acto-myosin interactions. (A) JunB silencing in BSMC significantly reduces basal and TGFb1-
stimulated levels of Rho-kinase (ROCK1) and phosphorylation of myosin phosphatase target subunit 1 (MYPT1) at two activating Thr residues without
affecting total protein levels. Representative immunoblots are shown in (B). (C) Total and phosphorylated myosin regulatory light chain (MLC20)
levels are reduced upon JunB knockdown. *p,0.05. Representative immunoblots are shown in (D).
doi:10.1371/journal.pone.0053430.g004

JunB and the Actin Cytoskeleton in Visceral SMC
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anesthetized with isoflurane inhalation. The bladder was cathe-

terized and distended to 40 cm water pressure using a gravity

manometer with serum-free DMEM. A low midline incision was

made to expose the bladder. The bladder neck was isolated and

tightened with a 4–0 silk suture. The catheter was removed and

the bladder excised. The excised bladder was placed in serum-free

DMEM and maintained in culture at 37uC in a humidified 5%

CO2/95% air atmosphere incubator. As a control, a non-

distended bladder was harvested and incubated in parallel with

the stretch bladders as a control. Two bladders were employed for

each time point (control and stretch-injured). At the end of the

incubation period, specimens were decompressed, fixed in 10%

neutral buffered formalin at room temperature for 48 h, rinsed

with PBS, dehydrated in ethanol and embedded in paraffin.

Sections of 8 mm thickness were obtained with microtome and

mounted on glass slides. To determine the impact of bladder

distension in an intact animal, we also employed an acute bladder

outlet obstruction model, essentially as described [18]. Briefly, 6-

week old female CD-1 mice under isoflurane anesthesia were

subjected to laparotomy to expose the bladder. The proximal

urethra was ligated with 6-0 nylon suture, and the mice were

recovered following closure of the abdominal wall. Bladder

distension was achieved by urine production by the animal over

a 24 h period, after which organs were harvested.

Statistical Analysis
Where appropriate, comparisons between experimental groups

were performed using Student’s t-test. P values are indicated in

figure legends.

Figure 5. JunB regulates actin polymerization. (A) JunB silencing in BSMC reduces phospho-cofilin levels under basal and TGFb1-stimulated
conditions, without affecting total cofilin levels. *p,0.05; **p,0.005. Representative immunoblots are indicated in (B). (C) Filamentous (F) and
globular (G) actin fractions were purified as indicated in Methods, from pBSMC under vehicle or TGFb1-treated conditions, following treatment with
non-targeting or JunB siRNA. The relative levels of F- and G-actin were subsequently assessed by immunoblotting. Quantification of immunoblot
signals from three independent experiments is shown. *p,0.05. Representative immunoblots are indicated in (D).
doi:10.1371/journal.pone.0053430.g005

JunB and the Actin Cytoskeleton in Visceral SMC
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Results

TGFb1 Induces Contractility in Smooth Muscle Cells
TGFb1 is known to regulate growth, differentiation and

contractility of SMC from different organ sites [4]. Previous data

from our group identified TGFb1 as a potent growth inhibitor for

smooth muscle cells isolated from different regions of the urinary

tract [19]. Here, we determined the impact of TGFb1 on the

contractile phenotype of primary human bladder smooth muscle

cells (pBSMC). First, we evaluated contractility using a gel

contraction assay, as described previously [15]. TGFb1 treatment

led to increased contractility of pBSMC (Figure 1A), with gel

surface area reduced by ,30% in response to growth factor

treatment (p,0.05). Similar changes in cellular traction forces

were observed using traction force microscopy (Figure 1B).

TGFb1 is known to signal through a number of parallel kinase

cascades, including the PI3K/Akt, MAPK and Rho kinase

pathways [20]. To assess which of these may mediate the effects

of TGFb1 on contractility, the gel contraction assay was

performed in the presence of pharmacologic inhibitors of PI3K

(LY294002), Akt (triciribine), MEK (PD98059), JNK (SP600125),

p38 (SB202190) and ROCK (Y27632). As expected, the ROCK

inhibitor, Y27632, a known promoter of SMC relaxation, reversed

the TGFb1-stimulated reduction in gel area (Figure 1C, lower

panel, lane 7). Of the other agents tested, only the JNK inhibitor

SP600125 was effective in inhibiting TGFb1-induced pBSMC

contractility (Figure 1C, lower panel, lane 5). Cells treated with

inhibitors in the absence of TGFb1 displayed minimal contractility

(Figure 1C, upper panel). Similarly, only the JNK and ROCK

inhibitors prevented TGFb1-induced cell contractility in the

multipotent progenitor cell line 10T1/2 (data not shown). To

investigate potential mechanisms that may underlie the effect of

TGFb1 on pBSMC contractility, we employed a quantitative

transcription factor ELISA to assess AP-1 activation. Members of

the AP-1 transcriptional complex are known targets of JNK, and

have been reported to mediate the effects of TGFb1 in other cell

types [11–14]. We screened seven AP-1 subunits for their ability to

bind to a consensus AP-1 motif, and observed a robust and

selective increase in DNA-binding activity of JunB in BSMC

following TGFb1 treatment (Figure 1D). A similar pattern of

selective activation of JunB by TGFb1 was observed in 10T1/2

cells (data not shown).

TGFb1 Induces JunB Expression and Activity in pBSMC
Next, we verified the effect of TGFb1 on JunB levels in

pBSMC by immunoblotting (Figure 2A), and observed a time-

dependent increase in JunB level. In independent cultures of

SMC, JunB levels peaked from 2–8 h after treatment with

TGFb1. Although levels declined after 8 h, appreciable amounts

of JunB were still evident at 24 h. JunB nuclear expression

levels were increased in TGFb1-treated pBSMC, as observed by

indirect immunofluorescence (Figure 2B). We went on to

investigate expression of JunB in an ex vivo model of bladder

injury. Immunofluorescence analysis revealed an increase in

JunB expression in the detrusor smooth muscle of rat bladders

distended ex vivo for 8 h, compared to sham-operated controls

(Figure 2C). A similar increase in JunB in bladder smooth

muscle was also observed in a mouse model of acute bladder

outlet obstruction (data not shown).

JunB Knockdown in pBSMC Attenuates Contractility
To further test the hypothesis that JunB was a regulator of SMC

phenotype, we employed RNA interference to knock down JunB

expression and determined the effect on pBSMC cell contractility.

Following nucleofection of SMC with JunB siRNA duplexes we

Figure 6. A model depicting the role of JunB in regulation of smooth muscle contractility in response to TGFb1 signaling. TGFb1
induces the expression of JunB as well as other markers of smooth muscle differentiation e.g. a-SMA, calponin and SM22a Additionally, TGFb1 also
promotes smooth muscle contraction via ROCK1-mediated regulation of actin polymerization and acto-myosin crossbridge cycling. JunB mediates
this process by promoting the phosphorylation of cofilin, leading to stabilization of filamentous actin and also by regulating the phosphorylation and
absolute levels of MLC20, the regulatory light chain of myosin, and its inhibitory phosphatase, MYPT1. Thus, activation of JunB is critical for the
changes in contractility and generation of cytoskeletal tension observed upon the TGFb1-stimulation of smooth muscle cells.
doi:10.1371/journal.pone.0053430.g006

JunB and the Actin Cytoskeleton in Visceral SMC
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observed effective knockdown of JunB at the protein and mRNA

level (Figure 3A). Importantly, while a 10-fold increase in the

concentration of JunB siRNA led to a dose-dependent decrease in

JunB protein level, there was no change in levels of the closely-

related AP-1 subunit c-Jun. This implies minimal off-target effects

of JunB siRNA. Consistent with the data in Figures 1 & 2, TGFb1
treatment of pBSMC nucleofected with siCtrl oligos induced JunB

expression ,3-5-fold (Figure 3B, lanes 1, 2). This induction was

significantly attenuated under conditions of JunB knockdown

(Figure 3B, lanes 3, 4).

JunB silencing did not alter levels of mRNA (not shown) or

protein (Figure 3C) for a-SMA, calponin or SM22a inpBSMC

in the absence or presence of TGFb1 treatment. In contrast,

however, JunB silencing inhibited both basal and TGFb1-
stimulated contractility of pBSMC as determined in both gel

contraction (Figure 3D) and traction force microscopy

(Figure 3E) experiments. These findings suggest that, whereas

JunB is dispensable for expression of SM contractile proteins, it

plays a significant role in regulation of cytoskeletal tension.

JunB Regulates Contractility through Effects on Both MLC
and Actin
Cytoskeletal tension is controlled by diverse elements including

actin filaments, actomyosin interactions and microtubules, several

of which are downstream of the RhoA-ROCK axis. Initial

observations in the gel contraction assay demonstrated reversal of

TGFb1-induced contractility in cells pre-treated with the ROCK

inhibitor Y-27632 (Figure 1C). Consistent with a role for ROCK

in mediating JunB-dependent effects on pBSMC contractility, we

observed a marked decrease in ROCK1 protein levels following

JunB knockdown (Figure 4A). Phosphorylation of the ROCK

target MYPT1 at Thr696 and Thr853 was also decreased in JunB-

silenced pBSMC, with no change in total MYPT1 protein levels

(Figure 4A, B). We observed a modest reduction in total and

phospho-MLC20 protein levels with JunB knockdown under basal

and TGFb1-treated conditions (Figure 4C, D).

Next, we investigated the impact of JunB silencing on the actin

cytoskeleton. In agreement with the observed reduction in ROCK

levels, JunB knockdown led to decreased phosphorylation of the

actin depolymerization factor cofilin, without affecting total cofilin

levels (Figure 5A, B) under both basal and TGFb1-stimulated

conditions. Phosphorylation of cofilin inactivates its actin-severing

activity, such that reduced phosphorylation would be expected to

increase actin depolymerization. Consistent with this, we observed

a significant reduction in the F:G actin ratio indicating an increase

in depolymerized actin following JunB silencing in pBSMC

(Figure 5C, D). These findings are consistent with the decreased

ability of JunB-silenced pBSMC to (a) promote contraction of

collagen gels (Figure 3D) and (b) exert tension on a deformable

substrate, as assessed by traction force microscopy (Figure 3E).

Taken together, our results demonstrate a requirement for JunB in

regulating actomyosin-mediated contractility in pBSMC.

Discussion

In this study, we provide evidence to support a role for JunB as

a novel regulator of contractility in visceral SMC. In particular, we

demonstrated that siRNA-mediated knockdown of JunB attenu-

ated contractility and cellular traction forces under basal

conditions, and in response to a known procontractile agonist,

i.e. TGFb1. Among AP-1 family members JunB emerged as the

dominant effector of TGFb1 in pBSMC. We also showed that

JunB elicited its effects on contractility by regulating ROCK levels,

MYPT1 phosphorylation, cofilin phosphorylation, which impact-

ed both myosin and actin arms of the contractile apparatus in

pBSMC (Figure 6).

TGFb1-induced contractility in smooth muscle has been

reported previously [21–23] and JunB mRNA levels are increased

by TGFb1 in various cell types [24–28]. However, the extent to

which JunB activity contributes to (a) basal levels of contractility

and (b) TGFb1-induced contractility, in visceral SMC has not

been described. Smooth muscle contraction is initiated by the

phosphorylation of regulatory myosin light chain, MLC20, an

event that can be reversed by myosin phosphatase-mediated

dephosphorylation. ROCK can phosphorylate both MLC20 and

myosin phosphatase. As a result, it can promote cross-bridge

cycling either directly via MLC20 phosphorylation or indirectly by

phosphorylating the myosin phosphatase targeting subunit

MYPT1.

In a recent study, conditional ablation of JunB in vivo using

a Col1a2-driven Cre recombinase was found to downregulate

expression of Myl9, the gene encoding MLC20 in vascular SMC

[29]. In contrast, our findings showed that silencing of JunB in

pBSMC (i.e. visceral SMC) did not alter Myl9 mRNA levels,

suggesting that JunB-mediated transcriptional regulation of Myl9

may differ in SMC from discrete origins. Knockdown of JunB did

lead to a partial reduction in MLC20 protein level under basal

conditions that could not be fully rescued following TGFb1
treatment. In the case of ROCK1, protein levels were sensitive to

JunB knockdown independent of TGFb1 treatment, suggesting

a potential role for JunB in regulating ROCK gene expression.

Transcriptional regulation of the ROCK promoter has not been

investigated in detail. It would be interesting in future studies to

explore the role of JunB in this regard. In agreement with the

decrease in ROCK levels, phosphorylation of MYPT1 was

attenuated in JunB-silenced cells irrespective of TGFb1 treatment.

Although the dependence of ROCK1 expression on JunB is clear,

the reasons for the lack of induction of ROCK1 by TGFb1 are

unclear, but may reflect the kinetics employed in these studies or

the requirement for additional signals downstream of TGFb1
stimulation that may compensate for absence of JunB.

In addition to effects of JunB silencing on myosin regulation,

a key feature of our study was the identification of JunB as a novel

regulator of the actin cytoskeleton in pBSMC. The contribution of

actin polymerization to smooth muscle contractility is increasingly

appreciated [30]. The dynamics of actin cytoskeletal remodeling

are regulated primarily by actin depolymerization proteins, that

themselves are targets of kinases such as ROCK. Cofilin is a major

regulator of actin depolymerization, activity of which is regulated

by phosphorylation. Phosphorylation of cofilin on Ser 3 inhibits its

actin-severing activity, shifting the equilibrium of the cellular actin

pool from monomeric G to filamentous F-actin [31]. JunB

silencing decreased cofilin phosphorylation, consistent with in-

creased cofilin activity, reduced F-actin levels and a corresponding

decrease in cell contractility.

A recent report demonstrates that expression of JunB itself is

controlled by the dynamics of actin polymerization in the cell [32].

JunB is a direct target of serum response factor (SRF), a ubiquitous

transcription factor involved in smooth muscle proliferation,

differentiation and contractility (reviewed in [33]), along with

megakaryocytic acute leukemia (MAL), an SRF coactivator. MAL

binds to and is sequestered in the cytoplasm by actin monomers,

preventing it from translocating to the nucleus and activating

expression of a subset of SRF-target genes, such as JunB [32,34–

36]. In contrast, expression of c-Fos, another AP-1 family member

that is a transcriptional target of SRF, is unaffected by actin

polymerization levels, demonstrating that SRF alone is sufficient

for activation of select target genes, independent of MAL [32].
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Notably, expression of both JunB and Fos was required to induce

differentiation; neither one alone was sufficient. This is a compel-

ling example illustrating the differential regulation of members of

the AP-1 transcription factor family in response to a given stimulus

and their subsequent downstream effects.

JunB has also recently been linked to epithelial-mesenchymal

transition (EMT) and profibrotic changes induced by TGFb
signaling, in murine mammary epithelial cells [28]. In contrast to

our observations in pBSMC, Gervasi and colleagues showed that

markers of differentiation in response to TGFb stimulation were

significantly reduced upon JunB silencing, as were levels of

tropomyosin (Tpm1), which is required for TGFb-mediated stress

fiber formation. However, in that study no changes in cellular

traction forces or contractility under conditions of JunB knock-

down were described [28].

Alterations in bladder smooth muscle contractility underlie

various conditions afflicting the lower urinary tract, including

overactive bladder secondary to neurologic or inflammatory

insults, diabetic cystopathy and lower urinary tract symptoms

associated with obstruction [1]. Our findings demonstrating JunB

as a major TGFb1 effector, suggests that JunB-mediated

alterations in contractility are likely to contribute to the pathologic

bladder contractility that occurs following spinal cord injury,

a condition in which TGFb1 is known to be upregulated [8].

Furthermore, transcripts for TGFb1 and TGFb1-sensitive genes

are upregulated in bladder SMC under conditions of elevated

bladder pressure and mechanical stimulation [3,37]. This is in

accordance with our observation of rapid and robust induction of

JunB expression and nuclear localization in the detrusor smooth

muscle following acute bladder outlet obstruction and wall

distension in rodent models of bladder injury. Taken together,

these findings suggest that JunB is important for maintenance of

basal contractile function in pBSMC and that the TGFb1-JunB
axis is likely to contribute to abnormal smooth muscle contractility

associated with lower urinary tract dysfunction. The functional

significance and therapeutic relevance of JunB in muscle

contractility in vivo will be explored in future studies.
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