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Abstract

Eukaryotic genes are typically split into exons that need to be spliced together to form the mature mRNA. The splicing
process depends on the dynamics and interactions among transcription by the RNA polymerase II complex (RNAPII) and the
spliceosomal complex consisting of multiple small nuclear ribonucleo proteins (snRNPs). Here we propose a biophysically
plausible initial theory of splicing that aims to explain the effects of the stochastic dynamics of snRNPs on the splicing
patterns of eukaryotic genes. We consider two different ways to model the dynamics of snRNPs: pure three-dimensional
diffusion and a combination of three- and one-dimensional diffusion along the emerging pre-mRNA. Our theoretical
analysis shows that there exists an optimum position of the splice sites on the growing pre-mRNA at which the time
required for snRNPs to find the 59 donor site is minimized. The minimization of the overall search time is achieved mainly via
the increase in non-specific interactions between the snRNPs and the growing pre-mRNA. The theory further predicts that
there exists an optimum transcript length that maximizes the probabilities for exons to interact with the snRNPs. We
evaluate these theoretical predictions by considering human and mouse exon microarray data as well as RNAseq data from
multiple different tissues. We observe that there is a broad optimum position of splice sites on the growing pre-mRNA and
an optimum transcript length, which are roughly consistent with the theoretical predictions. The theoretical and
experimental analyses suggest that there is a strong interaction between the dynamics of RNAPII and the stochastic nature
of snRNP search for 59 donor splicing sites.

Citation: Murugan R, Kreiman G (2012) Theory on the Coupled Stochastic Dynamics of Transcription and Splice-Site Recognition. PLoS Comput Biol 8(11):
e1002747. doi:10.1371/journal.pcbi.1002747

Editor: Roderic Guigo, Center for Genomic Regulation, Spain

Received January 5, 2012; Accepted September 5, 2012; Published November 1, 2012

Copyright: � 2012 Murugan, Kreiman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by NSF grant #0954570 and NIH grant #DP2OD006461-01 and #1R21NS070250-01A1. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gabriel.kreiman@tch.harvard.edu

Introduction

Transcription of eukaryotic genes by the RNA polymerase II

complex (RNAPII) produces a primary mRNA transcript (pre-

mRNA) that contains both exons and introns. Introns are

removed by splicing [1,2,3] via the assembly of a spliceosomal

complex including small nuclear ribonucleo proteins (snRNPs)

[4,5,6,7]. Recent studies show that the majority of genes in higher

eukaryotes are alternatively spliced and, therefore, contribute

significantly to the structural as well as functional complexity and

diversity of organisms [8,9,10]. The process of splicing can start

as soon as the pre-mRNA begins to emerge from RNAPII. Cis-

acting regulatory elements such as splicing enhancers and

silencers generally determine the splicing pattern of a given

multi-exonic gene especially when transcription is not kinetically

coupled to the splicing [11,12,13,14]. However, when transcrip-

tion is coupled to splicing, inclusion or exclusion of an exon in the

final transcript will also be strongly influenced by the transcrip-

tion elongation rate as well as the local concentrations of various

factors involved in the spliceosomal assembly and their interac-

tions [15,16,17,18].

Two basic models have been proposed to explain the various

differences in the alternative splicing patterns of a given gene.

According to the kinetic model [19], inclusion or exclusion of an

exon in the final transcript is determined by the transcriptional

elongation rate associated with the corresponding pre-mRNA in

addition to the cis-acting regulatory elements. Exons are classified

as ‘strong’ or ‘weak’ depending on whether they possess cis-acting

regulatory elements associated with them or not. The inclusion of

‘strong’ exons is favored at higher transcriptional elongation rates

whereas ‘weak’ exons may be included in the final transcript only

when the transcriptional elongation rate is comparatively slower.

Since the concentration of snRNPs in the vicinity of the

transcriptional machinery is fixed under steady state conditions,

a strong exon that has emerged recently from the transcriptional

assembly will have a better chance of interacting with the snRNPs

as compared to a weak exon that emerged earlier. Therefore, a

weak exon will have a better chance to interact with the snRNPs

only when there is a decrease in the rate or a pause in the

transcriptional elongation process. According to the recruitment

model [20], inclusion or exclusion of an exon is also decided by the

interaction of the C-terminal domain (CTD) of RNAPII with a set

of gene and exon specific DNA binding proteins and the snRNPs

[19,20] in addition to cis-acting regulatory elements. The CTD of

the RNAPII interacts directly with the snRNPs and other factors,

increasing the local concentrations of these factors in the vicinity of

the emergence of a weak exon and thus enhancing the probability

of weak exons to interact with the snRNPs.
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There are four basic variables involved in the definition of an

exon: (1) cis-acting regulatory elements [11,12,13] (2) transcription

elongation rate [19] (3) interactions between the CTD of RNAPII

and the snRNPs, hnRNPs and SR proteins [19,20] (often referred

to as ‘recruitment’) and (4) the stochastic dynamics involved in the

recognition of the 59 donor splice sites by U1 snRNPs while the

pre-mRNA is evolving from the transcription assembly. Variables

1 and 3 are specific to each exon whereas variables 2 and 4 are

generic and affect all the exons across various transcripts of an

organism.

Most of the current splice pattern prediction algorithms

consider mainly the cis-acting regulatory elements (variable 1)

[21,22,23], the kinetic model focuses on variable 2 [19] and the

recruitment model considers mainly variable 3 [19,20]. None of

the current algorithms or models considers the stochastic dynamics

associated with the snRNP search process (variable 4). Here we

propose a biophysically plausible theory from first principles to

describe the coupled dynamics of transcription and splicing. This

work presents initial steps towards capturing the basic relationship

between transcriptional elongation and splicing; the simplified

model that we propose does not include multiple critical

components that affect the splicing outcome including cis-acting

pre-mRNA sequence motifs, trans-acting interactions with different

proteins and variable rates of RNAPolII transcription. We focus

on the stochastic dynamics whereby snRNPs locate the 59 donor

sites and how this search influences the outcome of splicing. We

evaluate the theoretical predictions by analyzing expression data at

the exon level from exon microarrays and RNAseq experiments

across different tissues in mice and humans.

Results

A theoretical framework of coupled transcription and
splicing

Recent single cell studies have revealed [24,25,26] that small

nuclear ribonucleoproteins (snRNPs) and other splicing proteins

are freely diffusing inside the entire volume of various nuclear and

splicing factor compartments of within the eukaryotic cell nucleus.

Splicing is kinetically coupled to transcription when the time

required to generate a complete transcript is longer than the time

required for the assembly and catalytic activity of the spliceosomal

proteins. Under such coupled conditions, we must simultaneously

consider at least two different types of dynamical processes: (i)

transcription elongation by the RNA polymerase II transcription

complex (RNAPII) and (ii) the search process whereby snRNPs

locate the 59 donor splicing sites (DSS) on the emerging pre-

mRNA to initiate the spliceosomal assembly (Figure 1). The

freely diffusing U1 snRNP can locate the donor splicing sites via

two different types of mechanisms: a pure three-dimensional

diffusion-controlled collision route (3D) and a combination of

three-dimensional and one-dimensional diffusion dynamics as in

the case of typical site-specific DNA-protein interactions (3D+1D)

[27,28,29,30]. Upon successful binding of the U1snRNP molecule

to the 59 donor site, a cascade of molecular processes involving

multiple snRNPs ensues, culminating in the formation of the

spliceosomal complex and intron removal [1,2,3]. Except for the

binding of U1 snRNPs at the 59 donor site, all the other steps

involve the hydrolysis of ATPs. This means that the binding of U1

is a purely thermally driven process and here we focus on the

dynamics involved in this rate-limiting step. All the other binding

events and reactions, including transcription elongation, involve

ATP hydrolysis and we therefore assume that the effects of thermal

induced fluctuations are minimal in these reaction steps. We

ignore the thermal induced fluctuations over these reaction steps

while describing the search dynamics of snRNPs along the pre-

mRNA. The overall probabilities associated with the interaction of

snRNPs with various DSSs depend on the type of search

mechanism followed by the snRNPs.

We start by considering the model illustrated in Figure 1 where

the U1 snRNP has bound the emerging pre-mRNA via non-specific

interactions facilitated by 3D diffusion and it scans the concomi-

tantly emerging pre-mRNA for the presence of DSSs via 1D

diffusion. At a given time t, let y(t) denote the length of the emerging

pre-mRNA and let x(t) denote the position of the non-specific bound

U1 snRNP on the pre-mRNA chain. The DSS under consideration

is located at position x = n (DSSn), which has not been transcribed at

time t (or is currently not reachable by the snRNP due to steric

hindrance). Such coupled dynamics of snRNPs and RNAPII,

represented by the set of dynamic position variables x and y

(x[½0,y�; y[½0,n�) on the same pre-mRNA, can be described by the

following set of Langevin type stochastic differential equations [31]:

dx=dt~
ffiffiffiffiffi
xd

p
jx,t

dy=dt~kE

ð1Þ

The transcription elongation rate is denoted as kE (bases s21). xd

(bases2s21) is the 1D diffusion coefficient associated with the

searching dynamics of U1 snRNPs towards the DSSn and jx,t is the

delta-correlated Gaussian white noise with Sjx,tT~0 and

Sjx,tjx,t0T~d t{t0ð Þ. The movement of RNAPII along y is

energetically driven via the hydrolysis of ATPs. As a result, the

fluctuations in y are negligible and we use a deterministic description

for RNAPII in Eq. 1.

Let Px,y,tDx0,y0,t0
denote the joint probability of finding the

snRNPs at position x and RNAPII at position y at time t given initial

conditions x0, y0. The Fokker-Planck equation associated with the

temporal evolution of Px,y,tDx0,y0,t0
can be written as follows [31]:

LPx,y,t=Lt~{kELPx,y,t=Lyz xd=2ð ÞL2Px,y,t=Lx2 ð2Þ

Here the initial condition is Px,y,t0 D0,0~d xð Þd yð Þ, ensuring that at

time t0, the probability of finding x0 = 0, y0 = 0 is normalized to one.

The boundary conditions are as follows:

LPx,y,t=Lx
� �

x~0
~ LPx,y,t=Lx
� �

x~y,yvn
~0; Px,y,t

� �
x~n,y§n

~0 ð29Þ

Author Summary

The DNA encoding most eukaryotic genes is interrupted
by long sequences called introns. These introns need to be
removed through the process of splicing to produce the
mature messenger RNA. The process of splicing plays a
critical role in determining the exact aminoacid content of
the ensuing protein. Several molecules denominated small
nuclear ribonucleo proteins (snRNPs) are involved in
finding the appropriate 59 donor splicing sites for splicing.
Transcription and splicing occur simultaneously and the
ultimate product depends on the relative speed of
transcription and the stochastic dynamics underlying
splicing. Here we propose a biophysically plausible theory
that describes the ongoing interactions between tran-
scription and splicing. We show that the theoretical
predictions are consistent with experimental measure-
ments of the abundance patterns of different exons and
transcripts across tissues.

A Theory of Transcription-Splicing Coupling
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Here x = 0 as well as x = y (y,n) act as reflecting boundary

conditions for the dynamics of snRNP. Whenever the snRNP tries

to visit x#0 or x$y it is reflected back into x[[0, y]. Here x~n acts

as absorbing boundary condition whenever y§n.

Let Gx0,y0,t~
Ð n

0

Ð n

0
Px,y,tDx0,y0

dxdy indicate the probability that

RNAPII and snRNP are between position 0 and n at time t (given

starting points x0, y0). Let Tx0,y0
denote the mean first passage time

(MFPT) associated with the binding of snRNP at DSSn starting

from initial conditions (x0, y0). From the definition of MFPT,

Tx0,y0
~{

Ð?
0

t LGx0,y0,t=Lt
� �

dt~
Ð?

0
Gx0,y0,tdt. Noting that before

time n/kE, the DSSn has not emerged yet, we have:

ðn=kE

0

LGx0,y0,t=Lt
� �

dt~{1;

ð?
n=kE

LGx0,y0,t=Lt
� �

dt~{1;

h
ð?

0

LGx0,y0,t=Lt
� �

dt~{2

and therefore Tx0,y0
obeys the following backward type Fokker-

Planck equation [31]:

kELTx0,y0
=Ly0z xd=2ð ÞL2Tx0,y0

=Lx0
2~{2 ð3Þ

with the following boundary conditions:

LTx0,y0
=Lx0

h i
x0~0

~ Tx0,y0

h i
x0~n,y§n

~0

Tx0,y0

h i
x0~n,y0vn

~ n{y0ð Þ=kE

Tx0,y0

h i
x0vn,y0~n

~ n2{x0
2

� �	
xd

ð39Þ

We assume that the residence time associated with dissoci-

ation of the non-specific bound snRNPs from the pre-mRNA is

much higher than the time required by the snRNPs to locate the

59 donor splicing sites. As a result, we have introduced a

reflecting boundary condition at x = 0 in the first boundary

condition. The other boundary conditions can be directly

derived from Eq. 29. The second boundary condition describes

the conditions where RNAPII transcription elongation is the

limiting step and the third boundary condition describes the

conditions where snRNP diffusion is the limiting step. The

particular solution to Eq. 3 for the boundary conditions in

Eqns 39 can be written as follows:

Figure 1. Schematic description of the various simultaneous processes that take place when splicing is coupled to transcription. In
this scheme, the RNAPII complex has already initiated transcription and is currently in the transcriptional elongation step with an elongation rate kE

(bases s21). The RNAPII complex is located at position y(t) on the pre-mRNA chain. The snRNPs can locate the 59 donor splicing site (DSSn) at position
n either via a pure three-dimensional diffusion process or via a combination of three- and one-dimensional diffusion. Here the snRNP has already non-
specifically bound the pre-mRNA and is shown scanning the pre-mRNA at position x(t). DSSn has not been transcribed yet in this scheme.
doi:10.1371/journal.pcbi.1002747.g001

A Theory of Transcription-Splicing Coupling

PLOS Computational Biology | www.ploscompbiol.org 3 November 2012 | Volume 8 | Issue 11 | e1002747



Tx0,y0
~

ð?
0

Gx0,y0,tdt~ n{y0ð Þ=kEz n2{x0
2

� �	
xd ð4Þ

Considering x0 = 0 and y0 = 0 (both RNAPII and snRNP start at

the origin), we have T0,0~ n=kEzn2
	

xd

� �
. The first term is the

time required to generate a pre-mRNA of n bases and the

second term is the time required by the snRNPs to completely

scan this pre-mRNA length via 1D diffusion. The validity of this

equation for the MFPT under various values of n and kE is

illustrated in Figure 2A–B using random walk simulations.

In line with site-specific DNA-protein interactions [27–30], we

assume that snRNP molecules locate their respective DSS binding

sites on the growing pre-mRNA via a combination of 1D and 3D

diffusion-controlled collision routes. Under such conditions, from

Eq. 4 we find the average overall search time (tS,1D3D) required by

the snRNPs to locate DSSn (x0 = 0;y0 = 0):

tS,1D3D~n=kEzn2
	

xdztt=n ð5Þ

Here tt=n (units of seconds) is the 3D diffusion-controlled

collision time required for non-specific binding of U1 snRNP with

the pre-mRNA of length n. Eq. 5 suggests that there exists an

optimum position of DSSn on the emerging pre-mRNA such that

the search time required by the snRNPs to locate this DSSn will be

a minimum. This optimum value can be obtained by solving

LtS,1D3D=Ln~0 for n. The explicit real solution of the resulting

cubic equation is:

nopt~ W1=3zxd
2W{1=3{xd

� �.
6kE ð6Þ

where W~xd 54ttk
3
E{x2

dz6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ttk

3
E 27ttk

3
E{x2

d

� �q� �
. Upon

substituting nopt in Eq. 5 we find the minimum search time

mintS,1D3D.

In line with the prediction of the kinetic model, when the

snRNPs locate the DSSn via a purely 3D diffusion-controlled

collision route, the overall search time is:

tS,3D~n=kEztt=c ð7Þ

In this equation, c (units of bases) is the sequence length within

which the snRNPs can be captured at the 59 donor site. A precise

and tight binding would correspond to c = 1. Upon comparing this

expression with Eq. 5 we find that there exists a critical position

on the pre-mRNA (nc) such that tS,1D3D = tS,3D. Solving the cubic

equation tS,1D3D{tS,3D~0 for n (Figure 2C):

nc~ V1=3
.

6z2ttxdV
{1=3

� �
ð8Þ

where V~ {108ttxdz12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{12t3

t x3
dz81t2

t x2
d

q� �
.

While deriving Eq. 5 we have assumed that the non-specific

bound snRNP does not dissociate from the pre-mRNA chain until it

reaches DSSn. We relax this assumption by modeling the search

dynamics of snRNPs as multiple cycles of dissociation-scan-associa-

tion events. In this modified version of the model, the non-specific

bound snRNP can dissociate after scanning an average pre-mRNA

length of L bases and then it re-associates back at the same or different

location of the pre-mRNA chain. In this way, snRNPs are required to

undergo at least (n/L) such association/dissociation events to scan the

entire length of n bases. Under such conditions, the expression for the

overall search time (tS,d ) can be written as follows:

tS,d~n=kEzn
L2

6xd

z
tt

n


 ��
L ð9Þ

Here L2/6xd is the average time required by the non-specific bound

snRNPs to scan an average of L bases of pre-mRNA before the

dissociation event. The scan length L depends on the magnitude of

the interaction between the snRNPs and the pre-mRNA. When

L = n, Eq. 9 reduces to Eq. 5. When nwL, there exists an optimum

value of L in Eq. 9 at which tS,d is a minimum: Lopt~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6xdtt=n

p
.

The corresponding minimum achievable search time is:

mintS,d~n=kEz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ttn=3xd

p
ð10Þ

One should note that the optimum 1D scanning length can be

achieved by the diffusing U1 snRNPs only when the inequality

condition 6xdttð Þ1=3
ƒn holds since by definition Loptƒn. Further

analysis shows that mintS,d{tS,1D3D will reach a minimum only when

n~ 2xdtt=3ð Þ1=3
. Upon comparing Eqns 5, 7 and 9 we find that

when n,nc, then both tS,d and tS,1D3D will be lower than tS,3D. In the

range L[(0, nopt) the cubic equation tS,d{tS,1D3D~0 has two real

solutions for n (n1,L and n2, marked in Figure 2C) for n. When n[(L,

n2), we find that tS,dwtS,1D3D. The relationship among these different

search times is shown in Figure 2C. These results suggests that among

the three possible modes of searching (pure 3D, 1D3D with multiple

dissociations and 1D3D without dissociation), the 1D3D search mode

of search without any dissociation event will be the most efficient and

preferable one in the range n[(L, n2) where L is the possible 1D

scanning length associated with diffusion of U1 snRNPs along the

emerging pre-mRNAs. We find from Eqs. 9–10 that similar to the

pure 3D diffusion mediated search time (tS,3D), tS,d is also a

monotonically increasing function of n. On the macroscopic level, the

interactions of snRNPs with DSSn can be described by the following

chemical reaction scheme I:

snRNPzDSSn /����?
kon,n

koff ,n

snRNP-DSSn ðScheme IÞ

Here kon,n~1=tS,1D3D (bases21s21) is the bimolecular type forward

on-rate constant associated with the site-specific interaction of

snRNP with the DSSn and koff ,n (s21) is the respective dissociation or

off-rate constant. The sequence of DSSn plays critical role in

determining the value of the off-rate. The number of snRNPs will be

higher than the number of DSSs of a particular pre-mRNA

transcript. In this situation, the thermodynamic probability of

finding DSSn (pn,1D3D) to be bound with snRNPs is:

pn,1D3D~
N0

N0zkoff ,ntS,1D3D

~
N0

N0zkoff ,n n=kEzn2=xdztt=nð Þ ð11Þ

Here N0 is the total number of the freely diffusing snRNPs inside the

nucleus. It follows from Eqns 5–6 that the probability pn,1D3D is

maximized when n = nopt irrespective of the value of the intra nuclear

concentrations of snRNPs or the amount of time for which the

completely transcribed pre-mRNA chain stays inside the nuclear

compartment for further post-transcriptional processing. On the other

hand, when the snRNP search mode is purely via 3D routes then the

probability (pn,3D) is a monotonically decreasing function of n

(Figure 2D):

A Theory of Transcription-Splicing Coupling
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pn,3D~
N0

N0zkoff ,ntS,3D

~
N0

N0zkoff ,n n=kEzttð Þ ð12Þ

From Eqs 11–12, we find lim
N0??

pn,1D3D~ lim
N0??

pn,3D~1 (all DSSn

bound by the snRNP given infinite concentration). Those splicing sites

located closer to the optimum position (n~nopt) approach this limit

faster. Using Eq 11 we define the overall splicing efficiency of a

transcript of length n as follows:

Ss,n~100

ðn

0

pm,1D3Ddm

�
n ð13Þ

The value of the splicing efficiency Ss,n (between 0 and 100%)

indicates how well exons present in a given pre-mRNA transcript

Figure 2. A–B. Validation of the expression for the mean first passage time (MFPT, in seconds) given by Eq. 4 (blue) using random
walk simulations (red) at different elongation rates kE (A) and different positions of the absorbing boundary n (B). Initial positions:
x0 = 0 (snRNP) and y0 = 0 (RNAPII). xd = 1 bases2/s. In A, n = 100 bases and in B, kE = 1 base/s. Whenever the random walker (snRNP) hits the drifting
reflecting boundary x = y, it is put back into the interval (0, y). Whenever y = n and x = y the random walker is removed from the system. The MFPT was
calculated over 105 random walk trajectories (Materials and Methods). C. Minimization of the overall search time by an snRNP to locate the splicing
site DSSn on the pre-mRNA when the search is via 3D only (tS,3D, blue, Eq. 7), 1D+3D routes (tS,1D3D, green, Eq. 5) or 1D+3D including snRNP
dissociation (tS,d, pink, Eq. 9, shown for two different values of the dissociation length L). There exists an optimum position of splice sites at around
nopt = 46104 bases at which the 1D+3D search time is minimized. The time taken for a pure 3D search will be less than the combination of 1D and 3D
search beyond nc,26107 bases. The dashed black line indicates the transcription time (kE/n) and the pink dashed line indicates the minimum search
time (mintS,d, Eq. 10). Here the parameters are xd~8|105 bases2/s, kE = 72 bases/s and tt~109 bases s. With a total of N0~108 snRNPs and
do~4|103 splicing-sites at a given active region of the nucleoplasm (,1% of the total nascent pre-mRNAs) the search time scales down by a factor
of (d0/N0). D. Variation of the overall probabilities associated with the interaction of snRNPs with DSSn as a function of n for different snRNP
concentrations (N0 = 103, 105 and 107 from bottom to top) (Eqns 11–12). The red curves show the probabilities including 1D and 3D search
mechanisms (pn,1D3D, Eq. 11) and the blue curves show the probabilities including only 3D search mechanisms (pn,3D, Eq. 12). pn,1D3D reaches a
maximum at the value nopt, which does not depend on N0. As N0 increases, the optimum position of splicing sites on the pre-mRNA expands into a
wider range of n values. Here the parameter settings were koff,n = 10 s21 and other parameters as in part C.
doi:10.1371/journal.pcbi.1002747.g002

A Theory of Transcription-Splicing Coupling
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of length n interact with the available pool of snRNPs, are

subsequently spliced and hence get included in the final transcript.

This means that the overall levels of the final transcript should be

directly proportional to this splicing efficiency. There exists an

optimum length of pre-mRNA transcript (m) at which Ss,n achieves

a maximum. The optimum m can be obtained by numerical

solving LSs,n=Ln~0 for n. The overall level of the final transcript

will be maximum at n~m since the overall average probabilities

associated with all those exons of the given pre-mRNA transcript

of length m to interact with the available snRNPs will be a

maximum. We consider a transcript c of length n and its expression

in tissue k. We define the overall signal as gc,k,n~
Ð n

0 c,kvidi=n

where c,kvi is the signal from the exon located at position i in

transcript c in tissue k. With this definition we find that the

maximum gene signal value of n occurs at Lgc,k,n=Ln~0 which

means that when n~m the equality gc,k,n~c,kvn holds. This follows

from the fact that Lgc,k,n=Ln~c,kvn=n{
Ð n

0 c,kvidi
	

n2.

Comparison with experimental data
We compare the theoretical predictions outlined in the previous

section with two different types of experimental measurements: (i)

experiments based on exon microarray data and (ii) experiments

based on high-throughput RNA sequencing data (RNAseq)

(‘‘Materials and Methods’’). Upon substituting the parameters tt,

kE and xd into Eq. 6 for the optimum position of the DSS on the

pre-mRNA we find nopt*7|104 bases and the minimum

achievable overall search time required by the snRNPs

mintS,1D3D*2|104s. This search time is significantly higher than

physiologically relevant timescales (for example, the cell’s gener-

ation time). One should note that this higher timescale

corresponds to the interaction of a single snRNP molecule with

a single splicing site. The search time will be proportionately

scaled up/down depending on the number of freely available

snRNPs and nascent splicing sites inside the nucleus as

tS,1D3D?tS,1D3D d0=N0ð Þ. There are ,26104 genes in the human

genome, and there are on average ,10 exons per gene. This

means that there are d0,46103 such splicing sites at any given

active region of the chromosome (corresponding to ,1% of the

total pre-mRNAs being processed). With these values we find

mintS,1D3D*2|104|
4|103

108


 �
sec*1 sec. These results sug-

gest that the appearance of the speckles where snRNPs are

concentrated inside the nucleoplasm of higher eukaryotes is mainly

to scale down the search time required by snRNPs to locate the

splicing-sites on the pre-mRNA.

We conclude from the expression for the probability of finding

the snRNP at position n (pn,1D3D, Eq. 11) that the DSS located at

position n~nopt of the growing pre-mRNA will have more

chances to interact with the available snRNPs. Here the

minimization of the overall search time tS,1D3D is achieved mainly

via the enhancing effects of the increasing numbers of non-specific

interactions of snRNPs with the growing pre-mRNA. We learn

from Eq. 8 that the inequality condition tS,1D3DwtS,3D will hold

whenever nwnc. The current parameter settings yield nc&3|107

bases. Various single-cell studies using fluorescence recovery after

photo bleaching (FRAP) provide an empirical estimate for the

dissociation rate of snRNPs from the pre-mRNA chain:

koff ,n*10 s-1 [24,25,26]. This is an overall off-rate that includes

dissociation of snRNPs from both the non-specific and specific

binding sites (the off-rate of snRNPs from the splicing sites will be

lower than the off-rate from non-specific binding sites.) Using this

value of koff ,n, the limiting behavior of pn,1D3D and pn,3D as N0??
is demonstrated in Figure 2D. This figure suggests that the

optimum position of DSS will spread into a wider range as the

total concentration of snRNPs increases inside the nucleoplasm.

Single molecule studies suggest an average 1D scanning length of

L,100 bases for the DNA-binding proteins under in vivo

conditions [32]. With this value, upon solving the cubic equation

tS,d{tS,1D3D~0 for n we find that n1 = 100 and n2 = 26106 bases.

Since within this range tS,dwtS,1D3D, this result suggests that the

dominating mode of searching of U1 snRNPs for the 59 splicing

sites is likely to be via the combination of 1D and 3D without

dissociation for most of the pre-mRNAs.

We considered microarray data evaluating exon levels in

different tissues and species (Materials and Methods.) Examples

of mouse and human constitutively spliced multi-exonic genes

across various tissues are shown in Figure 3A–B. These examples,

identified using the ranking metric defined in Eq. 14, suggest that

there exists a broad optimum position of splicing sites on the pre-

mRNA at which the probability associated with the inclusion of

the associated exon is maximized. This position is approximately

independent of the tissue analyzed. In these particular mouse and

human genes (Dtnb dystrobrevin beta in mouse and VIT vitrin in

human), this optimum exon number occurs at the pre-mRNA

position of n,56104 to 105 bases (arrow in Figure 3A–B). Other

examples are included in supplementary materials (Figure S1,
S2). The position of the maximum splicing index value,

independently of the tissue, occurs around nopt,76104 bases as

predicted by Eq. 6, with an error margin of ,25%.

Overall analysis of the multi-exonic genes present in both

human and mouse genomes revealed an average intron length of

,46103 bases with a median of ,103 bases. Here the average

length of exons is ,26102 bases with a median of ,102 bases.

Results of genome wide analysis of the median of exon positions on

pre-mRNAs of human and mouse is shown in Figure 3C–D
which reveals the following approximate scaling relationships

between the positions (n) and the exon numbers (e):

n~
102e9=2 eƒ3

104e3=4 ew3

(

The standard error (SE) in such transformation is approximately 5

to 25% of the mean (n) for e in the range 1 to 100 (Figure 3C–D).

This suggests that the optimum positions nopt and mintS,1D3D may

be observed anywhere in the 625% of the predicted values upon a

genome wide averaging across exon numbers e.

The computed first exon normalized average signal (FENAS,

defined in Eq. 15) associated with various mouse tissues (kidney,

brain, liver, muscle and heart) and human tissues (cerebellum,

kidney, liver, heart, muscle and normal and cancerous colon) is

shown in Figure 4A–B. This figure indicates a maximum at

approximately e~h{1 nopt

� �
*13+4. This value corresponds to

the optimum position of the Affymetrix annotated exon on the

pre-mRNA at n*7|104 bases, which is broadly consistent with

our theoretical predictions. We also compared the theoretical

predictions with experimental data obtained from RNAseq

experiments (Materials and Methods). The data from the exon

level and transcript level signals obtained from RNASeq data of

mouse brain and human T293 cells are shown in Figure 4C–D.

The results from the RNASeq data are comparable to those from

the microarray data and also reflect an optimum exon position,

approximately around e~20.

Upon substituting N0~108 molecules, koff ,n~10 s21 and the

empirical values of tt, kE and xd into Eq. 13 and numerically

solving it for the optimum transcript length n = m we find

m*1:25|105 bases (Figure 5). This value corresponds to
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approximately e~h{1 mð Þ*32+5 exons. From the theoretical

analysis, we learn that the overall transcript signal of a given gene

is maximized when the number of exons present in that gene is

closer to this value. We find from Figure 5 that the splicing

efficiency is .95% whenever the length of the pre-mRNA

transcript falls inside the range of ,(102–107) bases. The

distribution of transcript lengths both in humans and mouse is

well within this broad range. Furthermore, we calculated the

genome level averaged transcript signal across various mouse and

human tissues using Eq. 16. Figure 6 suggests that there is a

broad maximum in the transcript signal approximately centered

around e*32 both based on the microarray data (Figure 6A–B)

as well as the RNAseq data (Figure 6C–D). Within the expected

error range of 625%, these distributions and the location of the

maxima are consistent with the theoretical predictions.

To further evaluate whether the experimental data are

consistent with the existence of optimal exon positions, we

computed the distribution of FENAS values for two separate

broad ranges: (1) 20ƒeƒ40 (i.e. around the theoretical optimum)

and (2) ev20 or ew40 (i.e. far from the theoretical optimum). The

Figure 3. A. Example showing the splicing index (se) as a function of the annotated exon number e in mouse gene Dtnb
(dystrobrevin beta, NM_007886, Affymetrix Transcript ID: 6792942). The example illustrates a constitutive splicing pattern across different
tissues. The dashed line (right-axis) shows the exon position (bases) based on the annotations. The plot suggests that there is a coarse optimum exon
position (arrow) associated with a maximum splicing index; across different genes this maximum is coarsely around the predicted value of n,76104

bases in the original pre-mRNA. More examples are shown in Figure S1. B. Example showing the splicing index of the human vitrin gene (VIT,
Affymetrix Transcript ID: 2477203, NM_053276). The format is the same as in part A. More examples are shown in Figure S2. C–D. Scaling
relationship between exon number (e) and exon position (n) on the pre-mRNA transcript for mouse (C) and human (D). Here positions versus exon
numbers for 18 human genes (Transcript id (number of exons), 2598971 (93), 2975385(79), 3123036(30), 2688813(40), 2753440(153), 2975385(79),
2477073 (87), 2477203 (50), 2480700 (114), 2481308 (49), 2481379 (48), 2481929 (54), 2482505 (80), 2552368 (56), 2638509 (69), 2639734 (68), 2828564
(79), 2639552 (134) and 14 mouse genes (6991267 (39), 6946339 (86), 6770718 (40), 6839871 (51), 6946339 (86), 6998972 (64), 6990167 (147), 6805180
(61), 6805180 (61), 6747313 (25), 6747308 (23), 6747314 (38), 6751304 (96), 6771558 (18)) with different number of exons were obtained from the
transcript and probe level Affymetrix annotations. In line with Eq. 17, when ew3 we approximate n~h eð Þ*104e3=4 . Green line-dots are the mean
positions of exons. Brown line-dots are the standard error (SE) associated with the positions of exons. The scaling transformation n~h eð Þ shows an
error of ,25%.
doi:10.1371/journal.pcbi.1002747.g003
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distributions of FENAS signals were significantly different for these

two ranges (t-test, p,0.05, Figure 7).

Discussion

While the RNA polymerase II complex (RNAPII) is producing

the pre-mRNA, multiple splicing factors diffuse inside the nucleus

and initiate the recognition steps required in the process of

splicing. Therefore, the ultimate mature mRNA product depends

on several variables that affect the kinetics of these chemical and

diffusion processes. These variables include RNAPII elongation

speed and the presence of pausing events during transcription, the

steric availability of splicing signals along the emerging pre-

mRNA, exon and intron lengths, the abundance of different

splicing factors and the sequence and hence affinity of those

sequences for the splicing factors. Here we develop a simple

theoretical framework that aims to capture the key interactions

between transcriptional elongation and splicing.

The biophysical model proposed here can explain the effects of

the stochastic search dynamics of small nuclear ribonucleo

proteins (snRNPs) on the splicing pattern of eukaryotic genes.

We considered two different ways to model the dynamics of

snRNPs in the process of locating the splicing sites on the

concomitantly evolving pre-mRNA: a pure three-dimensional

diffusion process and a combination of three- and one-dimensional

diffusion along the pre-mRNA. Our theoretical analysis on the

coupled dynamics of transcription elongation and splicing revealed

that there exists an optimum position of the splice sites on the

growing pre-mRNA at which the time for snRNP binding is

minimized (Figure 2). The minimization of the overall search-

Figure 4. A–B. First exon normalized average signal for exon e and tissue k (fe,k, FENAS measured as defined in Eq. 15). Variation
around these average signals is reported in Figure S3. The analyses are based on the exon microarray data for mouse (A) and human (B) derived
from various tissues [33,34] (Materials and Methods). Irrespective of the type of tissue, there exists an optimum exon number where the probability
associated with that exon to be included in the final transcript is maximized. The dashed line shows the approximate average exon position in base
pairs on the secondary axis. C–D. First exon normalized average signals (FENAS, Eq. 15) as a function of exon number e for various cell types in
mouse (A) and human (B). The data for this figure come from RNAseq experiments (Materials and Methods) (cf. parts A–B using microarray data).
doi:10.1371/journal.pcbi.1002747.g004
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time is achieved mainly via increasing non-specific type interac-

tions between the RNA binding domains of snRNPs and the pre-

mRNA. The theory further revealed that there is an optimum

transcript length that maximizes the sum of the probabilities for

the exons in the transcript to interact with the snRNPs. This

suggested that the overall transcript signal should be maximized at

this transcript length.

We evaluated the theoretical predictions by analyzing exon

microarray data from various mouse and human tissues

(Figures 3–6). The empirical data revealed that the optimum

position of the splice sites on the growing pre-mRNA occurs at

,4.56104 bases and the optimum length of the transcript occurs

at ,7.56104 bases (corresponding approximately to the ,11th

and ,20th exon in the genome wide first exon normalized average

signal space.) The empirical data are broadly consistent with the

theoretical predictions and the model captures, to a first

approximation, some of the variability in exon level signals and

splicing patterns.

Several computational algorithms have been developed to

attempt to predict splicing patterns from DNA sequence. Most of

the current splicing pattern prediction algorithms are solely based

on cis-acting regulatory elements [21,22,23]. Typically each exon

of a given pre-mRNA transcript is assigned a score depending on

the presence or absence of exonic and intronic enhancer or

silencer elements and their degree of conservation across different

species [31]:. Using these exon level scores, transcript level scores

are computed. Our work points out that, before computing the

exonic scores for the presence of cis-acting elements, the

‘backbone’ of the scoring scheme assumes that all the exons are

probabilistically equivalent. This uniform distribution of exon

probabilities may hold only when the snRNP search mode is via

pure 3D diffusion (Figure 2D) or the nuclear concentration of

snRNPs is infinite. In more general scenarios, instead of a uniform

distribution, our theoretical model suggests that the backbone of

the scoring scheme should be given by the probability functional as

defined in Eq. 12–13. In other words, the backbone of the scoring

scheme is determined by the generic variables 2 (transcription

elongation rate), 3 (interactions between RNAPII and snRNPs)

and 4 (stochastic dynamics of snRNP search processes) as

highlighted in the introduction. The model suggests that a

modified scoring scheme would include the background model

that accounts for the coupled kinetics of transcription and splicing

in addition to the exonic scores for the presence of cis-acting

regulatory elements.

The theoretical framework presented here provides initial steps

to describe the coupled chemical and diffusion process that

underlie transcription and splicing. While we focused here on

generic variables that affect all transcripts and genes, a lot of the

transcript-to-transcript and gene-to-gene variability depends on

sequence specific factors, gene-specific transcription pausing

events, regulation of transcriptional termination and the speed at

which the mRNA is transported to the cytoplasm. The theory

proposed here constitutes a starting point to build more

sophisticated models that further incorporate important aspects

of the biology that were not considered in this initial examination.

Materials and Methods

Datasets
To compare our theoretical predictions with experimental

observations, we considered two different types of publicly

available data: (i) exon microarray data and (ii) RNAseq data.

Exon microarray data. We analyzed mouse and human

exon microarray data collected using Affymetrix arrays [33,34].

We used exon level signal data collected in triplicate from five

different mouse tissues (brain, kidney, muscle, liver and heart;

mouse Mo-Ex 1.0) and five different human tissues (cerebellum,

kidney, muscle, liver, heart; human Hu-Ex 1.0). We also

considered the available sample microarray data from normal

and cancerous human colon [33,34].

RNAseq data. We analyzed BOWTIE generated RNASeq

datasets [35,36]. The data sets come from mouse brain

(GSM672532, GSM672537, GSM672528, GSM672534 and

GSM672547), and human 293T cells (GSM860026,

GSM860020, GSM860017, GSM860001 and GSM9685994).

The mouse annotations are based on the mm8 genome build

and the human annotations are based on the hg18 genome build

and the data were obtained from the GEO database [37,38]. We

used the information on sequence type annotation, sequence, and

genomic alignment from the GEO files.

Preprocessing of raw data
Experimental artifacts are introduced in the exon microarray

data by factors such as cross-hybridizing probes, signal heteroge-

neity due to variation in the base composition of probes and signal

variation due to fluctuations in the spot size of probes during

microarray design. The cross-hybridization problem was solved by

removing those probes showing hybridization at more than one

location. Since the variations in probe level signals due to base

composition, spot size and RT reaction are approximately random

in nature, we assume that these errors are ameliorated by

averaging over the scale normalized and background subtracted

probe level signals of a probe set id, exon cluster id or transcript

cluster id..

Exon level analysis
Exon level signals are computed by averaging the probe-set id

level signals contained in an exon-cluster id and transcript level

signals are computed by averaging the exon level signals contained

in a transcript cluster id. Only the Refseq annotated transcript

cluster ids were considered for all the subsequent calculations. We

Figure 5. Overall splicing efficiency Ss,n as a function of the
transcript length n as defined in Eq. 13. The parameters are N0

(102, 103, 104, 105, 106, 107 and 108 molecules from bottom to top),
koff ,�nn~10 s21, xd~8|105 bases2 s21, kE = 72 bases1s21 and tt~109

bases1 s1. At low N0, the splicing efficiency curve shows a maximum (m)
at a transcript length of n*1:25|105 bases, corresponding to

e~h{1 nð Þ&32+5 exons. As N0 increases, the splicing efficiency will
be almost .95% in the range of n values from 102 to 106.
doi:10.1371/journal.pcbi.1002747.g005
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used the standard Tukey biweight algorithm [39] to remove the

outlier probe signals before computing the average. We considered

multiple transcripts (indexed by c) and different tissues (indexed by

k). Let se,c,k denote the log2 of the expression level of the eth exon in

transcript number c and tissue number k. The relative probability

pe,c,k associated with the eth exon to get included in the final

transcript was defined as pe,c,k~
se,c,kPmc

i~1 si,c,k

where mc is the total

number of exons in transcript c. The probability pe,c,k is directly

related to the splicing-index (se,c,k) of the associated exon which is

a measure of the extent of alternative splicing in that transcript,

defined as se,c,k~se,c,k=gc,k where gc,k is the overall level of

transcript c in tissue k. In addition to the stochastic component,

other splicing variables such as the presence of cis-acting regulatory

elements including splicing enhancers and suppressors can

significantly modify the probabilities defined here.

To evaluate the expression derived in Eqns (11–12) we need a

splicing probability profile of a pre-mRNA transcript that contains

multiple exons spliced in a ‘constitutive’ manner across various

tissues. Here we use the term ‘constitutive splicing’ to indicate the

splicing pattern of a given pre-mRNA that is conserved across

various tissues in a given organism. We use the following variance-

based scoring metric to rank and select such constitutive

transcripts from the pool of multi-exonic pre-mRNAs of a given

genome:

Cc~
Xmc

e~1

X
k

se,k,cð Þ2{
X

k
se,k,c

� �2

 ��

k ð14Þ

We ranked the transcripts based on C and we considered the top

25 transcripts to evaluate the theoretical predictions (these 25

transcripts represent the ones with minimal variation in the

splicing index across different tissues as defined by the index C).

For a single-exon transcript, C~0. Earlier studies show that the

majority of multi-exonic pre-mRNAs are spliced alternatively

[21,23]. This suggests that the number of constitutively spliced

examples available to evaluate our model is limited.

Figure 6. A–B. Genome-wide normalized average level of transcripts with m exons in the kth tissue (hm,k, Eq. 16) in mouse (A) and
human (B). Variation around these average signals is reported in Figure S4. The data for this figure come from exon microarray experiments
(Materials and Methods). These plots show a broad maximum approximately centered around m,32 exons (arrow). The dashed line shows the
approximate average exon position in base pairs on the secondary y axis. C–D. Genome-wide normalized average level of transcripts with m exons in
the kth tissue (hm,k, Eq. 16) in human (C) and mouse (D). The data for this figure come from RNAseq experiments (Materials and Methods) (cf. data in
Figure 6 from microarray data).
doi:10.1371/journal.pcbi.1002747.g006
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We assume that the effects of cis-acting elements associated with

a given exon number of various genes across the genome is

approximately a symmetric random variable. That is, we assume

that both the cis-acting enhancers as well as silencer elements are

found on the genome with equal probabilities. Under this

assumption, we expect that averaging over the first exon

normalized signals (FENAS) of a given exon number across all

the available multi exonic genes in the entire genome of an

organism will essentially reduce up- and down-regulatory effects of

the cis-acting elements apart from a local normalization of the

exon signals within a gene. While carrying out this averaging

process, the start and stop positions of each eth exon of the pre-

mRNA of different gene transcripts is also averaged out in such a

way that in the overall averaged signal space the exons of average

length are equally separated or flanked by the average length of

introns of the genome. We define the FENAS metric as follows:

fe,k~
X

c
100 se,c,k{s1,c,kð Þ=s1,c,kð Þ ð15Þ

Here fe,k is the genome level FENAS (6%) of the eth exon in tissue

k. To compare Eq. (15) with Eqns (11–12), we use the genome-

wide scaling n~h eð Þ, that is, the position of DSSn is a function of

the exon number e (e~1,2,3 . . .). We note that f1,k~0 and

fe,k!pn,1D3D. To evaluate Eq. (11–12), the average signals

associated with the final transcripts with various numbers of exons

at the genome level were calculated as follows:

hm,k~
Xb(m)

c~1

Xm

e~1
se,c,k

.
m

� �.
b(m) ð16Þ

Here hm,k is the genome level average signal of those transcripts

with m exons in the kth tissue; b(m) is the total number of transcripts

with m exons.

Analysis of RNASeq data
Exon microarrays possess very few probe sets per exon cluster

id. Therefore, we also analyzed the number of sequence reads

from RNASeq data (see datasets above). For this purpose we

considered the start and end position of each transcript and exon

and summed over the number of reads from RNASeq data. These

signal profiles were used to compute the first exon normalized

average signals FENAS as described in Eqn 15. To compute the

transcript level signal we considered the start and stop position of

each transcript and summed over the number of reads from

RNASeq data within this range.

Parameter estimation from experimental data
In order to compare the theoretical predictions with experi-

mental measurements we estimate the kinetic and diffusion

parameters required to quantitatively evaluate the theoretical

equations from experimental studies. Single molecule data from

the human U2OS osteosarcoma cell line shows an in vivo

transcription elongation rate for RNAPII of kE*72 bases s21

[40]. Single cell studies on BAC HeLa and E3 U2OS cell lines

suggest that the overall diffusion coefficient for the U1-70K

snRNP inside the nuclear splicing region is on the order of

xd*1 mm2/s (,86106 bases22s21) [24,25,26]. This value is close

to the 3D diffusion coefficient associated with the dynamics of

protein molecules inside the cytoplasm of prokaryotic systems [32].

The 1D diffusion coefficient associated with the diffusion dynamics

of snRNPs on the pre-mRNA chain is not clearly known. Single

molecule studies in E. coli [40] showed a numerical value of

xd*8|105 bases2s (,0.092 mm2/s) for the 1D diffusion coeffi-

cient associated with the dynamics of transcription factors along

the DNA. This value is approximately 10 times smaller than the

experimentally observed overall diffusion coefficient of U1 snRNP

inside the nucleus. The experimentally observed fast diffusion

coefficient can be attributed to the more flexible nature of single

stranded pre-mRNAs compared to the double stranded DNA

chain. The nuclear diameter of a typical human cell is ,6 mm and

the corresponding volume will be ,10216 m3. The concentration

of a single snRNP molecule or its single DSS binding site on the

pre-mRNA in this volume will be ,20 pM. When the length of

the pre-mRNA is n bases, there should be at least ,n non-specific

binding sites for snRNPs. Single cell experimental studies

suggested the timescale required by the snRNPs to non-specifically

interact with the pre-mRNA is about ,0.1 s [24,25,26]. This

value suggests an overall off-rate koff ,n*1=0:1s~10s-1. There are

approximately N0,108 snRNPs inside the nuclear volume [41]

which means that the number of non-specific collisions that can

Figure 7. A. Distribution of transcript lengths based on the annotations (Materials and Methods). Mean values: 69900 bp (human) and
58300 bp (mouse); median values: 26209 bp (human) and 16972 bp (mouse). B. Distribution of FENAS values (fe,k (%)) for human (red) and mouse
(blue). The distributions are separately shown for those exon around the theoretically predicted optimum (20ƒeƒ40, solid lines) or those exons that
are far from nopt (ev20 or ew40, dashed lines). These distributions were constructed by considering all the values of fe,k all the tissues (data pooled
over k). The distribution of FENAS values for e close to nopt was significantly different from the distribution of FENAS values for e far from nopt both for
human and mouse (t-test, p,0.05). C. Same as part B but using RNAseq data.
doi:10.1371/journal.pcbi.1002747.g007
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happen between a single snRNP molecule and the growing pre-

mRNA chain will be in the order of 1=ttð Þ*10{9base-1s-1.

Supporting Information

Figure S1 Mouse. This supplementary figure provides further

examples showing the splicing index as a function of the annotated

exon number (the format is the same as the one in Figure 3A; see

Figure 3A caption for details). A. Affymetrix Transcript ID:

6747308 Gene: Lypla1, lysophospholipase 1, NM_008866 B.
Affymetrix Transcript ID: 6865573 Gene: Cep120, centrosomal

protein 120, NM_178686 C. Affymetrix Transcript ID: 6770693

Gene: Osbpl8, oxysterol binding protein-like 8, NM_175489 D.
Affymetrix Transcript ID: 6770718 Gene: Nap1l1, nucleosome

assembly protein 1-like 1 NM_015781 E. Affymetrix Transcript

ID: 6839871 Gene: Hira, histone cell cycle regulation defective

homolog A, NM_010435. F. Affymetrix Transcript ID: 6814200

Gene: Mus musculus mRNA for mKIAA0947 protein. EN-

SMUST00000043493//ENSEMBL//hypothetical protein LOC-

218333 isoform 1 gene: ENSMUSG00000034525 G. Affymetrix

Transcript ID: 6915559 Gene: Fggy, FGGY carbohydrate kinase

domain containing, NM_029347 H. Affymetrix Transcript ID:

6825511 Gene: NM_028032, Ppp2r2a, protein phosphatase 2

(formerly 2A) regulatory subunit B (PR 52) alpha isoform.

(PDF)

Figure S2 Human. This supplementary figure provides further

examples showing the splicing index as a function of the annotated

exon number (the format is the same as the one in Figure 3B; see

Figure 3B caption for details). A. Affymetrix Transcript ID:

2477073, NM_016441, CRIM1, cysteine rich transmembrane

BMP regulator 1 (chordin-like). B. Affymetrix Transcript ID:

2481379, NM_172311, STON1-GTF2A1L, STON1-GTF2A1L

read through transcript. C. Affymetrix Transcript ID: 2482505,

NM_003128, SPTBN1, spectrin beta, non-erythrocytic 1. D.
Affymetrix Transcript ID: 2639552, NM_003947//KALRN//

kalirin, RhoGEF kinase. E. Affymetrix Transcript ID: 2639734,

NM_007064//KALRN//kalirin, RhoGEF kinase. F. Affymetrix

Transcript ID: 2829171, NM_003202//TCF7//transcription

factor 7 (T-cell specific, HMG-box). G. Affymetrix Transcript

ID: 3179975, NM_005392//PHF2//PHD finger protein 2. H.
Affymetrix Transcript ID: 3183604, NM_021224//ZNF462//

zinc finger protein 462.

(PDF)

Figure S3 This figure provides complementary data to
Figure 4. A–B. Standard error of the FENAS signal for mouse

(A) and human (B). There is one line for each tissue but the curves

overlap. C–D. Number of transcripts (count) with a given exon

number for mouse (C) and human (D).

(PDF)

Figure S4 This figure provides complementary data to
Figure 6. A–B. Standard error of hm,k for mouse (A) and human

(B). C–D. Number of transcripts (count) with a given number of

exons in mouse (C) and human (D).

(PDF)

Text S1 List of variables defined in the text.

(PDF)
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