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Abstract

Tissue water transverse relaxation times (T2) are highly sensitive to fluid and lipid accumulations in skeletal muscles whereas
the related T2* is sensitive to changes in tissue oxygenation in addition to factors affecting T2. Diabetes mellitus (DM)
affects muscles of lower extremities progressively by impairing blood flow at the macrovascular and microvascular levels.
This study is to investigate whether T2 and T2* are sensitive enough to detect abnormalities in skeletal muscles of diabetic
patients in the resting state. T2 and T2* values in calf muscle of 18 patients with type 2 DM (T2DM), 22 young healthy
controls (YHC), and 7 age-matched older healthy controls (OHC) were measured at 3T using multi-TE spin echo and gradient
echo sequences. Regional lipid levels of the soleus muscle were also measured using the Dixon method in a subset of the
subjects. Correlations between T2, T2*, lipid levels, glycated hemoglobin (HbA1c) and presence of diabetes were evaluated.
We found that T2 values were significantly higher in calf muscles of T2DM subjects, as were T2* values in anterior tibialis,
and gastrocnemius muscles of T2DM participants. However, soleus T2* values of the T2DM subjects were significantly lower
than those of the older, age-matched HC cohort (22.960.5 vs 26.760.4 ms, p,0.01). The soleus T2* values in the T2DM
cohort were inversely correlated with the presence of diabetes (t = 23.46, p,0.001) and with an increase in HbA1c, but not
with body mass index or regional lipid levels. Although multiple factors may contribute to changes in T2* values, the
lowered T2* value observed in the T2DM soleus muscle is most consistent with a combination of high oxygen consumption
and poor regional perfusion. This finding is consistent with results of previous perfusion studies and suggests that the
soleus in individuals with T2DM is likely under tissue oxygenation stress.
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Introduction

Tissue oxygenation is vitally important for the metabolism and

function of skeletal muscles [1]. Type 2 diabetes mellitus (T2DM)

affects muscles, typically in the lower extremities, by impairing

blood flow at the macrovascular and microvascular levels [2].

These changes are often relatively gradual and subtle, and the

onset of clinical symptoms and deficits may be difficult to

recognize until very late in the disease process, resulting in

neuropathy and diabetic muscle infarction. Diagnosis of these

early changes may require not only imaging techniques such as

radiography and MR angiography to delineate the peripheral

macrovasculature and to localize occlusions, but also imaging

methods that provide additional information regarding tissue

oxygenation, which reflects the balance between oxygen supply

and demand in the deep muscles of the limbs.

Magnetic resonance imaging (MRI) methods have been

developed to assess cerebral blood oxygenation non-invasively.

Numerous studies have shown that T2* MRI is highly sensitive to

the level of deoxyhemoglobin in blood [3,4,5] and, hence, it has

been utilized to detect the blood oxygenation level dependent

(BOLD) effects in the brain and other tissues [6,7,8]. BOLD signal

intensity changes have been used as surrogate measures of

oxygenation of blood and tissue to study a variety of physiological

and pathological conditions associated with changes in oxygena-

tion [5,9,10,11]. Depending on the paradigm, changes in T2*

values have also been used as surrogate measures of changes in

oxygenation of blood and tissue [11,12,13]. It is generally accepted

that BOLD MRI is sensitive to the concentration of paramagnetic

deoxyhemoglobin, and thus indirectly to the relative oxyhemo-

globin content at the microvascular level. The BOLD signal is also

influenced by changes in perfusion, oxygen extraction rate, and

blood volume or fluid level in the region of interest [14].

BOLD MRI of the skeletal muscle has recently been undertaken

in healthy volunteers and patients [7,15,16,17]. To date, various

dynamic paradigms have been used to produce measurable BOLD

signal alterations based on the assumption that the muscle BOLD
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response also originates mainly from changes in tissue oxygenation

[7,16]. While these challenge paradigms are very useful in model

studies of young and middle aged subjects, their application is

limited in the clinical setting due, in part, to variation in individual

responses as well as weakness in older patients or in those with

poor health conditions. Since diabetic patients are commonly

found to have poor blood perfusion in their lower extremities, we

hypothesized that T2* MRI would be sensitive enough to detect

changes due to underlying physiological conditions in the lower

extremities even in the resting state. In this preliminary study, we

tested the hypothesis by measuring T2* values in the resting state

instead of measuring BOLD signal changes between resting and

ischemia/reperfusion states. We are interested in the resting state

because most patients can tolerate resting state MRI scanning with

minimal difficulties and because the methods are suitable for use in

clinical practice. Our cross-sectional study in healthy controls and

patients with type 2 diabetes mellitus (T2DM) focused on the

soleus muscle because of its rich microvasculature and mitochon-

dria, its essential role in lower limb function, and its high

susceptibility to the pathophysiological effects of T2DM [18,19].

Materials and Methods

Subjects
The study was conducted under protocols approved by The

McLean Hospital Institutional Review Board (IRB). All subjects

gave written informed consent before participating and had no

contraindications to MRI. Three groups of subjects, i) eighteen

subjects with T2DM (seventeen males and one female, mean6SD

age: 54612 yrs, body weight: 87.467.3 kg (BMI 23.8–34.3,

duration of T2DM: 8.967.6 yrs), ii) twenty two young healthy

male subjects (n = 22, age: 29610 yrs, bodyweight 7468.0 kg

(BMI 20.3–28.9)), and iii) seven age-matched healthy subjects

(n = 7, age 5663 yrs, body weight 74.8610.7 kg (BMI 22.2–

27.9)), were recruited for comparison (Table 1). None of the

T2DM subjects had medical or family histories of occlusive

vascular disease in the legs, cardiovascular disease, clinical

evidence of edema, diabetic neuropathy, renal dysfunction, muscle

infarction or injury to the lower extremities. They were able to

walk without difficulty during their screen visits and scan visits.

Blood samples were also obtained for evaluation of long-term

glycemic control using HbA1c. In addition, circumference of the

calf muscles was also measured (see Table 1). To standardize the

resting state, subjects were required to sit still for one hour with

their feet resting gently on the floor prior to the MR scan.

MRI
The MR images were acquired on a 3T MR scanner (Trio,

Siemens AG, Germany) using a volume coil (inner diameter

27.3 cm) for transmission and reception. The subjects were placed

in a supine position with their lower legs centered within the coil at

the location of greatest circumference and imaged. In one T2DM

subject, images were acquired from only one leg using a knee coil

his legs were too large to be accommodated simultaneously in the

volume coil. As mentioned in the introduction that T2* signals

may also be influenced by factors other than level of blood

oxygenation, T2 measurement was added as a control to help with

the interpretation of possible T2* changes. T2, the transverse

relaxation time, and T2* are related via the relationship 1/

T2* = 1/T2+1/T29, where T29 is the component due to

microscopic field gradients. T2 is sensitive to levels of fluid and

lipid in the calf muscles. Proton T2 and T2* values were measured

at identical locations with a multi-TE spin echo scheme (n = 12,

TE1 = 15 ms, TE step 15 ms, total data acquisition time

5 minutes and 6 seconds) and a multi-TE gradient echo sequence

(n = 12, TE1 = 9 ms, TE step = 3 ms, total data acquisition time

1 minute and 19 seconds), respectively.

After reviewing the linearity of log(s) vs TE plot, T2 and T2*

maps were constructed using least square fits from multi-TE spin

echo images and multi-TE gradient echo images, respectively,

based on the relationship ln(s/so) = 2TE/T2. The T2* fits were

also made between the echoes at in-phase TEs (even multiples of

1.23 ms) and opposed-phase TEs (odd multiples of 1.23 ms) to

evaluate the possible impact of lipid signals. The MR T2 and T2*

maps were analyzed with ImageJ (http://rib.info.nih.gov). Re-

gions of interest (ROIs) were placed within the bilateral anterior

tibial muscles, soleus muscles, medial and lateral gastrocnemius

muscles and regional fat tissues by hand tracing the shapes of the

muscles in anatomic images, then copied and pasted onto the

corresponding T2 and T2* maps. The T2 and T2* values for the

healthy controls and DM subjects are presented as means 6

standard errors of the mean (SEM).

Dixon’s two point water-fat separation method, which provides

information regarding total fat, including both intra- and extra-

myocellular lipids, was applied to evaluate fat accumulation in the

calf muscle region [20]. Images of water-fat in-phase and water-fat

opposed-phase were acquired at TE values of 2.46 ms and

6.15 ms, respectively, and using the same slice locations and

thickness used for the T2 and T2* measurements from nine

T2DM subjects, ten young and healthy subjects, and seven healthy

age-matched controls.

Fat and water maps were generated from the in-phase and out-

of-phase images according to the following equations: fat = (in-

phase2opposed-phase)/2 and water = (in-phase+opposed-phase)/

2. The fat spatial ratio (FSR) = fat/(water+fat) was calculated and

the value of FSR in the soleus was extracted in a similar manner to

that used in the T2* extraction from the T2DM and healthy

comparison subjects.

Group differences in demographic variables involving contin-

uous and categorical data were calculated using independent t-

tests and Fisher’s exact test for a 2xk table, respectively. For

comparison of T2* values in soleus, anterior tibialis, and

gastrocnemius muscles, analysis of covariance (ANCOVA) or a

multiple linear-regression method was used, controlling for age,

BMI, and FSR. As there was a high co-linear correlation between

HbA1c and group variables (namely HC vs DM)(r = 0.83,

Table 1. Summary of the subject information including age, BMI, HbA1c, and circumference of the calf.

n age (yrs) BMI HbA1c Calf circumference

Young Healthy Control 22 29610 23.962.4 5.3660.33 38.362.7

Old Healthy Control 7 5663 24.761.6 5.5960.17 38.462.8

T2DM 18 54612 30.563.3 7.761.2 40.262.7

doi:10.1371/journal.pone.0049337.t001

Reduced T2* in Soleus Muscle of T2DM Patients
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p,0.0001), we did not include HbA1c in the regression modeling.

The normality assumption was verified for each variable of interest

using the Shapiro-Wilk test. Statistical significance was defined at

an alpha level of p,0.05, two tailed.

Results

The images and corresponding T2 and T2* maps of the calf

cross sections include anterior tibialis, soleus, gastrocnemius, and

other muscles (Figures 1 a–h). T2DM soleus muscles displayed a

noticeable hypointensity in comparison with those of the controls

in the images and corresponding T2* maps (Figures 1 a,c,e vs

b,d,f). No hypointense lesions in T1-weighted images or diffusive

hyperintense lesions in T2-weighted images were found in the

T2DM soleus muscle or other regions of the calf cross-sections

[21]. The T2* fits had a slightly better linearity (R2>0.998)

compared to that of T2s (R2>0.983). No significant difference in

T2* values resulted from the fits of the echoes at in-phase and

opposed-phase TEs.

In healthy subjects, gastrocnemius muscles had a relatively high

T2* value (25.360.6 ms) compared to soleus (23.960.5 ms) and

anterior tibialis muscles (23.960.3 ms) (Figure 2a). The T2* values

increase significantly in anterior tibialis and gastrocnemius as well

as with age within the healthy control cohort (p = 0.01). However,

the increase in T2* value did not reach statistical significance in

the soleus of the healthy control subjects. In the calves of diabetic

patients, both the anterior tibialis (AT) and gastrocnemius (G) had

significantly higher T2* values (AT: 27.760.4 ms, G:

27.660.7 ms) than the soleus (S) (22.960.5 ms) (Figure 2a). The

anterior tibialis T2* value was approximately 20% higher than

that of the soleus. In across-group comparisons of healthy controls

versus T2DM subjects, the soleus T2* values of T2DM subjects

were significantly lower than both the young healthy controls

(22.960.5 vs 23.960.3, p = 0.03) and the age-matched controls

(22.960.5 vs 26.760.4, p,0.01). Note that, as expected, T2*

values of subcutaneous fat and bone marrow were in the range of

30–40 ms, much higher than those of soleus in the T2DM cohort.

As a control measure in the skeletal muscles, T2 values of the

calf cross-sections were also calculated. T2 maps of the calf cross-

sections for the healthy controls and T2DM subjects showed a T2

value distribution pattern, T2 (G)<T2 (soleus).T2 (AT) (Figures 1

g&h Figure 2b). In the young, healthy subjects, T2 values for AT

were 39.960.7 ms, for soleus 43.660.7 ms, and for gastrocnemius

Figure 1. a–f T2* weighted images and T2* maps of calves of a young
healthy control (a,b), a 64 year old T2DM subject (c,d), and a 68 year old
T2DM subject (e,f) acquired at 3T. g–h representative T2 maps of
healthy (g) and T2DM (h) calves. Due to relatively long T2s of the
subcutaneous lipid and bone marrow (,115 ms), the contrast among
the muscles was less dramatic than that of T2*.
doi:10.1371/journal.pone.0049337.g001

Figure 2. a. T2* distribution among anterior tibialis, soleus, and
gastrocnemius of young healthy controls (YHC), older age-matched
healthy controls (OHC), and T2DM subjects (DM). The error bars
represent the standard errors of the means. The difference between the
control and the T2DM soleus is significant. The difference between the
AT and S is not significant in healthy controls, but it is in T2DM subjects.
b. T2 distribution among anterior tibialis, soleus, and gastrocnemius of
young healthy controls (YHC), older age-matched healthy controls
(OHC), and T2DM (DM). The error bars represent the standard errors of
the means. The difference between the control and the T2DM soleus is
significant. Compared to T2*, the most dramatic difference is the much
longer T2 of the diabetic soleus than observed in either the young or
older healthy controls.
doi:10.1371/journal.pone.0049337.g002

Reduced T2* in Soleus Muscle of T2DM Patients
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45.260.8 ms. In the older healthy control group, the T2 of soleus,

anterior tibialis and gastrocnemius was increased to 47.860.8 ms,

42.160.7 ms and 49.462.0 ms, respectively. T2 values of T2DM

calves were significantly longer than those of the healthy controls

(soleus: 54.365.7 ms; anterior tibialis: 44.264.0 ms, and gastroc-

nemius: 55.165.8 ms), consistent with a higher lipid content and a

higher degree of fluid accumulation as measured independently

with isotope dilution method in a separate study [22].

Lipid maps demonstrated that T2DM subjects had a dramatic

increase in lipid deposition in the soleus and gastrocnemius

muscles compared to the young and age-matched healthy control

groups (Figures 3 a & c). Values of fat spatial ratio (FSR) were

significantly higher in T2DM subjects than in the healthy controls,

even when age effects were taken into account (Figure 4a). It is

worth noting that subjects with a high FSR may have a normal

soleus T2* value in the T2DM (e.g. FSR 33.8%, T2* 23.9 ms) and

healthy control (e.g. FSR 24.5%, T2* 24.3 ms) groups. The aged-

matched controls have a 2%-higher average FSR but a 2.4 ms-

longer T2* compared to the young, healthy controls (p,0.02)

(Figures 2a, 4a).

A weak relationship was found between FSR and age (Figure 4a)

in young and age- matched healthy controls (Pearson coefficient

0.32) and between BMI and the soleus T2* values (Pearson

coefficient 20.41) among all subjects (Figure 4b, r2 = 0.23 Slope

20.21). There was almost no FSR-age relationship among the

T2DM subjects evaluated in this study (Pearson coefficient 20.11).

Analysis of multiple linear regression indicates that a significant

correlation existed between the soleus T2* values and the subject

groups (healthy versus T2DM) (p,0.001) and between the T2*

value and age (p = 0.03), but no significant correlation between the

T2* values and BMI or FSR (p = 0.62 for BMI and 0.77 for FSR)

(see table 2). This finding suggests that T2DM patients had

significantly lower T2* values compared to healthy subjects,

controlling for age. The regression coefficient 23.458 suggests a

13.1% T2* decrease compared to full T2* intensity in a diabetic

subject after adjusting for age effects. The positive correlation

coefficient between T2* and age (+0.058) indicates a mild increase

in soleus T2* value with age, which is consistent with an increase

of fluid accumulation (see Figure 2b).

Although their calf circumference was insignificantly larger than

those of the controls (Table 1), the T2DM group had a

significantly higher averaged HbA1c (7.760.3 mg/mL) compared

to the young healthy controls (5.460.1 mg/mL) and the age-

matched healthy controls (5.660.2 mg/mL) (Figure 4c). The

correlation coefficient between T2* and subject groups (healthy

control versus T2DM status) indicates a decrease in soleus T2*

value as one progresses from healthy to the diabetic state (Table 2).

The T2* values were also significantly negatively correlated with

the HbA1c values (Pearson coefficient 0.55).

Figure 3. Representative maps of fat (out-of-phase) (a,c) and
water (in-phase) (b,d) of healthy controls (a,b) and T2DM
subjects (c,d). A dramatic increase of lipid can be seen in the diabetic
soleus and gastrocnemius.
doi:10.1371/journal.pone.0049337.g003

Figure 4. a Plot of FSR versus age for young (squares) and old
(triangles) healthy controls as well as T2DM subjects (circles); x’s
represent the group averages of the DM and the healthy controls (both
young and old) and the bars represent standard deviations. b Plot of
soleus T2* versus BMI for healthy and T2DM subjects. c Bar plot of
soleus T2* change versus anterior tibilias, HbA1c, and lipid index (FRS)
for the young and older healthy controls (YHC and OHC) and T2DM
(DM) subjects scanned in this study.
doi:10.1371/journal.pone.0049337.g004

Reduced T2* in Soleus Muscle of T2DM Patients
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Discussion

The major finding of this study is that at resting state, the soleus

T2* value was significantly correlated with age and associated with

the presence of diabetes (or elevated HbA1c) (see Table 2). The

diabetic soleus T2* was abnormally short compared to the age-

matched controls and the surrounding anterior tibialis and

gastrocnemius (figures 2 and 4c). Underlying physiologic factors

contribute to the T2 and T2* values of anterior tibialis,

gastrocnemius, and soleus muscles of the subjects in this study.

The T2 values were prolonged in anterior tibialis, soleus, and

gastrocnemius of the T2DM and the age matched healthy controls

reflecting increased fluid levels, and increased lipid levels mostly

seen in T2DM, because of the disease and age-related propensity

to accumulate fluid and lipid in the lower legs compared to the

young, healthy individuals (Figure 2b). This explanation is

consistent with the results measured independently by the isotope

dilution method in a separate study [22] and is supported by the

relatively long T2 values of subcutaneous fat. The longer T2*

values in the anterior tibialis and gastrocnemius of T2DM

subjects, as well as in the soleus muscles of older healthy subjects,

were consistent with the prolonged T2 values due to accumulation

of fluid and lipid.

The shorter T2* values in the soleus muscles of T2DM subjects

(figures 1 and 2), however, may result from underlying

pathophysiology despite the longer regional T2 value. It is known

that gastrocnemius and anterior tibialis muscles are composed of

predominantly fast-twitch fibers, while soleus consists largely of

slow-twitch fibers [23]. Soleus is rich in mitochondria and capillary

vessels and consumes more oxygen due to the characteristic

energetic metabolism of slow-twitch fibers. Previous studies of

animal muscles indicate that the diabetic state is associated with a

reduction in capillaries capable of supporting red blood cell (RBC)

perfusion [24,25]. These muscle capillary defects have been

confirmed in diabetic patients by thallium-201 scanning [26].

Interestingly, Cosson et al found the calf muscle perfusion defects

were also significantly correlated with elevated HbA1c levels,

similar to our findings (Table 2). Therefore, the reduced perfusion

in the microvascular bed of the soleus muscle could lead to an

increase in regional deoxyhemoglobin levels and unusually low

regional T2* compared to gastrocnemius and anterior tibialis.

This is consistent with the present findings.

Abnormally low soleus T2* values in diabetic calf muscle have

been observed in a previous study. Ledermann et al applied a cuff

compression paradigm for reactive hyperemia and BOLD MRI

with four-echo EPI to patients with peripheral arterial occlusive

disease (PAOD) and found soleus had the larger T2* changes

(DT2*) and longer time-to-peak compared to anterior tibialis and

gastrocnemius after cuff deflation [27]. Although they did not

report resting state T2* values for the soleus, the large DT2*

implied a lower soleus T2* among the calf muscles at baseline,

consistent with the findings of the current study.

In addition to the lower soleus T2*, lipid significantly

accumulated, and was noticeably visible in the MR images as a

thickening subcutaneous fat layer, with infiltration into the

gastrocnemius and soleus of the T2DM subjects (Figures 1 and

3). This characteristic of T2DM skeletal muscle likely resulted

from insulin resistance, impaired glycogen synthesis, and impair-

ments in mitochondria. Nonetheless, the non-significant correla-

tion between soleus T2* and regional lipid levels, as illustrated in

Table 2, suggests that the T2DM state (or elevated HbA1c) is the

dominant contributor to the abnormally low soleus T2* value.

Compared to muscle exercise and kinetic paradigms, resting

state studies use a lower temporal resolution and a higher spatial

resolution to measure the T2* values in calf muscles. This imaging

scheme is simple, short in duration (less than 7 minutes for

acquisitions of both T2 and T2* images), and more acceptable to

patients with clinical disabilities and may thus have broader utility

in applications that require high spatial resolution. The resting

state approach may provide complementary information regard-

ing regional tissue oxygen consumption, to perfusion studies in

nuclear medicine [26] or to exercise and kinetic paradigms

[27,28]. Moreover, these MRI techniques may provide informa-

tion that allows clinicians to avoid a potentially harmful biopsy and

serve as a valuable diagnostic alternative for diabetic patients with

vascular complications, since many of these patients may have

coexisting diabetic nephropathy, to reduce the risk associated with

the administration of gadolinium-based contrast agents. Clinical

use of these techniques may provide valuable information for

investigating and clinically evaluating the systemic microvascular

and macrovascular changes that lead to the more well-recognized

diabetic complications such as retinopathy, neuropathy, or

cardiovascular disease.

In summary, we have measured T2 and T2* values of calf

muscles at rest and found that soleus T2* is significantly correlated

with age, the presence of T2DM or elevated HbA1c. The T2* of

T2DM soleus muscle was significantly lower than that of age

matched healthy controls and that of young and healthy controls

as well as the T2* values of T2DM anterior tibialis and

gastrocnemius. Our data indicate that the soleus T2* measures

provide valuable information reflecting underlying physiology and

are consistent with previous findings of other studies. Among

factors that may contribute to T2* values, the lowered T2* in the

T2DM soleus muscle is most consistent with a combination of high

oxygen consumption and poor regional microvascular circulation

which suggests that the T2DM soleus is likely under tissue

oxygenation stress.
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