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Abstract

Background: The Xpert MTB/RIF test enables rapid detection of tuberculosis (TB) and rifampicin resistance. The World
Health Organization recommends Xpert for initial diagnosis in individuals suspected of having multidrug-resistant TB (MDR-
TB) or HIV-associated TB, and many countries are moving quickly toward adopting Xpert. As roll-out proceeds, it is essential
to understand the potential health impact and cost-effectiveness of diagnostic strategies based on Xpert.

Methods and Findings: We evaluated potential health and economic consequences of implementing Xpert in five southern
African countries—Botswana, Lesotho, Namibia, South Africa, and Swaziland—where drug resistance and TB-HIV
coinfection are prevalent. Using a calibrated, dynamic mathematical model, we compared the status quo diagnostic
algorithm, emphasizing sputum smear, against an algorithm incorporating Xpert for initial diagnosis. Results were projected
over 10- and 20-y time periods starting from 2012. Compared to status quo, implementation of Xpert would avert 132,000
(95% CI: 55,000–284,000) TB cases and 182,000 (97,000–302,000) TB deaths in southern Africa over the 10 y following
introduction, and would reduce prevalence by 28% (14%–40%) by 2022, with more modest reductions in incidence. Health
system costs are projected to increase substantially with Xpert, by US$460 million (294–699 million) over 10 y. Antiretroviral
therapy for HIV represents a substantial fraction of these additional costs, because of improved survival in TB/HIV-infected
populations through better TB case-finding and treatment. Costs for treating MDR-TB are also expected to rise significantly
with Xpert scale-up. Relative to status quo, Xpert has an estimated cost-effectiveness of US$959 (633–1,485) per disability-
adjusted life-year averted over 10 y. Across countries, cost-effectiveness ratios ranged from US$792 (482–1,785) in Swaziland
to US$1,257 (767–2,276) in Botswana. Assessing outcomes over a 10-y period focuses on the near-term consequences of
Xpert adoption, but the cost-effectiveness results are conservative, with cost-effectiveness ratios assessed over a 20-y time
horizon approximately 20% lower than the 10-y values.

Conclusions: Introduction of Xpert could substantially change TB morbidity and mortality through improved case-finding
and treatment, with more limited impact on long-term transmission dynamics. Despite extant uncertainty about TB natural
history and intervention impact in southern Africa, adoption of Xpert evidently offers reasonable value for its cost, based on
conventional benchmarks for cost-effectiveness. However, the additional financial burden would be substantial, including
significant increases in costs for treating HIV and MDR-TB. Given the fundamental influence of HIV on TB dynamics and
intervention costs, care should be taken when interpreting the results of this analysis outside of settings with high HIV
prevalence.
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Introduction

Tuberculosis (TB) remains a leading cause of global mortality

and morbidity, with an estimated 9 million new TB cases and 1.5

million TB-related deaths in 2010 [1]. Although significant

advances have been made in improving TB outcomes under the

DOTS approach championed by the World Health Organization

(WHO) and its partners in the Stop TB Partnership [2], continued

progress is threatened by the inadequacy of existing diagnostic

tools [3]. In most high-burden settings, TB diagnosis relies

principally on sputum smear microscopy, which has limited

sensitivity, especially among HIV-infected patients [4–6]. Tradi-

tional culture-based diagnosis and evaluation of drug sensitivity is

relatively costly and slow [7,8], and many resource-limited settings

lack the laboratory capacity to perform culture and sensitivity

testing at high volume [9,10]. Lack of prompt diagnosis and

appropriate treatment of TB increases the risks of transmission,

drug resistance, and case fatality [11–13].

Recently, the Xpert MTB/RIF automated DNA test has been

shown to provide rapid and sensitive detection of TB and

rifampicin (RIF) resistance [14–17]. The Xpert test uses a

cartridge-based system that integrates sample processing and

real-time PCR, accommodates use by relatively unskilled health-

care workers, and provides results in ,2 h [15,18]. In a large

multicenter evaluation and subsequent implementation study, a

single Xpert MTB/RIF test was found to identify .98% of

patients with smear-positive TB and .70% of patients with smear-

negative TB [14,15]. Sensitivity and specificity for RIF resistance

were above 94% and 98%, respectively. More recent analyses

have suggested that Xpert can greatly reduce the delay until

treatment initiation for individuals with active TB [19].

In December 2010, WHO recommended that Xpert be used for

initial diagnosis in patients suspected of having multidrug-resistant

TB (MDR-TB) or HIV-associated TB disease [20]. By the end of

May 2012, 66 of 145 countries eligible to purchase Xpert equipment

at reduced prices had already done so [21]. A volume-dependent

price mechanism is being used for purchase of test cartridges [22],

such that by August 2012 the ex-works price of Xpert cartridges had

dropped to less than US$10 for eligible countries [23]. Whereas the

global TB control community has moved quickly to embrace the new

technology, several studies and commentaries have sounded impor-

tant notes of caution concerning the cost of the technology, the

demand it will place on existing infrastructure, and the challenge of

addressing false positive indications of RIF resistance [24–30]. As

implementation advances, evidence on the epidemiologic impact and

cost-effectiveness of Xpert is urgently needed, particularly as the

consequences of Xpert introduction may vary across epidemiologic

settings and may depend on the specific diagnostic algorithms that are

considered [31,32].

In this study we used a calibrated, dynamic mathematical model

of TB to quantify the potential health and economic consequences

of introducing Xpert in five southern African countries charac-

terized by high prevalence of HIV infection and extant multidrug

resistance. Comparing a diagnostic strategy based on Xpert to the

status quo, we predicted changes in TB incidence, prevalence,

mortality, and drug resistance; estimated health system costs; and

assessed the incremental cost-effectiveness of Xpert adoption.

Methods

Overview
We evaluated the population health outcomes and health

system costs associated with two alternative strategies for

diagnosing TB, the first based on current diagnostic algorithms

and the second based on implementing Xpert in accordance with

current WHO recommendations. Comparisons between these two

strategies were made using a calibrated mathematical model of

TB, reflecting key features of TB transmission dynamics and

natural history, interactions with HIV infection, and patterns and

trends in TB control interventions and treatment for HIV/AIDS.

Model simulations were undertaken for five southern African

countries: Botswana, Lesotho, Namibia, South Africa, and Swazi-

land. We assessed changes in epidemiological outcomes and health

system costs over 10-y and 20-y time horizons, as well as the

incremental cost-effectiveness ratio (ICER) of the Xpert strategy

compared to the current algorithm.

Diagnostic Strategies
A ‘‘status quo scenario’’ was created to represent the current

diagnostic approach. Under this approach, all patients with

suspected TB receive an initial sputum smear, and those diagnosed

as smear-positive are directed to treatment. Sputum culture is

indicated for patients with suspected TB who test smear-negative

but who have a history of TB treatment or in whom there is a

strong suspicion of TB. Drug sensitivity testing (DST) is indicated

for treatment-experienced patients diagnosed with TB. Those who

receive DST are initiated on a treatment regimen appropriate to

their drug resistance profile, while those who do not receive DST

are initiated on the standard first-line regimen. In the main

analysis we assumed that the coverage of culture testing would be

20% (range 10%–30%) among smear-negative, treatment-naı̈ve

patients, and 80% (range 70%–90%) among smear-negative,

treatment-experienced patients. We assumed further that 80%

(range 70%–90%) of treatment-experienced patients diagnosed

with TB would go on to receive DST. Given limited empirical

data on country-specific coverage of culture and DST, these values

were all varied across wide ranges in sensitivity analyses.

An ‘‘Xpert scenario’’ was constructed based on the diagnostic

algorithms suggested for high HIV prevalence settings in the May

2011 WHO recommendations for Xpert implementation [33].

These recommendations suggest the use of Xpert as an initial

diagnostic for all individuals of HIV-positive or unknown status.

Given the high prevalence of HIV among patients with suspected

TB in southern Africa and the low number of individuals with a

recent HIV test result [34], we modeled an algorithm in which

Xpert was used as the initial diagnostic for all patients with

suspected TB. According to this algorithm, such patients are first

tested with a single Xpert assay, and no sputum smear is

performed. Those testing TB-positive but negative for RIF

resistance are initiated on a standard first-line regimen. Those

testing positive for RIF resistance go on to receive DST. If the

DST result indicates drug resistance, the individual is treated with

a drug regimen tailored to the observed resistance profile. Under

this scenario we assumed that scale-up to full coverage of Xpert

within the national TB program would occur over the 3-y period

starting in 2012. A diagram of the two alternative diagnostic

algorithms is shown in Figure S1.

Modeling Approach
We developed a dynamic compartmental model of TB following

the conventions of earlier models [35–41], with additional detail to

accommodate evaluation of alternative diagnostic strategies. The

model structure (Figure 1) is defined by a set of core TB states, and

these states are further subdivided to account for (1) aspects of

HIV infection, progression, and treatment relevant to TB

Impact and Cost-Effectiveness of Xpert MTB/RIF
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epidemiology; (2) multiple circulating TB strains, with different

drug resistance profiles; and (3) tracking of TB treatment history.

Core TB states. The core TB model simulates the move-

ments of individuals between states that capture important features

of TB transmission, natural history, and treatment. Individuals

enter the model in the susceptible state, where they face a risk of

TB infection. The risk of infection is modeled as a time-dependent

variable that reflects contact rates between infected and uninfected

individuals, and transmission probabilities that allow for varying

infectivity across different categories of active disease. Upon

infection, individuals progress either directly to active disease or to

latent infection. Individuals with latent infection may subsequently

progress to active TB or be superinfected by a different TB strain.

Active disease is categorized as smear-positive or smear-negative.

Smear-negative cases may progress to smear-positive, and all

individuals with active disease may spontaneously self-cure, which

returns them to the latent/recovered state. An individual with

active disease can be diagnosed as a TB case, according to the

characteristics of the diagnostic algorithm, and initiated on

treatment (as described in detail below). All individuals in the

model are subject to a background mortality rate and to TB-

related mortality specific to each active disease state.

HIV subdivisions. HIV coinfection can alter the natural

history of TB, with HIV-infected individuals having a higher

probability of primary progressive TB upon initial infection

[42,43], a higher rate of breakdown from latent infection to active

TB [44], a lower probability of smear-positivity amongst those

with active disease [4–6], and higher mortality rates [4,45,46].

The HIV sub-model draws on model structure and key parameters

from an array of published HIV models [47–50]. Seven HIV

subdivisions were created, defined by CD4 cell count (.350 cells/

ml, 200–350 cells/ml, and ,200 cells/ml) and by whether or not an

individual is receiving antiretroviral therapy (ART). HIV inci-

dence is modeled as a transition from the HIV-negative category

to the HIV-positive, CD4 count .350 cells/ml category, with

time-varying incidence rates defined as exogenous model param-

eters. HIV-positive individuals not on ART progress over time to

subdivisions with lower CD4 counts. Untreated individuals

transition onto ART at rates specific to their CD4 category.

These rates are allowed to vary over time to capture changing

eligibility criteria and coverage of testing and referral. HIV-related

mortality occurs at rates specific to each subdivision.

Drug resistance subdivisions. Model states are further

subdivided to account for differences in drug resistance among

circulating TB strains, including (1) pan-sensitive TB, (2) isoniazid

(INH) mono-resistant TB, (3) RIF mono-resistant TB, (4) TB

resistant to both INH and RIF (MDR-TB), and (5) TB resistant to

INH and RIF plus one or more second-line drugs (MDR+/XDR-

TB). An individual in the susceptible state who is newly infected

with TB transitions to the subdivision of the infecting strain. An

individual with latent TB who is superinfected by a different strain

transitions to the subdivision of the superinfecting strain.

Figure 1. Model states, subdivisions, and transitions.
doi:10.1371/journal.pmed.1001347.g001
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Individuals may also develop acquired drug resistance as a result of

TB treatment, transitioning to subdivisions with broader resistance

profiles.

Treatment history subdivisions. A final subdivision of

model states distinguishes treatment-naı̈ve from treatment-experi-

enced individuals, as diagnostic algorithms may dictate different

confirmatory tests depending on an individual’s history of prior

treatment. Individuals enter the model in the treatment-naı̈ve

subdivision, and all individuals exiting their first course of TB

treatment (through default, failure, or cure) transition to the

treatment-experienced subdivision.

The model is implemented as a series of difference equations

with a monthly time step. A full description of model structure and

equations is given in Text S1.

TB Diagnosis and Treatment
The model allows for TB diagnosis and treatment through the

national TB DOTS program, or through non-DOTS providers

functioning outside the national program. Uptake into treatment

programs requires that individuals (1) present to a health facility

and are identified as patients with suspected TB, (2) are diagnosed

as active cases, and (3) are initiated on regimens determined by

their background characteristics and information on drug sensi-

tivity, if available. The model accounts for differences in test

performance and information provided by each diagnostic

algorithm, and for attrition between diagnosis and treatment,

which varies depending on the delay to test results [51].

Individuals with false negative diagnoses for active TB will remain

in the pool of undiagnosed active TB cases, with the possibility of

presenting for diagnosis again. Individuals without active TB who

attend with TB symptoms and are incorrectly diagnosed with

active TB are assumed to undergo TB treatment, incurring costs

but no positive or negative health effects. Algorithms for diagnosis

and treatment in non-DOTS programs are assumed to be the

same in both the status quo and Xpert scenarios, i.e., independent

of the choice of diagnostic algorithm in the national DOTS

program.

Individuals on TB treatment may successfully complete

treatment, fail, default (become lost to follow-up), or die. Those

who successfully complete treatment return to the latent/

recovered state. A percentage of individuals failing therapy are

identified as failures by the treatment program and reinitiate

treatment, while all others return to active disease. Individuals who

fail or default from treatment may acquire resistance to the drugs

they have received. The model allows individuals with pan-

sensitive TB to develop mono-INH-resistant TB, mono-RIF-

resistant TB, or MDR-TB directly. Individuals with mono-INH-

or mono-RIF-resistant TB can develop MDR-TB, and individuals

with MDR-TB can develop MDR+/XDR-TB, with the rates of

acquiring drug resistance dependent on a patient’s TB drug

regimen and current drug resistance profile (see details in Text S1).

Impact of Diagnostic Algorithms on TB Epidemiology
Any change in diagnostic algorithm is assumed to impact TB

epidemiology through two channels. The first major effect is via

changes in the overall sensitivity and specificity of TB diagnosis.

For the population with undiagnosed active TB, an improvement

in diagnostic sensitivity results in improved case detection and

reduced delay to treatment initiation and, consequently, increases

survival and decreases the duration of infectiousness. The second

major effect is via changes in the distribution of regimens received

by newly diagnosed TB cases. Drug-resistant TB cases identified

by an algorithm with better sensitivity for diagnosing resistance

have a higher probability of being initiated on a more effective

treatment regimen, which in turn improves cure rates, increases

survival, and reduces the probability that a patient will return to an

infectious state.

Estimation Approach
We used a Bayesian estimation approach developed by Raftery

and colleagues [52,53] and recently adopted by the Joint United

Nations Programme on HIV/AIDS for HIV epidemic projections

[54–56]. This approach provides a method for calibrating

complex nonlinear models to reported data on disease burden,

and for characterizing uncertainty in analysis results using

Bayesian posterior intervals and similar metrics. These features

are particularly important for our analysis, given the substantial

uncertainty around many of the parameters describing TB

epidemiology. We used this approach to calibrate the model to

independent WHO estimates of TB incidence and prevalence in

each of the five countries [57], and to data from drug resistance

surveys available for all countries except Namibia [58]. The

analysis was implemented using a sampling/importance resam-

pling algorithm [52,55,59]. First, a large number of parameter sets

were drawn from the joint prior distribution of the input

parameters. For each of these parameter sets the model was run

and a likelihood statistic calculated by comparing model outcomes

to the corresponding calibration data. The likelihood for each

parameter set was then used as the probability weight in a second-

stage resample of the parameter sets, which yielded draws

representing the posterior parameter distribution, reflecting the

information available on both model inputs and calibration data.

The results of this simulation are similar to those produced by

traditional Monte Carlo simulation and probabilistic sensitivity

analyses, with the additional benefit of being constrained to be

consistent with independent estimates on TB outcomes for each

country. For each modeled outcome, uncertainty intervals were

calculated by taking the 2.5th and 97.5th percentiles of the

distribution for this outcome generated by the resampled

parameter sets, and the point estimate was calculated by taking

the arithmetic mean of this distribution (see Text S1 for further

detail).

Model Parameter Values
We parameterized the model using historical demographic and

epidemiologic data available for each country. Parameter values

relating to population demographics were derived from United

Nations Population Division estimates and projections. Parameter

values relating to TB transmission dynamics were chosen to be

consistent with data and assumptions used in earlier TB models

[35–41]. Parameter values relating to TB program coverage and

treatment outcomes were derived from published reporting data

[57]. Key parameter values relating to TB diagnosis and treatment

are summarized in Table 1. Estimates for HIV incidence and

ART access between 1983 and 2010 were derived from

unpublished data provided by the Joint United Nations Pro-

gramme on HIV/AIDS. Future ART access was assumed to

increase from current levels to the WHO universal access target of

80% coverage [60] over the course of 10 y. For Botswana, which

was providing ART to an estimated 83% of those in need by 2009,

coverage was maintained at current levels. ART eligibility was

initially limited to individuals with CD4 count ,200 cells/ml and

then extended to include those with a CD4 count in the range

200–350 cells/ml from 2010 onward, consistent with the expansion

of ART eligibility in WHO HIV treatment guidelines [61,62]. A

full description of all parameters in the model is provided in Text

S1.

Impact and Cost-Effectiveness of Xpert MTB/RIF

PLOS Medicine | www.plosmedicine.org 4 November 2012 | Volume 9 | Issue 11 | e1001347



Table 1. Selected model parameter values and ranges.

Description Base-Case Value Range Source

Sensitivity of sputum smear microscopy Assumeda

Smear-negative TB 0.0 —

Smear-positive TB 1.0 —

Specificity of sputum smear microscopy 0.974 (0.965–0.982) [82]

Sensitivity of sputum culture 1.0 — Assumedb

Specificity of sputum culture 0.984 (0.978–0.989) [83]

Sensitivity of Xpert for TB [14]

Smear-negative TB 0.725 (0.655–0.788)

Smear-positive TB 0.982 (0.969–0.991)

Specificity of Xpert for TB 0.992 (0.982–0.997) [14]

Sensitivity of Xpert for RIF resistance 0.976 (0.946–0.992) [14]

Specificity of Xpert for RIF resistance 0.981 (0.966–0.990) [14]

Probability of sputum culture following a negative sputum
smear (status quo algorithm)

[84]

Treatment-naı̈ve patients 0.20 (0.11–0.31)

Treatment-experienced patients 0.80 (0.69–0.89)

Probability of DST following a positive TB diagnosis (status
quo algorithm)

[84]

Treatment-naı̈ve patients 0.00 —

Treatment-experienced patients 0.80 (0.69–0.89)

Probability of loss to follow-up between initial presentation
and treatment initiation

[51]

With prompt diagnosis (smear, Xpert) 0.15 (0.09–0.24)

With delayed diagnosis (culture, DST) 0.25 (0.14–0.39)

Background mortality rate (ages 15+ y) Time-varying — WHO unpublished data

Excess mortality rate for active TB [38]

Smear-negative 0.21 (0.18–0.25)

Smear-positive 0.30 (0.21–0.41)

Excess mortality rate for HIV [85–90]

CD4 .350 cells/ml, no ART 0. 008 (0.005–0.012)

CD4 200–350 cells/ml, no ART 0.030 (0.018–0.048)

CD4,200 cells/ml, no ART 0.230 (0.136–0.366)

On ART initiated at CD4 .350 cells/ml 0.008 (0.005–0.012)

On ART initiated at CD4 200–350 cells/ml 0.023 (0.014–0.037)

On ART initiated at CD4,200 cells/ml 0.050 (0.031–0.076)

Excess mortality rate for advanced HIV (CD4,200 cells/ml)
and active TB without ART

0.80 (0.472–1.272) [45,46]

Per-test cost of Xpert $20, $30, $40 Fixedc [33,64,65]

Per-test cost of smear diagnosis [51,91–97]

Botswana $6.13 (4.18–8.68)

Lesotho $3.31 (2.26–4.68)

Namibia $5.31 (3.63–7.51)

South Africa $5.94 (4.06–8.39)

Swaziland $4.24 (2.90–5.99)

Per-test cost of culture [51,91,93,94,97]

Botswana $15.83 (13.07–18.99)

Lesotho $8.56 (7.07–10.27)

Namibia $13.72 (11.33–16.46)

South Africa $15.33 (12.66–18.39)

Swaziland $10.94 (9.04–13.13)

Impact and Cost-Effectiveness of Xpert MTB/RIF
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Table 1. Cont.

Description Base-Case Value Range Source

Per-test cost of chest X-ray [91,96,98]

Botswana $16.69 (11.35–23.70)

Lesotho $9.03 (6.14–12.81)

Namibia $14.46 (9.83–20.52)

South Africa $16.16 (10.99–22.94)

Swaziland $11.54 (7.85–16.38)

Per-test cost of DST [7,99]

Botswana $81.97 (61.44–107.17)

Lesotho $44.32 (33.22–57.94)

Namibia $71.02 (53.24–92.85)

South Africa $79.37 (59.50–103.77)

Swaziland $56.65 (42.47–74.07)

Cost of outpatient diagnostic visit [100]

Botswana $10.32 (6.09–16.40)

Lesotho $2.94 (1.73–4.67)

Namibia $7.99 (4.71–12.70)

South Africa $10.30 (6.08–16.39)

Swaziland $6.21 (3.66–9.87)

Cost of outpatient treatment visit [100]

Botswana $6.85 (4.04–10.89)

Lesotho $1.95 (1.15–3.10)

Namibia $5.31 (3.13–8.44)

South Africa $6.85 (4.04–10.89)

Swaziland $4.13 (2.44–6.57)

Cost of inpatient care, per day [100]

Botswana $38.99 (23.00–61.99)

Lesotho $8.78 (5.18–13.96)

Namibia $28.76 (16.97–45.73)

South Africa $39.38 (23.23–62.61)

Swaziland $21.91 (12.93–34.84)

Monthly TB regimen cost [63]

First-line $5.86 (3.46–9.32)

Mono-INH resistant $18.02 (10.63–28.65)

Mono-RIF resistant $33.91 (20.01–53.92)

MDR-TB $119.37 (70.43–189.79)

MDR+/XDR-TB $179.06 (105.64–284.70)

Monthly cost of ART [63,101–105]

Botswana $104.97 (84–80–128.48)

Lesotho $69.63 (57.22–83.92)

Namibia $94.68 (76.78–115.52)

South Africa $102.53 (82.90–125.40)

Swaziland $81.20 (66.25–98.52)

Disability weights [66,67]

Active TB 0.271 (0.151–0.422)

HIV-positive, CD4 .350 cells/ml, no ART 0.135 (0.078–0.213)

HIV-positive, CD4 200–350 cells/ml, no ART 0.320 (0.176–0.496)

HIV-positive, CD4,200 cells/ml, no ART 0.505 (0.252–0.757)

HIV-positive, on ART initiated at CD4 .350 cells/ml 0.135 (0.078–0.213)

HIV-positive, on ART initiated at CD4 200–350 cells/ml 0.151 (0.087–0.238)

Impact and Cost-Effectiveness of Xpert MTB/RIF
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Measurement of Resource Use and Costs
Costs were assessed from a health system perspective and

expressed in 2011 US dollars. Costs reflected resources used to

deliver TB diagnosis and treatment, as provided by both public

and private providers, and resources used in providing ART to

HIV-infected individuals. An ingredients approach to costing was

used, by which the total cost to provide a particular diagnostic

procedure or a course of treatment was calculated by estimating

the number of units of each specific type of resource input needed

to deliver the service, multiplying each quantity by the

corresponding unit cost of that resource input, and summing

across all inputs.

Average costs for each type of service are shown in Table 1.

Cost estimates extrapolated from the literature were adjusted for

inflation, currency conversions, and price levels, where relevant.

Treatment costs for TB and HIV included drugs, clinic visits, and

monitoring tests, including regular smear examinations during TB

treatment. Drug costs were derived from the WHO price

reporting mechanism [63]. Costs for laboratory tests (excluding

Xpert) were derived from the literature. Numbers of treatment

monitoring visits and laboratory tests followed a previous global

analysis [35]. For Xpert, estimates in WHO implementation

guidelines [33] suggest an economic cost of US$25–US$35 per test

in southern Africa (including consumables, equipment, personnel,

transport, facilities, and managerial overheads). This range of

estimates is consistent with the results from a cost analysis

conducted for the South African national program, which found a

cost range of US$25–US$33 [64], as well as an analysis of

potential implementation strategies that reported costs of US$27

per patient with suspected TB for placement of equipment at

central laboratories and US$39 for placement of equipment at

point of care [65]. Costs of Xpert may continue to change as

volume increases, through reductions in the prices of equipment

and consumables [22,23], economies of scale, and accumulated

implementation experience; we therefore conducted analyses using

Xpert per-test costs of US$20, US$30, and US$40.

Outcomes
We estimated trends in population-level epidemiological out-

comes including TB prevalence, incidence, mortality, and

resistance to anti-TB drugs, prior to Xpert introduction in 2012,

and over the subsequent 20-y period. Summary outcome measures

computed based on population survivorship in the model included

life-years and disability-adjusted life-years (DALYs), the latter

incorporating disability weights from the Global Burden of Disease

study [66,67]. We evaluated the cost-effectiveness of introducing

Xpert in terms of the ICER, expressed as the difference in total

costs between the Xpert and status quo scenarios, divided by the

difference in life-years or DALYs between the two scenarios. Cost-

effectiveness ratios were computed over both 10-y and 20-y time

horizons following Xpert introduction, in each case based only on

the costs and health outcomes accrued during that period. Costs

and health benefits were discounted at an annual rate of 3%

[68,69]. Following standard benchmarks proposed in international

work on cost-effectiveness, we compared the ICER to thresholds

for cost-effectiveness defined in reference to the annual gross

domestic product (GDP) per capita in each country. Interventions

Figure 2. Estimated and projected TB prevalence, TB incidence,
and multidrug-resistant TB prevalence in southern Africa
under status quo diagnostic algorithm, 1990–2032.
doi:10.1371/journal.pmed.1001347.g002

Table 1. Cont.

Description Base-Case Value Range Source

HIV-positive, on ART initiated at CD4,200 cells/ml 0.167 (0.096–0.262)

All costs are given in 2011 US dollars.
aAs smear status is tracked in the model, the sensitivity of sputum smear for individuals classed as smear-negative and smear-positive is 0% and 100% (respectively) by
construction.
bAs sputum culture is the gold standard for TB detection, the sensitivity is assumed to be 100%.
cAs the per-test cost of Xpert is of key interest to policy-makers (and potentially subject to price negotiation), the results of the analyses are presented for three separate
values for the Xpert cost.
doi:10.1371/journal.pmed.1001347.t001
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are considered to be highly cost-effective when they have ICERs

that fall below the annual per-capita GDP, and are regarded as

being potentially cost-effective if they have ICERs between one

and three times annual per-capita GDP [70].

Sensitivity Analysis
The sensitivity of the model to changes in individual parameters

was investigated through traditional one-way sensitivity analyses as

well as by computing partial rank correlation coefficients across

the set of simulation results produced by the Bayesian uncertainty

analysis [38,71,72]. For the one-way sensitivity analyses, we

computed the change in the ICER (calculated over a 10-y time

horizon) that would occur when we changed one parameter value

by 61 standard deviation from its posterior mean value while

holding all other parameter values at their posterior means. We

also conducted an array of additional sensitivity analyses that

varied assumptions regarding the diagnostic algorithms being

compared, the use of inpatient care as part of MDR-TB treatment,

future ART coverage decisions, and trends in antiretroviral drug

prices.

Finally, we conducted a probabilistic sensitivity analysis to assess

the uncertainty around the optimal choice of diagnostic strategy

resulting from the joint effects of uncertainty around all input

parameters simultaneously, and these results are presented as

posterior intervals around key model outcomes and as cost-

effectiveness acceptability curves.

Results

Epidemiological Projections under the Current
Diagnostic Algorithm

Figure 2 shows estimates and projections for TB prevalence and

incidence in the southern Africa region from 1990 through the end

of 2032, under the assumption that the current (status quo)

diagnostic algorithm is used over the whole period. The results for

individual countries followed the general trend seen in the regional

results, with historical declines in TB prevalence and incidence

reversed over the period 1995–2010 as a consequence of

concurrent HIV epidemics. The magnitude of the TB epidemic

differed across individual countries, with Lesotho having the

lowest prevalence and incidence and Swaziland the highest.

Performance of Diagnostic Algorithms
Based on our model simulations, the positive predictive value

for Xpert diagnosis of active TB, at full coverage by 2014, would

be 96.9% (95% CI: 93.4–98.7), compared to 88.4% (81.5–93.1)

for the status quo algorithm. The negative predictive values for

Xpert and the status quo would be 93.9% (88.8–97.2) and 79.3%

(67.6–87.9), respectively. We estimate the positive predictive value

for the diagnosis of RIF resistance by Xpert to be 67.3% (51.3–

82.0) and the negative predictive value 99.9% (99.8–100.0). The

relatively low positive predictive value indicates that Xpert is

expected to produce a number of false positive diagnoses of RIF

resistance, with relatively modest implications for treatment

outcomes, as we assume that a subsequent DST is required before

individuals receive an MDR-TB diagnosis. Under the Xpert

algorithm, 5.8 (95% CI: 3.8–9.2) patients are tested for TB for

each active case starting treatment, compared to 7.5 (4.9–12.1)

under the status quo, a consequence of improved sensitivity in the

Xpert algorithm. The average duration of infectiousness is 9.9 mo

(95% CI: 6.7–14.0) under the Xpert algorithm compared to 12.8

mo (9.6–14.0) under the status quo. The benefit of the reduced

duration of infectiousness is primarily accrued among individuals

with smear-negative TB, for whom the duration of infectiousness is

reduced from 19.3 mo (13.8–24.6) under the status quo to 12.1 mo

(7.8–18.0) under the Xpert scenario. Results for those with smear-

positive disease are comparable under both scenarios. Treatment

effectiveness (the probability of cure for individuals starting

treatment) rises only marginally under the Xpert scenario, with

the probability of cure 2.7 (95% CI: 1.6–4.4) percentage points

higher than in the status quo scenario. Table 2 presents estimates

for the average cost per programmatic outcome for the status quo

and Xpert strategies, summed over the first 10 y of Xpert

implementation (2012–2022). These results show that adopting the

Xpert algorithm increases the cost of achieving various diagnostic

and treatment outcomes.

Table 2. Average programmatic outcomes and costs over 10 y following choice of strategy.

Outcome Status Quo Strategy Xpert Strategy

Programmatic measures for DOTS diagnosis

Average annual DOTS diagnosis costs $27 million (15–46 million) $37 million (21–61 million)

Average annual number of patients receiving TB testing 892,000 (519,000–1,508,000) 829,000 (487,000–1,400,000)

Average annual number of true positive diagnoses 151,000 (100,000–215,000) 175,000 (120,000–245,000)

Average diagnosis cost per patient with suspected TB $31 (25–38) $45 (40–50)

Average diagnosis cost per true positive diagnosis $181 (117–287) $211 (136–334)

Programmatic measures for DOTS treatment

Average annual DOTS treatment costs $57 million (30–102 million) $81 million (42–137 million)

Average treatment volume 57,000 (38,000–85,000) 69,000 (48,000–100,000)

Average annual number of true positive treatment initiations 122,000 (81,000–175,000) 147,000 (103,000–206,000)

Average number of annual cures 100,000 (66,000–146,000) 121,000 (84,000–172,000)

Average treatment cost per month $84 (59–135) $98 (67–147)

Average treatment cost per TB case initiated $469 (321–761) $556 (371–861)

Average treatment cost per TB case cured $575 (396–914) $675 (461–1,008)

All costs are given in 2011 US dollars. Results are based on US$30 Xpert per-test cost. Range in parentheses represents the 95% posterior interval for each estimate.
doi:10.1371/journal.pmed.1001347.t002
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Population Health Impact of Introducing Xpert
Introduction of Xpert is projected to produce immediate and

sustained changes in TB epidemiology (Figure 3). Within 10 y

after the introduction of Xpert, prevalence would be lower by 186

(95% CI: 86–350) per 100,000 (28% [95% CI: 14–40]), incidence

by 35 (13–79) per 100,000 (6% [2–13]), and annual TB mortality

by 50 (23–89) per 100,000 (21% [10–32]), compared to status quo

projections. The absolute number of MDR-TB cases after 10 y

would be lower by 25% (6–44) in the Xpert scenario compared to

the status quo scenario. The decline in MDR-TB cases parallels

the overall decline in TB prevalence in these projections. There is

no significant change expected in MDR-TB as a percentage of all

TB under the Xpert scenario (4.3% [217.5 to 34.6] greater after

10 y). Figure S2 shows the incremental differences between Xpert

and the status quo for these health outcomes, including

uncertainty intervals around these differences.

Summing the health effects of Xpert introduction over the first

10 y of implementation, this strategy is estimated to prevent

132,000 (95% CI: 55,000–284,000) of the estimated 2.6 million

(1.7–4.3 million) new TB cases and 182,000 (97,000–302,000) of

the estimated 1.2 million (0.6–2.0 million) TB deaths projected for

southern Africa under the status quo.

Health System Costs of Introducing Xpert
Figure 4 shows the additional annual costs associated with the

Xpert scenario compared to the status quo, subdivided by type of

cost. TB program costs rise rapidly as Xpert scales up to full

coverage over 2012–2015. While implementation of Xpert

requires increased spending on TB diagnosis and treatment, the

major financial impact of Xpert introduction in this region is on

HIV treatment programs. This is because prompt TB treatment

extends survival among TB/HIV-coinfected individuals, leading

Figure 3. Epidemiologic outcomes in Xpert and status quo scenarios, 2012–2032.
doi:10.1371/journal.pmed.1001347.g003

Impact and Cost-Effectiveness of Xpert MTB/RIF

PLOS Medicine | www.plosmedicine.org 9 November 2012 | Volume 9 | Issue 11 | e1001347



to increases in HIV treatment demand. The model predicts that at

10 y after Xpert introduction, HIV treatment costs will comprise

58% (95% CI: 40–72) of the total incremental costs associated with

the Xpert strategy (assuming an Xpert per-test cost of US$30).

Considering only the additional costs incurred by national DOTS

programs, almost three-quarters (71% [47–87]) of these will be

due to growth in TB treatment costs, with almost all of this

increase coming from a higher volume of MDR-TB treatment.

Cost-Effectiveness of Xpert Strategy versus the Status
Quo

Table 3 shows ICERs for the Xpert strategy versus the status

quo strategy under 10-y and 20-y analytic horizons and a range of

Xpert costs. Assuming an Xpert cost of US$30 per test, the Xpert

scenario is expected to avert approximately half a million DALYs

during the first 10 y following introduction, at a cost of US$959

(95% CI: 633–1,485) per DALY averted.

Figure 5 presents the costs per DALY averted through

implementation of Xpert in each of the five southern African

countries. In almost all cases, the cost-effectiveness ratios fall below

the standard benchmarks for cost-effectiveness suggested by

Figure 4. Incremental costs of Xpert strategy (based on US$30
Xpert per-test cost) compared to status quo strategy, by cost
category, 2012–2032 (2011 US dollars).
doi:10.1371/journal.pmed.1001347.g004

Table 3. Cost-effectiveness results for Xpert algorithm compared to status quo algorithm in southern Africa.

Outcome Xpert Cost

US$20 US$30 US$40

10-y analytic horizon (costs and benefits summed over 2012–2022)

Incremental costs, health system $401 million (248–623 million) $460 million (294–699 million) $520 million (333–772 million)

Incremental costs, DOTS program only $225 million (119–378 million) $284 million (166–448 million) $344 million (209–522 million)

Incremental life-years saved 421,000 (234,000–679,000) 421,000 (234,000–679,000) 421,000 (234,000–679,000)

Incremental DALYs averted 480,000 (261,000–809,000) 480,000 (261,000–809,000) 480,000 (261,000–809,000)

Incremental cost per life-year saveda $952 (606–1,326) $1,093 (746–1,592) $1,234 (836–1,872)

Incremental cost per DALY averteda $836 (531–1,223) $959 (633–1,485) $1,083 (716–1,760)

20-y analytic horizon (costs and benefits summed over 2012–2032)

Incremental costs, health system $1,103 million (594–1,979 million) $1,217 million (691–2,093 million) 1,330 (784–2,205)

Incremental costs, DOTS program only $481 million (205–993 million) $594 million (295–1,125 million) 707 (379–1,262)

Incremental life-years saved 1,500,000 (800,000–2,570,000) 1,500,000 (800,000–2,570,000) 1,500,000 (800,000–2,570,000)

Incremental DALYs averted 1,550,000 (800,000–2,770,000) 1,550,000 (800,000–2,770,000) 1,550,000 (800,000–2,770,000)

Incremental cost per life-year saveda $734 (459–1,173) $810 (504–1,311) $885 (557–1,467)

Incremental cost per DALY averteda $711 (422–1,187) $784 (476–1,345) $857 (523–1,534)

All costs are given in 2011 US dollars.
aICERs calculated using health system costs (including DOTS costs). Both costs and health outcomes discounted at 3%. Range in parentheses represents the 95%
posterior interval for each estimate.
doi:10.1371/journal.pmed.1001347.t003

Figure 5. Cost-effectiveness of Xpert strategy compared to
status quo strategy in five southern African countries (2011 US
dollars). For each ratio, the diamond indicates the point estimate
(mean incremental costs divided by mean incremental DALYs averted),
and the bar indicates the width of the 95% posterior interval. Results
based on US$30 Xpert per-test cost.
doi:10.1371/journal.pmed.1001347.g005
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WHO, whereby interventions with cost-effectiveness ratios less

than three-times annual per-capita GDP are regarded as

potentially cost-effective, and interventions with cost-effectiveness

ratios less than annual per-capita GDP are deemed very cost-

effective. Among these five countries, per-capita GDP in 2010

ranged from above US$7,000 in South Africa and Botswana down

to US$982 in Lesotho [73].

Sensitivity Analyses
We conducted one-way sensitivity analyses for all model inputs.

Figure 6 shows the results for South Africa for the ten parameters

producing the greatest variation in the cost-effectiveness ratio

when varied by 61 standard deviation from their posterior means.

While the overall uncertainty in model results—as expressed in the

posterior intervals and in the cost-effectiveness acceptability curves

described below—is not small, the uncertainty generated by any

individual parameter is relatively small, and does not change the

general conclusions of the study. Complete results, by country, for

the one-way sensitivity analyses on all parameters are reported in

Text S1. Partial rank correlation coefficients, which reflect a

probabilistic approach to identifying influential parameters, were

calculated for all model inputs based on the simulation results, and

yielded conclusions that were largely consistent with those based

on the one-way sensitivity analyses (results for South Africa

presented in Figure S3).

The cost-effectiveness ratios presented in Table 3 and Figure 5

attempt to capture the major changes in health system resource

use and health outcomes resulting from the adoption of the Xpert

algorithm, including increases in TB treatment and HIV

treatment volume. The increase in TB treatment volume is a

direct consequence of better case-finding under the Xpert

algorithm. The increase in ART volume is an indirect conse-

quence of Xpert introduction, resulting from improved survival of

TB/HIV-coinfected individuals who are currently receiving ART

or who will go on to receive ART in the future. As shown in

Figure 4, the increase in health system costs due to increased ART

volume is substantial. In order to disentangle the direct effect of

Xpert from this secondary effect through HIV survival, we

constructed a scenario in which access to ART under a scaled-up

Xpert approach was constrained to be the same as in the status

quo scenario (as might be the case if the future HIV treatment

budget were fixed and did not increase as a function of HIV

treatment need). While artificial, this scenario allowed us to

estimate the cost-effectiveness of Xpert adoption separate from the

effects on HIV treatment. In this scenario, incremental costs and

DALYs averted dropped by 35%–40% and 10%–15%, respec-

tively, compared to the main analysis, and the cost per DALY

averted (assuming a US$30 per-test cost for Xpert) dropped to

US$656 (95% CI: 386–1,115) over a 10-y analytic horizon.

Further sensitivity analyses (described in Text S1) tested the

robustness of the cost-effectiveness results to the use of clinical

diagnosis as part of the status quo algorithm, to the removal of

inpatient care from MDR-TB treatment, to the provision of

empiric MDR-TB treatment while awaiting results from DST for

all patients diagnosed with RIF resistance by Xpert, and to a

revised assumption about ART cost trends, in which ART prices

drop 50% over 10 y. Each of these changes produced a change in

the 10-y ICER of ,20% and did not change the qualitative

conclusions about Xpert cost-effectiveness. Detailed three-way

sensitivity analyses were conducted to understand how current

coverage of culture (among treatment-naı̈ve and treatment-

experienced patients) and DST affected the incremental costs,

health benefits, and cost-effectiveness of Xpert in each country.

These analyses (Figure S4) show that if use of culture under the

status quo algorithm is higher than the value used in the main

analysis, this reduces the incremental costs and health benefits

produced by adopting Xpert and results in a less favorable cost-

effectiveness ratio. In some countries, very high values of culture

use would result in the status quo strategy dominating the Xpert

strategy, i.e., having lower costs and greater health benefits. The

Figure 6. Results from univariate sensitivity analyses, showing the ten parameters with the greatest influence on the cost-
effectiveness of Xpert compared to status quo, South Africa. Sensitivity analyses on the incremental cost per DALY averted (2011 US dollars)
over a 10-y analytic horizon, assuming a US$30 Xpert per-test cost. In each one-way analysis, one parameter was varied 61 standard deviation from
its posterior mean, with all other variables fixed at their posterior means.
doi:10.1371/journal.pmed.1001347.g006
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coverage levels that produce such a result (80% of all treatment-

naı̈ve and treatment-experienced TB patients diagnosed via

culture), however, are unlikely to be in place at present, given

current infrastructure and program constraints. Higher than

expected DST access under the status quo would produce modest

reductions in incremental costs and minimal changes in cost-

effectiveness ratios.

We also considered an alternative Xpert algorithm that requires

more aggressive investigation (via culture, chest X-ray, and

antibiotic trial) of Xpert-determined TB-negative individuals with

HIV-positive or unknown status, as described in recent South

African Xpert guidelines [74]. The ICER for this aggressive Xpert

algorithm, compared to the base-case Xpert algorithm evaluated

in the main analysis, was US$2,128 (95% CI: 1,215–3,954) per

DALY averted, suggesting that while this more aggressive

algorithm may be cost-effective in some settings, limited

programmatic resources might yield higher benefits by expanding

access to a simplified Xpert algorithm.

Finally, we constructed cost-effectiveness acceptability curves to

consider the likelihood that Xpert would be cost-effective under

different thresholds for societal willingness to pay for an additional

year of healthy life (Figure S5). If society were willing to pay up to

the average per-capita GDP (US$6,850 for the region) for each

averted DALY, our results suggest essentially no uncertainty in the

conclusion that Xpert would be cost-effective. At a threshold of

only US$1,000 (representing ,15% of per-capita GDP in the

region), the probability that Xpert would be regarded as cost-

effective was 85%, when we considered the benefits that would

accumulate over 20 y, or 55%, over a 10-y horizon.

Discussion

In this study, we used a dynamic, calibrated mathematical

model of TB to evaluate the potential health and economic

consequences associated with scaling up the new Xpert MTB/RIF

test in settings with high TB burden, prevalent MDR-TB, and

high concurrent prevalence of HIV. Our modeling approach

enables quantification of the population-level health effects of

alternative diagnostic strategies, projections of impact over the

short term and longer time horizons, and assessment of the

economic impact and cost-effectiveness of scaling up Xpert

compared to continuation of the status quo diagnostic approach.

Our results indicate that the introduction of the Xpert MTB/

RIF diagnostic has the potential to produce a substantial reduction

in TB morbidity and mortality in southern Africa. For individuals

with smear-negative TB, the benefits of Xpert implementation

would be immediate, leading to the diagnosis and early treatment

of many individuals who would be missed by the conventional

diagnostic algorithm. Over a longer time frame, the introduction

of Xpert would reduce transmission and reduce the reservoir of

latent TB infection in the population, but these secondary effects

are smaller than might have been anticipated. Even accounting for

indirect transmission benefits, we project that TB incidence will

remain substantial after three decades of Xpert use, in the absence

of other modifications to the status quo TB control strategy. This is

due to the large existing pool of latently infected individuals whose

progression to active disease would be unmitigated by improved

diagnostics, and to the fact that a substantial fraction of the

additional cases diagnosed using Xpert will be smear-negative

cases, who are less likely to transmit infection than smear-positive

cases.

Along with the projected health benefits of scaling up Xpert will

come significantly increased demands on healthcare resources.

The large increase in funding required under the Xpert scenario

raises the question of affordability. Although our cost-effectiveness

results suggest that the introduction of Xpert represents good value

for money according to typical international benchmarks, it does

not automatically follow that TB program budgets will be able to

absorb these changes. Whereas current debate about the costs of

Xpert roll-out focuses largely on equipment and consumables

connected directly to the assay, our results show that the indirect

cost consequences associated with improved case-finding over-

shadow the direct costs of diagnosis. If current guidelines are

followed, the adoption of Xpert places three key demands on a

health system that are additional to the direct costs of diagnosis:

providing first-line TB treatment to the large number of additional

pan-sensitive TB cases that will be identified, providing additional

HIV treatment to coinfected individuals who will live longer as a

result of better TB care, and providing second-line TB treatment

to the limited number of individuals diagnosed with drug-resistant

TB. While our analysis accounts for all three demands, we

recognize that response to each of these demands could be

evaluated as a separate policy question. Such analyses are beyond

the scope of our present study, but it is nevertheless important to

note how the economics of Xpert are dependent on the additional

interventions triggered by Xpert introduction—which are sensitive

to both epidemiologic context and policy decisions. It is likely that

existing resources and infrastructure will be called upon to support

the introduction of Xpert and the cascade of complementary

services this will trigger, and our findings underscore the concern

raised by other commentators regarding the possible pitfalls of

introducing Xpert into health systems that are already facing

capacity constraints [26,29].

An important observation in this study is that substantial

increases in HIV treatment costs are expected following introduc-

tion of Xpert. This critical insight has a large influence on the cost-

effectiveness of Xpert that would be missed in simpler models that

do not capture the concurrent dynamics of TB and HIV, and is

consistent with other analyses pointing to the importance of HIV

and ART access for TB outcomes in this setting [27,75].

Sensitivity analyses show that if future HIV treatment access were

limited by a hard budget constraint, this would actually result in a

more attractive cost-effectiveness ratio for Xpert adoption

(reducing the ICER to less than US$700 per DALY over a 10-y

analytic horizon), with the subtraction of ART costs from the

numerator of the ICER outweighing the reduction in health

benefits in the denominator. Note that this finding provides no

evidence about the appropriate level of ART access in the future,

but does provide a clear illustration of the interlinked nature of TB

and HIV policy in settings with dual epidemics. Although the

absolute increase in HIV treatment spending would eventually be

larger than the increase in TB program costs, the relative effects on

total budgets for HIV and TB control are reversed; we estimate

that introduction of Xpert would result in a 2% increase in HIV

treatment costs after 10 y, but a 40% increase in the costs of TB

control.

Providing treatment to additional cases diagnosed with MDR-

TB represents another major component of the incremental costs

of Xpert adoption. In our base-case analysis, we assumed that

second-line TB treatment would be available for diagnosed MDR-

TB cases, which resulted in an estimated 2- to 3-fold increase in

the volume of MDR-TB treatment under an Xpert scale-up

scenario. If second-line therapy were less available than we

assumed, the cost-effectiveness of Xpert would actually improve in

the short term (at the cost of faster growth in drug resistance), as

the reduction in treatment costs would outweigh the reduction in

survival among MDR-TB patients receiving ineffective first-line

regimens. Recent empirical cost analyses suggest that MDR-TB
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care costs may be even higher than estimated in our analysis, with

a South African study estimating per-patient costs of over

US$17,000 during the inpatient phase of therapy alone, more

than 40 times the cost of treating drug-sensitive TB [76]. While

this might motivate the development of more efficient approaches

to MDR-TB treatment, it also highlights the trade-offs involved in

Xpert introduction.

Although the scenarios considered in this analysis assumed that

DST would be used prior to the initiation of patients on second-

line regimens, the availability of DST remains limited in some

settings. Of note, the 67% positive predictive value of the Xpert

test for RIF resistance in this setting suggests that a positive result

on the Xpert RIF test would be insufficient evidence to initiate

individuals on second-line regimens, and further screening would

be necessary. Further, the benefits achieved through better

detection and treatment of drug-resistant TB would be offset by

increases in the number of cases developing resistance, resulting

from Xpert’s better case detection and the resulting increase in

treatment volume. Consequently, the percentage of all TB cases

with MDR-TB after 10 and 20 y is projected to be higher under

the Xpert scenario, although this result is not statistically

significant, and—given the overall reduction in TB prevalence

produced by Xpert—the absolute number of MDR-TB cases

would be lower than under the status quo.

A recent modeling study on Xpert introduction in three

countries [77] reported an ICER of US$138 per DALY in South

Africa for Xpert versus the status quo, which is around 5–8 times

lower than the estimated ratios in our study. Because the prior

study used a cohort model of patients with suspected TB, its results

pertained only to the direct effects of diagnosis and treatment in a

defined cohort, rather than reflecting the population-level health

and economic consequences. The higher ratios in our study relate

in part to our inclusion of HIV treatment costs, which are relevant

to a health system or societal perspective. Exclusion of these costs

from the prior analysis resulted in a more favorable assessment of

Xpert, since the survival benefits of antiretroviral treatment were

credited to Xpert when estimating DALYs averted, but at an

implicit zero cost. An additional point of difference is that this

prior study assumed no access to culture as part of the status quo

algorithm, which also contributed to a lower cost-effectiveness

ratio for Xpert when compared to the base-case assumptions

about culture access used in our analysis. Another recent analysis

looked at the use of Xpert for TB screening prior to ART initiation

in South Africa. This analysis included ART costs in the cost-

effectiveness ratio, and reported a cost-effectiveness ratio of

US$5,100 per life-year saved for the Xpert algorithm compared

to current diagnostics [78]. This analysis considered only the

health benefits for the individual being screened, rather than

counting the cases averted by reducing transmission, and focused

on a population in which ART costs would dominate the cost-

effectiveness ratio, and so it is understandable that the cost-

effectiveness ratio was considerably higher than the cost per life-

year saved estimated in our study.

Our analysis has several limitations. The application of any

mathematical model of TB is inevitably limited by uncertainty

regarding the true values of epidemiologic and programmatic

parameters. Our approach aims to reduce this parameter uncer-

tainty through calibration, and to provide a valid quantitative

expression of what parameter uncertainty remains based on

Bayesian statistical inference; however, the uncertainty associated

with model structure is impossible to quantify without building and

assessing the whole range of possible model structures that might be

adopted. For example, the results of this analysis would be different

if the interdependency of TB and HIV epidemics were not

considered, or if the indirect effect of Xpert on TB transmission

were not captured. It will therefore be important to undertake

continued empirical research evaluating the impact of Xpert as it is

rolled out in practice, with the information generated by these

evaluation efforts used to progressively refine the mathematical

models used to estimate long-term intervention effects.

In the results reported here, we constrained estimates on costs

and health outcomes to account only for those that would accrue

during either the first 10 y or the first 20 y following introduction

of Xpert. While the choice of a limited time horizon acknowledges

our increasing uncertainty about the distant future and reflects the

immediacy of policy decisions, it also makes our results somewhat

conservative. This is particularly true for the 10-y results, which

truncate the full streams of future benefits that will be enjoyed by

those patients who avert TB mortality or infection during the 10-y

analysis period. Likewise, we observe that cost-effectiveness ratios

are more attractive over the 20-y horizon than the 10-y horizon,

reflecting the compounding benefits of interrupting transmission

dynamics through better diagnosis and treatment. Moreover, the

restriction of our study to adult populations will underestimate the

total burden of disease that might be averted, with Xpert adoption

likely to reduce pediatric TB through reduced exposure to actively

infected adults as well as the direct application of the test for

pediatric diagnosis [79,80].

Finally, we note that the results of the present analysis emphasize

the importance of interactions between TB and HIV epidemiology

in settings where both are highly prevalent, but we caution against

generalizing these results to regions where HIV rates are

meaningfully different from those in southern Africa. Additional

analyses are urgently needed to assess the consequences of

introducing Xpert elsewhere, particularly regions of low HIV

prevalence or with different TB drug resistance patterns. Similarly,

this study focused on the relative benefits of the status quo algorithm

and the Xpert algorithm suggested by WHO for diagnosis of

patients with suspected TB in settings with high HIV burden. While

this is an important comparison to make, there is abundant scope

for considering a wide array of alternatives, for example,

considering different potential roles for sputum smear microscopy

or chest X-ray within diagnostic algorithms designed around Xpert,

or use of Xpert for different purposes, such as prior to provision of

INH preventive therapy for individuals with HIV, or as part of

active case-finding efforts [81]. Because the model developed for this

analysis reflects detailed structure relating both to HIV and to

patterns of resistance to major anti-TB drugs, it offers substantial

flexibility to accommodate adaptation to other settings. In view of

these features, and our statistical approach to calibrate this model to

available epidemiologic data, we envision that the model can

provide a durable platform for evaluating an array of different

diagnostic strategies in diverse settings in the future.
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Editors’ Summary

Background In 2010, about 9 million people developed
tuberculosis (TB)—a contagious bacterial disease that usually
infects the lungs—and about 1.5 million people died from
the disease. Most of these deaths were in low- and middle-
income countries, and a quarter were in HIV-positive
individuals, who are particularly susceptible to TB. Mycobac-
terium tuberculosis, the bacterium that causes TB, is spread in
airborne droplets when people with active disease cough or
sneeze. The characteristic symptoms of TB are a persistent
cough, weight loss, fever, and night sweats. Diagnostic tests
for TB include sputum smear analysis (microscopic examina-
tion of mucus coughed up from the lungs for the presence
of M. tuberculosis) and mycobacterial liquid culture (growth
of M. tuberculosis from sputum and determination of its drug
sensitivity). TB can be cured by taking several antibiotics
daily for at least six months, although the recent emergence
of multidrug-resistant TB (MDR-TB) is making the disease
increasingly hard to treat.

Why Was This Study Done? To reduce the global TB
burden, active disease must be diagnosed quickly and
accurately. In most high-burden settings, however, TB
diagnosis relies on sputum smear analysis, which fails to
identify some people (especially HIV-infected individuals)
who have TB. Mycobacterial culture correctly identifies more
infected people but is slow and costly, and many high-
burden settings lack the infrastructure for high-volume
culture diagnosis of TB. Faced with these diagnostic
inadequacies, the World Health Organization (WHO) recently
recommended the use of Xpert MTB/RIF for initial diagnosis
in patients suspected of having MDR-TB or HIV-associated
TB. This new, automated DNA test detects M. tuberculosis
and DNA differences that make the bacteria resistant to the
drug rifampicin (an indicator of MDR-TB) within two hours.
Many countries are moving toward adopting Xpert for TB
diagnosis, so it is essential to understand the population
health impact and cost-effectiveness of diagnostic strategies
based on this test. Here, the researchers use a calibrated,
dynamic mathematical model of TB to investigate the
consequences of Xpert MTB/RIF implementation in five
southern African countries where both TB-HIV coinfection
and MDR-TB are common.

What Did the Researchers Do and Find? The researchers
used their mathematical model, which simulates the move-
ment of individuals through different stages of TB infection,
to investigate the potential health and economic conse-
quences of implementing Xpert for initial TB diagnosis in
Botswana, Lesotho, Namibia, South Africa, and Swaziland. In
the modeled scenarios, compared to an diagnostic approach
based on sputum smear (the ‘‘status quo’’), implementation
of Xpert averted an estimated 132,000 TB cases and 182,000
TB deaths in southern Africa over the ten years following its
introduction, reduced the proportion of the population with
TB by 28%, and increased health service costs by US$460
million. Much of this cost increase reflected increased
antiretroviral therapy costs for TB/HIV-infected individuals
who survived TB infection because of better case-finding and
treatment. Finally, relative to the status quo, over ten years,

Xpert implementation in southern Africa cost US$959 for
every DALY (disability-adjusted life-year) averted. Cost-
effectiveness ratios in individual countries ranged from
US$792 per DALY averted in Swaziland to US$1,257 per
DALY averted in Botswana.

What Do These Findings Mean? These findings suggest
that Xpert implementation in southern Africa could substan-
tially reduce TB illness and death through improved case-
finding and treatment, but that the impact of Xpert on long-
term transmission dynamics may be more limited. Although
the additional financial burden associated with Xpert roll-out
is likely to be substantial, these findings suggest that using
Xpert for TB diagnosis offers reasonable value given its cost.
WHO considers any intervention with a cost-effectiveness
ratio less than the per-capita gross domestic product (GDP)
highly cost-effective—in 2010, the per-capita GDP ranged
from US$7,000 in South Africa and Botswana to US$982 in
Lesotho.
These findings may not be generalizable to regions with
different HIV infection rates, and their accuracy is likely to
be affected by the quality of the data fed into the
mathematical model and by the structure of the model.
Thus, it is essential that the impact of Xpert-based TB
diagnosis be carefully evaluated as the approach is rolled
out, and that the information generated by these evalua-
tions be used to improve the accuracy of model-based
estimates of the long-term effects of this new strategy for
TB diagnosis.

Additional Information Please access these websites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1001347.

N WHO provides information (in several languages) on all
aspects of tuberculosis, including general information on
tuberculosis diagnostics and specific information on the
roll-out of the Xpert MTB/RIF test; further information
about WHO’s endorsement of Xpert MTB/RIF is included in
a recent Strategic and Technical Advisory Group for
Tuberculosis report; WHO also provides information about
tuberculosis and HIV

N The Stop TB Partnership is working towards tuberculosis
elimination; patient stories about TB-HIV coinfection are
available

N The US Centers for Disease Control and Prevention has
information about tuberculosis, and about TB diagnosis

N The US National Institute of Allergy and Infectious Diseases
also has detailed information on all aspects of tuberculosis

N The Tuberculosis Survival Project, which aims to raise
awareness of tuberculosis and provide support for people
with tuberculosis, provides personal stories about
treatment for tuberculosis; the Tuberculosis Vaccine
Initiative also provides personal stories about dealing
with tuberculosis

N MedlinePlus has links to further information about
tuberculosis (in English and Spanish)
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