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Notch signaling is an evolutionarily
conserved mechanism that defines

a key cell fate control mechanism in
metazoans. Notch signaling relies on the
surface interaction between the notch
receptor and membrane bound ligands
in an apposing cell. In our recent study,22

we uncover a non-canonical receptor
activation path that relies on a ligand-
independent, intracellular activation of
the receptor as it travels through the
endosomal compartments. We found that
notch receptor, targeted for degradation
lysosomal degradation through multive-
sicular bodies (MVBs) is “diverted”
toward activation upon mono-ubiquitina-
tion through a synergy between the
ubiquitin ligase Deltex, the non-visual
β-arrestin Kurtz and the ESCRT-III
component Shrub. This activation path
is not universal but appears to depend on
the cellular context.

Regulation of Notch Trafficking

The notch pathway acts throughout
development to link fate choices of a cell
to those of its immediate cellular neigh-
bors, ultimately affecting proliferation,
apoptosis and differentiation.1-3 notch
malfunction has been associated with
aberrant development in all metazoans
and with various human diseases.4 The
dosage of the notch signal defines an
extraordinarily sensitive parameter that
regulates the developmental outcome of
signaling. Hence, cellular mechanisms
controlling the dosage of activated notch
receptors are of importance for the biology
and pathobiology of the pathway.

Numerous studies, mostly in flies,
implicated intracellular trafficking of notch
receptor in both ligand-dependent and
ligand-independent notch signaling.5-13

Endocytosis of notch may result in either
down- or upregulation of signaling
depending on how the receptor is sorted
within the cell.14,15 Although these studies
indicated an important role for intracel-
lular trafficking in notch signaling, the
compartments and molecular mechanisms
underlying notch activation—once the
receptor enters the endocytic path—
remain unclear. Available evidence sug-
gests that there may be several mechanisms
that can lead to intracellular notch activa-
tion, either in a ligand-dependent or a
ligand-independent manner. The process
capable of modulating such intracellular
notch signaling remains unknown, but
ligand-independent activation of the
receptor has been recently shown to be
essential for the normal development of
Drosophila blood cells.16

An important element of the endosomal
sorting machinery is defined by the
ESCRT (endosomal sorting complex
required for transport) system.17 ESCRT
is crucial in mediating the various steps
leading to the sorting of membrane
proteins into multivesicular bodies
(MVBs) on their way to lysosomal
degradation. It is also required for the
morphogenesis of intraluminal vesicles and
for the sorting of ubiquitinated cargo into
these vesicles.17 As elaborated below, we
identified an ESCRT member as a notch
signal modifier. The ESCRT system con-
sists of ESCRT-0, -I, -II, -III, and Vps4.17

ESCRT-0, -I, -II contain ubiquitin-
binding domains, and are primarily
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involved in cargo sorting and in the
recruitment and activation of ESCRT-
III.17 The ESCRT-III subunits Vps20,
Vps32 (Shrub), Vps24, Vps4 are
assembled in this order, and contribute
to the budding and scission of intralumi-
nal vesicles into the vesicles.17,18 Vps4 is
the ATPase required for ESCRT-III
disassembly.17 Loss of ESCRT function
modulates notch trafficking and leads to
ectopic activation of notch signal-
ing.8-12,19,20 The mechanisms underlying
these events are complex, as different
members of the ESCRT system exhibit
distinct, non-overlapping phenotypic
characteristics. For instance, the Vps22,
Vps25, Vps36 members of ESCRT-II
display non-identical mutant phenotypes
involving notch activity, proliferation, or
apoptotic resistance.20 Moreover, there
may be tissue specific functions of each
component of ESCRTs.20

Shrub is a Key Modulator
of the Notch Signal Mediated

by Deltex/Kurtz

We previously reported interactions
between the non-visual β-arrestin Kurtz
and the ubiquitin ligase Deltex leading to
the regulation of notch trafficking, its
degradation and consequential loss of
signaling.21 We identified Shrub, a mem-
ber of the ESCRT-III complex, as a major
modulator of Deltex/Kurtz on notch
signaling.22 Our genetic and molecular
studies indicate that absence of Shrub
suppresses the classic loss-of-notch wing-
nicking phenotype associated with notch
degradation due to the co-expression of
Deltex and Kurtz.22 Use of Cut, a direct
downstream target of notch signals, as a
readout of notch activation revealed that
its activation by Deltex can be suppressed
by coexpression of Shrub. Expression of
Shrub also amplifies the inhibiting effect
of Kurtz on notch.22 But when Shrub
activity is inhibited in a Deltex over-
expressing background, we found a strik-
ing concomitant notch activation.22 This
activation does not depend on the pre-
sence of the ligands for Delta or Serrate.22

In addition, biochemical analyses demon-
strated that this activation was coupled
with an accumulation of mono-ubiquiti-
nated notch.22 ESCRT-III, through

Shrub, seems to play a distinct role in
these phenomena, as ESCRT-I and -II
components are not required for this
Deltex-dependent notch activation.22

Consistent with this, mutants of
ESCRT-I or ESCRT-II did not suppress
the wing phenotype caused by the
degradation of notch associated with the
overexpression of Deltex and Kurtz.22

Therefore, our data suggest a check-point

by ESCRT-III and not ESCRT-I or -II in
the ligand-independent and Deltex/Kurtz-
dependent regulation of notch signaling.

Context Specific Regulation
of the Notch Signal

A characteristic of the unconventional
non-canonical activation of notch signal-
ing we uncovered, is that it is context

Figure 1. Shrub-Deltex-Kurtz dependent modulation of notch signaling. (A) The ubiquitination state of
the notch receptor regulates its activation fate as it enters the endocytic path. While some steps
in this path have been characterized, others simply illustrate our working hypothesis. (B) Our studies
indicate that Deltex in synergy with Kurtz promotes the poly-ubiquitinated state of the receptor. This
leads to the degradation of notch through the MVBs—a step regulated by Shrub that is a core
component of the ESCRT-III complex. Our evidence is consistent with the notion that Shrub
“surrounds” the ubiquitynated receptor—a role compatible with the previously suggested role of the
yeast homolog Snf7. (C) The expression of Deltex, which physically interacts with notch, favors amono-
ubiquitinated state of the receptor and leads to a ligand-independent activation intracellular activation
of notch (notchICD: the cleaved, activated form of notch).
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dependent. In the wing disc for example,
the notch signal induced by Deltex over-
expression is seen mostly in the ventral
region.6,22 Similarly, we found that the
notch signal regulated by deltex-shrub is
only manifested in the ventral region of
the wing disc, indicating that this ligand-
independent, intracellular activation of
notch, depends on the cellular context.22

This context specificity is not associated
with the glycosyltransferase Fringe
(unpublished data), previously shown to
regulate the differential activity of the
notch receptor in the ventral vs. dorsal
region of the wing disc.23 However,
treatment with the lysosomal inhibitor
chloroquine abolishes this context specifi-
city, suggesting that this effect depends on
factors that regulate chloroquine sensitive
lysosomal degradation.22 The mechanism
underlying the involvement of lysosomal
degradation in this context dependent

response is unclear but certainly note-
worthy and the subject of future inquiries.

A Model for the Intracellular
Activation of Notch

On the basis of these observations, we
propose a model for Shrub-Deltex-Kurtz
dependent modulation of notch activation
(Fig. 1). Shrub, Deltex, and Kurtz regulate
the trafficking of notch, and modulate the
degradation of notch in the late-endosome/
MVBs compartment. In the presence of
Shrub, notch is sorted to the degradation
pathway, resulting in downregulating the
notch signal. In the absence of Shrub
and/or Kurtz, Deltex promotes mono-
ubiquitination, leading to notch activation.

Previous studies have indicated that
there may be more than one mechanism
that can potentially activate notch during
its endosomal sorting.5-13 Our contribution

is based on linking notch activation to
its ubiquitination state, modulated by
the synergy of Deltex, Kurtz and Shrub.
What remains unclear is the contribution
of such a ligand-independent, context-
dependent, intracellular activation in the
normal biology and in the pathobiology
of the notch signaling pathway.
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