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Abstract

The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the
blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of
control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded
acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and
integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using
a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis
characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that
occur when tissue damage occurs. After validating the system’s performance in pilot studies that explored a wide range of
exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at
104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic
emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had
a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband
emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly
(P,0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as
indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results
indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are
promising for clinical translation of this technology.
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Introduction

Vascular barriers play an important role in the delivery of

therapeutics, and can be a significant impediment to effective drug

delivery. This is particularly important in the brain, where the

blood brain barrier (BBB) excludes most molecules from being

delivered from the bloodstream and precludes the use of many

drugs [1] for central nervous system (CNS) applications. A number

of strategies have been investigated to overcome the BBB,

including direct drug injection/infusion [2], trans-arterial infusion

of agents such as mannitol to transiently disrupt the BBB [3,4] or

by developing new drug formulations that can cross the BBB [5,6].

These approaches are either invasive, not targeted, or require the

development of novel drugs or drug carriers.

A promising noninvasive approach to deliver drugs past the BBB

is the use of focused ultrasound with microbubbles, which can

induce targeted BBBdisruption for a fewhours and allow drugs to be

delivered to the brain [7]. This method utilizes mechanical

interactions between the microbubbles oscillating in the ultrasound

field and the vasculature, leading to a transient disassembly of tight

junction complexes and the induction of active transport [8,9]. If this

approach can be scaled up to humanuse and effectively controlled, it

could have a large impact on CNS therapeutics.

Past work has identified a relatively narrow window in acoustic

pressure amplitude where BBB disruption can be safely achieved

[10,11]. Without adequate control of the sonications, the

ultrasound exposures (sonications) can create excessive forces in

proximity to the oscillating microbubbles, leading to vascular

damage [12], or in very small oscillations, leading to insufficient

local perturbation and lack of the desired effect [10]. Moreover, it

is difficult in practice to precisely predict (e.g. within the safety

window) the acoustic pressure amplitude produced by any

administered ultrasound acoustic power in vivo, particularly when

sonicating transcranially. Vascularity, vessel diameter, blood flow

and other properties also vary substantially across different

structures of the brain, which can impact the local concentration

of microbubbles, how they interact with the ultrasound field, and

how much drug will be delivered to the brain [13]. These

uncertainties, along with the nonlinear response of microbubbles

[14,15], makes control critical for the utilization and clinical

translation of this technique.
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The acoustic emissions from the oscillating microbubbles offer

characteristic signatures that allow for remote assessment of the

mode of oscillations [16] and offer a potential way to guide and

monitor microbubble-enhanced ultrasound therapies such as BBB

disruption [10,11,17,18]. The spectral content and strength of the

emissions can be used to monitor the micro-scale perturbations. In

particular, microbubbles vibrating in an ultrasound field (‘‘stable

cavitation’’) can exert direct forces on the endothelium through

oscillatory and radiation forces. They also can exert indirect shear

forces [18,19] induced by micro-streaming [20] in the fluid that

surrounds them. Presumably these forces produced during stable

cavitation are responsible for the observed BBB disruption [10,11].

Strong harmonic and/or sub- and ultra-harmonic acoustic

emissions in the absence of broadband signal are indicative of such

stable volumetric oscillations [21,22]. At higher pressure ampli-

tudes the microbubble oscillations deviate significantly from the

equilibrium radius and become unstable. At a high enough

pressure amplitude, the microbubble can collapse violently due to

inertia of the surrounding medium, which can produce large shear

stresses, shock waves [23], elevated temperatures [24], and, when

the collapse happens in proximity to interfaces (e.g. vascular walls),

micro-jets [25,26] and membrane perforation [12,27]. This

collapse, termed ‘‘inertial cavitation’’ [28], creates a pressure spike

[29] that is manifested in the frequency domain of the acoustic

emission as a broadband signal. Inertial cavitation has been

associated with tissue damage [30].

The purpose of this work was to integrate an acoustic emissions

monitoring system into a clinical transcranial MRI-guided focused

ultrasound (TcMRgFUS) system and to evaluate its use for

controlling BBB disruption in non-human primates. The system

uses harmonic and broadband emissions, signatures of the

effectiveness of the ultrasound to disrupt the BBB and of tissue

damage, respectively [10]. We have utilized a spectroscopic

method for monitoring the acoustic emissions [31] that largely

isolates the emissions arising from microbubble activity. This

analysis, along with the design of the monitoring system, aimed to

maximize its sensitivity to the harmonic and broadband emission

signals, which are small compared to the fundamental frequency of

the TcMRgFUS device, particularly when sonicating transcra-

nially. The system was characterized in pilot studies over a wide

range of exposure levels. It was then used during tests evaluating

the safety of repeated BBB disruption sessions in macaques [32],

where it was used to control the procedure. Here, we report on the

success of this control, which aimed to reliably induce MRI-

detectable BBB disruption without the production of broadband

emissions. We also evaluated whether the strength of the harmonics

emissions was predictive of whether or not BBB disruption was

produced, and if its strength could predict its magnitude. Finally,

we explored strategies to increase the strength of the harmonic

emissions, and presumably the magnitude of the BBB disruption.

These experiments, in which the operator used the acoustic

emissions analysis to manually adjust the exposure level at each

target in each animal, aimed to investigate whether this system and

analysis can form a basis for the future development of an

automated, computer-based real-time controller.

Materials and Methods

Ultrasound Device
The ultrasound fields were generated by a clinical TcMRgFUS

system (ExAblate 4000 low frequency, InSightec Ltd, Haifa, Israel)

originally developed for high-intensity sonications for tissue

ablation [33]. This system uses a phased array with 1024 elements

arranged in a 30 cm diameter hemisphere with a central

frequency of 220 kHz. It was operated in burst mode via a gating

signal provided by an arbitrary waveform generator (model 396,

Fluke, Norwich, UK), which also triggered the acquisition for the

system used to monitor acoustic emissions. The TcMRgFUS

system was integrated with a clinical 3T MRI unit (GE

Healthcare, Milwaukee, WI). Imaging was performed using

a 15 cm diameter surface coil (constructed in house). The

TcMRgFUS array faced upwards (i.e. rotated 90u from its normal

use in patients [34]) and was filled with degassed water. The

animal was placed supine on the MRI scanner table with its head

tilted backwards so that the top of the head was submerged in

water (Fig. 1A).

The driving system of the TcMRgFUS system allows for

individual control of the phase and amplitude for each element in

the phased array so the beam can be steered several cm in each

direction, enabling targeting of different brain regions without

moving the transducer. The steering range of the transducer was

sufficient to cover the entire brain in a monkey. During the

experiments the beam can be steered to different targets during

a single sonication. In this way multiple ‘‘subsonications’’ can be

delivered in sequence to multiple locations in a single sonication.

The acoustic power can be set individually for each of these

subsonications. The phased array is also used to correct for skull-

induced beam aberrations [35]. These corrections were not

performed in these experiments, as they use modeling based on

CT scans of the skull, which were not available to us at the time of

these experiments. Note however that only limited beam

aberration is expected at this frequency (220 kHz) [36].

The half-intensity profile of the focal region in water was

provided by the manufacturer and in the lateral and axial

directions were approximately 3.0 and 5.8 mm, respectively.

Reported values for the ultrasound exposure levels are in vivo

estimates of the peak negative pressure amplitude (referred

throughout as simply ‘‘pressure amplitude’’). To estimate the in

vivo pressure amplitude, measurements were first obtained in

water in the free field as a function of the acoustic power using

a 4 mm diameter, calibrated, omni-directional hydrophone (TC

4038, Reson Inc, Slangerup, Denmark). To estimate the effects of

a monkey’s skull on the pressure amplitude, we degassed

a desiccated rhesus macaque skull in water for several days. The

insertion loss due to this skull was measured at multiple positions

with this hydrophone and a single-element FUS transducer

(diameter/radius of curvature: 10/8 cm) operating at 257 kHz.

The drop in pressure amplitude due to the monkey skull was

25614%. Attenuation from brain tissue and skin were not

considered, as their impact would be less than 5% at 220 kHz.

Based on these measurements, an acoustic power level of 1 W was

estimated to produce a pressure amplitude of 223 kPa in the brain.

Other pressure amplitudes were estimated by extrapolation

assuming linear propagation. Note that this pressure amplitude

estimate did not include effects arising from variations in skull

bone thickness for different animals, variability in skull orientation

within the TcMRgFUS system, or decreases in pressure amplitude

that occur when the focal point is steered electronically away from

the geometric focus. These effects were expected to contribute

uncertainty to our pressure amplitude estimates. The presence of

standing waves may have added additional uncertainty. While we

have not observed evidence of significant standing waves such as

BBB disruption in the beam path [32], they may have been

present with this device at a low level [37,38].

Sonications
Similar to prior work [7], the sonications consisted of 10 ms

bursts applied at a low pulse repetition frequency (PRF). For

Controlled Blood Brain Barrier Disruption
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sonications at individual targets (i.e., without beam steering during

sonication) in our pilot studies, a 1 Hz PRF was used. For multi-

target sonications, the beam was steered sequentially to nine

subsonication targets arranged in a 363 grid in a single plane with

a 200 ms interval (Fig. 1B). This interval was the fastest that the

FUS device could be programmed to sonicate different targets in

sequence, which reduced the duty cycle per subsonication target.

The pattern was repeated every 1.8 s, yielding a PRF at each

location of 0.55 Hz. Three 50 s sonications were delivered in

sequence with a delay between sonications of,25 s (Fig. 1C). This

delay was imposed by the TcMRgFUS system software, which

limited the sonication duration to 50 s when such multi-target

sonications were employed. The subsonications were set 2 mm

apart with an aim of creating a volume of BBB disruption of

approximately 1 cm3.

Except where specified, a single acoustic power level was used

during each burst and subsonication target during each multi-

target sonication. The power level used varied for the different

Figure 1. Experimental setup and methods. (A) Coronal T2-weighted MRI of a monkey obtained during one of the experiments. The image has
been annotated to show the location of the 30 cm diameter hemisphere transducer, the two transducers that served as receivers to monitor the
acoustic emissions, and the MRI surface coil. The annotations were drawn to scale with the location of the brain in a typical position. (B) Beam
steering pattern used during the multi-target sonications. The order of the sonications delivered is indicated. (C) Pulsing scheme used during the
multi-target sonications. Each 10 ms burst was applied in sequence to the different subsonication targets every 200 ms. The pattern was repeated
every 1.8 s, resulting in a pulse repetition frequency at each target of 0.55 Hz. Three 50 s sonications were delivered in series using this pattern, with
a 25 second delay between sonications. The microbubbles were administered as an infusion that was started at the beginning of the each multi-
target sonication, as indicated. This infusion was delivered at a variable rate in order to quickly reach a steady-state microbubble concentration in the
tissue and maintain it throughout the entire sonication.
doi:10.1371/journal.pone.0045783.g001
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animals and brain structures targeted in each animal and was set

based on online measurements of the acoustic emissions, as we

describe below. Before any microbubbles were administered, each

target was sonicated for 25 s without microbubbles using identical

parameters. These ‘‘baseline’’ sonications were used in the acoustic

emissions analysis, as described below.

For BBB disruption, each sonication was combined with an

infusion of microbubble ultrasound contrast agent. The micro-

bubble agent Definity (Lantheus Medical Imaging, N. Billerica,

MA) was infused over the entire sonication via an MRI-compatible

infusion pump (Spectra Solaris EP, Medrad, Warrendale, PA).

The microbubble agent was diluted in 5 ml sterile phosphate-

buffered saline. The infusion was administered at a variable rate.

The first 1 ml was administered at 0.1ml/s for 10 s. The

remaining 4 ml was infused at a slower rate of 0.02 ml/s for

200 s (Fig. 1C). This infusion protocol was employed in order to

rapidly reach a steady-state tissue concentration of microbubbles,

and then maintain it throughout the entire sonication. The

infusion started simultaneous with the sonication, which enabled

us to observe the change in acoustic emissions when the

microbubbles arrived at the focal region. Except where specified,

a dose of 20 ml/kg of Definity was used for each infusion. The time

between sonications at different locations within the brain was

typically 2 min. This time allowed most of the microbubbles to be

cleared from the vasculature.

Acoustic Emissions Monitoring System
The acoustic emissions were recorded for every 10 ms burst

(Fig. 1C) with two MRI-compatible piezoelectric transducers,

which were constructed in-house for this study. Since the skull

attenuates high ultrasound frequencies, receive transducers sensi-

tive at frequencies below 1 MHz were selected for recording the

emissions. We aimed to have maximum sensitivity to broadband

emissions, which can be smaller in magnitude than the funda-

mental frequency or harmonics of the TcMRgFUS device during

BBB disruption [10]. This sensitivity was achieved using filtration

to reduce the fundamental frequency and through the use of

sharply-tuned receive transducers with a resonant frequency of

approximately 610620 kHz. This frequency lies between the third

harmonic (660 kHz) and the fifth ultraharmonic (550 kHz) of the

TcMRgFUS device. The two transducers were rectangular, air-

backed, and weakly focused (radius of curvature: 15 cm). The

piezoelectric element of each transducer was made of lead

zirconate titanate and had dimensions of 7640 mm. The 23 dB

of the sensitivity profile of the transducers (measured at 610 kHz

with a needle hydrophone) were 100, 24, and 6 mm in the axial

and the two transverse dimensions, respectively, with maximum

sensitivity at 75 mm away from the transducer face. Each

transducer was mounted in an acrylic housing (dimensions:

56261 cm). The transducers were mounted in the water in the

beam path of the TcMRgFUS device on each side of the head,

approximately 10 cm from the geometrical focus of the hemi-

spherical phased array (Fig. 1A). Their effect on the beam path

was assumed to be negligible. At 10 cm from the focal point, the

FUS beam transverses a hemisphere with a surface area of

628 cm2. With a cross-sectional area in the beam path of 5 cm2

each, the transducers blocked less than 2% of the transmitted field,

therefore their effect on the beam should be minor. The

transducers were connected to the data acquisition system through

the penetration panel of the MRI room with approximately 10 m

coaxial cables.

Two filtering/amplification schemes were evaluated. One

transducer was connected to a 20 dB gain low-noise preamplifier

and a 250–1000 kHz band-pass filter (EC 6081, Reson Inc,

Slangerup, Denmark). The other was connected to a 125–

390 kHz band-reject filter with a 40 dB gain (Model 3944,

Krohn-Hite Corp, Brockton, MA, USA). The signals were

recorded using a high-speed digitizing card (NI PXI-5124

National Instruments, Austin, Texas, USA) that had 512 MB

onboard memory per channel, 12 bit resolution, and a maximum

sampling rate of 200 Ms/s. The digitizer was driven by an 8 core,

2.53 GHz PC with 12 GB memory (Dell Precision T7500, Round

Rock, Texas, USA) and was able to transfer the data at a speed of

800 MB/s. The system was controlled using software developed

in-house in Matlab (Mathworks, Natick, MA, USA).

The voltage traces measured by the receive transducers from

the entire 10 ms burst were recorded for every sonication. The

data was digitized at a Nyquist frequency of 5 MHz, well above

the frequency components of the recorded emissions and the

sensitivity of our recording transducers. The spectral resolution

was 100 Hz. The control software displayed both time and

spectral data, which was obtained via fast-Fourier transform

(FFT), from both detectors in real-time. To decrease spectral

leakage, a Hanning window was applied to the time-series data

before computing the FFT. MRI was not performed during the

acoustic emissions acquisitions to avoid artifacts induced by the

scanner.

Acoustic Emission Analysis
The central concept has been to develop a spectroscopic

approach to evaluate the microbubbles’ emissions while minimiz-

ing the influence of background signals arising from linear and

nonlinear components of the transmitted and reflected acoustic

wave produced by the TcMRgFUS device and from background

electronic noise. During the sonications the acoustic emissions

captured with the two transducers are a mixture of many sources

that need to be decoupled from activity at BBB disruption site,

presumably at the focal region. This was achieved by taking the

ratio of the acoustic emissions with microbubbles to that obtained

during identical sonications without microbubbles.

To obtain the spectral decomposition needed to evaluate

microbubble response in different frequency bands, the power

spectral density (PSD) of the digitized RF signals recorded from

the passive cavitation detectors was calculated. The PSD of

a discrete time series of data s k:dtð Þ is expressed in units of

V2Hz21 and is given by:

PSD fð Þ~D
1

N

XN{1

k~0

s k:dtð Þe{i2pf :k:dtD2, ð1Þ

Where f~n:df is the discrete frequency interval n in which the

PSD is evaluated, df~1=N:dt is the spectral resolution (100 Hz

here), 1=dt is the sampling frequency (1n here), and k~0,1,2,:::N,

where N is the time-series length (105 here). The PSD measured

from the acoustic emissions during the sonications incorporates

microbubble emissions, the transmitted wave from the FUS

transducer, from reflections of this wave from the tissue, and

harmonic waves due to nonlinear sound propagation. Electronic

noise from surrounding equipment will also be present. The

recorded signal is modulated by the frequency response of the

transducers. All these components confound the analysis of the

power spectrum and interfere with accurate assessment and

characterization of the microbubble oscillations.

In order to separate these sources from the microbubble

emissions, we obtained background acoustic emissions at every

target in identical sonications applied before any sonication with

microbubbles. We then determined the relative power spectral

Controlled Blood Brain Barrier Disruption
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density (RPSD) [31]:

RPS(fn)~
PSDtot fnð Þ
PSDbs fnð Þ , ð2Þ

where PSDtot fnð Þ is the total recorded energy per frequency bin

during the sonication, PSDbs fnð Þ is the recorded power per

frequency bin in the absence of microbubbles (bs stands for

‘‘baseline’’ signal). The relative signal strengths of the harmonic

and ultraharmonic emissions can be determined from the log

transformed RPSD. Reported values are the mean of the first

three harmonics (440, 660, and 880 kHz) and ultra-harmonics

(330, 550, and 770 kHz). For broadband emissions, a frequency

band around the resonance frequency of the receiving transducers

(610 kHz) was used. A log transform was performed to simplify the

statistical analyses; otherwise the emission measurements were not

normally distributed. The strength of the acoustic emissions is

summarized in the following equation

S~
1

m

Xm

i~1

1

l

Xl

j~1

Xn

k~1

Ln RPSD fnð Þð Þ:dfn, ð3Þ

where m is the number of waveforms that were averaged together

(typically 75 for harmonics; 1 for ultraharmonic and broadband

signals), l is the number of spectral bands analyzed (3 for

harmonic/ultraharmonic peaks, one for broadband signal), and n
is the number of discrete frequency bands used for each

measurement. For harmonic and ultraharmonic emissions, n was

five, which corresponded to five points in the discretized spectrum

that covered a frequency band of about 6250 Hz. For broadband

emissions, n was 100, which corresponded to a frequency band of

65 kHz. The units of S are Np:Hz.

The emissions produced during sonication with microbubbles

are likely to be small and will be attenuated by the skull. It is

therefore important to determine whether the measurement at

each frequency band is significantly above the noise of the RPSD.

Thus, in addition to calculating the relative signals (harmonics,

ultraharmonics, broadband), we also calculated the signal-to-noise

ratio (SNR). The noise for each measurement was

N~
std Ln RPSD fnð Þð Þð Þffiffiffiffiffiffiffi

l:m
p

ffiffiffi
n

p
, ð4Þ

where l,m, and n are defined in Eq. 3. It was evaluated at

1150 kHz in the same way as the broadband noise. This was

a region of the spectrum that no signal related to microbubble

emission was observed. We used a conservative SNR of 3 to

classify an emission as significantly above the noise floor.

In processing the recordings, we treated the measurements from

the two receiving transducers as equivalent; reported values for

each sonication are from the transducer that had the larger signal.

This was possible because despite using different filtration

schemes, the measurements for the two transducers were found

to be correlated, and the measurements on average were the same.

Linear regression of the harmonic emissions signal strength

(defined above) for the two transducers showed a good correlation

(R2: 0.65), and the two signals were found to be not significantly

different (P,0.05) using a paired t-test.

The use of an infusion for the microbubble administration

resulted in a harmonic signal that was steady over time over most

of the sonication and enabled us to use an ensemble of spectral

data in Eq. 3 to increase accuracy in harmonic signal measure-

ments per location. During the multi-target sonications, typically

the last 75 waveforms were averaged together for each subsonica-

tion target. When broadband or ultraharmonic emissions were

observed, they were often sporadic and variable in magnitude, so

instead of averaging the data, the maximum relative broadband

signal of all waveforms were computed.

Animals
All experiments were done in accordance with procedures

approved by the Harvard Medical School Institutional Animal

Care and Use Committee. The animals were anesthetized during

all the procedures and were constantly monitored throughout and

after recovery. No pain or suffering was evident as a result of the

procedures. Monkeys were housed, fed, watered, socially housed,

and provided with environmental enrichment according to U.S.

Department of Agriculture (USDA), Office of Laboratory Animal

Welfare (OLAW), and Association for Assessment and Accredita-

tion of Laboratory Care (AAALAC) regulations.

Acoustic emission measurements were obtained in six maca-

ques. Pilot studies to explore a large range of power levels were

performed on monkeys #1–2. Monkey #2 was euthanized after

the experiments, and the sonicated locations were examined in

histology, as described below. The sonications in monkeys #3–6

were part of a survival study on the safety of repeated BBB

disruption [32] (see below for details).

Monkeys #1–5 were adult rhesus macaques (three male, one

female, weight: 7–13 kg); monkey #6 was a juvenile nemestrina

macaque (male, 3.75 kg). Each animal was anesthetized with

ketamine (15 mg/kg/h i.m.) and xylazine (0.5 mg/kg/h i.m.), or

with 4 mg/kg/h ketamine and Dexmeditomidine (0.01–0.02 mg/

kg/h i.m.) and intubated. The head was shaved, and a catheter

was placed in a leg vein. During the procedure the heart rate,

blood oxygenation levels, and rectal temperature were monitored.

Body temperature was maintained with a heated water blanket.

MR Imaging and Analysis
MRI was performed before the animal experiments to localize

the focus of the TcMRgFUS device in the MRI image space.

During the experiments it was used for treatment planning to

select the brain targets and after treatment to assess the treatment

(BBB disruption and tissue damage). During the sonications, no

MRI was performed; the treatment was controlled solely using

acoustic emissions as described above.

Before each experiment, the location of the ultrasound beam in

the MRI coordinate-space was found by visualizing focal heating

in an FUS/MRI phantom using MR temperature imaging [39].

Then the animal was placed on the FUS system, and MRI was

used in order to select identify the different brain targets for

sonication. We used a 3D fast spoiled gradient echo sequence with

inversion recovery preparation (TR/TE/TI: 5.3/2.0/600 ms, FA:

10u, FOV: 12 cm, matrix: 1286128, slice thickness: 2 mm) or

a multi-slice T2-weighted Fast Spin Echo (FSE) sequence (TR/

TE: 4500/85.8 ms; echo train length, ETL: 8; field of view, FOV:

12 cm; matrix: 2566256, slice thickness: 3 mm) for this planning.

Different targets were selected with the aid of an MRI atlas of the

rhesus macaque brain [40].

At the end of each session (a few minutes after the last

sonication), we acquired T1-weighted FSE images (TR/TE: 500/

14 ms; ETL: 4; FOV: 12 cm; matrix: 2566256, slice thickness:

3 mm). These images were repeated after the administration of the

MRI contrast agent Gd-DTPA (Magnevist, Berlex Laboratories,

Inc., Wayne NJ) at a concentration of 0.1 mmol/kg of body

weight as a bolus injection through the leg vein. This contrast

agent normally does not extravasate into the brain, and signal
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PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e45783



enhancement after Gd-DTPA injection was used to identify

regions of BBB disruption. A 3D T2*-weighted spoiled gradient

echo sequence (TR/TE: 33/19 ms; FA: 15u; FOV: 12 cm; matrix:

2566256; slice thickness: 1 mm) was used to detect vascular

damage. This sequence shows hypointense regions induced by tiny

red blood cell extravasations (petechaie) that occur presumably

due to inertial cavitation [7]. T2-weighted FSE imaging was also

acquired after sonication.

The contrast-enhanced T1-weighted images were scored as

enhancing or not by an author who was blind to the acoustic

emissions analysis. This author also compared the T2*-weighted

images acquired before and after sonication and scored each

targeted region as having or not having hypointense spots. Images

and plots of MRI contrast enhancement show the percent signal

enhancement relative to pre-contrast imaging.

Experimental Protocols
Pilot studies. Experiments were performed in monkeys #1–

2 to characterize the acoustic emissions monitoring system over

a relatively wide range of exposure levels, including those that

produced significant broadband emission, a signature for inertial

cavitation. We aimed to verify that the system functioned as

expected based on prior work in small animals. We aimed to verify

that the harmonic emissions occurred at a lower pressure

amplitude than broadband emissions and to confirm that the

system could detect low-level broadband emissions which have

been correlated with the production of minor vascular damage

(petechaie) [10,11]. To minimize the amount of brain damage

induced by the exposures, single-target sonications were per-

formed during these tests.

In monkey#1, we evaluated the acoustic emissions as a function

of the peak negative pressure amplitude. During these sonications,

the acoustic power increased with every burst (between 0.4 and 4

W in 10 steps). This range corresponded to estimated pressure

amplitudes in the brain of 140–440 kPa. This cycle was repeated 4

times for each sonication. We then identified the threshold for

harmonic, ultraharmonic, and broadband emissions with an

SNR.3. Four targets were sonicated with this scheme in the

amygdala in this animal. This structure was targeted in order to

establish applicability for deep brain targets.

Tests were performed in monkey #2 to investigate the

sensitivity of our detectors to low-level broadband emissions. Here

we sonicated at 10 targets in the cingulate cortex at different

pressure amplitudes. Five different exposure levels were tested

between 0.3 and 1.5 W (estimated pressure amplitude in the brain:

125, 175, 210, 245 and 275 kPa); each exposure level was tested at

two targets. The cingulate cortex was selected because it is an

anatomically large and homogeneous gray matter target that is

aligned with the axial MRI planes. This monkey was sacrificed

approximately two hours after the last sonication for histological

examination. The animal was deeply anesthetized with ketamine

(15 mg/kg i.m.), given an overdose of pentothal (100 mg/kg), and

then perfused transcardially with 1 L 0.9% NaCl, followed by 2 L

10% buffered formalin phosphate). The brain was removed and

bisected midsagitally, cut into approximately 4 mm thick axial

slabs, and photographed. The sonicated regions were identified

and extracted from these slabs into 262 cm blocks, and then cut

into a series of 5-mm-thick paraffin-embedded sections. Every 40th

section was stained with hematoxylin and eosin (H&E) and Nissl to

evaluate whether extravasated red blood cells (petechaie) or other

tissue damage were present.

Acoustic emissions-based control. Monkeys#3–6 are part

of an ongoing survival study where repeated BBB disruption was

produced in targets in the visual system followed by functional/

behavioral tests [32]. In each animal, the lateral geniculate nucleus

(LGN) and the foveal confluence of primary visual cortex and

secondary visual areas were sonicated in both hemispheres in five

weekly sessions. Additional locations centered on the cingulate

cortex which included adjacent white matter were targeted

specifically for the present study (see below for details). Each

target in these animals utilized multi-target sonications, and every

sonicated volume included both gray and white matter structures.

Targets in the visual cortex also often included sulci, and some

overlapped the brain surface.

The acoustic emissions were used to control the acoustic power

level at the different targets in each animal. Strong harmonic

emissions were tested as a signature for BBB disruption, and

broadband emissions were considered signatures for overexposure

and a risk for vessel damage. The control was performed

manually. In the first session in each animal a conservative power

level was used, which was selected based on our estimates for the

pressure amplitude in the monkey brain described above, prior

work in small animals that evaluated BBB disruption thresholds

[41], and our experience in earlier sessions. If at this initial power

level we did not observe an increase in harmonic emissions in at

one or more of the subsonication targets that was at least one to

two orders of magnitude larger than the baseline emission

obtained earlier without microbubbles, the power was increased

and the sonication repeated. This procedure was repeated at each

target in each animal. Over the following weeks, this power level

was used as a starting point, with minor week-to-week increases or

reductions employed if later detailed offline analysis revealed weak

harmonic emissions and/or contrast enhanced MR signal

enhancement or broadband signal was detected. Overall, 114

volumes were sonicated over the course of these 22 experiments in

monkeys #3–6. The acoustic power level ranged from 0.2–1.9 W,

which yielded an estimated pressure amplitude in the brain 100–

300 kPa. The applied acoustic power varied among the different

brain targets and animals (Table 1), with larger animals generally

requiring higher levels to achieve strong harmonic emissions.

To test how well this control worked in ensuring BBB disruption

without producing broadband emission, we counted the number

of multi-target sonications that resulted in evident contrast

enhancement in MRI after Gd-DTPA administration in at least

one subsonication target in the LGN and visual cortex sonications.

These two structures were included in this analysis as we always

aimed to produce BBB disruption in them (some cingulate cortex

and other targets used lower power levels to evaluate the acoustic

emissions below the BBB disruption threshold). We also counted

the number of subsonications and individual 10 ms bursts where

broadband emissions with an SNR greater than 3 were evident.

Acoustic Emissions vs. MRI
After the experiments in monkeys #3–6, the acoustic emissions

data was compiled and compared retrospectively to MRI exams

obtained immediately after the sonications. First, we examined

whether the strength of the harmonic emissions was predictive of

the onset for BBB disruption. This examination was performed on

all of the targets sonicated in monkeys #3–6. BBB disruption at

each target was ascertained by the presence or absence of signal

enhancement in T1-weighted MRI after the injection of Gd-

DTPA. The binary (Yes/No) outcome of the contrast enhanced

MR image assessment was compared to the strength of the

harmonic signals recorded during the sonications. The subsonica-

tion with the maximum harmonic emissions signal was used for

this analysis.

Next, we investigated whether the strength of the harmonic

emissions was predictive of the level of the BBB disruption. Here,
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we aimed to correlate the emissions signals for individual

subsonication targets to the corresponding signal enhancement

after Gd-DTPA administration. Due to the three-dimensional

complexity of the gray and white matter structures in the visual

cortex and LGN, we were unable to consistently identify which

enhancing spot in MRI corresponded to which subsonication

target in these two structures. This discrimination was confounded

by leakage of contrast agent from one target to another and one

imaging plane to another (particularly when the contrast leaked

into the sulci), and small shifts of a few mm in the position of the

head over the course of the experiments. While this discrimination

was possible in a few cases, in most cases we were not confident in

our ability to associate the enhancement with particular sub-

sonications. In the cingulate cortex in contrast, this discrimination

was relatively straightforward since the orientation of the cortical

structure was parallel to our imaging planes. Thus, in the 28

cingulate cortex targets, we were able to make this comparison.

However, we were not able to make this comparison for all

subsonication targets due to evident leakage of MRI contrast agent

between the targets. Thus, we compared MRI signal enhancement

at the subsonication with the biggest enhancement to the

corresponding harmonic emissions signal.

Finally, we examined the T2*-weighted imaging obtained after

each session and identified whether or not hypointense spots were

produced at any of the subsonication targets, and whether they

correlated with the presence of broadband or ultraharmonic

emissions. This identification was often challenging, as the signal

changes induced with minor petechaie can be subtle; this

procedure was facilitated by registering the images to those

obtained in other sessions [32].

Sonication Optimization
Finally, we evaluated the feasibility of increasing the harmonic

emissions, and presumably the BBB disruption, in individual

subsonication targets where low signals were recorded. In these

tests, a multi-target sonication was applied at a nominal exposure

level as described above. We then analyzed the acoustic emissions

(Eq. 3) for each individual subsonication target to determine which

had no or only weak harmonic emissions signals. Those targets

were sonicated a second time with either a small increase in power

(corresponding to a pressure amplitude increase of 5–15 kPa), or

at the same power level but with five times the microbubble dose.

Subsonication targets that exhibited strong harmonic emissions

were not sonicated again. These experiments were performed over

several weekly sessions in monkeys #5–6. The procedures were

evaluated in 11 multi-target sonications in the cingulate cortex,

four of which at higher microbubble dose, and one in the visual

cortex. The sub-sonication targets were selected for a second

sonication solely based on the harmonic signal and not based on

the underlying structure.

We aimed with these experiments to determine whether

additional sonications could increase the harmonic emissions

signal above a threshold value where MRI contrast enhancement

was expected, based on the experiments described above. We also

compared the harmonic emissions signal strength for the first and

second sonications to determine whether any increase that we

produced was predictable. For experiments where the acoustic

power was increased, we compared our results with our pilot study

where a wide range of exposures were delivered in sequence to

individual targets. For experiments that increased the dose of

micro-bubbles, we investigated whether the harmonic emissions

signal strength would scale with the microbubble dosage.

Statistical Analysis
Each power spectrum obtained in the presence of microbubbles

was divided by the average spectrum obtained during 25 s

sonications that were performed before any microbubbles were

injected (10 or more waveforms per subsonication location)

according to Eq. 2. Harmonic emissions signals were relatively

constant over most of the sonications. Reported harmonic

emissions signals are the average microbubbles at the sonicated

targets are reported (typically the last 75 measurements). Reported

broadband and ultraharmonic signals are the maximum individual

measurement achieved among all the waveforms for that

sonication. The harmonic emission signals for different tissue

structures were compared using an unpaired, two-tailed t-test.

Additional analysis included least-squares regression and calcula-

tion of correlation coefficients.

Results

Pilot Studies
The acoustic emissions system was evaluated in initial, acute

tests in monkeys #1–2, where a range of pressure amplitudes were

tested and included exposures that purposely induced broadband

emissions. Fig. 2A shows typical acoustic emissions spectra for

cases with and without broadband emissions. Broadband emis-

sions were observed as signal at the resonant frequency of the

narrowband receiver transducers and were generally at sub-

stantially lower amplitude than the harmonic emissions. Note also

the flat frequency response of the recordings and the suppression

of the large signal at 220 kHz after normalizing the data to

Table 1. Acoustic power level used at the different targeted structures in each animal.

Monkey
Weekly
Sessions Sex, weight LGN Visual Cortex Cingulate Cortex Other

1 1 M 5 kg – – 0.4–4 W (N:4)

2 1 M, 7.5 kg – – 0.3–1.5 W (N:10)

3 5 M, 7 kg 0.81 [0.75–0.90] W1 (N: 10) 0.65 [0.50–0.75] W (N: 62) – –

4 5 F, 7.5 kg 0.88 [0.65–1.20] W (N: 10) 0.68 [0.65–0.70] W (N: 10) 0.55 [0.20–0.85] W (N: 8) 0.70 [0.70–0.70] W (N: 2)

5 5 M, 13 kg 1.58 [0.85–1.90] W (N: 10) 0.63 [0.60–0.66] W (N: 93) – 1.59 [0.85–1.90] W (N: 9)

6 7 M, 3.75 kg 0.54 [0.50–0.60] W (N: 10) 0.37 [0.35–0.40] W (N: 10) 0.47 [0.41–0.55] W (N: 20) –

1Mean power of N sonications [range]. The pressure amplitude (Pa) estimates in the brain in kPa were found using the following relationship: Pa = 223*(Power)1/2.
2The visual cortex targets were not sonicated in the first session with this animal.
3Acoustic emissions data excluded from one sonication due to excessive electronic noise.
doi:10.1371/journal.pone.0045783.t001
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recordings made earlier without microbubbles. Fig. 2B shows the

increase in signal for different frequency bands as a function of the

estimated pressure amplitude in the brain. A marked increase in

harmonic emissions was observed starting at around 250 kPa,

which increased linearly as the pressure amplitude was increased

at a rate of 0.1460.01 per kPa. Ultraharmonic (signal at 3/2 and

5/2 of the ultrasound frequency) and broadband emissions

occurred at higher pressure amplitudes than for harmonic

emissions, and their onset occurred at similar thresholds

(340 kPa) for this target.

Sonications were performed in monkey #2 to assess the

sensitivity of the system in detecting low-level broadband

emissions. Fig. 3 shows the results of this experiment. Of the ten

locations targeted, three were found to be enhancing in MRI with

contrast and had strong harmonic emissions signals. Two of these

targets exhibited broadband emissions with an SNR greater than 3

(Fig. 3A), with a hypointense spot evident in T2*-weighted

imaging detected for the location with the stronger emissions

(Fig. 3B). This location resulted in extensive petechaie in histology

(Fig. 3C). The location with the lower broadband emissions

signals, which were near our sensitivity limits (SNR=4.3), resulted

in a few tiny petechaie in the choroid plexus, which was located

slightly inferior to this target location. The locations that exhibited

no broadband emissions appeared normal in histology.

Acoustic Emissions-Based Control
After confirming the system performance in our pilot studies, we

utilized it as a basis to manually control the acoustic power level

during in a survival study in monkeys #3–6, which we performed

multi-target sonications. Example acoustic emissions recordings

and MRI findings from these experiments are shown in Fig. 4.

During treatment, we monitored in real-time the strength of the

harmonic emissions from all subsonications as a function of time

(Fig. 4A). The microbubble arrival in the targeted region was

apparent as a marked increase in relative harmonic emissions

,15–20 s after the start of the infusion. After the microbubbles

arrived, the signal remained at a steady level for the duration of

the sonication. The spectral data from each burst were also

displayed (Fig. 4B) and monitored to ensure that no broadband

emission occurred. The sonication was repeated at a higher power

level if strong harmonic emissions were not observed.

Overall, we found that in most cases we were able to use this

control to produce MRI contrast enhancement without broad-

band emissions that are indicative of tissue damage. Only 3/75

(4%) of the targets of interest for the safety study that were

centered on the LGN or visual cortex failed to produce detectable

BBB disruption, and only 17/114 (15%) of all the multi-target

sonications exhibited broadband emissions with an SNR greater

than three. When broadband emissions were observed, they were

typically only evident in a few of the bursts. Among the 1026

subsonication locations in these 114 multi-target sonications, over

84,000 individual bursts were applied. During the 17 sonications

that produced broadband emission, only 187 bursts had broad-

band signal at this level. Thus, overall only about 0.2% of the

bursts over these 22 sessions were delivered above the inertial

cavitation threshold.

Acoustic Emissions vs. MRI
When data from all multi-target sonications were analyzed, we

found that the strength of the harmonic emissions was predictive of

whether or not MRI-evident BBB disruption occurred. This ability

is evident in Fig. 5A, which plots the strength of the harmonic

emissions for sonications with and without MRI contrast

enhancement. The harmonic emissions were significantly higher

(P,0.001) for cases where MRI contrast enhancement was

detected. Ten of the multi-target sonications did not produce

any evident Gd-DTPA extravasation; their harmonic emissions

had a strength of 6 Np?Hz or less. Only 12/104 (11.5%)

sonications where Gd-DTPA extravasation was observed exhib-

ited harmonic emissions of less than 6 Np?Hz, which was then

used as a threshold for successful BBB disruption.

The strength of the harmonic and broadband emissions was also

compared (Fig. 5B–D). The risk for significant broadband

emissions in the visual cortex was predicted by the strength of

the harmonic emissions. With the exception of a single subsonica-

tion that overlapped a sulcus, broadband emissions appeared only

Figure 2. Acoustic emissions over a wide range of exposure levels. (A) Typical power spectra showing spectra with and without broadband
emission. The emissions recorded during sonication with microbubbles were normalized to baseline data obtained during identical sonications
without microbubbles according to Eq. 2. Wideband emission was observed as signal detected around 610 kHz (arrow), the resonant frequency of
our receiving transducers. (B) Mean acoustic emissions signal (6 S.D.) as a function of the estimated pressure amplitude in the brain for harmonic,
ultraharmonic and broadband emissions obtained in monkey #1 during a sonication where bursts were applied sequentially at increasing pressure
amplitudes. Between 200–400 kPa, the harmonic signal strength increased linearly as a function of pressure amplitude (R2 = 0.92). The harmonic
signal increase per kPa was 0.1460.01 Np?Hz/kPa. The average signals from four bursts at each pressure amplitude are shown (mean 6 SD shown).
The arrows indicate the lowest pressures where the harmonic and broadband signals were observed with an SNR greater than 3. Broadband and
ultraharmonic emissions were only observed in these locations when the harmonic emissions were greater than 20 Np?Hz.
doi:10.1371/journal.pone.0045783.g002
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when harmonic emissions signals exceeded a level of 20 Np?Hz.

Thus, there was a window of harmonic signals between 6–20

Np?Hz where broadband emission was absent (i.e., ‘‘stable

cavitation’’); in all of these sonications successful BBB disruption

was achieved. This range also agrees with the data from our pilot

study (Fig. 2B). We therefore considered this range for safe

exposure levels as BBB disruption is expected and inertial

cavitation is unlikely.

The strength of the harmonic signals for different tissue

structures varied among the different targeted structures

(Fig. 5A), with sonication in the visual cortex (which always

included subsonications that spanned sulci) producing the largest

harmonic signals. The observed difference in harmonic emis-

sions signals was reflected in the strength of the MRI signal

enhancement after Gd-DTPA injection. Multi-target sonications

centered on the LGN generally exhibited patchy and weak

enhancement, while volumes in the cingulate and visual cortices

Figure 3. Acoustic emissions, MRI, and histology at different exposure levels. (A) Acoustic emissions, recorded during three single-target
sonications delivered to the cingulate cortex in monkey #2, showing the largest broadband emissions for these sonications (arrow). Only locations 2
and 3 exhibited strong harmonic emissions (harmonic signal strength: 4.1, 17.9 and 25.8 Np?Hz, for locations 1–3, respectively) and resulted in
contrast enhancement in MRI. Broadband emissions with an SNR greater than 3 were present at location 3 and at a much lower level at location 2,
but not at location 1. The estimated pressure amplitudes in the brain were 175 kPa at location 1 and 275 kPa at locations 2–3. (B) T2*-weighted
image acquired shortly after the sonications. A hypointense spot is only evident at location 3. (C) Light microscopy showing no petechaie or other
changes at location 1. Tiny petechaie were found in the choroid plexus, (in the lateral ventricle) which was just inferior to location 2. It is possible that
any changes in MRI resulting from petechaie at this location were missed because they occurred in the ventricle, which appears hypointense in our
T2*-weighted imaging. Extensive petechaie were evident in histology at location 3. These petechaie covered a region 3 mm in diameter, similar to
the half-intensity beam width of the focal zone of this TcMRgFUS device.
doi:10.1371/journal.pone.0045783.g003
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produced more robust results, with substantially more enhance-

ment occurring in gray matter regions within the volumes.

We investigated this agreement in more detail by evaluating

each subsonication target individually. We found that the

harmonic signal was predictive of the level of signal enhancement

for the different targets. Examples of this agreement are shown in

Fig. 6. The magnitude of both the MRI signal enhancement and

the harmonic signal at each subsonication target depended

strongly on whether the target was in gray matter or white

matter, where little or no extravasation or relative harmonic signal

was observed. While low-level contrast enhancement was occa-

sionally observed in voxels that appeared to be largely white

matter, in most cases we could not exclude the possibility that this

enhancement came from extravasation in grey matter structures

partially contained within the MR imaging slice, or from leakage

of Gd-DTPA from an adjacent gray matter site. In only two multi-

target sonications were we confident that low-level contrast

extravasation was detected in purely white matter. In both cases,

the targets were sonicated two times at either an increased power

level or microbubble dosage (see below).

In the cingulate cortex sonications, we could always associate

the locations with the most MRI contrast enhancement to the

corresponding subsonication target and explore the correlation

between harmonic emissions quantitatively. Fig. 7 plots the

percent MRI signal increase after Gd-DTPA injection for these

subsonications or each of the 28 cingulate cortex sonications.

Overall, the strength of the MRI signal enhancement increased

non-linearly as the strength of the harmonics increased; a good

correlation (R2 = 0.78) was observed with an exponential fit. The

relationship between the strength of the harmonic emissions and

the MRI enhancement level appeared to be consistent among

targets in both monkeys #4 and #6 and for cases where the

subsonication was targeted a second time with a higher pressure

amplitude or microbubble dose (see below).

Only 5/17 (29.5%) of the targets with broadband emissions

produced hypointense spots that were detected in a blind review

Figure 4. Example acoustic emissions and MRI for a multi-target sonication centered on the LGN in monkey #3. (A) Harmonic
emission signal strength as a function of time (212 kPa; Mean: mean signal6 S.D. for the nine subsonications; Min./Max.: subsonications with smallest
and largest signals). The increase in emissions due to the arrival of the microbubbles at about 20 s is evident. Note also the constant level of
emissions over the duration of the rest of the sonication. Harmonic emissions greater than zero at time= 0 were presumably due to microbubbles
present in the circulation from an earlier sonication. (B) Relative power spectra averaged between 25–140 s showing strong harmonic emissions
without evident broadband emissions. (C) T2-weighted image showing the location of the sonication. (D) MRI contrast enhancement observed in T1-
weighted MRI after Gd-DTPA injection (percent enhancement shown). The subsonication targets are indicated (‘+’ subsonication target with
strongest signals; ‘2’ target with smallest signals; ‘*’ others).
doi:10.1371/journal.pone.0045783.g004
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of the T2*-weighted imaging; the rest were not found. We

should note, however, that sulci always appeared hypointense in

the T2*-weighted imaging. If petechaie were produced there,

they would have been undetectable. The subsonications with

broadband emission were all part of multi-target sonications

centered on the visual cortex and occurred at 0.65 W and

above (estimated pressure amplitude in the brain 180 kPa or

greater). Eighty-eight percent (15/17) of the subsonication

targets with broadband emission were among the three most

lateral targets in the 363 grid and were consistent with being

targeted to a large vessel-containing sulcus or a large surface

vessel, suggesting that such vessels may have a lower inertial

cavitation threshold.

Ultraharmonic emissions were not useful for predicting BBB

disruption or damage. They were only occasionally observed (28/

1026 subsonications), and when they were seen, they were

detected only at exposure levels above the threshold for BBB

disruption. We detected broadband emissions along with the

ultraharmonic emissions in 10/28 (36%) of these subsonications.

Except for four cingulate subsonications, all ultraharmonic

emissions were observed during multi-target sonications centered

on the visual cortex.

Sonication Optimization
We attempted to increase the harmonic emissions (and

presumably the BBB disruption) at individual subsonications

that exhibited low signal by sonicating a second time at an

increased power level. This procedure was tested in seven of the

multi-target sonications in the cingulate or visual cortices. A

total of 47/63 of the subsonications in these multi-target

sonications had low harmonic emissions and were selected for

a second sonication; subsonications that had strong harmonic

emissions were not sonicated again. A small (5–15 kPa) increase

in pressure amplitude did increase the harmonic emission in the

second sonication in many of the subsonications, and that this

increase was often substantial. For example, in 38 of the

subsonication targets, the harmonic signal was initially less than

6 Np?Hz (where BBB disruption was not expected). We were

able to increase it above this value in 14/38 of these targets,

and the increase was always in the safe range defined above.

While the increase in harmonic signal per kPa was variable and

ranged from 20.8 to 1.5 Np?Hz, the mean value (0.2060.37

Np?Hz) was consistent with what was observed in monkey #1

(Fig. 2B). Example data from two targets where this procedure

was investigated are shown in Fig. 8A–B.

We also investigated whether low-level harmonic emissions

could be increased using a higher dose of microbubbles. This

procedure was tested in four multi-target sonications in the

cingulate cortex. A total of 23/36 of the subsonications had low

harmonic signal and were sonicated a second time at the same

power level, but with five times the micro-bubble dose. An

example showing data from this procedure is shown in Fig. 8C.

We found that this approach was effective at increasing the relative

harmonic signal and maintaining a safe exposure based on the

criteria defined above. This increase was also predictable - a linear

relationship was observed between the harmonic signal for the two

sonications (Fig. 9). This slope is consistent with a linear de-

pendence of the harmonic signal strength and microbubble dose,

as our measurements were log-transformed and ln(5) = 1.6. A non-

zero y-intercept suggests that oscillating microbubbles were

perhaps present during the first sonication, but they produced

harmonics below the sensitivity of our detectors.

Figure 5. Harmonic emissions predict BBB disruption and safety limits. (A) Maximum harmonic emission signal strength achieved during
104 multi-target sonications that did and did not result in MRI contrast enhancement. Sonication at different tissue structures produced different
levels of harmonic emissions (*P,0.05; ***P,0.001). The greatest harmonic emissions were measured during sonication in the visual cortex. Contrast
enhancement was always observed when the harmonic signal strength was 6 Np?Hz or higher. (B–D) Broadband emission plotted as a function of
harmonic signal strength for 1026 subsonication targets in the three tissue structures. Red symbols indicate subsonications where the SNR of the
broadband emissions signals was greater than 3. Such emissions were only observed in sonications in the visual cortex, and with one exception, only
occurred when the harmonic emissions strength was greater than 20 Np?Hz.
doi:10.1371/journal.pone.0045783.g005
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Discussion

The type of microbubble oscillation that occurs during

sonication can be characterized by the spectral content of

passively-recorded acoustic emissions originating from the oscil-

lating microbubbles [21]. We have demonstrated that the strength

of harmonic signal is predictive of both the onset and magnitude of

the MRI signal increase reflecting Gd-DTPA extravasation and

are indicative of the exposure parameters needed for robust BBB

permeabilization. For safe BBB disruption, broadband emissions

set an upper limit on the exposure parameters, as they are

a signature for inertial cavitation and tissue damage [10,11]. These

two signals collected during the sonications and the methodology

to quantify them form the basis to build controllers for cavitation-

based pharmacological therapies in the brain and elsewhere. Here,

we showed that reliable measurements could be obtained

transcranially in a relevant animal model with a clinical

TcMRgFUS system, and over 22 weekly sessions demonstrated

that by monitoring the emissions we could reliably ensure a safe

and effective outcome. These results are highly encouraging and

warrant evaluation of the method in patients.

In these experiments, the operator of the TcMRgFUS device

was part of the control loop that evaluated the acoustic emissions

and modified the power level for each sonication. Improved

outcomes may be achieved using automated, computer-based

control of the sonications [17,42]. With such control, one could

automatically adjust the exposure levels on a burst-by-burst level

to rapidly achieve a desired harmonic emissions signal strength,

and automatically lower or stop the sonication if broadband

emissions were detected. The quality of the data recorded here,

along with the correlations we observed between the emissions

signals and the resulting BBB disruption suggest that this will be

readily achievable. However, our data suggest that one may not be

able to easily predict the response to a change in acoustic power, as

we observed substantial variability among the different targets

after sonicating a second time at only a slightly higher level. This

variability is perhaps not surprising, as the effective volume of the

focal region will increase at higher pressure amplitudes and will

include different structures with different vessel densities (and

microbubble concentrations). Nevertheless, using small increments

in acoustic power should ensure that such control would be an

effective means to ensure a safe and effective procedure.

Sonicating a second time with an increased microbubble dose

appeared to be a more predictable means to increase the harmonic

emissions.

For this control to be translated to patients, we need to ensure

that the measurements can be achieved through the thicker

human skull. Our harmonic emissions data are promising for this

translation. The relatively broad window in harmonic signals

where safe BBB permeabilization was observed was substantially

above the noise floor of our monitoring system. A harmonic

emissions signal of 6 Np?Hz, the level above which where BBB

disruption was always found, corresponded to an SNR of

approximately 10. If we assume that a human skull is 5 mm

thicker than a macaque skull, using an attenuation coefficient of

70 Np/m at 840 kHz we would expect an attenuation of the

relative harmonic signals at worst by a factor of two. Even with this

attenuation we could detect harmonic signals with SNR greater

than five. However, measurements using a higher-frequency

TcMRgFUS clinical system could be challenging since acoustic

attenuation increases with frequency. In contrast to the harmonics,

the broadband signals were substantially weaker, and it may be

challenging to detect them in a human. For example, in our pilot

study, petechaie were found in histology with a broadband signal

of only 5.6 Np?Hz, (SNR=4.3). Our acoustic emissions measure-

ments were also not sensitive to harmonic emissions during

sonication in white matter. In our previous study, we found that

the BBB can be disrupted in white matter even when no harmonic

emissions or MRI contrast enhancement is observed [32]. As

described below, we suspect this is due to the white matter’s lower

vascular density, leading to a lower microbubble concentration

within the focal region. If that is the case, a more sensitive detector

may be able to measure the emissions.

We anticipate that we can significantly improve the sensitivity of

our measurements by optimizing the design of our detectors. For

example, we expect that we could achieve a two-fold increase in

sensitivity by simply aiming our receiving transducers at the

Figure 6. Comparison of harmonic emissions and MRI contrast enhancement at individual subsonications during six multi-target
sonications in the cingulate cortex in monkey #4. (A) Axial T2-weighted FSE images showing the location of the subsonication targets, which
included the cingulate cortex and adjacent white matter. Gray matter is bright compared to white matter in these images. (B) Images showing the
percent increase in MRI signal after Gd-DTPA injection and the harmonic emission measurements (in Np?Hz) noted at each subsonication target.
Targets where the SNR of the harmonic emissions was less than 3 (circled) did not result in detectable MRI contrast enhancement. The magnitude of
the emissions agreed qualitatively with that of the contrast enhancement. Little or no contrast enhancement or harmonic emission was observed in
subsonications that were targeted in white matter. (scale bar: percent MRI signal increase after Gd-DTPA injection). (C) Spectra showing only
harmonic emissions at each subsonication for the multi-target sonication in (A) noted with an orange ‘‘*’’. The harmonic emissions signal strength
(HS) is noted for each subsonication.
doi:10.1371/journal.pone.0045783.g006

Figure 7. MRI signal enhancement after Gd-DTPA injection
plotted as a function of the harmonic emissions signal
strength. Data are shown for individual subsonication targets
delivered in the cingulate cortex in monkeys #4 and #6. The MRI
enhancement was found in a 363 voxel ROI centered on the
subsonication target. The MRI signal increased nonlinearly as a function
of the strength of the harmonic emission. A good correlation (R2: 0.78)
was found in a fit of the data to an exponential (solid line; dotted lines:
95% confidence intervals). Data shown are for the subsonication target
that exhibited the greatest MRI signal enhancement for each of 28
multi-target sonications that were performed in the cingulate cortex in
this study and included results from experiments where a second
sonication was applied at either a higher power level or with an
increased microbubble dose.
doi:10.1371/journal.pone.0045783.g007
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targeted region, as the location of most of our sonications fell

outside of the -3dB region of the sensitivity profile of the receiver

transducers. Additional improvement may be achieved by using

multiple detectors, or by attaching them to a positioning system to

maximize the sensitivity for each target. The use of arrays of

receivers and passive imaging reconstruction methods [43] to map

the microbubble activity within the brain in TcMRgFUS systems

[44,45] will further improve our results. In the present study, with

only two detectors we could only assume that the signals we

recorded were coming from microbubble activity in the focal

region. This is a reasonable assumption since we have not

observed any BBB disruption or damage outside of the targeted

volumes in these experiments or in our earlier work [32], but it

would be desirable from a safety perspective to ensure that the

activity is occurring only at the focal region.

Our measurements may also be sensitive to signals arising from

nonlinear propagation due to the presence of the microbubbles in

the beam path of the TcMRgFUS device [46]. While normalizing

the acoustic emissions to baseline data obtained without micro-

bubbles will remove the contributions from the transmitted and

reflected wave the presence of the microbubbles can effectively

change the nonlinearity of the tissue and add harmonic activity to

our measurements. With the large geometric gain of the

TcMRgFUS device, the relatively low microbubble concentration,

and the low frequency of the TcMRgFUS device, these

contributions might be expected to be small compared to

emissions from the focal region. However, they should be

explored. Additional uncertainties in the magnitude of the

emissions arising from differences in skull thickness between

subjects and from the sensitivity profile of the receiver transducers

should also be taken into account.

Despite these uncertainties, we found a good correlation with

the strength of the harmonic emissions to the strength of the MRI

enhancement after the administration of Gd-DTPA, at least in the

cingulate cortex. As the MRI contrast enhancement level after

BBB disruption can be correlated to drug concentrations in the

brain [47], this finding suggests that one may be able to predict the

amount of drug delivered to each target without having to perform

contrast-enhanced imaging. This would be desirable, since being

able to perform this procedure without an MRI would reduce its

costs and complexity. However, this ability might be confounded

by the different responses to the sonications we observed at

different brain structures. These differences were most evident in

white matter, where little or no acoustic emissions or BBB

permeabilization were observed, and in the visual cortex targets

that included sulci, where the acoustic emissions and BBB

permeabilization were substantially larger.

Figure 8. Sonication optimization. (A) Example where the pressure amplitude was increased by 10 kPa at select subsonications in a visual cortex
sonication in monkey #4. The harmonic emissions achieved during the first and second sonications (in Np?Hz) are noted for each subsonication
target. Two of five targets that were sonicated twice overlapped with a sulcus (red circles) and showed a large increase in harmonic emissions with
the second sonication. From the other targets only one showed significant increase (circled). (B) Similar experiment performed in the cingulate cortex
in monkey #5. In this example the pressure amplitude was increased by 15 kPa for the second sonication. Three of the locations showed a strong
increase in harmonic emissions (circled). (C) Similar experiment performed in the cingulate cortex in monkey #5, but instead of increasing the
pressure amplitude, the second sonication used five times the microbubble dose (circles indicate the most pronounced increase in harmonic
emissions). Arrows indicate strong contrast enhancement at the targets with pronounced increase in the harmonic emissions (Left images: T2-
weighted images showing the location of the targeted volumes and the ROI; Right images: images showing contrast enhancement in T1-weighted
images after Gd-DTPA injection).
doi:10.1371/journal.pone.0045783.g008
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It is likely that this variable response, particularly in gray vs.

white matter, is explained by differences in vascularity [48].

Differences in blood flow and in the interstitial space may also

impact the sonications and resulting extravasation of imaging

tracer or drug. It is clear that treatment planning imaging, at least,

will be necessary to interpret the acoustic emissions recorded at

each target. Advanced imaging methods to estimate local

variations in vascularity, vessel size, blood flow, and other

functional imaging methods may also prove useful in interpreting

the measurements.

Differences in vessel properties may also be important with

respect to safety. A lower cavitation threshold was evident for the

peripheral subsonications in the visual cortex and was consistent

with being targeted to a large vessel-containing sulcus or a large

surface vessel. Having a lower inertial cavitation threshold in

larger vessels would agree with experimental results in vessel-

mimicking tunnels [49] and might occur due to higher micro-

bubble numbers, lower bubble-to-bubble distances, or from less

restrictions on the magnitude of bubble oscillations. If this is the

case, it might restrict the design of TcMRgFUS systems for BBB

disruption. For example, a transducer with a smaller geometric

gain (i.e. not hemispherical) will have an elongated focal region,

and it may not be able to target superficial regions without

including vulnerable regions in the focus.

Our findings are in agreement with other studies that have

evaluated acoustic emissions recordings during ultrasound-induced

BBB disruption. In a prior study in rabbits [10], the presence of

large harmonic emissions signals was also found to be predictive of

whether or not BBB disruption occurred, and their strength was

correlated with MRI signal intensity increases after Gd-DTPA

administration. That work also found a correlation between

broadband emissions and the production of petechaie in the brain.

While we do not have histological correlation with our acoustic

emissions measurements (as monkeys #3–6 were not euthanized

after the sonications), we did not find changes in T2*-weighted

imaging in the absence of broadband emissions. It would be

interesting to examine whether the different levels of harmonic

emission correlate with any changes evident in histology. Based on

the results of our prior study that did include histology [32], we do

not expect there to be any significant changes in the monkey brain

when T2*-weighted imaging is normal. Tung et al. also observed

strong harmonic emissions during BBB disruption in mice and

correlated broadband emissions with histological damage [11].

That group has also shown feasibility of transcranially recording

emissions in monkeys [50]. Finally, O’Reilly et al. has tested an

automated, computer-controlled control method, where the

acoustic power was increased sequentially until ultraharmonic

emissions were detected, at which point the pressure amplitude

was dropped to a lower value [17]. They found some minor

petechaie in some cases, which is consistent with our findings that

ultraharmonic emissions, when present, were often observed along

with broadband emissions. That approach did not seem to be

possible here, as ultraharmonic emissions were rarely observed

outside of the visual cortex sonications.

Conclusions
We have demonstrated that increasing the sonication exposure

level until strong harmonic emissions are detected is an effective

way to ensure a safe exposure level for FUS-induced BBB

disruption. We also observed that the strength of these emissions is

correlated with the extravasation of an MRI contrast agent that

normally does not penetrate the blood-brain barrier. These results

are promising for clinical translation of this technique, as the

experiments were performed using a clinical TcMRgFUS device

and a relevant animal model. Apart from its utility in clinical

practice, it is anticipated that the method and procedure presented

could be an invaluable tool for pre-clinical and neuroscience

research to control the delivery of therapeutic, functional, or

diagnostic compounds to brain targets at a desired concentration.

Overall, the present work describes a basis for ‘‘smart therapeutic

ultrasound systems’’ that can control bubble dynamics in real-time

and in vivo to obtain reproducible, safe, and uniform permeabi-

lization of vascular barriers in the brain, and potentially elsewhere.

Based on the presented data and analysis the next step is to

develop a fully automatic feedback controller of the sonication

exposure settings. Such systems are expected to be an important

methodology to asses bubble kinetics and provide treatment

control. This control is anticipated to be especially important at

diseased targets such as tumors, where local anomalies in

vascularity and flow are frequent.
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Figure 9. Increase in harmonic emissions strength with in-
creased microbubble dose. Individual subsonications with low
harmonic emissions signals were sonicated again with five times the
microbubble dose. Signals recorded during the second sonication
increased substantially; all but one increased to a level above 6 Np?Hz,
a level where MRI-evident BBB disruption is expected based on results
in Fig. 5. The two measurements were correlated (R2: 0.65). The
measured slope indicates that the strength of the harmonic emissions is
proportional to the number of oscillating microbubbles, since the
signals were log-transformed (Eq. 3, log(5) = 1.6). A non-zero Y-intercept
suggests that there may have been low-level harmonic emissions
during the first sonication that were below our detection threshold.
doi:10.1371/journal.pone.0045783.g009
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