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NEMO Binds Ubiquitinated TANK-Binding Kinase 1
(TBK1) to Regulate Innate Immune Responses to RNA
Viruses
Lingyan Wang., Shitao Li*., Martin E. Dorf*

Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

RIG-I-like receptors (RLR) are intracellular sensors utilized by nearly all cell types for recognition of viral RNA, initiation of
antiviral defense, and induction of type I interferons (IFN). TBK1 is a critical kinase implicated in RLR-dependent IFN
transcription. Posttranslational modification of TBK1 by K63-linked ubiquitin is required for RLR driven signaling. However,
the TBK1 ubiquitin acceptor sites and the function of ubiquitinated TBK1 in the signaling cascade are unknown. We now
show that TBK1 is ubiquitinated on residues K69, K154, and K372 in response to infection with RNA virus. The K69 and K154
residues are critical for innate antiviral responses and IFN production. Ubiquitinated TBK1 recruits the downstream adaptor
NEMO through ubiquitin binding domains. The assembly of the NEMO/TBK1 complex on the mitochondrial protein MAVS
leads to activation of TBK1 kinase activity and phosphorylation of the transcription factor, interferon response factor 3. The
combined results refine current views of RLR signaling, define the role of TBK1 polyubiquitination, and detail the
mechanisms involved in signalosome assembly.
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Introduction

An important aspect of host resistance against viral infections is

the production of type I interferons (IFN). Cytosolic receptors,

such as the RIG-I like receptors (RLR), sense viral RNA in nearly

all cell types. Following RNA recognition, RLRs translocate onto a

scaffold molecule termed MAVS which serves as a platform for

coordinating downstream innate immune signaling [1,2]. RLR

engagement of MAVS leads to activation of downstream kinases

and transcription factors, including TBK1 and interferon regula-

tory factor 3 (IRF3), respectively. Following RLR-MAVS interac-

tion, TBK1, a constitutively and ubiquitously expressed serine-

threonine kinase, catalyzes phosphorylation of IRF3 [3,4,5,6].

However, the mechanisms by which RLR signals recruit and

activate TBK1 are not well understood.

The importance of TBK1 to antiviral immunity is underscored

by observations that several viruses evolved strategies to target or

hijack this enzyme. For example, inhibition of TBK1 interactions

with IRF3 by Borna disease virus P protein dampens the innate

immune response [7], the Gn protein of pathogenic hantaviruses

disrupts formation of TBK1 complexes, thereby blocking down-

stream responses required for IFN transcription [8], the c134.5

protein of herpes simplex virus inhibits TBK1 [9], and the

hepatitis C virus NS3/4A protein interacts directly with TBK1

[10] to inhibit IFN production. Elucidating the biochemical

mechanisms controlling assembly of TBK1 with other signaling

intermediates can advance our understanding of the innate

immune defense system and may reveal new targets of microbial

pathogenesis.

Recently, TBK1 K63-linked polyubiquitination (pUb) was

shown to be important for the LPS and RLR induced IFN

production [11,12,13]. The E3 ligases Mind Bomb 1 and 2 (MIB1

and MIB2) couple K63-linked ubiquitin to TBK1 in response to

RNA virus infection [13] while Ndrp1 ubiquitinates TBK1 in

response to LPS [12]. However, the sites of ubiquitination and the

molecular contribution of K63-linked polyubiquitin to RLR

signaling remain unknown. We now analyze the TBK1 ubiqui-

tination sites and demonstrate a molecular mechanism underlying

the critical role of TBK1 pUb for recruitment of NEMO in early

antiviral responses.

Materials and Methods

Cells and reagents
Murine embryonic fibroblasts (MEF) derived from mib1f/f mice

[14] were donated by Dr. Y-Y. Kong (Seoul National Univ.).

MIB1f/f MEF were immortalized by transfection with SV40 LT.

MEF derived from mice genetically deficient for TBK1 (Drs.

Delhase and Nakanishi, Nagoya University), NEMO (Dr.

Schmidt-Supprian, Harvard Medical School), and Tnfr12/2;

tbk12/2 macrophages (Dr. Fitzgerald, Univ. Massachusetts) were

generously provided.

Poly(I:C)-LMW/LyoVec was purchased from Invivogen (San

Diego, CA). Antibodies directed to IRF3, NEMO, phospho396S-
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IRF3, and ubiquitin were bought from Cell Signaling (Beverly,

MA). Antibodies against TBK1 were purchased from Imgenex

(San Diego, CA) and Millipore (Billerica, MA). Antibodies specific

for FLAG, MYC and HA were purchased from Sigma Chemical

Co (St. Louis, MO). Recombinant GST-IRF3 was purchased from

Abnova (Taiwan). Antibody against phospho172S-TBK1 was

obtained from BD Bioscience (San Jose, CA).

Real-time PCR
mRNA was quantified using SYBR Green based real-time

PCR. Total RNA was prepared using TRIzol Reagent (Invitro-

gen). Two mg RNA were transcribed into cDNA using QuantiTect

reverse transcription kit (Qiagen). For one real-time reaction a

20 ml SYBR Green PCR reaction mix (Roche Applied Science),

including 1/40 of the synthesized cDNA plus oligonucleotide

primer pairs detailed elsewhere [15] were run on the LightCycler

II (Roche). Controls were done in parallel without adding reverse

transcriptase to rule out genomic DNA contamination. The

comparative Ct method was used to determine relative mRNA

expression of genes as normalized by the b-glucuronidase

housekeeping gene.

siRNA
The efficiency of the MIB2 siRNAs was validated elsewhere

[13].

Immunoblotting, immunoprecipitation
Western blot was performed as previously described [16]. All

immunoprecipitations were performed using Pierce Direct IP kit.

For ubiquitin immunoprecipitation, cells were lysed in RIPA

buffer (Sigma) with N-ethylmaleimide (Calbiochem), protease

inhibitor cocktail (Roche), and phosphatase inhibitor (Pierce). The

cell lysates were incubated with the indicated antibody conjugated

beads and mixed end-over-end at 4uC overnight. The beads were

then 36washed (5 min/wash) with the same buffer used for cell

lysis. For affinity purification of protein complexes, stably

transfected HEK293 cells were lysed in RIPA buffer (Sigma) plus

10 mM NaF, 1 mM Na3VO4, 0.5 mM DTT, and a cocktail of

protease and phosphatase inhibitors (Pierce Biotechnology).

In vitro kinase assays
For kinase assays FLAG-TBK1 and mutants were purified from

HEK293 cells stably transfected with the respective FLAG-tagged

constructs. FLAG-TBK1 or mutants (10 ng), GST-IRF3 (25 ng),

0.2 mM ATP were incubated in 16Kinase Buffer (Cell Signaling)

at 30uC for 60 min.

Luciferase reporter assay, cell transfection, and infection
HEK293 cell transfections were performed using Polyfect

(Qiagen) or Lipofectamine 2000 (Invitrogen) according to the

manufacturer’s protocol. MEFs and macrophages were transfected

using Amaxa nucleofection according to the manufacturer’s

protocol (Lonza GmbH, Germany). The ISRE reporter (Strata-

gene) and luciferase assays were performed as recommended by

the manufacturer (Promega, Madison, WI). Luciferase assays were

performed using the Dual Luciferase reporter system (Promega) as

detailed elsewhere [17]. Relative luciferase units (RLU) were

measured and normalized against Renilla luciferase activity 48 hr

after transfection. Values are expressed as mean 6 SD of three

experiments.

For cell infection 5 or 50 HA Sendai virus or the indicated

multiples of infection (MOI) of vesicular stomatitis virus (VSV)

were added. 1 mg/ml poly(I:C)-LMW was transfected using

LyoVec (Invivogen).

VSV-eGFP and VSV-Luc were kindly provided by S. Whelan

(Harvard University). Sendai virus was purchased from Charles

River (Cambridge, MA). Wild type adenovirus and Adeno-Cre

were purchased from University of Iowa adenoviral core.

Mass spectrometry
Samples were analyzed at the Beth Israel Deaconess Medical

Center (Boston) mass spectrometry core facility.

Results

Virus-dependent TBK1 K63-linked ubiquitination sites
Various TBK1 truncation mutants were prepared to identify the

domain required for TBK1 ubiquitination (Fig. 1A). TBK1

mutants were transfected into HEK293 cells with K63-only

ubiquitin (containing a single lysine reside). The combination of

the kinase domain and ubiquitin-like domain (ULD) were

sufficient for TBK1 ubiquitination as the N385 deletion mutant

lacking the C-terminal coiled coil domains was heavily ubiquiti-

nated (Fig. 1B). Overexpression of TBK1(N385) induced low but

significant levels of luciferase reporter activity driven by the

interferon-stimulated response element (ISRE) which requires

activation by IRF3 (Fig. 1C). ULD deletion (dULD) abolished

TBK1 activity [18] and prevented TBK1 pUb (Fig. 1B, 1C).

To further identify the TBK1 ubiquitin acceptor site, we

selected HEK293 cells stably expressing FLAG-TBK1. Two hr

after infection with Sendai virus, in vivo ubiquitinated forms of

FLAG tagged TBK1 were affinity purified and analyzed by multi-

dimensional liquid chromatography coupled with tandem mass

spectrometry. This analysis identified ubiquitin moieties on TBK1

residues K69, K154, and K372 (Fig. 1D). To examine the biologic

properties associated with these sites, HEK293 cells were

transfected with TBK1 KRR mutants along with K63-only

ubiquitin. The K69R, K154R, and K372R mutants displayed

reduced K63-linked pUb (Fig. 1E). The data suggest K69, K154,

and K372 are acceptor sites for K63-linked ubiquitin although

additional ubiquitin acceptor sites may exist. In contrast, the

kinase inactive K38R mutant [3] was heavily ubiquitinated

indicating that TBK1 catalytic activity is not required for K63-

linked ubiquitination. The data also suggest ubiquitination

precedes TBK1 transautophosphorylation [19].

Ubiquitination sites are critical for TBK1 activity
We next examined the K69R, K154R, and K372R mutants to

evaluate the impact of ubiquitination on TBK1 activity. The

K69R and K154R mutations severely impaired TBK1-induced

ISRE reporter activity (Fig. 2A). As expected the K38R construct

which is known to lack kinase activity was completely unable to

induce ISRE activity. In contrast, the K372R mutant showed a

modest but insignificant reduction of reporter activity (Fig. 2A). To

evaluate the potential roles of other lysine residues on ISRE

reporter activity we mutated 18 additional conserved lysine

residues. In addition, we examined a ULD(4K/4R) mutant in

which all four lysines within the ULD were altered. Only K137R

markedly reduced TBK1 activity (Fig. 2B). Alignment of the

TBK1 kinase domain in the NCBI database of conserved domains

predicts K137 is a conserved site for ATP binding and kinase

activation. To evaluate the impact of K69 and K154 mutation on

additional measures of TBK1 activity, tbk12/2 MEFs were

transfected with wild type or mutant TBK1 and stimulated with

poly(I:C) (a synthetic RNA duplex). TBK1 mutation impaired

stimulation of IFNb and chemokine (RANTES) transcription

Ubiquitinated TBK1 Regulates Interferon Production
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(Fig. 2C). We also transfected these mutant constructs into TBK1

deficient macrophages and infected the cells with VSV-eGFP. The

K69R and K154R containing cells display intermediate levels of

protection compared with wild type or K372R TBK1 (Fig. 2D).

Next we transfected mutant TBK1 constructs into HEK293 cells

and then infected the cells with VSV containing a luciferase

Figure 1. Mass spectrometry identifies TBK1 ubiquitination sites in response to RNA virus. (A) Map of various TBK1 truncation mutants
showing the schematic structure of kinase domain, ubiquitin-like domain (ULD), and coiled coil domain (CC). (B) Kinase and ubiquitin-like domains
are required for TBK1 activity. FLAG-tagged TBK1 truncation mutants were transfected with Ub-K63-HA into HEK293 cells. After 48 hr cells were
collected, immunoprecipitated, and immunoblotted with the specified antibodies. Molecular weights are indicated. (C) ISRE reporter activity of
HEK293 cells transfected with indicated TBK1 truncation mutants. (D) TBK1 complexes from control or Sendai infected 293 cells stably transfected
with FLAG-TBK1 were affinity purified, then separated on a Nu-PAGE gel which was stained with Commassie blue. The fraction labeled Ub was sent
for mass spectrometric analysis. Right panel shows the schematic structure of TBK1 kinase domain (KD), ubiquitin-like domain (ULD), and coiled coil
domain (CC). Ubiquitination sites identified by mass spectrometry are indicated by arrowheads and peptides are detailed in the box. (E) HEK293 cells
were cotransfected with designated FLAG-tagged TBK1 mutants and HA-tagged K63-only ubiquitin. Lysates were immunoprecipitated and
immunoblotted as designated.
doi:10.1371/journal.pone.0043756.g001

Ubiquitinated TBK1 Regulates Interferon Production
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Figure 2. Mutation of ubiquitination sites impairs innate antiviral response. (A) ISRE reporter activity in control, FLAG tagged TBK1, and
KRR mutant transfected HEK293 cells. Data present the mean 6 SD of triplicate samples. Asterisk indicates P,0.01. (B) ISRE reporter activity of TBK1
KRR mutants. Various TBK1 mutants were transfected into HEK293 cells with ISRE and Renilla reporter plasmids. (C) Tbk12/2 MEFs were transfected
with TBK1 and TBK1 mutants. After 48 hr cells were treated with 1 mg/ml poly(I:C) for the designated times. Relative levels of IFNb and RANTES RNA
are presented. Asterisk indicates P,0.01. (D)Tnfr12/2, tbk12/2 macrophages were transfected with FLAG-tagged TBK1 and TBK1 mutants. After 24 hr
cells were infected with 0.1 MOI (multiple of infection) VSV-eGFP for 12 hr. Control TBK1 levels are included in the lower panel. (E) VSV-Luciferase
(VSV-Luc) replication in HEK293 cells transfected with TBK1 or TBK1 mutants. Cells were infected with VSV-Luc at 1 MOI. Luciferase reporter activity
was measured 18 hr after infection. (F) Induction of IFNb in tbk12/2 MEFs transfected with indicated TBK1 constructs. Two days later cells were
treated with 5 HA Sendai virus for 12 hr. Data represent the mean 6 SD of triplicate samples. *P,0.05 was calculated by comparison to wild type
TBK1.
doi:10.1371/journal.pone.0043756.g002
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reporter (VSV-Luc). Wild type TBK1 and the K372R mutant

inhibited viral replication while the K69R and K154R single

mutants demonstrated weakened protection from viral infection

compared to wild type TBK1 (Fig. 2E). In addition, tbk12/2 MEFs

reconstituted with either K69R or K154R TBK1 produce less

IFNb following infection with Sendai virus than cells reconstituted

with wild type or K372R TBK1 (Fig. 2F). Thus, mutation of the

K69 or K154 TBK1 ubiquitin acceptor sites impairs antiviral

activity and IFN production in response to infection.

To explore whether TBK1 mutations affect substrate phos-

phorylation, reconstituted tbk12/2 MEFs were infected with

Sendai virus. Following viral infection K69R and K154R

reconstituted cells displayed reduced enzyme activity as monitored

by either TBK1 or IRF3 phosphorylation (Fig. 3A). The effects of

K69 or K154 mutation were most apparent in the early (4 hr)

response to viral infection. In vitro kinase assays using IRF3 as

substrate support the conclusion that the K69R and K154R

mutants display reduced catalytic activity (Fig. 3B). The combined

data suggest these two ubiquitin acceptor sites are also critical for

TBK1 kinase activity.

Because K69 and K154 sites reside in the kinase domain,

inactivation of TBK1 kinase activity by mutation can alternatively

be explained by disruption of kinase structure. To avoid disruption

of the TBK1 kinase domain by mutation we used MIB1 and MIB2

double deficient cells to examine the role of ubiquitination on

TBK1 activity. MIB1 is the primary E3 ligase for RLR-dependent

K63-linked TBK1 pUb while the closely related MIB2 contributes

less because of its low level of expression in MEFs [13]. As shown

in Fig. 3C, Sendai virus-induced IRF3 and TBK1 phosphorylation

were dramatically reduced in MIB1/MIB2 double deficient MEFs

compared to control mib1f/f MEFs in early infection. MEFs

deficient in MIB1 (mib12/2) alone displayed a reduction in IRF3

and TBK1 phosphorylation (Fig. 3C). Most TBK1 activity was

restored 12 hr after viral infection in mib12/2 and MIB1/MIB2

double deficient MEFs (Fig. 3C). Taken together, the data suggest

that TBK1 ubiquitination is essential for optimal early antiviral

signaling and disruption of TBK1 ubiquitination impairs TBK1

activity.

TBK1 recruits NEMO through K63-linked ubiquitin chains
NEMO can associate with TBK1 [13,20,21] and is critical for

virus-induced IRF3 activation [13,22,23]. Therefore we examined

whether the association between TBK1 and NEMO is dependent

on K63-linked ubiquitination. After infection with Sendai virus the

K69R and K154R point mutants show severely reduced NEMO

binding (Fig. 4A). These results are supported by the finding that

Sendai infection induces association between endogenous TBK1

and endogenous NEMO (Fig. 4B). NEMO has two ubiquitin

binding domains (UBD) and both are required for IFN activation

[22,23] however, the targets of these UBD are unknown. To

examine which UBD domain is required for association with

TBK1 we transfected TBK1 with various NEMO mutants

(Fig. 4C). Y308S/D311N mutations in the leucine zipper domain

(LZ*) or zinc finger deletion (dZF) alone had little effect on TBK1

binding. However, the combination of Y308S/D311N mutation

and zinc finger deletion (dZF/LZ*) or deletion of both UBD

(dZF/LZ) prevented association between NEMO and TBK1

(Fig. 4C), suggesting both the LZ and ZF domains contribute to

NEMO-TBK1 interaction. To examine the biological effects of

UBD mutation, NEMO constructs were transfected into HEK293

cells and nemo2/2 MEFs. The cells were then monitored for ISRE

reporter activity (Fig. 4D) and VSV replication (Fig. 4E). Deletion

of the ZF domain or mutation of the LZ had little impact on

reporter activity or viral growth, while destruction of both UBD

Figure 3. Ubiquitination regulates TBK1 kinase activity. (A) IRF3
and TBK1 phosphorylation in tbk12/2 MEFs transfected with indicated
TBK1 constructs. Two days later cells were infected with Sendai virus. (B)
In vitro kinase assay of TBK1 and TBK1 mutants using IRF3 as substrate.
HEK293 cells were transfected with indicated FLAG-tagged TBK1
constructs after 48 hr TBK1 was purified with anti-FLAG. Purified TBK1
was examined for kinase activity using IRF3 as substrate. (C) Mib1f/f,
mib12/2, or mib12/2 cells transfected with MIB2 siRNA (mib2KD) were
treated with 50 HA Sendai virus for the designated times. Cell lysates
were immunoblotted as indicated.
doi:10.1371/journal.pone.0043756.g003
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domains significantly reduced biological activity. The combined

results suggest TBK1 associates with NEMO through both UBD.

Next we examined TBK1 activation and ubiquitination in

nemo2/2 cells. As previously reported [22,24], NEMO deficiency

abolished virus-induced IRF3 phosphorylation (Fig. 5A). TBK1 is

ubiquitinated following viral infection even in the NEMO deficient

cells (Fig. 5B). The combined data indicate that NEMO acts

downstream of TBK1 and suggests a mechanism by which the

binding property of NEMO promotes signalosome assembly.

Using proteomic analysis we established that recognition of

RNA induces association between the NEMO and MAVS

proteins [13]. To confirm the requirement of NEMO for assembly

of the MAVS complex, NEMO and MAVS were coexpressed in

HEK293 cells. As shown in Fig. 5C, NEMO associates with

MAVS by reciprocal immunoprecipitation. Furthermore, after

Sendai virus infection TBK1 can coimmunoprecipitate with

MAVS in wild type but not in NEMO deficient MEFs (Fig. 5D).

Taken together, the data suggest that NEMO bridges TBK1 to

MAVS through TBK1 K63-linked polyubiquitin chains.

Discussion

TBK1 is regarded as a converging point for signaling from a

diverse spectrum of microbial sensors [25,26]. TBK1 recruitment

to divergent upstream scaffolds such as MAVS, TRIF or STING

appears to involve multiple mechanisms. Thus, distinct E3 ligases

participate in RLR and LPS-mediated TBK1 activation [12,13],

while cytosolic DNAs activate TBK1 without apparent TBK1

ubiquitination [13,27]. Defining the requirements for TBK1

recruitment to these different scaffolds is needed to better

understand the molecular basis for TBK1 activation in different

Figure 4. TBK1 K63-linked pUb recruits NEMO. (A) tbk12/2 MEFs transfected with indicated TBK1 constructs were infected with Sendai (2 hr)
then cell lysates were immunoprecipitated with anti-FLAG antibody and immunoblotted as indicated. (B) MEFs infected with 5 HA Sendai virus were
harvested at the indicated times and immunoprecipitated with anti-NEMO antibody. (C) Indicated FLAG tagged NEMO constructs were transfected
with Myc-TBK1 into HEK293 cells. Cell lysates were immunoprecipitated with anti-Myc antibody and immunoblotted with indicated antibodies. NEMO
constructs with zinc finger deletion (dZF), leucine zipper and zinc finger deletion (dZF/LZ), and Y308S and D311N point mutations (LZ*) are indicated.
(D) HEK293 cells were transfected with the indicated constructs and ISRE reporter activity was assayed. Data represent mean 6 SD of triplicate
samples. Asterisk indicates P,0.01. (E) Nemo2/2 MEFs were transfected with the indicated constructs after 24 hr cells were infected with VSV-Luc at
indicated MOI. Luciferase reporter activity was measured 18 hr after infection. Data represent mean 6 SD of triplicate samples. Asterisk indicates
P,0.01.
doi:10.1371/journal.pone.0043756.g004
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contexts. This report is the first to define ubiquitin acceptor sites

critical for TBK1 function.

Ubiquitin-dependent mechanisms play a central role in

transmitting signals required for activation of innate antiviral

responses [28]. K63-linked ubiquitin provides various targeted

proteins with an ability to engage in new protein interactions with

molecules containing ubiquitin binding domains, thereby contrib-

uting to the formation of a functional signalosome. In the RLR

signaling pathways, several proteins including TANK, RIG-I,

MAVS, and TRAF3 undergo ligand-induced K63-linked ubiqui-

tination. It appears that multicomponent complexes of polyubi-

quitinated intermediates are progressively assembled. The combi-

natorial addition of successive elements of the signalosome is a

highly regulated process. Several distinct E3 ligases are reported to

regulate ubiquitination following recognition of viral nucleic acids

[29,30,31,32]. In addition, the deubiquitinases CYLD and DUBA

have been identified as negative regulators of IRF3 activation

through deubiquitination of TBK1, RIG-I, or TRAF3 [11,33,34].

Thus, polyubiquitination emerges as a common theme in the RLR

signaling pathway.

NEMO is critical for IFN production in response to RNA

viruses [22,23]. Previous models proposed that NEMO links

TBK1 to the MAVS complex through an adaptor termed TANK

[22,23]. Subsequently, TANK deficient cells were shown to

display normal responses to infection with RNA viruses [35].

Thus, TANK is not essential for MAVS signaling, however, we

cannot exclude the possibility that TANK or redundant adaptors

help stabilize MAVS-NEMO-TBK1 complexes. Here we provide

evidence that viral infection induces endogenous association of

TBK1 with NEMO and this interaction depends upon association

of NEMO ubiquitin binding domains with K63-ubiquitinated

TBK1. Although NEMO appears to be responsible for bringing

TBK1 to the MAVS complex, how NEMO and other down-

stream members of the signalosome are recruited to the

mitochondrial or peroxisome surface remains unresolved [36].

Recent evidence suggests that MAVS and IRF3 associated

proteins, HSP90, GSK3b or IFIT3, may help stabilize TBK1

complexes [37,38,39] although the mechanisms are yet to be

elucidated.

Figure 5. NEMO bridges TBK1 to MAVS. (A) IRF3 phosphorylation in Sendai infected wild type and nemo2/2 MEFs. (B) TBK1 ubiquitination in
Sendai infected wild type and nemo2/2 MEFs. (C) Reciprocal immunoprecipitation between MAVS and NEMO. NEMO- MYC and MAVS- FLAG were
transfected into HEK293 cells after 48 hr cells were collected. Cell lysates were immunoprecipitated and immunoblotted with the indicated
antibodies. (D) Wild type and nemo2/2 MEFs were cotransfected with FLAG-TBK1 and HA-MAVS after 48 hr cells were infected with 5HA Sendai virus.
Cell lysates were immunoprecipitated and immunoblotted with the designated antibodies.
doi:10.1371/journal.pone.0043756.g005
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Taken together, we propose a new model for the molecular

mechanism regulating TBK1 activation (Fig. 6). Recognition of

viral RNA promotes association of MIB1 and/or MIB2 with

TBK1 [13], resulting in MIB dependent K63-linked TBK1

ubiquitination. NEMO binds polyubiquitinated TBK1 and the

NEMO-TBK1 complex is recruited to MAVS. Viral infection

induces large-prion like MAVS aggregates implicated in IRF3

activation [40]. Virus-activated MAVS aggregates on the outer

mitochondrial membrane, where it can serve as a platform for

signalosome assembly linking TBK1 with its IRF substrate leading

to activation of IRF3, and triggering transcription of IFN and

other antiviral genes.

In summary, we identified sites of TBK1 ubiquitination in

response to infection with RNA viruses and proposed a

mechanism for assembly of a RLR-induced molecular complex

responsible for IRF3 signal propagation.

Acknowledgments

We thank Michael Berman for his excellent technical assistance and

preparing constructs. We also thank Drs. Y-Y. Kong (Seoul National

Univ.), S. Whelan and M. Schmidt-Supprian (Harvard), M. Delhase and

M. Nakanishi (Nagoya Univ.) and K. Fitzgerald (Univ. Massachusetts) for

their generous gifts of cells and reagents.

Author Contributions

Conceived and designed the experiments: LW SL MED. Performed the

experiments: LW SL. Analyzed the data: LW SL MED. Wrote the paper:

LW SL MED.

References

1. Kawasaki T, Kawai T, Akira S (2011) Recognition of nucleic acids by pattern-

recognition receptors and its relevance in autoimmunity. Immunol Rev 243: 61–

73.

2. Brennan K, Bowie AG (2010) Activation of host pattern recognition receptors by

viruses. Curr Opin Microbiol 13: 503–507.

3. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, et al. (2003)

Triggering the interferon antiviral response through an IKK-related pathway.

Science 300: 1148–1151.

4. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, et al. (2003)

IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway.

Nat Immunol 4: 491–496.

Figure 6. Model of TBK1 recruitment to MAVS. Double-stranded RNA and RNA viruses induce MIB-TBK1 association resulting in K63-linked TBK1
pUb. NEMO binds ubiquitinated TBK1 and the complex is recruited to MAVS. The MAVS signalosome serves as platform for TBK1 activation leading to
IRF3 phosphorylation.
doi:10.1371/journal.pone.0043756.g006

Ubiquitinated TBK1 Regulates Interferon Production

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e43756



5. Hemmi H, Takeuchi O, Sato S, Yamamoto M, Kaisho T, et al. (2004) The roles

of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded
RNA signaling and viral infection. J Exp Med 199: 1641–1650.

6. McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, et al.

(2004) IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-
deficient mouse embryonic fibroblasts. Proc Natl Acad Sci U S A 101: 233–238.

7. Unterstab G, Ludwig S, Anton A, Planz O, Dauber B, et al. (2005) Viral
targeting of the interferon-{beta}-inducing Traf family member-associated NF-

{kappa}B activator (TANK)-binding kinase-1. Proc Natl Acad Sci U S A 102:

13640–13645.
8. Alff PJ, Sen N, Gorbunova E, Gavrilovskaya IN, Mackow ER (2008) The NY-1

hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular
interferon responses by disrupting TBK1-TRAF3 complex formation. J Virol

82: 9115–9122.
9. Ma Y, Jin H, Valyi-Nagy T, Cao Y, Yan Z, et al. (2012) Inhibition of TANK

binding kinase 1 by herpes simplex virus 1 facilitates productive infection. J Virol

86: 2188–2196.
10. Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, et al. (2005)

Interaction between the HCV NS3 protein and the host TBK1 protein leads to
inhibition of cellular antiviral responses. Hepatology 41: 1004–1012.

11. Friedman CS, O’Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, et al.

(2008) The tumour suppressor CYLD is a negative regulator of RIG-I-mediated
antiviral response. EMBO Rep 9: 930–936.

12. Wang C, Chen T, Zhang J, Yang M, Li N, et al. (2009) The E3 ubiquitin ligase
Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon.

Nat Immunol 10: 744–752.
13. Li S, Wang L, Berman M, Kong YY, Dorf ME (2011) Mapping a dynamic

innate immunity protein interaction network regulating type I interferon

production. Immunity 35: 426–440.
14. Koo BK, Yoon MJ, Yoon KJ, Im SK, Kim YY, et al. (2007) An obligatory role

of mind bomb-1 in notch signaling of mammalian development. PLoS ONE 2:
e1221.

15. Li S, Wang L, Berman MA, Zhang Y, Dorf ME (2006) RNAi screen in mouse

astrocytes identifies phosphatases that regulate NF-kappaB signaling. Mol Cell
24: 497–509.

16. Li S, Wang L, Dorf ME (2009) PKC phosphorylation of TRAF2 mediates
IKKalpha/beta recruitment and K63-linked polyubiquitination. Mol Cell 33:

30–42.
17. Di Y, Li S, Wang L, Zhang Y, Dorf ME (2008) Homeostatic interactions

between MEKK3 and TAK1 involved in NF-kappaB signaling. Cell Signal 20:

705–713.
18. Ikeda F, Hecker CM, Rozenknop A, Nordmeier RD, Rogov V, et al. (2007)

Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation
of IFN-inducible genes. EMBO J 26: 3451–3462.

19. Ma X, Helgason E, Phung QT, Quan CL, Iyer RS, et al. (2012) Molecular basis

of Tank-binding kinase 1 activation by transautophosphorylation. Proc Natl
Acad Sci U S A.

20. Fenner BJ, Scannell M, Prehn JH (2010) Expanding the substantial interactome
of NEMO using protein microarrays. PLoS One 5: e8799.

21. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, et al. (2004)
A physical and functional map of the human TNF-alpha/NF-kappa B signal

transduction pathway. Nat Cell Biol 6: 97–105.

22. Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, et al. (2007) The NEMO

adaptor bridges the nuclear factor-kappaB and interferon regulatory factor

signaling pathways. Nat Immunol 8: 592–600.

23. Zeng W, Xu M, Liu S, Sun L, Chen ZJ (2009) Key role of Ubc5 and lysine-63

polyubiquitination in viral activation of IRF3. Mol Cell 36: 315–325.

24. Clark K, Peggie M, Plater L, Sorcek RJ, Young ER, et al. (2011) Novel cross-talk

within the IKK family controls innate immunity. Biochem J 434: 93–104.

25. Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and

the regulation of interferon production and inflammatory responses. Curr Opin

Immunol 23: 10–20.

26. O’Neill LA, Bowie AG (2010) Sensing and signaling in antiviral innate

immunity. Curr Biol 20: R328–333.

27. Tanaka Y, Chen ZJ (2012) STING specifies IRF3 phosphorylation by TBK1 in

the cytosolic DNA signaling pathway. Sci Signal 5: ra20.

28. Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity.

Nature 458: 430–437.

29. Cui J, Li Y, Zhu L, Liu D, Songyang Z, et al. (2012) NLRP4 negatively regulates

type I interferon signaling by targeting the kinase TBK1 for degradation via the

ubiquitin ligase DTX4. Nat Immunol 13: 387–395.

30. Gack MU, Shin YC, Joo CH, Urano T, Liang C, et al. (2007) TRIM25 RING-

finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.

Nature 446: 916–920.

31. Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, et al. (2006)

Specificity in Toll-like receptor signalling through distinct effector functions of

TRAF3 and TRAF6. Nature 439: 204–207.

32. Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A, et al. (2006) Critical role
of TRAF3 in the Toll-like receptor-dependent and -independent antiviral

response. Nature 439: 208–211.

33. Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, et al. (2007) DUBA: a

deubiquitinase that regulates type I interferon production. Science 318: 1628–

1632.

34. Zhang M, Wu X, Lee AJ, Jin W, Chang M, et al. (2008) Regulation of IkappaB

kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol

Chem 283: 18621–18626.

35. Kawagoe T, Takeuchi O, Takabatake Y, Kato H, Isaka Y, et al. (2009) TANK

is a negative regulator of Toll-like receptor signaling and is critical for the

prevention of autoimmune nephritis. Nat Immunol 10: 965–972.

36. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, et al. (2010) Peroxisomes are

signaling platforms for antiviral innate immunity. Cell 141: 668–681.

37. Lei CQ, Zhong B, Zhang Y, Zhang J, Wang S, et al. (2010) Glycogen synthase

kinase 3beta regulates IRF3 transcription factor-mediated antiviral response via

activation of the kinase TBK1. Immunity 33: 878–889.

38. Liu XY, Chen W, Wei B, Shan YF, Wang C (2011) IFN-induced TPR protein

IFIT3 potentiates antiviral signaling by bridging MAVS and TBK1. J Immunol

187: 2559–2568.

39. Yang K, Shi H, Qi R, Sun S, Tang Y, et al. (2006) Hsp90 regulates activation of

interferon regulatory factor 3 and TBK-1 stabilization in Sendai virus-infected

cells. Mol Biol Cell 17: 1461–1471.

40. Hou F, Sun L, Zheng H, Skaug B, Jiang QX, et al. (2011) MAVS forms

functional prion-like aggregates to activate and propagate antiviral innate

immune response. Cell 146: 448–461.

Ubiquitinated TBK1 Regulates Interferon Production

PLOS ONE | www.plosone.org 9 September 2012 | Volume 7 | Issue 9 | e43756


