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Abstract

The mammalian circadian system controls various physiology processes and behavior responses by regulating thousands of
circadian genes with rhythmic expressions. In this study, we redefined circadian-regulated genes based on published results
in the mouse liver and compared them with other gene groups defined relative to circadian regulations, especially the non-
circadian-regulated genes expressed in liver at multiple molecular levels from gene position to protein expression based on
integrative analyses of different datasets from the literature. Based on the intra-tissue analysis, the liver circadian genes or
LCGs show unique features when compared to other gene groups. First, LCGs in general have less neighboring genes and
larger in both genomic and 39-UTR lengths but shorter in CDS (coding sequence) lengths. Second, LCGs have higher mRNA
and protein abundance, higher temporal expression variations, and shorter mRNA half-life. Third, more than 60% of LCGs
form major co-expression clusters centered in four temporal windows: dawn, day, dusk, and night. In addition, larger and
smaller LCGs are found mainly expressed in the day and night temporal windows, respectively, and we believe that LCGs are
well-partitioned into the gene expression regulatory network that takes advantage of gene size, expression constraint, and
chromosomal architecture. Based on inter-tissue analysis, more than half of LCGs are ubiquitously expressed in multiple
tissues but only show rhythmical expression in one or limited number of tissues. LCGs show at least three-fold lower
expression variations across the temporal windows than those among different tissues, and this observation suggests that
temporal expression variations regulated by the circadian system is relatively subtle as compared with the tissue expression
variations formed during development. Taken together, we suggest that the circadian system selects gene parameters in a
cost effective way to improve tissue-specific functions by adapting temporal variations from the environment over
evolutionary time scales.
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Introduction

Circadian rhythm controls biological processes in a 24-hour

cycle and presents in most organisms from photosynthetic

prokaryotes to complex eukaryotes. It is regulated intrinsically in

a self-sustainable way and entrained by temporal cues from the

environment [1–3]. The circadian system offers adaptive advan-

tages to organisms in coping with environmental changes and

synchronizing its physiology states to the solar day. A typical

circadian system contains hierarchical, multilayered regulatory

networks that involve the input system, biochemical and cellular

oscillators, and the output system [4]. In mammals, circadian

oscillators include the master pacemaker located in the suprachi-

asmatic nuclei (SCN) [5] and peripheral oscillators present in other

organs such as the liver, the heart, and the adrenal glands [6].

Master oscillators in SCN receive photic information from the

retina and then transmit rhythmic information to cells in other

brain regions and peripheral oscillators through neuronal connec-

tions, endocrine signals, and indirect cues initiated from oscillating

behavior, and finally coordinated with the peripheral oscillators to

drive oscillations in physiology and behavior such as body

temperature, hormone secretion, and feeding behavior adaptive

to environmental rhythmic variations [7,8]. Cell-autonomous

oscillations in both central and peripheral organs are mainly

generated by the core circadian network comprised of interlocked

transcriptional-translational feedback loops and their directly/

indirectly regulated genes [9,10], and such a network may be

influenced even by small molecules [11].

Since 2002, a series of microarray-based transcriptomic studies

have been conducted for genome-wide identification of circadian

oscillating genes from different tissues of mammalian species,

especially from murine tissues [12,13]. Numerous circadian genes

have been identified and defined in the same or different species

although discrepancies about the number of circadian genes from

different experiments do exist due to differences in experimental

designs and computational tools used [14]. Efforts have been made

to improve the ability of identifying circadian genes more precisely
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by using different approaches, such as combining different

experiments but based on the same analysis protocol [15], using

novel experimental design for high-density temporal sampling

[16], and developing novel algorithms for better data analysis

[3,17]. Along with these improvements, there are two obvious and

yet consistent results. First, there have been more circadian genes

identified than previously anticipated, and ,10,000 circadian

genes have been meta-recognized in mice [15], and over 3,000

circadian transcripts are precisely identified in the murine liver

[18]. Second, there are non-rhythmically expressed genes—not

defined as circadian genes based on the current methods—that are

now tentatively named as the non-circadian gene or NCGs. The

NCG group provides an optimal control set for studying features

of circadian genes and associated regulatory mechanisms. How-

ever, we have to be cautious in classifying circadian and NCGs as

other than expression patterns there have been a limited number

of distinctions in genome-scale parameters between the two gene

groups. Our hope here is to ascertain useful clues and regulatory

details of the circadian system through comparative analysis on

various genome parameters distinctive primarily between the two

groups, often based on their statistic significances.

Data from high-density temporal sampling of murine liver,

pituitary glands, and NIH3T3 cells [16,18,19] provide essential

materials for precise and recurring identification of circadian genes

based on novel algorithms [17,20]. For comparative analysis, there

are also other experimental datasets, especially those suitable for

meta-analysis (such as transcriptomic and proteomic studies on

multiple murine tissues) [21,22]. Furthermore, data from the liver,

the most important mammalian peripheral circadian organ, has

been serving as primary information since the liver gene

expression is largely driven by circadian clock and temporal

pattern of food intake [19,23]. Liver circadian oscillators help an

organism adapting a daily pattern tailored to food intakes through

circadian-tuned expression of genes involved in regulating

metabolic and physiological activities. In fact, mammals that lack

functional liver circadian clock under experimental conditions

often encounter various metabolic dysfunctional diseases [24,25].

Therefore, studying the liver circadian genes (LCGs) at multiple

levels is of essence in understanding how peripheral circadian

oscillators regulate metabolism and physiology in the liver and

other vital organs/tissues.

In this study, we first identified all circadian-regulated

transcripts based on a microarray dataset from high-density

temporal sampling of the murine liver, using JTK_CYCLE [17]

and HAYSTACK [20]. We went on to re-define LCGs and two

other datasets—non-liver circadian genes (NLCGs) and liver-

expressed non-circadian genes (LNCGs)—based on our new

analysis strategies. We also validated specificities of LCGs and

LNCGs based on the literature. Our results show that LCGs

exhibit special characteristics when compared to liver-expressed

NLCGs and LNCGs, especially in genomic parameters and

expression features, and all offer information on the superiority of

circadian genes in performing highly orchestrated tissue-specific

functions.

Results

The re-definition of circadian and non-circadian gene
sets based on public data from murine liver

We re-analyzed microarray data from the murine liver using

JTK_CYCLE and HAYSTACK, selected the transcripts using a

q-value threshold of ,0.001, and mapped them to the mouse

genome RefSeq loci. The protocol yielded 1,888 circadian genes

(Figure 1A and Table S1) with a false positive rate of 0.9%, bench-

marked based on 111 negative control genes (Table S2). We

selected 1,701 non-circadian genes expressed in the liver, i.e.,

liver-expressed non-circadian genes or LNCGs (Figure 1B and

Table S1), with a false positive rate of 1.9%, estimated based on

104 literature-supported circadian genes (Table S2). The mean

amplitude of LCGs is 2.6, while 79.4% of LNCGs with a mean

amplitude less than 2 (Figure 1C). All selected genes have maximal

expression values (using logarithm of intensity to base 10) above

1.45 based on the density plot (Figure S1A) and are validated to be

practical by comparing with RNA-seq data (Figure S1B).

We also performed gene ontology (GO) analysis on both LCGs

and LNCGs. LCGs appear specifically enriched in biological

process related to protein polymerization, cellular carbohydrate

biosynthetic process, response to hormone stimulus, steroid

metabolic process, protein folding and nitrogen compound

biosynthetic process, selectively located in peroxisome, and

associated with the molecular function of unfolded protein binding

(Figure S2A; P,0.01 and enriched fold .2). LNCGs seem

specifically enriched in the biological process related to tRNA

metabolic process and associated with the molecular function of

tRNA binding and N-methyltransferase activity (Figure S2B;

P,0.01 and enriched fold .2).

The chromosomal distribution of LCGs shows relative
isolation from clustered genes

Gene density is a genome parameter, which positively correlates

with chromosomal GC content (Figure 2A and B; R = 0.85, P = 3.

66e-6) but LCGs appear taking an opposite trend—negatively

correlate with GC content (Figure 2A; R = 20.45, P = 0.05). The

enrichment of LCGs in AT-rich chromosomal regions suggests

that they are not clustered in GC-rich regions but scattered over

GC-poor or AT-rich regions. In contrast, the correlation

coefficient of LNCGs vs. chromosomal GC content (Figure 2B;

R = 0.34, P = 0.15) is positive albeit insignificant in a statistics

sense.

We further compared the mean number of neighboring genes

among the four datasets, i.e., LCGs, NLCGs, LNCGs, and all

genes, with variable window sizes from zero to 1.5 Mb in a step

length of 15 kb. LCGs show less neighboring genes than all three

other groups on average (Figure 2C), i.e., the mean number of

neighboring genes for LCGs, NLCGs, LNCGs, and all genes are

3.6, 3.8, 4.2 and 3.9 neighbors in the window size of 150 kb,

respectively; even in a smaller, such as a 60-kb window, the

numbers are 1.8, 1.9, 2.2, and 1.9 for the four groups, respectively

(inset of Figure 2C). Our results suggest that LCGs, and circadian

genes in general, are not as densely packed throughout the genome

as other groups of genes are, especially distinguishable from

LNCGs. The less densely packed feature might be the superiority

of circadian genes for harboring more regulatory elements. We

therefore further studied the regions around the transcription start

site (TSS) of LCGs and LNCGs. We found that LCGs contain

more E-boxes (Figure S3A) and strong CpG islands (Figure S4A)

than LNCGs in the promoter regions. We also noticed that genes

containing E-box have less neighboring genes on average than

those without E-box regardless if they are LCGs or LNCGs, and

that LCGs always contain less neighboring genes with or without

E-box (Figure S3B). Interestingly, DNA methylation levels of

LCGs are always lower than those of LNCGs in their promoters,

and show significant different in weak CpG islands and CpG poor

classes (Figure S4B; P,0.01).

Although LCGs are in general scattered over the chromosomes,

there are still a limited number of special loci where circadian

genes are potentially forming clusters in the chromosomes. We

identified 19 divergently-paired circadian genes with phase

Parameters of Mammalian Liver Circadian Genes
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difference no more than 6 hours in the liver (Table S3).

Interestingly, three of the divergently-paired circadian genes

(Hnrpa2b1/Cbx3, Tmem93/Tax1bp3, and Pigf/Cript) are shared by

the adrenal glands.

LCGs are relative larger but encode smaller proteins in
general

In terms of gene structure, LCGs are significantly longer in

genomic (Figure 2D; P,0.01) and 39-UTR lengths (Figure 2E;

P,0.001), but shorter in CDS length (Figure 2F; P,0.01) as

compared to LNCGs and all liver-expressed genes. Comparing

with liver-expressed NLCGs, LCGs are also longer in genomic

(Figure 2D; P,0.01) and 39-UTR lengths (Figure 2E; P,0.001),

and shorter in CDS length but not significant (Figure 2F). The

medians of genomic, 39-UTR, CDS lengths are 24.0 kb, 0.91 kb,

and 1.2 kb for LCGs, 20.9 kb, 0.76 kb, and 1.3 kb for liver-

expressed NLCGs, 19.1 kb, 0.68 kb, and 1.4 kb for LNCGs and

21.7 kb, 0.80 kb, and 1.3 kb for all liver-expressed genes,

respectively (Figure 2D–F). The shorter CDS length of circadian

genes indicates that the circadian system prefers to regulate genes

encoding small proteins, for which the energy cost is relatively

lower. Alternatively, the circadian genes may be evolutionarily

selected to have such features for some other reasons.

Comparing with LNCGs, we questioned if longer 39-UTR of

LCGs may contain more regulation elements, such as microRNA

targets. We compared the number of predicted microRNA targets

between the two groups, and found that LCGs have significant

more predicted microRNA targets in their 39-UTR sequences

than what in LNCGs (Figure S5A; P,0.01), with medians of 16

and 14, respectively, which indicated that circadian genes may be

more frequently regulated by microRNA than non-circadian genes

at least in the liver. As to 59-UTRs, LCGs have significantly longer

length than that of LNCGs (P,0.001), but we did not find

significant more regulation elements such as upstream open

reading frames or uORF in the 59-UTRs of LCGs (data not

shown). The result indicates that the 39-UTR length may be more

important than the 59-UTR length in circadian regulation as 39-

UTRs may harbor more regulatory elements and thus provide

adequate rooms for more sophisticated regulation.

LCGs are in general highly expressed with higher degree
of expression variations

LCGs are not only concentrated in expression bins with higher

mRNA abundance (Figure 3A) but also show significantly higher

protein abundance (Figure 3B; P = 0.02) than LNCGs. Among the

expression bins with average expression levels higher than 2.1

(other than in the highest one), there are more LCGs than LNCGs

(Figure 3A), and the former reach the highest percentage (37.0%)

in a bin at the expression level of 2.7. These results suggest that the

circadian system prefers to regulate genes with moderate-to-high

expression levels.

We further compared expression features of LCGs with liver-

expressed NLCGs, LNCGs, and all liver-expressed genes by

incorporating transcriptomic data from 46 different tissues. The

mean expression values of LCGs (2.31 among tissues and 2.59

across time points in the liver) are significantly higher than those of

LNCGs (2.09 among tissues and 2.13 across time points in the

liver; Figure 3C; P,0.001) and all liver-expressed genes (2.28

among tissues and 2.37 across time points in the liver; Figure 3C;

P,0.001). Compared with liver-expressed NLCGs, the mean

expression values of LCGs are only significant higher across time

points in the liver (Figure 3C; P,0.001). The standard deviations

(STD) of expression levels are also significantly higher (Figure 3D;

P,0.01 among tissues and P,0.001 across time points) in LCGs

(0.41 among tissues and 0.11 across time points in the liver) than

liver-expressed NLCGs (0.38 among tissues and 0.08 across time

points in the liver), LNCGs (0.40 among tissues and 0.08 across

time points in the liver) and all liver-expressed genes (0.39 among

tissues and 0.08 across time points in the liver).

The higher expression variation of LCGs across time points

suggests more dynamic regulation by the circadian system.

Considering that the half-life of mRNAs is closely related to the

steady-state concentration of transcripts in cells, we analyzed the

half-life of LCG mRNAs in murine ES cells. The mean half-life of

the LCGs (7.6 h) is significantly (Figure 3E; P,0.01) shorter than

Figure 1. Expression profiles and amplitudes of the murine LCGs and LNCGs. A heatmap shows temporal expression profiles of LCGs (A)
and LNCGs (B) based on median-normalized values. Expression levels are segregated into at least 2-fold or more (yellow) and 50 percent or less (blue)
than the median intensity values, respectively. The horizontal bars indicate temporal phases in circadian day (black) and night (grey). The amplitude
(C) of LCGs (red) or LNCGs (blue) are shown in a box plot, which is estimated by calculating the peak-to-trough ratio ( = percentile[0.95, x]/
percentile[0.05, x]). The boxes depict data between the 25th and 75th percentiles with central horizontal lines and solid circles representing the
median and mean values, respectively, and with whiskers showing the 5th and 95th percentiles. P-values are calculated based on the Wilcoxon rank
sum test.
doi:10.1371/journal.pone.0046961.g001
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that of liver-expressed NLCGs (8.5 h), LNCGs (8.3 h) and all

liver-expressed genes (8.0 h). The shorter half-life of LCGs in the

undifferentiated cells suggests that mRNA instability of LCGs may

be associated with their specific gene parameters that are selected

over evolutionary time scales.

Figure 2. Chromosome distribution and gene parameters of the murine LCGs. The percentage of LCGs (A, red solid circles) or LNCGs (B,
blue solid circles), and gene density (open green circle) against the GC content of each autosome are plotted together. The gene density is defined as
the mean gene numbers per megabase (Mb) in a chromosome. The average numbers of neighboring genes (C) for LCGs (red), non-liver circadian
genes (NLCGs, orange), LNCGs (blue) or all genes in the genome (AG, green) are calculated in a given genomic length window (from zero to 1.5 Mb
with a step length of 15 kb). The inset shows the portion from zero to 150 kb. Other genomic parameters include genomic length (D), 39-UTR length
(E), and CDS length (F) for LCGs, liver-expressed NLCGs (LNLCGs), LNCGs, and all liver-expressed genes (AL). The boxes depict data between the 25th
and 75th percentiles with central horizontal lines and solid circles representing the median and mean values, respectively, and with whiskers showing
the 5th and 95th percentiles. P-values are calculated based on the Wilcoxon rank sum test. (**), P-value,0.01. (***), P-value,0.001. NS, not significant.
doi:10.1371/journal.pone.0046961.g002
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Figure 3. Expression abundance and dynamics of murine LCGs. (A) LCGs (red) and LNCGs (blue) in each expression category. All liver-
expressed genes are ranked according to their expression levels (by using logarithm of intensity to base 10) and divided into 28 expression bins with
each bin containing 300 genes except the highest one with 329 genes. The x-axis showed the mean expression value of each bin. (B) Abundance
(using logarithm of spectral counts to base 2) of proteins encoded by LCGs, liver-expressed non-liver circadian genes (LNLCGs), LNCGs, and all liver-
expressed genes (AL). (C) Mean expression values of LCGs, LNLCGs, LNCGs, and all liver-expressed genes among different tissues or temporal phases
in the liver. (D) Standard deviations of LCGs, LNLCGs, LNCGs, and all liver-expressed genes among different tissues or temporal phases in the liver. (E)
mRNA half-life of LCGs, LNLCGs, LNCGs, and all liver-expressed genes in ES cells. The boxes depict data between the 25th and 75th percentiles with
central horizontal lines and solid circles representing the median and mean values, respectively, and with whiskers showing the 5th and 95th
percentiles. P-values are calculated based on the Wilcoxon rank sum test. (*), P-value,0.05. (**), P-value,0.01. (***), P-value,0.001. NS, not
significant.
doi:10.1371/journal.pone.0046961.g003
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Circadian genes are ubiquitously expressed but only
rhythmical in specific tissues

Similar with liver-expressed NLCGs and all liver-expressed

genes, more than half of the LCGs are expressed in all 46 tissues,

whereas only 42.3% of LNCGs and 28.6% of all genes in the

mouse genome are ubiquitously expressed in all tissues (Figure 4A).

In addition to transcriptomic comparisons, we also investigated the

expression breadth at the proteomic level, considering that most

genes function as proteins and there is partial positive correlation

in expression between the protein and transcript levels. 50.3%,

53.0%, 42.3%, 50.7% and 37.7% of proteins encoded by LCGs,

liver-expressed NLCGs, LNCGs, all liver-expressed, and all genes,

respectively, are detectable in at least six tissues (Figure 4B).

However, some LCGs that are ubiquitously expressed in multiple

tissues at both transcriptomic and proteomic levels do not mean

that they are also rhythmically expressed in other tissues. We

compared circadian genes identified from mouse NIH3T3 cells,

the pituitary gland, and the liver, and found that only eight

circadian genes are shared by all three samples (Figure 4C), and

56.5%, 64.3%, and 93.0% of circadian genes are specific to the

three cell/tissue types, respectively. Therefore, the majority of

circadian genes tag along rhythmical expression only in a cell-/

tissue-specific manner. We studied this dualistic characteristic of

LCGs at the transcript level. Of 1,756 liver-specific circadian

genes, a great majority of them, 1,439 are also expressed in

NIH3T3 cells and the pituitary gland (Figure 4D). The mean

expression value in the liver is the lowest in the three samples, but

the STD is the highest among the three samples (Figure 4E and F),

which indicates that there may be a liver-specific circadian

regulation mechanism that restricts the expression level and

improves the temporal expression variations of those LCGs with

arhythmical expression pattern in NIH3T3 cells and the pituitary

gland.

The temporally co-expressed LCG clusters are highly
selected by the circadian system

As most of mammalian genes are actually regulated as clusters

(also known as co-linearity), we further investigated how the

circadian system functionally orchestrates the genes and their

clusters in a tissue-specific manner. Using the nonnegative matrix

factorization (NMF) clustering method, we obtained four major

temporal co-expression gene clusters from LCGs as the dawn

(phases mainly from CT22 to CT2), the day (phases mainly from

CT5 to CT10), the dusk (phases mainly at CT12), and the night

(phases mainly from CT13 to CT16) gene clusters (Figure 5A and

B). Interestingly, the expression variations in the dawn and dusk

clusters (mean STDs 0.13 and 0.12, respectively) are higher than

those of the day and night clusters (mean STDs 0.11 and 0.09,

respectively; Figure 5C). Higher expression variations in the dawn

and dusk clusters may be associated with their close relationships

with the light signal transduction. Interestingly, we found that one

(mmu2miR21187; Figure S5B) and four microRNAs

(mmu2miR2466d23p, mmu2miR2148b, mmu2miR2466j,

and mmu2miR2411; Figure S5C) are specially enriched in the

day and dusk clusters, respectively. This result indicates that

microRNA may participate into the phase-specific regulation. In

addition, the genomic, 39-UTR, and CDS lengths of the day

cluster are significant longer (P,0.001) than those of the night

cluster (Figure 5D–F). Our results show that the circadian system

appears selecting larger genes (encoding large proteins) to express

in an inactive time period (light on) and shorter genes (encoding

small proteins) to express in an active time period (light off).

Finally, we carried out gene ontology (GO) analysis on

functional annotation of each gene cluster. The significantly

enriched functional categories of biological processes are steroid

biosynthetic process, sex differentiation, and negative regulation of

apoptosis in the dawn cluster, protein catabolic process and

response to insulin stimulus in the day cluster, and translation,

ribonucleoprotein complex biogenesis, ribosome biogenesis, gen-

eration of precursor metabolites and energy, and electron

transport chain in the night cluster (Figure S6A–C; at least three

out of four pair comparisons with P,0.05 and enriched fold

.1.5). However, we did not find any specially enriched biological

processes in the dusk cluster.

Discussion

In this study, we sought to study special features of LCGs based

on comparison with other groups of genes, especially LNCGs.

First, it is reported that gene order in the genome is not random

[26] and genes are actually clustered, forming domain structures

that have higher gene density, higher GC content, and shorter

intron length [27]. LCGs show a less-clustering feature and

enjoying residing in chromosomal regions where gene density and

GC content are both low, contain larger introns, and have less

neighboring genes. This cluster-avoiding behavior may be helpful

for containing sufficient regulatory elements (Figure S3A and

S4A). Second, it is reported that introns and intergenic regions are

regulated by the circadian system in plants [28], and therefore

longer genomic length (mainly contributed by longer intron

region) and cluster-avoiding positioning (mainly contributed by

longer intergenic region) of circadian genes may contain more

intra-intronic regulatory elements or non-coding RNA, which may

all be beneficial for ensuring fine-tuned temporal tissue-specific

regulation of the circadian system. The longer 39-UTR length is

suggested to contribute to mRNA instability in mammals [29], and

more microRNA targets are predicted in the 39-UTR region of

LCGs than that of LNCGs (Figure S5A). Thus longer 39-UTR

length in LCGs may be helpful for keeping higher degree of

expression variations. In addition, the length variation at 59-UTR

is not significant correlated with gene expression characteristics

[30], and it is yet to know if the longer 59-UTR for LCGs is

actually functionally meaningful. Third, shorter CDS, often

encoding smaller proteins to facilitate more efficient translation

[31], has advantage for the circadian regulation at the protein

level, especially when half of the proteins encoded by circadian-

regulated transcripts are synthesized and degraded under the

influence of the circadian system [32]. After all, we suggest that the

unique genomic parameters of circadian genes offer advantages for

the circadian system to regulate.

Since stochastic gene expression is omnipresent and highly

expressed genes show less expression noise [33], the relative high-

level expression of LCGs (Figure 3A and C) may be necessary for a

more precise circadian regulation. Furthermore, we also noticed

that the fraction of circadian genes is actually lower than that of

non-circadian genes in the highest expression bin of the liver genes

(Figure 3A) and the mean expression levels of the liver-specific

rhythmic genes are significant higher in the pituitary gland and

NIH3T3 cell than in the liver (Figure 4E). Therefore, we suggest

that circadian genes are selected to have a moderate gene

expression level for an effective regulation by the circadian system.

However, current methods are not adequate enough for the

identification of all circadian genes at low expression levels for the

high noise to signal ratios intrinsic to the platform. We expect the

expression features of LCGs to be further validated by information

from ample temporal RNA-seq data.

Parameters of Mammalian Liver Circadian Genes
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Other than expression abundance, expression variation in

response to internal or external stimulations is another essential

gene expression feature. High temporal expression variations of

the core clock genes are necessary for their key roles as molecular

oscillator [34,35]. Aside from tissue specificity, temporal expres-

sion variations of LCGs are always higher than those of LNCGs,

and we therefore suggest that the high expression variation

represents a way where circadian genes are regulated in a noise-

minimized context for robust rhythmic physiology or behavior.

High expression variations of circadian genes reflect fast accumu-

Figure 4. The dualistic features of murine circadian genes. (A) Expression breadth of LCGs (red), liver-expressed non-liver circadian genes
(LNLCGs, orange), liver-expressed non-circadian genes (LNCGs, blue), all liver-expressed genes (AL, green), and all genome-wide expressed genes (AG,
purple) among 46 different tissues and organs. The breadths from 0 to 46 are divided into 11 bins with five numbers in each bin. The exceptions are:
the first bin that has 0 and 1; in the last two bins, one has 4 numbers, from 42 to 45, and the other has the number 46. (B) Expression breadths of
proteins encoded by LCGs (red), LNLCGs (orange), LNCGs (blue), all liver-expressed genes (AL, green), and all genome-wide expressed genes (AG,
purple) among nine different tissues and organs. (C) Venn diagrams display the relationship of circadian genes among the liver (red), the pituitary
gland (green), and NIH3T3 cells (blue) based on data from high temporal resolution profiling. (D) In-depth analysis of 1,756 liver-specific circadian
genes expression in four subgroups: genes expressing only in the liver (LIV, blue), in both the liver and the pituitary gland (LIV & PIT, green), in both
the liver and NIH3T3 cells (LIV & NIH, orange), and in all three samples (LIV & PIT & NIH, purple). Mean expression values (E) and standard deviations (F)
of the three-samples expressed liver-specific circadian genes among different time points in the liver (LIV, red), pituitary gland (PIT, blue), and NIH3T3
cells (NIH, blue). The boxes depict data between the 25th and 75th percentiles with central horizontal lines and solid circles representing the median
and mean values, respectively, and with whiskers showing the 5th and 95th percentiles. P-values are calculated based on the Wilcoxon rank sum test.
(***), P-value,0.001.
doi:10.1371/journal.pone.0046961.g004
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lation-degradation cycles of their transcripts [36]. Interestingly, we

observed that circadian transcripts identified in the liver tend to

have shorter half-lives than the LNCGs control in ES cells where

there is no established circadian system [37,38] until differentiated

into the liver and adrenal glands [39]. Since protein subunits with

longer transcript half-lives in large complexes appear transcrip-

tionally regulated by key subunits with short-lived transcripts [40],

shorter half-life may be advantageous for circadian genes to play

regulatory roles at post-translational level.

The regulation of most LCGs are dualistic in nature, i.e., they

are ubiquitously expressed in multiple tissues but temporal

regulated in a tissue-specific manner, crucial for the spatiotempo-

ral gene regulation network of the circadian system [41].

Expression variations in a given developmental stage are under

at least two regulation levels: tempospatial (development-specific

and tissue-specific regulations) and temporal (circadian regulation).

Our analyses lead to a firm conclusion that there is a higher degree

of expression variations among different tissues than those across

temporal phases in a given tissue (Figure 3D). In other words, the

tempospatial regulation of gene expression is stronger than

temporal regulation alone. This feature may reflect the fact that

most of LCGs are also housekeeping genes that play essential

functions and whose protein products interact with more

neighbors in the protein-protein interaction network [42]. Indeed,

the circadian system prefers to regulate rate-limiting housekeeping

genes involved in basic biological processes [13,32]. It is reported

that the circadian system performs tissue-specific regulation at

different levels. On the one hand, the circadian system may

regulate tissue-specificity at transcription and post-transcription

levels, such as regulating tissue-specific transcription factors

[43,44] and mRNA abundance through the interaction with

microRNAs [45–47]. On the other hand, the circadian system

may also regulate gene expressions at translation and post-

translation levels, such as to control the translation process of the

core clock proteins [48] and protein activation/stability through

kinases [49].

At the functional level, two common features of circadian genes

are obvious in the liver. First, protein folding is generally enriched

in circadian genes not only found in murine liver but also in other

tissues, such as brain, aorta and adipose tissue [15]. Second, the

Figure 5. Features and functional analysis of temporal co-expression clusters of LCGs. (A) The heatmap exhibits the four co-expression
clusters of the LCGs. Bright red and blue represent co-expression value as 1 and -1, respectively. In each cluster, the gene order ranked based on the
consensusNMF result. The four clusters are arranged by their temporal phases and named as the dawn, the day, the dusk, and the night clusters. (B)
The number of genes per phase in the four liver clusters. The radial plot displays phases (h) on the circumference and the number of genes on the
radius. (C) Standard deviations of the phase-associated genes (dawn, day, dusk, and night) of the liver among different time points are shown in
different color-coded boxes (purple, orange, green and blue boxes, respectively). The genomic length (D), 39-UTR length (E) and CDS length (F) of the
dawn, the day, the dusk, and the night clusters are shown in purple, orange, green, and blue boxes, respectively. The boxes depict data between the
25th and 75th percentiles with central horizontal lines and solid circles representing the median and mean values, respectively, and whiskers showing
5th and 95th percentiles. P-values are calculated based on the Wilcoxon rank sum test. (*), P-value,0.05. (***), P-value,0.001. NS, not significant.
doi:10.1371/journal.pone.0046961.g005
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enriched protein catabolic and translation processes are parti-

tioned into the day and the night phases, respectively. The

biological processes associated with proteins are closely related to

execute gene functions, and may thus be optimized for the

circadian system to control rhythmical variations among tissues. It

is well known that tissue-specific rhythmic is the dominant feature

of circadian genes [3,13,50]. There are also other complications

where the same genes could have diverse expressions in different

phases and tissues [51]. For instance, the peak phase of the night

cluster in the liver is corresponding to the reported peak feeding

time of the nocturnal rodents [19], while the phase in the adrenal

glands is delayed a few hours (data not shown). These tissue-

specific phase shifts may be initiated from phase-specific DNA-

binding rhythms of the core circadian regulators [52,53].

Limited by the current datasets, we are not able to investigate

the role of transcript splicing and to study features of circadian

genes in another tissue at present time. However, RNA-seq and

other applications of the next-generation sequencing technologies

should be applied to circadian transcriptome studies at splice

variant level [54], as well as to cover more tissue samples. A more

thorough design to combine various ‘‘omics’’ information on

circadian regulations should be more powerful for further

understanding of the circadian system.

In conclusion, LCGs contain longer non-coding regions, encode

smaller proteins, and show higher temporal expression variations

when compared with other groups of genes, especially LNCGs.

Furthermore, LCGs are orchestrated to express in four co-

expression clusters with different functions. Although the majority

of LCGs are ubiquitously expressed in multiple tissues with high

abundance, most of them are rhythmically expressed in a tissue-

specific manner. We suggest that the circadian system forms a

gene regulatory network where circadian genes are selected and

fine-tuned to cope with their intricate temporal and functional

relationships.

Materials and Methods

Data used in this study
We collected all high-density temporal sampling microarray

data (one hour or two hour/sample) of the murine pituitary glands

[16], NIH3T3 cells and the liver under different conditions

[18,19] as well as another circadian dataset from the murine

adrenal glands sampled every four hours with one replicate at each

time point [55]. In addition, a dataset from a study on mRNA

decay in mouse ES cells [56], one dataset about microarray-based

transcriptomic data from 46 murine tissues [21] and one mass-

spectrum-based proteomic data from nine murine tissues [22] are

also used. Two other datasets are temporal BMAL1 binding sites

list identified by Chip-Seq from mouse liver [52] and genome-wide

analysis of DNA methylation level of gene promoter ranges using

MeDIP-Chip in murine liver [57]. All used data are summarized

in Table S4.

Annotation of RefSeq loci and microarray probe sets
We aligned 22,315 mouse RefSeq transcripts (NCBI, May 13,

2009 update) onto the genomic sequence (UCSC, mm9) using

BLAT [58], yielding 22,312 gene features. We subsequently

clustered the features into loci based on sharing splicing site for

multiple, overlapping, and single exons [59], and the exercise

yielded 19,268 RefSeq loci, including 19,020 (98.7%) unique

genes. When a locus has multiple alternatively spliced features,

features with the largest number of exons and/or longest transcript

were selected as representative for statistics analysis of gene

parameters. The alignment of exemplar/consensus sequences of

the probe sets were acquired from UCSC annotation database,

and clustered into RefSeq loci. Eventually, 15,734 RefSeq loci

were represented on the chip (Affymetrix MOE4302). Raw cel files

of microarray data were downloaded from Gene Expression

Omnibus (http://www.ncbi.nlm.nih.gov/geo/) or provided by

authors, and were treated with gcRMA() function and further

normalized by normalizeQuantiles() function in limma package

using R software (2.10.0), then intensity values from multiple

probe sets aligned to the same locus were averaged. For multiple

tissues expression data (GSE10246), 116 of 182 original cDNA

libraries except 66 cell line cDNA libraries were categorized into

46 unique tissues (Figure S7) based on sample origins, and the

GEO accession numbers and annotated tissues were shown in

Table S5. Intensity values from different cDNA libraries were

further averaged according to this tissue map list. Then logarithm

to base 10 of intensity value was used as expression value, and

density() function in R software was used for setting the expression

cut-off value which was set in the middle between non-expressed

and expressed density peak [60]. We defined a RefSeq locus as

expressed in a given tissue with expression value above 1.45. We

further checking this cut-off by comparing liver-expressed genes

with max expression value among different time points above this

cut-off in time-series liver microarray data and above 0.3 RPKM

in RNA-seq data [61].

Identification of circadian and non-circadian genes
For circadian microarray data, original intensity values after

normalization were analyzed by JTK_CYCLE [17] and HAYS-

TACK.R which was a R version of HAYSTACK [20] incorpo-

rated with p.adjust() function for calculating false discovery rate.

JTK_CYCLE was used for selecting cycling probe sets firstly, and

HAYSTACK.R was further used for mainly selecting non-cosine

rhythmic transcripts from those probe sets omitted by

JTK_CYCLE. The rhythmic transcripts identified by each

method above q-value threshold were incorporated together as

circadian transcripts for further analysis. The q-values set for each

circadian data were shown in Table S6. For one RefSeq locus with

only one rhythmic probe set identified by JTK_CYCLE or

HAYSTACK, we used this rhythmic probe set for representing

this locus. For one RefSeq locus with multiple rhythmic probe sets,

we selected the probe set with the lowest q-value for representing

this RefSeq locus. However, if more than half rhythmic probe sets

of one RefSeq locus out of our period-phase filtering criterion

(period difference within 4 hours and phase difference within

6 hours comparing with the representative rhythmic probe set),

this RefSeq locus was not included in circadian gene list. With this

method, we re-identified circadian genes in the mouse liver under

ad libitum feeding, restricted feeding and fasting conditions,

pituitary glands and NIH3T3 cells with high-density temporal

sampling. Then we linked 9,066 RefSeq loci with circadian genes

identified in 14 mouse tissues with low-density temporal sampling

method by Yan et al. [15] through official gene symbols. For

adrenal glands, we re-defined circadian genes using a similar

method in analyzing high-density temporal datasets, but only

selected those also in the Yan’s list and then excluded the genes

with fold change above 1.5 in two or more replicate time points for

further analysis. At last, we collected a list of general 10,220 mouse

circadian genes by combining all the circadian genes re-identified

in this analysis and in the Yan’s list. From the general circadian

gene list, 5,825 genes that were not identified as circadian genes in

liver under different feeding conditions in this analysis and Yan et

al. analysis, which were named as non-liver circadian genes

(NLCGs). There are remaining 9,048 RefSeq loci after excluding

the general circadian gene list from the 19,268 genome RefSeq
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loci, which were temporally named as non-circadian genes, and

those expressed (max expression values above 1.45) in the liver

were defined as liver-expressed non-circadian genes (LNCGs).

Through above analysis, 1,888 identified circadian genes in liver

under ad libitum feeding (LCGs; q-value,0.001) and 1,701 LNCGs

were shown in Table S1 and were used for further analysis. We

estimated their false positive rates through 111 negative control

genes and 104 literature-supported circadian genes (Table S2),

respectively.

For drawing the heatmap of LCGs, the representative rhythmic

probe sets ordered according to their phases, and intensity values

of each probe set were normalized by its median. For drawing the

heatmap of LNCGs, we used the average intensity values of all

probe sets annotated to the same gene. Amplitude was calculated

as the ratio between 95th percentile and 5th percentile intensity

value of circadian representative probe set or non-circadian

averaged values, respectively. Annotated GO terms of LCGs and

LNCGs were analyzed on line by DAVID [62], we shown those

significant enriched terms with P-value smaller than 0.01 and

enriched fold above 2 through comparing between LCGs and

LNCGs. We also selected those GO items (containing more than

ten genes) special to LCGs or LNCGs with enriched P-value

smaller than 0.01 comparing with all genome genes.

Analyses on chromosome distribution and gene
parameters of LCGs

We calculated the GC percent, gene numbers, LCGs numbers

and LNCGs numbers in each autosome. We further calculated the

percentage of LCGs and LNCGs to all genes in each autosome,

respectively. Gene density was defined as average gene number in

one megabase (Mb) in a chromosome. In a given genomic window

size, each studied locus was extended half-window size of its 59 and

39 end at the same time. For the locus located at the 59 or 39 end of

a chromosome, we extended one window size of its 39 or 59 end

respectively. We further calculated the number of neighbor genes

except the studied one in the new extended region. The window

sizes were set 0–1.5 Mb with a step length of 15 kilobase (kb).

Then we calculated and compared the average number of

neighbor genes of LCGs, NLCGs, LNCGs and all gene groups.

We extracted 2,049 binding sites (E-box) of BMAL1 [52] and

annotated them based on their genome positions. The binding

sites were annotated according to the nearest RefSeq loci by their

distances to a TSS in the gene locus. If one binding site is found

within 50 kb region around the TSS position of one RefSeq locus,

this binding site was selected for further analysis. If multiple

binding sites were in this region, we selected a representative site

with highest signal and removed those redundancy sites. At the

end, 1,250 annotated binding sites were sorted according to their

average binding signals among different time points and the

percentages of LCGs and LNCGs in top 10, 20, 50, 100, 200, 500

and all binding sites were calculated. We subsequently divided

LCGs and LNCGs into four subgroups—LCGs with E-box, LCGs

without E-box, LNCGs with E-box, and LNCGs without E-box,

and compared the average number of their neighboring genes.

We downloaded the data genome-widely studying DNA

methylation of 17,967 promoter regions and 4,566 intergenic

CpG islands in the mouse liver using MeDIP coupled with 23,428

Nimblegen probe sets [57]. The genome regions covered by the

microarray probe sets were primarily divided into three sub-

groups—strong CpG islands, weak CpG islands, CpG poor—by

the authors [57]. LiftOver from UCSC was used for linking the

probe positions mapped on the mm8 (NCBI36) genome to mm9

(NCBI37) genome by using mm8ToMm9.over.chain file (UCSC,

Aug 5, 2010). If the center position of one probe set is localized in

the 2 kb range around the TSS of its nearest RefSeq locus, we

annotate this probe set to this RefSeq locus. Of the 23,428

Nimblegen probe sets, 17,066 are in the promoter regions of

RefSeq loci. M-values are defined as fold changes per probe set of

IP DNA (enriched) over input DNA through calculating the red

(Cy5) and green (Cy3) channels as log2(IP/total) [57]. Large M-

values stand for high DNA methylation levels. The percentages of

LCGs and LNCGs in the strong, weak, and CpG poor groups

were calculated accordingly. In addition, we compared DNA

methylation of LCGs and LNCGs in the three subgroups.

CDS and 39-UTR sequence of each RefSeq locus was extracted

from its representative transcript, and genomic length was

extracted from the blat result of this transcript. Then we compared

the genomic, 39-UTR and CDS length of LCGs, liver-expressed

NLCGs, LNCGs and all liver-expressed genes. We downloaded all

mouse mature microRNA sequences from miRBase [63] and used

miRanda software (options –sc 140 –en -19) for predicting the

microRNA targets [64] in the 39-UTR sequence of each RefSeq

locus. From predicted microRNA targets, we only selected those

with complete alignment to the 2–8 bases (from 59 end) of

microRNA sequences and compared the number of microRNA

targets between LCGs and LNCGs genes. We extracted mouse

divergently-paired genes (DPGs) [65] and linked them to RefSeq

loci by gene ID and gene symbol, and then selected rhythmic

DPGs from liver and adrenal glands circadian genes respectively.

Expression analysis of LCGs
For circadian microarray data, original intensity values of

multiple probe sets annotated to the same RefSeq locus were

averaged, and logarithms to base 10 of averaged intensity values

were calculated as expression values. If one gene has the

expression value above 1.45 at any one time point, we defined

this gene as expressed. We sorted the liver-expressed genes

according to their mean expression values among different time

points (GSE11923) [18], and divided them into 28 bins with 300

genes in each bin, except the highest expression bin containing

329 genes. Then we compared the percentages of LCGs and

LNCGs in each bin. We extracted the protein abundance

information in nine tissues from Huttlin et al. results [22] and

linked them to RefSeq loci by gene ID and gene symbol. Proteins

encoded by 10,282 RefSeq loci owned protein expression

abundance information. We compared the abundance (logarithms

to base 2 of spectral counts) of 950 proteins encoded by LCGs,

1,109 proteins encoded by liver-expressed NLCGs, 593 proteins

encoded by LNCGs and 3,834 proteins encoded by all liver-

expressed genes.

We also calculated and compared mean expression values and

STDs of LCGs, liver-expressed NLCGs, LNCGs and all liver-

expressed genes among different tissues using 46 tissue-derived

transcriptome data (GSE10246) [21], and among different time

points using time sampling data in liver (GSE11923), respectively.

Hierarchical cluster analysis of 46 tissues was performed using

expression values of all genes presented on the chip employing

hclust() function with average agglomeration method in R

software. We linked mRNA half-life data from ES cells and

RefSeq loci by gene symbols, and 14,663 of 19,268 RefSeq loci

contained mRNA half-life information [56], and excluded those

mRNA half-lives significantly (P-value equal or less than 0.1 by

student’s t-test) different between ES cells and differentiated cells.

In the end, 13,518 RefSeq loci were used for studying mRNA half-

lives of LCGs, liver-expressed NLCGs, LNCGs, and all liver-

expressed genes in ES cells.
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Analysis on dualistic features of circadian genes
For studying expression breadth, we calculated the number of

tissues where LCGs, liver-expressed NLCGs, LNCGs, and all

liver-expressed genes presented on the chip was expressed to give

rise to expression breadth for each gene in a 46-transcriptome

datasets (GSE10246). Then we calculated the percentage of genes

at each tissue expression breadth in each of these five groups, and

summed the percentages in each of 11 bins, which were divided

the 0–46 breadth with five numbers in each bin, except the first

bin with 0 and 1, and the last two bins, one with 4 numbers from

42 to 45, and the other with the number of 46. In addition, we

calculated the number of tissues where each 1,464 LCGs, 1,925

liver-expressed NLCGs, 1,190 LNCGs, 6,481 all liver-expressed or

all 10,282 proteins expressed with spectral counts above zero to

give the protein expression breadth, and then calculated the

percentages of these five groups of proteins expressed from zero to

nine tissues, respectively.

For studying tissue-specificity, we brought in high-density

temporal sampling data of the pituitary [16] and NIH3T3 [18]

cells. We compared the circadian genes among the liver, the

pituitary, and NIH3T3 cells. We divided 1,756 liver-specific

circadian genes comparing with the pituitary and NIH3T3 cells

into four groups: (1) expressed only in the liver (145), (2) expressed

in both the liver and the pituitary gland (129), (3) expressed in the

liver and NIH3T3 cells (43), and (4) expressed in all three samples

(1,439). We then selected 1,439 liver-specific circadian genes

expressed in three samples and compared mean expression values

and STDs among different time points of these genes in three

samples.

Analysis on temporally co-expressed LCG clusters
We grouped LCGs into clusters based on the temporal

microarray data using consensusNMF.R that is a refined R script

for rapidly discovering gene expression patterns based on

nonnegative matrix factorization (NMF) incorporating the con-

sensus clustering method [66]. The rank k range was set from two

to six, and the number of clustering was set at 20. We used the

consensus matrix at k = 3 from consensusNMF.R results for

selecting co-expressed gene clusters with each pair having a

correlation coefficient above 0.8. We selected 1,222 co-expressed

genes and divided them into four main clusters from LCGs, with

each cluster at least containing one hundred genes. We then re-

calculated correlation coefficients of selected genes across all time

points to show the order of the clusters with heatmaps. The mean

phase of each cluster was named as dawn (between CT22 and

CT2), day (CT2–CT10), dusk (between CT10 and CT14), and

night clusters (CT14–CT22). The phase scale [0,24) was divided

into 24 bins with one-hour spacing, respectively. Each phase of

circadian genes was normalized by its period to ensuring its

residency. We calculated the number of genes at each phase bin

and showed them with radial plots. We performed expression

variation and gene parameter analyses for each cluster with the

methods mentioned above. We annotated GO terms of each

cluster as mentioned above and selected phase-specific enriched

biological processes through pair-comparisons. For example, we

performed pairwise comparison among the four clusters and

between LCGs and LNCGs, and we also selected those with at

least three out of four pairs with P,0.05 and enriched fold .1.5 as

phase-specific enriched GO terms. We compared the microRNA

targets in one cluster with the other three clusters. The phase-

specific enriched microRNAs were selected with three pairs with

P,0.05 and enriched fold .1.5.

Statistic methods
Statistics P-values were calculated by using two sample

Wilcoxon test (the wilcox.test() function in R software), where a

one-side alternative hypothesis was set. We showed ‘‘P,2.2e-16’’

when P-values were smaller than 2.2e-16, but without reporting

the exact P-values. The cor.test() function was used for calculating

statistics P-values of correlation between the percentage of LCGs

or LNCGs in each autosome and autosome GC content. Pearson’s

chi-squared test (the chisq.test () function in R software) and

Fisher’s exact test (the fisher.test () function in R software) were

used for calculating statistics P-values of enrichment of GO terms

or microRNAs.

Supporting Information

Figure S1 Comparison of liver-associated genes identi-
fied by microarray and RNA-seq. (A) Density plot of

expression values of all RefSeq loci presented on the microarray

based on high-density temporal sampling of the liver (GSE11923).

(B) Venn diagram shows the overlap of liver-associated genes

identified from the microarrays (GSE11923, max expression value

above 1.45) and RNA-seq (RPKM above 0.3).

(TIF)

Figure S2 Enriched GO terms in the LCGs and LNCGs.
Functional categories of LCGs (red) and LNCGs (blue) are

annotated based on Gene Ontology (GO) analyzed using DAVID.

Enriched functional terms are shown with enriched fold between

the gene groups. Enriched GO terms in LCGs and LNCGs are

shown in red (A) and blue (B), respectively. Red and blue triangle

indicates the GO term is specially annotated to LCGs and

LNCGs, respectively.

(TIF)

Figure S3 The percentage of genes containing E-box in
LCGs and LNCGs, and comparison the number of
neighbor genes among LCGs/LNCGs with/without E-
box. (A) The histogram shows the percentages of LCGs (red) and

LNCGs (blue) genes for each BMAL1 binding site bins (from top

10 sites to all sites), which are ranked according to their mean

binding signals among different time points. (B) The average

numbers of neighboring genes for LCGs with E-box (red), LCGs

without E-box (orange), LNCGs with E-box (green) and LNCGs

without E-box (blue) are calculated in a given genomic length

window (from zero to 1.5 Mb with a step length of 15 kb).

(TIF)

Figure S4 DNA methylation of LCGs and LNCGs. (A) The

histogram shows the percentages of genes with strong, weak and

poor CpG islands in LCGs (red) and LNCGs (blue), respectively.

(B) DNA methylation levels of promoter regions of LCGs (red) and

LNCGs (blue) in strong, weak and poor CpG island subgroups,

respectively. M-values are calculated as fold changes per probe set

of enriched methylated DNA over input DNA, and the large M-

value indicates high DNA methylation level. The boxes depict

data between the 25th and 75th percentiles with central horizontal

lines and solid circles representing the median and mean values,

respectively, and with whiskers showing the 5th and 95th

percentiles. P-values are calculated based on the Wilcoxon rank

sum test. Strong, weak, and poor stand for strong, weak and poor

CpG islands, respectively. (**), P-value,0.01. (***), P-val-

ue,0.001. NS, not significant.

(TIF)

Figure S5 Predicted microRNA targets in LCGs and
LNCGs, and enriched microRNAs in day and dusk
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cluster. (A) The number (using logarithm to base 2) of

microRNA targets predicted in LCGs (red) and LNCGs (blue)

are shown in a box plot. The boxes depict data between the 25th

and 75th percentiles with central horizontal lines and solid circles

representing the median and mean values, respectively, and with

whiskers showing the 5th and 95th percentiles. P-values are

calculated based on the Wilcoxon rank sum test. (**), P-

value,0.01. (B) The histogram shows the relative enriched ratios

of predicted microRNA (mmu-miR-1187) targets in dawn (purple),

day (orange), dusk (green), and night cluster (blue) comparing with

day cluster. (C) The histogram shows the relative enriched ratios of

predicted microRNA targets in dawn (purple), day (orange), dusk

(green) and night clusters (blue) comparing with dusk cluster. The

purple line indicates that there is no predicted target of microRNA

(mmu-miR-466d-3p) in dawn cluster.

(TIF)

Figure S6 Enriched biological processes in dawn, day,
and night circadian clusters. Histograms show the relative

enriched ratios of biological processes in dawn (purple), day

(orange), dusk (green), night cluster (blue), and LNCGs (grey) as

compared with dawn (A), day (B), and night (C) cluster. The color

line indicates that there is no gene annotated to the biological

process in the corresponding group.

(TIF)

Figure S7 A dendrogram of genes from 46 tissues
clustered based on all RefSeq loci presenting on
microarrays (GSE10246).

(TIF)

Table S1 LCGs and LNCGs with their gene parameters.

(XLS)

Table S2 Mouse liver circadian, non-circadian, and
unexpressed genes extracted from literature.

(XLS)

Table S3 Divergently-paired circadian genes in mouse
liver and adrenal glands.
(XLS)

Table S4 Data used in this analysis and associated
references.
(DOC)

Table S5 GEO accession numbers and their corre-
sponding annotated tissues.
(XLS)

Table S6 Circadian gene numbers and associated q-
value cut-off from temporal microarray data.
(XLS)
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