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Abstract 

 

The discovery of genetic mechanisms that can transform a morphological structure from a 

plesiomorphic (=primitive) state to an apomorphic (=derived) one is a cardinal objective of 

evolutionary developmental biology. However, this objective is often impeded for many lineages 

of interest by limitations in taxonomic sampling, genomic resources, or functional genetic 

methods. In order to investigate the evolution of appendage morphology within Chelicerata, the 

putative sister group of the remaining arthropods, we developed an RNA interference (RNAi) 

protocol for the harvestman Phalangium opilio. We silenced the leg gap genes Distal-less (Dll) 

and dachshund (dac) in the harvestman via zygotic injections of double-stranded RNA, and used 

in situ hybridization to confirm RNAi efficacy. Consistent with the conserved roles of these genes 

in patterning the proximo-distal axis of arthropod appendages, we observed that embryos injected 

with Dll dsRNA lacked distal parts of appendages and appendage-like structures, such as the 

labrum, the chelicerae, the pedipalps, and the walking legs, whereas embryos injected with dac 

dsRNA lacked the medial podomeres femur and patella in the pedipalps and walking legs. In 

addition, we detected a role for these genes in patterning structures that do not occur in well-

established chelicerate models (spiders and mites). Dll RNAi additionally results in loss of the 

preoral chamber, which is formed from pedipalpal and leg coxapophyses, and the ocularium, a 

dorsal outgrowth bearing the eyes. In one case, we observed that an embryo injected with dac 

dsRNA lacked the proximal segment of the chelicera, a plesiomorphic podomere that expresses 

dac in wild type embryos. This may support the hypothesis that loss of the cheliceral dac domain 

underlies the transition to the two-segmented chelicera of derived arachnids.  

 

Keywords: Gene silencing; RNAi; Arachnida; Chelicerata; arthropod leg; leg gap genes 
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Introduction 

 

The diversity of arthropod appendages has prompted an historic, fascinating series of debates that 

span the homology of various appendage types (Snodgrass 1938; Boudreaux 1987; Boxshall 

2004), the fate of Cambrian arthropods’ “great appendages” (Weber 1952; Rempel 1975; Scholtz 

1997, 2001; Budd 2002; Maxmen et al. 2005; Jager et al. 2006; Brenneis et al. 2008), the nature 

of the mandible (Anderson 1973; Manton 1977; Boudreaux 1987), and the implications of all of 

these for arthropod phylogeny. In complement to paleontology and morphology, gene expression 

and function data have become integral to deciphering arthropod evolution. Specifically, the suite 

of genes that patterns the proximo-distal axis of appendages (Distal-less [Dll], dachshund [dac], 

and the cofactors homothorax [hth] and extradenticle [exd]—commonly referred to as “leg gap” 

genes) has been utilized as an independent body of evidence for testing evolutionary hypotheses 

pertaining to appendages (reviewed by Angelini and Kaufman, 2005). In several cases, studies of 

leg gap gene expression and/or function have supported earlier hypotheses based on 

morphological evidence, such as the gnathobasic nature of the mandible (Panganiban et al. 1994, 

1995; Scholtz et al. 1998; Prpic et al. 2001), the ancestral bipartite structure of the arthropod leg 

(González-Crespo and Morata 1996; Dong et al. 2001; Abzhanov and Kaufman 2000; reviewed 

by Angelini and Kaufman 2005; Janssen et al. 2010), and the serial homology of mandibulate 

head appendages (Rieckhof et al. 1997; Dong et al. 2001, 2002; Ronco et al. 2008). In other 

cases, typified by the dispute over the nature of the labrum, leg gap gene data do not 

unambiguously favor one hypothesis over another (Popadić et al. 1998; Scholtz 1997; reviewed 

by Scholtz and Edgecombe 2006). 

 

The leg gap genes serve to regionalize the arthropod leg, conferring proximal (hth and exd), 

medial (dac), and distal (Dll) identities (Sunkel and Whittle 1987; Cohen and Jürgens 1989; 

Mardon et al. 1994; González-Crespo and Morata 1996; Lecuit and Cohen 1997; Rieckhof et al. 
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1997; Abu-Shaar and Mann 1998; Casares and Mann 1998; Abu-Shaar et al. 1999; Wu and 

Cohen 1999; Dong et al. 2001, 2002; Rauskolb 2001; reviewed by Angelini and Kaufman 2005). 

However, these genes also play a role beyond patterning the PD axis. For example, Dll is known 

to have additional roles in patterning sensory organs and bristles (Sunkel and Whittle 1987; 

Cohen and Jürgens 1989; Mittmann and Scholtz 2001; Williams et al. 2002), sexually dimorphic 

non-appendage outgrowths (Moczek and Nagy 2005; Moczek et al. 2006; Moczek and Rose 

2009), and even antero-posterior gap gene function in spiders (Pechmann et al. 2011). Similarly, 

dac patterns elements of the central nervous system, particularly photoreceptors of insect 

compound eyes (Mardon et al. 1994). Nevertheless, barring Dll, evolutionary inference of leg gap 

gene activity remains limited by the concentration of functional analyses within hexapods. For 

example, while dac orthologues are inferred to pattern the medial regions of legs of all 

panarthropods based on expression domains (Janssen et al. 2010), dac knockdown phenotypes 

have only been observed in a handful of winged insects.  

 

Chelicerates, the putative sister group to the remaining arthropods (mandibulates), is a diverse 

lineage that includes Arachnida (e.g., spiders, mites, scorpions), Merostomata (horseshoe crabs 

and the extinct sea scorpions [Eurypterida]), and possibly Pycnogonida (sea spiders). Due to the 

phylogenetic significance of chelicerates, developmental processes in chelicerate model 

organisms are greatly relevant to evolutionary inference. For example, the retention of the 

chelicerate deutocerebral appendage, demonstrated in the mite Archegozetes longisetosus and the 

spider Cupiennius salei, has supported a particular interpretation of arthropod segmental 

homologies (Damen and Tautz 1998; Telford and Thomas 1998; Hughes and Kaufman 2002; 

Scholtz and Edgecombe 2006). Investigation of the Notch pathway in the spider Cupiennius salei 

has similarly demonstrated conservation of pathways in segmentation processes of both the body 

and the appendages (Stollewerk et al. 2003; Prpic and Damen 2009).  

 



Sharma et al. Page 5 of 39 

Four of the 12 extant orders of euchelicerates (Xiphosura + Arachnida) have been studied with 

respect to leg gap genes: horseshoe crabs (Xiphosura), mites (Acari), spiders (Araneae), and 

harvestmen (Opiliones). Horseshoe crabs are the least studied in this regard: only protein 

expression of Dll is known in Limulus polyphemus (Mittmann and Scholtz 2001). In mites, leg 

gap gene data are limited to expression and function of Dll (Thomas and Telford 1999; Khila and 

Grbic 2007). Dll acts as a typical leg gap gene in Tetranychus urticae: a parental knockdown of 

Dll results in the truncation of appendages due to the loss of distal leg structures, as in insects 

(Dong et al. 2001; Rauskolb 2001; Khila and Grbic 2007). The expression of all four leg gap 

genes has been profiled in multiple spider species (Abzhanov and Kaufman 2000; Schoppmeier 

and Damen 2001; Prpic et al. 2003; Prpic and Damen 2004; Pechmann and Prpic 2009; reviewed 

by Pechmann et al. 2010). As with mites, functional data in the spider Cupiennius salei (obtained 

via zygotic RNAi) have focused on the activity of Dll, demonstrating the conserved role of this 

gene in appendage axis formation (Schoppmeier and Damen 2001). Additionally, parental RNAi 

in another spider species, Parasteatoda tepidariorum, has demonstrated an intriguing novel role 

for Dll as an anterior-posterior axis gap gene that regulates the segmentation of the body 

(Pechmann et al. 2011). Specifically, a parental knockdown of Dll results in the loss of one to two 

body segments (bearing the first walking leg pair or the first and second walking leg pairs). In 

contrast to these multiple studies of the role of Dll, no functional data are available for dac, hth, 

or exd in any chelicerate. 

 

The most recent addition to the suite of chelicerate study organisms is the harvestman 

Phalangium opilio, for which we previously profiled the expression domains of the leg gap genes 

(Sharma et al. 2012b). These data demonstrated that leg gap gene expression in the harvestman is 

largely comparable to that of the spider. Harvestmen may be considered to represent a lineage of 

“primitive” arachnids (like scorpions), as they bear a number of plesiomorphic structures not 

observed in spiders or mites. Their early appearance in the fossil record and placement in most 
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chelicerate phylogenies enables phylogenetic polarization of developmental data observed in the 

other chelicerate models (Dunlop 2010; reviewed in Giribet and Edgecombe 2012; Sharma et al. 

2012a) (Fig. 1A). Several harvestman structures that express leg gap genes do not occur in 

spiders or mites. First, the preoral chamber is formed from the pedipalpal and first leg pair 

endites, and is exclusive to harvestmen and scorpions (although the preoral chambers of scorpions 

also include the endites of the second walking legs). This structure facilitates manipulation of 

food particles. In contrast to derived arachnids, scorpions and harvestmen do not have suctorial 

mouthparts; they feed using the proximal-most parts of their limbs, the coxapophyses (coxal 

endites) of the pedipalps and first pair of walking legs (Fig. 1B, 1C). Previously, we reported that 

these two pairs of endites express Dll in P. opilio prior to outgrowth (Sharma et al. 2012b), in a 

manner comparable to the spider “maxilla” (a structure formed from the pedipalpal coxal endites, 

which also express Dll and are retained in adults [Schoppmeier and Damen 2001; Pechmann et al. 

2010]), the gnathendites of crustacean mandibles (which are also used in feeding; Panganiban et 

al. 1995; Scholtz et al. 1998), and the labial and maxillary endites of insects (Giorgianni and Patel 

2004; Jockusch et al. 2004; Angelini et al. 2012a). These data suggest that Dll is involved in 

coxal endite outgrowth in both chelicerates and pancrustaceans.  

 

Second, the ocularium is a dorsal mound that bears the single pair of eyes in Phalangida (the non-

cyphophthalmid harvestmen; Giribet et al. 2010) (Fig. 1B). This structure is postulated to result 

from coalescence of a pair of Dll domains in the eye fields (specifically, the semilunar grooves; 

Sharma et al. 2012b). Eye mounds have evolved independently in several chelicerate lineages, 

such as pycnogonids and harvestmen. The outgrown nature of the ocularium suggests cooption of 

Dll to the development of this structure, given that in other arthropods, Dll patterns non-

appendage outgrowths of the body wall, such as beetle horns (Moczek and Nagy 2005; Moczek et 

al. 2006; Moczek and Rose 2009).  
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Third, harvestmen bear a three-segmented chelicera, which occurs in a grade of chelicerate orders 

leading to Arachnida (e.g., Xiphosura, Eurypterida, Pycnogonida), as well as some extant 

arachnid orders (e.g., Scorpiones, Opiliones; reviewed by Sharma et al. 2012b) (Fig. 1B). This 

disposition of cheliceral types has resulted in the reconstruction of the three-segmented chelicera 

as a symplesiomorphy (Dunlop 1996; Wheeler and Hayashi 1998; Giribet et al. 2002; Shultz 

2007). The proximal segment of this appendage strongly expresses dac in the harvestman. In 

contrast, dac is not expressed in the chelicerae of spiders, which are two-segmented (as in most 

derived arachnids). Based on these observations, we previously postulated that a loss of the dac 

domain could represent the genetic mechanism for the evolutionary transition from the three- to 

the two-segmented cheliceral type (Sharma et al. 2012b).  

 

To date, the functional significance of the expression domains of Dll and dac in chelicerate orders 

with the plesiomorphic cheliceral type has not been tested. Functional genetic testing is infeasible 

in many of these groups, which may either lack structures of interest (e.g., horseshoe crabs do not 

have a preoral chamber) or are intractable for reasons pertaining to life history (e.g., scorpions 

give live birth after a gestation period lasting several weeks to months). However, the recently 

established harvestman model organism P. opilio possesses all aforementioned structures of 

interest, and is tractable for laboratory studies (Sharma et al. 2012a, b). Here we describe methods 

for gene silencing in Phalangium opilio via zygotic injection of double stranded RNA (dsRNA). 

We report the conserved functions of Dll and dac as canonical leg gap genes in the pedipalps and 

legs. We additionally observe that knockdown of Dll interferes with the development of the 

preoral chamber’s coxal endites and the ocularium. In a single embryo, we observe that a 

knockdown of dac results in a two-segmented chelicera lacking the proximal segment, suggesting 

that the evolutionary transition from the three- to the two-segmented chelicera is achieved by the 

loss of the dac domain, and thus, of the proximal segment. 
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Materials and Methods 

 

Embryo collection and preparation 

 

Adults of Phalangium opilio (Arachnida, Opiliones, Eupnoi, Phalangiidae) were hand collected 

between 9:00 PM and 3:00 AM from various sites in Weston, Massachusetts, and Storrs, 

Connecticut, USA in June through August of 2012. Adults were maintained and embryos 

collected as previously described (Sharma et al. 2012a).  

 

Embryo preparation for RNAi followed a modified protocol for the spider C. salei (Prpic et al. 

2008). After 3-4 days of development, a clutch of embryos was dechorionated in 50% bleach 

solution and arranged into 8 × 8 grids on an agar dish. Glass cover slips (22 mm × 22 mm), 

previously coated with “heptane glue” (made by dissolving double-sided Scotch brand adhesive 

tape into heptane) and dried to create a layer of adhesive, were lowered onto each grid. In this 

manner, each clutch was approximately divided into three groups: 60% of the clutch was 

designated for injection with dsRNA for the gene of interest, 20% for injection with dsRNA for 

DsRed (exogenous dsRNA), and 20% for uninjected controls. This experimental design loosely 

follows that of Schoppmeier and Damen (2001).  

 

Like spider embryos, harvestman embryos contract 3-7 days after egg laying, forming a peri-

vitelline space filled with peri-vitelline fluid (Juberthie 1964). Embryos were allowed to develop 

in deionized water until the peri-vitelline space was observed. Embryos with a clear peri-vitelline 

space were immediately prepared further for injection (see below).  

 

Gene identification, cloning, and synthesis of dsRNA 
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Identification of Po-Dll and Po-dac using a developmental transcriptome of P. opilio was 

previously described (Sharma et al. 2012b). Templates for dsRNA synthesis were generated from 

cDNA as follows: Both genes were amplified by PCR using gene-specific primers (GSP) with an 

added linker sequence (these primers were previously used for riboprobe synthesis; sequences 

published in Sharma et al. 2012b). PCR products were cloned using the TOPO TA Cloning 

Kit with One Shot Top10 chemically competent E. coli (Invitrogen, Carlsbad, CA, USA), 

following the manufacturer’s protocol, and their identities verified by sequencing. 

  

dsRNA synthesis was conducted with the MEGAscript T7 kit (Ambion/Life Technologies, 

Grand Island, NY, USA) from amplified PCR product (above), following the manufacturer’s 

protocol. The synthesis was conducted for 4h, followed by a 5 min cool-down step to room 

temperature. A LiCl precipitation step was conducted, following the manufacturer’s protocol. 

dsRNA quality and concentration were checked using a Nanodrop-1000 spectrophotometer 

(Thermo Scientific, Wilmington, DE, USA) and the concentration of the dsRNA was 

subsequently adjusted to 3.85-4.00 µg/µL.  

 

Embryo injection 

 

Upon the appearance of the perivitelline space, embryos were dehydrated at room temperature for 

30 min. Subsequently, embryos were immersed in halocarbon oil 700 (Sigma-Aldrich, St. Louis, 

MO, USA). For injection, food-grade green dye was added to the dsRNA at a 1:20 dilution in 

order to visualize insertion of dsRNA. Microinjection needles were prepared from glass 

capillaries (1/0.58mm, 1B100F-4, World Precision Instruments, Sarasota, FL) using a 

micropipette puller (P-97, Sutter Instruments Co., Novato, CA, USA), and were backloaded with 

tinted dsRNA solution. Microinjections were performed on a Lumar stereomicroscope (Zeiss, 



Sharma et al. Page 10 of 39 

Oberkochen, Germany) equipped with a micromanipulator (MMO-202ND, Narishige, Tokyo, 

Japan) coupled to a microinjection unit (IM 300, Narishige, Tokyo, Japan). dsRNA was injected 

into the peri-vitelline space. Optimal pressure and injection time were empirically determined. 

 

Because harvestman embryos are under high internal pressure, injected solution is frequently 

ejected from the embryos upon the retraction of the capillary. However, pre-injection dehydration 

greater than 30 min often leads to embryonic death. Consequently, our injection technique 

exploits a particular feature of eupnoid harvestman embryos: the eggs of P. opilio grow in size  

during development, requiring contact with a hydrated surface to do so (Gnaspini 2007). 

Therefore, injections were performed so as to leave a droplet of dsRNA solution immediately 

outside the embryo, in contact with the injection site. In 1-2 days, the embryos were observed to 

absorb more of the solution than could initially be injected into the peri-vitelline space, as 

inferred from the increasing intensity of green color in the yolk of the embryos and the decreased 

size of the droplets.  

 

Embryo hatching and imaging 

 

Following injection, embryos were allowed to develop at 28 °C. To remove oil and glue, embryos 

were washed with heptane. To investigate gene expression, embryos were fixed and in situ 

hybridization was performed as previously described (Sharma et al. 2012a). Embryos were 

counterstained with Hoechst 33342 1 µg/ml (Sigma-Aldrich, St. Louis, MO, USA). Images were 

captured using an AxioCam HrC and an AxioZoom V16 stereomicroscope driven by Zen 2011 

(Zeiss, Oberkochen, Germany). Leg mounts were imaged using an AxioImager compound 

microscope driven by AxioVision v 4.8.2 (Zeiss, Oberkochen, Germany). 
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Embryos were induced to hatch by washing briefly in heptane and subsequently with deionized 

water. Embryos injected with DsRed-dsRNA were allowed to hatch normally. Embryos with 

severe Dll knockdown phenotypes were artificially hatched by manual dissection, using the 

position of the eyes and the degree of sclerotization (in comparison with control embryos) as 

indicators of completion of embryonic development. Live hatched embryos were immediately 

fixed in 96% EtOH. Images were captured using an HrC AxioCam and a Lumar 

stereomicroscope driven by AxioVision v. 4.8.2 Zeiss (Oberkochen, Germany).  
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Results 

 

RNAi in Phalangium opilio 

 

Eight clutches (n = 710 viable embryos) were subjected to the procedures described above and 

injected with tinted DsRed-dsRNA in order to optimize the injection protocol. Embryos injected 

with tinted dsRNA solution were observed to absorb the color, which concentrated in the yolk. 

Those embryos that survived the injection procedure (see below) developed normally until 

hatching (data not shown), showing that neither the injection procedure, nor exogenous nucleic 

acids, nor the buffer used for the solution impeded normal development.  

 

Subsequent to protocol optimization, an additional five clutches (n = 454 viable embryos) were 

subsequently used in RNAi experiments (Table S1). Zygotic injections induced significant 

mortality in P. opilio embryos, with survivorship ranging from 45-59% in various experimental 

treatments (Fig. 2; Table S1). However, survivorship of uninjected embryos glued to cover slips 

under oil was also variable (46% in Dll experiments; 87% in dac experiments). This may be 

attributable to intrinsic variability in clutch quality (some clutches of wild caught P. opilio have 

smaller eggs and high mortality rates even without dechorionation, with clutch quality declining 

markedly toward the end of the season; data not shown). This variance may also reflect our 

accruing experience with handling P. opilio embryos, although the experiments were conducted 

in parallel.  

 

RNAi of Po-Dll 

 

In situ hybridizations for Dll on embryos with strong Dll loss of function phenotypes (described 

below) showed no Dll expression in any of the wild type domains (Fig. 3A), confirming that our 
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RNAi treatment effectively abrogated Dll transcript accumulation. Of the embryos that survived 

injections of Dll dsRNA, 45% (n = 27) underwent a dramatic reduction in length of multiple 

prosomal appendages. In 89% of embryos with phenotypes (n=24), all prosomal appendages were 

shortened or nearly missing, retaining only the coxa, or the coxa and some of the trochanter (Fig. 

4C, 4D). No labrum was observed in these embryos (Fig. 3B). We interpret these phenotypes as 

strong loss of function phenotypes of Dll. In the remaining 11% (n=3) of embryos with 

phenotypes, we observed a weak (or mosaic) phenotype, wherein only some appendages were 

shortened, typically only on one side (Fig. 5B, 5C). 

 

Among severe Dll RNAi phenotype embryos, in contrast to endites in DsRed-dsRNA injected 

embryos (Fig. 4B), the pedipalpal and L1 endites did not undergo proximodistal elongation. As a 

result, the mouth was exposed, and the preoral chamber did not form (Fig. 4D, S1). In DsRed-

dsRNA injected embryos, outgrowths of these endites formed a wild type preoral chamber (Fig. 

4B). In addition, embryos with strong phenotypes featured a reduction of the ocularium, in 

contrast to DsRed-dsRNA injected embryos, which bore a prominent ocularium (Fig. 4A). In the 

most extreme case, the eyes were disposed flatly onto the prosomal dorsal scutum (Fig. 4C).  

 

In wild type P. opilio embryos, dac is expressed at early stages in the central nervous system and 

posterior terminus, and at later stages in the trochanter and femur of the pedipalps and legs, and 

the proximal chelicera (Sharma et al. 2012b; Fig. 5A). In contrast, in Dll-RNAi embryos, dac was 

either absent (presumably due to the absence of appendage tissue; Fig. 5B) or, in those truncated 

appendages that did form, expressed in the distal-most portion, i.e., in the trochanter (Fig. 5B, 

arrowhead). In limbs that lacked the trochanters and thus consisted only of the coxa, dac 

expression was not observed in the appendages at all (Fig. 5B; non-specific staining in the termini 

of the coxae is due to cuticle deposition, but dac is not expressed in this region in earlier stages, 

as in the pedipalpal coxae in Fig. 5B). Non-appendage dac domains, including in the central 
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nervous system and the posterior growth zone, were not affected (Fig. 5B). In embryos with weak 

phenotypes, dac was consistently expressed in the medial appendage segments (Fig. 5C, 5D).  

 

RNAi of Po-dac 

 

In order to verify dac knockdown, we performed in situ hybridizations for dac on embryos 

injected with dac dsRNA (Fig. 6). Like uninjected embryos, DsRed-dsRNA injected embryos 

displayed the previously reported (Sharma et al. 2012b) dac expression domains in the nervous 

system, growth zone, and proximal chelicera, and the trochanter, femur, and proximal patella in 

legs and pedipalps. In contrast to DsRed-dsRNA injected embryos (Fig. 6A), dac-RNAi embryos 

typically lacked dac expression in the walking legs and pedipalps. However, some embryos 

retained dac expression in the pedipalps (Fig. 6C), and all embryos examined showed dac 

expression in the proximal segment of the chelicerae at levels comparable to those in control 

chelicerae, even when dac expression domains were disrupted or lost in other appendages (Fig. 

6B, 6C). 

 

Of the embryos that survived injections of dac dsRNA, 24 % (n = 16) underwent loss of one or 

more segments in the legs and pedipalps (Fig. 7). Determination of segmental identity was based 

on the shape of the podomeres, as follows. The trochanter is a short podomere with the length 

approximately equal to the width. The femur is an elongated (i.e., high length-to-width ratio) 

segment that is wider distally than proximally. The patella of the legs is the only podomere that 

has a curvature in its shape, forming the “double knee” characteristic of arachnids. The tibia is of 

approximately cylindrical shape, with its greatest width in the center of its length. The metatarsus 

and tarsus are the narrowest of all podomeres, and the tarsus is differentiated by the distal tarsal 

claw and being the longest podomere. We note that the segmental identities are inferences based 
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on shape and on dac expression in wild type embryos; presently, segment-specific markers are 

not known for embryonic appendage segments in harvestmen.  

 

In two of these 16 embryos (12.5%), we observed that legs were missing a single segment 

corresponding to the patella, and the pedipalpal patella was either missing or reduced. We 

interpret this as a weak dac loss of function phenotype (Fig. 7E-F). In the remaining 14 embryos 

(87.5%) the legs and pedipalps lacked two segments, corresponding to the patella and femur; we 

interpret this as a strong dac loss of function phenotype (Fig. 7H-I). The total length of each 

appendage is reduced as a consequence of these losses, with dramatic shortening of pedipalps and 

all legs (Fig. 7, S2). Among the legs of embryos that showed strong phenotypes, the observed 

length difference (with respect to the length of the segments inferred to be missing) corresponded 

approximately to the combined length of the femur and patella (deviation from expected length 

difference: 2-15%). Among the pedipalpi of both strong and weak phenotype embryos, the 

reductions varied much more from expected length differences (up to 60%), which could be 

attributable to incomplete podomere deletions (e.g., reduced/fused patella in Fig. 7E; possible 

retention of portion of patella at the distal end of the tibia in Fig. 7H).  

 

Fifteen of the 16 embryos (93.8%) with segmental losses in other appendages bore a three-

segmented chelicera comparable to control chelicerae (Fig. 7, compare A and D). However, in a 

single embryo (6.2%) with a strong dac loss of function phenotype, the chelicerae symmetrically 

lacked the proximal segment and were shorter in length (Fig. 7D, compare A and G). 
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Discussion 

 

Two motivations underlie the recent pursuit of Phalangium opilio as a system for evolutionary 

developmental study: taxon sampling and character sampling. First, studies of chelicerate 

development have largely emphasized two orders: spiders and mites. These lineages have enabled 

comparisons of developmental mechanisms with the other rami of the arthropod tree of life 

(pancrustaceans and myriapods) (e.g., Prpic et al. 2003; Prpic and Damen 2009; Janssen et al. 

2010), but do not suffice to enable polarization of characters within Chelicerata. Study of a 

member of the chelicerate orders displaying plesiomorphic characters (e.g., book gills, three-

segmented chelicerae), and attendant determination of ancestral states, is of particular interest in 

cases where (1) only one of the two current model lineages demonstrates an unusual 

developmental trait, exemplified by the role of Dll as a gap gene in a spider, but not in a mite 

(Khila and Grbic 2007; Pechmann et al. 2011); and (2) when both spiders and mites (as well as 

other derived orders) share a state that is not observed in other chelicerate orders, exemplified by 

the two-segmented chelicera that lacks a dac domain (Prpic and Damen 2004; Pechmann and 

Prpic 2009; Sharma et al. 2012b). 

 

Second, P. opilio has several morphological characters that do not occur in well-established 

chelicerate species, but are of biological interest. These include the greatly elongated walking 

legs characteristic of many Opiliones; the numerous tarsomeres (tarsal articles) that subdivide the 

tarsi, enabling prehensility and grasping; sexually dimorphic cheliceral armature (which also 

occurs in many non-model spider species); and repugnatorial glands for repelling potential 

predators. Allometric growth of the appendages is of particular interest in the context of 

developmental genetics (see for example Mahfooz et al. 2004, 2007).  
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In the present study, we thus endeavored to develop functional genetic techniques in P. opilio for 

evolutionary inference and study of development in chelicerates. We utilized Dll and dac as case 

studies for testing the effectiveness of RNAi and demonstrate both conserved and derived roles of 

leg gap genes in this group. 

 

Conserved roles of Dll and dac as leg gap genes 

 

Truncation of the distal limb is the archetypal Dll phenotype in arthropods, and this has been 

corroborated in chelicerates (Cohen and Jürgens 1989; Beermann et al. 2001; Prpic et al. 2001; 

Schoppmeier and Damen 2001; Khila and Grbic 2007). However, identities of deleted segments 

in the chelicerate leg can only be inferred from spider data, based on embryonic gene expression 

patterns. In the spider, zygotic knockdown of Dll results in the loss of the leg distal to the 

trochanter, as inferred from the expression of dac in Dll knockdown embryos (Fig. 4 of 

Schoppmeier and Damen, 2001). Consistent with these data, we obtained harvestman Dll RNAi 

phenotypes with severe truncations in the distal limbs. As we were able to rear these embryos 

past the point of podomere formation, and even to assisted hatching, we were able to observe that 

only the coxa, or sometimes the coxa and trochanter, were retained in limbs with the strongest 

phenotypes. The loss of the femur and other distal podomeres is consistent with the expression of 

Po-Dll in both spiders and harvestmen. Furthermore, the loss of the trochanter, which does not 

express Dll in later stages, suggests that our RNAi experiments disrupted Dll activity at an earlier 

stage in development.  

 

Consistent with this interpretation, dac expression in appendages of Dll RNAi embryos is 

restricted to the trochanter (where it is normally expressed) when this segment is retained. In 

severe phenotypes wherein trochanter outgrowth is lost, dac expression is not observed in the 
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appendages at all, suggesting that RNAi in these embryos disrupted Dll activity and prevented 

outgrowth prior to the regionalization of the appendages (Fig. 5B, left side of embryo). 

 

The expression of dac in wild type early stage embryos of both spiders and harvestmen was 

reported to be restricted to the trochanter and femur (Abzhanov and Kaufman 2000; Prpic and 

Damen 2004; Pechmann and Prpic 2009; Sharma et al. 2012b). However, in later stages of 

development, we observed that P. opilio embryos expressed dac in the proximal patella of all legs 

and the pedipalp as well (Fig. 5A). This expansion of the dac domain into the patella was 

previously overlooked in the harvestman, as only earlier developmental stages (comparable to the 

spider embryos in studies discussed above) were investigated (Sharma et al. 2012b). The overlap 

between the Dll and dac domains is therefore more extensive than previously thought. Consistent 

with these expression patterns, weak dac RNAi phenotypes exhibit a loss of the patella in the legs 

and pedipalp, whereas strong phenotypes exhibit a loss of both the patella and the femur in these 

appendages (Fig. 7).  

 

Our determinations of which segments were lost in dac phenotypes are inferences based on the 

shape of the podomeres and the reduced total length of the appendage, the latter disfavoring an 

alternative explanation based exclusively on segmental fusions. Nevertheless, the assignations of 

segmental identity would benefit from corroboration by gene expression studies. One way to test 

the identities of the podomeres would be to utilize exd, which is expressed as a distal ring in the 

patella of wild type embryos, as a marker for this segment; however, we were unable to perform 

this test due to limitations in obtaining P. opilio embryos. We presently do not know of other 

appendage patterning genes that would serve as reliable markers of segmental identity in the 

harvestman. Moreover, because spiders possess two paralogs of hth and exd, each of which has a 

unique suite of expression domains (reviewed by Pechmann et al. 2010), the spider model may be 

of greater utility for this purpose. 
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This study nonetheless demonstrates two curious aspects of dac activity in the harvestman leg. 

First, a significant portion of the Dll domain overlaps the dac domain in the harvestman. Second, 

this overlap is dynamic, as the dac domain expands into the patella in later stages, a new 

observation not described earlier in chelicerates. A similar case has been reported in the beetle 

Tribolium castaneum, which bears two rings of dac in the legs (Prpic et al. 2001). In early stages, 

a single Tc-dac domain is proximal to the Tc-Dll domain and corresponds to the more proximal of 

the two dac rings. Later in development, the distal ring of Tc-dac expression arises within the Tc-

Dll domain. Upon completion of appendage formation, the distal Tc-dac domain becomes 

significantly larger and overlaps with the Tc-Dll domain. Prpic et al. (2001) contended that the 

distal domain of dac comprised the primordia of the femur and tibiotarsus, and the proximal 

domain of dac likely comprised the coxal primordium.  

 

Knockdown phenotypes of T. castaneum at metamorphosis (Suzuki et al. 2009; Angelini et al. 

2012b) show that strong dac phenotypes have appendages with deletions of the distal femur, the 

entire tibia, and the proximal tarsomeres, which correspond to the distal embryonic dac domain 

described previously (Prpic et al. 2001). However, the proximal segments coxa and trochanter are 

not affected even in severe dac phenotypes, suggesting that the proximal dac domain in T. 

castaneum is not required for metamorphic appendage patterning. Moreover, strong Tc-Dll RNAi 

phenotypes also undergo severe truncations of the limb, up to the proximal part of the femur; the 

Tc-Dll RNAi deletion domain overlaps the entire distal Tc-dac domain, which does act as a leg 

gap gene (Angelini et al. 2012b). Functional data for dac activity in embryos of the milkweed bug 

Oncopeltus fasciatus are comparable to those of metamorphic Tribolium: knockdown of Of-dac 

results in the loss of the tibia and truncation of the femur in severe phenotypes, whereas 

knockdown of Of-Dll results in the loss of all structures distal to the femur (Angelini and 

Kaufman 2004). Thus, in both the beetle and the hemipteran, the domain deleted in response to 



Sharma et al. Page 20 of 39 

RNAi targeting dac lies almost entirely within the domain deleted in response to Dll knockdown, 

as in P. opilio. 

 

We thus observe similarities in dac activity in beetles, true bugs, and harvestmen. However, we 

note that limitations in taxonomic sampling make inferences of dac domain evolution across 

arthropods tenuous: aside from P. opilio, functional data on dac function in arthropod appendage 

development are available only from the winged insects (D. melanogaster, O. fasciatus, T. 

castaneum, and onthophagine beetles; Moczek and Rose 2009). Nevertheless, our data support 

the conserved roles of Dll and dac as leg gap genes during limb development in P. opilio. 

 

Dll functions in development of the preoral chamber in the harvestman 

 

We previously reported expression domains of Dll in the pedipalpal and L1 endites in P. opilio 

and speculated that Dll was required to form the preoral chamber (Sharma et al. 2012b). The 

present study supports this hypothesis, as we observed that individuals with severe Dll RNAi 

phenotypes lacked the preoral chamber. These Dll domains are comparable to spider Dll domains 

in the pedipalpal endites (Schoppmeier and Damen 2001), which were previously hypothesized to 

be involved in forming the spider’s “maxilla” (Prpic and Damen 2004; Pechmann et al. 2010). Dll 

expression in endites has been reported in various mandibulates (e.g., Panganiban et al. 1995; 

Williams 1998; Abzhanov and Kaufman 2000; Rogers et al. 2002; Giorgianni and Patel 2004; 

Jockusch et al. 2004). Among chelicerates, Dll expression has also been reported in the 

pedipalpal endites of the mite (thought to form the subcapitulum [the inferior part of the 

gnathosoma], the rutellum [a limb-like projection], and/or the corniculus [a typically horn-like 

process]; Evans 1992; Thomas and Telford 1999), and in the pedipalpal and all leg endites of 

horseshoe crabs (Mittmann and Scholtz 2001).  
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Schoppmeier and Damen (2001) illustrated images of severe phenotypes in spider Dll RNAi 

embryos, which seem to show the loss of the pedipalpal endites (Figs. 4B, 5B in Schoppmeier 

and Damen 2001), but the focus of the authors was on the distal parts of the limbs. Similarly, in 

RNAi experiments with the mite Tetranychus urticae, Khila and Grbic (2007) observed reduction 

of the pedipalpal lobes (endites) in a particular class of Dll phenotypes, in which the limbs were 

truncated and antibody staining confirmed effective Dll knockdown. Our data, in conjunction 

with those of Schoppmeier and Damen (2001) and Khila and Grbic (2007), further support the 

hypothesis that Dll is involved in the growth of chelicerate pedipalpal endites (previously 

discussed by Prpic and Damen 2004 and Pechmann et al. 2010).  

 

These data also suggest that the spider “maxilla” and possibly the mite subcapitulum (and its 

projections, the rutellum and corniculus) are both homologous to the anterior part of the preoral 

chamber of harvestmen and scorpions. As with the gnathobases of the last pair of walking legs in 

the horseshoe crab (Manton 1977; Wyse and Dwyer 1973), all of these structures are involved in 

feeding. It is therefore tempting to reconstruct an evolutionary history of chelicerates that is 

characterized by progressive reduction in the number of outgrown endites, with mouthparts 

becoming increasingly specialized (e.g., suctorial and piercing mouthparts of derived arachnids). 

However, paleontological data disfavor a progressive reduction in endite number across the 

chelicerate tree (Weygoldt, 1998). Moreover, the placement of several orders, both extinct and 

extant, in chelicerate phylogeny is not definitive (Shultz, 2007; Dunlop 2010; Dunlop et al. 2012; 

Giribet and Edgecombe 2012). Further study is therefore required both for understanding how 

endites are formed in the mouthparts of the various arachnid orders and for inferring character 

evolution of the mouthparts based on a resolved arachnid phylogeny.  

 

Dll is required for the growth of the ocularium in the harvestman  
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We previously postulated that pronounced Dll domains in parts of the eye fields (the semilunar 

lobes) of the harvestman could be involved in patterning the ocularium (Sharma et al. 2012b). 

However, this hypothesis was speculative, given that Dll domains occur in head lobes of other 

chelicerates that do not form eye mounds, where these domains are often associated with sensory 

structures (Thomas and Telford 2000; Abzhanov and Kaufman 2000; Mittmann and Scholtz 

2001; Schoppmeier and Damen 2001). Here we observed that in P. opilio Dll RNAi embryos that 

developed to the normal hatching time, the ocularium was completely absent, with the eyes 

developing flatly on the prosomal carapace. We presently do not have the toolkit to investigate 

neurogenetic defects resulting from knockdown of Dll, as little is known about harvestman 

neurogenesis. However, future studies should investigate the role of Dll in chelicerate 

neurogenesis, given that Dll has been previously implicated in patterning chelicerate sensory 

structures and Dll domains have been reported in the head lobes of every chelicerate order studied 

(Mittmann and Scholtz 2001; Schoppmeier and Damen 2001; Khila and Grbic 2007).  

 

The involvement of Dll in forming the ocularium demonstrates another case of cooption of leg 

gap genes to form non-appendage outgrowths, exemplified by the sexually dimorphic horns of 

onthophagine beetles (Moczek and Nagy 2005; Moczek et al. 2006; Moczek and Rose 2009). 

Among harvestmen, the ocularium is sexually dimorphic in some species and of highly variable 

morphology in multiple unrelated harvestman families (Giribet et al. 2010; Sharma and Giribet 

2011). The genetic basis for the sexual dimorphism is unknown, and we are presently unable to 

investigate it further here, because the structure is not sexually dimorphic in P. opilio. 

 

Dll in the labrum 

 

As mentioned previously, the nature of the labrum is controversial (Popadić et al. 1998; Budd 

2002; Kimm and Prpic 2006; reviewed by Scholtz and Edgecombe 2006; Posnien et al. 2009). 
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Consistent with data reported in other chelicerates (Thomas and Telford 1999; Abzhanov and 

Kaufman 2000; Schoppmeier and Damen 2001; Pechmann and Prpic 2009; Khila and Grbic 

2007), the labrum of P. opilio strongly expresses Dll and Dll RNAi embryos lack the labrum. 

However, Dll (as well as other leg gap genes) is also involved in the development of non-

appendage derived structures, (e.g., bristles and sensory structures; Sunkel and Whittle 1987; 

Cohen and Jürgens 1989; Williams et al. 2002). Inversely, some appendage-derived structures do 

not express Dll (e.g., insect mandibles, spider book lungs), making this gene an unreliable marker 

for limb homology. Consequently, our data can neither support nor disfavor the homology of the 

labrum and arthropod limbs.  

 

dac and the three-segmented chelicera 

 

Wild type P. opilio display a three-segmented chelicera that expresses dac in the proximal 

segment, consistent with the hypothesis that the deutocerebral appendage possessed a tripartite 

domain structure in the last common ancestor of arthropods (Sharma et al. 2012b). Among the 16 

dac RNAi embryos displaying pedipalp and walking leg phenotypes, a single embryo was 

observed with a pair of identical two-segmented chelicerae, which were morphologically similar 

to the chelicerae observed in such chelicerate orders as Solifugae and Pseudoscorpiones (Fig. 5G) 

(Sharma et al. 2012b). In this phenotype, the decreased length of the appendage and the presence 

of a chela are consistent with the loss of the proximal segment, wherein dac is strongly expressed 

in wild type embryos (Sharma et al. 2012b). These data, albeit limited, are consistent with our 

previously proposed hypothesis on the mechanism of the evolutionary transition from the three- 

to the two-segmented cheliceral type (Sharma et al. 2012b). 

 

The mechanism for the evolutionary transitions between cheliceral types is of great interest due to 

the recent discovery of a fossil synziphosurine (stem xiphosuran) with elongated, antenniform 



Sharma et al. Page 24 of 39 

chelicerae (Dibasterium durgae; Briggs et al. 2012). At least four distinct segments were reported 

in the chelicera of this fossil chelicerate species, and the flexion of the appendage suggests 

numerous cheliceral articles, possibly comparable to antennules in crustacean antennae. In extant 

chelicerates, members of a paraphyletic group at the base of Chelicerata (e.g., sea spiders, 

horseshoe crabs, scorpions, and harvestmen) bear three-segmented chelicerae (called chelifores in 

sea spiders; four-segmented chelifores also occur in some extant species [members of the genera 

Achelia, Ammothella, and Eurycyde], and the fossil sea spider Palaeoisopus problematicus 

putatively bears five-segmented chelifores; Arango 2002), whereas the members of derived 

arachnid orders (e.g., Tetrapulmonata) bear two-segmented chelicerae (reviewed by Sharma et al. 

2012b).  

 

This hypothesis of a reductive trend in the chelicera has been previously proposed and formally 

treated in phylogenetic analyses (Dunlop 1996; Wheeler and Hayashi 1998; Giribet et al. 2002; 

Shultz 2007). The trend has been extended to the “great appendages” of Cambrian fossil 

arthropods, which some authors have treated as homologous to chelicerae owing to the inclusion 

of chelate podomeres (Chen et al. 2004; Haug et al. 2012). However, homology of the Cambrian 

“great appendage” and the deutocerebral appendage of extant arthropods is controversial, as the 

former is alternatively interpreted to be protocerebral in origin, whereas the chelicerae of extant 

Chelicerata are demonstrably deutocerebral (Telford and Thomas 1998; Budd 2002; Jager et al. 

2006; Brenneis et al. 2008). In addition, chelate appendages have evolved convergently several 

times in many extant arthropods (e.g., pedipalps of scorpions, pseudoscorpions and ricinuleids; 

great chelae of malacostracan crustaceans and many crustacean pereiopods; the first walking legs 

of dryinid wasps), disfavoring homology statements based on the chelate condition. Finally, the 

evidence of a reductive trend has not been conclusively demonstrated even within Early 

Cambrian arthropods by Chen et al. (2004) or Haug et al. (2011), insofar as these appendages 

have not been mapped onto a numerical (i.e., cladistic) phylogenetic tree, but rather a non-
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analytical hypothetical scenario of cheliceral evolution based largely on cheliceral segment 

number. In any case, inasmuch as developmental genetics (let alone functional studies) are not 

feasible in extinct Early Cambrian arthropods, neither the homology statement between 

appendage types nor the mechanism of reduction in these appendages can be tested. 

 

By contrast, the incidence of more than three segments in the chelifores of fossil and extant 

pycnogonids, the antenniform chelicera of Dibasterium, and the disposition of cheliceral 

morphology across the phylogeny of arachnids are all analytically consistent with a reductive 

trend in the chelicera (phylogenetic analyses of Dunlop 1996; Wheeler and Hayashi 1998; 

Arango 2002; Giribet et al. 2002; Shultz 2007; Briggs et al. 2012). If the portion of the chelicera 

basal to the chela—the distal-most pair of segments, which are articulated to form a pincer—is 

homologous among the chelicerates and has undergone progressive reduction, then this putative 

trend may explain the remarkable morphological disparity between the mandibulate antenna and 

the chelicera, which are both appendages of the deutocerebral segment (Telford and Thomas 

1998; Brenneis et al. 2008). Consequently, the proximal cheliceral segment of such lineages as 

harvestmen, horseshoe crabs, and sea spiders may represent the remnant of the elongate, flexible 

portion of the chelicera present in stem Merostomata, such as Dibasterium. However, as the 

expression of leg gap genes in a three-segmented chelicera has only been observed in the 

harvestman to date, it remains to be tested whether the proximal segment(s) is consistently 

associated with dac expression in other chelicerate lineages, i.e., whether dac is a reliable marker 

for proximal segment identity in the chelicera.  

 

Although our sample size was limited (n = 16 embryos with dac phenotypes) due to the 

difficulties of obtaining large numbers of embryos during the P. opilio breeding season, it is 

nevertheless surprising that only one embryo was obtained with a cheliceral phenotype, whereas 

the other limbs reliably underwent deletions of one or more segments. This apparent dichotomy 
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may be attributable to incomplete knockdowns of dac. In situ hybridizations of dac RNAi 

embryos with a dac probe showed that whereas dac expression in the legs was reliably disrupted 

or entirely inhibited by injection of dac dsRNA, expression in the chelicerae was always observed 

(and sometimes in the pedipalps as well; 6B, C). Correspondingly, embryos exhibiting dac 

phenotypes in the legs and pedipalps also formed wild type chelicerae in which the proximal 

segment retained dac expression, even when dac was disrupted in the other appendages (Fig. 6B). 

Our sample sizes for the dac experiments do not suffice to examine why dac is not easily 

knocked down in the chelicerae. It may be, for example, that severe dac phenotypes missing a 

portion of the chelicera also undergo neurogenetic defects that limit survivorship. Although we 

report it here and score it as a “strong” cheliceral phenotype, we are unable to rule out injection 

artifacts and thus cannot interpret this datum unambiguously. We note, however, that the 

symmetry of the phenotype (a pair of two-segmented chelicerae) disfavors the possibility of an 

injection artifact. Furthermore, no such teratology has been reported in any other Opiliones 

(Juberthie, 1964), lending support to our interpretation that loss of dac function was responsible 

for the loss of a cheliceral segment in our experiments. As P. opilio is a wild-caught and seasonal 

species, the corroboration of this result requires future experiments. The function of dac should 

also be investigated in other lineages with three- and four-segmented chelicerae (e.g., horseshoe 

crabs, pycnogonids). If our model were correct, dac will be expressed in the proximal cheliceral 

segments and abrogation of dac expression in such lineages would also result in the formation of 

a two-segmented chelicera. Investigation of the four-segmented condition of some pycnogonids’ 

chelicerae may also elucidate how the proximal region elongates and adds segments in these 

lineages. This may constitute an exciting avenue for discovery of the developmental basis of the 

antenniform chelicera, providing a link between the disparate deutocerebral appendages of 

mandibulates and chelicerates. 
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Figure legends 

 

Fig. 1 (A) Phylogeny of Chelicerata indicating topological placement of harvestmen and spiders, 

the sole chelicerate orders wherein expression domains are known for all four leg gap genes. 

Topology derived from Giribet et al. (2001), Shultz (2007), and Giribet and Edgecombe (2012). 

(B) Diagram of adult male Phalangium opilio, lateral view of prosoma. (C) Diagram of adult 

male Phalangium opilio, ventral view of prosoma. Coxal apophyses of the pedipalp (Cxa Pp) and 

first walking leg (Cxa L1) form the preoral chamber (POC). Labels in boldface text in (B) and (C) 

indicate structures of relevance to the present study. Ch = chelicera; Cx 1-4 = coxa 1-4; Oc = 

ocularium; Pp = pedipalp; lb = labrum.  

 

Fig. 2 Percentage distribution of phenotypes upon injection of Dll-dsRNA (left) and dac-dsRNA 

(right); see Table S1 for numerical breakdown. Phenotypes are color coded as indicated in the 

legend. 

 

Fig. 3 Expression of the Phalangium opilio Distal-less gene in controls and Dll RNAi embryos. 

(A) Stage 17 embryo injected with DsRed-dsRNA. Po-Dll is expressed in the distal parts of the 

chelicerae, pedipalps, and legs. Additional Dll domains include the labrum, the pedipalpal and L1 

endites (arrowheads), and the central nervous system of the prosoma (arrowheads). (B) Stage 17 

embryo injected with Dll-dsRNA (strong phenotype). Expression of Po-Dll is not observed. Note 

loss of the chelicerae and labrum, revealing the mouth. Pedipalpal and L1 endites form, but do 

not form outgrowths in later stages (arrowheads). Pedipalps and legs lack all podomeres except 

for the coxae. (A’-B’) Counterstaining of embryos shown in (A-B) with Hoechst 33342. Scale 

bars for all figures are 200 µm. L1-4: leg 1-4; other abbreviations as in Fig. 1. 
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Fig. 4 Distal-less RNAi disrupts formation of the ocularium and preoral chamber of P. opilio. (A) 

Hatchling injected with DsRed-dsRNA, in lateral view. Bracket indicates the ocularium, a dorsal 

outgrowth bearing the eyes. (B) Same hatchling as in (A), in ventral view, showing components 

of a wild type preoral chamber. Dotted lines indicate outlines of the left pedipalpal and L1 coxae. 

Black arrows indicate outgrown L1 endites. (C) Hatchling injected with Dll-dsRNA, in lateral 

view. Note the absence of the ocularium, with the eyes flush with the scutum. (D) Hatching 

injected with Dll-dsRNA, in ventral view. Dotted lines indicate outlines of the left pedipalpal and 

L1 coxae. Note absence of outgrown endites and exposed mouth. Scale bar for all figures are 200 

µm. Abbreviations as in Figs. 1, 3. 

 

Fig. 5 Expression of the Phalangium opilio dachshund gene in strong and weak Dll RNAi 

phenotypes. (A) Stage 17 embryo injected with DsRed-dsRNA showing wild type expression 

domains of dac. Brackets indicate expression domain of Po-dac in the proximal part of the patella 

in pedipalps and walking legs. (B) Stage 19+ embryo injected with Dll-dsRNA (strong 

phenotype), in ventral view. Po-dac is expressed in the head, in the nervous system, and in the 

posterior terminus. Po-dac is also expressed in the single remaining trochanter of the right L4 

(arrowhead). Asterisks indicate non-specific staining due to cuticle deposition at the termini of 

the coxae, as observed in previous studies (Sharma et al. 2012a, b). (C) Stage 13 embryo injected 

with Dll-dsRNA (weak phenotype), in ventral view. In this weak phenotype, all appendages 

except for the right L4 are truncated to some degree, with more consistent truncations on the left 

side. Note the retention of the labrum and one of the chelicerae. Po-dac is expressed in the medial 

regions of appendages. (D) Same embryo as in (C), in lateral view. In truncated appendages, Po-

dac is expressed in the distal-most part of the remaining appendage. Scale bars for all figures are 

200 µm. Abbreviations as in Figs. 1, 3. 
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Fig. 6 Expression of the Phalangium opilio dachshund gene. (A) Stage 12 embryo injected with 

DsRed-dsRNA in lateral view, showing wild type expression domains of dac in appendages. 

Asterisks indicate non-specific staining due to cuticle deposition in the tips of the chelicerae. (B) 

Dissected stage 12 embryo injected with dac-dsRNA. dac expression is observed in the chelicera 

and pedipalp (arrowheads) and in part of the opisthosomal ventral ectoderm, but not in the legs. 

(C) Stage 18 embryo injected with dac-dsRNA. dac is expressed in the proximal segment of the 

chelicera (bracket) and in the eye fields, in spite of disrupted expression in the pedipalps. Scale 

bars for all figures are 200 µm. Ef = eye field; other abbreviations as in Figs. 1, 3. 

 

Fig. 7 Appendage mounts of stage 20 control (A-C) and dac-dsRNA (D-I) injected embryos. 

Weak dac phenotypes are characterized by the reduction or loss of the patella in the pedipalp (E) 

and leg (F). Strong dac phenotypes are characterized by the loss of the patella and femur in the 

pedipalp (H) and leg (I). A single embryo bore a two-segmented chelicera (G), in contrast to the 

three-segmented chelicera observed in remaining RNAi embryos (D) and controls (A). 

Arrowheads denote locations of segment boundaries. Scale bars for all figures are 50 µm. Chela = 

union of secondary and mobile segments; Fe = femur; Mt = metatarsus; Pa = patella; Pr = 

proximal segment; Ta = tarsus; Ti = tibia; Tr = trochanter. 

 

Fig. 8 Summary of RNAi phenotypes in the appendages of P. opilio. Top: Functional domains of 

Dll and dac in the walking leg. Gradient of dac expression in the patella indicates late stage onset 

of expression. Lighter shading of Dll in trochanter indicates retention of this segment in some 

embryos scored as having a strong phenotype. Note that dac is expressed in the trochanter, but 

this segment is not lost in dac RNAi phenotypes. Middle: Functional domains of Dll and dac in 

the pedipalp. These are identical to their respective domains in the walking leg. Bottom: 

Functional domains of Dll and dac in the chelicera. Lighter shading of Dll in proximal part of 
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proximal segment indicates in retention in some embryos scored as having a strong phenotype. A 

possible role for dac function in the chelicera is discussed in the text. Px = proximal segment; Sa 

= secondary article; Da = distal article. 

 

Fig. S1 Detail of ventral prosomal complex of Dll-dsRNA injected embryos. (A) Strong 

phenotype with retention of coxae only (dotted lines). Note absence of coxal apophyses and 

exposure of the oral cavity (M). (B) Strong phenotype with retention of coxae (dotted lines) and 

trochanters (brackets for two legs on the right side of the embryo). Note retention of basal-most 

part of chelicerae, absence of coxal apophyses, and exposure of the oral cavity. Scale bars for all 

figures are 200 µm 

 

Fig. S2 First walking leg (L1) mounts of stage 20 control (A) and dac dsRNA (B, C) injected 

embryos. Arrowheads denote locations of segmental boundaries.  

 

Table S1 Raw data of distribution of phenotypes upon injection of Dll-dsRNA and dac-dsRNA. 























Table S1 
        

Normal Dead Strong phen. Weak phen. Non-spec.  Total 
19 22 0 0 0 Uninjected 41 
17 18 0 0 4 DsRed-dsRNA 39 

Distal-less 

24 72 24 3 9 Dll-dsRNA 132 
        

Normal Dead Strong phen. Weak phen. Non-spec.  Total 
40 6 0 0 0 Uninjected 46 
28 25 0 0 8 DsRed-dsRNA 61 dachshund 

33 67 14 2 19 dac-dsRNA 135 
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